Print this page
PANKOVs restructure
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/i86pc/io/mp_platform_common.c
+++ new/usr/src/uts/i86pc/io/mp_platform_common.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 */
24 24 /*
25 25 * Copyright (c) 2010, Intel Corporation.
26 26 * All rights reserved.
27 27 */
28 28
29 29 /*
30 30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 33 * PSMI 1.5 extensions are supported in Solaris Nevada.
↓ open down ↓ |
33 lines elided |
↑ open up ↑ |
34 34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 36 */
37 37 #define PSMI_1_7
38 38
39 39 #include <sys/processor.h>
40 40 #include <sys/time.h>
41 41 #include <sys/psm.h>
42 42 #include <sys/smp_impldefs.h>
43 43 #include <sys/cram.h>
44 -#include <sys/acpi/acpi.h>
44 +#include <acpica/include/acpi.h>
45 45 #include <sys/acpica.h>
46 46 #include <sys/psm_common.h>
47 47 #include <sys/apic.h>
48 48 #include <sys/apic_timer.h>
49 49 #include <sys/pit.h>
50 50 #include <sys/ddi.h>
51 51 #include <sys/sunddi.h>
52 52 #include <sys/ddi_impldefs.h>
53 53 #include <sys/pci.h>
54 54 #include <sys/promif.h>
55 55 #include <sys/x86_archext.h>
56 56 #include <sys/cpc_impl.h>
57 57 #include <sys/uadmin.h>
58 58 #include <sys/panic.h>
59 59 #include <sys/debug.h>
60 60 #include <sys/archsystm.h>
61 61 #include <sys/trap.h>
62 62 #include <sys/machsystm.h>
63 63 #include <sys/cpuvar.h>
64 64 #include <sys/rm_platter.h>
65 65 #include <sys/privregs.h>
66 66 #include <sys/cyclic.h>
67 67 #include <sys/note.h>
68 68 #include <sys/pci_intr_lib.h>
69 69 #include <sys/sunndi.h>
70 70 #if !defined(__xpv)
71 71 #include <sys/hpet.h>
72 72 #include <sys/clock.h>
73 73 #endif
74 74
75 75 /*
76 76 * Local Function Prototypes
77 77 */
78 78 static int apic_handle_defconf();
79 79 static int apic_parse_mpct(caddr_t mpct, int bypass);
80 80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
81 81 static int apic_checksum(caddr_t bptr, int len);
82 82 static int apic_find_bus_type(char *bus);
83 83 static int apic_find_bus(int busid);
84 84 static struct apic_io_intr *apic_find_io_intr(int irqno);
85 85 static int apic_find_free_irq(int start, int end);
86 86 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
87 87 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
88 88 static void apic_free_apic_cpus(void);
89 89 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
90 90 static int apic_acpi_enter_apicmode(void);
91 91
92 92 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
93 93 int child_ipin, struct apic_io_intr **intrp);
94 94 int apic_find_bus_id(int bustype);
95 95 int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 96 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
97 97
98 98 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */
99 99
100 100 /* ACPI SCI interrupt configuration; -1 if SCI not used */
101 101 int apic_sci_vect = -1;
102 102 iflag_t apic_sci_flags;
103 103
104 104 #if !defined(__xpv)
105 105 /* ACPI HPET interrupt configuration; -1 if HPET not used */
106 106 int apic_hpet_vect = -1;
107 107 iflag_t apic_hpet_flags;
108 108 #endif
109 109
110 110 /*
111 111 * psm name pointer
112 112 */
113 113 char *psm_name;
114 114
115 115 /* ACPI support routines */
116 116 static int acpi_probe(char *);
117 117 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
118 118 int *pci_irqp, iflag_t *intr_flagp);
119 119
120 120 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
121 121 int ipin, int *pci_irqp, iflag_t *intr_flagp);
122 122 uchar_t acpi_find_ioapic(int irq);
123 123 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
124 124
125 125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126 126 int apic_max_reps_clear_pending = 1000;
127 127
128 128 int apic_intr_policy = INTR_ROUND_ROBIN;
129 129
130 130 int apic_next_bind_cpu = 1; /* For round robin assignment */
131 131 /* start with cpu 1 */
132 132
133 133 /*
134 134 * If enabled, the distribution works as follows:
135 135 * On every interrupt entry, the current ipl for the CPU is set in cpu_info
136 136 * and the irq corresponding to the ipl is also set in the aci_current array.
137 137 * interrupt exit and setspl (due to soft interrupts) will cause the current
138 138 * ipl to be be changed. This is cache friendly as these frequently used
139 139 * paths write into a per cpu structure.
140 140 *
141 141 * Sampling is done by checking the structures for all CPUs and incrementing
142 142 * the busy field of the irq (if any) executing on each CPU and the busy field
143 143 * of the corresponding CPU.
144 144 * In periodic mode this is done on every clock interrupt.
145 145 * In one-shot mode, this is done thru a cyclic with an interval of
146 146 * apic_redistribute_sample_interval (default 10 milli sec).
147 147 *
148 148 * Every apic_sample_factor_redistribution times we sample, we do computations
149 149 * to decide which interrupt needs to be migrated (see comments
150 150 * before apic_intr_redistribute().
151 151 */
152 152
153 153 /*
154 154 * Following 3 variables start as % and can be patched or set using an
155 155 * API to be defined in future. They will be scaled to
156 156 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
157 157 * mode), or 101 in one-shot mode to stagger it away from one sec processing
158 158 */
159 159
160 160 int apic_int_busy_mark = 60;
161 161 int apic_int_free_mark = 20;
162 162 int apic_diff_for_redistribution = 10;
163 163
164 164 /* sampling interval for interrupt redistribution for dynamic migration */
165 165 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
166 166
167 167 /*
168 168 * number of times we sample before deciding to redistribute interrupts
169 169 * for dynamic migration
170 170 */
171 171 int apic_sample_factor_redistribution = 101;
172 172
173 173 int apic_redist_cpu_skip = 0;
174 174 int apic_num_imbalance = 0;
175 175 int apic_num_rebind = 0;
176 176
177 177 /*
178 178 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
179 179 * allocation of CPU ids is disabled.
180 180 */
181 181 int apic_max_nproc = -1;
182 182 int apic_nproc = 0;
183 183 size_t apic_cpus_size = 0;
184 184 int apic_defconf = 0;
185 185 int apic_irq_translate = 0;
186 186 int apic_spec_rev = 0;
187 187 int apic_imcrp = 0;
188 188
189 189 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */
190 190 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */
191 191
192 192 /*
193 193 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
194 194 * will be assigned (via _SRS). If it is not set, use the current
195 195 * irq setting (via _CRS), but only if that irq is in the set of possible
196 196 * irqs (returned by _PRS) for the device.
197 197 */
198 198 int apic_unconditional_srs = 1;
199 199
200 200 /*
201 201 * For interrupt link devices, if apic_prefer_crs is set when we are
202 202 * assigning an IRQ resource to a device, prefer the current IRQ setting
203 203 * over other possible irq settings under same conditions.
204 204 */
205 205
206 206 int apic_prefer_crs = 1;
207 207
208 208 uchar_t apic_io_id[MAX_IO_APIC];
209 209 volatile uint32_t *apicioadr[MAX_IO_APIC];
210 210 uchar_t apic_io_ver[MAX_IO_APIC];
211 211 uchar_t apic_io_vectbase[MAX_IO_APIC];
212 212 uchar_t apic_io_vectend[MAX_IO_APIC];
213 213 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
214 214 uint32_t apic_physaddr[MAX_IO_APIC];
215 215
216 216 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
217 217
218 218 /*
219 219 * First available slot to be used as IRQ index into the apic_irq_table
220 220 * for those interrupts (like MSI/X) that don't have a physical IRQ.
221 221 */
222 222 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ;
223 223
224 224 /*
225 225 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
226 226 * and bound elements of cpus_info and the temp_cpu element of irq_struct
227 227 */
228 228 lock_t apic_ioapic_lock;
229 229
230 230 int apic_io_max = 0; /* no. of i/o apics enabled */
231 231
232 232 struct apic_io_intr *apic_io_intrp = NULL;
233 233 static struct apic_bus *apic_busp;
234 234
235 235 uchar_t apic_resv_vector[MAXIPL+1];
236 236
237 237 char apic_level_intr[APIC_MAX_VECTOR+1];
238 238
239 239 uint32_t eisa_level_intr_mask = 0;
240 240 /* At least MSB will be set if EISA bus */
241 241
242 242 int apic_pci_bus_total = 0;
243 243 uchar_t apic_single_pci_busid = 0;
244 244
245 245 /*
246 246 * airq_mutex protects additions to the apic_irq_table - the first
247 247 * pointer and any airq_nexts off of that one. It also protects
248 248 * apic_max_device_irq & apic_min_device_irq. It also guarantees
249 249 * that share_id is unique as new ids are generated only when new
250 250 * irq_t structs are linked in. Once linked in the structs are never
251 251 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
252 252 * or allocated. Note that there is a slight gap between allocating in
253 253 * apic_introp_xlate and programming in addspl.
254 254 */
255 255 kmutex_t airq_mutex;
256 256 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1];
257 257 int apic_max_device_irq = 0;
258 258 int apic_min_device_irq = APIC_MAX_VECTOR;
259 259
260 260 typedef struct prs_irq_list_ent {
261 261 int list_prio;
262 262 int32_t irq;
263 263 iflag_t intrflags;
264 264 acpi_prs_private_t prsprv;
265 265 struct prs_irq_list_ent *next;
266 266 } prs_irq_list_t;
267 267
268 268
269 269 /*
270 270 * ACPI variables
271 271 */
272 272 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
273 273 int apic_enable_acpi = 0;
274 274
275 275 /* ACPI Multiple APIC Description Table ptr */
276 276 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
277 277
278 278 /* ACPI Interrupt Source Override Structure ptr */
279 279 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
280 280 int acpi_iso_cnt = 0;
281 281
282 282 /* ACPI Non-maskable Interrupt Sources ptr */
283 283 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
284 284 static int acpi_nmi_scnt = 0;
285 285 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
286 286 static int acpi_nmi_ccnt = 0;
287 287
288 288 /*
289 289 * The following added to identify a software poweroff method if available.
290 290 */
291 291
292 292 static struct {
293 293 int poweroff_method;
294 294 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */
295 295 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */
296 296 } apic_mps_ids[] = {
297 297 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */
298 298 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */
299 299 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */
300 300 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */
301 301 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */
302 302 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */
303 303 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */
304 304 };
305 305
306 306 int apic_poweroff_method = APIC_POWEROFF_NONE;
307 307
308 308 /*
309 309 * Auto-configuration routines
310 310 */
311 311
312 312 /*
313 313 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
314 314 * May work with 1.1 - but not guaranteed.
315 315 * According to the MP Spec, the MP floating pointer structure
316 316 * will be searched in the order described below:
317 317 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
318 318 * 2. Within the last kilobyte of system base memory
319 319 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
320 320 * Once we find the right signature with proper checksum, we call
321 321 * either handle_defconf or parse_mpct to get all info necessary for
322 322 * subsequent operations.
323 323 */
324 324 int
325 325 apic_probe_common(char *modname)
326 326 {
327 327 uint32_t mpct_addr, ebda_start = 0, base_mem_end;
328 328 caddr_t biosdatap;
329 329 caddr_t mpct = 0;
330 330 caddr_t fptr;
331 331 int i, mpct_size, mapsize, retval = PSM_FAILURE;
332 332 ushort_t ebda_seg, base_mem_size;
333 333 struct apic_mpfps_hdr *fpsp;
334 334 struct apic_mp_cnf_hdr *hdrp;
335 335 int bypass_cpu_and_ioapics_in_mptables;
336 336 int acpi_user_options;
337 337
338 338 if (apic_forceload < 0)
339 339 return (retval);
340 340
341 341 /*
342 342 * Remember who we are
343 343 */
344 344 psm_name = modname;
345 345
346 346 /* Allow override for MADT-only mode */
347 347 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
348 348 "acpi-user-options", 0);
349 349 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
350 350
351 351 /* Allow apic_use_acpi to override MADT-only mode */
352 352 if (!apic_use_acpi)
353 353 apic_use_acpi_madt_only = 0;
354 354
355 355 retval = acpi_probe(modname);
356 356
357 357 /*
358 358 * mapin the bios data area 40:0
359 359 * 40:13h - two-byte location reports the base memory size
360 360 * 40:0Eh - two-byte location for the exact starting address of
361 361 * the EBDA segment for EISA
362 362 */
363 363 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
364 364 if (!biosdatap)
365 365 goto apic_ret;
366 366 fpsp = (struct apic_mpfps_hdr *)NULL;
367 367 mapsize = MPFPS_RAM_WIN_LEN;
368 368 /*LINTED: pointer cast may result in improper alignment */
369 369 ebda_seg = *((ushort_t *)(biosdatap+0xe));
370 370 /* check the 1k of EBDA */
371 371 if (ebda_seg) {
372 372 ebda_start = ((uint32_t)ebda_seg) << 4;
373 373 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
374 374 if (fptr) {
375 375 if (!(fpsp =
376 376 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
377 377 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
378 378 }
379 379 }
380 380 /* If not in EBDA, check the last k of system base memory */
381 381 if (!fpsp) {
382 382 /*LINTED: pointer cast may result in improper alignment */
383 383 base_mem_size = *((ushort_t *)(biosdatap + 0x13));
384 384
385 385 if (base_mem_size > 512)
386 386 base_mem_end = 639 * 1024;
387 387 else
388 388 base_mem_end = 511 * 1024;
389 389 /* if ebda == last k of base mem, skip to check BIOS ROM */
390 390 if (base_mem_end != ebda_start) {
391 391
392 392 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
393 393 PROT_READ);
394 394
395 395 if (fptr) {
396 396 if (!(fpsp = apic_find_fps_sig(fptr,
397 397 MPFPS_RAM_WIN_LEN)))
398 398 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
399 399 }
400 400 }
401 401 }
402 402 psm_unmap_phys(biosdatap, 0x20);
403 403
404 404 /* If still cannot find it, check the BIOS ROM space */
405 405 if (!fpsp) {
406 406 mapsize = MPFPS_ROM_WIN_LEN;
407 407 fptr = psm_map_phys(MPFPS_ROM_WIN_START,
408 408 MPFPS_ROM_WIN_LEN, PROT_READ);
409 409 if (fptr) {
410 410 if (!(fpsp =
411 411 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
412 412 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
413 413 goto apic_ret;
414 414 }
415 415 }
416 416 }
417 417
418 418 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
419 419 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
420 420 goto apic_ret;
421 421 }
422 422
423 423 apic_spec_rev = fpsp->mpfps_spec_rev;
424 424 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
425 425 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
426 426 goto apic_ret;
427 427 }
428 428
429 429 /* check IMCR is present or not */
430 430 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
431 431
432 432 /* check default configuration (dual CPUs) */
433 433 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
434 434 psm_unmap_phys(fptr, mapsize);
435 435 if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
436 436 return (retval);
437 437
438 438 goto apic_ret;
439 439 }
440 440
441 441 /* MP Configuration Table */
442 442 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
443 443
444 444 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
445 445
446 446 /*
447 447 * Map in enough memory for the MP Configuration Table Header.
448 448 * Use this table to read the total length of the BIOS data and
449 449 * map in all the info
450 450 */
451 451 /*LINTED: pointer cast may result in improper alignment */
452 452 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
453 453 sizeof (struct apic_mp_cnf_hdr), PROT_READ);
454 454 if (!hdrp)
455 455 goto apic_ret;
456 456
457 457 /* check mp configuration table signature PCMP */
458 458 if (hdrp->mpcnf_sig != 0x504d4350) {
459 459 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
460 460 goto apic_ret;
461 461 }
462 462 mpct_size = (int)hdrp->mpcnf_tbl_length;
463 463
464 464 apic_set_pwroff_method_from_mpcnfhdr(hdrp);
465 465
466 466 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
467 467
468 468 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
469 469 /* This is an ACPI machine No need for further checks */
470 470 goto apic_ret;
471 471 }
472 472
473 473 /*
474 474 * Map in the entries for this machine, ie. Processor
475 475 * Entry Tables, Bus Entry Tables, etc.
476 476 * They are in fixed order following one another
477 477 */
478 478 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
479 479 if (!mpct)
480 480 goto apic_ret;
481 481
482 482 if (apic_checksum(mpct, mpct_size) != 0)
483 483 goto apic_fail1;
484 484
485 485 /*LINTED: pointer cast may result in improper alignment */
486 486 hdrp = (struct apic_mp_cnf_hdr *)mpct;
487 487 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
488 488 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
489 489 if (!apicadr)
490 490 goto apic_fail1;
491 491
492 492 /* Parse all information in the tables */
493 493 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
494 494 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
495 495 PSM_SUCCESS) {
496 496 retval = PSM_SUCCESS;
497 497 goto apic_ret;
498 498 }
499 499
500 500 apic_fail1:
501 501 psm_unmap_phys(mpct, mpct_size);
502 502 mpct = NULL;
503 503
504 504 apic_ret:
505 505 if (retval == PSM_SUCCESS) {
506 506 extern int apic_ioapic_method_probe();
507 507
508 508 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
509 509 return (PSM_SUCCESS);
510 510 }
511 511
512 512 for (i = 0; i < apic_io_max; i++)
513 513 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
514 514 if (apic_cpus) {
515 515 kmem_free(apic_cpus, apic_cpus_size);
516 516 apic_cpus = NULL;
517 517 }
518 518 if (apicadr) {
519 519 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
520 520 apicadr = NULL;
521 521 }
522 522 if (mpct)
523 523 psm_unmap_phys(mpct, mpct_size);
524 524
525 525 return (retval);
526 526 }
527 527
528 528 static void
529 529 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
530 530 {
531 531 int i;
532 532
533 533 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
534 534 i++) {
535 535 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
536 536 strlen(apic_mps_ids[i].oem_id)) == 0) &&
537 537 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
538 538 strlen(apic_mps_ids[i].prod_id)) == 0)) {
539 539
540 540 apic_poweroff_method = apic_mps_ids[i].poweroff_method;
541 541 break;
542 542 }
543 543 }
544 544
545 545 if (apic_debug_mps_id != 0) {
546 546 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
547 547 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
548 548 psm_name,
549 549 hdrp->mpcnf_oem_str[0],
550 550 hdrp->mpcnf_oem_str[1],
551 551 hdrp->mpcnf_oem_str[2],
552 552 hdrp->mpcnf_oem_str[3],
553 553 hdrp->mpcnf_oem_str[4],
554 554 hdrp->mpcnf_oem_str[5],
555 555 hdrp->mpcnf_oem_str[6],
556 556 hdrp->mpcnf_oem_str[7],
557 557 hdrp->mpcnf_prod_str[0],
558 558 hdrp->mpcnf_prod_str[1],
559 559 hdrp->mpcnf_prod_str[2],
560 560 hdrp->mpcnf_prod_str[3],
561 561 hdrp->mpcnf_prod_str[4],
562 562 hdrp->mpcnf_prod_str[5],
563 563 hdrp->mpcnf_prod_str[6],
564 564 hdrp->mpcnf_prod_str[7],
565 565 hdrp->mpcnf_prod_str[8],
566 566 hdrp->mpcnf_prod_str[9],
567 567 hdrp->mpcnf_prod_str[10],
568 568 hdrp->mpcnf_prod_str[11]);
569 569 }
570 570 }
571 571
572 572 static void
573 573 apic_free_apic_cpus(void)
574 574 {
575 575 if (apic_cpus != NULL) {
576 576 kmem_free(apic_cpus, apic_cpus_size);
577 577 apic_cpus = NULL;
578 578 apic_cpus_size = 0;
579 579 }
580 580 }
581 581
582 582 static int
583 583 acpi_probe(char *modname)
584 584 {
585 585 int i, intmax, index;
586 586 uint32_t id, ver;
587 587 int acpi_verboseflags = 0;
588 588 int madt_seen, madt_size;
589 589 ACPI_SUBTABLE_HEADER *ap;
590 590 ACPI_MADT_LOCAL_APIC *mpa;
591 591 ACPI_MADT_LOCAL_X2APIC *mpx2a;
592 592 ACPI_MADT_IO_APIC *mia;
593 593 ACPI_MADT_IO_SAPIC *misa;
594 594 ACPI_MADT_INTERRUPT_OVERRIDE *mio;
595 595 ACPI_MADT_NMI_SOURCE *mns;
596 596 ACPI_MADT_INTERRUPT_SOURCE *mis;
597 597 ACPI_MADT_LOCAL_APIC_NMI *mlan;
598 598 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan;
599 599 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao;
600 600 int sci;
601 601 iflag_t sci_flags;
602 602 volatile uint32_t *ioapic;
603 603 int ioapic_ix;
604 604 uint32_t *local_ids;
605 605 uint32_t *proc_ids;
606 606 uchar_t hid;
607 607 int warned = 0;
608 608
609 609 if (!apic_use_acpi)
610 610 return (PSM_FAILURE);
611 611
612 612 if (AcpiGetTable(ACPI_SIG_MADT, 1,
613 613 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
614 614 return (PSM_FAILURE);
615 615
616 616 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
617 617 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
618 618 if (!apicadr)
619 619 return (PSM_FAILURE);
620 620
621 621 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
622 622 KM_NOSLEEP)) == NULL)
623 623 return (PSM_FAILURE);
624 624
625 625 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
626 626 KM_NOSLEEP)) == NULL) {
627 627 kmem_free(local_ids, NCPU * sizeof (uint32_t));
628 628 return (PSM_FAILURE);
629 629 }
630 630
631 631 id = apic_reg_ops->apic_read(APIC_LID_REG);
632 632 local_ids[0] = (uchar_t)(id >> 24);
633 633 apic_nproc = index = 1;
634 634 apic_io_max = 0;
635 635
636 636 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
637 637 madt_size = acpi_mapic_dtp->Header.Length;
638 638 madt_seen = sizeof (*acpi_mapic_dtp);
639 639
640 640 while (madt_seen < madt_size) {
641 641 switch (ap->Type) {
642 642 case ACPI_MADT_TYPE_LOCAL_APIC:
643 643 mpa = (ACPI_MADT_LOCAL_APIC *) ap;
644 644 if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
645 645 if (mpa->Id == local_ids[0]) {
646 646 ASSERT(index == 1);
647 647 proc_ids[0] = mpa->ProcessorId;
648 648 } else if (apic_nproc < NCPU && use_mp &&
649 649 apic_nproc < boot_ncpus) {
650 650 local_ids[index] = mpa->Id;
651 651 proc_ids[index] = mpa->ProcessorId;
652 652 index++;
653 653 apic_nproc++;
654 654 } else if (apic_nproc == NCPU && !warned) {
655 655 cmn_err(CE_WARN, "%s: CPU limit "
656 656 "exceeded"
657 657 #if !defined(__amd64)
658 658 " for 32-bit mode"
659 659 #endif
660 660 "; Solaris will use %d CPUs.",
661 661 psm_name, NCPU);
662 662 warned = 1;
663 663 }
664 664 }
665 665 break;
666 666
667 667 case ACPI_MADT_TYPE_IO_APIC:
668 668 mia = (ACPI_MADT_IO_APIC *) ap;
669 669 if (apic_io_max < MAX_IO_APIC) {
670 670 ioapic_ix = apic_io_max;
671 671 apic_io_id[apic_io_max] = mia->Id;
672 672 apic_io_vectbase[apic_io_max] =
673 673 mia->GlobalIrqBase;
674 674 apic_physaddr[apic_io_max] =
675 675 (uint32_t)mia->Address;
676 676 ioapic = apicioadr[apic_io_max] =
677 677 mapin_ioapic((uint32_t)mia->Address,
678 678 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
679 679 if (!ioapic)
680 680 goto cleanup;
681 681 ioapic_mask_workaround[apic_io_max] =
682 682 apic_is_ioapic_AMD_813x(mia->Address);
683 683 apic_io_max++;
684 684 }
685 685 break;
686 686
687 687 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
688 688 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
689 689 if (acpi_isop == NULL)
690 690 acpi_isop = mio;
691 691 acpi_iso_cnt++;
692 692 break;
693 693
694 694 case ACPI_MADT_TYPE_NMI_SOURCE:
695 695 /* UNIMPLEMENTED */
696 696 mns = (ACPI_MADT_NMI_SOURCE *) ap;
697 697 if (acpi_nmi_sp == NULL)
698 698 acpi_nmi_sp = mns;
699 699 acpi_nmi_scnt++;
700 700
701 701 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
702 702 mns->GlobalIrq, mns->IntiFlags);
703 703 break;
704 704
705 705 case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
706 706 /* UNIMPLEMENTED */
707 707 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
708 708 if (acpi_nmi_cp == NULL)
709 709 acpi_nmi_cp = mlan;
710 710 acpi_nmi_ccnt++;
711 711
712 712 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
713 713 mlan->ProcessorId, mlan->IntiFlags,
714 714 mlan->Lint);
715 715 break;
716 716
717 717 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
718 718 /* UNIMPLEMENTED */
719 719 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
720 720 cmn_err(CE_NOTE, "!apic: address override: %lx\n",
721 721 (long)mao->Address);
722 722 break;
723 723
724 724 case ACPI_MADT_TYPE_IO_SAPIC:
725 725 /* UNIMPLEMENTED */
726 726 misa = (ACPI_MADT_IO_SAPIC *) ap;
727 727
728 728 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
729 729 misa->Id, misa->GlobalIrqBase,
730 730 (long)misa->Address);
731 731 break;
732 732
733 733 case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
734 734 /* UNIMPLEMENTED */
735 735 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
736 736
737 737 cmn_err(CE_NOTE,
738 738 "!apic: irq source: %d %d %d 0x%x %d %d\n",
739 739 mis->Id, mis->Eid, mis->GlobalIrq,
740 740 mis->IntiFlags, mis->Type,
741 741 mis->IoSapicVector);
742 742 break;
743 743
744 744 case ACPI_MADT_TYPE_LOCAL_X2APIC:
745 745 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
746 746
747 747 /*
748 748 * All logical processors with APIC ID values
749 749 * of 255 and greater will have their APIC
750 750 * reported through Processor X2APIC structure.
751 751 * All logical processors with APIC ID less than
752 752 * 255 will have their APIC reported through
753 753 * Processor Local APIC.
754 754 */
755 755 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) &&
756 756 (mpx2a->LocalApicId >> 8)) {
757 757 if (apic_nproc < NCPU && use_mp &&
758 758 apic_nproc < boot_ncpus) {
759 759 local_ids[index] = mpx2a->LocalApicId;
760 760 proc_ids[index] = mpa->ProcessorId;
761 761 index++;
762 762 apic_nproc++;
763 763 } else if (apic_nproc == NCPU && !warned) {
764 764 cmn_err(CE_WARN, "%s: CPU limit "
765 765 "exceeded"
766 766 #if !defined(__amd64)
767 767 " for 32-bit mode"
768 768 #endif
769 769 "; Solaris will use %d CPUs.",
770 770 psm_name, NCPU);
771 771 warned = 1;
772 772 }
773 773 }
774 774
775 775 break;
776 776
777 777 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
778 778 /* UNIMPLEMENTED */
779 779 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
780 780 if (mx2alan->Uid >> 8)
781 781 acpi_nmi_ccnt++;
782 782
783 783 #ifdef DEBUG
784 784 cmn_err(CE_NOTE,
785 785 "!apic: local x2apic nmi: %d 0x%x %d\n",
786 786 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
787 787 #endif
788 788
789 789 break;
790 790
791 791 case ACPI_MADT_TYPE_RESERVED:
792 792 default:
793 793 break;
794 794 }
795 795
796 796 /* advance to next entry */
797 797 madt_seen += ap->Length;
798 798 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
799 799 }
800 800
801 801 /*
802 802 * allocate enough space for possible hot-adding of CPUs.
803 803 * max_ncpus may be less than apic_nproc if it's set by user.
804 804 */
805 805 if (plat_dr_support_cpu()) {
806 806 apic_max_nproc = max_ncpus;
807 807 }
808 808 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
809 809 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
810 810 goto cleanup;
811 811
812 812 /*
813 813 * ACPI doesn't provide the local apic ver, get it directly from the
814 814 * local apic
815 815 */
816 816 ver = apic_reg_ops->apic_read(APIC_VERS_REG);
817 817 for (i = 0; i < apic_nproc; i++) {
818 818 apic_cpus[i].aci_local_id = local_ids[i];
819 819 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
820 820 apic_cpus[i].aci_processor_id = proc_ids[i];
821 821 /* Only build mapping info for CPUs present at boot. */
822 822 if (i < boot_ncpus)
823 823 (void) acpica_map_cpu(i, proc_ids[i]);
824 824 }
825 825
826 826 /*
827 827 * To support CPU dynamic reconfiguration, the apic CPU info structure
828 828 * for each possible CPU will be pre-allocated at boot time.
829 829 * The state for each apic CPU info structure will be assigned according
830 830 * to the following rules:
831 831 * Rule 1:
832 832 * Slot index range: [0, min(apic_nproc, boot_ncpus))
833 833 * State flags: 0
834 834 * Note: cpu exists and will be configured/enabled at boot time
835 835 * Rule 2:
836 836 * Slot index range: [boot_ncpus, apic_nproc)
837 837 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
838 838 * Note: cpu exists but won't be configured/enabled at boot time
839 839 * Rule 3:
840 840 * Slot index range: [apic_nproc, boot_ncpus)
841 841 * State flags: APIC_CPU_FREE
842 842 * Note: cpu doesn't exist at boot time
843 843 * Rule 4:
844 844 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
845 845 * State flags: APIC_CPU_FREE
846 846 * Note: cpu doesn't exist at boot time
847 847 */
848 848 CPUSET_ZERO(apic_cpumask);
849 849 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
850 850 CPUSET_ADD(apic_cpumask, i);
851 851 apic_cpus[i].aci_status = 0;
852 852 }
853 853 for (i = boot_ncpus; i < apic_nproc; i++) {
854 854 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
855 855 }
856 856 for (i = apic_nproc; i < boot_ncpus; i++) {
857 857 apic_cpus[i].aci_status = APIC_CPU_FREE;
858 858 }
859 859 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
860 860 apic_cpus[i].aci_status = APIC_CPU_FREE;
861 861 }
862 862
863 863 for (i = 0; i < apic_io_max; i++) {
864 864 ioapic_ix = i;
865 865
866 866 /*
867 867 * need to check Sitka on the following acpi problem
868 868 * On the Sitka, the ioapic's apic_id field isn't reporting
869 869 * the actual io apic id. We have reported this problem
870 870 * to Intel. Until they fix the problem, we will get the
871 871 * actual id directly from the ioapic.
872 872 */
873 873 id = ioapic_read(ioapic_ix, APIC_ID_CMD);
874 874 hid = (uchar_t)(id >> 24);
875 875
876 876 if (hid != apic_io_id[i]) {
877 877 if (apic_io_id[i] == 0)
878 878 apic_io_id[i] = hid;
879 879 else { /* set ioapic id to whatever reported by ACPI */
880 880 id = ((uint32_t)apic_io_id[i]) << 24;
881 881 ioapic_write(ioapic_ix, APIC_ID_CMD, id);
882 882 }
883 883 }
884 884 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
885 885 apic_io_ver[i] = (uchar_t)(ver & 0xff);
886 886 intmax = (ver >> 16) & 0xff;
887 887 apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
888 888 if (apic_first_avail_irq <= apic_io_vectend[i])
889 889 apic_first_avail_irq = apic_io_vectend[i] + 1;
890 890 }
891 891
892 892
893 893 /*
894 894 * Process SCI configuration here
895 895 * An error may be returned here if
896 896 * acpi-user-options specifies legacy mode
897 897 * (no SCI, no ACPI mode)
898 898 */
899 899 if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
900 900 sci = -1;
901 901
902 902 /*
903 903 * Now call acpi_init() to generate namespaces
904 904 * If this fails, we don't attempt to use ACPI
905 905 * even if we were able to get a MADT above
906 906 */
907 907 if (acpica_init() != AE_OK)
908 908 goto cleanup;
909 909
910 910 /*
911 911 * Call acpica_build_processor_map() now that we have
912 912 * ACPI namesspace access
913 913 */
914 914 (void) acpica_build_processor_map();
915 915
916 916 /*
917 917 * Squirrel away the SCI and flags for later on
918 918 * in apic_picinit() when we're ready
919 919 */
920 920 apic_sci_vect = sci;
921 921 apic_sci_flags = sci_flags;
922 922
923 923 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
924 924 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
925 925
926 926 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
927 927 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
928 928
929 929 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
930 930 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
931 931
932 932 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
933 933 goto cleanup;
934 934
935 935 /* Enable ACPI APIC interrupt routing */
936 936 if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
937 937 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
938 938 apic_enable_acpi = 1;
939 939 if (apic_sci_vect > 0) {
940 940 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
941 941 }
942 942 if (apic_use_acpi_madt_only) {
943 943 cmn_err(CE_CONT,
944 944 "?Using ACPI for CPU/IOAPIC information ONLY\n");
945 945 }
946 946
947 947 #if !defined(__xpv)
948 948 /*
949 949 * probe ACPI for hpet information here which is used later
950 950 * in apic_picinit().
951 951 */
952 952 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
953 953 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
954 954 }
955 955 #endif
956 956
957 957 kmem_free(local_ids, NCPU * sizeof (uint32_t));
958 958 kmem_free(proc_ids, NCPU * sizeof (uint32_t));
959 959 return (PSM_SUCCESS);
960 960 }
961 961 /* if setting APIC mode failed above, we fall through to cleanup */
962 962
963 963 cleanup:
964 964 apic_free_apic_cpus();
965 965 if (apicadr != NULL) {
966 966 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
967 967 apicadr = NULL;
968 968 }
969 969 apic_max_nproc = -1;
970 970 apic_nproc = 0;
971 971 for (i = 0; i < apic_io_max; i++) {
972 972 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
973 973 apicioadr[i] = NULL;
974 974 }
975 975 apic_io_max = 0;
976 976 acpi_isop = NULL;
977 977 acpi_iso_cnt = 0;
978 978 acpi_nmi_sp = NULL;
979 979 acpi_nmi_scnt = 0;
980 980 acpi_nmi_cp = NULL;
981 981 acpi_nmi_ccnt = 0;
982 982 kmem_free(local_ids, NCPU * sizeof (uint32_t));
983 983 kmem_free(proc_ids, NCPU * sizeof (uint32_t));
984 984 return (PSM_FAILURE);
985 985 }
986 986
987 987 /*
988 988 * Handle default configuration. Fill in reqd global variables & tables
989 989 * Fill all details as MP table does not give any more info
990 990 */
991 991 static int
992 992 apic_handle_defconf()
993 993 {
994 994 uint_t lid;
995 995
996 996 /* Failed to probe ACPI MADT tables, disable CPU DR. */
997 997 apic_max_nproc = -1;
998 998 apic_free_apic_cpus();
999 999 plat_dr_disable_cpu();
1000 1000
1001 1001 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1002 1002 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1003 1003 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1004 1004 APIC_LOCAL_MEMLEN, PROT_READ);
1005 1005 apic_cpus_size = 2 * sizeof (*apic_cpus);
1006 1006 apic_cpus = (apic_cpus_info_t *)
1007 1007 kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1008 1008 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1009 1009 goto apic_handle_defconf_fail;
1010 1010 CPUSET_ONLY(apic_cpumask, 0);
1011 1011 CPUSET_ADD(apic_cpumask, 1);
1012 1012 apic_nproc = 2;
1013 1013 lid = apic_reg_ops->apic_read(APIC_LID_REG);
1014 1014 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1015 1015 /*
1016 1016 * According to the PC+MP spec 1.1, the local ids
1017 1017 * for the default configuration has to be 0 or 1
1018 1018 */
1019 1019 if (apic_cpus[0].aci_local_id == 1)
1020 1020 apic_cpus[1].aci_local_id = 0;
1021 1021 else if (apic_cpus[0].aci_local_id == 0)
1022 1022 apic_cpus[1].aci_local_id = 1;
1023 1023 else
1024 1024 goto apic_handle_defconf_fail;
1025 1025
1026 1026 apic_io_id[0] = 2;
1027 1027 apic_io_max = 1;
1028 1028 if (apic_defconf >= 5) {
1029 1029 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1030 1030 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1031 1031 apic_io_ver[0] = APIC_INTEGRATED_VERS;
1032 1032 } else {
1033 1033 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */
1034 1034 apic_cpus[1].aci_local_ver = 0;
1035 1035 apic_io_ver[0] = 0;
1036 1036 }
1037 1037 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1038 1038 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1039 1039 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1040 1040 return (PSM_SUCCESS);
1041 1041
1042 1042 apic_handle_defconf_fail:
1043 1043 if (apicadr)
1044 1044 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1045 1045 if (apicioadr[0])
1046 1046 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1047 1047 return (PSM_FAILURE);
1048 1048 }
1049 1049
1050 1050 /* Parse the entries in MP configuration table and collect info that we need */
1051 1051 static int
1052 1052 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1053 1053 {
1054 1054 struct apic_procent *procp;
1055 1055 struct apic_bus *busp;
1056 1056 struct apic_io_entry *ioapicp;
1057 1057 struct apic_io_intr *intrp;
1058 1058 int ioapic_ix;
1059 1059 uint_t lid;
1060 1060 uint32_t id;
1061 1061 uchar_t hid;
1062 1062 int warned = 0;
1063 1063
1064 1064 /*LINTED: pointer cast may result in improper alignment */
1065 1065 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1066 1066
1067 1067 /* No need to count cpu entries if we won't use them */
1068 1068 if (!bypass_cpus_and_ioapics) {
1069 1069
1070 1070 /* Find max # of CPUS and allocate structure accordingly */
1071 1071 apic_nproc = 0;
1072 1072 CPUSET_ZERO(apic_cpumask);
1073 1073 while (procp->proc_entry == APIC_CPU_ENTRY) {
1074 1074 if (procp->proc_cpuflags & CPUFLAGS_EN) {
1075 1075 if (apic_nproc < NCPU && use_mp &&
1076 1076 apic_nproc < boot_ncpus) {
1077 1077 CPUSET_ADD(apic_cpumask, apic_nproc);
1078 1078 apic_nproc++;
1079 1079 } else if (apic_nproc == NCPU && !warned) {
1080 1080 cmn_err(CE_WARN, "%s: CPU limit "
1081 1081 "exceeded"
1082 1082 #if !defined(__amd64)
1083 1083 " for 32-bit mode"
1084 1084 #endif
1085 1085 "; Solaris will use %d CPUs.",
1086 1086 psm_name, NCPU);
1087 1087 warned = 1;
1088 1088 }
1089 1089
1090 1090 }
1091 1091 procp++;
1092 1092 }
1093 1093 apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1094 1094 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1095 1095 kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1096 1096 return (PSM_FAILURE);
1097 1097 }
1098 1098
1099 1099 /*LINTED: pointer cast may result in improper alignment */
1100 1100 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1101 1101
1102 1102 /*
1103 1103 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1104 1104 * if we're bypassing this information, it has already been filled
1105 1105 * in by acpi_probe(), so don't overwrite it.
1106 1106 */
1107 1107 if (!bypass_cpus_and_ioapics)
1108 1108 apic_nproc = 1;
1109 1109
1110 1110 while (procp->proc_entry == APIC_CPU_ENTRY) {
1111 1111 /* check whether the cpu exists or not */
1112 1112 if (!bypass_cpus_and_ioapics &&
1113 1113 procp->proc_cpuflags & CPUFLAGS_EN) {
1114 1114 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1115 1115 lid = apic_reg_ops->apic_read(APIC_LID_REG);
1116 1116 apic_cpus[0].aci_local_id = procp->proc_apicid;
1117 1117 if (apic_cpus[0].aci_local_id !=
1118 1118 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1119 1119 return (PSM_FAILURE);
1120 1120 }
1121 1121 apic_cpus[0].aci_local_ver =
1122 1122 procp->proc_version;
1123 1123 } else if (apic_nproc < NCPU && use_mp &&
1124 1124 apic_nproc < boot_ncpus) {
1125 1125 apic_cpus[apic_nproc].aci_local_id =
1126 1126 procp->proc_apicid;
1127 1127
1128 1128 apic_cpus[apic_nproc].aci_local_ver =
1129 1129 procp->proc_version;
1130 1130 apic_nproc++;
1131 1131
1132 1132 }
1133 1133 }
1134 1134 procp++;
1135 1135 }
1136 1136
1137 1137 /*
1138 1138 * Save start of bus entries for later use.
1139 1139 * Get EISA level cntrl if EISA bus is present.
1140 1140 * Also get the CPI bus id for single CPI bus case
1141 1141 */
1142 1142 apic_busp = busp = (struct apic_bus *)procp;
1143 1143 while (busp->bus_entry == APIC_BUS_ENTRY) {
1144 1144 lid = apic_find_bus_type((char *)&busp->bus_str1);
1145 1145 if (lid == BUS_EISA) {
1146 1146 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1147 1147 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1148 1148 } else if (lid == BUS_PCI) {
1149 1149 /*
1150 1150 * apic_single_pci_busid will be used only if
1151 1151 * apic_pic_bus_total is equal to 1
1152 1152 */
1153 1153 apic_pci_bus_total++;
1154 1154 apic_single_pci_busid = busp->bus_id;
1155 1155 }
1156 1156 busp++;
1157 1157 }
1158 1158
1159 1159 ioapicp = (struct apic_io_entry *)busp;
1160 1160
1161 1161 if (!bypass_cpus_and_ioapics)
1162 1162 apic_io_max = 0;
1163 1163 do {
1164 1164 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1165 1165 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1166 1166 apic_io_id[apic_io_max] = ioapicp->io_apicid;
1167 1167 apic_io_ver[apic_io_max] = ioapicp->io_version;
1168 1168 apicioadr[apic_io_max] =
1169 1169 (void *)mapin_ioapic(
1170 1170 (uint32_t)ioapicp->io_apic_addr,
1171 1171 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1172 1172
1173 1173 if (!apicioadr[apic_io_max])
1174 1174 return (PSM_FAILURE);
1175 1175
1176 1176 ioapic_mask_workaround[apic_io_max] =
1177 1177 apic_is_ioapic_AMD_813x(
1178 1178 ioapicp->io_apic_addr);
1179 1179
1180 1180 ioapic_ix = apic_io_max;
1181 1181 id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1182 1182 hid = (uchar_t)(id >> 24);
1183 1183
1184 1184 if (hid != apic_io_id[apic_io_max]) {
1185 1185 if (apic_io_id[apic_io_max] == 0)
1186 1186 apic_io_id[apic_io_max] = hid;
1187 1187 else {
1188 1188 /*
1189 1189 * set ioapic id to whatever
1190 1190 * reported by MPS
1191 1191 *
1192 1192 * may not need to set index
1193 1193 * again ???
1194 1194 * take it out and try
1195 1195 */
1196 1196
1197 1197 id = ((uint32_t)
1198 1198 apic_io_id[apic_io_max]) <<
1199 1199 24;
1200 1200
1201 1201 ioapic_write(ioapic_ix,
1202 1202 APIC_ID_CMD, id);
1203 1203 }
1204 1204 }
1205 1205 apic_io_max++;
1206 1206 }
1207 1207 }
1208 1208 ioapicp++;
1209 1209 } while (ioapicp->io_entry == APIC_IO_ENTRY);
1210 1210
1211 1211 apic_io_intrp = (struct apic_io_intr *)ioapicp;
1212 1212
1213 1213 intrp = apic_io_intrp;
1214 1214 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1215 1215 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1216 1216 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1217 1217 apic_irq_translate = 1;
1218 1218 break;
1219 1219 }
1220 1220 intrp++;
1221 1221 }
1222 1222
1223 1223 return (PSM_SUCCESS);
1224 1224 }
1225 1225
1226 1226 boolean_t
1227 1227 apic_cpu_in_range(int cpu)
1228 1228 {
1229 1229 cpu &= ~IRQ_USER_BOUND;
1230 1230 /* Check whether cpu id is in valid range. */
1231 1231 if (cpu < 0 || cpu >= apic_nproc) {
1232 1232 return (B_FALSE);
1233 1233 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1234 1234 /*
1235 1235 * Check whether cpuid is in valid range if CPU DR is enabled.
1236 1236 */
1237 1237 return (B_FALSE);
1238 1238 } else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1239 1239 return (B_FALSE);
1240 1240 }
1241 1241
1242 1242 return (B_TRUE);
1243 1243 }
1244 1244
1245 1245 processorid_t
1246 1246 apic_get_next_bind_cpu(void)
1247 1247 {
1248 1248 int i, count;
1249 1249 processorid_t cpuid = 0;
1250 1250
1251 1251 for (count = 0; count < apic_nproc; count++) {
1252 1252 if (apic_next_bind_cpu >= apic_nproc) {
1253 1253 apic_next_bind_cpu = 0;
1254 1254 }
1255 1255 i = apic_next_bind_cpu++;
1256 1256 if (apic_cpu_in_range(i)) {
1257 1257 cpuid = i;
1258 1258 break;
1259 1259 }
1260 1260 }
1261 1261
1262 1262 return (cpuid);
1263 1263 }
1264 1264
1265 1265 uint16_t
1266 1266 apic_get_apic_version()
1267 1267 {
1268 1268 int i;
1269 1269 uchar_t min_io_apic_ver = 0;
1270 1270 static uint16_t version; /* Cache as value is constant */
1271 1271 static boolean_t found = B_FALSE; /* Accomodate zero version */
1272 1272
1273 1273 if (found == B_FALSE) {
1274 1274 found = B_TRUE;
1275 1275
1276 1276 /*
1277 1277 * Don't assume all IO APICs in the system are the same.
1278 1278 *
1279 1279 * Set to the minimum version.
1280 1280 */
1281 1281 for (i = 0; i < apic_io_max; i++) {
1282 1282 if ((apic_io_ver[i] != 0) &&
1283 1283 ((min_io_apic_ver == 0) ||
1284 1284 (min_io_apic_ver >= apic_io_ver[i])))
1285 1285 min_io_apic_ver = apic_io_ver[i];
1286 1286 }
1287 1287
1288 1288 /* Assume all local APICs are of the same version. */
1289 1289 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1290 1290 }
1291 1291 return (version);
1292 1292 }
1293 1293
1294 1294 static struct apic_mpfps_hdr *
1295 1295 apic_find_fps_sig(caddr_t cptr, int len)
1296 1296 {
1297 1297 int i;
1298 1298
1299 1299 /* Look for the pattern "_MP_" */
1300 1300 for (i = 0; i < len; i += 16) {
1301 1301 if ((*(cptr+i) == '_') &&
1302 1302 (*(cptr+i+1) == 'M') &&
1303 1303 (*(cptr+i+2) == 'P') &&
1304 1304 (*(cptr+i+3) == '_'))
1305 1305 /*LINTED: pointer cast may result in improper alignment */
1306 1306 return ((struct apic_mpfps_hdr *)(cptr + i));
1307 1307 }
1308 1308 return (NULL);
1309 1309 }
1310 1310
1311 1311 static int
1312 1312 apic_checksum(caddr_t bptr, int len)
1313 1313 {
1314 1314 int i;
1315 1315 uchar_t cksum;
1316 1316
1317 1317 cksum = 0;
1318 1318 for (i = 0; i < len; i++)
1319 1319 cksum += *bptr++;
1320 1320 return ((int)cksum);
1321 1321 }
1322 1322
1323 1323 /*
1324 1324 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1325 1325 * needs special handling. We may need to chase up the device tree,
1326 1326 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1327 1327 * to find the IPIN at the root bus that relates to the IPIN on the
1328 1328 * subsidiary bus (for ACPI or MP). We may, however, have an entry
1329 1329 * in the MP table or the ACPI namespace for this device itself.
1330 1330 * We handle both cases in the search below.
1331 1331 */
1332 1332 /* this is the non-acpi version */
1333 1333 int
1334 1334 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1335 1335 struct apic_io_intr **intrp)
1336 1336 {
1337 1337 dev_info_t *dipp, *dip;
1338 1338 int pci_irq;
1339 1339 ddi_acc_handle_t cfg_handle;
1340 1340 int bridge_devno, bridge_bus;
1341 1341 int ipin;
1342 1342
1343 1343 dip = idip;
1344 1344
1345 1345 /*CONSTCOND*/
1346 1346 while (1) {
1347 1347 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1348 1348 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1349 1349 return (-1);
1350 1350 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1351 1351 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1352 1352 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1353 1353 pci_config_teardown(&cfg_handle);
1354 1354 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1355 1355 NULL) != 0)
1356 1356 return (-1);
1357 1357 /*
1358 1358 * This is the rotating scheme documented in the
1359 1359 * PCI-to-PCI spec. If the PCI-to-PCI bridge is
1360 1360 * behind another PCI-to-PCI bridge, then it needs
1361 1361 * to keep ascending until an interrupt entry is
1362 1362 * found or the root is reached.
1363 1363 */
1364 1364 ipin = (child_devno + child_ipin) % PCI_INTD;
1365 1365 if (bridge_bus == 0 && apic_pci_bus_total == 1)
1366 1366 bridge_bus = (int)apic_single_pci_busid;
1367 1367 pci_irq = ((bridge_devno & 0x1f) << 2) |
1368 1368 (ipin & 0x3);
1369 1369 if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1370 1370 bridge_bus)) != NULL) {
1371 1371 return (pci_irq);
1372 1372 }
1373 1373 dip = dipp;
1374 1374 child_devno = bridge_devno;
1375 1375 child_ipin = ipin;
1376 1376 } else {
1377 1377 pci_config_teardown(&cfg_handle);
1378 1378 return (-1);
1379 1379 }
1380 1380 }
1381 1381 /*LINTED: function will not fall off the bottom */
1382 1382 }
1383 1383
1384 1384 uchar_t
1385 1385 acpi_find_ioapic(int irq)
1386 1386 {
1387 1387 int i;
1388 1388
1389 1389 for (i = 0; i < apic_io_max; i++) {
1390 1390 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1391 1391 return ((uchar_t)i);
1392 1392 }
1393 1393 return (0xFF); /* shouldn't happen */
1394 1394 }
1395 1395
1396 1396 /*
1397 1397 * See if two irqs are compatible for sharing a vector.
1398 1398 * Currently we only support sharing of PCI devices.
1399 1399 */
1400 1400 static int
1401 1401 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1402 1402 {
1403 1403 uint_t level1, po1;
1404 1404 uint_t level2, po2;
1405 1405
1406 1406 /* Assume active high by default */
1407 1407 po1 = 0;
1408 1408 po2 = 0;
1409 1409
1410 1410 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1411 1411 return (0);
1412 1412
1413 1413 if (iflag1.intr_el == INTR_EL_CONFORM)
1414 1414 level1 = AV_LEVEL;
1415 1415 else
1416 1416 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1417 1417
1418 1418 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1419 1419 (iflag1.intr_po == INTR_PO_CONFORM)))
1420 1420 po1 = AV_ACTIVE_LOW;
1421 1421
1422 1422 if (iflag2.intr_el == INTR_EL_CONFORM)
1423 1423 level2 = AV_LEVEL;
1424 1424 else
1425 1425 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1426 1426
1427 1427 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1428 1428 (iflag2.intr_po == INTR_PO_CONFORM)))
1429 1429 po2 = AV_ACTIVE_LOW;
1430 1430
1431 1431 if ((level1 == level2) && (po1 == po2))
1432 1432 return (1);
1433 1433
1434 1434 return (0);
1435 1435 }
1436 1436
1437 1437 struct apic_io_intr *
1438 1438 apic_find_io_intr_w_busid(int irqno, int busid)
1439 1439 {
1440 1440 struct apic_io_intr *intrp;
1441 1441
1442 1442 /*
1443 1443 * It can have more than 1 entry with same source bus IRQ,
1444 1444 * but unique with the source bus id
1445 1445 */
1446 1446 intrp = apic_io_intrp;
1447 1447 if (intrp != NULL) {
1448 1448 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1449 1449 if (intrp->intr_irq == irqno &&
1450 1450 intrp->intr_busid == busid &&
1451 1451 intrp->intr_type == IO_INTR_INT)
1452 1452 return (intrp);
1453 1453 intrp++;
1454 1454 }
1455 1455 }
1456 1456 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1457 1457 "busid %x:%x\n", irqno, busid));
1458 1458 return ((struct apic_io_intr *)NULL);
1459 1459 }
1460 1460
1461 1461
1462 1462 struct mps_bus_info {
1463 1463 char *bus_name;
1464 1464 int bus_id;
1465 1465 } bus_info_array[] = {
1466 1466 "ISA ", BUS_ISA,
1467 1467 "PCI ", BUS_PCI,
1468 1468 "EISA ", BUS_EISA,
1469 1469 "XPRESS", BUS_XPRESS,
1470 1470 "PCMCIA", BUS_PCMCIA,
1471 1471 "VL ", BUS_VL,
1472 1472 "CBUS ", BUS_CBUS,
1473 1473 "CBUSII", BUS_CBUSII,
1474 1474 "FUTURE", BUS_FUTURE,
1475 1475 "INTERN", BUS_INTERN,
1476 1476 "MBI ", BUS_MBI,
1477 1477 "MBII ", BUS_MBII,
1478 1478 "MPI ", BUS_MPI,
1479 1479 "MPSA ", BUS_MPSA,
1480 1480 "NUBUS ", BUS_NUBUS,
1481 1481 "TC ", BUS_TC,
1482 1482 "VME ", BUS_VME,
1483 1483 "PCI-E ", BUS_PCIE
1484 1484 };
1485 1485
1486 1486 static int
1487 1487 apic_find_bus_type(char *bus)
1488 1488 {
1489 1489 int i = 0;
1490 1490
1491 1491 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1492 1492 if (strncmp(bus, bus_info_array[i].bus_name,
1493 1493 strlen(bus_info_array[i].bus_name)) == 0)
1494 1494 return (bus_info_array[i].bus_id);
1495 1495 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1496 1496 return (0);
1497 1497 }
1498 1498
1499 1499 static int
1500 1500 apic_find_bus(int busid)
1501 1501 {
1502 1502 struct apic_bus *busp;
1503 1503
1504 1504 busp = apic_busp;
1505 1505 while (busp->bus_entry == APIC_BUS_ENTRY) {
1506 1506 if (busp->bus_id == busid)
1507 1507 return (apic_find_bus_type((char *)&busp->bus_str1));
1508 1508 busp++;
1509 1509 }
1510 1510 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1511 1511 return (0);
1512 1512 }
1513 1513
1514 1514 int
1515 1515 apic_find_bus_id(int bustype)
1516 1516 {
1517 1517 struct apic_bus *busp;
1518 1518
1519 1519 busp = apic_busp;
1520 1520 while (busp->bus_entry == APIC_BUS_ENTRY) {
1521 1521 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1522 1522 return (busp->bus_id);
1523 1523 busp++;
1524 1524 }
1525 1525 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1526 1526 bustype));
1527 1527 return (-1);
1528 1528 }
1529 1529
1530 1530 /*
1531 1531 * Check if a particular irq need to be reserved for any io_intr
1532 1532 */
1533 1533 static struct apic_io_intr *
1534 1534 apic_find_io_intr(int irqno)
1535 1535 {
1536 1536 struct apic_io_intr *intrp;
1537 1537
1538 1538 intrp = apic_io_intrp;
1539 1539 if (intrp != NULL) {
1540 1540 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1541 1541 if (intrp->intr_irq == irqno &&
1542 1542 intrp->intr_type == IO_INTR_INT)
1543 1543 return (intrp);
1544 1544 intrp++;
1545 1545 }
1546 1546 }
1547 1547 return ((struct apic_io_intr *)NULL);
1548 1548 }
1549 1549
1550 1550 /*
1551 1551 * Check if the given ioapicindex intin combination has already been assigned
1552 1552 * an irq. If so return irqno. Else -1
1553 1553 */
1554 1554 int
1555 1555 apic_find_intin(uchar_t ioapic, uchar_t intin)
1556 1556 {
1557 1557 apic_irq_t *irqptr;
1558 1558 int i;
1559 1559
1560 1560 /* find ioapic and intin in the apic_irq_table[] and return the index */
1561 1561 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1562 1562 irqptr = apic_irq_table[i];
1563 1563 while (irqptr) {
1564 1564 if ((irqptr->airq_mps_intr_index >= 0) &&
1565 1565 (irqptr->airq_intin_no == intin) &&
1566 1566 (irqptr->airq_ioapicindex == ioapic)) {
1567 1567 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1568 1568 "entry for ioapic:intin %x:%x "
1569 1569 "shared interrupts ?", ioapic, intin));
1570 1570 return (i);
1571 1571 }
1572 1572 irqptr = irqptr->airq_next;
1573 1573 }
1574 1574 }
1575 1575 return (-1);
1576 1576 }
1577 1577
1578 1578 int
1579 1579 apic_allocate_irq(int irq)
1580 1580 {
1581 1581 int freeirq, i;
1582 1582
1583 1583 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1584 1584 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1585 1585 (irq - 1))) == -1) {
1586 1586 /*
1587 1587 * if BIOS really defines every single irq in the mps
1588 1588 * table, then don't worry about conflicting with
1589 1589 * them, just use any free slot in apic_irq_table
1590 1590 */
1591 1591 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1592 1592 if ((apic_irq_table[i] == NULL) ||
1593 1593 apic_irq_table[i]->airq_mps_intr_index ==
1594 1594 FREE_INDEX) {
1595 1595 freeirq = i;
1596 1596 break;
1597 1597 }
1598 1598 }
1599 1599 if (freeirq == -1) {
1600 1600 /* This shouldn't happen, but just in case */
1601 1601 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1602 1602 return (-1);
1603 1603 }
1604 1604 }
1605 1605 if (apic_irq_table[freeirq] == NULL) {
1606 1606 apic_irq_table[freeirq] =
1607 1607 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1608 1608 if (apic_irq_table[freeirq] == NULL) {
1609 1609 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1610 1610 psm_name);
1611 1611 return (-1);
1612 1612 }
1613 1613 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1614 1614 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1615 1615 }
1616 1616 return (freeirq);
1617 1617 }
1618 1618
1619 1619 static int
1620 1620 apic_find_free_irq(int start, int end)
1621 1621 {
1622 1622 int i;
1623 1623
1624 1624 for (i = start; i <= end; i++)
1625 1625 /* Check if any I/O entry needs this IRQ */
1626 1626 if (apic_find_io_intr(i) == NULL) {
1627 1627 /* Then see if it is free */
1628 1628 if ((apic_irq_table[i] == NULL) ||
1629 1629 (apic_irq_table[i]->airq_mps_intr_index ==
1630 1630 FREE_INDEX)) {
1631 1631 return (i);
1632 1632 }
1633 1633 }
1634 1634 return (-1);
1635 1635 }
1636 1636
1637 1637 /*
1638 1638 * compute the polarity, trigger mode and vector for programming into
1639 1639 * the I/O apic and record in airq_rdt_entry.
1640 1640 */
1641 1641 void
1642 1642 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1643 1643 {
1644 1644 int ioapicindex, bus_type, vector;
1645 1645 short intr_index;
1646 1646 uint_t level, po, io_po;
1647 1647 struct apic_io_intr *iointrp;
1648 1648
1649 1649 intr_index = irqptr->airq_mps_intr_index;
1650 1650 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1651 1651 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1652 1652 (void *)irqptr->airq_dip, irqptr->airq_vector));
1653 1653
1654 1654 if (intr_index == RESERVE_INDEX) {
1655 1655 apic_error |= APIC_ERR_INVALID_INDEX;
1656 1656 return;
1657 1657 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1658 1658 return;
1659 1659 }
1660 1660
1661 1661 vector = irqptr->airq_vector;
1662 1662 ioapicindex = irqptr->airq_ioapicindex;
1663 1663 /* Assume edge triggered by default */
1664 1664 level = 0;
1665 1665 /* Assume active high by default */
1666 1666 po = 0;
1667 1667
1668 1668 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1669 1669 ASSERT(irq < 16);
1670 1670 if (eisa_level_intr_mask & (1 << irq))
1671 1671 level = AV_LEVEL;
1672 1672 if (intr_index == FREE_INDEX && apic_defconf == 0)
1673 1673 apic_error |= APIC_ERR_INVALID_INDEX;
1674 1674 } else if (intr_index == ACPI_INDEX) {
1675 1675 bus_type = irqptr->airq_iflag.bustype;
1676 1676 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1677 1677 if (bus_type == BUS_PCI)
1678 1678 level = AV_LEVEL;
1679 1679 } else
1680 1680 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1681 1681 AV_LEVEL : 0;
1682 1682 if (level &&
1683 1683 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1684 1684 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1685 1685 bus_type == BUS_PCI)))
1686 1686 po = AV_ACTIVE_LOW;
1687 1687 } else {
1688 1688 iointrp = apic_io_intrp + intr_index;
1689 1689 bus_type = apic_find_bus(iointrp->intr_busid);
1690 1690 if (iointrp->intr_el == INTR_EL_CONFORM) {
1691 1691 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1692 1692 level = AV_LEVEL;
1693 1693 else if (bus_type == BUS_PCI)
1694 1694 level = AV_LEVEL;
1695 1695 } else
1696 1696 level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1697 1697 AV_LEVEL : 0;
1698 1698 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1699 1699 (iointrp->intr_po == INTR_PO_CONFORM &&
1700 1700 bus_type == BUS_PCI)))
1701 1701 po = AV_ACTIVE_LOW;
1702 1702 }
1703 1703 if (level)
1704 1704 apic_level_intr[irq] = 1;
1705 1705 /*
1706 1706 * The 82489DX External APIC cannot do active low polarity interrupts.
1707 1707 */
1708 1708 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1709 1709 io_po = po;
1710 1710 else
1711 1711 io_po = 0;
1712 1712
1713 1713 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1714 1714 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1715 1715 "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1716 1716 irqptr->airq_intin_no, level, io_po, vector,
1717 1717 irqptr->airq_cpu);
1718 1718
1719 1719 irqptr->airq_rdt_entry = level|io_po|vector;
1720 1720 }
1721 1721
1722 1722 int
1723 1723 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1724 1724 int ipin, int *pci_irqp, iflag_t *intr_flagp)
1725 1725 {
1726 1726
1727 1727 int status;
1728 1728 acpi_psm_lnk_t acpipsmlnk;
1729 1729
1730 1730 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1731 1731 intr_flagp)) == ACPI_PSM_SUCCESS) {
1732 1732 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1733 1733 "from cache for device %s, instance #%d\n", psm_name,
1734 1734 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1735 1735 return (status);
1736 1736 }
1737 1737
1738 1738 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1739 1739
1740 1740 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1741 1741 &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1742 1742 APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1743 1743 " acpi_translate_pci_irq failed for device %s, instance"
1744 1744 " #%d", psm_name, ddi_get_name(dip),
1745 1745 ddi_get_instance(dip)));
1746 1746 return (status);
1747 1747 }
1748 1748
1749 1749 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1750 1750 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1751 1751 intr_flagp);
1752 1752 if (status != ACPI_PSM_SUCCESS) {
1753 1753 status = acpi_get_current_irq_resource(&acpipsmlnk,
1754 1754 pci_irqp, intr_flagp);
1755 1755 }
1756 1756 }
1757 1757
1758 1758 if (status == ACPI_PSM_SUCCESS) {
1759 1759 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1760 1760 intr_flagp, &acpipsmlnk);
1761 1761
1762 1762 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1763 1763 "new irq %d for device %s, instance #%d\n", psm_name,
1764 1764 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1765 1765 }
1766 1766
1767 1767 return (status);
1768 1768 }
1769 1769
1770 1770 /*
1771 1771 * Adds an entry to the irq list passed in, and returns the new list.
1772 1772 * Entries are added in priority order (lower numerical priorities are
1773 1773 * placed closer to the head of the list)
1774 1774 */
1775 1775 static prs_irq_list_t *
1776 1776 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1777 1777 iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1778 1778 {
1779 1779 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1780 1780
1781 1781 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1782 1782
1783 1783 newent->list_prio = priority;
1784 1784 newent->irq = irq;
1785 1785 newent->intrflags = *iflagp;
1786 1786 newent->prsprv = *prsprvp;
1787 1787 /* ->next is NULL from kmem_zalloc */
1788 1788
1789 1789 /*
1790 1790 * New list -- return the new entry as the list.
1791 1791 */
1792 1792 if (listp == NULL)
1793 1793 return (newent);
1794 1794
1795 1795 /*
1796 1796 * Save original list pointer for return (since we're not modifying
1797 1797 * the head)
1798 1798 */
1799 1799 origlistp = listp;
1800 1800
1801 1801 /*
1802 1802 * Insertion sort, with entries with identical keys stored AFTER
1803 1803 * existing entries (the less-than-or-equal test of priority does
1804 1804 * this for us).
1805 1805 */
1806 1806 while (listp != NULL && listp->list_prio <= priority) {
1807 1807 prevp = listp;
1808 1808 listp = listp->next;
1809 1809 }
1810 1810
1811 1811 newent->next = listp;
1812 1812
1813 1813 if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1814 1814 return (newent);
1815 1815 } else {
1816 1816 prevp->next = newent;
1817 1817 return (origlistp);
1818 1818 }
1819 1819 }
1820 1820
1821 1821 /*
1822 1822 * Frees the list passed in, deallocating all memory and leaving *listpp
1823 1823 * set to NULL.
1824 1824 */
1825 1825 static void
1826 1826 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1827 1827 {
1828 1828 struct prs_irq_list_ent *nextp;
1829 1829
1830 1830 ASSERT(listpp != NULL);
1831 1831
1832 1832 while (*listpp != NULL) {
1833 1833 nextp = (*listpp)->next;
1834 1834 kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1835 1835 *listpp = nextp;
1836 1836 }
1837 1837 }
1838 1838
1839 1839 /*
1840 1840 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1841 1841 * irqs returned by the link device's _PRS method. The irqs are chosen
1842 1842 * to minimize contention in situations where the interrupt link device
1843 1843 * can be programmed to steer interrupts to different interrupt controller
1844 1844 * inputs (some of which may already be in use). The list is sorted in order
1845 1845 * of irqs to use, with the highest priority given to interrupt controller
1846 1846 * inputs that are not shared. When an interrupt controller input
1847 1847 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1848 1848 * returned list in the order that minimizes sharing (thereby ensuring lowest
1849 1849 * possible latency from interrupt trigger time to ISR execution time).
1850 1850 */
1851 1851 static prs_irq_list_t *
1852 1852 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1853 1853 int crs_irq)
1854 1854 {
1855 1855 int32_t irq;
1856 1856 int i;
1857 1857 prs_irq_list_t *prsirqlistp = NULL;
1858 1858 iflag_t iflags;
1859 1859
1860 1860 while (irqlistent != NULL) {
1861 1861 irqlistent->intr_flags.bustype = BUS_PCI;
1862 1862
1863 1863 for (i = 0; i < irqlistent->num_irqs; i++) {
1864 1864
1865 1865 irq = irqlistent->irqs[i];
1866 1866
1867 1867 if (irq <= 0) {
1868 1868 /* invalid irq number */
1869 1869 continue;
1870 1870 }
1871 1871
1872 1872 if ((irq < 16) && (apic_reserved_irqlist[irq]))
1873 1873 continue;
1874 1874
1875 1875 if ((apic_irq_table[irq] == NULL) ||
1876 1876 (apic_irq_table[irq]->airq_dip == dip)) {
1877 1877
1878 1878 prsirqlistp = acpi_insert_prs_irq_ent(
1879 1879 prsirqlistp, 0 /* Highest priority */, irq,
1880 1880 &irqlistent->intr_flags,
1881 1881 &irqlistent->acpi_prs_prv);
1882 1882
1883 1883 /*
1884 1884 * If we do not prefer the current irq from _CRS
1885 1885 * or if we do and this irq is the same as the
1886 1886 * current irq from _CRS, this is the one
1887 1887 * to pick.
1888 1888 */
1889 1889 if (!(apic_prefer_crs) || (irq == crs_irq)) {
1890 1890 return (prsirqlistp);
1891 1891 }
1892 1892 continue;
1893 1893 }
1894 1894
1895 1895 /*
1896 1896 * Edge-triggered interrupts cannot be shared
1897 1897 */
1898 1898 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1899 1899 continue;
1900 1900
1901 1901 /*
1902 1902 * To work around BIOSes that contain incorrect
1903 1903 * interrupt polarity information in interrupt
1904 1904 * descriptors returned by _PRS, we assume that
1905 1905 * the polarity of the other device sharing this
1906 1906 * interrupt controller input is compatible.
1907 1907 * If it's not, the caller will catch it when
1908 1908 * the caller invokes the link device's _CRS method
1909 1909 * (after invoking its _SRS method).
1910 1910 */
1911 1911 iflags = irqlistent->intr_flags;
1912 1912 iflags.intr_po =
1913 1913 apic_irq_table[irq]->airq_iflag.intr_po;
1914 1914
1915 1915 if (!acpi_intr_compatible(iflags,
1916 1916 apic_irq_table[irq]->airq_iflag)) {
1917 1917 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1918 1918 "not compatible [%x:%x:%x !~ %x:%x:%x]",
1919 1919 psm_name, irq,
1920 1920 iflags.intr_po,
1921 1921 iflags.intr_el,
1922 1922 iflags.bustype,
1923 1923 apic_irq_table[irq]->airq_iflag.intr_po,
1924 1924 apic_irq_table[irq]->airq_iflag.intr_el,
1925 1925 apic_irq_table[irq]->airq_iflag.bustype));
1926 1926 continue;
1927 1927 }
1928 1928
1929 1929 /*
1930 1930 * If we prefer the irq from _CRS, no need
1931 1931 * to search any further (and make sure
1932 1932 * to add this irq with the highest priority
1933 1933 * so it's tried first).
1934 1934 */
1935 1935 if (crs_irq == irq && apic_prefer_crs) {
1936 1936
1937 1937 return (acpi_insert_prs_irq_ent(
1938 1938 prsirqlistp,
1939 1939 0 /* Highest priority */,
1940 1940 irq, &iflags,
1941 1941 &irqlistent->acpi_prs_prv));
1942 1942 }
1943 1943
1944 1944 /*
1945 1945 * Priority is equal to the share count (lower
1946 1946 * share count is higher priority). Note that
1947 1947 * the intr flags passed in here are the ones we
1948 1948 * changed above -- if incorrect, it will be
1949 1949 * caught by the caller's _CRS flags comparison.
1950 1950 */
1951 1951 prsirqlistp = acpi_insert_prs_irq_ent(
1952 1952 prsirqlistp,
1953 1953 apic_irq_table[irq]->airq_share, irq,
1954 1954 &iflags, &irqlistent->acpi_prs_prv);
1955 1955 }
1956 1956
1957 1957 /* Go to the next irqlist entry */
1958 1958 irqlistent = irqlistent->next;
1959 1959 }
1960 1960
1961 1961 return (prsirqlistp);
1962 1962 }
1963 1963
1964 1964 /*
1965 1965 * Configures the irq for the interrupt link device identified by
1966 1966 * acpipsmlnkp.
1967 1967 *
1968 1968 * Gets the current and the list of possible irq settings for the
1969 1969 * device. If apic_unconditional_srs is not set, and the current
1970 1970 * resource setting is in the list of possible irq settings,
1971 1971 * current irq resource setting is passed to the caller.
1972 1972 *
1973 1973 * Otherwise, picks an irq number from the list of possible irq
1974 1974 * settings, and sets the irq of the device to this value.
1975 1975 * If prefer_crs is set, among a set of irq numbers in the list that have
1976 1976 * the least number of devices sharing the interrupt, we pick current irq
1977 1977 * resource setting if it is a member of this set.
1978 1978 *
1979 1979 * Passes the irq number in the value pointed to by pci_irqp, and
1980 1980 * polarity and sensitivity in the structure pointed to by dipintrflagp
1981 1981 * to the caller.
1982 1982 *
1983 1983 * Note that if setting the irq resource failed, but successfuly obtained
1984 1984 * the current irq resource settings, passes the current irq resources
1985 1985 * and considers it a success.
1986 1986 *
1987 1987 * Returns:
1988 1988 * ACPI_PSM_SUCCESS on success.
1989 1989 *
1990 1990 * ACPI_PSM_FAILURE if an error occured during the configuration or
1991 1991 * if a suitable irq was not found for this device, or if setting the
1992 1992 * irq resource and obtaining the current resource fails.
1993 1993 *
1994 1994 */
1995 1995 static int
1996 1996 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
1997 1997 int *pci_irqp, iflag_t *dipintr_flagp)
1998 1998 {
1999 1999 int32_t irq;
2000 2000 int cur_irq = -1;
2001 2001 acpi_irqlist_t *irqlistp;
2002 2002 prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2003 2003 boolean_t found_irq = B_FALSE;
2004 2004
2005 2005 dipintr_flagp->bustype = BUS_PCI;
2006 2006
2007 2007 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2008 2008 == ACPI_PSM_FAILURE) {
2009 2009 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2010 2010 "or assign IRQ for device %s, instance #%d: The system was "
2011 2011 "unable to get the list of potential IRQs from ACPI.",
2012 2012 psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2013 2013
2014 2014 return (ACPI_PSM_FAILURE);
2015 2015 }
2016 2016
2017 2017 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2018 2018 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2019 2019 (cur_irq > 0)) {
2020 2020 /*
2021 2021 * If an IRQ is set in CRS and that IRQ exists in the set
2022 2022 * returned from _PRS, return that IRQ, otherwise print
2023 2023 * a warning
2024 2024 */
2025 2025
2026 2026 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2027 2027 == ACPI_PSM_SUCCESS) {
2028 2028
2029 2029 ASSERT(pci_irqp != NULL);
2030 2030 *pci_irqp = cur_irq;
2031 2031 acpi_free_irqlist(irqlistp);
2032 2032 return (ACPI_PSM_SUCCESS);
2033 2033 }
2034 2034
2035 2035 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2036 2036 "current irq %d for device %s, instance #%d in ACPI's "
2037 2037 "list of possible irqs for this device. Picking one from "
2038 2038 " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2039 2039 ddi_get_instance(dip)));
2040 2040 }
2041 2041
2042 2042 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2043 2043 cur_irq)) == NULL) {
2044 2044
2045 2045 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2046 2046 "suitable irq from the list of possible irqs for device "
2047 2047 "%s, instance #%d in ACPI's list of possible irqs",
2048 2048 psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2049 2049
2050 2050 acpi_free_irqlist(irqlistp);
2051 2051 return (ACPI_PSM_FAILURE);
2052 2052 }
2053 2053
2054 2054 acpi_free_irqlist(irqlistp);
2055 2055
2056 2056 for (prs_irq_entp = prs_irq_listp;
2057 2057 prs_irq_entp != NULL && found_irq == B_FALSE;
2058 2058 prs_irq_entp = prs_irq_entp->next) {
2059 2059
2060 2060 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2061 2061 irq = prs_irq_entp->irq;
2062 2062
2063 2063 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2064 2064 "device %s instance #%d\n", psm_name, irq,
2065 2065 ddi_get_name(dip), ddi_get_instance(dip)));
2066 2066
2067 2067 if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2068 2068 == ACPI_PSM_SUCCESS) {
2069 2069 /*
2070 2070 * setting irq was successful, check to make sure CRS
2071 2071 * reflects that. If CRS does not agree with what we
2072 2072 * set, return the irq that was set.
2073 2073 */
2074 2074
2075 2075 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2076 2076 dipintr_flagp) == ACPI_PSM_SUCCESS) {
2077 2077
2078 2078 if (cur_irq != irq)
2079 2079 APIC_VERBOSE_IRQ((CE_WARN,
2080 2080 "!%s: IRQ resource set "
2081 2081 "(irqno %d) for device %s "
2082 2082 "instance #%d, differs from "
2083 2083 "current setting irqno %d",
2084 2084 psm_name, irq, ddi_get_name(dip),
2085 2085 ddi_get_instance(dip), cur_irq));
2086 2086 } else {
2087 2087 /*
2088 2088 * On at least one system, there was a bug in
2089 2089 * a DSDT method called by _STA, causing _STA to
2090 2090 * indicate that the link device was disabled
2091 2091 * (when, in fact, it was enabled). Since _SRS
2092 2092 * succeeded, assume that _CRS is lying and use
2093 2093 * the iflags from this _PRS interrupt choice.
2094 2094 * If we're wrong about the flags, the polarity
2095 2095 * will be incorrect and we may get an interrupt
2096 2096 * storm, but there's not much else we can do
2097 2097 * at this point.
2098 2098 */
2099 2099 *dipintr_flagp = prs_irq_entp->intrflags;
2100 2100 }
2101 2101
2102 2102 /*
2103 2103 * Return the irq that was set, and not what _CRS
2104 2104 * reports, since _CRS has been seen to return
2105 2105 * different IRQs than what was passed to _SRS on some
2106 2106 * systems (and just not return successfully on others).
2107 2107 */
2108 2108 cur_irq = irq;
2109 2109 found_irq = B_TRUE;
2110 2110 } else {
2111 2111 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2112 2112 "irq %d failed for device %s instance #%d",
2113 2113 psm_name, irq, ddi_get_name(dip),
2114 2114 ddi_get_instance(dip)));
2115 2115
2116 2116 if (cur_irq == -1) {
2117 2117 acpi_destroy_prs_irq_list(&prs_irq_listp);
2118 2118 return (ACPI_PSM_FAILURE);
2119 2119 }
2120 2120 }
2121 2121 }
2122 2122
2123 2123 acpi_destroy_prs_irq_list(&prs_irq_listp);
2124 2124
2125 2125 if (!found_irq)
2126 2126 return (ACPI_PSM_FAILURE);
2127 2127
2128 2128 ASSERT(pci_irqp != NULL);
2129 2129 *pci_irqp = cur_irq;
2130 2130 return (ACPI_PSM_SUCCESS);
2131 2131 }
2132 2132
2133 2133 void
2134 2134 ioapic_disable_redirection()
2135 2135 {
2136 2136 int ioapic_ix;
2137 2137 int intin_max;
2138 2138 int intin_ix;
2139 2139
2140 2140 /* Disable the I/O APIC redirection entries */
2141 2141 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2142 2142
2143 2143 /* Bits 23-16 define the maximum redirection entries */
2144 2144 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2145 2145 & 0xff;
2146 2146
2147 2147 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2148 2148 /*
2149 2149 * The assumption here is that this is safe, even for
2150 2150 * systems with IOAPICs that suffer from the hardware
2151 2151 * erratum because all devices have been quiesced before
2152 2152 * this function is called from apic_shutdown()
2153 2153 * (or equivalent). If that assumption turns out to be
2154 2154 * false, this mask operation can induce the same
2155 2155 * erratum result we're trying to avoid.
2156 2156 */
2157 2157 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2158 2158 AV_MASK);
2159 2159 }
2160 2160 }
2161 2161 }
2162 2162
2163 2163 /*
2164 2164 * Looks for an IOAPIC with the specified physical address in the /ioapics
2165 2165 * node in the device tree (created by the PCI enumerator).
2166 2166 */
2167 2167 static boolean_t
2168 2168 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2169 2169 {
2170 2170 /*
2171 2171 * Look in /ioapics, for the ioapic with
2172 2172 * the physical address given
2173 2173 */
2174 2174 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2175 2175 dev_info_t *ioapic_child;
2176 2176 boolean_t rv = B_FALSE;
2177 2177 int vid, did;
2178 2178 uint64_t ioapic_paddr;
2179 2179 boolean_t done = B_FALSE;
2180 2180
2181 2181 if (ioapicsnode == NULL)
2182 2182 return (B_FALSE);
2183 2183
2184 2184 /* Load first child: */
2185 2185 ioapic_child = ddi_get_child(ioapicsnode);
2186 2186 while (!done && ioapic_child != 0) { /* Iterate over children */
2187 2187
2188 2188 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2189 2189 ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2190 2190 != 0 && physaddr == ioapic_paddr) {
2191 2191
2192 2192 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2193 2193 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2194 2194
2195 2195 if (vid == VENID_AMD) {
2196 2196
2197 2197 did = ddi_prop_get_int(DDI_DEV_T_ANY,
2198 2198 ioapic_child, DDI_PROP_DONTPASS,
2199 2199 IOAPICS_PROP_DEVID, 0);
2200 2200
2201 2201 if (did == DEVID_8131_IOAPIC ||
2202 2202 did == DEVID_8132_IOAPIC) {
2203 2203 rv = B_TRUE;
2204 2204 done = B_TRUE;
2205 2205 }
2206 2206 }
2207 2207 }
2208 2208
2209 2209 if (!done)
2210 2210 ioapic_child = ddi_get_next_sibling(ioapic_child);
2211 2211 }
2212 2212
2213 2213 /* The ioapics node was held by ddi_find_devinfo, so release it */
2214 2214 ndi_rele_devi(ioapicsnode);
2215 2215 return (rv);
2216 2216 }
2217 2217
2218 2218 struct apic_state {
2219 2219 int32_t as_task_reg;
2220 2220 int32_t as_dest_reg;
2221 2221 int32_t as_format_reg;
2222 2222 int32_t as_local_timer;
2223 2223 int32_t as_pcint_vect;
2224 2224 int32_t as_int_vect0;
2225 2225 int32_t as_int_vect1;
2226 2226 int32_t as_err_vect;
2227 2227 int32_t as_init_count;
2228 2228 int32_t as_divide_reg;
2229 2229 int32_t as_spur_int_reg;
2230 2230 uint32_t as_ioapic_ids[MAX_IO_APIC];
2231 2231 };
2232 2232
2233 2233
2234 2234 static int
2235 2235 apic_acpi_enter_apicmode(void)
2236 2236 {
2237 2237 ACPI_OBJECT_LIST arglist;
2238 2238 ACPI_OBJECT arg;
2239 2239 ACPI_STATUS status;
2240 2240
2241 2241 /* Setup parameter object */
2242 2242 arglist.Count = 1;
2243 2243 arglist.Pointer = &arg;
2244 2244 arg.Type = ACPI_TYPE_INTEGER;
2245 2245 arg.Integer.Value = ACPI_APIC_MODE;
2246 2246
2247 2247 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2248 2248 if (ACPI_FAILURE(status))
2249 2249 return (PSM_FAILURE);
2250 2250 else
2251 2251 return (PSM_SUCCESS);
2252 2252 }
2253 2253
2254 2254
2255 2255 static void
2256 2256 apic_save_state(struct apic_state *sp)
2257 2257 {
2258 2258 int i, cpuid;
2259 2259 ulong_t iflag;
2260 2260
2261 2261 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2262 2262 /*
2263 2263 * First the local APIC.
2264 2264 */
2265 2265 sp->as_task_reg = apic_reg_ops->apic_get_pri();
2266 2266 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG);
2267 2267 if (apic_mode == LOCAL_APIC)
2268 2268 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2269 2269 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2270 2270 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2271 2271 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2272 2272 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2273 2273 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2274 2274 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2275 2275 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2276 2276 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2277 2277
2278 2278 /*
2279 2279 * If on the boot processor then save the IOAPICs' IDs
2280 2280 */
2281 2281 if ((cpuid = psm_get_cpu_id()) == 0) {
2282 2282
2283 2283 iflag = intr_clear();
2284 2284 lock_set(&apic_ioapic_lock);
2285 2285
2286 2286 for (i = 0; i < apic_io_max; i++)
2287 2287 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2288 2288
2289 2289 lock_clear(&apic_ioapic_lock);
2290 2290 intr_restore(iflag);
2291 2291 }
2292 2292
2293 2293 /* apic_state() is currently invoked only in Suspend/Resume */
2294 2294 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2295 2295 }
2296 2296
2297 2297 static void
2298 2298 apic_restore_state(struct apic_state *sp)
2299 2299 {
2300 2300 int i;
2301 2301 ulong_t iflag;
2302 2302
2303 2303 /*
2304 2304 * First the local APIC.
2305 2305 */
2306 2306 apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2307 2307 if (apic_mode == LOCAL_APIC) {
2308 2308 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2309 2309 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2310 2310 }
2311 2311 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2312 2312 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2313 2313 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2314 2314 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2315 2315 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2316 2316 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2317 2317 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2318 2318 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2319 2319
2320 2320 /*
2321 2321 * the following only needs to be done once, so we do it on the
2322 2322 * boot processor, since we know that we only have one of those
2323 2323 */
2324 2324 if (psm_get_cpu_id() == 0) {
2325 2325
2326 2326 iflag = intr_clear();
2327 2327 lock_set(&apic_ioapic_lock);
2328 2328
2329 2329 /* Restore IOAPICs' APIC IDs */
2330 2330 for (i = 0; i < apic_io_max; i++) {
2331 2331 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2332 2332 }
2333 2333
2334 2334 lock_clear(&apic_ioapic_lock);
2335 2335 intr_restore(iflag);
2336 2336
2337 2337 /*
2338 2338 * Reenter APIC mode before restoring LNK devices
2339 2339 */
2340 2340 (void) apic_acpi_enter_apicmode();
2341 2341
2342 2342 /*
2343 2343 * restore acpi link device mappings
2344 2344 */
2345 2345 acpi_restore_link_devices();
2346 2346 }
2347 2347 }
2348 2348
2349 2349 /*
2350 2350 * Returns 0 on success
2351 2351 */
2352 2352 int
2353 2353 apic_state(psm_state_request_t *rp)
2354 2354 {
2355 2355 PMD(PMD_SX, ("apic_state "))
2356 2356 switch (rp->psr_cmd) {
2357 2357 case PSM_STATE_ALLOC:
2358 2358 rp->req.psm_state_req.psr_state =
2359 2359 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2360 2360 if (rp->req.psm_state_req.psr_state == NULL)
2361 2361 return (ENOMEM);
2362 2362 rp->req.psm_state_req.psr_state_size =
2363 2363 sizeof (struct apic_state);
2364 2364 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2365 2365 rp->req.psm_state_req.psr_state,
2366 2366 rp->req.psm_state_req.psr_state_size))
2367 2367 return (0);
2368 2368
2369 2369 case PSM_STATE_FREE:
2370 2370 kmem_free(rp->req.psm_state_req.psr_state,
2371 2371 rp->req.psm_state_req.psr_state_size);
2372 2372 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2373 2373 rp->req.psm_state_req.psr_state,
2374 2374 rp->req.psm_state_req.psr_state_size))
2375 2375 return (0);
2376 2376
2377 2377 case PSM_STATE_SAVE:
2378 2378 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2379 2379 rp->req.psm_state_req.psr_state,
2380 2380 rp->req.psm_state_req.psr_state_size))
2381 2381 apic_save_state(rp->req.psm_state_req.psr_state);
2382 2382 return (0);
2383 2383
2384 2384 case PSM_STATE_RESTORE:
2385 2385 apic_restore_state(rp->req.psm_state_req.psr_state);
2386 2386 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2387 2387 rp->req.psm_state_req.psr_state,
2388 2388 rp->req.psm_state_req.psr_state_size))
2389 2389 return (0);
2390 2390
2391 2391 default:
2392 2392 return (EINVAL);
2393 2393 }
2394 2394 }
↓ open down ↓ |
2340 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX