1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 /* 30 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 31 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 33 * PSMI 1.5 extensions are supported in Solaris Nevada. 34 * PSMI 1.6 extensions are supported in Solaris Nevada. 35 * PSMI 1.7 extensions are supported in Solaris Nevada. 36 */ 37 #define PSMI_1_7 38 39 #include <sys/processor.h> 40 #include <sys/time.h> 41 #include <sys/psm.h> 42 #include <sys/smp_impldefs.h> 43 #include <sys/cram.h> 44 #include <acpica/include/acpi.h> 45 #include <sys/acpica.h> 46 #include <sys/psm_common.h> 47 #include <sys/apic.h> 48 #include <sys/apic_timer.h> 49 #include <sys/pit.h> 50 #include <sys/ddi.h> 51 #include <sys/sunddi.h> 52 #include <sys/ddi_impldefs.h> 53 #include <sys/pci.h> 54 #include <sys/promif.h> 55 #include <sys/x86_archext.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/uadmin.h> 58 #include <sys/panic.h> 59 #include <sys/debug.h> 60 #include <sys/archsystm.h> 61 #include <sys/trap.h> 62 #include <sys/machsystm.h> 63 #include <sys/cpuvar.h> 64 #include <sys/rm_platter.h> 65 #include <sys/privregs.h> 66 #include <sys/cyclic.h> 67 #include <sys/note.h> 68 #include <sys/pci_intr_lib.h> 69 #include <sys/sunndi.h> 70 #if !defined(__xpv) 71 #include <sys/hpet.h> 72 #include <sys/clock.h> 73 #endif 74 75 /* 76 * Local Function Prototypes 77 */ 78 static int apic_handle_defconf(); 79 static int apic_parse_mpct(caddr_t mpct, int bypass); 80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 81 static int apic_checksum(caddr_t bptr, int len); 82 static int apic_find_bus_type(char *bus); 83 static int apic_find_bus(int busid); 84 static struct apic_io_intr *apic_find_io_intr(int irqno); 85 static int apic_find_free_irq(int start, int end); 86 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 87 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 88 static void apic_free_apic_cpus(void); 89 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 90 static int apic_acpi_enter_apicmode(void); 91 92 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 93 int child_ipin, struct apic_io_intr **intrp); 94 int apic_find_bus_id(int bustype); 95 int apic_find_intin(uchar_t ioapic, uchar_t intin); 96 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 97 98 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 99 100 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 101 int apic_sci_vect = -1; 102 iflag_t apic_sci_flags; 103 104 #if !defined(__xpv) 105 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 106 int apic_hpet_vect = -1; 107 iflag_t apic_hpet_flags; 108 #endif 109 110 /* 111 * psm name pointer 112 */ 113 char *psm_name; 114 115 /* ACPI support routines */ 116 static int acpi_probe(char *); 117 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 118 int *pci_irqp, iflag_t *intr_flagp); 119 120 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 121 int ipin, int *pci_irqp, iflag_t *intr_flagp); 122 uchar_t acpi_find_ioapic(int irq); 123 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 124 125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 126 int apic_max_reps_clear_pending = 1000; 127 128 int apic_intr_policy = INTR_ROUND_ROBIN; 129 130 int apic_next_bind_cpu = 1; /* For round robin assignment */ 131 /* start with cpu 1 */ 132 133 /* 134 * If enabled, the distribution works as follows: 135 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 136 * and the irq corresponding to the ipl is also set in the aci_current array. 137 * interrupt exit and setspl (due to soft interrupts) will cause the current 138 * ipl to be be changed. This is cache friendly as these frequently used 139 * paths write into a per cpu structure. 140 * 141 * Sampling is done by checking the structures for all CPUs and incrementing 142 * the busy field of the irq (if any) executing on each CPU and the busy field 143 * of the corresponding CPU. 144 * In periodic mode this is done on every clock interrupt. 145 * In one-shot mode, this is done thru a cyclic with an interval of 146 * apic_redistribute_sample_interval (default 10 milli sec). 147 * 148 * Every apic_sample_factor_redistribution times we sample, we do computations 149 * to decide which interrupt needs to be migrated (see comments 150 * before apic_intr_redistribute(). 151 */ 152 153 /* 154 * Following 3 variables start as % and can be patched or set using an 155 * API to be defined in future. They will be scaled to 156 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 157 * mode), or 101 in one-shot mode to stagger it away from one sec processing 158 */ 159 160 int apic_int_busy_mark = 60; 161 int apic_int_free_mark = 20; 162 int apic_diff_for_redistribution = 10; 163 164 /* sampling interval for interrupt redistribution for dynamic migration */ 165 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 166 167 /* 168 * number of times we sample before deciding to redistribute interrupts 169 * for dynamic migration 170 */ 171 int apic_sample_factor_redistribution = 101; 172 173 int apic_redist_cpu_skip = 0; 174 int apic_num_imbalance = 0; 175 int apic_num_rebind = 0; 176 177 /* 178 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic 179 * allocation of CPU ids is disabled. 180 */ 181 int apic_max_nproc = -1; 182 int apic_nproc = 0; 183 size_t apic_cpus_size = 0; 184 int apic_defconf = 0; 185 int apic_irq_translate = 0; 186 int apic_spec_rev = 0; 187 int apic_imcrp = 0; 188 189 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 190 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 191 192 /* 193 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 194 * will be assigned (via _SRS). If it is not set, use the current 195 * irq setting (via _CRS), but only if that irq is in the set of possible 196 * irqs (returned by _PRS) for the device. 197 */ 198 int apic_unconditional_srs = 1; 199 200 /* 201 * For interrupt link devices, if apic_prefer_crs is set when we are 202 * assigning an IRQ resource to a device, prefer the current IRQ setting 203 * over other possible irq settings under same conditions. 204 */ 205 206 int apic_prefer_crs = 1; 207 208 uchar_t apic_io_id[MAX_IO_APIC]; 209 volatile uint32_t *apicioadr[MAX_IO_APIC]; 210 uchar_t apic_io_ver[MAX_IO_APIC]; 211 uchar_t apic_io_vectbase[MAX_IO_APIC]; 212 uchar_t apic_io_vectend[MAX_IO_APIC]; 213 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 214 uint32_t apic_physaddr[MAX_IO_APIC]; 215 216 boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 217 218 /* 219 * First available slot to be used as IRQ index into the apic_irq_table 220 * for those interrupts (like MSI/X) that don't have a physical IRQ. 221 */ 222 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 223 224 /* 225 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 226 * and bound elements of cpus_info and the temp_cpu element of irq_struct 227 */ 228 lock_t apic_ioapic_lock; 229 230 int apic_io_max = 0; /* no. of i/o apics enabled */ 231 232 struct apic_io_intr *apic_io_intrp = NULL; 233 static struct apic_bus *apic_busp; 234 235 uchar_t apic_resv_vector[MAXIPL+1]; 236 237 char apic_level_intr[APIC_MAX_VECTOR+1]; 238 239 uint32_t eisa_level_intr_mask = 0; 240 /* At least MSB will be set if EISA bus */ 241 242 int apic_pci_bus_total = 0; 243 uchar_t apic_single_pci_busid = 0; 244 245 /* 246 * airq_mutex protects additions to the apic_irq_table - the first 247 * pointer and any airq_nexts off of that one. It also protects 248 * apic_max_device_irq & apic_min_device_irq. It also guarantees 249 * that share_id is unique as new ids are generated only when new 250 * irq_t structs are linked in. Once linked in the structs are never 251 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 252 * or allocated. Note that there is a slight gap between allocating in 253 * apic_introp_xlate and programming in addspl. 254 */ 255 kmutex_t airq_mutex; 256 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 257 int apic_max_device_irq = 0; 258 int apic_min_device_irq = APIC_MAX_VECTOR; 259 260 typedef struct prs_irq_list_ent { 261 int list_prio; 262 int32_t irq; 263 iflag_t intrflags; 264 acpi_prs_private_t prsprv; 265 struct prs_irq_list_ent *next; 266 } prs_irq_list_t; 267 268 269 /* 270 * ACPI variables 271 */ 272 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 273 int apic_enable_acpi = 0; 274 275 /* ACPI Multiple APIC Description Table ptr */ 276 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 277 278 /* ACPI Interrupt Source Override Structure ptr */ 279 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 280 int acpi_iso_cnt = 0; 281 282 /* ACPI Non-maskable Interrupt Sources ptr */ 283 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 284 static int acpi_nmi_scnt = 0; 285 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 286 static int acpi_nmi_ccnt = 0; 287 288 /* 289 * The following added to identify a software poweroff method if available. 290 */ 291 292 static struct { 293 int poweroff_method; 294 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 295 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 296 } apic_mps_ids[] = { 297 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 298 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 299 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 300 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 301 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 302 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 303 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 304 }; 305 306 int apic_poweroff_method = APIC_POWEROFF_NONE; 307 308 /* 309 * Auto-configuration routines 310 */ 311 312 /* 313 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 314 * May work with 1.1 - but not guaranteed. 315 * According to the MP Spec, the MP floating pointer structure 316 * will be searched in the order described below: 317 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 318 * 2. Within the last kilobyte of system base memory 319 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 320 * Once we find the right signature with proper checksum, we call 321 * either handle_defconf or parse_mpct to get all info necessary for 322 * subsequent operations. 323 */ 324 int 325 apic_probe_common(char *modname) 326 { 327 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 328 caddr_t biosdatap; 329 caddr_t mpct = 0; 330 caddr_t fptr; 331 int i, mpct_size, mapsize, retval = PSM_FAILURE; 332 ushort_t ebda_seg, base_mem_size; 333 struct apic_mpfps_hdr *fpsp; 334 struct apic_mp_cnf_hdr *hdrp; 335 int bypass_cpu_and_ioapics_in_mptables; 336 int acpi_user_options; 337 338 if (apic_forceload < 0) 339 return (retval); 340 341 /* 342 * Remember who we are 343 */ 344 psm_name = modname; 345 346 /* Allow override for MADT-only mode */ 347 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 348 "acpi-user-options", 0); 349 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 350 351 /* Allow apic_use_acpi to override MADT-only mode */ 352 if (!apic_use_acpi) 353 apic_use_acpi_madt_only = 0; 354 355 retval = acpi_probe(modname); 356 357 /* 358 * mapin the bios data area 40:0 359 * 40:13h - two-byte location reports the base memory size 360 * 40:0Eh - two-byte location for the exact starting address of 361 * the EBDA segment for EISA 362 */ 363 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 364 if (!biosdatap) 365 goto apic_ret; 366 fpsp = (struct apic_mpfps_hdr *)NULL; 367 mapsize = MPFPS_RAM_WIN_LEN; 368 /*LINTED: pointer cast may result in improper alignment */ 369 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 370 /* check the 1k of EBDA */ 371 if (ebda_seg) { 372 ebda_start = ((uint32_t)ebda_seg) << 4; 373 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 374 if (fptr) { 375 if (!(fpsp = 376 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 377 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 378 } 379 } 380 /* If not in EBDA, check the last k of system base memory */ 381 if (!fpsp) { 382 /*LINTED: pointer cast may result in improper alignment */ 383 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 384 385 if (base_mem_size > 512) 386 base_mem_end = 639 * 1024; 387 else 388 base_mem_end = 511 * 1024; 389 /* if ebda == last k of base mem, skip to check BIOS ROM */ 390 if (base_mem_end != ebda_start) { 391 392 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 393 PROT_READ); 394 395 if (fptr) { 396 if (!(fpsp = apic_find_fps_sig(fptr, 397 MPFPS_RAM_WIN_LEN))) 398 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 399 } 400 } 401 } 402 psm_unmap_phys(biosdatap, 0x20); 403 404 /* If still cannot find it, check the BIOS ROM space */ 405 if (!fpsp) { 406 mapsize = MPFPS_ROM_WIN_LEN; 407 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 408 MPFPS_ROM_WIN_LEN, PROT_READ); 409 if (fptr) { 410 if (!(fpsp = 411 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 412 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 413 goto apic_ret; 414 } 415 } 416 } 417 418 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 419 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 420 goto apic_ret; 421 } 422 423 apic_spec_rev = fpsp->mpfps_spec_rev; 424 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 425 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 426 goto apic_ret; 427 } 428 429 /* check IMCR is present or not */ 430 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 431 432 /* check default configuration (dual CPUs) */ 433 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 434 psm_unmap_phys(fptr, mapsize); 435 if ((retval = apic_handle_defconf()) != PSM_SUCCESS) 436 return (retval); 437 438 goto apic_ret; 439 } 440 441 /* MP Configuration Table */ 442 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 443 444 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 445 446 /* 447 * Map in enough memory for the MP Configuration Table Header. 448 * Use this table to read the total length of the BIOS data and 449 * map in all the info 450 */ 451 /*LINTED: pointer cast may result in improper alignment */ 452 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 453 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 454 if (!hdrp) 455 goto apic_ret; 456 457 /* check mp configuration table signature PCMP */ 458 if (hdrp->mpcnf_sig != 0x504d4350) { 459 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 460 goto apic_ret; 461 } 462 mpct_size = (int)hdrp->mpcnf_tbl_length; 463 464 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 465 466 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 467 468 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 469 /* This is an ACPI machine No need for further checks */ 470 goto apic_ret; 471 } 472 473 /* 474 * Map in the entries for this machine, ie. Processor 475 * Entry Tables, Bus Entry Tables, etc. 476 * They are in fixed order following one another 477 */ 478 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 479 if (!mpct) 480 goto apic_ret; 481 482 if (apic_checksum(mpct, mpct_size) != 0) 483 goto apic_fail1; 484 485 /*LINTED: pointer cast may result in improper alignment */ 486 hdrp = (struct apic_mp_cnf_hdr *)mpct; 487 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 488 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 489 if (!apicadr) 490 goto apic_fail1; 491 492 /* Parse all information in the tables */ 493 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 494 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 495 PSM_SUCCESS) { 496 retval = PSM_SUCCESS; 497 goto apic_ret; 498 } 499 500 apic_fail1: 501 psm_unmap_phys(mpct, mpct_size); 502 mpct = NULL; 503 504 apic_ret: 505 if (retval == PSM_SUCCESS) { 506 extern int apic_ioapic_method_probe(); 507 508 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS) 509 return (PSM_SUCCESS); 510 } 511 512 for (i = 0; i < apic_io_max; i++) 513 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 514 if (apic_cpus) { 515 kmem_free(apic_cpus, apic_cpus_size); 516 apic_cpus = NULL; 517 } 518 if (apicadr) { 519 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 520 apicadr = NULL; 521 } 522 if (mpct) 523 psm_unmap_phys(mpct, mpct_size); 524 525 return (retval); 526 } 527 528 static void 529 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 530 { 531 int i; 532 533 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 534 i++) { 535 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 536 strlen(apic_mps_ids[i].oem_id)) == 0) && 537 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 538 strlen(apic_mps_ids[i].prod_id)) == 0)) { 539 540 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 541 break; 542 } 543 } 544 545 if (apic_debug_mps_id != 0) { 546 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 547 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 548 psm_name, 549 hdrp->mpcnf_oem_str[0], 550 hdrp->mpcnf_oem_str[1], 551 hdrp->mpcnf_oem_str[2], 552 hdrp->mpcnf_oem_str[3], 553 hdrp->mpcnf_oem_str[4], 554 hdrp->mpcnf_oem_str[5], 555 hdrp->mpcnf_oem_str[6], 556 hdrp->mpcnf_oem_str[7], 557 hdrp->mpcnf_prod_str[0], 558 hdrp->mpcnf_prod_str[1], 559 hdrp->mpcnf_prod_str[2], 560 hdrp->mpcnf_prod_str[3], 561 hdrp->mpcnf_prod_str[4], 562 hdrp->mpcnf_prod_str[5], 563 hdrp->mpcnf_prod_str[6], 564 hdrp->mpcnf_prod_str[7], 565 hdrp->mpcnf_prod_str[8], 566 hdrp->mpcnf_prod_str[9], 567 hdrp->mpcnf_prod_str[10], 568 hdrp->mpcnf_prod_str[11]); 569 } 570 } 571 572 static void 573 apic_free_apic_cpus(void) 574 { 575 if (apic_cpus != NULL) { 576 kmem_free(apic_cpus, apic_cpus_size); 577 apic_cpus = NULL; 578 apic_cpus_size = 0; 579 } 580 } 581 582 static int 583 acpi_probe(char *modname) 584 { 585 int i, intmax, index; 586 uint32_t id, ver; 587 int acpi_verboseflags = 0; 588 int madt_seen, madt_size; 589 ACPI_SUBTABLE_HEADER *ap; 590 ACPI_MADT_LOCAL_APIC *mpa; 591 ACPI_MADT_LOCAL_X2APIC *mpx2a; 592 ACPI_MADT_IO_APIC *mia; 593 ACPI_MADT_IO_SAPIC *misa; 594 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 595 ACPI_MADT_NMI_SOURCE *mns; 596 ACPI_MADT_INTERRUPT_SOURCE *mis; 597 ACPI_MADT_LOCAL_APIC_NMI *mlan; 598 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 599 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 600 int sci; 601 iflag_t sci_flags; 602 volatile uint32_t *ioapic; 603 int ioapic_ix; 604 uint32_t *local_ids; 605 uint32_t *proc_ids; 606 uchar_t hid; 607 int warned = 0; 608 609 if (!apic_use_acpi) 610 return (PSM_FAILURE); 611 612 if (AcpiGetTable(ACPI_SIG_MADT, 1, 613 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 614 return (PSM_FAILURE); 615 616 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 617 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 618 if (!apicadr) 619 return (PSM_FAILURE); 620 621 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 622 KM_NOSLEEP)) == NULL) 623 return (PSM_FAILURE); 624 625 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 626 KM_NOSLEEP)) == NULL) { 627 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 628 return (PSM_FAILURE); 629 } 630 631 id = apic_reg_ops->apic_read(APIC_LID_REG); 632 local_ids[0] = (uchar_t)(id >> 24); 633 apic_nproc = index = 1; 634 apic_io_max = 0; 635 636 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 637 madt_size = acpi_mapic_dtp->Header.Length; 638 madt_seen = sizeof (*acpi_mapic_dtp); 639 640 while (madt_seen < madt_size) { 641 switch (ap->Type) { 642 case ACPI_MADT_TYPE_LOCAL_APIC: 643 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 644 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 645 if (mpa->Id == local_ids[0]) { 646 ASSERT(index == 1); 647 proc_ids[0] = mpa->ProcessorId; 648 } else if (apic_nproc < NCPU && use_mp && 649 apic_nproc < boot_ncpus) { 650 local_ids[index] = mpa->Id; 651 proc_ids[index] = mpa->ProcessorId; 652 index++; 653 apic_nproc++; 654 } else if (apic_nproc == NCPU && !warned) { 655 cmn_err(CE_WARN, "%s: CPU limit " 656 "exceeded" 657 #if !defined(__amd64) 658 " for 32-bit mode" 659 #endif 660 "; Solaris will use %d CPUs.", 661 psm_name, NCPU); 662 warned = 1; 663 } 664 } 665 break; 666 667 case ACPI_MADT_TYPE_IO_APIC: 668 mia = (ACPI_MADT_IO_APIC *) ap; 669 if (apic_io_max < MAX_IO_APIC) { 670 ioapic_ix = apic_io_max; 671 apic_io_id[apic_io_max] = mia->Id; 672 apic_io_vectbase[apic_io_max] = 673 mia->GlobalIrqBase; 674 apic_physaddr[apic_io_max] = 675 (uint32_t)mia->Address; 676 ioapic = apicioadr[apic_io_max] = 677 mapin_ioapic((uint32_t)mia->Address, 678 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 679 if (!ioapic) 680 goto cleanup; 681 ioapic_mask_workaround[apic_io_max] = 682 apic_is_ioapic_AMD_813x(mia->Address); 683 apic_io_max++; 684 } 685 break; 686 687 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 688 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 689 if (acpi_isop == NULL) 690 acpi_isop = mio; 691 acpi_iso_cnt++; 692 break; 693 694 case ACPI_MADT_TYPE_NMI_SOURCE: 695 /* UNIMPLEMENTED */ 696 mns = (ACPI_MADT_NMI_SOURCE *) ap; 697 if (acpi_nmi_sp == NULL) 698 acpi_nmi_sp = mns; 699 acpi_nmi_scnt++; 700 701 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 702 mns->GlobalIrq, mns->IntiFlags); 703 break; 704 705 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 706 /* UNIMPLEMENTED */ 707 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 708 if (acpi_nmi_cp == NULL) 709 acpi_nmi_cp = mlan; 710 acpi_nmi_ccnt++; 711 712 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 713 mlan->ProcessorId, mlan->IntiFlags, 714 mlan->Lint); 715 break; 716 717 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 718 /* UNIMPLEMENTED */ 719 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 720 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 721 (long)mao->Address); 722 break; 723 724 case ACPI_MADT_TYPE_IO_SAPIC: 725 /* UNIMPLEMENTED */ 726 misa = (ACPI_MADT_IO_SAPIC *) ap; 727 728 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 729 misa->Id, misa->GlobalIrqBase, 730 (long)misa->Address); 731 break; 732 733 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 734 /* UNIMPLEMENTED */ 735 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 736 737 cmn_err(CE_NOTE, 738 "!apic: irq source: %d %d %d 0x%x %d %d\n", 739 mis->Id, mis->Eid, mis->GlobalIrq, 740 mis->IntiFlags, mis->Type, 741 mis->IoSapicVector); 742 break; 743 744 case ACPI_MADT_TYPE_LOCAL_X2APIC: 745 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 746 747 /* 748 * All logical processors with APIC ID values 749 * of 255 and greater will have their APIC 750 * reported through Processor X2APIC structure. 751 * All logical processors with APIC ID less than 752 * 255 will have their APIC reported through 753 * Processor Local APIC. 754 */ 755 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) && 756 (mpx2a->LocalApicId >> 8)) { 757 if (apic_nproc < NCPU && use_mp && 758 apic_nproc < boot_ncpus) { 759 local_ids[index] = mpx2a->LocalApicId; 760 proc_ids[index] = mpa->ProcessorId; 761 index++; 762 apic_nproc++; 763 } else if (apic_nproc == NCPU && !warned) { 764 cmn_err(CE_WARN, "%s: CPU limit " 765 "exceeded" 766 #if !defined(__amd64) 767 " for 32-bit mode" 768 #endif 769 "; Solaris will use %d CPUs.", 770 psm_name, NCPU); 771 warned = 1; 772 } 773 } 774 775 break; 776 777 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 778 /* UNIMPLEMENTED */ 779 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 780 if (mx2alan->Uid >> 8) 781 acpi_nmi_ccnt++; 782 783 #ifdef DEBUG 784 cmn_err(CE_NOTE, 785 "!apic: local x2apic nmi: %d 0x%x %d\n", 786 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 787 #endif 788 789 break; 790 791 case ACPI_MADT_TYPE_RESERVED: 792 default: 793 break; 794 } 795 796 /* advance to next entry */ 797 madt_seen += ap->Length; 798 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 799 } 800 801 /* 802 * allocate enough space for possible hot-adding of CPUs. 803 * max_ncpus may be less than apic_nproc if it's set by user. 804 */ 805 if (plat_dr_support_cpu()) { 806 apic_max_nproc = max_ncpus; 807 } 808 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus); 809 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 810 goto cleanup; 811 812 /* 813 * ACPI doesn't provide the local apic ver, get it directly from the 814 * local apic 815 */ 816 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 817 for (i = 0; i < apic_nproc; i++) { 818 apic_cpus[i].aci_local_id = local_ids[i]; 819 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 820 apic_cpus[i].aci_processor_id = proc_ids[i]; 821 /* Only build mapping info for CPUs present at boot. */ 822 if (i < boot_ncpus) 823 (void) acpica_map_cpu(i, proc_ids[i]); 824 } 825 826 /* 827 * To support CPU dynamic reconfiguration, the apic CPU info structure 828 * for each possible CPU will be pre-allocated at boot time. 829 * The state for each apic CPU info structure will be assigned according 830 * to the following rules: 831 * Rule 1: 832 * Slot index range: [0, min(apic_nproc, boot_ncpus)) 833 * State flags: 0 834 * Note: cpu exists and will be configured/enabled at boot time 835 * Rule 2: 836 * Slot index range: [boot_ncpus, apic_nproc) 837 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY 838 * Note: cpu exists but won't be configured/enabled at boot time 839 * Rule 3: 840 * Slot index range: [apic_nproc, boot_ncpus) 841 * State flags: APIC_CPU_FREE 842 * Note: cpu doesn't exist at boot time 843 * Rule 4: 844 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus) 845 * State flags: APIC_CPU_FREE 846 * Note: cpu doesn't exist at boot time 847 */ 848 CPUSET_ZERO(apic_cpumask); 849 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) { 850 CPUSET_ADD(apic_cpumask, i); 851 apic_cpus[i].aci_status = 0; 852 } 853 for (i = boot_ncpus; i < apic_nproc; i++) { 854 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 855 } 856 for (i = apic_nproc; i < boot_ncpus; i++) { 857 apic_cpus[i].aci_status = APIC_CPU_FREE; 858 } 859 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) { 860 apic_cpus[i].aci_status = APIC_CPU_FREE; 861 } 862 863 for (i = 0; i < apic_io_max; i++) { 864 ioapic_ix = i; 865 866 /* 867 * need to check Sitka on the following acpi problem 868 * On the Sitka, the ioapic's apic_id field isn't reporting 869 * the actual io apic id. We have reported this problem 870 * to Intel. Until they fix the problem, we will get the 871 * actual id directly from the ioapic. 872 */ 873 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 874 hid = (uchar_t)(id >> 24); 875 876 if (hid != apic_io_id[i]) { 877 if (apic_io_id[i] == 0) 878 apic_io_id[i] = hid; 879 else { /* set ioapic id to whatever reported by ACPI */ 880 id = ((uint32_t)apic_io_id[i]) << 24; 881 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 882 } 883 } 884 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 885 apic_io_ver[i] = (uchar_t)(ver & 0xff); 886 intmax = (ver >> 16) & 0xff; 887 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 888 if (apic_first_avail_irq <= apic_io_vectend[i]) 889 apic_first_avail_irq = apic_io_vectend[i] + 1; 890 } 891 892 893 /* 894 * Process SCI configuration here 895 * An error may be returned here if 896 * acpi-user-options specifies legacy mode 897 * (no SCI, no ACPI mode) 898 */ 899 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 900 sci = -1; 901 902 /* 903 * Now call acpi_init() to generate namespaces 904 * If this fails, we don't attempt to use ACPI 905 * even if we were able to get a MADT above 906 */ 907 if (acpica_init() != AE_OK) 908 goto cleanup; 909 910 /* 911 * Call acpica_build_processor_map() now that we have 912 * ACPI namesspace access 913 */ 914 (void) acpica_build_processor_map(); 915 916 /* 917 * Squirrel away the SCI and flags for later on 918 * in apic_picinit() when we're ready 919 */ 920 apic_sci_vect = sci; 921 apic_sci_flags = sci_flags; 922 923 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 924 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 925 926 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 927 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 928 929 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 930 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 931 932 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 933 goto cleanup; 934 935 /* Enable ACPI APIC interrupt routing */ 936 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 937 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 938 apic_enable_acpi = 1; 939 if (apic_sci_vect > 0) { 940 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 941 } 942 if (apic_use_acpi_madt_only) { 943 cmn_err(CE_CONT, 944 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 945 } 946 947 #if !defined(__xpv) 948 /* 949 * probe ACPI for hpet information here which is used later 950 * in apic_picinit(). 951 */ 952 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 953 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 954 } 955 #endif 956 957 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 958 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 959 return (PSM_SUCCESS); 960 } 961 /* if setting APIC mode failed above, we fall through to cleanup */ 962 963 cleanup: 964 apic_free_apic_cpus(); 965 if (apicadr != NULL) { 966 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 967 apicadr = NULL; 968 } 969 apic_max_nproc = -1; 970 apic_nproc = 0; 971 for (i = 0; i < apic_io_max; i++) { 972 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 973 apicioadr[i] = NULL; 974 } 975 apic_io_max = 0; 976 acpi_isop = NULL; 977 acpi_iso_cnt = 0; 978 acpi_nmi_sp = NULL; 979 acpi_nmi_scnt = 0; 980 acpi_nmi_cp = NULL; 981 acpi_nmi_ccnt = 0; 982 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 983 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 984 return (PSM_FAILURE); 985 } 986 987 /* 988 * Handle default configuration. Fill in reqd global variables & tables 989 * Fill all details as MP table does not give any more info 990 */ 991 static int 992 apic_handle_defconf() 993 { 994 uint_t lid; 995 996 /* Failed to probe ACPI MADT tables, disable CPU DR. */ 997 apic_max_nproc = -1; 998 apic_free_apic_cpus(); 999 plat_dr_disable_cpu(); 1000 1001 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR, 1002 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1003 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR, 1004 APIC_LOCAL_MEMLEN, PROT_READ); 1005 apic_cpus_size = 2 * sizeof (*apic_cpus); 1006 apic_cpus = (apic_cpus_info_t *) 1007 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 1008 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 1009 goto apic_handle_defconf_fail; 1010 CPUSET_ONLY(apic_cpumask, 0); 1011 CPUSET_ADD(apic_cpumask, 1); 1012 apic_nproc = 2; 1013 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1014 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 1015 /* 1016 * According to the PC+MP spec 1.1, the local ids 1017 * for the default configuration has to be 0 or 1 1018 */ 1019 if (apic_cpus[0].aci_local_id == 1) 1020 apic_cpus[1].aci_local_id = 0; 1021 else if (apic_cpus[0].aci_local_id == 0) 1022 apic_cpus[1].aci_local_id = 1; 1023 else 1024 goto apic_handle_defconf_fail; 1025 1026 apic_io_id[0] = 2; 1027 apic_io_max = 1; 1028 if (apic_defconf >= 5) { 1029 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1030 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1031 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1032 } else { 1033 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1034 apic_cpus[1].aci_local_ver = 0; 1035 apic_io_ver[0] = 0; 1036 } 1037 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1038 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1039 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1040 return (PSM_SUCCESS); 1041 1042 apic_handle_defconf_fail: 1043 if (apicadr) 1044 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1045 if (apicioadr[0]) 1046 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1047 return (PSM_FAILURE); 1048 } 1049 1050 /* Parse the entries in MP configuration table and collect info that we need */ 1051 static int 1052 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1053 { 1054 struct apic_procent *procp; 1055 struct apic_bus *busp; 1056 struct apic_io_entry *ioapicp; 1057 struct apic_io_intr *intrp; 1058 int ioapic_ix; 1059 uint_t lid; 1060 uint32_t id; 1061 uchar_t hid; 1062 int warned = 0; 1063 1064 /*LINTED: pointer cast may result in improper alignment */ 1065 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1066 1067 /* No need to count cpu entries if we won't use them */ 1068 if (!bypass_cpus_and_ioapics) { 1069 1070 /* Find max # of CPUS and allocate structure accordingly */ 1071 apic_nproc = 0; 1072 CPUSET_ZERO(apic_cpumask); 1073 while (procp->proc_entry == APIC_CPU_ENTRY) { 1074 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1075 if (apic_nproc < NCPU && use_mp && 1076 apic_nproc < boot_ncpus) { 1077 CPUSET_ADD(apic_cpumask, apic_nproc); 1078 apic_nproc++; 1079 } else if (apic_nproc == NCPU && !warned) { 1080 cmn_err(CE_WARN, "%s: CPU limit " 1081 "exceeded" 1082 #if !defined(__amd64) 1083 " for 32-bit mode" 1084 #endif 1085 "; Solaris will use %d CPUs.", 1086 psm_name, NCPU); 1087 warned = 1; 1088 } 1089 1090 } 1091 procp++; 1092 } 1093 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1094 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1095 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1096 return (PSM_FAILURE); 1097 } 1098 1099 /*LINTED: pointer cast may result in improper alignment */ 1100 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1101 1102 /* 1103 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1104 * if we're bypassing this information, it has already been filled 1105 * in by acpi_probe(), so don't overwrite it. 1106 */ 1107 if (!bypass_cpus_and_ioapics) 1108 apic_nproc = 1; 1109 1110 while (procp->proc_entry == APIC_CPU_ENTRY) { 1111 /* check whether the cpu exists or not */ 1112 if (!bypass_cpus_and_ioapics && 1113 procp->proc_cpuflags & CPUFLAGS_EN) { 1114 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1115 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1116 apic_cpus[0].aci_local_id = procp->proc_apicid; 1117 if (apic_cpus[0].aci_local_id != 1118 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1119 return (PSM_FAILURE); 1120 } 1121 apic_cpus[0].aci_local_ver = 1122 procp->proc_version; 1123 } else if (apic_nproc < NCPU && use_mp && 1124 apic_nproc < boot_ncpus) { 1125 apic_cpus[apic_nproc].aci_local_id = 1126 procp->proc_apicid; 1127 1128 apic_cpus[apic_nproc].aci_local_ver = 1129 procp->proc_version; 1130 apic_nproc++; 1131 1132 } 1133 } 1134 procp++; 1135 } 1136 1137 /* 1138 * Save start of bus entries for later use. 1139 * Get EISA level cntrl if EISA bus is present. 1140 * Also get the CPI bus id for single CPI bus case 1141 */ 1142 apic_busp = busp = (struct apic_bus *)procp; 1143 while (busp->bus_entry == APIC_BUS_ENTRY) { 1144 lid = apic_find_bus_type((char *)&busp->bus_str1); 1145 if (lid == BUS_EISA) { 1146 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1147 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1148 } else if (lid == BUS_PCI) { 1149 /* 1150 * apic_single_pci_busid will be used only if 1151 * apic_pic_bus_total is equal to 1 1152 */ 1153 apic_pci_bus_total++; 1154 apic_single_pci_busid = busp->bus_id; 1155 } 1156 busp++; 1157 } 1158 1159 ioapicp = (struct apic_io_entry *)busp; 1160 1161 if (!bypass_cpus_and_ioapics) 1162 apic_io_max = 0; 1163 do { 1164 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1165 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1166 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1167 apic_io_ver[apic_io_max] = ioapicp->io_version; 1168 apicioadr[apic_io_max] = 1169 (void *)mapin_ioapic( 1170 (uint32_t)ioapicp->io_apic_addr, 1171 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1172 1173 if (!apicioadr[apic_io_max]) 1174 return (PSM_FAILURE); 1175 1176 ioapic_mask_workaround[apic_io_max] = 1177 apic_is_ioapic_AMD_813x( 1178 ioapicp->io_apic_addr); 1179 1180 ioapic_ix = apic_io_max; 1181 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1182 hid = (uchar_t)(id >> 24); 1183 1184 if (hid != apic_io_id[apic_io_max]) { 1185 if (apic_io_id[apic_io_max] == 0) 1186 apic_io_id[apic_io_max] = hid; 1187 else { 1188 /* 1189 * set ioapic id to whatever 1190 * reported by MPS 1191 * 1192 * may not need to set index 1193 * again ??? 1194 * take it out and try 1195 */ 1196 1197 id = ((uint32_t) 1198 apic_io_id[apic_io_max]) << 1199 24; 1200 1201 ioapic_write(ioapic_ix, 1202 APIC_ID_CMD, id); 1203 } 1204 } 1205 apic_io_max++; 1206 } 1207 } 1208 ioapicp++; 1209 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1210 1211 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1212 1213 intrp = apic_io_intrp; 1214 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1215 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1216 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1217 apic_irq_translate = 1; 1218 break; 1219 } 1220 intrp++; 1221 } 1222 1223 return (PSM_SUCCESS); 1224 } 1225 1226 boolean_t 1227 apic_cpu_in_range(int cpu) 1228 { 1229 cpu &= ~IRQ_USER_BOUND; 1230 /* Check whether cpu id is in valid range. */ 1231 if (cpu < 0 || cpu >= apic_nproc) { 1232 return (B_FALSE); 1233 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) { 1234 /* 1235 * Check whether cpuid is in valid range if CPU DR is enabled. 1236 */ 1237 return (B_FALSE); 1238 } else if (!CPU_IN_SET(apic_cpumask, cpu)) { 1239 return (B_FALSE); 1240 } 1241 1242 return (B_TRUE); 1243 } 1244 1245 processorid_t 1246 apic_get_next_bind_cpu(void) 1247 { 1248 int i, count; 1249 processorid_t cpuid = 0; 1250 1251 for (count = 0; count < apic_nproc; count++) { 1252 if (apic_next_bind_cpu >= apic_nproc) { 1253 apic_next_bind_cpu = 0; 1254 } 1255 i = apic_next_bind_cpu++; 1256 if (apic_cpu_in_range(i)) { 1257 cpuid = i; 1258 break; 1259 } 1260 } 1261 1262 return (cpuid); 1263 } 1264 1265 uint16_t 1266 apic_get_apic_version() 1267 { 1268 int i; 1269 uchar_t min_io_apic_ver = 0; 1270 static uint16_t version; /* Cache as value is constant */ 1271 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1272 1273 if (found == B_FALSE) { 1274 found = B_TRUE; 1275 1276 /* 1277 * Don't assume all IO APICs in the system are the same. 1278 * 1279 * Set to the minimum version. 1280 */ 1281 for (i = 0; i < apic_io_max; i++) { 1282 if ((apic_io_ver[i] != 0) && 1283 ((min_io_apic_ver == 0) || 1284 (min_io_apic_ver >= apic_io_ver[i]))) 1285 min_io_apic_ver = apic_io_ver[i]; 1286 } 1287 1288 /* Assume all local APICs are of the same version. */ 1289 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1290 } 1291 return (version); 1292 } 1293 1294 static struct apic_mpfps_hdr * 1295 apic_find_fps_sig(caddr_t cptr, int len) 1296 { 1297 int i; 1298 1299 /* Look for the pattern "_MP_" */ 1300 for (i = 0; i < len; i += 16) { 1301 if ((*(cptr+i) == '_') && 1302 (*(cptr+i+1) == 'M') && 1303 (*(cptr+i+2) == 'P') && 1304 (*(cptr+i+3) == '_')) 1305 /*LINTED: pointer cast may result in improper alignment */ 1306 return ((struct apic_mpfps_hdr *)(cptr + i)); 1307 } 1308 return (NULL); 1309 } 1310 1311 static int 1312 apic_checksum(caddr_t bptr, int len) 1313 { 1314 int i; 1315 uchar_t cksum; 1316 1317 cksum = 0; 1318 for (i = 0; i < len; i++) 1319 cksum += *bptr++; 1320 return ((int)cksum); 1321 } 1322 1323 /* 1324 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 1325 * needs special handling. We may need to chase up the device tree, 1326 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 1327 * to find the IPIN at the root bus that relates to the IPIN on the 1328 * subsidiary bus (for ACPI or MP). We may, however, have an entry 1329 * in the MP table or the ACPI namespace for this device itself. 1330 * We handle both cases in the search below. 1331 */ 1332 /* this is the non-acpi version */ 1333 int 1334 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 1335 struct apic_io_intr **intrp) 1336 { 1337 dev_info_t *dipp, *dip; 1338 int pci_irq; 1339 ddi_acc_handle_t cfg_handle; 1340 int bridge_devno, bridge_bus; 1341 int ipin; 1342 1343 dip = idip; 1344 1345 /*CONSTCOND*/ 1346 while (1) { 1347 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 1348 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 1349 return (-1); 1350 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 1351 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 1352 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 1353 pci_config_teardown(&cfg_handle); 1354 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 1355 NULL) != 0) 1356 return (-1); 1357 /* 1358 * This is the rotating scheme documented in the 1359 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 1360 * behind another PCI-to-PCI bridge, then it needs 1361 * to keep ascending until an interrupt entry is 1362 * found or the root is reached. 1363 */ 1364 ipin = (child_devno + child_ipin) % PCI_INTD; 1365 if (bridge_bus == 0 && apic_pci_bus_total == 1) 1366 bridge_bus = (int)apic_single_pci_busid; 1367 pci_irq = ((bridge_devno & 0x1f) << 2) | 1368 (ipin & 0x3); 1369 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 1370 bridge_bus)) != NULL) { 1371 return (pci_irq); 1372 } 1373 dip = dipp; 1374 child_devno = bridge_devno; 1375 child_ipin = ipin; 1376 } else { 1377 pci_config_teardown(&cfg_handle); 1378 return (-1); 1379 } 1380 } 1381 /*LINTED: function will not fall off the bottom */ 1382 } 1383 1384 uchar_t 1385 acpi_find_ioapic(int irq) 1386 { 1387 int i; 1388 1389 for (i = 0; i < apic_io_max; i++) { 1390 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 1391 return ((uchar_t)i); 1392 } 1393 return (0xFF); /* shouldn't happen */ 1394 } 1395 1396 /* 1397 * See if two irqs are compatible for sharing a vector. 1398 * Currently we only support sharing of PCI devices. 1399 */ 1400 static int 1401 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 1402 { 1403 uint_t level1, po1; 1404 uint_t level2, po2; 1405 1406 /* Assume active high by default */ 1407 po1 = 0; 1408 po2 = 0; 1409 1410 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 1411 return (0); 1412 1413 if (iflag1.intr_el == INTR_EL_CONFORM) 1414 level1 = AV_LEVEL; 1415 else 1416 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1417 1418 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 1419 (iflag1.intr_po == INTR_PO_CONFORM))) 1420 po1 = AV_ACTIVE_LOW; 1421 1422 if (iflag2.intr_el == INTR_EL_CONFORM) 1423 level2 = AV_LEVEL; 1424 else 1425 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1426 1427 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 1428 (iflag2.intr_po == INTR_PO_CONFORM))) 1429 po2 = AV_ACTIVE_LOW; 1430 1431 if ((level1 == level2) && (po1 == po2)) 1432 return (1); 1433 1434 return (0); 1435 } 1436 1437 struct apic_io_intr * 1438 apic_find_io_intr_w_busid(int irqno, int busid) 1439 { 1440 struct apic_io_intr *intrp; 1441 1442 /* 1443 * It can have more than 1 entry with same source bus IRQ, 1444 * but unique with the source bus id 1445 */ 1446 intrp = apic_io_intrp; 1447 if (intrp != NULL) { 1448 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1449 if (intrp->intr_irq == irqno && 1450 intrp->intr_busid == busid && 1451 intrp->intr_type == IO_INTR_INT) 1452 return (intrp); 1453 intrp++; 1454 } 1455 } 1456 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 1457 "busid %x:%x\n", irqno, busid)); 1458 return ((struct apic_io_intr *)NULL); 1459 } 1460 1461 1462 struct mps_bus_info { 1463 char *bus_name; 1464 int bus_id; 1465 } bus_info_array[] = { 1466 "ISA ", BUS_ISA, 1467 "PCI ", BUS_PCI, 1468 "EISA ", BUS_EISA, 1469 "XPRESS", BUS_XPRESS, 1470 "PCMCIA", BUS_PCMCIA, 1471 "VL ", BUS_VL, 1472 "CBUS ", BUS_CBUS, 1473 "CBUSII", BUS_CBUSII, 1474 "FUTURE", BUS_FUTURE, 1475 "INTERN", BUS_INTERN, 1476 "MBI ", BUS_MBI, 1477 "MBII ", BUS_MBII, 1478 "MPI ", BUS_MPI, 1479 "MPSA ", BUS_MPSA, 1480 "NUBUS ", BUS_NUBUS, 1481 "TC ", BUS_TC, 1482 "VME ", BUS_VME, 1483 "PCI-E ", BUS_PCIE 1484 }; 1485 1486 static int 1487 apic_find_bus_type(char *bus) 1488 { 1489 int i = 0; 1490 1491 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 1492 if (strncmp(bus, bus_info_array[i].bus_name, 1493 strlen(bus_info_array[i].bus_name)) == 0) 1494 return (bus_info_array[i].bus_id); 1495 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 1496 return (0); 1497 } 1498 1499 static int 1500 apic_find_bus(int busid) 1501 { 1502 struct apic_bus *busp; 1503 1504 busp = apic_busp; 1505 while (busp->bus_entry == APIC_BUS_ENTRY) { 1506 if (busp->bus_id == busid) 1507 return (apic_find_bus_type((char *)&busp->bus_str1)); 1508 busp++; 1509 } 1510 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 1511 return (0); 1512 } 1513 1514 int 1515 apic_find_bus_id(int bustype) 1516 { 1517 struct apic_bus *busp; 1518 1519 busp = apic_busp; 1520 while (busp->bus_entry == APIC_BUS_ENTRY) { 1521 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 1522 return (busp->bus_id); 1523 busp++; 1524 } 1525 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 1526 bustype)); 1527 return (-1); 1528 } 1529 1530 /* 1531 * Check if a particular irq need to be reserved for any io_intr 1532 */ 1533 static struct apic_io_intr * 1534 apic_find_io_intr(int irqno) 1535 { 1536 struct apic_io_intr *intrp; 1537 1538 intrp = apic_io_intrp; 1539 if (intrp != NULL) { 1540 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1541 if (intrp->intr_irq == irqno && 1542 intrp->intr_type == IO_INTR_INT) 1543 return (intrp); 1544 intrp++; 1545 } 1546 } 1547 return ((struct apic_io_intr *)NULL); 1548 } 1549 1550 /* 1551 * Check if the given ioapicindex intin combination has already been assigned 1552 * an irq. If so return irqno. Else -1 1553 */ 1554 int 1555 apic_find_intin(uchar_t ioapic, uchar_t intin) 1556 { 1557 apic_irq_t *irqptr; 1558 int i; 1559 1560 /* find ioapic and intin in the apic_irq_table[] and return the index */ 1561 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1562 irqptr = apic_irq_table[i]; 1563 while (irqptr) { 1564 if ((irqptr->airq_mps_intr_index >= 0) && 1565 (irqptr->airq_intin_no == intin) && 1566 (irqptr->airq_ioapicindex == ioapic)) { 1567 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 1568 "entry for ioapic:intin %x:%x " 1569 "shared interrupts ?", ioapic, intin)); 1570 return (i); 1571 } 1572 irqptr = irqptr->airq_next; 1573 } 1574 } 1575 return (-1); 1576 } 1577 1578 int 1579 apic_allocate_irq(int irq) 1580 { 1581 int freeirq, i; 1582 1583 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 1584 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 1585 (irq - 1))) == -1) { 1586 /* 1587 * if BIOS really defines every single irq in the mps 1588 * table, then don't worry about conflicting with 1589 * them, just use any free slot in apic_irq_table 1590 */ 1591 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1592 if ((apic_irq_table[i] == NULL) || 1593 apic_irq_table[i]->airq_mps_intr_index == 1594 FREE_INDEX) { 1595 freeirq = i; 1596 break; 1597 } 1598 } 1599 if (freeirq == -1) { 1600 /* This shouldn't happen, but just in case */ 1601 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 1602 return (-1); 1603 } 1604 } 1605 if (apic_irq_table[freeirq] == NULL) { 1606 apic_irq_table[freeirq] = 1607 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1608 if (apic_irq_table[freeirq] == NULL) { 1609 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 1610 psm_name); 1611 return (-1); 1612 } 1613 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 1614 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 1615 } 1616 return (freeirq); 1617 } 1618 1619 static int 1620 apic_find_free_irq(int start, int end) 1621 { 1622 int i; 1623 1624 for (i = start; i <= end; i++) 1625 /* Check if any I/O entry needs this IRQ */ 1626 if (apic_find_io_intr(i) == NULL) { 1627 /* Then see if it is free */ 1628 if ((apic_irq_table[i] == NULL) || 1629 (apic_irq_table[i]->airq_mps_intr_index == 1630 FREE_INDEX)) { 1631 return (i); 1632 } 1633 } 1634 return (-1); 1635 } 1636 1637 /* 1638 * compute the polarity, trigger mode and vector for programming into 1639 * the I/O apic and record in airq_rdt_entry. 1640 */ 1641 void 1642 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 1643 { 1644 int ioapicindex, bus_type, vector; 1645 short intr_index; 1646 uint_t level, po, io_po; 1647 struct apic_io_intr *iointrp; 1648 1649 intr_index = irqptr->airq_mps_intr_index; 1650 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 1651 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 1652 (void *)irqptr->airq_dip, irqptr->airq_vector)); 1653 1654 if (intr_index == RESERVE_INDEX) { 1655 apic_error |= APIC_ERR_INVALID_INDEX; 1656 return; 1657 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 1658 return; 1659 } 1660 1661 vector = irqptr->airq_vector; 1662 ioapicindex = irqptr->airq_ioapicindex; 1663 /* Assume edge triggered by default */ 1664 level = 0; 1665 /* Assume active high by default */ 1666 po = 0; 1667 1668 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 1669 ASSERT(irq < 16); 1670 if (eisa_level_intr_mask & (1 << irq)) 1671 level = AV_LEVEL; 1672 if (intr_index == FREE_INDEX && apic_defconf == 0) 1673 apic_error |= APIC_ERR_INVALID_INDEX; 1674 } else if (intr_index == ACPI_INDEX) { 1675 bus_type = irqptr->airq_iflag.bustype; 1676 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 1677 if (bus_type == BUS_PCI) 1678 level = AV_LEVEL; 1679 } else 1680 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 1681 AV_LEVEL : 0; 1682 if (level && 1683 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 1684 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 1685 bus_type == BUS_PCI))) 1686 po = AV_ACTIVE_LOW; 1687 } else { 1688 iointrp = apic_io_intrp + intr_index; 1689 bus_type = apic_find_bus(iointrp->intr_busid); 1690 if (iointrp->intr_el == INTR_EL_CONFORM) { 1691 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 1692 level = AV_LEVEL; 1693 else if (bus_type == BUS_PCI) 1694 level = AV_LEVEL; 1695 } else 1696 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 1697 AV_LEVEL : 0; 1698 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 1699 (iointrp->intr_po == INTR_PO_CONFORM && 1700 bus_type == BUS_PCI))) 1701 po = AV_ACTIVE_LOW; 1702 } 1703 if (level) 1704 apic_level_intr[irq] = 1; 1705 /* 1706 * The 82489DX External APIC cannot do active low polarity interrupts. 1707 */ 1708 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 1709 io_po = po; 1710 else 1711 io_po = 0; 1712 1713 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 1714 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x " 1715 "vector=0x%x cpu=0x%x\n\n", ioapicindex, 1716 irqptr->airq_intin_no, level, io_po, vector, 1717 irqptr->airq_cpu); 1718 1719 irqptr->airq_rdt_entry = level|io_po|vector; 1720 } 1721 1722 int 1723 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 1724 int ipin, int *pci_irqp, iflag_t *intr_flagp) 1725 { 1726 1727 int status; 1728 acpi_psm_lnk_t acpipsmlnk; 1729 1730 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 1731 intr_flagp)) == ACPI_PSM_SUCCESS) { 1732 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 1733 "from cache for device %s, instance #%d\n", psm_name, 1734 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1735 return (status); 1736 } 1737 1738 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 1739 1740 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 1741 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 1742 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 1743 " acpi_translate_pci_irq failed for device %s, instance" 1744 " #%d", psm_name, ddi_get_name(dip), 1745 ddi_get_instance(dip))); 1746 return (status); 1747 } 1748 1749 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 1750 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 1751 intr_flagp); 1752 if (status != ACPI_PSM_SUCCESS) { 1753 status = acpi_get_current_irq_resource(&acpipsmlnk, 1754 pci_irqp, intr_flagp); 1755 } 1756 } 1757 1758 if (status == ACPI_PSM_SUCCESS) { 1759 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 1760 intr_flagp, &acpipsmlnk); 1761 1762 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 1763 "new irq %d for device %s, instance #%d\n", psm_name, 1764 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1765 } 1766 1767 return (status); 1768 } 1769 1770 /* 1771 * Adds an entry to the irq list passed in, and returns the new list. 1772 * Entries are added in priority order (lower numerical priorities are 1773 * placed closer to the head of the list) 1774 */ 1775 static prs_irq_list_t * 1776 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 1777 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 1778 { 1779 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 1780 1781 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 1782 1783 newent->list_prio = priority; 1784 newent->irq = irq; 1785 newent->intrflags = *iflagp; 1786 newent->prsprv = *prsprvp; 1787 /* ->next is NULL from kmem_zalloc */ 1788 1789 /* 1790 * New list -- return the new entry as the list. 1791 */ 1792 if (listp == NULL) 1793 return (newent); 1794 1795 /* 1796 * Save original list pointer for return (since we're not modifying 1797 * the head) 1798 */ 1799 origlistp = listp; 1800 1801 /* 1802 * Insertion sort, with entries with identical keys stored AFTER 1803 * existing entries (the less-than-or-equal test of priority does 1804 * this for us). 1805 */ 1806 while (listp != NULL && listp->list_prio <= priority) { 1807 prevp = listp; 1808 listp = listp->next; 1809 } 1810 1811 newent->next = listp; 1812 1813 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 1814 return (newent); 1815 } else { 1816 prevp->next = newent; 1817 return (origlistp); 1818 } 1819 } 1820 1821 /* 1822 * Frees the list passed in, deallocating all memory and leaving *listpp 1823 * set to NULL. 1824 */ 1825 static void 1826 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 1827 { 1828 struct prs_irq_list_ent *nextp; 1829 1830 ASSERT(listpp != NULL); 1831 1832 while (*listpp != NULL) { 1833 nextp = (*listpp)->next; 1834 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 1835 *listpp = nextp; 1836 } 1837 } 1838 1839 /* 1840 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 1841 * irqs returned by the link device's _PRS method. The irqs are chosen 1842 * to minimize contention in situations where the interrupt link device 1843 * can be programmed to steer interrupts to different interrupt controller 1844 * inputs (some of which may already be in use). The list is sorted in order 1845 * of irqs to use, with the highest priority given to interrupt controller 1846 * inputs that are not shared. When an interrupt controller input 1847 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 1848 * returned list in the order that minimizes sharing (thereby ensuring lowest 1849 * possible latency from interrupt trigger time to ISR execution time). 1850 */ 1851 static prs_irq_list_t * 1852 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 1853 int crs_irq) 1854 { 1855 int32_t irq; 1856 int i; 1857 prs_irq_list_t *prsirqlistp = NULL; 1858 iflag_t iflags; 1859 1860 while (irqlistent != NULL) { 1861 irqlistent->intr_flags.bustype = BUS_PCI; 1862 1863 for (i = 0; i < irqlistent->num_irqs; i++) { 1864 1865 irq = irqlistent->irqs[i]; 1866 1867 if (irq <= 0) { 1868 /* invalid irq number */ 1869 continue; 1870 } 1871 1872 if ((irq < 16) && (apic_reserved_irqlist[irq])) 1873 continue; 1874 1875 if ((apic_irq_table[irq] == NULL) || 1876 (apic_irq_table[irq]->airq_dip == dip)) { 1877 1878 prsirqlistp = acpi_insert_prs_irq_ent( 1879 prsirqlistp, 0 /* Highest priority */, irq, 1880 &irqlistent->intr_flags, 1881 &irqlistent->acpi_prs_prv); 1882 1883 /* 1884 * If we do not prefer the current irq from _CRS 1885 * or if we do and this irq is the same as the 1886 * current irq from _CRS, this is the one 1887 * to pick. 1888 */ 1889 if (!(apic_prefer_crs) || (irq == crs_irq)) { 1890 return (prsirqlistp); 1891 } 1892 continue; 1893 } 1894 1895 /* 1896 * Edge-triggered interrupts cannot be shared 1897 */ 1898 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 1899 continue; 1900 1901 /* 1902 * To work around BIOSes that contain incorrect 1903 * interrupt polarity information in interrupt 1904 * descriptors returned by _PRS, we assume that 1905 * the polarity of the other device sharing this 1906 * interrupt controller input is compatible. 1907 * If it's not, the caller will catch it when 1908 * the caller invokes the link device's _CRS method 1909 * (after invoking its _SRS method). 1910 */ 1911 iflags = irqlistent->intr_flags; 1912 iflags.intr_po = 1913 apic_irq_table[irq]->airq_iflag.intr_po; 1914 1915 if (!acpi_intr_compatible(iflags, 1916 apic_irq_table[irq]->airq_iflag)) { 1917 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 1918 "not compatible [%x:%x:%x !~ %x:%x:%x]", 1919 psm_name, irq, 1920 iflags.intr_po, 1921 iflags.intr_el, 1922 iflags.bustype, 1923 apic_irq_table[irq]->airq_iflag.intr_po, 1924 apic_irq_table[irq]->airq_iflag.intr_el, 1925 apic_irq_table[irq]->airq_iflag.bustype)); 1926 continue; 1927 } 1928 1929 /* 1930 * If we prefer the irq from _CRS, no need 1931 * to search any further (and make sure 1932 * to add this irq with the highest priority 1933 * so it's tried first). 1934 */ 1935 if (crs_irq == irq && apic_prefer_crs) { 1936 1937 return (acpi_insert_prs_irq_ent( 1938 prsirqlistp, 1939 0 /* Highest priority */, 1940 irq, &iflags, 1941 &irqlistent->acpi_prs_prv)); 1942 } 1943 1944 /* 1945 * Priority is equal to the share count (lower 1946 * share count is higher priority). Note that 1947 * the intr flags passed in here are the ones we 1948 * changed above -- if incorrect, it will be 1949 * caught by the caller's _CRS flags comparison. 1950 */ 1951 prsirqlistp = acpi_insert_prs_irq_ent( 1952 prsirqlistp, 1953 apic_irq_table[irq]->airq_share, irq, 1954 &iflags, &irqlistent->acpi_prs_prv); 1955 } 1956 1957 /* Go to the next irqlist entry */ 1958 irqlistent = irqlistent->next; 1959 } 1960 1961 return (prsirqlistp); 1962 } 1963 1964 /* 1965 * Configures the irq for the interrupt link device identified by 1966 * acpipsmlnkp. 1967 * 1968 * Gets the current and the list of possible irq settings for the 1969 * device. If apic_unconditional_srs is not set, and the current 1970 * resource setting is in the list of possible irq settings, 1971 * current irq resource setting is passed to the caller. 1972 * 1973 * Otherwise, picks an irq number from the list of possible irq 1974 * settings, and sets the irq of the device to this value. 1975 * If prefer_crs is set, among a set of irq numbers in the list that have 1976 * the least number of devices sharing the interrupt, we pick current irq 1977 * resource setting if it is a member of this set. 1978 * 1979 * Passes the irq number in the value pointed to by pci_irqp, and 1980 * polarity and sensitivity in the structure pointed to by dipintrflagp 1981 * to the caller. 1982 * 1983 * Note that if setting the irq resource failed, but successfuly obtained 1984 * the current irq resource settings, passes the current irq resources 1985 * and considers it a success. 1986 * 1987 * Returns: 1988 * ACPI_PSM_SUCCESS on success. 1989 * 1990 * ACPI_PSM_FAILURE if an error occured during the configuration or 1991 * if a suitable irq was not found for this device, or if setting the 1992 * irq resource and obtaining the current resource fails. 1993 * 1994 */ 1995 static int 1996 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 1997 int *pci_irqp, iflag_t *dipintr_flagp) 1998 { 1999 int32_t irq; 2000 int cur_irq = -1; 2001 acpi_irqlist_t *irqlistp; 2002 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 2003 boolean_t found_irq = B_FALSE; 2004 2005 dipintr_flagp->bustype = BUS_PCI; 2006 2007 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 2008 == ACPI_PSM_FAILURE) { 2009 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 2010 "or assign IRQ for device %s, instance #%d: The system was " 2011 "unable to get the list of potential IRQs from ACPI.", 2012 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2013 2014 return (ACPI_PSM_FAILURE); 2015 } 2016 2017 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2018 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 2019 (cur_irq > 0)) { 2020 /* 2021 * If an IRQ is set in CRS and that IRQ exists in the set 2022 * returned from _PRS, return that IRQ, otherwise print 2023 * a warning 2024 */ 2025 2026 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 2027 == ACPI_PSM_SUCCESS) { 2028 2029 ASSERT(pci_irqp != NULL); 2030 *pci_irqp = cur_irq; 2031 acpi_free_irqlist(irqlistp); 2032 return (ACPI_PSM_SUCCESS); 2033 } 2034 2035 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 2036 "current irq %d for device %s, instance #%d in ACPI's " 2037 "list of possible irqs for this device. Picking one from " 2038 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 2039 ddi_get_instance(dip))); 2040 } 2041 2042 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 2043 cur_irq)) == NULL) { 2044 2045 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 2046 "suitable irq from the list of possible irqs for device " 2047 "%s, instance #%d in ACPI's list of possible irqs", 2048 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2049 2050 acpi_free_irqlist(irqlistp); 2051 return (ACPI_PSM_FAILURE); 2052 } 2053 2054 acpi_free_irqlist(irqlistp); 2055 2056 for (prs_irq_entp = prs_irq_listp; 2057 prs_irq_entp != NULL && found_irq == B_FALSE; 2058 prs_irq_entp = prs_irq_entp->next) { 2059 2060 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 2061 irq = prs_irq_entp->irq; 2062 2063 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 2064 "device %s instance #%d\n", psm_name, irq, 2065 ddi_get_name(dip), ddi_get_instance(dip))); 2066 2067 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 2068 == ACPI_PSM_SUCCESS) { 2069 /* 2070 * setting irq was successful, check to make sure CRS 2071 * reflects that. If CRS does not agree with what we 2072 * set, return the irq that was set. 2073 */ 2074 2075 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2076 dipintr_flagp) == ACPI_PSM_SUCCESS) { 2077 2078 if (cur_irq != irq) 2079 APIC_VERBOSE_IRQ((CE_WARN, 2080 "!%s: IRQ resource set " 2081 "(irqno %d) for device %s " 2082 "instance #%d, differs from " 2083 "current setting irqno %d", 2084 psm_name, irq, ddi_get_name(dip), 2085 ddi_get_instance(dip), cur_irq)); 2086 } else { 2087 /* 2088 * On at least one system, there was a bug in 2089 * a DSDT method called by _STA, causing _STA to 2090 * indicate that the link device was disabled 2091 * (when, in fact, it was enabled). Since _SRS 2092 * succeeded, assume that _CRS is lying and use 2093 * the iflags from this _PRS interrupt choice. 2094 * If we're wrong about the flags, the polarity 2095 * will be incorrect and we may get an interrupt 2096 * storm, but there's not much else we can do 2097 * at this point. 2098 */ 2099 *dipintr_flagp = prs_irq_entp->intrflags; 2100 } 2101 2102 /* 2103 * Return the irq that was set, and not what _CRS 2104 * reports, since _CRS has been seen to return 2105 * different IRQs than what was passed to _SRS on some 2106 * systems (and just not return successfully on others). 2107 */ 2108 cur_irq = irq; 2109 found_irq = B_TRUE; 2110 } else { 2111 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 2112 "irq %d failed for device %s instance #%d", 2113 psm_name, irq, ddi_get_name(dip), 2114 ddi_get_instance(dip))); 2115 2116 if (cur_irq == -1) { 2117 acpi_destroy_prs_irq_list(&prs_irq_listp); 2118 return (ACPI_PSM_FAILURE); 2119 } 2120 } 2121 } 2122 2123 acpi_destroy_prs_irq_list(&prs_irq_listp); 2124 2125 if (!found_irq) 2126 return (ACPI_PSM_FAILURE); 2127 2128 ASSERT(pci_irqp != NULL); 2129 *pci_irqp = cur_irq; 2130 return (ACPI_PSM_SUCCESS); 2131 } 2132 2133 void 2134 ioapic_disable_redirection() 2135 { 2136 int ioapic_ix; 2137 int intin_max; 2138 int intin_ix; 2139 2140 /* Disable the I/O APIC redirection entries */ 2141 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 2142 2143 /* Bits 23-16 define the maximum redirection entries */ 2144 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 2145 & 0xff; 2146 2147 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 2148 /* 2149 * The assumption here is that this is safe, even for 2150 * systems with IOAPICs that suffer from the hardware 2151 * erratum because all devices have been quiesced before 2152 * this function is called from apic_shutdown() 2153 * (or equivalent). If that assumption turns out to be 2154 * false, this mask operation can induce the same 2155 * erratum result we're trying to avoid. 2156 */ 2157 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 2158 AV_MASK); 2159 } 2160 } 2161 } 2162 2163 /* 2164 * Looks for an IOAPIC with the specified physical address in the /ioapics 2165 * node in the device tree (created by the PCI enumerator). 2166 */ 2167 static boolean_t 2168 apic_is_ioapic_AMD_813x(uint32_t physaddr) 2169 { 2170 /* 2171 * Look in /ioapics, for the ioapic with 2172 * the physical address given 2173 */ 2174 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 2175 dev_info_t *ioapic_child; 2176 boolean_t rv = B_FALSE; 2177 int vid, did; 2178 uint64_t ioapic_paddr; 2179 boolean_t done = B_FALSE; 2180 2181 if (ioapicsnode == NULL) 2182 return (B_FALSE); 2183 2184 /* Load first child: */ 2185 ioapic_child = ddi_get_child(ioapicsnode); 2186 while (!done && ioapic_child != 0) { /* Iterate over children */ 2187 2188 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 2189 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 2190 != 0 && physaddr == ioapic_paddr) { 2191 2192 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 2193 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 2194 2195 if (vid == VENID_AMD) { 2196 2197 did = ddi_prop_get_int(DDI_DEV_T_ANY, 2198 ioapic_child, DDI_PROP_DONTPASS, 2199 IOAPICS_PROP_DEVID, 0); 2200 2201 if (did == DEVID_8131_IOAPIC || 2202 did == DEVID_8132_IOAPIC) { 2203 rv = B_TRUE; 2204 done = B_TRUE; 2205 } 2206 } 2207 } 2208 2209 if (!done) 2210 ioapic_child = ddi_get_next_sibling(ioapic_child); 2211 } 2212 2213 /* The ioapics node was held by ddi_find_devinfo, so release it */ 2214 ndi_rele_devi(ioapicsnode); 2215 return (rv); 2216 } 2217 2218 struct apic_state { 2219 int32_t as_task_reg; 2220 int32_t as_dest_reg; 2221 int32_t as_format_reg; 2222 int32_t as_local_timer; 2223 int32_t as_pcint_vect; 2224 int32_t as_int_vect0; 2225 int32_t as_int_vect1; 2226 int32_t as_err_vect; 2227 int32_t as_init_count; 2228 int32_t as_divide_reg; 2229 int32_t as_spur_int_reg; 2230 uint32_t as_ioapic_ids[MAX_IO_APIC]; 2231 }; 2232 2233 2234 static int 2235 apic_acpi_enter_apicmode(void) 2236 { 2237 ACPI_OBJECT_LIST arglist; 2238 ACPI_OBJECT arg; 2239 ACPI_STATUS status; 2240 2241 /* Setup parameter object */ 2242 arglist.Count = 1; 2243 arglist.Pointer = &arg; 2244 arg.Type = ACPI_TYPE_INTEGER; 2245 arg.Integer.Value = ACPI_APIC_MODE; 2246 2247 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 2248 if (ACPI_FAILURE(status)) 2249 return (PSM_FAILURE); 2250 else 2251 return (PSM_SUCCESS); 2252 } 2253 2254 2255 static void 2256 apic_save_state(struct apic_state *sp) 2257 { 2258 int i, cpuid; 2259 ulong_t iflag; 2260 2261 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 2262 /* 2263 * First the local APIC. 2264 */ 2265 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 2266 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 2267 if (apic_mode == LOCAL_APIC) 2268 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 2269 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2270 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 2271 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 2272 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 2273 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 2274 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 2275 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 2276 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 2277 2278 /* 2279 * If on the boot processor then save the IOAPICs' IDs 2280 */ 2281 if ((cpuid = psm_get_cpu_id()) == 0) { 2282 2283 iflag = intr_clear(); 2284 lock_set(&apic_ioapic_lock); 2285 2286 for (i = 0; i < apic_io_max; i++) 2287 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 2288 2289 lock_clear(&apic_ioapic_lock); 2290 intr_restore(iflag); 2291 } 2292 2293 /* apic_state() is currently invoked only in Suspend/Resume */ 2294 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND; 2295 } 2296 2297 static void 2298 apic_restore_state(struct apic_state *sp) 2299 { 2300 int i; 2301 ulong_t iflag; 2302 2303 /* 2304 * First the local APIC. 2305 */ 2306 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 2307 if (apic_mode == LOCAL_APIC) { 2308 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 2309 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 2310 } 2311 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 2312 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 2313 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 2314 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 2315 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 2316 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 2317 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 2318 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 2319 2320 /* 2321 * the following only needs to be done once, so we do it on the 2322 * boot processor, since we know that we only have one of those 2323 */ 2324 if (psm_get_cpu_id() == 0) { 2325 2326 iflag = intr_clear(); 2327 lock_set(&apic_ioapic_lock); 2328 2329 /* Restore IOAPICs' APIC IDs */ 2330 for (i = 0; i < apic_io_max; i++) { 2331 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 2332 } 2333 2334 lock_clear(&apic_ioapic_lock); 2335 intr_restore(iflag); 2336 2337 /* 2338 * Reenter APIC mode before restoring LNK devices 2339 */ 2340 (void) apic_acpi_enter_apicmode(); 2341 2342 /* 2343 * restore acpi link device mappings 2344 */ 2345 acpi_restore_link_devices(); 2346 } 2347 } 2348 2349 /* 2350 * Returns 0 on success 2351 */ 2352 int 2353 apic_state(psm_state_request_t *rp) 2354 { 2355 PMD(PMD_SX, ("apic_state ")) 2356 switch (rp->psr_cmd) { 2357 case PSM_STATE_ALLOC: 2358 rp->req.psm_state_req.psr_state = 2359 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 2360 if (rp->req.psm_state_req.psr_state == NULL) 2361 return (ENOMEM); 2362 rp->req.psm_state_req.psr_state_size = 2363 sizeof (struct apic_state); 2364 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 2365 rp->req.psm_state_req.psr_state, 2366 rp->req.psm_state_req.psr_state_size)) 2367 return (0); 2368 2369 case PSM_STATE_FREE: 2370 kmem_free(rp->req.psm_state_req.psr_state, 2371 rp->req.psm_state_req.psr_state_size); 2372 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 2373 rp->req.psm_state_req.psr_state, 2374 rp->req.psm_state_req.psr_state_size)) 2375 return (0); 2376 2377 case PSM_STATE_SAVE: 2378 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 2379 rp->req.psm_state_req.psr_state, 2380 rp->req.psm_state_req.psr_state_size)) 2381 apic_save_state(rp->req.psm_state_req.psr_state); 2382 return (0); 2383 2384 case PSM_STATE_RESTORE: 2385 apic_restore_state(rp->req.psm_state_req.psr_state); 2386 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 2387 rp->req.psm_state_req.psr_state, 2388 rp->req.psm_state_req.psr_state_size)) 2389 return (0); 2390 2391 default: 2392 return (EINVAL); 2393 } 2394 }