Print this page
PANKOVs restructure
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/i86pc/io/apix/apix.c
+++ new/usr/src/uts/i86pc/io/apix/apix.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright (c) 2010, Intel Corporation.
27 27 * All rights reserved.
28 28 */
29 29 /*
30 30 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
31 31 */
32 32
33 33 /*
34 34 * To understand how the apix module interacts with the interrupt subsystem read
35 35 * the theory statement in uts/i86pc/os/intr.c.
36 36 */
37 37
38 38 /*
39 39 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40 40 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41 41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42 42 * PSMI 1.5 extensions are supported in Solaris Nevada.
↓ open down ↓ |
42 lines elided |
↑ open up ↑ |
43 43 * PSMI 1.6 extensions are supported in Solaris Nevada.
44 44 * PSMI 1.7 extensions are supported in Solaris Nevada.
45 45 */
46 46 #define PSMI_1_7
47 47
48 48 #include <sys/processor.h>
49 49 #include <sys/time.h>
50 50 #include <sys/psm.h>
51 51 #include <sys/smp_impldefs.h>
52 52 #include <sys/cram.h>
53 -#include <sys/acpi/acpi.h>
53 +#include <acpica/include/acpi.h>
54 54 #include <sys/acpica.h>
55 55 #include <sys/psm_common.h>
56 56 #include <sys/pit.h>
57 57 #include <sys/ddi.h>
58 58 #include <sys/sunddi.h>
59 59 #include <sys/ddi_impldefs.h>
60 60 #include <sys/pci.h>
61 61 #include <sys/promif.h>
62 62 #include <sys/x86_archext.h>
63 63 #include <sys/cpc_impl.h>
64 64 #include <sys/uadmin.h>
65 65 #include <sys/panic.h>
66 66 #include <sys/debug.h>
67 67 #include <sys/archsystm.h>
68 68 #include <sys/trap.h>
69 69 #include <sys/machsystm.h>
70 70 #include <sys/sysmacros.h>
71 71 #include <sys/cpuvar.h>
72 72 #include <sys/rm_platter.h>
73 73 #include <sys/privregs.h>
74 74 #include <sys/note.h>
75 75 #include <sys/pci_intr_lib.h>
76 76 #include <sys/spl.h>
77 77 #include <sys/clock.h>
78 78 #include <sys/cyclic.h>
79 79 #include <sys/dditypes.h>
80 80 #include <sys/sunddi.h>
81 81 #include <sys/x_call.h>
82 82 #include <sys/reboot.h>
83 83 #include <sys/mach_intr.h>
84 84 #include <sys/apix.h>
85 85 #include <sys/apix_irm_impl.h>
86 86
87 87 static int apix_probe();
88 88 static void apix_init();
89 89 static void apix_picinit(void);
90 90 static int apix_intr_enter(int, int *);
91 91 static void apix_intr_exit(int, int);
92 92 static void apix_setspl(int);
93 93 static int apix_disable_intr(processorid_t);
94 94 static void apix_enable_intr(processorid_t);
95 95 static int apix_get_clkvect(int);
96 96 static int apix_get_ipivect(int, int);
97 97 static void apix_post_cyclic_setup(void *);
98 98 static int apix_post_cpu_start();
99 99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
100 100 psm_intr_op_t, int *);
101 101
102 102 /*
103 103 * Helper functions for apix_intr_ops()
104 104 */
105 105 static void apix_redistribute_compute(void);
106 106 static int apix_get_pending(apix_vector_t *);
107 107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
108 108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
109 109 static char *apix_get_apic_type(void);
110 110 static int apix_intx_get_pending(int);
111 111 static void apix_intx_set_mask(int irqno);
112 112 static void apix_intx_clear_mask(int irqno);
113 113 static int apix_intx_get_shared(int irqno);
114 114 static void apix_intx_set_shared(int irqno, int delta);
115 115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
116 116 struct intrspec *);
117 117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
118 118
119 119 extern int apic_clkinit(int);
120 120
121 121 /* IRM initialization for APIX PSM module */
122 122 extern void apix_irm_init(void);
123 123
124 124 extern int irm_enable;
125 125
126 126 /*
127 127 * Local static data
128 128 */
129 129 static struct psm_ops apix_ops = {
130 130 apix_probe,
131 131
132 132 apix_init,
133 133 apix_picinit,
134 134 apix_intr_enter,
135 135 apix_intr_exit,
136 136 apix_setspl,
137 137 apix_addspl,
138 138 apix_delspl,
139 139 apix_disable_intr,
140 140 apix_enable_intr,
141 141 NULL, /* psm_softlvl_to_irq */
142 142 NULL, /* psm_set_softintr */
143 143
144 144 apic_set_idlecpu,
145 145 apic_unset_idlecpu,
146 146
147 147 apic_clkinit,
148 148 apix_get_clkvect,
149 149 NULL, /* psm_hrtimeinit */
150 150 apic_gethrtime,
151 151
152 152 apic_get_next_processorid,
153 153 apic_cpu_start,
154 154 apix_post_cpu_start,
155 155 apic_shutdown,
156 156 apix_get_ipivect,
157 157 apic_send_ipi,
158 158
159 159 NULL, /* psm_translate_irq */
160 160 NULL, /* psm_notify_error */
161 161 NULL, /* psm_notify_func */
162 162 apic_timer_reprogram,
163 163 apic_timer_enable,
164 164 apic_timer_disable,
165 165 apix_post_cyclic_setup,
166 166 apic_preshutdown,
167 167 apix_intr_ops, /* Advanced DDI Interrupt framework */
168 168 apic_state, /* save, restore apic state for S3 */
169 169 apic_cpu_ops, /* CPU control interface. */
170 170 };
171 171
172 172 struct psm_ops *psmops = &apix_ops;
173 173
174 174 static struct psm_info apix_psm_info = {
175 175 PSM_INFO_VER01_7, /* version */
176 176 PSM_OWN_EXCLUSIVE, /* ownership */
177 177 &apix_ops, /* operation */
178 178 APIX_NAME, /* machine name */
179 179 "apix MPv1.4 compatible",
180 180 };
181 181
182 182 static void *apix_hdlp;
183 183
184 184 static int apix_is_enabled = 0;
185 185
186 186 /*
187 187 * Flag to indicate if APIX is to be enabled only for platforms
188 188 * with specific hw feature(s).
189 189 */
190 190 int apix_hw_chk_enable = 1;
191 191
192 192 /*
193 193 * Hw features that are checked for enabling APIX support.
194 194 */
195 195 #define APIX_SUPPORT_X2APIC 0x00000001
196 196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
197 197
198 198 /*
199 199 * apix_lock is used for cpu selection and vector re-binding
200 200 */
201 201 lock_t apix_lock;
202 202 apix_impl_t *apixs[NCPU];
203 203 /*
204 204 * Mapping between device interrupt and the allocated vector. Indexed
205 205 * by major number.
206 206 */
207 207 apix_dev_vector_t **apix_dev_vector;
208 208 /*
209 209 * Mapping between device major number and cpu id. It gets used
210 210 * when interrupt binding policy round robin with affinity is
211 211 * applied. With that policy, devices with the same major number
212 212 * will be bound to the same CPU.
213 213 */
214 214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */
215 215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */
216 216
217 217 int apix_nipis = 16; /* Maximum number of IPIs */
218 218 /*
219 219 * Maximum number of vectors in a CPU that can be used for interrupt
220 220 * allocation (including IPIs and the reserved vectors).
221 221 */
222 222 int apix_cpu_nvectors = APIX_NVECTOR;
223 223
224 224 /* gcpu.h */
225 225
226 226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
227 227 extern void apic_change_eoi();
228 228
229 229 /*
230 230 * This is the loadable module wrapper
231 231 */
232 232
233 233 int
234 234 _init(void)
235 235 {
236 236 if (apic_coarse_hrtime)
237 237 apix_ops.psm_gethrtime = &apic_gettime;
238 238 return (psm_mod_init(&apix_hdlp, &apix_psm_info));
239 239 }
240 240
241 241 int
242 242 _fini(void)
243 243 {
244 244 return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
245 245 }
246 246
247 247 int
248 248 _info(struct modinfo *modinfop)
249 249 {
250 250 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
251 251 }
252 252
253 253 static int
254 254 apix_probe()
255 255 {
256 256 int rval;
257 257
258 258 if (apix_enable == 0)
259 259 return (PSM_FAILURE);
260 260
261 261 /* check for hw features if specified */
262 262 if (apix_hw_chk_enable) {
263 263 /* check if x2APIC mode is supported */
264 264 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
265 265 APIX_SUPPORT_X2APIC) {
266 266 if (!((apic_local_mode() == LOCAL_X2APIC) ||
267 267 apic_detect_x2apic())) {
268 268 /* x2APIC mode is not supported in the hw */
269 269 apix_enable = 0;
270 270 }
271 271 }
272 272 if (apix_enable == 0)
273 273 return (PSM_FAILURE);
274 274 }
275 275
276 276 rval = apic_probe_common(apix_psm_info.p_mach_idstring);
277 277 if (rval == PSM_SUCCESS)
278 278 apix_is_enabled = 1;
279 279 else
280 280 apix_is_enabled = 0;
281 281 return (rval);
282 282 }
283 283
284 284 /*
285 285 * Initialize the data structures needed by pcplusmpx module.
286 286 * Specifically, the data structures used by addspl() and delspl()
287 287 * routines.
288 288 */
289 289 static void
290 290 apix_softinit()
291 291 {
292 292 int i, *iptr;
293 293 apix_impl_t *hdlp;
294 294 int nproc;
295 295
296 296 nproc = max(apic_nproc, apic_max_nproc);
297 297
298 298 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
299 299 for (i = 0; i < nproc; i++) {
300 300 apixs[i] = &hdlp[i];
301 301 apixs[i]->x_cpuid = i;
302 302 LOCK_INIT_CLEAR(&apixs[i]->x_lock);
303 303 }
304 304
305 305 /* cpu 0 is always up (for now) */
306 306 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
307 307
308 308 iptr = (int *)&apic_irq_table[0];
309 309 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
310 310 apic_level_intr[i] = 0;
311 311 *iptr++ = NULL;
312 312 }
313 313 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
314 314
315 315 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
316 316 KM_SLEEP);
317 317
318 318 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
319 319 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
320 320 KM_SLEEP);
321 321 for (i = 0; i < devcnt; i++)
322 322 apix_major_to_cpu[i] = IRQ_UNINIT;
323 323 }
324 324
325 325 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
326 326 }
327 327
328 328 static int
329 329 apix_get_pending_spl(void)
330 330 {
331 331 int cpuid = CPU->cpu_id;
332 332
333 333 return (bsrw_insn(apixs[cpuid]->x_intr_pending));
334 334 }
335 335
336 336 static uintptr_t
337 337 apix_get_intr_handler(int cpu, short vec)
338 338 {
339 339 apix_vector_t *apix_vector;
340 340
341 341 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
342 342 if (cpu >= apic_nproc)
343 343 return (NULL);
344 344
345 345 apix_vector = apixs[cpu]->x_vectbl[vec];
346 346
347 347 return ((uintptr_t)(apix_vector->v_autovect));
348 348 }
349 349
350 350 #if defined(__amd64)
351 351 static unsigned char dummy_cpu_pri[MAXIPL + 1] = {
352 352 0, 0, 0, 0, 0, 0, 0, 0,
353 353 0, 0, 0, 0, 0, 0, 0, 0, 0
354 354 };
355 355 #endif
356 356
357 357 static void
358 358 apix_init()
359 359 {
360 360 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
361 361
362 362 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
363 363
364 364 do_interrupt_common = apix_do_interrupt;
365 365 addintr = apix_add_avintr;
366 366 remintr = apix_rem_avintr;
367 367 get_pending_spl = apix_get_pending_spl;
368 368 get_intr_handler = apix_get_intr_handler;
369 369 psm_get_localapicid = apic_get_localapicid;
370 370 psm_get_ioapicid = apic_get_ioapicid;
371 371
372 372 apix_softinit();
373 373 #if defined(__amd64)
374 374 /*
375 375 * Make cpu-specific interrupt info point to cr8pri vector
376 376 */
377 377 CPU->cpu_pri_data = dummy_cpu_pri;
378 378 #else
379 379 if (cpuid_have_cr8access(CPU))
380 380 apic_have_32bit_cr8 = 1;
381 381 #endif /* __amd64 */
382 382
383 383 /*
384 384 * Initialize IRM pool parameters
385 385 */
386 386 if (irm_enable) {
387 387 int i;
388 388 int lowest_irq;
389 389 int highest_irq;
390 390
391 391 /* number of CPUs present */
392 392 apix_irminfo.apix_ncpus = apic_nproc;
393 393 /* total number of entries in all of the IOAPICs present */
394 394 lowest_irq = apic_io_vectbase[0];
395 395 highest_irq = apic_io_vectend[0];
396 396 for (i = 1; i < apic_io_max; i++) {
397 397 if (apic_io_vectbase[i] < lowest_irq)
398 398 lowest_irq = apic_io_vectbase[i];
399 399 if (apic_io_vectend[i] > highest_irq)
400 400 highest_irq = apic_io_vectend[i];
401 401 }
402 402 apix_irminfo.apix_ioapic_max_vectors =
403 403 highest_irq - lowest_irq + 1;
404 404 /*
405 405 * Number of available per-CPU vectors excluding
406 406 * reserved vectors for Dtrace, int80, system-call,
407 407 * fast-trap, etc.
408 408 */
409 409 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
410 410 APIX_SW_RESERVED_VECTORS;
411 411
412 412 /* Number of vectors (pre) allocated (SCI and HPET) */
413 413 apix_irminfo.apix_vectors_allocated = 0;
414 414 if (apic_hpet_vect != -1)
415 415 apix_irminfo.apix_vectors_allocated++;
416 416 if (apic_sci_vect != -1)
417 417 apix_irminfo.apix_vectors_allocated++;
418 418 }
419 419 }
420 420
421 421 static void
422 422 apix_init_intr()
423 423 {
424 424 processorid_t cpun = psm_get_cpu_id();
425 425 uint_t nlvt;
426 426 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
427 427 extern void cmi_cmci_trap(void);
428 428
429 429 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
430 430
431 431 if (apic_mode == LOCAL_APIC) {
432 432 /*
433 433 * We are running APIC in MMIO mode.
434 434 */
435 435 if (apic_flat_model) {
436 436 apic_reg_ops->apic_write(APIC_FORMAT_REG,
437 437 APIC_FLAT_MODEL);
438 438 } else {
439 439 apic_reg_ops->apic_write(APIC_FORMAT_REG,
440 440 APIC_CLUSTER_MODEL);
441 441 }
442 442
443 443 apic_reg_ops->apic_write(APIC_DEST_REG,
444 444 AV_HIGH_ORDER >> cpun);
445 445 }
446 446
447 447 if (apic_directed_EOI_supported()) {
448 448 /*
449 449 * Setting the 12th bit in the Spurious Interrupt Vector
450 450 * Register suppresses broadcast EOIs generated by the local
451 451 * APIC. The suppression of broadcast EOIs happens only when
452 452 * interrupts are level-triggered.
453 453 */
454 454 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
455 455 }
456 456
457 457 /* need to enable APIC before unmasking NMI */
458 458 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
459 459
460 460 /*
461 461 * Presence of an invalid vector with delivery mode AV_FIXED can
462 462 * cause an error interrupt, even if the entry is masked...so
463 463 * write a valid vector to LVT entries along with the mask bit
464 464 */
465 465
466 466 /* All APICs have timer and LINT0/1 */
467 467 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
468 468 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
469 469 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */
470 470
471 471 /*
472 472 * On integrated APICs, the number of LVT entries is
473 473 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
474 474 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
475 475 */
476 476
477 477 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
478 478 nlvt = 3;
479 479 } else {
480 480 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
481 481 0xFF) + 1;
482 482 }
483 483
484 484 if (nlvt >= 5) {
485 485 /* Enable performance counter overflow interrupt */
486 486
487 487 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
488 488 apic_enable_cpcovf_intr = 0;
489 489 if (apic_enable_cpcovf_intr) {
490 490 if (apic_cpcovf_vect == 0) {
491 491 int ipl = APIC_PCINT_IPL;
492 492
493 493 apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
494 494 ASSERT(apic_cpcovf_vect);
495 495
496 496 (void) add_avintr(NULL, ipl,
497 497 (avfunc)kcpc_hw_overflow_intr,
498 498 "apic pcint", apic_cpcovf_vect,
499 499 NULL, NULL, NULL, NULL);
500 500 kcpc_hw_overflow_intr_installed = 1;
501 501 kcpc_hw_enable_cpc_intr =
502 502 apic_cpcovf_mask_clear;
503 503 }
504 504 apic_reg_ops->apic_write(APIC_PCINT_VECT,
505 505 apic_cpcovf_vect);
506 506 }
507 507 }
508 508
509 509 if (nlvt >= 6) {
510 510 /* Only mask TM intr if the BIOS apparently doesn't use it */
511 511
512 512 uint32_t lvtval;
513 513
514 514 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
515 515 if (((lvtval & AV_MASK) == AV_MASK) ||
516 516 ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
517 517 apic_reg_ops->apic_write(APIC_THERM_VECT,
518 518 AV_MASK|APIC_RESV_IRQ);
519 519 }
520 520 }
521 521
522 522 /* Enable error interrupt */
523 523
524 524 if (nlvt >= 4 && apic_enable_error_intr) {
525 525 if (apic_errvect == 0) {
526 526 int ipl = 0xf; /* get highest priority intr */
527 527 apic_errvect = apix_get_ipivect(ipl, -1);
528 528 ASSERT(apic_errvect);
529 529 /*
530 530 * Not PSMI compliant, but we are going to merge
531 531 * with ON anyway
532 532 */
533 533 (void) add_avintr(NULL, ipl,
534 534 (avfunc)apic_error_intr, "apic error intr",
535 535 apic_errvect, NULL, NULL, NULL, NULL);
536 536 }
537 537 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
538 538 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
539 539 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
540 540 }
541 541
542 542 /* Enable CMCI interrupt */
543 543 if (cmi_enable_cmci) {
544 544 mutex_enter(&cmci_cpu_setup_lock);
545 545 if (cmci_cpu_setup_registered == 0) {
546 546 mutex_enter(&cpu_lock);
547 547 register_cpu_setup_func(cmci_cpu_setup, NULL);
548 548 mutex_exit(&cpu_lock);
549 549 cmci_cpu_setup_registered = 1;
550 550 }
551 551 mutex_exit(&cmci_cpu_setup_lock);
552 552
553 553 if (apic_cmci_vect == 0) {
554 554 int ipl = 0x2;
555 555 apic_cmci_vect = apix_get_ipivect(ipl, -1);
556 556 ASSERT(apic_cmci_vect);
557 557
558 558 (void) add_avintr(NULL, ipl,
559 559 (avfunc)cmi_cmci_trap, "apic cmci intr",
560 560 apic_cmci_vect, NULL, NULL, NULL, NULL);
561 561 }
562 562 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
563 563 }
564 564
565 565 apic_reg_ops->apic_write_task_reg(0);
566 566 }
567 567
568 568 static void
569 569 apix_picinit(void)
570 570 {
571 571 int i, j;
572 572 uint_t isr;
573 573
574 574 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
575 575
576 576 /*
577 577 * initialize interrupt remapping before apic
578 578 * hardware initialization
579 579 */
580 580 apic_intrmap_init(apic_mode);
581 581 if (apic_vt_ops == psm_vt_ops)
582 582 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
583 583
584 584 /*
585 585 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
586 586 * bit on without clearing it with EOI. Since softint
587 587 * uses vector 0x20 to interrupt itself, so softint will
588 588 * not work on this machine. In order to fix this problem
589 589 * a check is made to verify all the isr bits are clear.
590 590 * If not, EOIs are issued to clear the bits.
591 591 */
592 592 for (i = 7; i >= 1; i--) {
593 593 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
594 594 if (isr != 0)
595 595 for (j = 0; ((j < 32) && (isr != 0)); j++)
596 596 if (isr & (1 << j)) {
597 597 apic_reg_ops->apic_write(
598 598 APIC_EOI_REG, 0);
599 599 isr &= ~(1 << j);
600 600 apic_error |= APIC_ERR_BOOT_EOI;
601 601 }
602 602 }
603 603
604 604 /* set a flag so we know we have run apic_picinit() */
605 605 apic_picinit_called = 1;
606 606 LOCK_INIT_CLEAR(&apic_gethrtime_lock);
607 607 LOCK_INIT_CLEAR(&apic_ioapic_lock);
608 608 LOCK_INIT_CLEAR(&apic_error_lock);
609 609 LOCK_INIT_CLEAR(&apic_mode_switch_lock);
610 610
611 611 picsetup(); /* initialise the 8259 */
612 612
613 613 /* add nmi handler - least priority nmi handler */
614 614 LOCK_INIT_CLEAR(&apic_nmi_lock);
615 615
616 616 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
617 617 "apix NMI handler", (caddr_t)NULL))
618 618 cmn_err(CE_WARN, "apix: Unable to add nmi handler");
619 619
620 620 apix_init_intr();
621 621
622 622 /* enable apic mode if imcr present */
623 623 if (apic_imcrp) {
624 624 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
625 625 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
626 626 }
627 627
628 628 ioapix_init_intr(IOAPIC_MASK);
629 629
630 630 /* setup global IRM pool if applicable */
631 631 if (irm_enable)
632 632 apix_irm_init();
633 633 }
634 634
635 635 static __inline__ void
636 636 apix_send_eoi(void)
637 637 {
638 638 if (apic_mode == LOCAL_APIC)
639 639 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
640 640 else
641 641 X2APIC_WRITE(APIC_EOI_REG, 0);
642 642 }
643 643
644 644 /*
645 645 * platform_intr_enter
646 646 *
647 647 * Called at the beginning of the interrupt service routine, but unlike
648 648 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt
649 649 * controller to enable other HW interrupts but interrupts are still
650 650 * masked by the IF flag.
651 651 *
652 652 * Return -1 for spurious interrupts
653 653 *
654 654 */
655 655 static int
656 656 apix_intr_enter(int ipl, int *vectorp)
657 657 {
658 658 struct cpu *cpu = CPU;
659 659 uint32_t cpuid = CPU->cpu_id;
660 660 apic_cpus_info_t *cpu_infop;
661 661 uchar_t vector;
662 662 apix_vector_t *vecp;
663 663 int nipl = -1;
664 664
665 665 /*
666 666 * The real vector delivered is (*vectorp + 0x20), but our caller
667 667 * subtracts 0x20 from the vector before passing it to us.
668 668 * (That's why APIC_BASE_VECT is 0x20.)
669 669 */
670 670 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
671 671
672 672 cpu_infop = &apic_cpus[cpuid];
673 673 if (vector == APIC_SPUR_INTR) {
674 674 cpu_infop->aci_spur_cnt++;
675 675 return (APIC_INT_SPURIOUS);
676 676 }
677 677
678 678 vecp = xv_vector(cpuid, vector);
679 679 if (vecp == NULL) {
680 680 if (APIX_IS_FAKE_INTR(vector))
681 681 nipl = apix_rebindinfo.i_pri;
682 682 apix_send_eoi();
683 683 return (nipl);
684 684 }
685 685 nipl = vecp->v_pri;
686 686
687 687 /* if interrupted by the clock, increment apic_nsec_since_boot */
688 688 if (vector == (apic_clkvect + APIC_BASE_VECT)) {
689 689 if (!apic_oneshot) {
690 690 /* NOTE: this is not MT aware */
691 691 apic_hrtime_stamp++;
692 692 apic_nsec_since_boot += apic_nsec_per_intr;
693 693 apic_hrtime_stamp++;
694 694 last_count_read = apic_hertz_count;
695 695 apix_redistribute_compute();
696 696 }
697 697
698 698 apix_send_eoi();
699 699
700 700 return (nipl);
701 701 }
702 702
703 703 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
704 704
705 705 /* pre-EOI handling for level-triggered interrupts */
706 706 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
707 707 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
708 708 apix_level_intr_pre_eoi(vecp->v_inum);
709 709
710 710 /* send back EOI */
711 711 apix_send_eoi();
712 712
713 713 cpu_infop->aci_current[nipl] = vector;
714 714 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
715 715 cpu_infop->aci_curipl = (uchar_t)nipl;
716 716 cpu_infop->aci_ISR_in_progress |= 1 << nipl;
717 717 }
718 718
719 719 #ifdef DEBUG
720 720 if (vector >= APIX_IPI_MIN)
721 721 return (nipl); /* skip IPI */
722 722
723 723 APIC_DEBUG_BUF_PUT(vector);
724 724 APIC_DEBUG_BUF_PUT(vecp->v_inum);
725 725 APIC_DEBUG_BUF_PUT(nipl);
726 726 APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
727 727 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
728 728 drv_usecwait(apic_stretch_interrupts);
729 729 #endif /* DEBUG */
730 730
731 731 return (nipl);
732 732 }
733 733
734 734 /*
735 735 * Any changes made to this function must also change X2APIC
736 736 * version of intr_exit.
737 737 */
738 738 static void
739 739 apix_intr_exit(int prev_ipl, int arg2)
740 740 {
741 741 int cpuid = psm_get_cpu_id();
742 742 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
743 743 apix_impl_t *apixp = apixs[cpuid];
744 744
745 745 UNREFERENCED_1PARAMETER(arg2);
746 746
747 747 cpu_infop->aci_curipl = (uchar_t)prev_ipl;
748 748 /* ISR above current pri could not be in progress */
749 749 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
750 750
751 751 if (apixp->x_obsoletes != NULL) {
752 752 if (APIX_CPU_LOCK_HELD(cpuid))
753 753 return;
754 754
755 755 APIX_ENTER_CPU_LOCK(cpuid);
756 756 (void) apix_obsolete_vector(apixp->x_obsoletes);
757 757 APIX_LEAVE_CPU_LOCK(cpuid);
758 758 }
759 759 }
760 760
761 761 /*
762 762 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the
763 763 * given ipl, but apix never uses the TPR and we never mask a subset of the
764 764 * interrupts. They are either all blocked by the IF flag or all can come in.
765 765 *
766 766 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts
767 767 * can come in if currently enabled by the IF flag. This table shows the state
768 768 * of the IF flag when we leave this function.
769 769 *
770 770 * curr IF | ipl == 15 ipl != 15
771 771 * --------+---------------------------
772 772 * 0 | 0 0
773 773 * 1 | 0 1
774 774 */
775 775 static void
776 776 apix_setspl(int ipl)
777 777 {
778 778 /*
779 779 * Interrupts at ipl above this cannot be in progress, so the following
780 780 * mask is ok.
781 781 */
782 782 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
783 783
784 784 if (ipl == XC_HI_PIL)
785 785 cli();
786 786 }
787 787
788 788 int
789 789 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
790 790 {
791 791 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
792 792 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
793 793 apix_vector_t *vecp = xv_vector(cpuid, vector);
794 794
795 795 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
796 796 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
797 797
798 798 if (vecp->v_type == APIX_TYPE_FIXED)
799 799 apix_intx_set_shared(vecp->v_inum, 1);
800 800
801 801 /* There are more interrupts, so it's already been enabled */
802 802 if (vecp->v_share > 1)
803 803 return (PSM_SUCCESS);
804 804
805 805 /* return if it is not hardware interrupt */
806 806 if (vecp->v_type == APIX_TYPE_IPI)
807 807 return (PSM_SUCCESS);
808 808
809 809 /*
810 810 * if apix_picinit() has not been called yet, just return.
811 811 * At the end of apic_picinit(), we will call setup_io_intr().
812 812 */
813 813 if (!apic_picinit_called)
814 814 return (PSM_SUCCESS);
815 815
816 816 (void) apix_setup_io_intr(vecp);
817 817
818 818 return (PSM_SUCCESS);
819 819 }
820 820
821 821 int
822 822 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
823 823 {
824 824 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
825 825 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
826 826 apix_vector_t *vecp = xv_vector(cpuid, vector);
827 827
828 828 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
829 829 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
830 830
831 831 if (vecp->v_type == APIX_TYPE_FIXED)
832 832 apix_intx_set_shared(vecp->v_inum, -1);
833 833
834 834 /* There are more interrupts */
835 835 if (vecp->v_share > 1)
836 836 return (PSM_SUCCESS);
837 837
838 838 /* return if it is not hardware interrupt */
839 839 if (vecp->v_type == APIX_TYPE_IPI)
840 840 return (PSM_SUCCESS);
841 841
842 842 if (!apic_picinit_called) {
843 843 cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
844 844 virtvec);
845 845 return (PSM_SUCCESS);
846 846 }
847 847
848 848 apix_disable_vector(vecp);
849 849
850 850 return (PSM_SUCCESS);
851 851 }
852 852
853 853 /*
854 854 * Try and disable all interrupts. We just assign interrupts to other
855 855 * processors based on policy. If any were bound by user request, we
856 856 * let them continue and return failure. We do not bother to check
857 857 * for cache affinity while rebinding.
858 858 */
859 859 static int
860 860 apix_disable_intr(processorid_t cpun)
861 861 {
862 862 apix_impl_t *apixp = apixs[cpun];
863 863 apix_vector_t *vecp, *newp;
864 864 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
865 865
866 866 lock_set(&apix_lock);
867 867
868 868 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
869 869 apic_cpus[cpun].aci_curipl = 0;
870 870
871 871 /* if this is for SUSPEND operation, skip rebinding */
872 872 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
873 873 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
874 874 vecp = apixp->x_vectbl[i];
875 875 if (!IS_VECT_ENABLED(vecp))
876 876 continue;
877 877
878 878 apix_disable_vector(vecp);
879 879 }
880 880 lock_clear(&apix_lock);
881 881 return (PSM_SUCCESS);
882 882 }
883 883
884 884 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
885 885 vecp = apixp->x_vectbl[i];
886 886 if (!IS_VECT_ENABLED(vecp))
887 887 continue;
888 888
889 889 if (vecp->v_flags & APIX_VECT_USER_BOUND) {
890 890 hardbound++;
891 891 continue;
892 892 }
893 893 type = vecp->v_type;
894 894
895 895 /*
896 896 * If there are bound interrupts on this cpu, then
897 897 * rebind them to other processors.
898 898 */
899 899 loop = 0;
900 900 do {
901 901 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
902 902
903 903 if (type != APIX_TYPE_MSI)
904 904 newp = apix_set_cpu(vecp, bindcpu, &ret);
905 905 else
906 906 newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
907 907 } while ((newp == NULL) && (loop++ < apic_nproc));
908 908
909 909 if (loop >= apic_nproc) {
910 910 errbound++;
911 911 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
912 912 vecp->v_cpuid, vecp->v_vector);
913 913 }
914 914 }
915 915
916 916 lock_clear(&apix_lock);
917 917
918 918 if (hardbound || errbound) {
919 919 cmn_err(CE_WARN, "Could not disable interrupts on %d"
920 920 "due to user bound interrupts or failed operation",
921 921 cpun);
922 922 return (PSM_FAILURE);
923 923 }
924 924
925 925 return (PSM_SUCCESS);
926 926 }
927 927
928 928 /*
929 929 * Bind interrupts to specified CPU
930 930 */
931 931 static void
932 932 apix_enable_intr(processorid_t cpun)
933 933 {
934 934 apix_vector_t *vecp;
935 935 int i, ret;
936 936 processorid_t n;
937 937
938 938 lock_set(&apix_lock);
939 939
940 940 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
941 941
942 942 /* interrupt enabling for system resume */
943 943 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
944 944 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
945 945 vecp = xv_vector(cpun, i);
946 946 if (!IS_VECT_ENABLED(vecp))
947 947 continue;
948 948
949 949 apix_enable_vector(vecp);
950 950 }
951 951 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
952 952 }
953 953
954 954 for (n = 0; n < apic_nproc; n++) {
955 955 if (!apic_cpu_in_range(n) || n == cpun ||
956 956 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
957 957 continue;
958 958
959 959 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
960 960 vecp = xv_vector(n, i);
961 961 if (!IS_VECT_ENABLED(vecp) ||
962 962 vecp->v_bound_cpuid != cpun)
963 963 continue;
964 964
965 965 if (vecp->v_type != APIX_TYPE_MSI)
966 966 (void) apix_set_cpu(vecp, cpun, &ret);
967 967 else
968 968 (void) apix_grp_set_cpu(vecp, cpun, &ret);
969 969 }
970 970 }
971 971
972 972 lock_clear(&apix_lock);
973 973 }
974 974
975 975 /*
976 976 * Allocate vector for IPI
977 977 * type == -1 indicates it is an internal request. Do not change
978 978 * resv_vector for these requests.
979 979 */
980 980 static int
981 981 apix_get_ipivect(int ipl, int type)
982 982 {
983 983 uchar_t vector;
984 984
985 985 if ((vector = apix_alloc_ipi(ipl)) > 0) {
986 986 if (type != -1)
987 987 apic_resv_vector[ipl] = vector;
988 988 return (vector);
989 989 }
990 990 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
991 991 return (-1); /* shouldn't happen */
992 992 }
993 993
994 994 static int
995 995 apix_get_clkvect(int ipl)
996 996 {
997 997 int vector;
998 998
999 999 if ((vector = apix_get_ipivect(ipl, -1)) == -1)
1000 1000 return (-1);
1001 1001
1002 1002 apic_clkvect = vector - APIC_BASE_VECT;
1003 1003 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
1004 1004 apic_clkvect));
1005 1005 return (vector);
1006 1006 }
1007 1007
1008 1008 static int
1009 1009 apix_post_cpu_start()
1010 1010 {
1011 1011 int cpun;
1012 1012 static int cpus_started = 1;
1013 1013
1014 1014 /* We know this CPU + BSP started successfully. */
1015 1015 cpus_started++;
1016 1016
1017 1017 /*
1018 1018 * On BSP we would have enabled X2APIC, if supported by processor,
1019 1019 * in acpi_probe(), but on AP we do it here.
1020 1020 *
1021 1021 * We enable X2APIC mode only if BSP is running in X2APIC & the
1022 1022 * local APIC mode of the current CPU is MMIO (xAPIC).
1023 1023 */
1024 1024 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1025 1025 apic_local_mode() == LOCAL_APIC) {
1026 1026 apic_enable_x2apic();
1027 1027 }
1028 1028
1029 1029 /*
1030 1030 * Switch back to x2apic IPI sending method for performance when target
1031 1031 * CPU has entered x2apic mode.
1032 1032 */
1033 1033 if (apic_mode == LOCAL_X2APIC) {
1034 1034 apic_switch_ipi_callback(B_FALSE);
1035 1035 }
1036 1036
1037 1037 splx(ipltospl(LOCK_LEVEL));
1038 1038 apix_init_intr();
1039 1039
1040 1040 /*
1041 1041 * since some systems don't enable the internal cache on the non-boot
1042 1042 * cpus, so we have to enable them here
1043 1043 */
1044 1044 setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1045 1045
1046 1046 #ifdef DEBUG
1047 1047 APIC_AV_PENDING_SET();
1048 1048 #else
1049 1049 if (apic_mode == LOCAL_APIC)
1050 1050 APIC_AV_PENDING_SET();
1051 1051 #endif /* DEBUG */
1052 1052
1053 1053 /*
1054 1054 * We may be booting, or resuming from suspend; aci_status will
1055 1055 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1056 1056 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1057 1057 */
1058 1058 cpun = psm_get_cpu_id();
1059 1059 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1060 1060
1061 1061 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1062 1062
1063 1063 return (PSM_SUCCESS);
1064 1064 }
1065 1065
1066 1066 /*
1067 1067 * If this module needs a periodic handler for the interrupt distribution, it
1068 1068 * can be added here. The argument to the periodic handler is not currently
1069 1069 * used, but is reserved for future.
1070 1070 */
1071 1071 static void
1072 1072 apix_post_cyclic_setup(void *arg)
1073 1073 {
1074 1074 UNREFERENCED_1PARAMETER(arg);
1075 1075
1076 1076 cyc_handler_t cyh;
1077 1077 cyc_time_t cyt;
1078 1078
1079 1079 /* cpu_lock is held */
1080 1080 /* set up a periodic handler for intr redistribution */
1081 1081
1082 1082 /*
1083 1083 * In peridoc mode intr redistribution processing is done in
1084 1084 * apic_intr_enter during clk intr processing
1085 1085 */
1086 1086 if (!apic_oneshot)
1087 1087 return;
1088 1088
1089 1089 /*
1090 1090 * Register a periodical handler for the redistribution processing.
1091 1091 * Though we would generally prefer to use the DDI interface for
1092 1092 * periodic handler invocation, ddi_periodic_add(9F), we are
1093 1093 * unfortunately already holding cpu_lock, which ddi_periodic_add will
1094 1094 * attempt to take for us. Thus, we add our own cyclic directly:
1095 1095 */
1096 1096 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute;
1097 1097 cyh.cyh_arg = NULL;
1098 1098 cyh.cyh_level = CY_LOW_LEVEL;
1099 1099
1100 1100 cyt.cyt_when = 0;
1101 1101 cyt.cyt_interval = apic_redistribute_sample_interval;
1102 1102
1103 1103 apic_cyclic_id = cyclic_add(&cyh, &cyt);
1104 1104 }
1105 1105
1106 1106 /*
1107 1107 * Called the first time we enable x2apic mode on this cpu.
1108 1108 * Update some of the function pointers to use x2apic routines.
1109 1109 */
1110 1110 void
1111 1111 x2apic_update_psm()
1112 1112 {
1113 1113 struct psm_ops *pops = &apix_ops;
1114 1114
1115 1115 ASSERT(pops != NULL);
1116 1116
1117 1117 /*
1118 1118 * The pcplusmp module's version of x2apic_update_psm makes additional
1119 1119 * changes that we do not have to make here. It needs to make those
1120 1120 * changes because pcplusmp relies on the TPR register and the means of
1121 1121 * addressing that changes when using the local apic versus the x2apic.
1122 1122 * It's also worth noting that the apix driver specific function end up
1123 1123 * being apix_foo as opposed to apic_foo and x2apic_foo.
1124 1124 */
1125 1125 pops->psm_send_ipi = x2apic_send_ipi;
1126 1126
1127 1127 send_dirintf = pops->psm_send_ipi;
1128 1128
1129 1129 apic_mode = LOCAL_X2APIC;
1130 1130 apic_change_ops();
1131 1131 }
1132 1132
1133 1133 /*
1134 1134 * This function provides external interface to the nexus for all
1135 1135 * functionalities related to the new DDI interrupt framework.
1136 1136 *
1137 1137 * Input:
1138 1138 * dip - pointer to the dev_info structure of the requested device
1139 1139 * hdlp - pointer to the internal interrupt handle structure for the
1140 1140 * requested interrupt
1141 1141 * intr_op - opcode for this call
1142 1142 * result - pointer to the integer that will hold the result to be
1143 1143 * passed back if return value is PSM_SUCCESS
1144 1144 *
1145 1145 * Output:
1146 1146 * return value is either PSM_SUCCESS or PSM_FAILURE
1147 1147 */
1148 1148 static int
1149 1149 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1150 1150 psm_intr_op_t intr_op, int *result)
1151 1151 {
1152 1152 int cap;
1153 1153 apix_vector_t *vecp, *newvecp;
1154 1154 struct intrspec *ispec, intr_spec;
1155 1155 processorid_t target;
1156 1156
1157 1157 ispec = &intr_spec;
1158 1158 ispec->intrspec_pri = hdlp->ih_pri;
1159 1159 ispec->intrspec_vec = hdlp->ih_inum;
1160 1160 ispec->intrspec_func = hdlp->ih_cb_func;
1161 1161
1162 1162 switch (intr_op) {
1163 1163 case PSM_INTR_OP_ALLOC_VECTORS:
1164 1164 switch (hdlp->ih_type) {
1165 1165 case DDI_INTR_TYPE_MSI:
1166 1166 /* allocate MSI vectors */
1167 1167 *result = apix_alloc_msi(dip, hdlp->ih_inum,
1168 1168 hdlp->ih_scratch1,
1169 1169 (int)(uintptr_t)hdlp->ih_scratch2);
1170 1170 break;
1171 1171 case DDI_INTR_TYPE_MSIX:
1172 1172 /* allocate MSI-X vectors */
1173 1173 *result = apix_alloc_msix(dip, hdlp->ih_inum,
1174 1174 hdlp->ih_scratch1,
1175 1175 (int)(uintptr_t)hdlp->ih_scratch2);
1176 1176 break;
1177 1177 case DDI_INTR_TYPE_FIXED:
1178 1178 /* allocate or share vector for fixed */
1179 1179 if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
1180 1180 return (PSM_FAILURE);
1181 1181 }
1182 1182 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1183 1183 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
1184 1184 ispec);
1185 1185 break;
1186 1186 default:
1187 1187 return (PSM_FAILURE);
1188 1188 }
1189 1189 break;
1190 1190 case PSM_INTR_OP_FREE_VECTORS:
1191 1191 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
1192 1192 hdlp->ih_type);
1193 1193 break;
1194 1194 case PSM_INTR_OP_XLATE_VECTOR:
1195 1195 /*
1196 1196 * Vectors are allocated by ALLOC and freed by FREE.
1197 1197 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
1198 1198 */
1199 1199 *result = APIX_INVALID_VECT;
1200 1200 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1201 1201 if (vecp != NULL) {
1202 1202 *result = APIX_VIRTVECTOR(vecp->v_cpuid,
1203 1203 vecp->v_vector);
1204 1204 break;
1205 1205 }
1206 1206
1207 1207 /*
1208 1208 * No vector to device mapping exists. If this is FIXED type
1209 1209 * then check if this IRQ is already mapped for another device
1210 1210 * then return the vector number for it (i.e. shared IRQ case).
1211 1211 * Otherwise, return PSM_FAILURE.
1212 1212 */
1213 1213 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
1214 1214 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
1215 1215 ispec);
1216 1216 *result = (vecp == NULL) ? APIX_INVALID_VECT :
1217 1217 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
1218 1218 }
1219 1219 if (*result == APIX_INVALID_VECT)
1220 1220 return (PSM_FAILURE);
1221 1221 break;
1222 1222 case PSM_INTR_OP_GET_PENDING:
1223 1223 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1224 1224 if (vecp == NULL)
1225 1225 return (PSM_FAILURE);
1226 1226
1227 1227 *result = apix_get_pending(vecp);
1228 1228 break;
1229 1229 case PSM_INTR_OP_CLEAR_MASK:
1230 1230 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1231 1231 return (PSM_FAILURE);
1232 1232
1233 1233 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1234 1234 if (vecp == NULL)
1235 1235 return (PSM_FAILURE);
1236 1236
1237 1237 apix_intx_clear_mask(vecp->v_inum);
1238 1238 break;
1239 1239 case PSM_INTR_OP_SET_MASK:
1240 1240 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1241 1241 return (PSM_FAILURE);
1242 1242
1243 1243 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1244 1244 if (vecp == NULL)
1245 1245 return (PSM_FAILURE);
1246 1246
1247 1247 apix_intx_set_mask(vecp->v_inum);
1248 1248 break;
1249 1249 case PSM_INTR_OP_GET_SHARED:
1250 1250 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1251 1251 return (PSM_FAILURE);
1252 1252
1253 1253 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1254 1254 if (vecp == NULL)
1255 1255 return (PSM_FAILURE);
1256 1256
1257 1257 *result = apix_intx_get_shared(vecp->v_inum);
1258 1258 break;
1259 1259 case PSM_INTR_OP_SET_PRI:
1260 1260 /*
1261 1261 * Called prior to adding the interrupt handler or when
1262 1262 * an interrupt handler is unassigned.
1263 1263 */
1264 1264 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1265 1265 return (PSM_SUCCESS);
1266 1266
1267 1267 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
1268 1268 return (PSM_FAILURE);
1269 1269
1270 1270 break;
1271 1271 case PSM_INTR_OP_SET_CPU:
1272 1272 case PSM_INTR_OP_GRP_SET_CPU:
1273 1273 /*
1274 1274 * The interrupt handle given here has been allocated
1275 1275 * specifically for this command, and ih_private carries
1276 1276 * a CPU value.
1277 1277 */
1278 1278 *result = EINVAL;
1279 1279 target = (int)(intptr_t)hdlp->ih_private;
1280 1280 if (!apic_cpu_in_range(target)) {
1281 1281 DDI_INTR_IMPLDBG((CE_WARN,
1282 1282 "[grp_]set_cpu: cpu out of range: %d\n", target));
1283 1283 return (PSM_FAILURE);
1284 1284 }
1285 1285
1286 1286 lock_set(&apix_lock);
1287 1287
1288 1288 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
1289 1289 if (!IS_VECT_ENABLED(vecp)) {
1290 1290 DDI_INTR_IMPLDBG((CE_WARN,
1291 1291 "[grp]_set_cpu: invalid vector 0x%x\n",
1292 1292 hdlp->ih_vector));
1293 1293 lock_clear(&apix_lock);
1294 1294 return (PSM_FAILURE);
1295 1295 }
1296 1296
1297 1297 *result = 0;
1298 1298
1299 1299 if (intr_op == PSM_INTR_OP_SET_CPU)
1300 1300 newvecp = apix_set_cpu(vecp, target, result);
1301 1301 else
1302 1302 newvecp = apix_grp_set_cpu(vecp, target, result);
1303 1303
1304 1304 lock_clear(&apix_lock);
1305 1305
1306 1306 if (newvecp == NULL) {
1307 1307 *result = EIO;
1308 1308 return (PSM_FAILURE);
1309 1309 }
1310 1310 newvecp->v_bound_cpuid = target;
1311 1311 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
1312 1312 newvecp->v_vector);
1313 1313 break;
1314 1314
1315 1315 case PSM_INTR_OP_GET_INTR:
1316 1316 /*
1317 1317 * The interrupt handle given here has been allocated
1318 1318 * specifically for this command, and ih_private carries
1319 1319 * a pointer to a apic_get_intr_t.
1320 1320 */
1321 1321 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
1322 1322 return (PSM_FAILURE);
1323 1323 break;
1324 1324
1325 1325 case PSM_INTR_OP_CHECK_MSI:
1326 1326 /*
1327 1327 * Check MSI/X is supported or not at APIC level and
1328 1328 * masked off the MSI/X bits in hdlp->ih_type if not
1329 1329 * supported before return. If MSI/X is supported,
1330 1330 * leave the ih_type unchanged and return.
1331 1331 *
1332 1332 * hdlp->ih_type passed in from the nexus has all the
1333 1333 * interrupt types supported by the device.
1334 1334 */
1335 1335 if (apic_support_msi == 0) { /* uninitialized */
1336 1336 /*
1337 1337 * if apic_support_msi is not set, call
1338 1338 * apic_check_msi_support() to check whether msi
1339 1339 * is supported first
1340 1340 */
1341 1341 if (apic_check_msi_support() == PSM_SUCCESS)
1342 1342 apic_support_msi = 1; /* supported */
1343 1343 else
1344 1344 apic_support_msi = -1; /* not-supported */
1345 1345 }
1346 1346 if (apic_support_msi == 1) {
1347 1347 if (apic_msix_enable)
1348 1348 *result = hdlp->ih_type;
1349 1349 else
1350 1350 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
1351 1351 } else
1352 1352 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1353 1353 DDI_INTR_TYPE_MSIX);
1354 1354 break;
1355 1355 case PSM_INTR_OP_GET_CAP:
1356 1356 cap = DDI_INTR_FLAG_PENDING;
1357 1357 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1358 1358 cap |= DDI_INTR_FLAG_MASKABLE;
1359 1359 *result = cap;
1360 1360 break;
1361 1361 case PSM_INTR_OP_APIC_TYPE:
1362 1362 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
1363 1363 apix_get_apic_type();
1364 1364 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
1365 1365 APIX_IPI_MIN;
1366 1366 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
1367 1367 apic_nproc;
1368 1368 hdlp->ih_ver = apic_get_apic_version();
1369 1369 break;
1370 1370 case PSM_INTR_OP_SET_CAP:
1371 1371 default:
1372 1372 return (PSM_FAILURE);
1373 1373 }
1374 1374
1375 1375 return (PSM_SUCCESS);
1376 1376 }
1377 1377
1378 1378 static void
1379 1379 apix_cleanup_busy(void)
1380 1380 {
1381 1381 int i, j;
1382 1382 apix_vector_t *vecp;
1383 1383
1384 1384 for (i = 0; i < apic_nproc; i++) {
1385 1385 if (!apic_cpu_in_range(i))
1386 1386 continue;
1387 1387 apic_cpus[i].aci_busy = 0;
1388 1388 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
1389 1389 if ((vecp = xv_vector(i, j)) != NULL)
1390 1390 vecp->v_busy = 0;
1391 1391 }
1392 1392 }
1393 1393 }
1394 1394
1395 1395 static void
1396 1396 apix_redistribute_compute(void)
1397 1397 {
1398 1398 int i, j, max_busy;
1399 1399
1400 1400 if (!apic_enable_dynamic_migration)
1401 1401 return;
1402 1402
1403 1403 if (++apic_nticks == apic_sample_factor_redistribution) {
1404 1404 /*
1405 1405 * Time to call apic_intr_redistribute().
1406 1406 * reset apic_nticks. This will cause max_busy
1407 1407 * to be calculated below and if it is more than
1408 1408 * apic_int_busy, we will do the whole thing
1409 1409 */
1410 1410 apic_nticks = 0;
1411 1411 }
1412 1412 max_busy = 0;
1413 1413 for (i = 0; i < apic_nproc; i++) {
1414 1414 if (!apic_cpu_in_range(i))
1415 1415 continue;
1416 1416 /*
1417 1417 * Check if curipl is non zero & if ISR is in
1418 1418 * progress
1419 1419 */
1420 1420 if (((j = apic_cpus[i].aci_curipl) != 0) &&
1421 1421 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1422 1422
1423 1423 int vect;
1424 1424 apic_cpus[i].aci_busy++;
1425 1425 vect = apic_cpus[i].aci_current[j];
1426 1426 apixs[i]->x_vectbl[vect]->v_busy++;
1427 1427 }
1428 1428
1429 1429 if (!apic_nticks &&
1430 1430 (apic_cpus[i].aci_busy > max_busy))
1431 1431 max_busy = apic_cpus[i].aci_busy;
1432 1432 }
1433 1433 if (!apic_nticks) {
1434 1434 if (max_busy > apic_int_busy_mark) {
1435 1435 /*
1436 1436 * We could make the following check be
1437 1437 * skipped > 1 in which case, we get a
1438 1438 * redistribution at half the busy mark (due to
1439 1439 * double interval). Need to be able to collect
1440 1440 * more empirical data to decide if that is a
1441 1441 * good strategy. Punt for now.
1442 1442 */
1443 1443 apix_cleanup_busy();
1444 1444 apic_skipped_redistribute = 0;
1445 1445 } else
1446 1446 apic_skipped_redistribute++;
1447 1447 }
1448 1448 }
1449 1449
1450 1450 /*
1451 1451 * intr_ops() service routines
1452 1452 */
1453 1453
1454 1454 static int
1455 1455 apix_get_pending(apix_vector_t *vecp)
1456 1456 {
1457 1457 int bit, index, irr, pending;
1458 1458
1459 1459 /* need to get on the bound cpu */
1460 1460 mutex_enter(&cpu_lock);
1461 1461 affinity_set(vecp->v_cpuid);
1462 1462
1463 1463 index = vecp->v_vector / 32;
1464 1464 bit = vecp->v_vector % 32;
1465 1465 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
1466 1466
1467 1467 affinity_clear();
1468 1468 mutex_exit(&cpu_lock);
1469 1469
1470 1470 pending = (irr & (1 << bit)) ? 1 : 0;
1471 1471 if (!pending && vecp->v_type == APIX_TYPE_FIXED)
1472 1472 pending = apix_intx_get_pending(vecp->v_inum);
1473 1473
1474 1474 return (pending);
1475 1475 }
1476 1476
1477 1477 static apix_vector_t *
1478 1478 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
1479 1479 {
1480 1480 apix_vector_t *vecp;
1481 1481 processorid_t cpuid;
1482 1482 int32_t virt_vec = 0;
1483 1483
1484 1484 switch (flags & PSMGI_INTRBY_FLAGS) {
1485 1485 case PSMGI_INTRBY_IRQ:
1486 1486 return (apix_intx_get_vector(hdlp->ih_vector));
1487 1487 case PSMGI_INTRBY_VEC:
1488 1488 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
1489 1489
1490 1490 cpuid = APIX_VIRTVEC_CPU(virt_vec);
1491 1491 if (!apic_cpu_in_range(cpuid))
1492 1492 return (NULL);
1493 1493
1494 1494 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
1495 1495 break;
1496 1496 case PSMGI_INTRBY_DEFAULT:
1497 1497 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
1498 1498 hdlp->ih_type);
1499 1499 break;
1500 1500 default:
1501 1501 return (NULL);
1502 1502 }
1503 1503
1504 1504 return (vecp);
1505 1505 }
1506 1506
1507 1507 static int
1508 1508 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
1509 1509 apic_get_intr_t *intr_params_p)
1510 1510 {
1511 1511 apix_vector_t *vecp;
1512 1512 struct autovec *av_dev;
1513 1513 int i;
1514 1514
1515 1515 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
1516 1516 if (IS_VECT_FREE(vecp)) {
1517 1517 intr_params_p->avgi_num_devs = 0;
1518 1518 intr_params_p->avgi_cpu_id = 0;
1519 1519 intr_params_p->avgi_req_flags = 0;
1520 1520 return (PSM_SUCCESS);
1521 1521 }
1522 1522
1523 1523 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
1524 1524 intr_params_p->avgi_cpu_id = vecp->v_cpuid;
1525 1525
1526 1526 /* Return user bound info for intrd. */
1527 1527 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
1528 1528 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
1529 1529 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
1530 1530 }
1531 1531 }
1532 1532
1533 1533 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
1534 1534 intr_params_p->avgi_vector = vecp->v_vector;
1535 1535
1536 1536 if (intr_params_p->avgi_req_flags &
1537 1537 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
1538 1538 /* Get number of devices from apic_irq table shared field. */
1539 1539 intr_params_p->avgi_num_devs = vecp->v_share;
1540 1540
1541 1541 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) {
1542 1542
1543 1543 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS;
1544 1544
1545 1545 /* Some devices have NULL dip. Don't count these. */
1546 1546 if (intr_params_p->avgi_num_devs > 0) {
1547 1547 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1548 1548 av_dev = av_dev->av_link) {
1549 1549 if (av_dev->av_vector && av_dev->av_dip)
1550 1550 i++;
1551 1551 }
1552 1552 intr_params_p->avgi_num_devs =
1553 1553 (uint8_t)MIN(intr_params_p->avgi_num_devs, i);
1554 1554 }
1555 1555
1556 1556 /* There are no viable dips to return. */
1557 1557 if (intr_params_p->avgi_num_devs == 0) {
1558 1558 intr_params_p->avgi_dip_list = NULL;
1559 1559
1560 1560 } else { /* Return list of dips */
1561 1561
1562 1562 /* Allocate space in array for that number of devs. */
1563 1563 intr_params_p->avgi_dip_list = kmem_zalloc(
1564 1564 intr_params_p->avgi_num_devs *
1565 1565 sizeof (dev_info_t *),
1566 1566 KM_NOSLEEP);
1567 1567 if (intr_params_p->avgi_dip_list == NULL) {
1568 1568 DDI_INTR_IMPLDBG((CE_WARN,
1569 1569 "apix_get_vector_intr_info: no memory"));
1570 1570 return (PSM_FAILURE);
1571 1571 }
1572 1572
1573 1573 /*
1574 1574 * Loop through the device list of the autovec table
1575 1575 * filling in the dip array.
1576 1576 *
1577 1577 * Note that the autovect table may have some special
1578 1578 * entries which contain NULL dips. These will be
1579 1579 * ignored.
1580 1580 */
1581 1581 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1582 1582 av_dev = av_dev->av_link) {
1583 1583 if (av_dev->av_vector && av_dev->av_dip)
1584 1584 intr_params_p->avgi_dip_list[i++] =
1585 1585 av_dev->av_dip;
1586 1586 }
1587 1587 }
1588 1588 }
1589 1589
1590 1590 return (PSM_SUCCESS);
1591 1591 }
1592 1592
1593 1593 static char *
1594 1594 apix_get_apic_type(void)
1595 1595 {
1596 1596 return (apix_psm_info.p_mach_idstring);
1597 1597 }
1598 1598
1599 1599 apix_vector_t *
1600 1600 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1601 1601 {
1602 1602 apix_vector_t *newp = NULL;
1603 1603 dev_info_t *dip;
1604 1604 int inum, cap_ptr;
1605 1605 ddi_acc_handle_t handle;
1606 1606 ddi_intr_msix_t *msix_p = NULL;
1607 1607 ushort_t msix_ctrl;
1608 1608 uintptr_t off;
1609 1609 uint32_t mask;
1610 1610
1611 1611 ASSERT(LOCK_HELD(&apix_lock));
1612 1612 *result = ENXIO;
1613 1613
1614 1614 /* Fail if this is an MSI intr and is part of a group. */
1615 1615 if (vecp->v_type == APIX_TYPE_MSI) {
1616 1616 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
1617 1617 return (NULL);
1618 1618 else
1619 1619 return (apix_grp_set_cpu(vecp, new_cpu, result));
1620 1620 }
1621 1621
1622 1622 /*
1623 1623 * Mask MSI-X. It's unmasked when MSI-X gets enabled.
1624 1624 */
1625 1625 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
1626 1626 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1627 1627 return (NULL);
1628 1628 inum = vecp->v_devp->dv_inum;
1629 1629
1630 1630 handle = i_ddi_get_pci_config_handle(dip);
1631 1631 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1632 1632 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1633 1633 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
1634 1634 /*
1635 1635 * Function is not masked, then mask "inum"th
1636 1636 * entry in the MSI-X table
1637 1637 */
1638 1638 msix_p = i_ddi_get_msix(dip);
1639 1639 off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1640 1640 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1641 1641 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1642 1642 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
1643 1643 mask | 1);
1644 1644 }
1645 1645 }
1646 1646
1647 1647 *result = 0;
1648 1648 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
1649 1649 *result = EIO;
1650 1650
1651 1651 /* Restore mask bit */
1652 1652 if (msix_p != NULL)
1653 1653 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
1654 1654
1655 1655 return (newp);
1656 1656 }
1657 1657
1658 1658 /*
1659 1659 * Set cpu for MSIs
1660 1660 */
1661 1661 apix_vector_t *
1662 1662 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1663 1663 {
1664 1664 apix_vector_t *newp, *vp;
1665 1665 uint32_t orig_cpu = vecp->v_cpuid;
1666 1666 int orig_vect = vecp->v_vector;
1667 1667 int i, num_vectors, cap_ptr, msi_mask_off;
1668 1668 uint32_t msi_pvm;
1669 1669 ushort_t msi_ctrl;
1670 1670 ddi_acc_handle_t handle;
1671 1671 dev_info_t *dip;
1672 1672
1673 1673 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
1674 1674 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
1675 1675
1676 1676 ASSERT(LOCK_HELD(&apix_lock));
1677 1677
1678 1678 *result = ENXIO;
1679 1679
1680 1680 if (vecp->v_type != APIX_TYPE_MSI) {
1681 1681 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
1682 1682 return (NULL);
1683 1683 }
1684 1684
1685 1685 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1686 1686 return (NULL);
1687 1687
1688 1688 num_vectors = i_ddi_intr_get_current_nintrs(dip);
1689 1689 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
1690 1690 APIC_VERBOSE(INTR, (CE_WARN,
1691 1691 "set_grp: base vec not part of a grp or not aligned: "
1692 1692 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
1693 1693 return (NULL);
1694 1694 }
1695 1695
1696 1696 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
1697 1697 return (NULL);
1698 1698
1699 1699 *result = EIO;
1700 1700 for (i = 1; i < num_vectors; i++) {
1701 1701 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
1702 1702 return (NULL);
1703 1703 #ifdef DEBUG
1704 1704 /*
1705 1705 * Sanity check: CPU and dip is the same for all entries.
1706 1706 * May be called when first msi to be enabled, at this time
1707 1707 * add_avintr() is not called for other msi
1708 1708 */
1709 1709 if ((vp->v_share != 0) &&
1710 1710 ((APIX_GET_DIP(vp) != dip) ||
1711 1711 (vp->v_cpuid != vecp->v_cpuid))) {
1712 1712 APIC_VERBOSE(INTR, (CE_WARN,
1713 1713 "set_grp: cpu or dip for vec 0x%x difft than for "
1714 1714 "vec 0x%x\n", orig_vect, orig_vect + i));
1715 1715 APIC_VERBOSE(INTR, (CE_WARN,
1716 1716 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
1717 1717 vp->v_cpuid, (void *)dip,
1718 1718 (void *)APIX_GET_DIP(vp)));
1719 1719 return (NULL);
1720 1720 }
1721 1721 #endif /* DEBUG */
1722 1722 }
1723 1723
1724 1724 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1725 1725 handle = i_ddi_get_pci_config_handle(dip);
1726 1726 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1727 1727
1728 1728 /* MSI Per vector masking is supported. */
1729 1729 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1730 1730 if (msi_ctrl & PCI_MSI_64BIT_MASK)
1731 1731 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
1732 1732 else
1733 1733 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
1734 1734 msi_pvm = pci_config_get32(handle, msi_mask_off);
1735 1735 pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
1736 1736 APIC_VERBOSE(INTR, (CE_CONT,
1737 1737 "set_grp: pvm supported. Mask set to 0x%x\n",
1738 1738 pci_config_get32(handle, msi_mask_off)));
1739 1739 }
1740 1740
1741 1741 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
1742 1742 *result = 0;
1743 1743
1744 1744 /* Reenable vectors if per vector masking is supported. */
1745 1745 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1746 1746 pci_config_put32(handle, msi_mask_off, msi_pvm);
1747 1747 APIC_VERBOSE(INTR, (CE_CONT,
1748 1748 "set_grp: pvm supported. Mask restored to 0x%x\n",
1749 1749 pci_config_get32(handle, msi_mask_off)));
1750 1750 }
1751 1751
1752 1752 return (newp);
1753 1753 }
1754 1754
1755 1755 void
1756 1756 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
1757 1757 {
1758 1758 apic_irq_t *irqp;
1759 1759
1760 1760 mutex_enter(&airq_mutex);
1761 1761 irqp = apic_irq_table[irqno];
1762 1762 irqp->airq_cpu = cpuid;
1763 1763 irqp->airq_vector = vector;
1764 1764 apic_record_rdt_entry(irqp, irqno);
1765 1765 mutex_exit(&airq_mutex);
1766 1766 }
1767 1767
1768 1768 apix_vector_t *
1769 1769 apix_intx_get_vector(int irqno)
1770 1770 {
1771 1771 apic_irq_t *irqp;
1772 1772 uint32_t cpuid;
1773 1773 uchar_t vector;
1774 1774
1775 1775 mutex_enter(&airq_mutex);
1776 1776 irqp = apic_irq_table[irqno & 0xff];
1777 1777 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
1778 1778 mutex_exit(&airq_mutex);
1779 1779 return (NULL);
1780 1780 }
1781 1781 cpuid = irqp->airq_cpu;
1782 1782 vector = irqp->airq_vector;
1783 1783 mutex_exit(&airq_mutex);
1784 1784
1785 1785 return (xv_vector(cpuid, vector));
1786 1786 }
1787 1787
1788 1788 /*
1789 1789 * Must called with interrupts disabled and apic_ioapic_lock held
1790 1790 */
1791 1791 void
1792 1792 apix_intx_enable(int irqno)
1793 1793 {
1794 1794 uchar_t ioapicindex, intin;
1795 1795 apic_irq_t *irqp = apic_irq_table[irqno];
1796 1796 ioapic_rdt_t irdt;
1797 1797 apic_cpus_info_t *cpu_infop;
1798 1798 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1799 1799
1800 1800 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1801 1801
1802 1802 ioapicindex = irqp->airq_ioapicindex;
1803 1803 intin = irqp->airq_intin_no;
1804 1804 cpu_infop = &apic_cpus[irqp->airq_cpu];
1805 1805
1806 1806 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
1807 1807 irdt.ir_hi = cpu_infop->aci_local_id;
1808 1808
1809 1809 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
1810 1810 vecp->v_type, 1, ioapicindex);
1811 1811 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
1812 1812 (void *)&irdt, vecp->v_type, 1);
1813 1813 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
1814 1814
1815 1815 /* write RDT entry high dword - destination */
1816 1816 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
1817 1817 irdt.ir_hi);
1818 1818
1819 1819 /* Write the vector, trigger, and polarity portion of the RDT */
1820 1820 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
1821 1821
1822 1822 vecp->v_state = APIX_STATE_ENABLED;
1823 1823
1824 1824 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
1825 1825 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
1826 1826 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
1827 1827 }
1828 1828
1829 1829 /*
1830 1830 * Must called with interrupts disabled and apic_ioapic_lock held
1831 1831 */
1832 1832 void
1833 1833 apix_intx_disable(int irqno)
1834 1834 {
1835 1835 apic_irq_t *irqp = apic_irq_table[irqno];
1836 1836 int ioapicindex, intin;
1837 1837
1838 1838 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1839 1839 /*
1840 1840 * The assumption here is that this is safe, even for
1841 1841 * systems with IOAPICs that suffer from the hardware
1842 1842 * erratum because all devices have been quiesced before
1843 1843 * they unregister their interrupt handlers. If that
1844 1844 * assumption turns out to be false, this mask operation
1845 1845 * can induce the same erratum result we're trying to
1846 1846 * avoid.
1847 1847 */
1848 1848 ioapicindex = irqp->airq_ioapicindex;
1849 1849 intin = irqp->airq_intin_no;
1850 1850 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
1851 1851
1852 1852 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
1853 1853 " intin 0x%x\n", ioapicindex, intin));
1854 1854 }
1855 1855
1856 1856 void
1857 1857 apix_intx_free(int irqno)
1858 1858 {
1859 1859 apic_irq_t *irqp;
1860 1860
1861 1861 mutex_enter(&airq_mutex);
1862 1862 irqp = apic_irq_table[irqno];
1863 1863
1864 1864 if (IS_IRQ_FREE(irqp)) {
1865 1865 mutex_exit(&airq_mutex);
1866 1866 return;
1867 1867 }
1868 1868
1869 1869 irqp->airq_mps_intr_index = FREE_INDEX;
1870 1870 irqp->airq_cpu = IRQ_UNINIT;
1871 1871 irqp->airq_vector = APIX_INVALID_VECT;
1872 1872 mutex_exit(&airq_mutex);
1873 1873 }
1874 1874
1875 1875 #ifdef DEBUG
1876 1876 int apix_intr_deliver_timeouts = 0;
1877 1877 int apix_intr_rirr_timeouts = 0;
1878 1878 int apix_intr_rirr_reset_failure = 0;
1879 1879 #endif
1880 1880 int apix_max_reps_irr_pending = 10;
1881 1881
1882 1882 #define GET_RDT_BITS(ioapic, intin, bits) \
1883 1883 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
1884 1884 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000)
1885 1885
1886 1886 int
1887 1887 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
1888 1888 {
1889 1889 apic_irq_t *irqp = apic_irq_table[irqno];
1890 1890 ulong_t iflag;
1891 1891 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
1892 1892
1893 1893 ASSERT(irqp != NULL);
1894 1894
1895 1895 iflag = intr_clear();
1896 1896 lock_set(&apic_ioapic_lock);
1897 1897
1898 1898 ioapic_ix = irqp->airq_ioapicindex;
1899 1899 intin_no = irqp->airq_intin_no;
1900 1900 level = apic_level_intr[irqno];
1901 1901
1902 1902 /*
1903 1903 * Wait for the delivery status bit to be cleared. This should
1904 1904 * be a very small amount of time.
1905 1905 */
1906 1906 repeats = 0;
1907 1907 do {
1908 1908 repeats++;
1909 1909
1910 1910 for (waited = 0; waited < apic_max_reps_clear_pending;
1911 1911 waited++) {
1912 1912 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
1913 1913 break;
1914 1914 }
1915 1915 if (!level)
1916 1916 break;
1917 1917
1918 1918 /*
1919 1919 * Mask the RDT entry for level-triggered interrupts.
1920 1920 */
1921 1921 irqp->airq_rdt_entry |= AV_MASK;
1922 1922 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1923 1923 intin_no);
1924 1924 if ((masked = (rdt_entry & AV_MASK)) == 0) {
1925 1925 /* Mask it */
1926 1926 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1927 1927 AV_MASK | rdt_entry);
1928 1928 }
1929 1929
1930 1930 /*
1931 1931 * If there was a race and an interrupt was injected
1932 1932 * just before we masked, check for that case here.
1933 1933 * Then, unmask the RDT entry and try again. If we're
1934 1934 * on our last try, don't unmask (because we want the
1935 1935 * RDT entry to remain masked for the rest of the
1936 1936 * function).
1937 1937 */
1938 1938 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1939 1939 intin_no);
1940 1940 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
1941 1941 (repeats < apic_max_reps_clear_pending)) {
1942 1942 /* Unmask it */
1943 1943 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1944 1944 intin_no, rdt_entry & ~AV_MASK);
1945 1945 irqp->airq_rdt_entry &= ~AV_MASK;
1946 1946 }
1947 1947 } while ((rdt_entry & AV_PENDING) &&
1948 1948 (repeats < apic_max_reps_clear_pending));
1949 1949
1950 1950 #ifdef DEBUG
1951 1951 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
1952 1952 apix_intr_deliver_timeouts++;
1953 1953 #endif
1954 1954
1955 1955 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
1956 1956 goto done;
1957 1957
1958 1958 /*
1959 1959 * wait for remote IRR to be cleared for level-triggered
1960 1960 * interrupts
1961 1961 */
1962 1962 repeats = 0;
1963 1963 do {
1964 1964 repeats++;
1965 1965
1966 1966 for (waited = 0; waited < apic_max_reps_clear_pending;
1967 1967 waited++) {
1968 1968 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
1969 1969 == 0)
1970 1970 break;
1971 1971 }
1972 1972
1973 1973 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1974 1974 lock_clear(&apic_ioapic_lock);
1975 1975 intr_restore(iflag);
1976 1976
1977 1977 delay(APIX_CHECK_IRR_DELAY);
1978 1978
1979 1979 iflag = intr_clear();
1980 1980 lock_set(&apic_ioapic_lock);
1981 1981 }
1982 1982 } while (repeats < apix_max_reps_irr_pending);
1983 1983
1984 1984 if (repeats >= apix_max_reps_irr_pending) {
1985 1985 #ifdef DEBUG
1986 1986 apix_intr_rirr_timeouts++;
1987 1987 #endif
1988 1988
1989 1989 /*
1990 1990 * If we waited and the Remote IRR bit is still not cleared,
1991 1991 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1992 1992 * times for this interrupt, try the last-ditch workaround:
1993 1993 */
1994 1994 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1995 1995 /*
1996 1996 * Trying to clear the bit through normal
1997 1997 * channels has failed. So as a last-ditch
1998 1998 * effort, try to set the trigger mode to
1999 1999 * edge, then to level. This has been
2000 2000 * observed to work on many systems.
2001 2001 */
2002 2002 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2003 2003 intin_no,
2004 2004 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2005 2005 intin_no) & ~AV_LEVEL);
2006 2006 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2007 2007 intin_no,
2008 2008 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2009 2009 intin_no) | AV_LEVEL);
2010 2010 }
2011 2011
2012 2012 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
2013 2013 #ifdef DEBUG
2014 2014 apix_intr_rirr_reset_failure++;
2015 2015 #endif
2016 2016 lock_clear(&apic_ioapic_lock);
2017 2017 intr_restore(iflag);
2018 2018 prom_printf("apix: Remote IRR still "
2019 2019 "not clear for IOAPIC %d intin %d.\n"
2020 2020 "\tInterrupts to this pin may cease "
2021 2021 "functioning.\n", ioapic_ix, intin_no);
2022 2022 return (1); /* return failure */
2023 2023 }
2024 2024 }
2025 2025
2026 2026 done:
2027 2027 /* change apic_irq_table */
2028 2028 lock_clear(&apic_ioapic_lock);
2029 2029 intr_restore(iflag);
2030 2030 apix_intx_set_vector(irqno, cpuid, vector);
2031 2031 iflag = intr_clear();
2032 2032 lock_set(&apic_ioapic_lock);
2033 2033
2034 2034 /* reprogramme IO-APIC RDT entry */
2035 2035 apix_intx_enable(irqno);
2036 2036
2037 2037 lock_clear(&apic_ioapic_lock);
2038 2038 intr_restore(iflag);
2039 2039
2040 2040 return (0);
2041 2041 }
2042 2042
2043 2043 static int
2044 2044 apix_intx_get_pending(int irqno)
2045 2045 {
2046 2046 apic_irq_t *irqp;
2047 2047 int intin, ioapicindex, pending;
2048 2048 ulong_t iflag;
2049 2049
2050 2050 mutex_enter(&airq_mutex);
2051 2051 irqp = apic_irq_table[irqno];
2052 2052 if (IS_IRQ_FREE(irqp)) {
2053 2053 mutex_exit(&airq_mutex);
2054 2054 return (0);
2055 2055 }
2056 2056
2057 2057 /* check IO-APIC delivery status */
2058 2058 intin = irqp->airq_intin_no;
2059 2059 ioapicindex = irqp->airq_ioapicindex;
2060 2060 mutex_exit(&airq_mutex);
2061 2061
2062 2062 iflag = intr_clear();
2063 2063 lock_set(&apic_ioapic_lock);
2064 2064
2065 2065 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
2066 2066 AV_PENDING) ? 1 : 0;
2067 2067
2068 2068 lock_clear(&apic_ioapic_lock);
2069 2069 intr_restore(iflag);
2070 2070
2071 2071 return (pending);
2072 2072 }
2073 2073
2074 2074 /*
2075 2075 * This function will mask the interrupt on the I/O APIC
2076 2076 */
2077 2077 static void
2078 2078 apix_intx_set_mask(int irqno)
2079 2079 {
2080 2080 int intin, ioapixindex, rdt_entry;
2081 2081 ulong_t iflag;
2082 2082 apic_irq_t *irqp;
2083 2083
2084 2084 mutex_enter(&airq_mutex);
2085 2085 irqp = apic_irq_table[irqno];
2086 2086
2087 2087 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2088 2088
2089 2089 intin = irqp->airq_intin_no;
2090 2090 ioapixindex = irqp->airq_ioapicindex;
2091 2091 mutex_exit(&airq_mutex);
2092 2092
2093 2093 iflag = intr_clear();
2094 2094 lock_set(&apic_ioapic_lock);
2095 2095
2096 2096 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2097 2097
2098 2098 /* clear mask */
2099 2099 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2100 2100 (AV_MASK | rdt_entry));
2101 2101
2102 2102 lock_clear(&apic_ioapic_lock);
2103 2103 intr_restore(iflag);
2104 2104 }
2105 2105
2106 2106 /*
2107 2107 * This function will clear the mask for the interrupt on the I/O APIC
2108 2108 */
2109 2109 static void
2110 2110 apix_intx_clear_mask(int irqno)
2111 2111 {
2112 2112 int intin, ioapixindex, rdt_entry;
2113 2113 ulong_t iflag;
2114 2114 apic_irq_t *irqp;
2115 2115
2116 2116 mutex_enter(&airq_mutex);
2117 2117 irqp = apic_irq_table[irqno];
2118 2118
2119 2119 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2120 2120
2121 2121 intin = irqp->airq_intin_no;
2122 2122 ioapixindex = irqp->airq_ioapicindex;
2123 2123 mutex_exit(&airq_mutex);
2124 2124
2125 2125 iflag = intr_clear();
2126 2126 lock_set(&apic_ioapic_lock);
2127 2127
2128 2128 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2129 2129
2130 2130 /* clear mask */
2131 2131 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2132 2132 ((~AV_MASK) & rdt_entry));
2133 2133
2134 2134 lock_clear(&apic_ioapic_lock);
2135 2135 intr_restore(iflag);
2136 2136 }
2137 2137
2138 2138 /*
2139 2139 * For level-triggered interrupt, mask the IRQ line. Mask means
2140 2140 * new interrupts will not be delivered. The interrupt already
2141 2141 * accepted by a local APIC is not affected
2142 2142 */
2143 2143 void
2144 2144 apix_level_intr_pre_eoi(int irq)
2145 2145 {
2146 2146 apic_irq_t *irqp = apic_irq_table[irq];
2147 2147 int apic_ix, intin_ix;
2148 2148
2149 2149 if (irqp == NULL)
2150 2150 return;
2151 2151
2152 2152 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
2153 2153
2154 2154 lock_set(&apic_ioapic_lock);
2155 2155
2156 2156 intin_ix = irqp->airq_intin_no;
2157 2157 apic_ix = irqp->airq_ioapicindex;
2158 2158
2159 2159 if (irqp->airq_cpu != CPU->cpu_id) {
2160 2160 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
2161 2161 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2162 2162 lock_clear(&apic_ioapic_lock);
2163 2163 return;
2164 2164 }
2165 2165
2166 2166 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
2167 2167 /*
2168 2168 * This is a IOxAPIC and there is EOI register:
2169 2169 * Change the vector to reserved unused vector, so that
2170 2170 * the EOI from Local APIC won't clear the Remote IRR for
2171 2171 * this level trigger interrupt. Instead, we'll manually
2172 2172 * clear it in apix_post_hardint() after ISR handling.
2173 2173 */
2174 2174 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2175 2175 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
2176 2176 } else {
2177 2177 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2178 2178 AV_MASK | irqp->airq_rdt_entry);
2179 2179 }
2180 2180
2181 2181 lock_clear(&apic_ioapic_lock);
2182 2182 }
2183 2183
2184 2184 /*
2185 2185 * For level-triggered interrupt, unmask the IRQ line
2186 2186 * or restore the original vector number.
2187 2187 */
2188 2188 void
2189 2189 apix_level_intr_post_dispatch(int irq)
2190 2190 {
2191 2191 apic_irq_t *irqp = apic_irq_table[irq];
2192 2192 int apic_ix, intin_ix;
2193 2193
2194 2194 if (irqp == NULL)
2195 2195 return;
2196 2196
2197 2197 lock_set(&apic_ioapic_lock);
2198 2198
2199 2199 intin_ix = irqp->airq_intin_no;
2200 2200 apic_ix = irqp->airq_ioapicindex;
2201 2201
2202 2202 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
2203 2203 /*
2204 2204 * Already sent EOI back to Local APIC.
2205 2205 * Send EOI to IO-APIC
2206 2206 */
2207 2207 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2208 2208 } else {
2209 2209 /* clear the mask or restore the vector */
2210 2210 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2211 2211 irqp->airq_rdt_entry);
2212 2212
2213 2213 /* send EOI to IOxAPIC */
2214 2214 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
2215 2215 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2216 2216 }
2217 2217
2218 2218 lock_clear(&apic_ioapic_lock);
2219 2219 }
2220 2220
2221 2221 static int
2222 2222 apix_intx_get_shared(int irqno)
2223 2223 {
2224 2224 apic_irq_t *irqp;
2225 2225 int share;
2226 2226
2227 2227 mutex_enter(&airq_mutex);
2228 2228 irqp = apic_irq_table[irqno];
2229 2229 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
2230 2230 mutex_exit(&airq_mutex);
2231 2231 return (0);
2232 2232 }
2233 2233 share = irqp->airq_share;
2234 2234 mutex_exit(&airq_mutex);
2235 2235
2236 2236 return (share);
2237 2237 }
2238 2238
2239 2239 static void
2240 2240 apix_intx_set_shared(int irqno, int delta)
2241 2241 {
2242 2242 apic_irq_t *irqp;
2243 2243
2244 2244 mutex_enter(&airq_mutex);
2245 2245 irqp = apic_irq_table[irqno];
2246 2246 if (IS_IRQ_FREE(irqp)) {
2247 2247 mutex_exit(&airq_mutex);
2248 2248 return;
2249 2249 }
2250 2250 irqp->airq_share += delta;
2251 2251 mutex_exit(&airq_mutex);
2252 2252 }
2253 2253
2254 2254 /*
2255 2255 * Setup IRQ table. Return IRQ no or -1 on failure
2256 2256 */
2257 2257 static int
2258 2258 apix_intx_setup(dev_info_t *dip, int inum, int irqno,
2259 2259 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
2260 2260 {
2261 2261 int origirq = ispec->intrspec_vec;
2262 2262 int newirq;
2263 2263 short intr_index;
2264 2264 uchar_t ipin, ioapic, ioapicindex;
2265 2265 apic_irq_t *irqp;
2266 2266
2267 2267 UNREFERENCED_1PARAMETER(inum);
2268 2268
2269 2269 if (intrp != NULL) {
2270 2270 intr_index = (short)(intrp - apic_io_intrp);
2271 2271 ioapic = intrp->intr_destid;
2272 2272 ipin = intrp->intr_destintin;
2273 2273
2274 2274 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
2275 2275 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2276 2276 if (apic_io_id[ioapicindex] == ioapic)
2277 2277 break;
2278 2278 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2279 2279 (ioapic == INTR_ALL_APIC));
2280 2280
2281 2281 /* check whether this intin# has been used by another irqno */
2282 2282 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
2283 2283 return (newirq);
2284 2284
2285 2285 } else if (iflagp != NULL) { /* ACPI */
2286 2286 intr_index = ACPI_INDEX;
2287 2287 ioapicindex = acpi_find_ioapic(irqno);
2288 2288 ASSERT(ioapicindex != 0xFF);
2289 2289 ioapic = apic_io_id[ioapicindex];
2290 2290 ipin = irqno - apic_io_vectbase[ioapicindex];
2291 2291
2292 2292 if (apic_irq_table[irqno] &&
2293 2293 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2294 2294 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2295 2295 apic_irq_table[irqno]->airq_ioapicindex ==
2296 2296 ioapicindex);
2297 2297 return (irqno);
2298 2298 }
2299 2299
2300 2300 } else { /* default configuration */
2301 2301 intr_index = DEFAULT_INDEX;
2302 2302 ioapicindex = 0;
2303 2303 ioapic = apic_io_id[ioapicindex];
2304 2304 ipin = (uchar_t)irqno;
2305 2305 }
2306 2306
2307 2307 /* allocate a new IRQ no */
2308 2308 if ((irqp = apic_irq_table[irqno]) == NULL) {
2309 2309 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2310 2310 apic_irq_table[irqno] = irqp;
2311 2311 } else {
2312 2312 if (irqp->airq_mps_intr_index != FREE_INDEX) {
2313 2313 newirq = apic_allocate_irq(apic_first_avail_irq);
2314 2314 if (newirq == -1) {
2315 2315 return (-1);
2316 2316 }
2317 2317 irqno = newirq;
2318 2318 irqp = apic_irq_table[irqno];
2319 2319 ASSERT(irqp != NULL);
2320 2320 }
2321 2321 }
2322 2322 apic_max_device_irq = max(irqno, apic_max_device_irq);
2323 2323 apic_min_device_irq = min(irqno, apic_min_device_irq);
2324 2324
2325 2325 irqp->airq_mps_intr_index = intr_index;
2326 2326 irqp->airq_ioapicindex = ioapicindex;
2327 2327 irqp->airq_intin_no = ipin;
2328 2328 irqp->airq_dip = dip;
2329 2329 irqp->airq_origirq = (uchar_t)origirq;
2330 2330 if (iflagp != NULL)
2331 2331 irqp->airq_iflag = *iflagp;
2332 2332 irqp->airq_cpu = IRQ_UNINIT;
2333 2333 irqp->airq_vector = 0;
2334 2334
2335 2335 return (irqno);
2336 2336 }
2337 2337
2338 2338 /*
2339 2339 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
2340 2340 */
2341 2341 static int
2342 2342 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
2343 2343 struct intrspec *ispec)
2344 2344 {
2345 2345 int irqno = ispec->intrspec_vec;
2346 2346 int newirq, i;
2347 2347 iflag_t intr_flag;
2348 2348 ACPI_SUBTABLE_HEADER *hp;
2349 2349 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
2350 2350 struct apic_io_intr *intrp;
2351 2351
2352 2352 if (!apic_enable_acpi || apic_use_acpi_madt_only) {
2353 2353 int busid;
2354 2354
2355 2355 if (bustype == 0)
2356 2356 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
2357 2357
2358 2358 /* loop checking BUS_ISA/BUS_EISA */
2359 2359 for (i = 0; i < 2; i++) {
2360 2360 if (((busid = apic_find_bus_id(bustype)) != -1) &&
2361 2361 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
2362 2362 != NULL)) {
2363 2363 return (apix_intx_setup(dip, inum, irqno,
2364 2364 intrp, ispec, NULL));
2365 2365 }
2366 2366 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
2367 2367 }
2368 2368
2369 2369 /* fall back to default configuration */
2370 2370 return (-1);
2371 2371 }
2372 2372
2373 2373 /* search iso entries first */
2374 2374 if (acpi_iso_cnt != 0) {
2375 2375 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
2376 2376 i = 0;
2377 2377 while (i < acpi_iso_cnt) {
2378 2378 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
2379 2379 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
2380 2380 if (isop->Bus == 0 &&
2381 2381 isop->SourceIrq == irqno) {
2382 2382 newirq = isop->GlobalIrq;
2383 2383 intr_flag.intr_po = isop->IntiFlags &
2384 2384 ACPI_MADT_POLARITY_MASK;
2385 2385 intr_flag.intr_el = (isop->IntiFlags &
2386 2386 ACPI_MADT_TRIGGER_MASK) >> 2;
2387 2387 intr_flag.bustype = BUS_ISA;
2388 2388
2389 2389 return (apix_intx_setup(dip, inum,
2390 2390 newirq, NULL, ispec, &intr_flag));
2391 2391 }
2392 2392 i++;
2393 2393 }
2394 2394 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
2395 2395 hp->Length);
2396 2396 }
2397 2397 }
2398 2398 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
2399 2399 intr_flag.intr_el = INTR_EL_EDGE;
2400 2400 intr_flag.bustype = BUS_ISA;
2401 2401 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
2402 2402 }
2403 2403
2404 2404
2405 2405 /*
2406 2406 * Setup IRQ table for pci devices. Return IRQ no or -1 on error
2407 2407 */
2408 2408 static int
2409 2409 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
2410 2410 struct intrspec *ispec)
2411 2411 {
2412 2412 int busid, devid, pci_irq;
2413 2413 ddi_acc_handle_t cfg_handle;
2414 2414 uchar_t ipin;
2415 2415 iflag_t intr_flag;
2416 2416 struct apic_io_intr *intrp;
2417 2417
2418 2418 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
2419 2419 return (-1);
2420 2420
2421 2421 if (busid == 0 && apic_pci_bus_total == 1)
2422 2422 busid = (int)apic_single_pci_busid;
2423 2423
2424 2424 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
2425 2425 return (-1);
2426 2426 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
2427 2427 pci_config_teardown(&cfg_handle);
2428 2428
2429 2429 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */
2430 2430 if (apic_acpi_translate_pci_irq(dip, busid, devid,
2431 2431 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
2432 2432 return (-1);
2433 2433
2434 2434 intr_flag.bustype = (uchar_t)bustype;
2435 2435 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
2436 2436 &intr_flag));
2437 2437 }
2438 2438
2439 2439 /* MP configuration table */
2440 2440 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
2441 2441 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
2442 2442 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
2443 2443 if (pci_irq == -1)
2444 2444 return (-1);
2445 2445 }
2446 2446
2447 2447 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
2448 2448 }
2449 2449
2450 2450 /*
2451 2451 * Translate and return IRQ no
2452 2452 */
2453 2453 static int
2454 2454 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
2455 2455 {
2456 2456 int newirq, irqno = ispec->intrspec_vec;
2457 2457 int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
2458 2458 int bustype = 0, dev_len;
2459 2459 char dev_type[16];
2460 2460
2461 2461 if (apic_defconf) {
2462 2462 mutex_enter(&airq_mutex);
2463 2463 goto defconf;
2464 2464 }
2465 2465
2466 2466 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
2467 2467 mutex_enter(&airq_mutex);
2468 2468 goto nonpci;
2469 2469 }
2470 2470
2471 2471 /*
2472 2472 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
2473 2473 * to avoid extra buffer allocation.
2474 2474 */
2475 2475 dev_len = sizeof (dev_type);
2476 2476 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
2477 2477 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
2478 2478 &dev_len) == DDI_PROP_SUCCESS) {
2479 2479 if ((strcmp(dev_type, "pci") == 0) ||
2480 2480 (strcmp(dev_type, "pciex") == 0))
2481 2481 parent_is_pci_or_pciex = 1;
2482 2482 }
2483 2483
2484 2484 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2485 2485 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
2486 2486 &dev_len) == DDI_PROP_SUCCESS) {
2487 2487 if (strstr(dev_type, "pciex"))
2488 2488 child_is_pciex = 1;
2489 2489 }
2490 2490
2491 2491 mutex_enter(&airq_mutex);
2492 2492
2493 2493 if (parent_is_pci_or_pciex) {
2494 2494 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
2495 2495 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
2496 2496 if (newirq != -1)
2497 2497 goto done;
2498 2498 bustype = 0;
2499 2499 } else if (strcmp(dev_type, "isa") == 0)
2500 2500 bustype = BUS_ISA;
2501 2501 else if (strcmp(dev_type, "eisa") == 0)
2502 2502 bustype = BUS_EISA;
2503 2503
2504 2504 nonpci:
2505 2505 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
2506 2506 if (newirq != -1)
2507 2507 goto done;
2508 2508
2509 2509 defconf:
2510 2510 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
2511 2511 if (newirq == -1) {
2512 2512 mutex_exit(&airq_mutex);
2513 2513 return (-1);
2514 2514 }
2515 2515 done:
2516 2516 ASSERT(apic_irq_table[newirq]);
2517 2517 mutex_exit(&airq_mutex);
2518 2518 return (newirq);
2519 2519 }
2520 2520
2521 2521 static int
2522 2522 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2523 2523 {
2524 2524 int irqno;
2525 2525 apix_vector_t *vecp;
2526 2526
2527 2527 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2528 2528 return (0);
2529 2529
2530 2530 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
2531 2531 return (0);
2532 2532
2533 2533 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
2534 2534 "irqno=0x%x cpuid=%d vector=0x%x\n",
2535 2535 (void *)dip, ddi_driver_name(dip), irqno,
2536 2536 vecp->v_cpuid, vecp->v_vector));
2537 2537
2538 2538 return (1);
2539 2539 }
2540 2540
2541 2541 /*
2542 2542 * Return the vector number if the translated IRQ for this device
2543 2543 * has a vector mapping setup. If no IRQ setup exists or no vector is
2544 2544 * allocated to it then return 0.
2545 2545 */
2546 2546 static apix_vector_t *
2547 2547 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2548 2548 {
2549 2549 int irqno;
2550 2550 apix_vector_t *vecp;
2551 2551
2552 2552 /* get the IRQ number */
2553 2553 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2554 2554 return (NULL);
2555 2555
2556 2556 /* get the vector number if a vector is allocated to this irqno */
2557 2557 vecp = apix_intx_get_vector(irqno);
2558 2558
2559 2559 return (vecp);
2560 2560 }
2561 2561
2562 2562 /* stub function */
2563 2563 int
2564 2564 apix_loaded(void)
2565 2565 {
2566 2566 return (apix_is_enabled);
2567 2567 }
↓ open down ↓ |
2504 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX