1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 31 */ 32 33 /* 34 * To understand how the apix module interacts with the interrupt subsystem read 35 * the theory statement in uts/i86pc/os/intr.c. 36 */ 37 38 /* 39 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 40 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 42 * PSMI 1.5 extensions are supported in Solaris Nevada. 43 * PSMI 1.6 extensions are supported in Solaris Nevada. 44 * PSMI 1.7 extensions are supported in Solaris Nevada. 45 */ 46 #define PSMI_1_7 47 48 #include <sys/processor.h> 49 #include <sys/time.h> 50 #include <sys/psm.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/cram.h> 53 #include <acpica/include/acpi.h> 54 #include <sys/acpica.h> 55 #include <sys/psm_common.h> 56 #include <sys/pit.h> 57 #include <sys/ddi.h> 58 #include <sys/sunddi.h> 59 #include <sys/ddi_impldefs.h> 60 #include <sys/pci.h> 61 #include <sys/promif.h> 62 #include <sys/x86_archext.h> 63 #include <sys/cpc_impl.h> 64 #include <sys/uadmin.h> 65 #include <sys/panic.h> 66 #include <sys/debug.h> 67 #include <sys/archsystm.h> 68 #include <sys/trap.h> 69 #include <sys/machsystm.h> 70 #include <sys/sysmacros.h> 71 #include <sys/cpuvar.h> 72 #include <sys/rm_platter.h> 73 #include <sys/privregs.h> 74 #include <sys/note.h> 75 #include <sys/pci_intr_lib.h> 76 #include <sys/spl.h> 77 #include <sys/clock.h> 78 #include <sys/cyclic.h> 79 #include <sys/dditypes.h> 80 #include <sys/sunddi.h> 81 #include <sys/x_call.h> 82 #include <sys/reboot.h> 83 #include <sys/mach_intr.h> 84 #include <sys/apix.h> 85 #include <sys/apix_irm_impl.h> 86 87 static int apix_probe(); 88 static void apix_init(); 89 static void apix_picinit(void); 90 static int apix_intr_enter(int, int *); 91 static void apix_intr_exit(int, int); 92 static void apix_setspl(int); 93 static int apix_disable_intr(processorid_t); 94 static void apix_enable_intr(processorid_t); 95 static int apix_get_clkvect(int); 96 static int apix_get_ipivect(int, int); 97 static void apix_post_cyclic_setup(void *); 98 static int apix_post_cpu_start(); 99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 100 psm_intr_op_t, int *); 101 102 /* 103 * Helper functions for apix_intr_ops() 104 */ 105 static void apix_redistribute_compute(void); 106 static int apix_get_pending(apix_vector_t *); 107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t); 108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *); 109 static char *apix_get_apic_type(void); 110 static int apix_intx_get_pending(int); 111 static void apix_intx_set_mask(int irqno); 112 static void apix_intx_clear_mask(int irqno); 113 static int apix_intx_get_shared(int irqno); 114 static void apix_intx_set_shared(int irqno, int delta); 115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int, 116 struct intrspec *); 117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *); 118 119 extern int apic_clkinit(int); 120 121 /* IRM initialization for APIX PSM module */ 122 extern void apix_irm_init(void); 123 124 extern int irm_enable; 125 126 /* 127 * Local static data 128 */ 129 static struct psm_ops apix_ops = { 130 apix_probe, 131 132 apix_init, 133 apix_picinit, 134 apix_intr_enter, 135 apix_intr_exit, 136 apix_setspl, 137 apix_addspl, 138 apix_delspl, 139 apix_disable_intr, 140 apix_enable_intr, 141 NULL, /* psm_softlvl_to_irq */ 142 NULL, /* psm_set_softintr */ 143 144 apic_set_idlecpu, 145 apic_unset_idlecpu, 146 147 apic_clkinit, 148 apix_get_clkvect, 149 NULL, /* psm_hrtimeinit */ 150 apic_gethrtime, 151 152 apic_get_next_processorid, 153 apic_cpu_start, 154 apix_post_cpu_start, 155 apic_shutdown, 156 apix_get_ipivect, 157 apic_send_ipi, 158 159 NULL, /* psm_translate_irq */ 160 NULL, /* psm_notify_error */ 161 NULL, /* psm_notify_func */ 162 apic_timer_reprogram, 163 apic_timer_enable, 164 apic_timer_disable, 165 apix_post_cyclic_setup, 166 apic_preshutdown, 167 apix_intr_ops, /* Advanced DDI Interrupt framework */ 168 apic_state, /* save, restore apic state for S3 */ 169 apic_cpu_ops, /* CPU control interface. */ 170 }; 171 172 struct psm_ops *psmops = &apix_ops; 173 174 static struct psm_info apix_psm_info = { 175 PSM_INFO_VER01_7, /* version */ 176 PSM_OWN_EXCLUSIVE, /* ownership */ 177 &apix_ops, /* operation */ 178 APIX_NAME, /* machine name */ 179 "apix MPv1.4 compatible", 180 }; 181 182 static void *apix_hdlp; 183 184 static int apix_is_enabled = 0; 185 186 /* 187 * Flag to indicate if APIX is to be enabled only for platforms 188 * with specific hw feature(s). 189 */ 190 int apix_hw_chk_enable = 1; 191 192 /* 193 * Hw features that are checked for enabling APIX support. 194 */ 195 #define APIX_SUPPORT_X2APIC 0x00000001 196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC; 197 198 /* 199 * apix_lock is used for cpu selection and vector re-binding 200 */ 201 lock_t apix_lock; 202 apix_impl_t *apixs[NCPU]; 203 /* 204 * Mapping between device interrupt and the allocated vector. Indexed 205 * by major number. 206 */ 207 apix_dev_vector_t **apix_dev_vector; 208 /* 209 * Mapping between device major number and cpu id. It gets used 210 * when interrupt binding policy round robin with affinity is 211 * applied. With that policy, devices with the same major number 212 * will be bound to the same CPU. 213 */ 214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */ 215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */ 216 217 int apix_nipis = 16; /* Maximum number of IPIs */ 218 /* 219 * Maximum number of vectors in a CPU that can be used for interrupt 220 * allocation (including IPIs and the reserved vectors). 221 */ 222 int apix_cpu_nvectors = APIX_NVECTOR; 223 224 /* gcpu.h */ 225 226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 227 extern void apic_change_eoi(); 228 229 /* 230 * This is the loadable module wrapper 231 */ 232 233 int 234 _init(void) 235 { 236 if (apic_coarse_hrtime) 237 apix_ops.psm_gethrtime = &apic_gettime; 238 return (psm_mod_init(&apix_hdlp, &apix_psm_info)); 239 } 240 241 int 242 _fini(void) 243 { 244 return (psm_mod_fini(&apix_hdlp, &apix_psm_info)); 245 } 246 247 int 248 _info(struct modinfo *modinfop) 249 { 250 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop)); 251 } 252 253 static int 254 apix_probe() 255 { 256 int rval; 257 258 if (apix_enable == 0) 259 return (PSM_FAILURE); 260 261 /* check for hw features if specified */ 262 if (apix_hw_chk_enable) { 263 /* check if x2APIC mode is supported */ 264 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) == 265 APIX_SUPPORT_X2APIC) { 266 if (!((apic_local_mode() == LOCAL_X2APIC) || 267 apic_detect_x2apic())) { 268 /* x2APIC mode is not supported in the hw */ 269 apix_enable = 0; 270 } 271 } 272 if (apix_enable == 0) 273 return (PSM_FAILURE); 274 } 275 276 rval = apic_probe_common(apix_psm_info.p_mach_idstring); 277 if (rval == PSM_SUCCESS) 278 apix_is_enabled = 1; 279 else 280 apix_is_enabled = 0; 281 return (rval); 282 } 283 284 /* 285 * Initialize the data structures needed by pcplusmpx module. 286 * Specifically, the data structures used by addspl() and delspl() 287 * routines. 288 */ 289 static void 290 apix_softinit() 291 { 292 int i, *iptr; 293 apix_impl_t *hdlp; 294 int nproc; 295 296 nproc = max(apic_nproc, apic_max_nproc); 297 298 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP); 299 for (i = 0; i < nproc; i++) { 300 apixs[i] = &hdlp[i]; 301 apixs[i]->x_cpuid = i; 302 LOCK_INIT_CLEAR(&apixs[i]->x_lock); 303 } 304 305 /* cpu 0 is always up (for now) */ 306 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 307 308 iptr = (int *)&apic_irq_table[0]; 309 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 310 apic_level_intr[i] = 0; 311 *iptr++ = NULL; 312 } 313 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); 314 315 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt, 316 KM_SLEEP); 317 318 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { 319 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt, 320 KM_SLEEP); 321 for (i = 0; i < devcnt; i++) 322 apix_major_to_cpu[i] = IRQ_UNINIT; 323 } 324 325 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL); 326 } 327 328 static int 329 apix_get_pending_spl(void) 330 { 331 int cpuid = CPU->cpu_id; 332 333 return (bsrw_insn(apixs[cpuid]->x_intr_pending)); 334 } 335 336 static uintptr_t 337 apix_get_intr_handler(int cpu, short vec) 338 { 339 apix_vector_t *apix_vector; 340 341 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR); 342 if (cpu >= apic_nproc) 343 return (NULL); 344 345 apix_vector = apixs[cpu]->x_vectbl[vec]; 346 347 return ((uintptr_t)(apix_vector->v_autovect)); 348 } 349 350 #if defined(__amd64) 351 static unsigned char dummy_cpu_pri[MAXIPL + 1] = { 352 0, 0, 0, 0, 0, 0, 0, 0, 353 0, 0, 0, 0, 0, 0, 0, 0, 0 354 }; 355 #endif 356 357 static void 358 apix_init() 359 { 360 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *); 361 362 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n")); 363 364 do_interrupt_common = apix_do_interrupt; 365 addintr = apix_add_avintr; 366 remintr = apix_rem_avintr; 367 get_pending_spl = apix_get_pending_spl; 368 get_intr_handler = apix_get_intr_handler; 369 psm_get_localapicid = apic_get_localapicid; 370 psm_get_ioapicid = apic_get_ioapicid; 371 372 apix_softinit(); 373 #if defined(__amd64) 374 /* 375 * Make cpu-specific interrupt info point to cr8pri vector 376 */ 377 CPU->cpu_pri_data = dummy_cpu_pri; 378 #else 379 if (cpuid_have_cr8access(CPU)) 380 apic_have_32bit_cr8 = 1; 381 #endif /* __amd64 */ 382 383 /* 384 * Initialize IRM pool parameters 385 */ 386 if (irm_enable) { 387 int i; 388 int lowest_irq; 389 int highest_irq; 390 391 /* number of CPUs present */ 392 apix_irminfo.apix_ncpus = apic_nproc; 393 /* total number of entries in all of the IOAPICs present */ 394 lowest_irq = apic_io_vectbase[0]; 395 highest_irq = apic_io_vectend[0]; 396 for (i = 1; i < apic_io_max; i++) { 397 if (apic_io_vectbase[i] < lowest_irq) 398 lowest_irq = apic_io_vectbase[i]; 399 if (apic_io_vectend[i] > highest_irq) 400 highest_irq = apic_io_vectend[i]; 401 } 402 apix_irminfo.apix_ioapic_max_vectors = 403 highest_irq - lowest_irq + 1; 404 /* 405 * Number of available per-CPU vectors excluding 406 * reserved vectors for Dtrace, int80, system-call, 407 * fast-trap, etc. 408 */ 409 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR - 410 APIX_SW_RESERVED_VECTORS; 411 412 /* Number of vectors (pre) allocated (SCI and HPET) */ 413 apix_irminfo.apix_vectors_allocated = 0; 414 if (apic_hpet_vect != -1) 415 apix_irminfo.apix_vectors_allocated++; 416 if (apic_sci_vect != -1) 417 apix_irminfo.apix_vectors_allocated++; 418 } 419 } 420 421 static void 422 apix_init_intr() 423 { 424 processorid_t cpun = psm_get_cpu_id(); 425 uint_t nlvt; 426 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 427 extern void cmi_cmci_trap(void); 428 429 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 430 431 if (apic_mode == LOCAL_APIC) { 432 /* 433 * We are running APIC in MMIO mode. 434 */ 435 if (apic_flat_model) { 436 apic_reg_ops->apic_write(APIC_FORMAT_REG, 437 APIC_FLAT_MODEL); 438 } else { 439 apic_reg_ops->apic_write(APIC_FORMAT_REG, 440 APIC_CLUSTER_MODEL); 441 } 442 443 apic_reg_ops->apic_write(APIC_DEST_REG, 444 AV_HIGH_ORDER >> cpun); 445 } 446 447 if (apic_directed_EOI_supported()) { 448 /* 449 * Setting the 12th bit in the Spurious Interrupt Vector 450 * Register suppresses broadcast EOIs generated by the local 451 * APIC. The suppression of broadcast EOIs happens only when 452 * interrupts are level-triggered. 453 */ 454 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 455 } 456 457 /* need to enable APIC before unmasking NMI */ 458 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 459 460 /* 461 * Presence of an invalid vector with delivery mode AV_FIXED can 462 * cause an error interrupt, even if the entry is masked...so 463 * write a valid vector to LVT entries along with the mask bit 464 */ 465 466 /* All APICs have timer and LINT0/1 */ 467 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 468 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 469 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 470 471 /* 472 * On integrated APICs, the number of LVT entries is 473 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 474 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 475 */ 476 477 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 478 nlvt = 3; 479 } else { 480 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 481 0xFF) + 1; 482 } 483 484 if (nlvt >= 5) { 485 /* Enable performance counter overflow interrupt */ 486 487 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 488 apic_enable_cpcovf_intr = 0; 489 if (apic_enable_cpcovf_intr) { 490 if (apic_cpcovf_vect == 0) { 491 int ipl = APIC_PCINT_IPL; 492 493 apic_cpcovf_vect = apix_get_ipivect(ipl, -1); 494 ASSERT(apic_cpcovf_vect); 495 496 (void) add_avintr(NULL, ipl, 497 (avfunc)kcpc_hw_overflow_intr, 498 "apic pcint", apic_cpcovf_vect, 499 NULL, NULL, NULL, NULL); 500 kcpc_hw_overflow_intr_installed = 1; 501 kcpc_hw_enable_cpc_intr = 502 apic_cpcovf_mask_clear; 503 } 504 apic_reg_ops->apic_write(APIC_PCINT_VECT, 505 apic_cpcovf_vect); 506 } 507 } 508 509 if (nlvt >= 6) { 510 /* Only mask TM intr if the BIOS apparently doesn't use it */ 511 512 uint32_t lvtval; 513 514 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 515 if (((lvtval & AV_MASK) == AV_MASK) || 516 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 517 apic_reg_ops->apic_write(APIC_THERM_VECT, 518 AV_MASK|APIC_RESV_IRQ); 519 } 520 } 521 522 /* Enable error interrupt */ 523 524 if (nlvt >= 4 && apic_enable_error_intr) { 525 if (apic_errvect == 0) { 526 int ipl = 0xf; /* get highest priority intr */ 527 apic_errvect = apix_get_ipivect(ipl, -1); 528 ASSERT(apic_errvect); 529 /* 530 * Not PSMI compliant, but we are going to merge 531 * with ON anyway 532 */ 533 (void) add_avintr(NULL, ipl, 534 (avfunc)apic_error_intr, "apic error intr", 535 apic_errvect, NULL, NULL, NULL, NULL); 536 } 537 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 538 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 539 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 540 } 541 542 /* Enable CMCI interrupt */ 543 if (cmi_enable_cmci) { 544 mutex_enter(&cmci_cpu_setup_lock); 545 if (cmci_cpu_setup_registered == 0) { 546 mutex_enter(&cpu_lock); 547 register_cpu_setup_func(cmci_cpu_setup, NULL); 548 mutex_exit(&cpu_lock); 549 cmci_cpu_setup_registered = 1; 550 } 551 mutex_exit(&cmci_cpu_setup_lock); 552 553 if (apic_cmci_vect == 0) { 554 int ipl = 0x2; 555 apic_cmci_vect = apix_get_ipivect(ipl, -1); 556 ASSERT(apic_cmci_vect); 557 558 (void) add_avintr(NULL, ipl, 559 (avfunc)cmi_cmci_trap, "apic cmci intr", 560 apic_cmci_vect, NULL, NULL, NULL, NULL); 561 } 562 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 563 } 564 565 apic_reg_ops->apic_write_task_reg(0); 566 } 567 568 static void 569 apix_picinit(void) 570 { 571 int i, j; 572 uint_t isr; 573 574 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n")); 575 576 /* 577 * initialize interrupt remapping before apic 578 * hardware initialization 579 */ 580 apic_intrmap_init(apic_mode); 581 if (apic_vt_ops == psm_vt_ops) 582 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR; 583 584 /* 585 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 586 * bit on without clearing it with EOI. Since softint 587 * uses vector 0x20 to interrupt itself, so softint will 588 * not work on this machine. In order to fix this problem 589 * a check is made to verify all the isr bits are clear. 590 * If not, EOIs are issued to clear the bits. 591 */ 592 for (i = 7; i >= 1; i--) { 593 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 594 if (isr != 0) 595 for (j = 0; ((j < 32) && (isr != 0)); j++) 596 if (isr & (1 << j)) { 597 apic_reg_ops->apic_write( 598 APIC_EOI_REG, 0); 599 isr &= ~(1 << j); 600 apic_error |= APIC_ERR_BOOT_EOI; 601 } 602 } 603 604 /* set a flag so we know we have run apic_picinit() */ 605 apic_picinit_called = 1; 606 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 607 LOCK_INIT_CLEAR(&apic_ioapic_lock); 608 LOCK_INIT_CLEAR(&apic_error_lock); 609 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 610 611 picsetup(); /* initialise the 8259 */ 612 613 /* add nmi handler - least priority nmi handler */ 614 LOCK_INIT_CLEAR(&apic_nmi_lock); 615 616 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 617 "apix NMI handler", (caddr_t)NULL)) 618 cmn_err(CE_WARN, "apix: Unable to add nmi handler"); 619 620 apix_init_intr(); 621 622 /* enable apic mode if imcr present */ 623 if (apic_imcrp) { 624 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 625 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 626 } 627 628 ioapix_init_intr(IOAPIC_MASK); 629 630 /* setup global IRM pool if applicable */ 631 if (irm_enable) 632 apix_irm_init(); 633 } 634 635 static __inline__ void 636 apix_send_eoi(void) 637 { 638 if (apic_mode == LOCAL_APIC) 639 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 640 else 641 X2APIC_WRITE(APIC_EOI_REG, 0); 642 } 643 644 /* 645 * platform_intr_enter 646 * 647 * Called at the beginning of the interrupt service routine, but unlike 648 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt 649 * controller to enable other HW interrupts but interrupts are still 650 * masked by the IF flag. 651 * 652 * Return -1 for spurious interrupts 653 * 654 */ 655 static int 656 apix_intr_enter(int ipl, int *vectorp) 657 { 658 struct cpu *cpu = CPU; 659 uint32_t cpuid = CPU->cpu_id; 660 apic_cpus_info_t *cpu_infop; 661 uchar_t vector; 662 apix_vector_t *vecp; 663 int nipl = -1; 664 665 /* 666 * The real vector delivered is (*vectorp + 0x20), but our caller 667 * subtracts 0x20 from the vector before passing it to us. 668 * (That's why APIC_BASE_VECT is 0x20.) 669 */ 670 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT; 671 672 cpu_infop = &apic_cpus[cpuid]; 673 if (vector == APIC_SPUR_INTR) { 674 cpu_infop->aci_spur_cnt++; 675 return (APIC_INT_SPURIOUS); 676 } 677 678 vecp = xv_vector(cpuid, vector); 679 if (vecp == NULL) { 680 if (APIX_IS_FAKE_INTR(vector)) 681 nipl = apix_rebindinfo.i_pri; 682 apix_send_eoi(); 683 return (nipl); 684 } 685 nipl = vecp->v_pri; 686 687 /* if interrupted by the clock, increment apic_nsec_since_boot */ 688 if (vector == (apic_clkvect + APIC_BASE_VECT)) { 689 if (!apic_oneshot) { 690 /* NOTE: this is not MT aware */ 691 apic_hrtime_stamp++; 692 apic_nsec_since_boot += apic_nsec_per_intr; 693 apic_hrtime_stamp++; 694 last_count_read = apic_hertz_count; 695 apix_redistribute_compute(); 696 } 697 698 apix_send_eoi(); 699 700 return (nipl); 701 } 702 703 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED); 704 705 /* pre-EOI handling for level-triggered interrupts */ 706 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) && 707 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum]) 708 apix_level_intr_pre_eoi(vecp->v_inum); 709 710 /* send back EOI */ 711 apix_send_eoi(); 712 713 cpu_infop->aci_current[nipl] = vector; 714 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) { 715 cpu_infop->aci_curipl = (uchar_t)nipl; 716 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 717 } 718 719 #ifdef DEBUG 720 if (vector >= APIX_IPI_MIN) 721 return (nipl); /* skip IPI */ 722 723 APIC_DEBUG_BUF_PUT(vector); 724 APIC_DEBUG_BUF_PUT(vecp->v_inum); 725 APIC_DEBUG_BUF_PUT(nipl); 726 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 727 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 728 drv_usecwait(apic_stretch_interrupts); 729 #endif /* DEBUG */ 730 731 return (nipl); 732 } 733 734 /* 735 * Any changes made to this function must also change X2APIC 736 * version of intr_exit. 737 */ 738 static void 739 apix_intr_exit(int prev_ipl, int arg2) 740 { 741 int cpuid = psm_get_cpu_id(); 742 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid]; 743 apix_impl_t *apixp = apixs[cpuid]; 744 745 UNREFERENCED_1PARAMETER(arg2); 746 747 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 748 /* ISR above current pri could not be in progress */ 749 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 750 751 if (apixp->x_obsoletes != NULL) { 752 if (APIX_CPU_LOCK_HELD(cpuid)) 753 return; 754 755 APIX_ENTER_CPU_LOCK(cpuid); 756 (void) apix_obsolete_vector(apixp->x_obsoletes); 757 APIX_LEAVE_CPU_LOCK(cpuid); 758 } 759 } 760 761 /* 762 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the 763 * given ipl, but apix never uses the TPR and we never mask a subset of the 764 * interrupts. They are either all blocked by the IF flag or all can come in. 765 * 766 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts 767 * can come in if currently enabled by the IF flag. This table shows the state 768 * of the IF flag when we leave this function. 769 * 770 * curr IF | ipl == 15 ipl != 15 771 * --------+--------------------------- 772 * 0 | 0 0 773 * 1 | 0 1 774 */ 775 static void 776 apix_setspl(int ipl) 777 { 778 /* 779 * Interrupts at ipl above this cannot be in progress, so the following 780 * mask is ok. 781 */ 782 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 783 784 if (ipl == XC_HI_PIL) 785 cli(); 786 } 787 788 int 789 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl) 790 { 791 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 792 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 793 apix_vector_t *vecp = xv_vector(cpuid, vector); 794 795 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 796 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 797 798 if (vecp->v_type == APIX_TYPE_FIXED) 799 apix_intx_set_shared(vecp->v_inum, 1); 800 801 /* There are more interrupts, so it's already been enabled */ 802 if (vecp->v_share > 1) 803 return (PSM_SUCCESS); 804 805 /* return if it is not hardware interrupt */ 806 if (vecp->v_type == APIX_TYPE_IPI) 807 return (PSM_SUCCESS); 808 809 /* 810 * if apix_picinit() has not been called yet, just return. 811 * At the end of apic_picinit(), we will call setup_io_intr(). 812 */ 813 if (!apic_picinit_called) 814 return (PSM_SUCCESS); 815 816 (void) apix_setup_io_intr(vecp); 817 818 return (PSM_SUCCESS); 819 } 820 821 int 822 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl) 823 { 824 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); 825 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); 826 apix_vector_t *vecp = xv_vector(cpuid, vector); 827 828 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); 829 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); 830 831 if (vecp->v_type == APIX_TYPE_FIXED) 832 apix_intx_set_shared(vecp->v_inum, -1); 833 834 /* There are more interrupts */ 835 if (vecp->v_share > 1) 836 return (PSM_SUCCESS); 837 838 /* return if it is not hardware interrupt */ 839 if (vecp->v_type == APIX_TYPE_IPI) 840 return (PSM_SUCCESS); 841 842 if (!apic_picinit_called) { 843 cmn_err(CE_WARN, "apix: delete 0x%x before apic init", 844 virtvec); 845 return (PSM_SUCCESS); 846 } 847 848 apix_disable_vector(vecp); 849 850 return (PSM_SUCCESS); 851 } 852 853 /* 854 * Try and disable all interrupts. We just assign interrupts to other 855 * processors based on policy. If any were bound by user request, we 856 * let them continue and return failure. We do not bother to check 857 * for cache affinity while rebinding. 858 */ 859 static int 860 apix_disable_intr(processorid_t cpun) 861 { 862 apix_impl_t *apixp = apixs[cpun]; 863 apix_vector_t *vecp, *newp; 864 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type; 865 866 lock_set(&apix_lock); 867 868 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 869 apic_cpus[cpun].aci_curipl = 0; 870 871 /* if this is for SUSPEND operation, skip rebinding */ 872 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 873 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 874 vecp = apixp->x_vectbl[i]; 875 if (!IS_VECT_ENABLED(vecp)) 876 continue; 877 878 apix_disable_vector(vecp); 879 } 880 lock_clear(&apix_lock); 881 return (PSM_SUCCESS); 882 } 883 884 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 885 vecp = apixp->x_vectbl[i]; 886 if (!IS_VECT_ENABLED(vecp)) 887 continue; 888 889 if (vecp->v_flags & APIX_VECT_USER_BOUND) { 890 hardbound++; 891 continue; 892 } 893 type = vecp->v_type; 894 895 /* 896 * If there are bound interrupts on this cpu, then 897 * rebind them to other processors. 898 */ 899 loop = 0; 900 do { 901 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE); 902 903 if (type != APIX_TYPE_MSI) 904 newp = apix_set_cpu(vecp, bindcpu, &ret); 905 else 906 newp = apix_grp_set_cpu(vecp, bindcpu, &ret); 907 } while ((newp == NULL) && (loop++ < apic_nproc)); 908 909 if (loop >= apic_nproc) { 910 errbound++; 911 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x", 912 vecp->v_cpuid, vecp->v_vector); 913 } 914 } 915 916 lock_clear(&apix_lock); 917 918 if (hardbound || errbound) { 919 cmn_err(CE_WARN, "Could not disable interrupts on %d" 920 "due to user bound interrupts or failed operation", 921 cpun); 922 return (PSM_FAILURE); 923 } 924 925 return (PSM_SUCCESS); 926 } 927 928 /* 929 * Bind interrupts to specified CPU 930 */ 931 static void 932 apix_enable_intr(processorid_t cpun) 933 { 934 apix_vector_t *vecp; 935 int i, ret; 936 processorid_t n; 937 938 lock_set(&apix_lock); 939 940 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 941 942 /* interrupt enabling for system resume */ 943 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { 944 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 945 vecp = xv_vector(cpun, i); 946 if (!IS_VECT_ENABLED(vecp)) 947 continue; 948 949 apix_enable_vector(vecp); 950 } 951 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 952 } 953 954 for (n = 0; n < apic_nproc; n++) { 955 if (!apic_cpu_in_range(n) || n == cpun || 956 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0) 957 continue; 958 959 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { 960 vecp = xv_vector(n, i); 961 if (!IS_VECT_ENABLED(vecp) || 962 vecp->v_bound_cpuid != cpun) 963 continue; 964 965 if (vecp->v_type != APIX_TYPE_MSI) 966 (void) apix_set_cpu(vecp, cpun, &ret); 967 else 968 (void) apix_grp_set_cpu(vecp, cpun, &ret); 969 } 970 } 971 972 lock_clear(&apix_lock); 973 } 974 975 /* 976 * Allocate vector for IPI 977 * type == -1 indicates it is an internal request. Do not change 978 * resv_vector for these requests. 979 */ 980 static int 981 apix_get_ipivect(int ipl, int type) 982 { 983 uchar_t vector; 984 985 if ((vector = apix_alloc_ipi(ipl)) > 0) { 986 if (type != -1) 987 apic_resv_vector[ipl] = vector; 988 return (vector); 989 } 990 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 991 return (-1); /* shouldn't happen */ 992 } 993 994 static int 995 apix_get_clkvect(int ipl) 996 { 997 int vector; 998 999 if ((vector = apix_get_ipivect(ipl, -1)) == -1) 1000 return (-1); 1001 1002 apic_clkvect = vector - APIC_BASE_VECT; 1003 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n", 1004 apic_clkvect)); 1005 return (vector); 1006 } 1007 1008 static int 1009 apix_post_cpu_start() 1010 { 1011 int cpun; 1012 static int cpus_started = 1; 1013 1014 /* We know this CPU + BSP started successfully. */ 1015 cpus_started++; 1016 1017 /* 1018 * On BSP we would have enabled X2APIC, if supported by processor, 1019 * in acpi_probe(), but on AP we do it here. 1020 * 1021 * We enable X2APIC mode only if BSP is running in X2APIC & the 1022 * local APIC mode of the current CPU is MMIO (xAPIC). 1023 */ 1024 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1025 apic_local_mode() == LOCAL_APIC) { 1026 apic_enable_x2apic(); 1027 } 1028 1029 /* 1030 * Switch back to x2apic IPI sending method for performance when target 1031 * CPU has entered x2apic mode. 1032 */ 1033 if (apic_mode == LOCAL_X2APIC) { 1034 apic_switch_ipi_callback(B_FALSE); 1035 } 1036 1037 splx(ipltospl(LOCK_LEVEL)); 1038 apix_init_intr(); 1039 1040 /* 1041 * since some systems don't enable the internal cache on the non-boot 1042 * cpus, so we have to enable them here 1043 */ 1044 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1045 1046 #ifdef DEBUG 1047 APIC_AV_PENDING_SET(); 1048 #else 1049 if (apic_mode == LOCAL_APIC) 1050 APIC_AV_PENDING_SET(); 1051 #endif /* DEBUG */ 1052 1053 /* 1054 * We may be booting, or resuming from suspend; aci_status will 1055 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1056 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1057 */ 1058 cpun = psm_get_cpu_id(); 1059 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1060 1061 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1062 1063 return (PSM_SUCCESS); 1064 } 1065 1066 /* 1067 * If this module needs a periodic handler for the interrupt distribution, it 1068 * can be added here. The argument to the periodic handler is not currently 1069 * used, but is reserved for future. 1070 */ 1071 static void 1072 apix_post_cyclic_setup(void *arg) 1073 { 1074 UNREFERENCED_1PARAMETER(arg); 1075 1076 cyc_handler_t cyh; 1077 cyc_time_t cyt; 1078 1079 /* cpu_lock is held */ 1080 /* set up a periodic handler for intr redistribution */ 1081 1082 /* 1083 * In peridoc mode intr redistribution processing is done in 1084 * apic_intr_enter during clk intr processing 1085 */ 1086 if (!apic_oneshot) 1087 return; 1088 1089 /* 1090 * Register a periodical handler for the redistribution processing. 1091 * Though we would generally prefer to use the DDI interface for 1092 * periodic handler invocation, ddi_periodic_add(9F), we are 1093 * unfortunately already holding cpu_lock, which ddi_periodic_add will 1094 * attempt to take for us. Thus, we add our own cyclic directly: 1095 */ 1096 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute; 1097 cyh.cyh_arg = NULL; 1098 cyh.cyh_level = CY_LOW_LEVEL; 1099 1100 cyt.cyt_when = 0; 1101 cyt.cyt_interval = apic_redistribute_sample_interval; 1102 1103 apic_cyclic_id = cyclic_add(&cyh, &cyt); 1104 } 1105 1106 /* 1107 * Called the first time we enable x2apic mode on this cpu. 1108 * Update some of the function pointers to use x2apic routines. 1109 */ 1110 void 1111 x2apic_update_psm() 1112 { 1113 struct psm_ops *pops = &apix_ops; 1114 1115 ASSERT(pops != NULL); 1116 1117 /* 1118 * The pcplusmp module's version of x2apic_update_psm makes additional 1119 * changes that we do not have to make here. It needs to make those 1120 * changes because pcplusmp relies on the TPR register and the means of 1121 * addressing that changes when using the local apic versus the x2apic. 1122 * It's also worth noting that the apix driver specific function end up 1123 * being apix_foo as opposed to apic_foo and x2apic_foo. 1124 */ 1125 pops->psm_send_ipi = x2apic_send_ipi; 1126 1127 send_dirintf = pops->psm_send_ipi; 1128 1129 apic_mode = LOCAL_X2APIC; 1130 apic_change_ops(); 1131 } 1132 1133 /* 1134 * This function provides external interface to the nexus for all 1135 * functionalities related to the new DDI interrupt framework. 1136 * 1137 * Input: 1138 * dip - pointer to the dev_info structure of the requested device 1139 * hdlp - pointer to the internal interrupt handle structure for the 1140 * requested interrupt 1141 * intr_op - opcode for this call 1142 * result - pointer to the integer that will hold the result to be 1143 * passed back if return value is PSM_SUCCESS 1144 * 1145 * Output: 1146 * return value is either PSM_SUCCESS or PSM_FAILURE 1147 */ 1148 static int 1149 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1150 psm_intr_op_t intr_op, int *result) 1151 { 1152 int cap; 1153 apix_vector_t *vecp, *newvecp; 1154 struct intrspec *ispec, intr_spec; 1155 processorid_t target; 1156 1157 ispec = &intr_spec; 1158 ispec->intrspec_pri = hdlp->ih_pri; 1159 ispec->intrspec_vec = hdlp->ih_inum; 1160 ispec->intrspec_func = hdlp->ih_cb_func; 1161 1162 switch (intr_op) { 1163 case PSM_INTR_OP_ALLOC_VECTORS: 1164 switch (hdlp->ih_type) { 1165 case DDI_INTR_TYPE_MSI: 1166 /* allocate MSI vectors */ 1167 *result = apix_alloc_msi(dip, hdlp->ih_inum, 1168 hdlp->ih_scratch1, 1169 (int)(uintptr_t)hdlp->ih_scratch2); 1170 break; 1171 case DDI_INTR_TYPE_MSIX: 1172 /* allocate MSI-X vectors */ 1173 *result = apix_alloc_msix(dip, hdlp->ih_inum, 1174 hdlp->ih_scratch1, 1175 (int)(uintptr_t)hdlp->ih_scratch2); 1176 break; 1177 case DDI_INTR_TYPE_FIXED: 1178 /* allocate or share vector for fixed */ 1179 if ((ihdl_plat_t *)hdlp->ih_private == NULL) { 1180 return (PSM_FAILURE); 1181 } 1182 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1183 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum, 1184 ispec); 1185 break; 1186 default: 1187 return (PSM_FAILURE); 1188 } 1189 break; 1190 case PSM_INTR_OP_FREE_VECTORS: 1191 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 1192 hdlp->ih_type); 1193 break; 1194 case PSM_INTR_OP_XLATE_VECTOR: 1195 /* 1196 * Vectors are allocated by ALLOC and freed by FREE. 1197 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector). 1198 */ 1199 *result = APIX_INVALID_VECT; 1200 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1201 if (vecp != NULL) { 1202 *result = APIX_VIRTVECTOR(vecp->v_cpuid, 1203 vecp->v_vector); 1204 break; 1205 } 1206 1207 /* 1208 * No vector to device mapping exists. If this is FIXED type 1209 * then check if this IRQ is already mapped for another device 1210 * then return the vector number for it (i.e. shared IRQ case). 1211 * Otherwise, return PSM_FAILURE. 1212 */ 1213 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1214 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum, 1215 ispec); 1216 *result = (vecp == NULL) ? APIX_INVALID_VECT : 1217 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); 1218 } 1219 if (*result == APIX_INVALID_VECT) 1220 return (PSM_FAILURE); 1221 break; 1222 case PSM_INTR_OP_GET_PENDING: 1223 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1224 if (vecp == NULL) 1225 return (PSM_FAILURE); 1226 1227 *result = apix_get_pending(vecp); 1228 break; 1229 case PSM_INTR_OP_CLEAR_MASK: 1230 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1231 return (PSM_FAILURE); 1232 1233 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1234 if (vecp == NULL) 1235 return (PSM_FAILURE); 1236 1237 apix_intx_clear_mask(vecp->v_inum); 1238 break; 1239 case PSM_INTR_OP_SET_MASK: 1240 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1241 return (PSM_FAILURE); 1242 1243 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1244 if (vecp == NULL) 1245 return (PSM_FAILURE); 1246 1247 apix_intx_set_mask(vecp->v_inum); 1248 break; 1249 case PSM_INTR_OP_GET_SHARED: 1250 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1251 return (PSM_FAILURE); 1252 1253 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); 1254 if (vecp == NULL) 1255 return (PSM_FAILURE); 1256 1257 *result = apix_intx_get_shared(vecp->v_inum); 1258 break; 1259 case PSM_INTR_OP_SET_PRI: 1260 /* 1261 * Called prior to adding the interrupt handler or when 1262 * an interrupt handler is unassigned. 1263 */ 1264 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1265 return (PSM_SUCCESS); 1266 1267 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL) 1268 return (PSM_FAILURE); 1269 1270 break; 1271 case PSM_INTR_OP_SET_CPU: 1272 case PSM_INTR_OP_GRP_SET_CPU: 1273 /* 1274 * The interrupt handle given here has been allocated 1275 * specifically for this command, and ih_private carries 1276 * a CPU value. 1277 */ 1278 *result = EINVAL; 1279 target = (int)(intptr_t)hdlp->ih_private; 1280 if (!apic_cpu_in_range(target)) { 1281 DDI_INTR_IMPLDBG((CE_WARN, 1282 "[grp_]set_cpu: cpu out of range: %d\n", target)); 1283 return (PSM_FAILURE); 1284 } 1285 1286 lock_set(&apix_lock); 1287 1288 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags); 1289 if (!IS_VECT_ENABLED(vecp)) { 1290 DDI_INTR_IMPLDBG((CE_WARN, 1291 "[grp]_set_cpu: invalid vector 0x%x\n", 1292 hdlp->ih_vector)); 1293 lock_clear(&apix_lock); 1294 return (PSM_FAILURE); 1295 } 1296 1297 *result = 0; 1298 1299 if (intr_op == PSM_INTR_OP_SET_CPU) 1300 newvecp = apix_set_cpu(vecp, target, result); 1301 else 1302 newvecp = apix_grp_set_cpu(vecp, target, result); 1303 1304 lock_clear(&apix_lock); 1305 1306 if (newvecp == NULL) { 1307 *result = EIO; 1308 return (PSM_FAILURE); 1309 } 1310 newvecp->v_bound_cpuid = target; 1311 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid, 1312 newvecp->v_vector); 1313 break; 1314 1315 case PSM_INTR_OP_GET_INTR: 1316 /* 1317 * The interrupt handle given here has been allocated 1318 * specifically for this command, and ih_private carries 1319 * a pointer to a apic_get_intr_t. 1320 */ 1321 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS) 1322 return (PSM_FAILURE); 1323 break; 1324 1325 case PSM_INTR_OP_CHECK_MSI: 1326 /* 1327 * Check MSI/X is supported or not at APIC level and 1328 * masked off the MSI/X bits in hdlp->ih_type if not 1329 * supported before return. If MSI/X is supported, 1330 * leave the ih_type unchanged and return. 1331 * 1332 * hdlp->ih_type passed in from the nexus has all the 1333 * interrupt types supported by the device. 1334 */ 1335 if (apic_support_msi == 0) { /* uninitialized */ 1336 /* 1337 * if apic_support_msi is not set, call 1338 * apic_check_msi_support() to check whether msi 1339 * is supported first 1340 */ 1341 if (apic_check_msi_support() == PSM_SUCCESS) 1342 apic_support_msi = 1; /* supported */ 1343 else 1344 apic_support_msi = -1; /* not-supported */ 1345 } 1346 if (apic_support_msi == 1) { 1347 if (apic_msix_enable) 1348 *result = hdlp->ih_type; 1349 else 1350 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 1351 } else 1352 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1353 DDI_INTR_TYPE_MSIX); 1354 break; 1355 case PSM_INTR_OP_GET_CAP: 1356 cap = DDI_INTR_FLAG_PENDING; 1357 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1358 cap |= DDI_INTR_FLAG_MASKABLE; 1359 *result = cap; 1360 break; 1361 case PSM_INTR_OP_APIC_TYPE: 1362 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type = 1363 apix_get_apic_type(); 1364 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr = 1365 APIX_IPI_MIN; 1366 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu = 1367 apic_nproc; 1368 hdlp->ih_ver = apic_get_apic_version(); 1369 break; 1370 case PSM_INTR_OP_SET_CAP: 1371 default: 1372 return (PSM_FAILURE); 1373 } 1374 1375 return (PSM_SUCCESS); 1376 } 1377 1378 static void 1379 apix_cleanup_busy(void) 1380 { 1381 int i, j; 1382 apix_vector_t *vecp; 1383 1384 for (i = 0; i < apic_nproc; i++) { 1385 if (!apic_cpu_in_range(i)) 1386 continue; 1387 apic_cpus[i].aci_busy = 0; 1388 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) { 1389 if ((vecp = xv_vector(i, j)) != NULL) 1390 vecp->v_busy = 0; 1391 } 1392 } 1393 } 1394 1395 static void 1396 apix_redistribute_compute(void) 1397 { 1398 int i, j, max_busy; 1399 1400 if (!apic_enable_dynamic_migration) 1401 return; 1402 1403 if (++apic_nticks == apic_sample_factor_redistribution) { 1404 /* 1405 * Time to call apic_intr_redistribute(). 1406 * reset apic_nticks. This will cause max_busy 1407 * to be calculated below and if it is more than 1408 * apic_int_busy, we will do the whole thing 1409 */ 1410 apic_nticks = 0; 1411 } 1412 max_busy = 0; 1413 for (i = 0; i < apic_nproc; i++) { 1414 if (!apic_cpu_in_range(i)) 1415 continue; 1416 /* 1417 * Check if curipl is non zero & if ISR is in 1418 * progress 1419 */ 1420 if (((j = apic_cpus[i].aci_curipl) != 0) && 1421 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1422 1423 int vect; 1424 apic_cpus[i].aci_busy++; 1425 vect = apic_cpus[i].aci_current[j]; 1426 apixs[i]->x_vectbl[vect]->v_busy++; 1427 } 1428 1429 if (!apic_nticks && 1430 (apic_cpus[i].aci_busy > max_busy)) 1431 max_busy = apic_cpus[i].aci_busy; 1432 } 1433 if (!apic_nticks) { 1434 if (max_busy > apic_int_busy_mark) { 1435 /* 1436 * We could make the following check be 1437 * skipped > 1 in which case, we get a 1438 * redistribution at half the busy mark (due to 1439 * double interval). Need to be able to collect 1440 * more empirical data to decide if that is a 1441 * good strategy. Punt for now. 1442 */ 1443 apix_cleanup_busy(); 1444 apic_skipped_redistribute = 0; 1445 } else 1446 apic_skipped_redistribute++; 1447 } 1448 } 1449 1450 /* 1451 * intr_ops() service routines 1452 */ 1453 1454 static int 1455 apix_get_pending(apix_vector_t *vecp) 1456 { 1457 int bit, index, irr, pending; 1458 1459 /* need to get on the bound cpu */ 1460 mutex_enter(&cpu_lock); 1461 affinity_set(vecp->v_cpuid); 1462 1463 index = vecp->v_vector / 32; 1464 bit = vecp->v_vector % 32; 1465 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 1466 1467 affinity_clear(); 1468 mutex_exit(&cpu_lock); 1469 1470 pending = (irr & (1 << bit)) ? 1 : 0; 1471 if (!pending && vecp->v_type == APIX_TYPE_FIXED) 1472 pending = apix_intx_get_pending(vecp->v_inum); 1473 1474 return (pending); 1475 } 1476 1477 static apix_vector_t * 1478 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags) 1479 { 1480 apix_vector_t *vecp; 1481 processorid_t cpuid; 1482 int32_t virt_vec = 0; 1483 1484 switch (flags & PSMGI_INTRBY_FLAGS) { 1485 case PSMGI_INTRBY_IRQ: 1486 return (apix_intx_get_vector(hdlp->ih_vector)); 1487 case PSMGI_INTRBY_VEC: 1488 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec; 1489 1490 cpuid = APIX_VIRTVEC_CPU(virt_vec); 1491 if (!apic_cpu_in_range(cpuid)) 1492 return (NULL); 1493 1494 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec)); 1495 break; 1496 case PSMGI_INTRBY_DEFAULT: 1497 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum, 1498 hdlp->ih_type); 1499 break; 1500 default: 1501 return (NULL); 1502 } 1503 1504 return (vecp); 1505 } 1506 1507 static int 1508 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp, 1509 apic_get_intr_t *intr_params_p) 1510 { 1511 apix_vector_t *vecp; 1512 struct autovec *av_dev; 1513 int i; 1514 1515 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags); 1516 if (IS_VECT_FREE(vecp)) { 1517 intr_params_p->avgi_num_devs = 0; 1518 intr_params_p->avgi_cpu_id = 0; 1519 intr_params_p->avgi_req_flags = 0; 1520 return (PSM_SUCCESS); 1521 } 1522 1523 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 1524 intr_params_p->avgi_cpu_id = vecp->v_cpuid; 1525 1526 /* Return user bound info for intrd. */ 1527 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 1528 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 1529 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 1530 } 1531 } 1532 1533 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 1534 intr_params_p->avgi_vector = vecp->v_vector; 1535 1536 if (intr_params_p->avgi_req_flags & 1537 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 1538 /* Get number of devices from apic_irq table shared field. */ 1539 intr_params_p->avgi_num_devs = vecp->v_share; 1540 1541 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 1542 1543 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 1544 1545 /* Some devices have NULL dip. Don't count these. */ 1546 if (intr_params_p->avgi_num_devs > 0) { 1547 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1548 av_dev = av_dev->av_link) { 1549 if (av_dev->av_vector && av_dev->av_dip) 1550 i++; 1551 } 1552 intr_params_p->avgi_num_devs = 1553 (uint8_t)MIN(intr_params_p->avgi_num_devs, i); 1554 } 1555 1556 /* There are no viable dips to return. */ 1557 if (intr_params_p->avgi_num_devs == 0) { 1558 intr_params_p->avgi_dip_list = NULL; 1559 1560 } else { /* Return list of dips */ 1561 1562 /* Allocate space in array for that number of devs. */ 1563 intr_params_p->avgi_dip_list = kmem_zalloc( 1564 intr_params_p->avgi_num_devs * 1565 sizeof (dev_info_t *), 1566 KM_NOSLEEP); 1567 if (intr_params_p->avgi_dip_list == NULL) { 1568 DDI_INTR_IMPLDBG((CE_WARN, 1569 "apix_get_vector_intr_info: no memory")); 1570 return (PSM_FAILURE); 1571 } 1572 1573 /* 1574 * Loop through the device list of the autovec table 1575 * filling in the dip array. 1576 * 1577 * Note that the autovect table may have some special 1578 * entries which contain NULL dips. These will be 1579 * ignored. 1580 */ 1581 for (i = 0, av_dev = vecp->v_autovect; av_dev; 1582 av_dev = av_dev->av_link) { 1583 if (av_dev->av_vector && av_dev->av_dip) 1584 intr_params_p->avgi_dip_list[i++] = 1585 av_dev->av_dip; 1586 } 1587 } 1588 } 1589 1590 return (PSM_SUCCESS); 1591 } 1592 1593 static char * 1594 apix_get_apic_type(void) 1595 { 1596 return (apix_psm_info.p_mach_idstring); 1597 } 1598 1599 apix_vector_t * 1600 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1601 { 1602 apix_vector_t *newp = NULL; 1603 dev_info_t *dip; 1604 int inum, cap_ptr; 1605 ddi_acc_handle_t handle; 1606 ddi_intr_msix_t *msix_p = NULL; 1607 ushort_t msix_ctrl; 1608 uintptr_t off; 1609 uint32_t mask; 1610 1611 ASSERT(LOCK_HELD(&apix_lock)); 1612 *result = ENXIO; 1613 1614 /* Fail if this is an MSI intr and is part of a group. */ 1615 if (vecp->v_type == APIX_TYPE_MSI) { 1616 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1) 1617 return (NULL); 1618 else 1619 return (apix_grp_set_cpu(vecp, new_cpu, result)); 1620 } 1621 1622 /* 1623 * Mask MSI-X. It's unmasked when MSI-X gets enabled. 1624 */ 1625 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) { 1626 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1627 return (NULL); 1628 inum = vecp->v_devp->dv_inum; 1629 1630 handle = i_ddi_get_pci_config_handle(dip); 1631 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1632 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 1633 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) { 1634 /* 1635 * Function is not masked, then mask "inum"th 1636 * entry in the MSI-X table 1637 */ 1638 msix_p = i_ddi_get_msix(dip); 1639 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 1640 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 1641 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 1642 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 1643 mask | 1); 1644 } 1645 } 1646 1647 *result = 0; 1648 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL) 1649 *result = EIO; 1650 1651 /* Restore mask bit */ 1652 if (msix_p != NULL) 1653 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask); 1654 1655 return (newp); 1656 } 1657 1658 /* 1659 * Set cpu for MSIs 1660 */ 1661 apix_vector_t * 1662 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) 1663 { 1664 apix_vector_t *newp, *vp; 1665 uint32_t orig_cpu = vecp->v_cpuid; 1666 int orig_vect = vecp->v_vector; 1667 int i, num_vectors, cap_ptr, msi_mask_off; 1668 uint32_t msi_pvm; 1669 ushort_t msi_ctrl; 1670 ddi_acc_handle_t handle; 1671 dev_info_t *dip; 1672 1673 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x," 1674 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu)); 1675 1676 ASSERT(LOCK_HELD(&apix_lock)); 1677 1678 *result = ENXIO; 1679 1680 if (vecp->v_type != APIX_TYPE_MSI) { 1681 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n")); 1682 return (NULL); 1683 } 1684 1685 if ((dip = APIX_GET_DIP(vecp)) == NULL) 1686 return (NULL); 1687 1688 num_vectors = i_ddi_intr_get_current_nintrs(dip); 1689 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) { 1690 APIC_VERBOSE(INTR, (CE_WARN, 1691 "set_grp: base vec not part of a grp or not aligned: " 1692 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors)); 1693 return (NULL); 1694 } 1695 1696 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type)) 1697 return (NULL); 1698 1699 *result = EIO; 1700 for (i = 1; i < num_vectors; i++) { 1701 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL) 1702 return (NULL); 1703 #ifdef DEBUG 1704 /* 1705 * Sanity check: CPU and dip is the same for all entries. 1706 * May be called when first msi to be enabled, at this time 1707 * add_avintr() is not called for other msi 1708 */ 1709 if ((vp->v_share != 0) && 1710 ((APIX_GET_DIP(vp) != dip) || 1711 (vp->v_cpuid != vecp->v_cpuid))) { 1712 APIC_VERBOSE(INTR, (CE_WARN, 1713 "set_grp: cpu or dip for vec 0x%x difft than for " 1714 "vec 0x%x\n", orig_vect, orig_vect + i)); 1715 APIC_VERBOSE(INTR, (CE_WARN, 1716 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 1717 vp->v_cpuid, (void *)dip, 1718 (void *)APIX_GET_DIP(vp))); 1719 return (NULL); 1720 } 1721 #endif /* DEBUG */ 1722 } 1723 1724 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 1725 handle = i_ddi_get_pci_config_handle(dip); 1726 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1727 1728 /* MSI Per vector masking is supported. */ 1729 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1730 if (msi_ctrl & PCI_MSI_64BIT_MASK) 1731 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 1732 else 1733 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 1734 msi_pvm = pci_config_get32(handle, msi_mask_off); 1735 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 1736 APIC_VERBOSE(INTR, (CE_CONT, 1737 "set_grp: pvm supported. Mask set to 0x%x\n", 1738 pci_config_get32(handle, msi_mask_off))); 1739 } 1740 1741 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL) 1742 *result = 0; 1743 1744 /* Reenable vectors if per vector masking is supported. */ 1745 if (msi_ctrl & PCI_MSI_PVM_MASK) { 1746 pci_config_put32(handle, msi_mask_off, msi_pvm); 1747 APIC_VERBOSE(INTR, (CE_CONT, 1748 "set_grp: pvm supported. Mask restored to 0x%x\n", 1749 pci_config_get32(handle, msi_mask_off))); 1750 } 1751 1752 return (newp); 1753 } 1754 1755 void 1756 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector) 1757 { 1758 apic_irq_t *irqp; 1759 1760 mutex_enter(&airq_mutex); 1761 irqp = apic_irq_table[irqno]; 1762 irqp->airq_cpu = cpuid; 1763 irqp->airq_vector = vector; 1764 apic_record_rdt_entry(irqp, irqno); 1765 mutex_exit(&airq_mutex); 1766 } 1767 1768 apix_vector_t * 1769 apix_intx_get_vector(int irqno) 1770 { 1771 apic_irq_t *irqp; 1772 uint32_t cpuid; 1773 uchar_t vector; 1774 1775 mutex_enter(&airq_mutex); 1776 irqp = apic_irq_table[irqno & 0xff]; 1777 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 1778 mutex_exit(&airq_mutex); 1779 return (NULL); 1780 } 1781 cpuid = irqp->airq_cpu; 1782 vector = irqp->airq_vector; 1783 mutex_exit(&airq_mutex); 1784 1785 return (xv_vector(cpuid, vector)); 1786 } 1787 1788 /* 1789 * Must called with interrupts disabled and apic_ioapic_lock held 1790 */ 1791 void 1792 apix_intx_enable(int irqno) 1793 { 1794 uchar_t ioapicindex, intin; 1795 apic_irq_t *irqp = apic_irq_table[irqno]; 1796 ioapic_rdt_t irdt; 1797 apic_cpus_info_t *cpu_infop; 1798 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector); 1799 1800 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1801 1802 ioapicindex = irqp->airq_ioapicindex; 1803 intin = irqp->airq_intin_no; 1804 cpu_infop = &apic_cpus[irqp->airq_cpu]; 1805 1806 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry; 1807 irdt.ir_hi = cpu_infop->aci_local_id; 1808 1809 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL, 1810 vecp->v_type, 1, ioapicindex); 1811 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private, 1812 (void *)&irdt, vecp->v_type, 1); 1813 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt); 1814 1815 /* write RDT entry high dword - destination */ 1816 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin, 1817 irdt.ir_hi); 1818 1819 /* Write the vector, trigger, and polarity portion of the RDT */ 1820 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo); 1821 1822 vecp->v_state = APIX_STATE_ENABLED; 1823 1824 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x" 1825 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n", 1826 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi)); 1827 } 1828 1829 /* 1830 * Must called with interrupts disabled and apic_ioapic_lock held 1831 */ 1832 void 1833 apix_intx_disable(int irqno) 1834 { 1835 apic_irq_t *irqp = apic_irq_table[irqno]; 1836 int ioapicindex, intin; 1837 1838 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); 1839 /* 1840 * The assumption here is that this is safe, even for 1841 * systems with IOAPICs that suffer from the hardware 1842 * erratum because all devices have been quiesced before 1843 * they unregister their interrupt handlers. If that 1844 * assumption turns out to be false, this mask operation 1845 * can induce the same erratum result we're trying to 1846 * avoid. 1847 */ 1848 ioapicindex = irqp->airq_ioapicindex; 1849 intin = irqp->airq_intin_no; 1850 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK); 1851 1852 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x" 1853 " intin 0x%x\n", ioapicindex, intin)); 1854 } 1855 1856 void 1857 apix_intx_free(int irqno) 1858 { 1859 apic_irq_t *irqp; 1860 1861 mutex_enter(&airq_mutex); 1862 irqp = apic_irq_table[irqno]; 1863 1864 if (IS_IRQ_FREE(irqp)) { 1865 mutex_exit(&airq_mutex); 1866 return; 1867 } 1868 1869 irqp->airq_mps_intr_index = FREE_INDEX; 1870 irqp->airq_cpu = IRQ_UNINIT; 1871 irqp->airq_vector = APIX_INVALID_VECT; 1872 mutex_exit(&airq_mutex); 1873 } 1874 1875 #ifdef DEBUG 1876 int apix_intr_deliver_timeouts = 0; 1877 int apix_intr_rirr_timeouts = 0; 1878 int apix_intr_rirr_reset_failure = 0; 1879 #endif 1880 int apix_max_reps_irr_pending = 10; 1881 1882 #define GET_RDT_BITS(ioapic, intin, bits) \ 1883 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits)) 1884 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000) 1885 1886 int 1887 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector) 1888 { 1889 apic_irq_t *irqp = apic_irq_table[irqno]; 1890 ulong_t iflag; 1891 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked; 1892 1893 ASSERT(irqp != NULL); 1894 1895 iflag = intr_clear(); 1896 lock_set(&apic_ioapic_lock); 1897 1898 ioapic_ix = irqp->airq_ioapicindex; 1899 intin_no = irqp->airq_intin_no; 1900 level = apic_level_intr[irqno]; 1901 1902 /* 1903 * Wait for the delivery status bit to be cleared. This should 1904 * be a very small amount of time. 1905 */ 1906 repeats = 0; 1907 do { 1908 repeats++; 1909 1910 for (waited = 0; waited < apic_max_reps_clear_pending; 1911 waited++) { 1912 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0) 1913 break; 1914 } 1915 if (!level) 1916 break; 1917 1918 /* 1919 * Mask the RDT entry for level-triggered interrupts. 1920 */ 1921 irqp->airq_rdt_entry |= AV_MASK; 1922 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1923 intin_no); 1924 if ((masked = (rdt_entry & AV_MASK)) == 0) { 1925 /* Mask it */ 1926 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, 1927 AV_MASK | rdt_entry); 1928 } 1929 1930 /* 1931 * If there was a race and an interrupt was injected 1932 * just before we masked, check for that case here. 1933 * Then, unmask the RDT entry and try again. If we're 1934 * on our last try, don't unmask (because we want the 1935 * RDT entry to remain masked for the rest of the 1936 * function). 1937 */ 1938 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1939 intin_no); 1940 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) && 1941 (repeats < apic_max_reps_clear_pending)) { 1942 /* Unmask it */ 1943 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 1944 intin_no, rdt_entry & ~AV_MASK); 1945 irqp->airq_rdt_entry &= ~AV_MASK; 1946 } 1947 } while ((rdt_entry & AV_PENDING) && 1948 (repeats < apic_max_reps_clear_pending)); 1949 1950 #ifdef DEBUG 1951 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0) 1952 apix_intr_deliver_timeouts++; 1953 #endif 1954 1955 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 1956 goto done; 1957 1958 /* 1959 * wait for remote IRR to be cleared for level-triggered 1960 * interrupts 1961 */ 1962 repeats = 0; 1963 do { 1964 repeats++; 1965 1966 for (waited = 0; waited < apic_max_reps_clear_pending; 1967 waited++) { 1968 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) 1969 == 0) 1970 break; 1971 } 1972 1973 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1974 lock_clear(&apic_ioapic_lock); 1975 intr_restore(iflag); 1976 1977 delay(APIX_CHECK_IRR_DELAY); 1978 1979 iflag = intr_clear(); 1980 lock_set(&apic_ioapic_lock); 1981 } 1982 } while (repeats < apix_max_reps_irr_pending); 1983 1984 if (repeats >= apix_max_reps_irr_pending) { 1985 #ifdef DEBUG 1986 apix_intr_rirr_timeouts++; 1987 #endif 1988 1989 /* 1990 * If we waited and the Remote IRR bit is still not cleared, 1991 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS 1992 * times for this interrupt, try the last-ditch workaround: 1993 */ 1994 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 1995 /* 1996 * Trying to clear the bit through normal 1997 * channels has failed. So as a last-ditch 1998 * effort, try to set the trigger mode to 1999 * edge, then to level. This has been 2000 * observed to work on many systems. 2001 */ 2002 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2003 intin_no, 2004 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2005 intin_no) & ~AV_LEVEL); 2006 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2007 intin_no, 2008 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, 2009 intin_no) | AV_LEVEL); 2010 } 2011 2012 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { 2013 #ifdef DEBUG 2014 apix_intr_rirr_reset_failure++; 2015 #endif 2016 lock_clear(&apic_ioapic_lock); 2017 intr_restore(iflag); 2018 prom_printf("apix: Remote IRR still " 2019 "not clear for IOAPIC %d intin %d.\n" 2020 "\tInterrupts to this pin may cease " 2021 "functioning.\n", ioapic_ix, intin_no); 2022 return (1); /* return failure */ 2023 } 2024 } 2025 2026 done: 2027 /* change apic_irq_table */ 2028 lock_clear(&apic_ioapic_lock); 2029 intr_restore(iflag); 2030 apix_intx_set_vector(irqno, cpuid, vector); 2031 iflag = intr_clear(); 2032 lock_set(&apic_ioapic_lock); 2033 2034 /* reprogramme IO-APIC RDT entry */ 2035 apix_intx_enable(irqno); 2036 2037 lock_clear(&apic_ioapic_lock); 2038 intr_restore(iflag); 2039 2040 return (0); 2041 } 2042 2043 static int 2044 apix_intx_get_pending(int irqno) 2045 { 2046 apic_irq_t *irqp; 2047 int intin, ioapicindex, pending; 2048 ulong_t iflag; 2049 2050 mutex_enter(&airq_mutex); 2051 irqp = apic_irq_table[irqno]; 2052 if (IS_IRQ_FREE(irqp)) { 2053 mutex_exit(&airq_mutex); 2054 return (0); 2055 } 2056 2057 /* check IO-APIC delivery status */ 2058 intin = irqp->airq_intin_no; 2059 ioapicindex = irqp->airq_ioapicindex; 2060 mutex_exit(&airq_mutex); 2061 2062 iflag = intr_clear(); 2063 lock_set(&apic_ioapic_lock); 2064 2065 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) & 2066 AV_PENDING) ? 1 : 0; 2067 2068 lock_clear(&apic_ioapic_lock); 2069 intr_restore(iflag); 2070 2071 return (pending); 2072 } 2073 2074 /* 2075 * This function will mask the interrupt on the I/O APIC 2076 */ 2077 static void 2078 apix_intx_set_mask(int irqno) 2079 { 2080 int intin, ioapixindex, rdt_entry; 2081 ulong_t iflag; 2082 apic_irq_t *irqp; 2083 2084 mutex_enter(&airq_mutex); 2085 irqp = apic_irq_table[irqno]; 2086 2087 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2088 2089 intin = irqp->airq_intin_no; 2090 ioapixindex = irqp->airq_ioapicindex; 2091 mutex_exit(&airq_mutex); 2092 2093 iflag = intr_clear(); 2094 lock_set(&apic_ioapic_lock); 2095 2096 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2097 2098 /* clear mask */ 2099 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2100 (AV_MASK | rdt_entry)); 2101 2102 lock_clear(&apic_ioapic_lock); 2103 intr_restore(iflag); 2104 } 2105 2106 /* 2107 * This function will clear the mask for the interrupt on the I/O APIC 2108 */ 2109 static void 2110 apix_intx_clear_mask(int irqno) 2111 { 2112 int intin, ioapixindex, rdt_entry; 2113 ulong_t iflag; 2114 apic_irq_t *irqp; 2115 2116 mutex_enter(&airq_mutex); 2117 irqp = apic_irq_table[irqno]; 2118 2119 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); 2120 2121 intin = irqp->airq_intin_no; 2122 ioapixindex = irqp->airq_ioapicindex; 2123 mutex_exit(&airq_mutex); 2124 2125 iflag = intr_clear(); 2126 lock_set(&apic_ioapic_lock); 2127 2128 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); 2129 2130 /* clear mask */ 2131 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, 2132 ((~AV_MASK) & rdt_entry)); 2133 2134 lock_clear(&apic_ioapic_lock); 2135 intr_restore(iflag); 2136 } 2137 2138 /* 2139 * For level-triggered interrupt, mask the IRQ line. Mask means 2140 * new interrupts will not be delivered. The interrupt already 2141 * accepted by a local APIC is not affected 2142 */ 2143 void 2144 apix_level_intr_pre_eoi(int irq) 2145 { 2146 apic_irq_t *irqp = apic_irq_table[irq]; 2147 int apic_ix, intin_ix; 2148 2149 if (irqp == NULL) 2150 return; 2151 2152 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL); 2153 2154 lock_set(&apic_ioapic_lock); 2155 2156 intin_ix = irqp->airq_intin_no; 2157 apic_ix = irqp->airq_ioapicindex; 2158 2159 if (irqp->airq_cpu != CPU->cpu_id) { 2160 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method)) 2161 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2162 lock_clear(&apic_ioapic_lock); 2163 return; 2164 } 2165 2166 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) { 2167 /* 2168 * This is a IOxAPIC and there is EOI register: 2169 * Change the vector to reserved unused vector, so that 2170 * the EOI from Local APIC won't clear the Remote IRR for 2171 * this level trigger interrupt. Instead, we'll manually 2172 * clear it in apix_post_hardint() after ISR handling. 2173 */ 2174 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2175 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR); 2176 } else { 2177 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2178 AV_MASK | irqp->airq_rdt_entry); 2179 } 2180 2181 lock_clear(&apic_ioapic_lock); 2182 } 2183 2184 /* 2185 * For level-triggered interrupt, unmask the IRQ line 2186 * or restore the original vector number. 2187 */ 2188 void 2189 apix_level_intr_post_dispatch(int irq) 2190 { 2191 apic_irq_t *irqp = apic_irq_table[irq]; 2192 int apic_ix, intin_ix; 2193 2194 if (irqp == NULL) 2195 return; 2196 2197 lock_set(&apic_ioapic_lock); 2198 2199 intin_ix = irqp->airq_intin_no; 2200 apic_ix = irqp->airq_ioapicindex; 2201 2202 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) { 2203 /* 2204 * Already sent EOI back to Local APIC. 2205 * Send EOI to IO-APIC 2206 */ 2207 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2208 } else { 2209 /* clear the mask or restore the vector */ 2210 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, 2211 irqp->airq_rdt_entry); 2212 2213 /* send EOI to IOxAPIC */ 2214 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) 2215 ioapic_write_eoi(apic_ix, irqp->airq_vector); 2216 } 2217 2218 lock_clear(&apic_ioapic_lock); 2219 } 2220 2221 static int 2222 apix_intx_get_shared(int irqno) 2223 { 2224 apic_irq_t *irqp; 2225 int share; 2226 2227 mutex_enter(&airq_mutex); 2228 irqp = apic_irq_table[irqno]; 2229 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { 2230 mutex_exit(&airq_mutex); 2231 return (0); 2232 } 2233 share = irqp->airq_share; 2234 mutex_exit(&airq_mutex); 2235 2236 return (share); 2237 } 2238 2239 static void 2240 apix_intx_set_shared(int irqno, int delta) 2241 { 2242 apic_irq_t *irqp; 2243 2244 mutex_enter(&airq_mutex); 2245 irqp = apic_irq_table[irqno]; 2246 if (IS_IRQ_FREE(irqp)) { 2247 mutex_exit(&airq_mutex); 2248 return; 2249 } 2250 irqp->airq_share += delta; 2251 mutex_exit(&airq_mutex); 2252 } 2253 2254 /* 2255 * Setup IRQ table. Return IRQ no or -1 on failure 2256 */ 2257 static int 2258 apix_intx_setup(dev_info_t *dip, int inum, int irqno, 2259 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp) 2260 { 2261 int origirq = ispec->intrspec_vec; 2262 int newirq; 2263 short intr_index; 2264 uchar_t ipin, ioapic, ioapicindex; 2265 apic_irq_t *irqp; 2266 2267 UNREFERENCED_1PARAMETER(inum); 2268 2269 if (intrp != NULL) { 2270 intr_index = (short)(intrp - apic_io_intrp); 2271 ioapic = intrp->intr_destid; 2272 ipin = intrp->intr_destintin; 2273 2274 /* Find ioapicindex. If destid was ALL, we will exit with 0. */ 2275 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) 2276 if (apic_io_id[ioapicindex] == ioapic) 2277 break; 2278 ASSERT((ioapic == apic_io_id[ioapicindex]) || 2279 (ioapic == INTR_ALL_APIC)); 2280 2281 /* check whether this intin# has been used by another irqno */ 2282 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) 2283 return (newirq); 2284 2285 } else if (iflagp != NULL) { /* ACPI */ 2286 intr_index = ACPI_INDEX; 2287 ioapicindex = acpi_find_ioapic(irqno); 2288 ASSERT(ioapicindex != 0xFF); 2289 ioapic = apic_io_id[ioapicindex]; 2290 ipin = irqno - apic_io_vectbase[ioapicindex]; 2291 2292 if (apic_irq_table[irqno] && 2293 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { 2294 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && 2295 apic_irq_table[irqno]->airq_ioapicindex == 2296 ioapicindex); 2297 return (irqno); 2298 } 2299 2300 } else { /* default configuration */ 2301 intr_index = DEFAULT_INDEX; 2302 ioapicindex = 0; 2303 ioapic = apic_io_id[ioapicindex]; 2304 ipin = (uchar_t)irqno; 2305 } 2306 2307 /* allocate a new IRQ no */ 2308 if ((irqp = apic_irq_table[irqno]) == NULL) { 2309 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); 2310 apic_irq_table[irqno] = irqp; 2311 } else { 2312 if (irqp->airq_mps_intr_index != FREE_INDEX) { 2313 newirq = apic_allocate_irq(apic_first_avail_irq); 2314 if (newirq == -1) { 2315 return (-1); 2316 } 2317 irqno = newirq; 2318 irqp = apic_irq_table[irqno]; 2319 ASSERT(irqp != NULL); 2320 } 2321 } 2322 apic_max_device_irq = max(irqno, apic_max_device_irq); 2323 apic_min_device_irq = min(irqno, apic_min_device_irq); 2324 2325 irqp->airq_mps_intr_index = intr_index; 2326 irqp->airq_ioapicindex = ioapicindex; 2327 irqp->airq_intin_no = ipin; 2328 irqp->airq_dip = dip; 2329 irqp->airq_origirq = (uchar_t)origirq; 2330 if (iflagp != NULL) 2331 irqp->airq_iflag = *iflagp; 2332 irqp->airq_cpu = IRQ_UNINIT; 2333 irqp->airq_vector = 0; 2334 2335 return (irqno); 2336 } 2337 2338 /* 2339 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error 2340 */ 2341 static int 2342 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype, 2343 struct intrspec *ispec) 2344 { 2345 int irqno = ispec->intrspec_vec; 2346 int newirq, i; 2347 iflag_t intr_flag; 2348 ACPI_SUBTABLE_HEADER *hp; 2349 ACPI_MADT_INTERRUPT_OVERRIDE *isop; 2350 struct apic_io_intr *intrp; 2351 2352 if (!apic_enable_acpi || apic_use_acpi_madt_only) { 2353 int busid; 2354 2355 if (bustype == 0) 2356 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; 2357 2358 /* loop checking BUS_ISA/BUS_EISA */ 2359 for (i = 0; i < 2; i++) { 2360 if (((busid = apic_find_bus_id(bustype)) != -1) && 2361 ((intrp = apic_find_io_intr_w_busid(irqno, busid)) 2362 != NULL)) { 2363 return (apix_intx_setup(dip, inum, irqno, 2364 intrp, ispec, NULL)); 2365 } 2366 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; 2367 } 2368 2369 /* fall back to default configuration */ 2370 return (-1); 2371 } 2372 2373 /* search iso entries first */ 2374 if (acpi_iso_cnt != 0) { 2375 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; 2376 i = 0; 2377 while (i < acpi_iso_cnt) { 2378 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { 2379 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; 2380 if (isop->Bus == 0 && 2381 isop->SourceIrq == irqno) { 2382 newirq = isop->GlobalIrq; 2383 intr_flag.intr_po = isop->IntiFlags & 2384 ACPI_MADT_POLARITY_MASK; 2385 intr_flag.intr_el = (isop->IntiFlags & 2386 ACPI_MADT_TRIGGER_MASK) >> 2; 2387 intr_flag.bustype = BUS_ISA; 2388 2389 return (apix_intx_setup(dip, inum, 2390 newirq, NULL, ispec, &intr_flag)); 2391 } 2392 i++; 2393 } 2394 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + 2395 hp->Length); 2396 } 2397 } 2398 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; 2399 intr_flag.intr_el = INTR_EL_EDGE; 2400 intr_flag.bustype = BUS_ISA; 2401 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag)); 2402 } 2403 2404 2405 /* 2406 * Setup IRQ table for pci devices. Return IRQ no or -1 on error 2407 */ 2408 static int 2409 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype, 2410 struct intrspec *ispec) 2411 { 2412 int busid, devid, pci_irq; 2413 ddi_acc_handle_t cfg_handle; 2414 uchar_t ipin; 2415 iflag_t intr_flag; 2416 struct apic_io_intr *intrp; 2417 2418 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) 2419 return (-1); 2420 2421 if (busid == 0 && apic_pci_bus_total == 1) 2422 busid = (int)apic_single_pci_busid; 2423 2424 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) 2425 return (-1); 2426 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; 2427 pci_config_teardown(&cfg_handle); 2428 2429 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */ 2430 if (apic_acpi_translate_pci_irq(dip, busid, devid, 2431 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) 2432 return (-1); 2433 2434 intr_flag.bustype = (uchar_t)bustype; 2435 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec, 2436 &intr_flag)); 2437 } 2438 2439 /* MP configuration table */ 2440 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); 2441 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { 2442 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp); 2443 if (pci_irq == -1) 2444 return (-1); 2445 } 2446 2447 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL)); 2448 } 2449 2450 /* 2451 * Translate and return IRQ no 2452 */ 2453 static int 2454 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec) 2455 { 2456 int newirq, irqno = ispec->intrspec_vec; 2457 int parent_is_pci_or_pciex = 0, child_is_pciex = 0; 2458 int bustype = 0, dev_len; 2459 char dev_type[16]; 2460 2461 if (apic_defconf) { 2462 mutex_enter(&airq_mutex); 2463 goto defconf; 2464 } 2465 2466 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) { 2467 mutex_enter(&airq_mutex); 2468 goto nonpci; 2469 } 2470 2471 /* 2472 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string() 2473 * to avoid extra buffer allocation. 2474 */ 2475 dev_len = sizeof (dev_type); 2476 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), 2477 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, 2478 &dev_len) == DDI_PROP_SUCCESS) { 2479 if ((strcmp(dev_type, "pci") == 0) || 2480 (strcmp(dev_type, "pciex") == 0)) 2481 parent_is_pci_or_pciex = 1; 2482 } 2483 2484 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2485 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, 2486 &dev_len) == DDI_PROP_SUCCESS) { 2487 if (strstr(dev_type, "pciex")) 2488 child_is_pciex = 1; 2489 } 2490 2491 mutex_enter(&airq_mutex); 2492 2493 if (parent_is_pci_or_pciex) { 2494 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; 2495 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec); 2496 if (newirq != -1) 2497 goto done; 2498 bustype = 0; 2499 } else if (strcmp(dev_type, "isa") == 0) 2500 bustype = BUS_ISA; 2501 else if (strcmp(dev_type, "eisa") == 0) 2502 bustype = BUS_EISA; 2503 2504 nonpci: 2505 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec); 2506 if (newirq != -1) 2507 goto done; 2508 2509 defconf: 2510 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL); 2511 if (newirq == -1) { 2512 mutex_exit(&airq_mutex); 2513 return (-1); 2514 } 2515 done: 2516 ASSERT(apic_irq_table[newirq]); 2517 mutex_exit(&airq_mutex); 2518 return (newirq); 2519 } 2520 2521 static int 2522 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2523 { 2524 int irqno; 2525 apix_vector_t *vecp; 2526 2527 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2528 return (0); 2529 2530 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL) 2531 return (0); 2532 2533 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s " 2534 "irqno=0x%x cpuid=%d vector=0x%x\n", 2535 (void *)dip, ddi_driver_name(dip), irqno, 2536 vecp->v_cpuid, vecp->v_vector)); 2537 2538 return (1); 2539 } 2540 2541 /* 2542 * Return the vector number if the translated IRQ for this device 2543 * has a vector mapping setup. If no IRQ setup exists or no vector is 2544 * allocated to it then return 0. 2545 */ 2546 static apix_vector_t * 2547 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec) 2548 { 2549 int irqno; 2550 apix_vector_t *vecp; 2551 2552 /* get the IRQ number */ 2553 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) 2554 return (NULL); 2555 2556 /* get the vector number if a vector is allocated to this irqno */ 2557 vecp = apix_intx_get_vector(irqno); 2558 2559 return (vecp); 2560 } 2561 2562 /* stub function */ 2563 int 2564 apix_loaded(void) 2565 { 2566 return (apix_is_enabled); 2567 }