PANKOVs restructure
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */
28
29 /*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37 #define PSMI_1_7
38
39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <acpica/include/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/apic_common.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>
61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/cyclic.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/sunndi.h>
70
71
72 /*
73 * Local Function Prototypes
74 */
75 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
76 static void apic_xlate_vector_free_timeout_handler(void *arg);
77 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
78 int new_bind_cpu, int apicindex, int intin_no, int which_irq,
79 struct ioapic_reprogram_data *drep);
80 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
81 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
82 int type);
83 static void apic_try_deferred_reprogram(int ipl, int vect);
84 static void delete_defer_repro_ent(int which_irq);
85 static void apic_ioapic_wait_pending_clear(int ioapicindex,
86 int intin_no);
87
88 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
89 int ipin, int *pci_irqp, iflag_t *intr_flagp);
90 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
91 int child_ipin, struct apic_io_intr **intrp);
92 extern uchar_t acpi_find_ioapic(int irq);
93 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
94 extern int apic_find_bus_id(int bustype);
95 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
97
98 extern int apic_sci_vect;
99 extern iflag_t apic_sci_flags;
100 extern int apic_intr_policy;
101 extern char *psm_name;
102
103 /*
104 * number of bits per byte, from <sys/param.h>
105 */
106 #define UCHAR_MAX ((1 << NBBY) - 1)
107
108 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
109 extern int apic_max_reps_clear_pending;
110
111 /* The irq # is implicit in the array index: */
112 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
113 /*
114 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
115 * is indexed by IRQ number, NOT by vector number.
116 */
117
118 extern int apic_int_busy_mark;
119 extern int apic_int_free_mark;
120 extern int apic_diff_for_redistribution;
121 extern int apic_sample_factor_redistribution;
122 extern int apic_redist_cpu_skip;
123 extern int apic_num_imbalance;
124 extern int apic_num_rebind;
125
126 /* timeout for xlate_vector, mark_vector */
127 int apic_revector_timeout = 16 * 10000; /* 160 millisec */
128
129 extern int apic_defconf;
130 extern int apic_irq_translate;
131
132 extern int apic_use_acpi_madt_only; /* 1=ONLY use MADT from ACPI */
133
134 extern uchar_t apic_io_vectbase[MAX_IO_APIC];
135
136 extern boolean_t ioapic_mask_workaround[MAX_IO_APIC];
137
138 /*
139 * First available slot to be used as IRQ index into the apic_irq_table
140 * for those interrupts (like MSI/X) that don't have a physical IRQ.
141 */
142 extern int apic_first_avail_irq;
143
144 /*
145 * apic_defer_reprogram_lock ensures that only one processor is handling
146 * deferred interrupt programming at *_intr_exit time.
147 */
148 static lock_t apic_defer_reprogram_lock;
149
150 /*
151 * The current number of deferred reprogrammings outstanding
152 */
153 uint_t apic_reprogram_outstanding = 0;
154
155 #ifdef DEBUG
156 /*
157 * Counters that keep track of deferred reprogramming stats
158 */
159 uint_t apic_intr_deferrals = 0;
160 uint_t apic_intr_deliver_timeouts = 0;
161 uint_t apic_last_ditch_reprogram_failures = 0;
162 uint_t apic_deferred_setup_failures = 0;
163 uint_t apic_defer_repro_total_retries = 0;
164 uint_t apic_defer_repro_successes = 0;
165 uint_t apic_deferred_spurious_enters = 0;
166 #endif
167
168 extern int apic_io_max;
169 extern struct apic_io_intr *apic_io_intrp;
170
171 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1];
172
173 extern uint32_t eisa_level_intr_mask;
174 /* At least MSB will be set if EISA bus */
175
176 extern int apic_pci_bus_total;
177 extern uchar_t apic_single_pci_busid;
178
179 /*
180 * Following declarations are for revectoring; used when ISRs at different
181 * IPLs share an irq.
182 */
183 static lock_t apic_revector_lock;
184 int apic_revector_pending = 0;
185 static uchar_t *apic_oldvec_to_newvec;
186 static uchar_t *apic_newvec_to_oldvec;
187
188 /* ACPI Interrupt Source Override Structure ptr */
189 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
190 extern int acpi_iso_cnt;
191
192 /*
193 * Auto-configuration routines
194 */
195
196 /*
197 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
198 * are also set to NULL. vector->irq is set to a value which cannot map
199 * to a real irq to show that it is free.
200 */
201 void
202 apic_init_common(void)
203 {
204 int i, j, indx;
205 int *iptr;
206
207 /*
208 * Initialize apic_ipls from apic_vectortoipl. This array is
209 * used in apic_intr_enter to determine the IPL to use for the
210 * corresponding vector. On some systems, due to hardware errata
211 * and interrupt sharing, the IPL may not correspond to the IPL listed
212 * in apic_vectortoipl (see apic_addspl and apic_delspl).
213 */
214 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
215 indx = i * APIC_VECTOR_PER_IPL;
216
217 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
218 apic_ipls[indx] = apic_vectortoipl[i];
219 }
220
221 /* cpu 0 is always up (for now) */
222 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
223
224 iptr = (int *)&apic_irq_table[0];
225 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
226 apic_level_intr[i] = 0;
227 *iptr++ = NULL;
228 apic_vector_to_irq[i] = APIC_RESV_IRQ;
229
230 /* These *must* be initted to B_TRUE! */
231 apic_reprogram_info[i].done = B_TRUE;
232 apic_reprogram_info[i].irqp = NULL;
233 apic_reprogram_info[i].tries = 0;
234 apic_reprogram_info[i].bindcpu = 0;
235 }
236
237 /*
238 * Allocate a dummy irq table entry for the reserved entry.
239 * This takes care of the race between removing an irq and
240 * clock detecting a CPU in that irq during interrupt load
241 * sampling.
242 */
243 apic_irq_table[APIC_RESV_IRQ] =
244 kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
245
246 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
247 }
248
249 void
250 ioapic_init_intr(int mask_apic)
251 {
252 int ioapic_ix;
253 struct intrspec ispec;
254 apic_irq_t *irqptr;
255 int i, j;
256 ulong_t iflag;
257
258 LOCK_INIT_CLEAR(&apic_revector_lock);
259 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
260
261 /* mask interrupt vectors */
262 for (j = 0; j < apic_io_max && mask_apic; j++) {
263 int intin_max;
264
265 ioapic_ix = j;
266 /* Bits 23-16 define the maximum redirection entries */
267 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
268 & 0xff;
269 for (i = 0; i <= intin_max; i++)
270 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
271 }
272
273 /*
274 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
275 */
276 if (apic_sci_vect > 0) {
277 /*
278 * acpica has already done add_avintr(); we just
279 * to finish the job by mimicing translate_irq()
280 *
281 * Fake up an intrspec and setup the tables
282 */
283 ispec.intrspec_vec = apic_sci_vect;
284 ispec.intrspec_pri = SCI_IPL;
285
286 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
287 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
288 cmn_err(CE_WARN, "!apic: SCI setup failed");
289 return;
290 }
291 irqptr = apic_irq_table[apic_sci_vect];
292
293 iflag = intr_clear();
294 lock_set(&apic_ioapic_lock);
295
296 /* Program I/O APIC */
297 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
298
299 lock_clear(&apic_ioapic_lock);
300 intr_restore(iflag);
301
302 irqptr->airq_share++;
303 }
304 }
305
306 /*
307 * Add mask bits to disable interrupt vector from happening
308 * at or above IPL. In addition, it should remove mask bits
309 * to enable interrupt vectors below the given IPL.
310 *
311 * Both add and delspl are complicated by the fact that different interrupts
312 * may share IRQs. This can happen in two ways.
313 * 1. The same H/W line is shared by more than 1 device
314 * 1a. with interrupts at different IPLs
315 * 1b. with interrupts at same IPL
316 * 2. We ran out of vectors at a given IPL and started sharing vectors.
317 * 1b and 2 should be handled gracefully, except for the fact some ISRs
318 * will get called often when no interrupt is pending for the device.
319 * For 1a, we handle it at the higher IPL.
320 */
321 /*ARGSUSED*/
322 int
323 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
324 {
325 uchar_t vector;
326 ulong_t iflag;
327 apic_irq_t *irqptr, *irqheadptr;
328 int irqindex;
329
330 ASSERT(max_ipl <= UCHAR_MAX);
331 irqindex = IRQINDEX(irqno);
332
333 if ((irqindex == -1) || (!apic_irq_table[irqindex]))
334 return (PSM_FAILURE);
335
336 mutex_enter(&airq_mutex);
337 irqptr = irqheadptr = apic_irq_table[irqindex];
338
339 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
340 "vector=0x%x\n", (void *)irqptr->airq_dip,
341 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
342
343 while (irqptr) {
344 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
345 break;
346 irqptr = irqptr->airq_next;
347 }
348 irqptr->airq_share++;
349
350 mutex_exit(&airq_mutex);
351
352 /* return if it is not hardware interrupt */
353 if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
354 return (PSM_SUCCESS);
355
356 /* Or if there are more interupts at a higher IPL */
357 if (ipl != max_ipl)
358 return (PSM_SUCCESS);
359
360 /*
361 * if apic_picinit() has not been called yet, just return.
362 * At the end of apic_picinit(), we will call setup_io_intr().
363 */
364
365 if (!apic_picinit_called)
366 return (PSM_SUCCESS);
367
368 /*
369 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
370 * return failure.
371 */
372 if (irqptr->airq_ipl != max_ipl &&
373 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
374
375 vector = apic_allocate_vector(max_ipl, irqindex, 1);
376 if (vector == 0) {
377 irqptr->airq_share--;
378 return (PSM_FAILURE);
379 }
380 irqptr = irqheadptr;
381 apic_mark_vector(irqptr->airq_vector, vector);
382 while (irqptr) {
383 irqptr->airq_vector = vector;
384 irqptr->airq_ipl = (uchar_t)max_ipl;
385 /*
386 * reprogram irq being added and every one else
387 * who is not in the UNINIT state
388 */
389 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
390 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
391 apic_record_rdt_entry(irqptr, irqindex);
392
393 iflag = intr_clear();
394 lock_set(&apic_ioapic_lock);
395
396 (void) apic_setup_io_intr(irqptr, irqindex,
397 B_FALSE);
398
399 lock_clear(&apic_ioapic_lock);
400 intr_restore(iflag);
401 }
402 irqptr = irqptr->airq_next;
403 }
404 return (PSM_SUCCESS);
405
406 } else if (irqptr->airq_ipl != max_ipl &&
407 ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
408 /*
409 * We cannot upgrade the vector, but we can change
410 * the IPL that this vector induces.
411 *
412 * Note that we subtract APIC_BASE_VECT from the vector
413 * here because this array is used in apic_intr_enter
414 * (no need to add APIC_BASE_VECT in that hot code
415 * path since we can do it in the rarely-executed path
416 * here).
417 */
418 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
419 (uchar_t)max_ipl;
420
421 irqptr = irqheadptr;
422 while (irqptr) {
423 irqptr->airq_ipl = (uchar_t)max_ipl;
424 irqptr = irqptr->airq_next;
425 }
426
427 return (PSM_SUCCESS);
428 }
429
430 ASSERT(irqptr);
431
432 iflag = intr_clear();
433 lock_set(&apic_ioapic_lock);
434
435 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
436
437 lock_clear(&apic_ioapic_lock);
438 intr_restore(iflag);
439
440 return (PSM_SUCCESS);
441 }
442
443 /*
444 * Recompute mask bits for the given interrupt vector.
445 * If there is no interrupt servicing routine for this
446 * vector, this function should disable interrupt vector
447 * from happening at all IPLs. If there are still
448 * handlers using the given vector, this function should
449 * disable the given vector from happening below the lowest
450 * IPL of the remaining hadlers.
451 */
452 /*ARGSUSED*/
453 int
454 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
455 {
456 uchar_t vector;
457 uint32_t bind_cpu;
458 int intin, irqindex;
459 int ioapic_ix;
460 apic_irq_t *irqptr, *preirqptr, *irqheadptr, *irqp;
461 ulong_t iflag;
462
463 mutex_enter(&airq_mutex);
464 irqindex = IRQINDEX(irqno);
465 irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex];
466
467 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
468 "vector=0x%x\n", (void *)irqptr->airq_dip,
469 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
470
471 while (irqptr) {
472 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
473 break;
474 preirqptr = irqptr;
475 irqptr = irqptr->airq_next;
476 }
477 ASSERT(irqptr);
478
479 irqptr->airq_share--;
480
481 mutex_exit(&airq_mutex);
482
483 /*
484 * If there are more interrupts at a higher IPL, we don't need
485 * to disable anything.
486 */
487 if (ipl < max_ipl)
488 return (PSM_SUCCESS);
489
490 /* return if it is not hardware interrupt */
491 if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
492 return (PSM_SUCCESS);
493
494 if (!apic_picinit_called) {
495 /*
496 * Clear irq_struct. If two devices shared an intpt
497 * line & 1 unloaded before picinit, we are hosed. But, then
498 * we hope the machine survive.
499 */
500 irqptr->airq_mps_intr_index = FREE_INDEX;
501 irqptr->airq_temp_cpu = IRQ_UNINIT;
502 apic_free_vector(irqptr->airq_vector);
503 return (PSM_SUCCESS);
504 }
505 /*
506 * Downgrade vector to new max_ipl if needed. If we cannot allocate,
507 * use old IPL. Not very elegant, but it should work.
508 */
509 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
510 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
511 apic_irq_t *irqp;
512 if (vector = apic_allocate_vector(max_ipl, irqno, 1)) {
513 apic_mark_vector(irqheadptr->airq_vector, vector);
514 irqp = irqheadptr;
515 while (irqp) {
516 irqp->airq_vector = vector;
517 irqp->airq_ipl = (uchar_t)max_ipl;
518 if (irqp->airq_temp_cpu != IRQ_UNINIT) {
519 apic_record_rdt_entry(irqp, irqindex);
520
521 iflag = intr_clear();
522 lock_set(&apic_ioapic_lock);
523
524 (void) apic_setup_io_intr(irqp,
525 irqindex, B_FALSE);
526
527 lock_clear(&apic_ioapic_lock);
528 intr_restore(iflag);
529 }
530 irqp = irqp->airq_next;
531 }
532 }
533
534 } else if (irqptr->airq_ipl != max_ipl &&
535 max_ipl != PSM_INVALID_IPL &&
536 ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
537
538 /*
539 * We cannot downgrade the IPL of the vector below the vector's
540 * hardware priority. If we did, it would be possible for a
541 * higher-priority hardware vector to interrupt a CPU running at an IPL
542 * lower than the hardware priority of the interrupting vector (but
543 * higher than the soft IPL of this IRQ). When this happens, we would
544 * then try to drop the IPL BELOW what it was (effectively dropping
545 * below base_spl) which would be potentially catastrophic.
546 *
547 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
548 * (hardware IPL of 4). Further assume that the old IPL of this IRQ
549 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in
550 * an IPL of 1, it would be possible for the processor to be executing
551 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
552 * the currently-executing ISR. When apic_intr_enter consults
553 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
554 * so even though the processor was running at IPL 4, an IPL 1
555 * interrupt will have interrupted it, which must not happen)).
556 *
557 * Effectively, this means that the hardware priority corresponding to
558 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
559 * hardware priority.
560 *
561 * (In the above example, then, after removal of the IPL 4 device's
562 * interrupt handler, the new IPL will continue to be 4 because the
563 * hardware priority that IPL 1 implies is lower than the hardware
564 * priority of the vector used.)
565 */
566 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
567 const int apic_ipls_index = irqptr->airq_vector -
568 APIC_BASE_VECT;
569 const int vect_inherent_hwpri = irqptr->airq_vector >>
570 APIC_IPL_SHIFT;
571
572 /*
573 * If there are still devices using this IRQ, determine the
574 * new ipl to use.
575 */
576 if (irqptr->airq_share) {
577 int vect_desired_hwpri, hwpri;
578
579 ASSERT(max_ipl < MAXIPL);
580 vect_desired_hwpri = apic_ipltopri[max_ipl] >>
581 APIC_IPL_SHIFT;
582
583 /*
584 * If the desired IPL's hardware priority is lower
585 * than that of the vector, use the hardware priority
586 * of the vector to determine the new IPL.
587 */
588 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
589 vect_inherent_hwpri : vect_desired_hwpri;
590
591 /*
592 * Now, to get the right index for apic_vectortoipl,
593 * we need to subtract APIC_BASE_VECT from the
594 * hardware-vector-equivalent (in hwpri). Since hwpri
595 * is already shifted, we shift APIC_BASE_VECT before
596 * doing the subtraction.
597 */
598 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
599
600 ASSERT(hwpri >= 0);
601 ASSERT(hwpri < MAXIPL);
602 max_ipl = apic_vectortoipl[hwpri];
603 apic_ipls[apic_ipls_index] = max_ipl;
604
605 irqp = irqheadptr;
606 while (irqp) {
607 irqp->airq_ipl = (uchar_t)max_ipl;
608 irqp = irqp->airq_next;
609 }
610 } else {
611 /*
612 * No more devices on this IRQ, so reset this vector's
613 * element in apic_ipls to the original IPL for this
614 * vector
615 */
616 apic_ipls[apic_ipls_index] =
617 apic_vectortoipl[vect_inherent_hwpri];
618 }
619 }
620
621 /*
622 * If there are still active interrupts, we are done.
623 */
624 if (irqptr->airq_share)
625 return (PSM_SUCCESS);
626
627 iflag = intr_clear();
628 lock_set(&apic_ioapic_lock);
629
630 if (irqptr->airq_mps_intr_index == MSI_INDEX) {
631 /*
632 * Disable the MSI vector
633 * Make sure we only disable on the last
634 * of the multi-MSI support
635 */
636 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
637 apic_pci_msi_disable_mode(irqptr->airq_dip,
638 DDI_INTR_TYPE_MSI);
639 }
640 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
641 /*
642 * Disable the MSI-X vector
643 * needs to clear its mask and addr/data for each MSI-X
644 */
645 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
646 irqptr->airq_origirq);
647 /*
648 * Make sure we only disable on the last MSI-X
649 */
650 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
651 apic_pci_msi_disable_mode(irqptr->airq_dip,
652 DDI_INTR_TYPE_MSIX);
653 }
654 } else {
655 /*
656 * The assumption here is that this is safe, even for
657 * systems with IOAPICs that suffer from the hardware
658 * erratum because all devices have been quiesced before
659 * they unregister their interrupt handlers. If that
660 * assumption turns out to be false, this mask operation
661 * can induce the same erratum result we're trying to
662 * avoid.
663 */
664 ioapic_ix = irqptr->airq_ioapicindex;
665 intin = irqptr->airq_intin_no;
666 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
667 }
668
669 /*
670 * This irq entry is the only one in the chain.
671 */
672 if (irqheadptr->airq_next == NULL) {
673 ASSERT(irqheadptr == irqptr);
674 bind_cpu = irqptr->airq_temp_cpu;
675 if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
676 ((uint32_t)bind_cpu != IRQ_UNINIT)) {
677 ASSERT(apic_cpu_in_range(bind_cpu));
678 if (bind_cpu & IRQ_USER_BOUND) {
679 /* If hardbound, temp_cpu == cpu */
680 bind_cpu &= ~IRQ_USER_BOUND;
681 apic_cpus[bind_cpu].aci_bound--;
682 } else
683 apic_cpus[bind_cpu].aci_temp_bound--;
684 }
685 irqptr->airq_temp_cpu = IRQ_UNINIT;
686 irqptr->airq_mps_intr_index = FREE_INDEX;
687 lock_clear(&apic_ioapic_lock);
688 intr_restore(iflag);
689 apic_free_vector(irqptr->airq_vector);
690 return (PSM_SUCCESS);
691 }
692
693 /*
694 * If we get here, we are sharing the vector and there are more than
695 * one active irq entries in the chain.
696 */
697 lock_clear(&apic_ioapic_lock);
698 intr_restore(iflag);
699
700 mutex_enter(&airq_mutex);
701 /* Remove the irq entry from the chain */
702 if (irqptr == irqheadptr) { /* The irq entry is at the head */
703 apic_irq_table[irqindex] = irqptr->airq_next;
704 } else {
705 preirqptr->airq_next = irqptr->airq_next;
706 }
707 /* Free the irq entry */
708 kmem_free(irqptr, sizeof (apic_irq_t));
709 mutex_exit(&airq_mutex);
710
711 return (PSM_SUCCESS);
712 }
713
714 /*
715 * apic_introp_xlate() replaces apic_translate_irq() and is
716 * called only from apic_intr_ops(). With the new ADII framework,
717 * the priority can no longer be retrieved through i_ddi_get_intrspec().
718 * It has to be passed in from the caller.
719 *
720 * Return value:
721 * Success: irqno for the given device
722 * Failure: -1
723 */
724 int
725 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
726 {
727 char dev_type[16];
728 int dev_len, pci_irq, newirq, bustype, devid, busid, i;
729 int irqno = ispec->intrspec_vec;
730 ddi_acc_handle_t cfg_handle;
731 uchar_t ipin;
732 struct apic_io_intr *intrp;
733 iflag_t intr_flag;
734 ACPI_SUBTABLE_HEADER *hp;
735 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
736 apic_irq_t *airqp;
737 int parent_is_pci_or_pciex = 0;
738 int child_is_pciex = 0;
739
740 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
741 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
742 irqno));
743
744 dev_len = sizeof (dev_type);
745 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
746 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
747 &dev_len) == DDI_PROP_SUCCESS) {
748 if ((strcmp(dev_type, "pci") == 0) ||
749 (strcmp(dev_type, "pciex") == 0))
750 parent_is_pci_or_pciex = 1;
751 }
752
753 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
754 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
755 &dev_len) == DDI_PROP_SUCCESS) {
756 if (strstr(dev_type, "pciex"))
757 child_is_pciex = 1;
758 }
759
760 if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
761 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
762 airqp->airq_iflag.bustype =
763 child_is_pciex ? BUS_PCIE : BUS_PCI;
764 return (apic_vector_to_irq[airqp->airq_vector]);
765 }
766 return (apic_setup_irq_table(dip, irqno, NULL, ispec,
767 NULL, type));
768 }
769
770 bustype = 0;
771
772 /* check if we have already translated this irq */
773 mutex_enter(&airq_mutex);
774 newirq = apic_min_device_irq;
775 for (; newirq <= apic_max_device_irq; newirq++) {
776 airqp = apic_irq_table[newirq];
777 while (airqp) {
778 if ((airqp->airq_dip == dip) &&
779 (airqp->airq_origirq == irqno) &&
780 (airqp->airq_mps_intr_index != FREE_INDEX)) {
781
782 mutex_exit(&airq_mutex);
783 return (VIRTIRQ(newirq, airqp->airq_share_id));
784 }
785 airqp = airqp->airq_next;
786 }
787 }
788 mutex_exit(&airq_mutex);
789
790 if (apic_defconf)
791 goto defconf;
792
793 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
794 goto nonpci;
795
796 if (parent_is_pci_or_pciex) {
797 /* pci device */
798 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
799 goto nonpci;
800 if (busid == 0 && apic_pci_bus_total == 1)
801 busid = (int)apic_single_pci_busid;
802
803 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
804 return (-1);
805 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
806 pci_config_teardown(&cfg_handle);
807 if (apic_enable_acpi && !apic_use_acpi_madt_only) {
808 if (apic_acpi_translate_pci_irq(dip, busid, devid,
809 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
810 return (-1);
811
812 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
813 return (apic_setup_irq_table(dip, pci_irq, NULL, ispec,
814 &intr_flag, type));
815 } else {
816 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
817 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
818 == NULL) {
819 if ((pci_irq = apic_handle_pci_pci_bridge(dip,
820 devid, ipin, &intrp)) == -1)
821 return (-1);
822 }
823 return (apic_setup_irq_table(dip, pci_irq, intrp, ispec,
824 NULL, type));
825 }
826 } else if (strcmp(dev_type, "isa") == 0)
827 bustype = BUS_ISA;
828 else if (strcmp(dev_type, "eisa") == 0)
829 bustype = BUS_EISA;
830
831 nonpci:
832 if (apic_enable_acpi && !apic_use_acpi_madt_only) {
833 /* search iso entries first */
834 if (acpi_iso_cnt != 0) {
835 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
836 i = 0;
837 while (i < acpi_iso_cnt) {
838 if (hp->Type ==
839 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
840 isop =
841 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
842 if (isop->Bus == 0 &&
843 isop->SourceIrq == irqno) {
844 newirq = isop->GlobalIrq;
845 intr_flag.intr_po =
846 isop->IntiFlags &
847 ACPI_MADT_POLARITY_MASK;
848 intr_flag.intr_el =
849 (isop->IntiFlags &
850 ACPI_MADT_TRIGGER_MASK)
851 >> 2;
852 intr_flag.bustype = BUS_ISA;
853
854 return (apic_setup_irq_table(
855 dip, newirq, NULL, ispec,
856 &intr_flag, type));
857
858 }
859 i++;
860 }
861 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
862 hp->Length);
863 }
864 }
865 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
866 intr_flag.intr_el = INTR_EL_EDGE;
867 intr_flag.bustype = BUS_ISA;
868 return (apic_setup_irq_table(dip, irqno, NULL, ispec,
869 &intr_flag, type));
870 } else {
871 if (bustype == 0) /* not initialized */
872 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
873 for (i = 0; i < 2; i++) {
874 if (((busid = apic_find_bus_id(bustype)) != -1) &&
875 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
876 != NULL)) {
877 if ((newirq = apic_setup_irq_table(dip, irqno,
878 intrp, ispec, NULL, type)) != -1) {
879 return (newirq);
880 }
881 goto defconf;
882 }
883 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
884 }
885 }
886
887 /* MPS default configuration */
888 defconf:
889 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
890 if (newirq == -1)
891 return (-1);
892 ASSERT(IRQINDEX(newirq) == irqno);
893 ASSERT(apic_irq_table[irqno]);
894 return (newirq);
895 }
896
897 /*
898 * Attempt to share vector with someone else
899 */
900 static int
901 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
902 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
903 {
904 #ifdef DEBUG
905 apic_irq_t *tmpirqp = NULL;
906 #endif /* DEBUG */
907 apic_irq_t *irqptr, dummyirq;
908 int newirq, chosen_irq = -1, share = 127;
909 int lowest, highest, i;
910 uchar_t share_id;
911
912 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
913 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
914
915 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
916 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
917
918 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
919 lowest -= APIC_VECTOR_PER_IPL;
920 dummyirq.airq_mps_intr_index = intr_index;
921 dummyirq.airq_ioapicindex = ioapicindex;
922 dummyirq.airq_intin_no = ipin;
923 if (intr_flagp)
924 dummyirq.airq_iflag = *intr_flagp;
925 apic_record_rdt_entry(&dummyirq, irqno);
926 for (i = lowest; i <= highest; i++) {
927 newirq = apic_vector_to_irq[i];
928 if (newirq == APIC_RESV_IRQ)
929 continue;
930 irqptr = apic_irq_table[newirq];
931
932 if ((dummyirq.airq_rdt_entry & 0xFF00) !=
933 (irqptr->airq_rdt_entry & 0xFF00))
934 /* not compatible */
935 continue;
936
937 if (irqptr->airq_share < share) {
938 share = irqptr->airq_share;
939 chosen_irq = newirq;
940 }
941 }
942 if (chosen_irq != -1) {
943 /*
944 * Assign a share id which is free or which is larger
945 * than the largest one.
946 */
947 share_id = 1;
948 mutex_enter(&airq_mutex);
949 irqptr = apic_irq_table[chosen_irq];
950 while (irqptr) {
951 if (irqptr->airq_mps_intr_index == FREE_INDEX) {
952 share_id = irqptr->airq_share_id;
953 break;
954 }
955 if (share_id <= irqptr->airq_share_id)
956 share_id = irqptr->airq_share_id + 1;
957 #ifdef DEBUG
958 tmpirqp = irqptr;
959 #endif /* DEBUG */
960 irqptr = irqptr->airq_next;
961 }
962 if (!irqptr) {
963 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
964 irqptr->airq_temp_cpu = IRQ_UNINIT;
965 irqptr->airq_next =
966 apic_irq_table[chosen_irq]->airq_next;
967 apic_irq_table[chosen_irq]->airq_next = irqptr;
968 #ifdef DEBUG
969 tmpirqp = apic_irq_table[chosen_irq];
970 #endif /* DEBUG */
971 }
972 irqptr->airq_mps_intr_index = intr_index;
973 irqptr->airq_ioapicindex = ioapicindex;
974 irqptr->airq_intin_no = ipin;
975 if (intr_flagp)
976 irqptr->airq_iflag = *intr_flagp;
977 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
978 irqptr->airq_share_id = share_id;
979 apic_record_rdt_entry(irqptr, irqno);
980 *irqptrp = irqptr;
981 #ifdef DEBUG
982 /* shuffle the pointers to test apic_delspl path */
983 if (tmpirqp) {
984 tmpirqp->airq_next = irqptr->airq_next;
985 irqptr->airq_next = apic_irq_table[chosen_irq];
986 apic_irq_table[chosen_irq] = irqptr;
987 }
988 #endif /* DEBUG */
989 mutex_exit(&airq_mutex);
990 return (VIRTIRQ(chosen_irq, share_id));
991 }
992 return (-1);
993 }
994
995 /*
996 * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry
997 * is used already, we will try to allocate a new irqno.
998 *
999 * Return value:
1000 * Success: irqno
1001 * Failure: -1
1002 */
1003 static int
1004 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
1005 struct intrspec *ispec, iflag_t *intr_flagp, int type)
1006 {
1007 int origirq = ispec->intrspec_vec;
1008 uchar_t ipl = ispec->intrspec_pri;
1009 int newirq, intr_index;
1010 uchar_t ipin, ioapic, ioapicindex, vector;
1011 apic_irq_t *irqptr;
1012 major_t major;
1013 dev_info_t *sdip;
1014
1015 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
1016 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
1017
1018 ASSERT(ispec != NULL);
1019
1020 major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1021
1022 if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1023 /* MSI/X doesn't need to setup ioapic stuffs */
1024 ioapicindex = 0xff;
1025 ioapic = 0xff;
1026 ipin = (uchar_t)0xff;
1027 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
1028 MSIX_INDEX;
1029 mutex_enter(&airq_mutex);
1030 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
1031 mutex_exit(&airq_mutex);
1032 /* need an irq for MSI/X to index into autovect[] */
1033 cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
1034 ddi_get_name(dip), ddi_get_instance(dip));
1035 return (-1);
1036 }
1037 mutex_exit(&airq_mutex);
1038
1039 } else if (intrp != NULL) {
1040 intr_index = (int)(intrp - apic_io_intrp);
1041 ioapic = intrp->intr_destid;
1042 ipin = intrp->intr_destintin;
1043 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
1044 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
1045 if (apic_io_id[ioapicindex] == ioapic)
1046 break;
1047 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
1048 (ioapic == INTR_ALL_APIC));
1049
1050 /* check whether this intin# has been used by another irqno */
1051 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
1052 return (newirq);
1053 }
1054
1055 } else if (intr_flagp != NULL) {
1056 /* ACPI case */
1057 intr_index = ACPI_INDEX;
1058 ioapicindex = acpi_find_ioapic(irqno);
1059 ASSERT(ioapicindex != 0xFF);
1060 ioapic = apic_io_id[ioapicindex];
1061 ipin = irqno - apic_io_vectbase[ioapicindex];
1062 if (apic_irq_table[irqno] &&
1063 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
1064 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
1065 apic_irq_table[irqno]->airq_ioapicindex ==
1066 ioapicindex);
1067 return (irqno);
1068 }
1069
1070 } else {
1071 /* default configuration */
1072 ioapicindex = 0;
1073 ioapic = apic_io_id[ioapicindex];
1074 ipin = (uchar_t)irqno;
1075 intr_index = DEFAULT_INDEX;
1076 }
1077
1078 if (ispec == NULL) {
1079 APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n",
1080 irqno));
1081 } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
1082 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
1083 ipl, ioapicindex, ipin, &irqptr)) != -1) {
1084 irqptr->airq_ipl = ipl;
1085 irqptr->airq_origirq = (uchar_t)origirq;
1086 irqptr->airq_dip = dip;
1087 irqptr->airq_major = major;
1088 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
1089 /* This is OK to do really */
1090 if (sdip == NULL) {
1091 cmn_err(CE_WARN, "Sharing vectors: %s"
1092 " instance %d and SCI",
1093 ddi_get_name(dip), ddi_get_instance(dip));
1094 } else {
1095 cmn_err(CE_WARN, "Sharing vectors: %s"
1096 " instance %d and %s instance %d",
1097 ddi_get_name(sdip), ddi_get_instance(sdip),
1098 ddi_get_name(dip), ddi_get_instance(dip));
1099 }
1100 return (newirq);
1101 }
1102 /* try high priority allocation now that share has failed */
1103 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
1104 cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
1105 ddi_get_name(dip), ddi_get_instance(dip));
1106 return (-1);
1107 }
1108 }
1109
1110 mutex_enter(&airq_mutex);
1111 if (apic_irq_table[irqno] == NULL) {
1112 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1113 irqptr->airq_temp_cpu = IRQ_UNINIT;
1114 apic_irq_table[irqno] = irqptr;
1115 } else {
1116 irqptr = apic_irq_table[irqno];
1117 if (irqptr->airq_mps_intr_index != FREE_INDEX) {
1118 /*
1119 * The slot is used by another irqno, so allocate
1120 * a free irqno for this interrupt
1121 */
1122 newirq = apic_allocate_irq(apic_first_avail_irq);
1123 if (newirq == -1) {
1124 mutex_exit(&airq_mutex);
1125 return (-1);
1126 }
1127 irqno = newirq;
1128 irqptr = apic_irq_table[irqno];
1129 if (irqptr == NULL) {
1130 irqptr = kmem_zalloc(sizeof (apic_irq_t),
1131 KM_SLEEP);
1132 irqptr->airq_temp_cpu = IRQ_UNINIT;
1133 apic_irq_table[irqno] = irqptr;
1134 }
1135 vector = apic_modify_vector(vector, newirq);
1136 }
1137 }
1138 apic_max_device_irq = max(irqno, apic_max_device_irq);
1139 apic_min_device_irq = min(irqno, apic_min_device_irq);
1140 mutex_exit(&airq_mutex);
1141 irqptr->airq_ioapicindex = ioapicindex;
1142 irqptr->airq_intin_no = ipin;
1143 irqptr->airq_ipl = ipl;
1144 irqptr->airq_vector = vector;
1145 irqptr->airq_origirq = (uchar_t)origirq;
1146 irqptr->airq_share_id = 0;
1147 irqptr->airq_mps_intr_index = (short)intr_index;
1148 irqptr->airq_dip = dip;
1149 irqptr->airq_major = major;
1150 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
1151 if (intr_flagp)
1152 irqptr->airq_iflag = *intr_flagp;
1153
1154 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
1155 /* setup I/O APIC entry for non-MSI/X interrupts */
1156 apic_record_rdt_entry(irqptr, irqno);
1157 }
1158 return (irqno);
1159 }
1160
1161 /*
1162 * return the cpu to which this intr should be bound.
1163 * Check properties or any other mechanism to see if user wants it
1164 * bound to a specific CPU. If so, return the cpu id with high bit set.
1165 * If not, use the policy to choose a cpu and return the id.
1166 */
1167 uint32_t
1168 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
1169 {
1170 int instance, instno, prop_len, bind_cpu, count;
1171 uint_t i, rc;
1172 uint32_t cpu;
1173 major_t major;
1174 char *name, *drv_name, *prop_val, *cptr;
1175 char prop_name[32];
1176 ulong_t iflag;
1177
1178
1179 if (apic_intr_policy == INTR_LOWEST_PRIORITY)
1180 return (IRQ_UNBOUND);
1181
1182 if (apic_nproc == 1)
1183 return (0);
1184
1185 drv_name = NULL;
1186 rc = DDI_PROP_NOT_FOUND;
1187 major = (major_t)-1;
1188 if (dip != NULL) {
1189 name = ddi_get_name(dip);
1190 major = ddi_name_to_major(name);
1191 drv_name = ddi_major_to_name(major);
1192 instance = ddi_get_instance(dip);
1193 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
1194 i = apic_min_device_irq;
1195 for (; i <= apic_max_device_irq; i++) {
1196
1197 if ((i == irq) || (apic_irq_table[i] == NULL) ||
1198 (apic_irq_table[i]->airq_mps_intr_index
1199 == FREE_INDEX))
1200 continue;
1201
1202 if ((apic_irq_table[i]->airq_major == major) &&
1203 (!(apic_irq_table[i]->airq_cpu &
1204 IRQ_USER_BOUND))) {
1205
1206 cpu = apic_irq_table[i]->airq_cpu;
1207
1208 cmn_err(CE_CONT,
1209 "!%s: %s (%s) instance #%d "
1210 "irq 0x%x vector 0x%x ioapic 0x%x "
1211 "intin 0x%x is bound to cpu %d\n",
1212 psm_name,
1213 name, drv_name, instance, irq,
1214 apic_irq_table[irq]->airq_vector,
1215 ioapicid, intin, cpu);
1216 return (cpu);
1217 }
1218 }
1219 }
1220 /*
1221 * search for "drvname"_intpt_bind_cpus property first, the
1222 * syntax of the property should be "a[,b,c,...]" where
1223 * instance 0 binds to cpu a, instance 1 binds to cpu b,
1224 * instance 3 binds to cpu c...
1225 * ddi_getlongprop() will search /option first, then /
1226 * if "drvname"_intpt_bind_cpus doesn't exist, then find
1227 * intpt_bind_cpus property. The syntax is the same, and
1228 * it applies to all the devices if its "drvname" specific
1229 * property doesn't exist
1230 */
1231 (void) strcpy(prop_name, drv_name);
1232 (void) strcat(prop_name, "_intpt_bind_cpus");
1233 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
1234 (caddr_t)&prop_val, &prop_len);
1235 if (rc != DDI_PROP_SUCCESS) {
1236 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
1237 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
1238 }
1239 }
1240 if (rc == DDI_PROP_SUCCESS) {
1241 for (i = count = 0; i < (prop_len - 1); i++)
1242 if (prop_val[i] == ',')
1243 count++;
1244 if (prop_val[i-1] != ',')
1245 count++;
1246 /*
1247 * if somehow the binding instances defined in the
1248 * property are not enough for this instno., then
1249 * reuse the pattern for the next instance until
1250 * it reaches the requested instno
1251 */
1252 instno = instance % count;
1253 i = 0;
1254 cptr = prop_val;
1255 while (i < instno)
1256 if (*cptr++ == ',')
1257 i++;
1258 bind_cpu = stoi(&cptr);
1259 kmem_free(prop_val, prop_len);
1260 /* if specific CPU is bogus, then default to next cpu */
1261 if (!apic_cpu_in_range(bind_cpu)) {
1262 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
1263 psm_name, prop_name, prop_val, bind_cpu);
1264 rc = DDI_PROP_NOT_FOUND;
1265 } else {
1266 /* indicate that we are bound at user request */
1267 bind_cpu |= IRQ_USER_BOUND;
1268 }
1269 /*
1270 * no need to check apic_cpus[].aci_status, if specific CPU is
1271 * not up, then post_cpu_start will handle it.
1272 */
1273 }
1274 if (rc != DDI_PROP_SUCCESS) {
1275 iflag = intr_clear();
1276 lock_set(&apic_ioapic_lock);
1277 bind_cpu = apic_get_next_bind_cpu();
1278 lock_clear(&apic_ioapic_lock);
1279 intr_restore(iflag);
1280 }
1281
1282 if (drv_name != NULL)
1283 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
1284 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1285 psm_name, name, drv_name, instance, irq,
1286 apic_irq_table[irq]->airq_vector, ioapicid, intin,
1287 bind_cpu & ~IRQ_USER_BOUND);
1288 else
1289 cmn_err(CE_CONT, "!%s: irq 0x%x "
1290 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1291 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
1292 intin, bind_cpu & ~IRQ_USER_BOUND);
1293
1294 return ((uint32_t)bind_cpu);
1295 }
1296
1297 /*
1298 * Mark vector as being in the process of being deleted. Interrupts
1299 * may still come in on some CPU. The moment an interrupt comes with
1300 * the new vector, we know we can free the old one. Called only from
1301 * addspl and delspl with interrupts disabled. Because an interrupt
1302 * can be shared, but no interrupt from either device may come in,
1303 * we also use a timeout mechanism, which we arbitrarily set to
1304 * apic_revector_timeout microseconds.
1305 */
1306 static void
1307 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
1308 {
1309 ulong_t iflag;
1310
1311 iflag = intr_clear();
1312 lock_set(&apic_revector_lock);
1313 if (!apic_oldvec_to_newvec) {
1314 apic_oldvec_to_newvec =
1315 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
1316 KM_NOSLEEP);
1317
1318 if (!apic_oldvec_to_newvec) {
1319 /*
1320 * This failure is not catastrophic.
1321 * But, the oldvec will never be freed.
1322 */
1323 apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
1324 lock_clear(&apic_revector_lock);
1325 intr_restore(iflag);
1326 return;
1327 }
1328 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
1329 }
1330
1331 /* See if we already did this for drivers which do double addintrs */
1332 if (apic_oldvec_to_newvec[oldvector] != newvector) {
1333 apic_oldvec_to_newvec[oldvector] = newvector;
1334 apic_newvec_to_oldvec[newvector] = oldvector;
1335 apic_revector_pending++;
1336 }
1337 lock_clear(&apic_revector_lock);
1338 intr_restore(iflag);
1339 (void) timeout(apic_xlate_vector_free_timeout_handler,
1340 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
1341 }
1342
1343 /*
1344 * xlate_vector is called from intr_enter if revector_pending is set.
1345 * It will xlate it if needed and mark the old vector as free.
1346 */
1347 uchar_t
1348 apic_xlate_vector(uchar_t vector)
1349 {
1350 uchar_t newvector, oldvector = 0;
1351
1352 lock_set(&apic_revector_lock);
1353 /* Do we really need to do this ? */
1354 if (!apic_revector_pending) {
1355 lock_clear(&apic_revector_lock);
1356 return (vector);
1357 }
1358 if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
1359 oldvector = vector;
1360 else {
1361 /*
1362 * The incoming vector is new . See if a stale entry is
1363 * remaining
1364 */
1365 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
1366 newvector = vector;
1367 }
1368
1369 if (oldvector) {
1370 apic_revector_pending--;
1371 apic_oldvec_to_newvec[oldvector] = 0;
1372 apic_newvec_to_oldvec[newvector] = 0;
1373 apic_free_vector(oldvector);
1374 lock_clear(&apic_revector_lock);
1375 /* There could have been more than one reprogramming! */
1376 return (apic_xlate_vector(newvector));
1377 }
1378 lock_clear(&apic_revector_lock);
1379 return (vector);
1380 }
1381
1382 void
1383 apic_xlate_vector_free_timeout_handler(void *arg)
1384 {
1385 ulong_t iflag;
1386 uchar_t oldvector, newvector;
1387
1388 oldvector = (uchar_t)(uintptr_t)arg;
1389 iflag = intr_clear();
1390 lock_set(&apic_revector_lock);
1391 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
1392 apic_free_vector(oldvector);
1393 apic_oldvec_to_newvec[oldvector] = 0;
1394 apic_newvec_to_oldvec[newvector] = 0;
1395 apic_revector_pending--;
1396 }
1397
1398 lock_clear(&apic_revector_lock);
1399 intr_restore(iflag);
1400 }
1401
1402 /*
1403 * Bind interrupt corresponding to irq_ptr to bind_cpu.
1404 * Must be called with interrupts disabled and apic_ioapic_lock held
1405 */
1406 int
1407 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
1408 struct ioapic_reprogram_data *drep)
1409 {
1410 int ioapicindex, intin_no;
1411 uint32_t airq_temp_cpu;
1412 apic_cpus_info_t *cpu_infop;
1413 uint32_t rdt_entry;
1414 int which_irq;
1415 ioapic_rdt_t irdt;
1416
1417 which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
1418
1419 intin_no = irq_ptr->airq_intin_no;
1420 ioapicindex = irq_ptr->airq_ioapicindex;
1421 airq_temp_cpu = irq_ptr->airq_temp_cpu;
1422 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
1423 if (airq_temp_cpu & IRQ_USER_BOUND)
1424 /* Mask off high bit so it can be used as array index */
1425 airq_temp_cpu &= ~IRQ_USER_BOUND;
1426
1427 ASSERT(apic_cpu_in_range(airq_temp_cpu));
1428 }
1429
1430 /*
1431 * Can't bind to a CPU that's not accepting interrupts:
1432 */
1433 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
1434 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
1435 return (1);
1436
1437 /*
1438 * If we are about to change the interrupt vector for this interrupt,
1439 * and this interrupt is level-triggered, attached to an IOAPIC,
1440 * has been delivered to a CPU and that CPU has not handled it
1441 * yet, we cannot reprogram the IOAPIC now.
1442 */
1443 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1444
1445 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
1446 intin_no);
1447
1448 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
1449 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
1450 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
1451
1452 return (0);
1453 }
1454
1455 /*
1456 * NOTE: We do not unmask the RDT here, as an interrupt MAY
1457 * still come in before we have a chance to reprogram it below.
1458 * The reprogramming below will simultaneously change and
1459 * unmask the RDT entry.
1460 */
1461
1462 if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
1463 irdt.ir_lo = AV_LDEST | AV_LOPRI |
1464 irq_ptr->airq_rdt_entry;
1465
1466 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1467 AV_TOALL);
1468
1469 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
1470 IRQ_UNBOUND)
1471 apic_cpus[airq_temp_cpu].aci_temp_bound--;
1472
1473 /*
1474 * Write the vector, trigger, and polarity portion of
1475 * the RDT
1476 */
1477 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1478 irdt.ir_lo);
1479
1480 irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
1481 return (0);
1482 }
1483 }
1484
1485 if (bind_cpu & IRQ_USER_BOUND) {
1486 cpu_infop->aci_bound++;
1487 } else {
1488 cpu_infop->aci_temp_bound++;
1489 }
1490 ASSERT(apic_cpu_in_range(bind_cpu));
1491
1492 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
1493 apic_cpus[airq_temp_cpu].aci_temp_bound--;
1494 }
1495 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1496
1497 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
1498 irdt.ir_hi = cpu_infop->aci_local_id;
1499
1500 /* Write the RDT entry -- bind to a specific CPU: */
1501 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1502 irdt.ir_hi << APIC_ID_BIT_OFFSET);
1503
1504 /* Write the vector, trigger, and polarity portion of the RDT */
1505 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1506 irdt.ir_lo);
1507
1508 } else {
1509 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
1510 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
1511 if (type == DDI_INTR_TYPE_MSI) {
1512 if (irq_ptr->airq_ioapicindex ==
1513 irq_ptr->airq_origirq) {
1514 /* first one */
1515 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1516 "apic_pci_msi_enable_vector\n"));
1517 apic_pci_msi_enable_vector(irq_ptr,
1518 type, which_irq, irq_ptr->airq_vector,
1519 irq_ptr->airq_intin_no,
1520 cpu_infop->aci_local_id);
1521 }
1522 if ((irq_ptr->airq_ioapicindex +
1523 irq_ptr->airq_intin_no - 1) ==
1524 irq_ptr->airq_origirq) { /* last one */
1525 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1526 "apic_pci_msi_enable_mode\n"));
1527 apic_pci_msi_enable_mode(irq_ptr->airq_dip,
1528 type, which_irq);
1529 }
1530 } else { /* MSI-X */
1531 apic_pci_msi_enable_vector(irq_ptr, type,
1532 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
1533 cpu_infop->aci_local_id);
1534 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
1535 irq_ptr->airq_origirq);
1536 }
1537 }
1538 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
1539 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
1540 return (0);
1541 }
1542
1543 static void
1544 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
1545 {
1546 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
1547 & AV_REMOTE_IRR) != 0) {
1548 /*
1549 * Trying to clear the bit through normal
1550 * channels has failed. So as a last-ditch
1551 * effort, try to set the trigger mode to
1552 * edge, then to level. This has been
1553 * observed to work on many systems.
1554 */
1555 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1556 intin_no,
1557 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1558 intin_no) & ~AV_LEVEL);
1559
1560 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1561 intin_no,
1562 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1563 intin_no) | AV_LEVEL);
1564
1565 /*
1566 * If the bit's STILL set, this interrupt may
1567 * be hosed.
1568 */
1569 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1570 intin_no) & AV_REMOTE_IRR) != 0) {
1571
1572 prom_printf("%s: Remote IRR still "
1573 "not clear for IOAPIC %d intin %d.\n"
1574 "\tInterrupts to this pin may cease "
1575 "functioning.\n", psm_name, ioapic_ix,
1576 intin_no);
1577 #ifdef DEBUG
1578 apic_last_ditch_reprogram_failures++;
1579 #endif
1580 }
1581 }
1582 }
1583
1584 /*
1585 * This function is protected by apic_ioapic_lock coupled with the
1586 * fact that interrupts are disabled.
1587 */
1588 static void
1589 delete_defer_repro_ent(int which_irq)
1590 {
1591 ASSERT(which_irq >= 0);
1592 ASSERT(which_irq <= 255);
1593 ASSERT(LOCK_HELD(&apic_ioapic_lock));
1594
1595 if (apic_reprogram_info[which_irq].done)
1596 return;
1597
1598 apic_reprogram_info[which_irq].done = B_TRUE;
1599
1600 #ifdef DEBUG
1601 apic_defer_repro_total_retries +=
1602 apic_reprogram_info[which_irq].tries;
1603
1604 apic_defer_repro_successes++;
1605 #endif
1606
1607 if (--apic_reprogram_outstanding == 0) {
1608
1609 setlvlx = psm_intr_exit_fn();
1610 }
1611 }
1612
1613
1614 /*
1615 * Interrupts must be disabled during this function to prevent
1616 * self-deadlock. Interrupts are disabled because this function
1617 * is called from apic_check_stuck_interrupt(), which is called
1618 * from apic_rebind(), which requires its caller to disable interrupts.
1619 */
1620 static void
1621 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
1622 {
1623 ASSERT(which_irq >= 0);
1624 ASSERT(which_irq <= 255);
1625 ASSERT(!interrupts_enabled());
1626
1627 /*
1628 * On the off-chance that there's already a deferred
1629 * reprogramming on this irq, check, and if so, just update the
1630 * CPU and irq pointer to which the interrupt is targeted, then return.
1631 */
1632 if (!apic_reprogram_info[which_irq].done) {
1633 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1634 apic_reprogram_info[which_irq].irqp = irq_ptr;
1635 return;
1636 }
1637
1638 apic_reprogram_info[which_irq].irqp = irq_ptr;
1639 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1640 apic_reprogram_info[which_irq].tries = 0;
1641 /*
1642 * This must be the last thing set, since we're not
1643 * grabbing any locks, apic_try_deferred_reprogram() will
1644 * make its decision about using this entry iff done
1645 * is false.
1646 */
1647 apic_reprogram_info[which_irq].done = B_FALSE;
1648
1649 /*
1650 * If there were previously no deferred reprogrammings, change
1651 * setlvlx to call apic_try_deferred_reprogram()
1652 */
1653 if (++apic_reprogram_outstanding == 1) {
1654
1655 setlvlx = apic_try_deferred_reprogram;
1656 }
1657 }
1658
1659 static void
1660 apic_try_deferred_reprogram(int prev_ipl, int irq)
1661 {
1662 int reproirq;
1663 ulong_t iflag;
1664 struct ioapic_reprogram_data *drep;
1665
1666 (*psm_intr_exit_fn())(prev_ipl, irq);
1667
1668 if (!lock_try(&apic_defer_reprogram_lock)) {
1669 return;
1670 }
1671
1672 /*
1673 * Acquire the apic_ioapic_lock so that any other operations that
1674 * may affect the apic_reprogram_info state are serialized.
1675 * It's still possible for the last deferred reprogramming to clear
1676 * between the time we entered this function and the time we get to
1677 * the for loop below. In that case, *setlvlx will have been set
1678 * back to *_intr_exit and drep will be NULL. (There's no way to
1679 * stop that from happening -- we would need to grab a lock before
1680 * calling *setlvlx, which is neither realistic nor prudent).
1681 */
1682 iflag = intr_clear();
1683 lock_set(&apic_ioapic_lock);
1684
1685 /*
1686 * For each deferred RDT entry, try to reprogram it now. Note that
1687 * there is no lock acquisition to read apic_reprogram_info because
1688 * '.done' is set only after the other fields in the structure are set.
1689 */
1690
1691 drep = NULL;
1692 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
1693 if (apic_reprogram_info[reproirq].done == B_FALSE) {
1694 drep = &apic_reprogram_info[reproirq];
1695 break;
1696 }
1697 }
1698
1699 /*
1700 * Either we found a deferred action to perform, or
1701 * we entered this function spuriously, after *setlvlx
1702 * was restored to point to *_intr_exit. Any other
1703 * permutation is invalid.
1704 */
1705 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
1706
1707 /*
1708 * Though we can't really do anything about errors
1709 * at this point, keep track of them for reporting.
1710 * Note that it is very possible for apic_setup_io_intr
1711 * to re-register this very timeout if the Remote IRR bit
1712 * has not yet cleared.
1713 */
1714
1715 #ifdef DEBUG
1716 if (drep != NULL) {
1717 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
1718 apic_deferred_setup_failures++;
1719 }
1720 } else {
1721 apic_deferred_spurious_enters++;
1722 }
1723 #else
1724 if (drep != NULL)
1725 (void) apic_setup_io_intr(drep, reproirq, B_TRUE);
1726 #endif
1727
1728 lock_clear(&apic_ioapic_lock);
1729 intr_restore(iflag);
1730
1731 lock_clear(&apic_defer_reprogram_lock);
1732 }
1733
1734 static void
1735 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
1736 {
1737 int waited;
1738
1739 /*
1740 * Wait for the delivery pending bit to clear.
1741 */
1742 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1743 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
1744
1745 /*
1746 * If we're still waiting on the delivery of this interrupt,
1747 * continue to wait here until it is delivered (this should be
1748 * a very small amount of time, but include a timeout just in
1749 * case).
1750 */
1751 for (waited = 0; waited < apic_max_reps_clear_pending;
1752 waited++) {
1753 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1754 intin_no) & AV_PENDING) == 0) {
1755 break;
1756 }
1757 }
1758 }
1759 }
1760
1761
1762 /*
1763 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
1764 * bit set. Calls functions that modify the function that setlvlx points to,
1765 * so that the reprogramming can be retried very shortly.
1766 *
1767 * This function will mask the RDT entry if the interrupt is level-triggered.
1768 * (The caller is responsible for unmasking the RDT entry.)
1769 *
1770 * Returns non-zero if the caller should defer IOAPIC reprogramming.
1771 */
1772 static int
1773 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
1774 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
1775 struct ioapic_reprogram_data *drep)
1776 {
1777 int32_t rdt_entry;
1778 int waited;
1779 int reps = 0;
1780
1781 /*
1782 * Wait for the delivery pending bit to clear.
1783 */
1784 do {
1785 ++reps;
1786
1787 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
1788
1789 /*
1790 * Mask the RDT entry, but only if it's a level-triggered
1791 * interrupt
1792 */
1793 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1794 intin_no);
1795 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
1796
1797 /* Mask it */
1798 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1799 AV_MASK | rdt_entry);
1800 }
1801
1802 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
1803 /*
1804 * If there was a race and an interrupt was injected
1805 * just before we masked, check for that case here.
1806 * Then, unmask the RDT entry and try again. If we're
1807 * on our last try, don't unmask (because we want the
1808 * RDT entry to remain masked for the rest of the
1809 * function).
1810 */
1811 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1812 intin_no);
1813 if ((rdt_entry & AV_PENDING) &&
1814 (reps < apic_max_reps_clear_pending)) {
1815 /* Unmask it */
1816 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1817 intin_no, rdt_entry & ~AV_MASK);
1818 }
1819 }
1820
1821 } while ((rdt_entry & AV_PENDING) &&
1822 (reps < apic_max_reps_clear_pending));
1823
1824 #ifdef DEBUG
1825 if (rdt_entry & AV_PENDING)
1826 apic_intr_deliver_timeouts++;
1827 #endif
1828
1829 /*
1830 * If the remote IRR bit is set, then the interrupt has been sent
1831 * to a CPU for processing. We have no choice but to wait for
1832 * that CPU to process the interrupt, at which point the remote IRR
1833 * bit will be cleared.
1834 */
1835 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1836 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
1837
1838 /*
1839 * If the CPU that this RDT is bound to is NOT the current
1840 * CPU, wait until that CPU handles the interrupt and ACKs
1841 * it. If this interrupt is not bound to any CPU (that is,
1842 * if it's bound to the logical destination of "anyone"), it
1843 * may have been delivered to the current CPU so handle that
1844 * case by deferring the reprogramming (below).
1845 */
1846 if ((old_bind_cpu != IRQ_UNBOUND) &&
1847 (old_bind_cpu != IRQ_UNINIT) &&
1848 (old_bind_cpu != psm_get_cpu_id())) {
1849 for (waited = 0; waited < apic_max_reps_clear_pending;
1850 waited++) {
1851 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1852 intin_no) & AV_REMOTE_IRR) == 0) {
1853
1854 delete_defer_repro_ent(which_irq);
1855
1856 /* Remote IRR has cleared! */
1857 return (0);
1858 }
1859 }
1860 }
1861
1862 /*
1863 * If we waited and the Remote IRR bit is still not cleared,
1864 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1865 * times for this interrupt, try the last-ditch workaround:
1866 */
1867 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
1868
1869 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
1870
1871 /* Mark this one as reprogrammed: */
1872 delete_defer_repro_ent(which_irq);
1873
1874 return (0);
1875 } else {
1876 #ifdef DEBUG
1877 apic_intr_deferrals++;
1878 #endif
1879
1880 /*
1881 * If waiting for the Remote IRR bit (above) didn't
1882 * allow it to clear, defer the reprogramming.
1883 * Add a new deferred-programming entry if the
1884 * caller passed a NULL one (and update the existing one
1885 * in case anything changed).
1886 */
1887 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
1888 if (drep)
1889 drep->tries++;
1890
1891 /* Inform caller to defer IOAPIC programming: */
1892 return (1);
1893 }
1894
1895 }
1896
1897 /* Remote IRR is clear */
1898 delete_defer_repro_ent(which_irq);
1899
1900 return (0);
1901 }
1902
1903 /*
1904 * Called to migrate all interrupts at an irq to another cpu.
1905 * Must be called with interrupts disabled and apic_ioapic_lock held
1906 */
1907 int
1908 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
1909 {
1910 apic_irq_t *irqptr = irq_ptr;
1911 int retval = 0;
1912
1913 while (irqptr) {
1914 if (irqptr->airq_temp_cpu != IRQ_UNINIT)
1915 retval |= apic_rebind(irqptr, bind_cpu, NULL);
1916 irqptr = irqptr->airq_next;
1917 }
1918
1919 return (retval);
1920 }
1921
1922 /*
1923 * apic_intr_redistribute does all the messy computations for identifying
1924 * which interrupt to move to which CPU. Currently we do just one interrupt
1925 * at a time. This reduces the time we spent doing all this within clock
1926 * interrupt. When it is done in idle, we could do more than 1.
1927 * First we find the most busy and the most free CPU (time in ISR only)
1928 * skipping those CPUs that has been identified as being ineligible (cpu_skip)
1929 * Then we look for IRQs which are closest to the difference between the
1930 * most busy CPU and the average ISR load. We try to find one whose load
1931 * is less than difference.If none exists, then we chose one larger than the
1932 * difference, provided it does not make the most idle CPU worse than the
1933 * most busy one. In the end, we clear all the busy fields for CPUs. For
1934 * IRQs, they are cleared as they are scanned.
1935 */
1936 void
1937 apic_intr_redistribute(void)
1938 {
1939 int busiest_cpu, most_free_cpu;
1940 int cpu_free, cpu_busy, max_busy, min_busy;
1941 int min_free, diff;
1942 int average_busy, cpus_online;
1943 int i, busy;
1944 ulong_t iflag;
1945 apic_cpus_info_t *cpu_infop;
1946 apic_irq_t *min_busy_irq = NULL;
1947 apic_irq_t *max_busy_irq = NULL;
1948
1949 busiest_cpu = most_free_cpu = -1;
1950 cpu_free = cpu_busy = max_busy = average_busy = 0;
1951 min_free = apic_sample_factor_redistribution;
1952 cpus_online = 0;
1953 /*
1954 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
1955 * without ioapic_lock. That is OK as we are just doing statistical
1956 * sampling anyway and any inaccuracy now will get corrected next time
1957 * The call to rebind which actually changes things will make sure
1958 * we are consistent.
1959 */
1960 for (i = 0; i < apic_nproc; i++) {
1961 if (apic_cpu_in_range(i) &&
1962 !(apic_redist_cpu_skip & (1 << i)) &&
1963 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
1964
1965 cpu_infop = &apic_cpus[i];
1966 /*
1967 * If no unbound interrupts or only 1 total on this
1968 * CPU, skip
1969 */
1970 if (!cpu_infop->aci_temp_bound ||
1971 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
1972 == 1) {
1973 apic_redist_cpu_skip |= 1 << i;
1974 continue;
1975 }
1976
1977 busy = cpu_infop->aci_busy;
1978 average_busy += busy;
1979 cpus_online++;
1980 if (max_busy < busy) {
1981 max_busy = busy;
1982 busiest_cpu = i;
1983 }
1984 if (min_free > busy) {
1985 min_free = busy;
1986 most_free_cpu = i;
1987 }
1988 if (busy > apic_int_busy_mark) {
1989 cpu_busy |= 1 << i;
1990 } else {
1991 if (busy < apic_int_free_mark)
1992 cpu_free |= 1 << i;
1993 }
1994 }
1995 }
1996 if ((cpu_busy && cpu_free) ||
1997 (max_busy >= (min_free + apic_diff_for_redistribution))) {
1998
1999 apic_num_imbalance++;
2000 #ifdef DEBUG
2001 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2002 prom_printf(
2003 "redistribute busy=%x free=%x max=%x min=%x",
2004 cpu_busy, cpu_free, max_busy, min_free);
2005 }
2006 #endif /* DEBUG */
2007
2008
2009 average_busy /= cpus_online;
2010
2011 diff = max_busy - average_busy;
2012 min_busy = max_busy; /* start with the max possible value */
2013 max_busy = 0;
2014 min_busy_irq = max_busy_irq = NULL;
2015 i = apic_min_device_irq;
2016 for (; i <= apic_max_device_irq; i++) {
2017 apic_irq_t *irq_ptr;
2018 /* Change to linked list per CPU ? */
2019 if ((irq_ptr = apic_irq_table[i]) == NULL)
2020 continue;
2021 /* Check for irq_busy & decide which one to move */
2022 /* Also zero them for next round */
2023 if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
2024 irq_ptr->airq_busy) {
2025 if (irq_ptr->airq_busy < diff) {
2026 /*
2027 * Check for least busy CPU,
2028 * best fit or what ?
2029 */
2030 if (max_busy < irq_ptr->airq_busy) {
2031 /*
2032 * Most busy within the
2033 * required differential
2034 */
2035 max_busy = irq_ptr->airq_busy;
2036 max_busy_irq = irq_ptr;
2037 }
2038 } else {
2039 if (min_busy > irq_ptr->airq_busy) {
2040 /*
2041 * least busy, but more than
2042 * the reqd diff
2043 */
2044 if (min_busy <
2045 (diff + average_busy -
2046 min_free)) {
2047 /*
2048 * Making sure new cpu
2049 * will not end up
2050 * worse
2051 */
2052 min_busy =
2053 irq_ptr->airq_busy;
2054
2055 min_busy_irq = irq_ptr;
2056 }
2057 }
2058 }
2059 }
2060 irq_ptr->airq_busy = 0;
2061 }
2062
2063 if (max_busy_irq != NULL) {
2064 #ifdef DEBUG
2065 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2066 prom_printf("rebinding %x to %x",
2067 max_busy_irq->airq_vector, most_free_cpu);
2068 }
2069 #endif /* DEBUG */
2070 iflag = intr_clear();
2071 if (lock_try(&apic_ioapic_lock)) {
2072 if (apic_rebind_all(max_busy_irq,
2073 most_free_cpu) == 0) {
2074 /* Make change permenant */
2075 max_busy_irq->airq_cpu =
2076 (uint32_t)most_free_cpu;
2077 }
2078 lock_clear(&apic_ioapic_lock);
2079 }
2080 intr_restore(iflag);
2081
2082 } else if (min_busy_irq != NULL) {
2083 #ifdef DEBUG
2084 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2085 prom_printf("rebinding %x to %x",
2086 min_busy_irq->airq_vector, most_free_cpu);
2087 }
2088 #endif /* DEBUG */
2089
2090 iflag = intr_clear();
2091 if (lock_try(&apic_ioapic_lock)) {
2092 if (apic_rebind_all(min_busy_irq,
2093 most_free_cpu) == 0) {
2094 /* Make change permenant */
2095 min_busy_irq->airq_cpu =
2096 (uint32_t)most_free_cpu;
2097 }
2098 lock_clear(&apic_ioapic_lock);
2099 }
2100 intr_restore(iflag);
2101
2102 } else {
2103 if (cpu_busy != (1 << busiest_cpu)) {
2104 apic_redist_cpu_skip |= 1 << busiest_cpu;
2105 /*
2106 * We leave cpu_skip set so that next time we
2107 * can choose another cpu
2108 */
2109 }
2110 }
2111 apic_num_rebind++;
2112 } else {
2113 /*
2114 * found nothing. Could be that we skipped over valid CPUs
2115 * or we have balanced everything. If we had a variable
2116 * ticks_for_redistribution, it could be increased here.
2117 * apic_int_busy, int_free etc would also need to be
2118 * changed.
2119 */
2120 if (apic_redist_cpu_skip)
2121 apic_redist_cpu_skip = 0;
2122 }
2123 for (i = 0; i < apic_nproc; i++) {
2124 if (apic_cpu_in_range(i)) {
2125 apic_cpus[i].aci_busy = 0;
2126 }
2127 }
2128 }
2129
2130 void
2131 apic_cleanup_busy(void)
2132 {
2133 int i;
2134 apic_irq_t *irq_ptr;
2135
2136 for (i = 0; i < apic_nproc; i++) {
2137 if (apic_cpu_in_range(i)) {
2138 apic_cpus[i].aci_busy = 0;
2139 }
2140 }
2141
2142 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2143 if ((irq_ptr = apic_irq_table[i]) != NULL)
2144 irq_ptr->airq_busy = 0;
2145 }
2146 }
2147
2148 int
2149 apic_ioapic_method_probe()
2150 {
2151 return (PSM_SUCCESS);
2152 }
--- EOF ---