1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 /*
  25  * Copyright (c) 2010, Intel Corporation.
  26  * All rights reserved.
  27  */
  28 
  29 /*
  30  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
  31  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
  32  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
  33  * PSMI 1.5 extensions are supported in Solaris Nevada.
  34  * PSMI 1.6 extensions are supported in Solaris Nevada.
  35  * PSMI 1.7 extensions are supported in Solaris Nevada.
  36  */
  37 #define PSMI_1_7
  38 
  39 #include <sys/processor.h>
  40 #include <sys/time.h>
  41 #include <sys/psm.h>
  42 #include <sys/smp_impldefs.h>
  43 #include <sys/cram.h>
  44 #include <acpica/include/acpi.h>
  45 #include <sys/acpica.h>
  46 #include <sys/psm_common.h>
  47 #include <sys/apic.h>
  48 #include <sys/apic_timer.h>
  49 #include <sys/pit.h>
  50 #include <sys/ddi.h>
  51 #include <sys/sunddi.h>
  52 #include <sys/ddi_impldefs.h>
  53 #include <sys/pci.h>
  54 #include <sys/promif.h>
  55 #include <sys/x86_archext.h>
  56 #include <sys/cpc_impl.h>
  57 #include <sys/uadmin.h>
  58 #include <sys/panic.h>
  59 #include <sys/debug.h>
  60 #include <sys/archsystm.h>
  61 #include <sys/trap.h>
  62 #include <sys/machsystm.h>
  63 #include <sys/cpuvar.h>
  64 #include <sys/rm_platter.h>
  65 #include <sys/privregs.h>
  66 #include <sys/cyclic.h>
  67 #include <sys/note.h>
  68 #include <sys/pci_intr_lib.h>
  69 #include <sys/sunndi.h>
  70 #if !defined(__xpv)
  71 #include <sys/hpet.h>
  72 #include <sys/clock.h>
  73 #endif
  74 
  75 /*
  76  *      Local Function Prototypes
  77  */
  78 static int apic_handle_defconf();
  79 static int apic_parse_mpct(caddr_t mpct, int bypass);
  80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
  81 static int apic_checksum(caddr_t bptr, int len);
  82 static int apic_find_bus_type(char *bus);
  83 static int apic_find_bus(int busid);
  84 static struct apic_io_intr *apic_find_io_intr(int irqno);
  85 static int apic_find_free_irq(int start, int end);
  86 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
  87 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
  88 static void apic_free_apic_cpus(void);
  89 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
  90 static int apic_acpi_enter_apicmode(void);
  91 
  92 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
  93     int child_ipin, struct apic_io_intr **intrp);
  94 int apic_find_bus_id(int bustype);
  95 int apic_find_intin(uchar_t ioapic, uchar_t intin);
  96 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
  97 
  98 int apic_debug_mps_id = 0;      /* 1 - print MPS ID strings */
  99 
 100 /* ACPI SCI interrupt configuration; -1 if SCI not used */
 101 int apic_sci_vect = -1;
 102 iflag_t apic_sci_flags;
 103 
 104 #if !defined(__xpv)
 105 /* ACPI HPET interrupt configuration; -1 if HPET not used */
 106 int apic_hpet_vect = -1;
 107 iflag_t apic_hpet_flags;
 108 #endif
 109 
 110 /*
 111  * psm name pointer
 112  */
 113 char *psm_name;
 114 
 115 /* ACPI support routines */
 116 static int acpi_probe(char *);
 117 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
 118     int *pci_irqp, iflag_t *intr_flagp);
 119 
 120 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
 121     int ipin, int *pci_irqp, iflag_t *intr_flagp);
 122 uchar_t acpi_find_ioapic(int irq);
 123 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
 124 
 125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
 126 int apic_max_reps_clear_pending = 1000;
 127 
 128 int     apic_intr_policy = INTR_ROUND_ROBIN;
 129 
 130 int     apic_next_bind_cpu = 1; /* For round robin assignment */
 131                                 /* start with cpu 1 */
 132 
 133 /*
 134  * If enabled, the distribution works as follows:
 135  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
 136  * and the irq corresponding to the ipl is also set in the aci_current array.
 137  * interrupt exit and setspl (due to soft interrupts) will cause the current
 138  * ipl to be be changed. This is cache friendly as these frequently used
 139  * paths write into a per cpu structure.
 140  *
 141  * Sampling is done by checking the structures for all CPUs and incrementing
 142  * the busy field of the irq (if any) executing on each CPU and the busy field
 143  * of the corresponding CPU.
 144  * In periodic mode this is done on every clock interrupt.
 145  * In one-shot mode, this is done thru a cyclic with an interval of
 146  * apic_redistribute_sample_interval (default 10 milli sec).
 147  *
 148  * Every apic_sample_factor_redistribution times we sample, we do computations
 149  * to decide which interrupt needs to be migrated (see comments
 150  * before apic_intr_redistribute().
 151  */
 152 
 153 /*
 154  * Following 3 variables start as % and can be patched or set using an
 155  * API to be defined in future. They will be scaled to
 156  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
 157  * mode), or 101 in one-shot mode to stagger it away from one sec processing
 158  */
 159 
 160 int     apic_int_busy_mark = 60;
 161 int     apic_int_free_mark = 20;
 162 int     apic_diff_for_redistribution = 10;
 163 
 164 /* sampling interval for interrupt redistribution for dynamic migration */
 165 int     apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
 166 
 167 /*
 168  * number of times we sample before deciding to redistribute interrupts
 169  * for dynamic migration
 170  */
 171 int     apic_sample_factor_redistribution = 101;
 172 
 173 int     apic_redist_cpu_skip = 0;
 174 int     apic_num_imbalance = 0;
 175 int     apic_num_rebind = 0;
 176 
 177 /*
 178  * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
 179  * allocation of CPU ids is disabled.
 180  */
 181 int     apic_max_nproc = -1;
 182 int     apic_nproc = 0;
 183 size_t  apic_cpus_size = 0;
 184 int     apic_defconf = 0;
 185 int     apic_irq_translate = 0;
 186 int     apic_spec_rev = 0;
 187 int     apic_imcrp = 0;
 188 
 189 int     apic_use_acpi = 1;      /* 1 = use ACPI, 0 = don't use ACPI */
 190 int     apic_use_acpi_madt_only = 0;    /* 1=ONLY use MADT from ACPI */
 191 
 192 /*
 193  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
 194  * will be assigned (via _SRS). If it is not set, use the current
 195  * irq setting (via _CRS), but only if that irq is in the set of possible
 196  * irqs (returned by _PRS) for the device.
 197  */
 198 int     apic_unconditional_srs = 1;
 199 
 200 /*
 201  * For interrupt link devices, if apic_prefer_crs is set when we are
 202  * assigning an IRQ resource to a device, prefer the current IRQ setting
 203  * over other possible irq settings under same conditions.
 204  */
 205 
 206 int     apic_prefer_crs = 1;
 207 
 208 uchar_t apic_io_id[MAX_IO_APIC];
 209 volatile uint32_t *apicioadr[MAX_IO_APIC];
 210 uchar_t apic_io_ver[MAX_IO_APIC];
 211 uchar_t apic_io_vectbase[MAX_IO_APIC];
 212 uchar_t apic_io_vectend[MAX_IO_APIC];
 213 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
 214 uint32_t apic_physaddr[MAX_IO_APIC];
 215 
 216 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
 217 
 218 /*
 219  * First available slot to be used as IRQ index into the apic_irq_table
 220  * for those interrupts (like MSI/X) that don't have a physical IRQ.
 221  */
 222 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
 223 
 224 /*
 225  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
 226  * and bound elements of cpus_info and the temp_cpu element of irq_struct
 227  */
 228 lock_t  apic_ioapic_lock;
 229 
 230 int     apic_io_max = 0;        /* no. of i/o apics enabled */
 231 
 232 struct apic_io_intr *apic_io_intrp = NULL;
 233 static  struct apic_bus *apic_busp;
 234 
 235 uchar_t apic_resv_vector[MAXIPL+1];
 236 
 237 char    apic_level_intr[APIC_MAX_VECTOR+1];
 238 
 239 uint32_t        eisa_level_intr_mask = 0;
 240         /* At least MSB will be set if EISA bus */
 241 
 242 int     apic_pci_bus_total = 0;
 243 uchar_t apic_single_pci_busid = 0;
 244 
 245 /*
 246  * airq_mutex protects additions to the apic_irq_table - the first
 247  * pointer and any airq_nexts off of that one. It also protects
 248  * apic_max_device_irq & apic_min_device_irq. It also guarantees
 249  * that share_id is unique as new ids are generated only when new
 250  * irq_t structs are linked in. Once linked in the structs are never
 251  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
 252  * or allocated. Note that there is a slight gap between allocating in
 253  * apic_introp_xlate and programming in addspl.
 254  */
 255 kmutex_t        airq_mutex;
 256 apic_irq_t      *apic_irq_table[APIC_MAX_VECTOR+1];
 257 int             apic_max_device_irq = 0;
 258 int             apic_min_device_irq = APIC_MAX_VECTOR;
 259 
 260 typedef struct prs_irq_list_ent {
 261         int                     list_prio;
 262         int32_t                 irq;
 263         iflag_t                 intrflags;
 264         acpi_prs_private_t      prsprv;
 265         struct prs_irq_list_ent *next;
 266 } prs_irq_list_t;
 267 
 268 
 269 /*
 270  * ACPI variables
 271  */
 272 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
 273 int apic_enable_acpi = 0;
 274 
 275 /* ACPI Multiple APIC Description Table ptr */
 276 static  ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
 277 
 278 /* ACPI Interrupt Source Override Structure ptr */
 279 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
 280 int acpi_iso_cnt = 0;
 281 
 282 /* ACPI Non-maskable Interrupt Sources ptr */
 283 static  ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
 284 static  int acpi_nmi_scnt = 0;
 285 static  ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
 286 static  int acpi_nmi_ccnt = 0;
 287 
 288 /*
 289  * The following added to identify a software poweroff method if available.
 290  */
 291 
 292 static struct {
 293         int     poweroff_method;
 294         char    oem_id[APIC_MPS_OEM_ID_LEN + 1];        /* MAX + 1 for NULL */
 295         char    prod_id[APIC_MPS_PROD_ID_LEN + 1];      /* MAX + 1 for NULL */
 296 } apic_mps_ids[] = {
 297         { APIC_POWEROFF_VIA_RTC,        "INTEL",        "ALDER" },   /* 4300 */
 298         { APIC_POWEROFF_VIA_RTC,        "NCR",          "AMC" },    /* 4300 */
 299         { APIC_POWEROFF_VIA_ASPEN_BMC,  "INTEL",        "A450NX" },  /* 4400? */
 300         { APIC_POWEROFF_VIA_ASPEN_BMC,  "INTEL",        "AD450NX" }, /* 4400 */
 301         { APIC_POWEROFF_VIA_ASPEN_BMC,  "INTEL",        "AC450NX" }, /* 4400R */
 302         { APIC_POWEROFF_VIA_SITKA_BMC,  "INTEL",        "S450NX" },  /* S50  */
 303         { APIC_POWEROFF_VIA_SITKA_BMC,  "INTEL",        "SC450NX" }  /* S50? */
 304 };
 305 
 306 int     apic_poweroff_method = APIC_POWEROFF_NONE;
 307 
 308 /*
 309  * Auto-configuration routines
 310  */
 311 
 312 /*
 313  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
 314  * May work with 1.1 - but not guaranteed.
 315  * According to the MP Spec, the MP floating pointer structure
 316  * will be searched in the order described below:
 317  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
 318  * 2. Within the last kilobyte of system base memory
 319  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
 320  * Once we find the right signature with proper checksum, we call
 321  * either handle_defconf or parse_mpct to get all info necessary for
 322  * subsequent operations.
 323  */
 324 int
 325 apic_probe_common(char *modname)
 326 {
 327         uint32_t mpct_addr, ebda_start = 0, base_mem_end;
 328         caddr_t biosdatap;
 329         caddr_t mpct = 0;
 330         caddr_t fptr;
 331         int     i, mpct_size, mapsize, retval = PSM_FAILURE;
 332         ushort_t        ebda_seg, base_mem_size;
 333         struct  apic_mpfps_hdr  *fpsp;
 334         struct  apic_mp_cnf_hdr *hdrp;
 335         int bypass_cpu_and_ioapics_in_mptables;
 336         int acpi_user_options;
 337 
 338         if (apic_forceload < 0)
 339                 return (retval);
 340 
 341         /*
 342          * Remember who we are
 343          */
 344         psm_name = modname;
 345 
 346         /* Allow override for MADT-only mode */
 347         acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
 348             "acpi-user-options", 0);
 349         apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
 350 
 351         /* Allow apic_use_acpi to override MADT-only mode */
 352         if (!apic_use_acpi)
 353                 apic_use_acpi_madt_only = 0;
 354 
 355         retval = acpi_probe(modname);
 356 
 357         /*
 358          * mapin the bios data area 40:0
 359          * 40:13h - two-byte location reports the base memory size
 360          * 40:0Eh - two-byte location for the exact starting address of
 361          *          the EBDA segment for EISA
 362          */
 363         biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
 364         if (!biosdatap)
 365                 goto apic_ret;
 366         fpsp = (struct apic_mpfps_hdr *)NULL;
 367         mapsize = MPFPS_RAM_WIN_LEN;
 368         /*LINTED: pointer cast may result in improper alignment */
 369         ebda_seg = *((ushort_t *)(biosdatap+0xe));
 370         /* check the 1k of EBDA */
 371         if (ebda_seg) {
 372                 ebda_start = ((uint32_t)ebda_seg) << 4;
 373                 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
 374                 if (fptr) {
 375                         if (!(fpsp =
 376                             apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
 377                                 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
 378                 }
 379         }
 380         /* If not in EBDA, check the last k of system base memory */
 381         if (!fpsp) {
 382                 /*LINTED: pointer cast may result in improper alignment */
 383                 base_mem_size = *((ushort_t *)(biosdatap + 0x13));
 384 
 385                 if (base_mem_size > 512)
 386                         base_mem_end = 639 * 1024;
 387                 else
 388                         base_mem_end = 511 * 1024;
 389                 /* if ebda == last k of base mem, skip to check BIOS ROM */
 390                 if (base_mem_end != ebda_start) {
 391 
 392                         fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
 393                             PROT_READ);
 394 
 395                         if (fptr) {
 396                                 if (!(fpsp = apic_find_fps_sig(fptr,
 397                                     MPFPS_RAM_WIN_LEN)))
 398                                         psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
 399                         }
 400                 }
 401         }
 402         psm_unmap_phys(biosdatap, 0x20);
 403 
 404         /* If still cannot find it, check the BIOS ROM space */
 405         if (!fpsp) {
 406                 mapsize = MPFPS_ROM_WIN_LEN;
 407                 fptr = psm_map_phys(MPFPS_ROM_WIN_START,
 408                     MPFPS_ROM_WIN_LEN, PROT_READ);
 409                 if (fptr) {
 410                         if (!(fpsp =
 411                             apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
 412                                 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
 413                                 goto apic_ret;
 414                         }
 415                 }
 416         }
 417 
 418         if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
 419                 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
 420                 goto apic_ret;
 421         }
 422 
 423         apic_spec_rev = fpsp->mpfps_spec_rev;
 424         if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
 425                 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
 426                 goto apic_ret;
 427         }
 428 
 429         /* check IMCR is present or not */
 430         apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
 431 
 432         /* check default configuration (dual CPUs) */
 433         if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
 434                 psm_unmap_phys(fptr, mapsize);
 435                 if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
 436                         return (retval);
 437 
 438                 goto apic_ret;
 439         }
 440 
 441         /* MP Configuration Table */
 442         mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
 443 
 444         psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
 445 
 446         /*
 447          * Map in enough memory for the MP Configuration Table Header.
 448          * Use this table to read the total length of the BIOS data and
 449          * map in all the info
 450          */
 451         /*LINTED: pointer cast may result in improper alignment */
 452         hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
 453             sizeof (struct apic_mp_cnf_hdr), PROT_READ);
 454         if (!hdrp)
 455                 goto apic_ret;
 456 
 457         /* check mp configuration table signature PCMP */
 458         if (hdrp->mpcnf_sig != 0x504d4350) {
 459                 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
 460                 goto apic_ret;
 461         }
 462         mpct_size = (int)hdrp->mpcnf_tbl_length;
 463 
 464         apic_set_pwroff_method_from_mpcnfhdr(hdrp);
 465 
 466         psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
 467 
 468         if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
 469                 /* This is an ACPI machine No need for further checks */
 470                 goto apic_ret;
 471         }
 472 
 473         /*
 474          * Map in the entries for this machine, ie. Processor
 475          * Entry Tables, Bus Entry Tables, etc.
 476          * They are in fixed order following one another
 477          */
 478         mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
 479         if (!mpct)
 480                 goto apic_ret;
 481 
 482         if (apic_checksum(mpct, mpct_size) != 0)
 483                 goto apic_fail1;
 484 
 485         /*LINTED: pointer cast may result in improper alignment */
 486         hdrp = (struct apic_mp_cnf_hdr *)mpct;
 487         apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
 488             APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
 489         if (!apicadr)
 490                 goto apic_fail1;
 491 
 492         /* Parse all information in the tables */
 493         bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
 494         if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
 495             PSM_SUCCESS) {
 496                 retval = PSM_SUCCESS;
 497                 goto apic_ret;
 498         }
 499 
 500 apic_fail1:
 501         psm_unmap_phys(mpct, mpct_size);
 502         mpct = NULL;
 503 
 504 apic_ret:
 505         if (retval == PSM_SUCCESS) {
 506                 extern int apic_ioapic_method_probe();
 507 
 508                 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
 509                         return (PSM_SUCCESS);
 510         }
 511 
 512         for (i = 0; i < apic_io_max; i++)
 513                 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
 514         if (apic_cpus) {
 515                 kmem_free(apic_cpus, apic_cpus_size);
 516                 apic_cpus = NULL;
 517         }
 518         if (apicadr) {
 519                 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
 520                 apicadr = NULL;
 521         }
 522         if (mpct)
 523                 psm_unmap_phys(mpct, mpct_size);
 524 
 525         return (retval);
 526 }
 527 
 528 static void
 529 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
 530 {
 531         int     i;
 532 
 533         for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
 534             i++) {
 535                 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
 536                     strlen(apic_mps_ids[i].oem_id)) == 0) &&
 537                     (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
 538                     strlen(apic_mps_ids[i].prod_id)) == 0)) {
 539 
 540                         apic_poweroff_method = apic_mps_ids[i].poweroff_method;
 541                         break;
 542                 }
 543         }
 544 
 545         if (apic_debug_mps_id != 0) {
 546                 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
 547                     "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
 548                     psm_name,
 549                     hdrp->mpcnf_oem_str[0],
 550                     hdrp->mpcnf_oem_str[1],
 551                     hdrp->mpcnf_oem_str[2],
 552                     hdrp->mpcnf_oem_str[3],
 553                     hdrp->mpcnf_oem_str[4],
 554                     hdrp->mpcnf_oem_str[5],
 555                     hdrp->mpcnf_oem_str[6],
 556                     hdrp->mpcnf_oem_str[7],
 557                     hdrp->mpcnf_prod_str[0],
 558                     hdrp->mpcnf_prod_str[1],
 559                     hdrp->mpcnf_prod_str[2],
 560                     hdrp->mpcnf_prod_str[3],
 561                     hdrp->mpcnf_prod_str[4],
 562                     hdrp->mpcnf_prod_str[5],
 563                     hdrp->mpcnf_prod_str[6],
 564                     hdrp->mpcnf_prod_str[7],
 565                     hdrp->mpcnf_prod_str[8],
 566                     hdrp->mpcnf_prod_str[9],
 567                     hdrp->mpcnf_prod_str[10],
 568                     hdrp->mpcnf_prod_str[11]);
 569         }
 570 }
 571 
 572 static void
 573 apic_free_apic_cpus(void)
 574 {
 575         if (apic_cpus != NULL) {
 576                 kmem_free(apic_cpus, apic_cpus_size);
 577                 apic_cpus = NULL;
 578                 apic_cpus_size = 0;
 579         }
 580 }
 581 
 582 static int
 583 acpi_probe(char *modname)
 584 {
 585         int                     i, intmax, index;
 586         uint32_t                id, ver;
 587         int                     acpi_verboseflags = 0;
 588         int                     madt_seen, madt_size;
 589         ACPI_SUBTABLE_HEADER            *ap;
 590         ACPI_MADT_LOCAL_APIC    *mpa;
 591         ACPI_MADT_LOCAL_X2APIC  *mpx2a;
 592         ACPI_MADT_IO_APIC               *mia;
 593         ACPI_MADT_IO_SAPIC              *misa;
 594         ACPI_MADT_INTERRUPT_OVERRIDE    *mio;
 595         ACPI_MADT_NMI_SOURCE            *mns;
 596         ACPI_MADT_INTERRUPT_SOURCE      *mis;
 597         ACPI_MADT_LOCAL_APIC_NMI        *mlan;
 598         ACPI_MADT_LOCAL_X2APIC_NMI      *mx2alan;
 599         ACPI_MADT_LOCAL_APIC_OVERRIDE   *mao;
 600         int                     sci;
 601         iflag_t                 sci_flags;
 602         volatile uint32_t       *ioapic;
 603         int                     ioapic_ix;
 604         uint32_t                *local_ids;
 605         uint32_t                *proc_ids;
 606         uchar_t                 hid;
 607         int                     warned = 0;
 608 
 609         if (!apic_use_acpi)
 610                 return (PSM_FAILURE);
 611 
 612         if (AcpiGetTable(ACPI_SIG_MADT, 1,
 613             (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
 614                 return (PSM_FAILURE);
 615 
 616         apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
 617             APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
 618         if (!apicadr)
 619                 return (PSM_FAILURE);
 620 
 621         if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
 622             KM_NOSLEEP)) == NULL)
 623                 return (PSM_FAILURE);
 624 
 625         if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
 626             KM_NOSLEEP)) == NULL) {
 627                 kmem_free(local_ids, NCPU * sizeof (uint32_t));
 628                 return (PSM_FAILURE);
 629         }
 630 
 631         id = apic_reg_ops->apic_read(APIC_LID_REG);
 632         local_ids[0] = (uchar_t)(id >> 24);
 633         apic_nproc = index = 1;
 634         apic_io_max = 0;
 635 
 636         ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
 637         madt_size = acpi_mapic_dtp->Header.Length;
 638         madt_seen = sizeof (*acpi_mapic_dtp);
 639 
 640         while (madt_seen < madt_size) {
 641                 switch (ap->Type) {
 642                 case ACPI_MADT_TYPE_LOCAL_APIC:
 643                         mpa = (ACPI_MADT_LOCAL_APIC *) ap;
 644                         if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
 645                                 if (mpa->Id == local_ids[0]) {
 646                                         ASSERT(index == 1);
 647                                         proc_ids[0] = mpa->ProcessorId;
 648                                 } else if (apic_nproc < NCPU && use_mp &&
 649                                     apic_nproc < boot_ncpus) {
 650                                         local_ids[index] = mpa->Id;
 651                                         proc_ids[index] = mpa->ProcessorId;
 652                                         index++;
 653                                         apic_nproc++;
 654                                 } else if (apic_nproc == NCPU && !warned) {
 655                                         cmn_err(CE_WARN, "%s: CPU limit "
 656                                             "exceeded"
 657 #if !defined(__amd64)
 658                                             " for 32-bit mode"
 659 #endif
 660                                             "; Solaris will use %d CPUs.",
 661                                             psm_name,  NCPU);
 662                                         warned = 1;
 663                                 }
 664                         }
 665                         break;
 666 
 667                 case ACPI_MADT_TYPE_IO_APIC:
 668                         mia = (ACPI_MADT_IO_APIC *) ap;
 669                         if (apic_io_max < MAX_IO_APIC) {
 670                                 ioapic_ix = apic_io_max;
 671                                 apic_io_id[apic_io_max] = mia->Id;
 672                                 apic_io_vectbase[apic_io_max] =
 673                                     mia->GlobalIrqBase;
 674                                 apic_physaddr[apic_io_max] =
 675                                     (uint32_t)mia->Address;
 676                                 ioapic = apicioadr[apic_io_max] =
 677                                     mapin_ioapic((uint32_t)mia->Address,
 678                                     APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
 679                                 if (!ioapic)
 680                                         goto cleanup;
 681                                 ioapic_mask_workaround[apic_io_max] =
 682                                     apic_is_ioapic_AMD_813x(mia->Address);
 683                                 apic_io_max++;
 684                         }
 685                         break;
 686 
 687                 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
 688                         mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
 689                         if (acpi_isop == NULL)
 690                                 acpi_isop = mio;
 691                         acpi_iso_cnt++;
 692                         break;
 693 
 694                 case ACPI_MADT_TYPE_NMI_SOURCE:
 695                         /* UNIMPLEMENTED */
 696                         mns = (ACPI_MADT_NMI_SOURCE *) ap;
 697                         if (acpi_nmi_sp == NULL)
 698                                 acpi_nmi_sp = mns;
 699                         acpi_nmi_scnt++;
 700 
 701                         cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
 702                             mns->GlobalIrq, mns->IntiFlags);
 703                         break;
 704 
 705                 case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
 706                         /* UNIMPLEMENTED */
 707                         mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
 708                         if (acpi_nmi_cp == NULL)
 709                                 acpi_nmi_cp = mlan;
 710                         acpi_nmi_ccnt++;
 711 
 712                         cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
 713                             mlan->ProcessorId, mlan->IntiFlags,
 714                             mlan->Lint);
 715                         break;
 716 
 717                 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
 718                         /* UNIMPLEMENTED */
 719                         mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
 720                         cmn_err(CE_NOTE, "!apic: address override: %lx\n",
 721                             (long)mao->Address);
 722                         break;
 723 
 724                 case ACPI_MADT_TYPE_IO_SAPIC:
 725                         /* UNIMPLEMENTED */
 726                         misa = (ACPI_MADT_IO_SAPIC *) ap;
 727 
 728                         cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
 729                             misa->Id, misa->GlobalIrqBase,
 730                             (long)misa->Address);
 731                         break;
 732 
 733                 case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
 734                         /* UNIMPLEMENTED */
 735                         mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
 736 
 737                         cmn_err(CE_NOTE,
 738                             "!apic: irq source: %d %d %d 0x%x %d %d\n",
 739                             mis->Id, mis->Eid, mis->GlobalIrq,
 740                             mis->IntiFlags, mis->Type,
 741                             mis->IoSapicVector);
 742                         break;
 743 
 744                 case ACPI_MADT_TYPE_LOCAL_X2APIC:
 745                         mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
 746 
 747                         /*
 748                          * All logical processors with APIC ID values
 749                          * of 255 and greater will have their APIC
 750                          * reported through Processor X2APIC structure.
 751                          * All logical processors with APIC ID less than
 752                          * 255 will have their APIC reported through
 753                          * Processor Local APIC.
 754                          */
 755                         if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) &&
 756                             (mpx2a->LocalApicId >> 8)) {
 757                                 if (apic_nproc < NCPU && use_mp &&
 758                                     apic_nproc < boot_ncpus) {
 759                                         local_ids[index] = mpx2a->LocalApicId;
 760                                         proc_ids[index] = mpa->ProcessorId;
 761                                         index++;
 762                                         apic_nproc++;
 763                                 } else if (apic_nproc == NCPU && !warned) {
 764                                         cmn_err(CE_WARN, "%s: CPU limit "
 765                                             "exceeded"
 766 #if !defined(__amd64)
 767                                             " for 32-bit mode"
 768 #endif
 769                                             "; Solaris will use %d CPUs.",
 770                                             psm_name,  NCPU);
 771                                         warned = 1;
 772                                 }
 773                         }
 774 
 775                         break;
 776 
 777                 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
 778                         /* UNIMPLEMENTED */
 779                         mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
 780                         if (mx2alan->Uid >> 8)
 781                                 acpi_nmi_ccnt++;
 782 
 783 #ifdef  DEBUG
 784                         cmn_err(CE_NOTE,
 785                             "!apic: local x2apic nmi: %d 0x%x %d\n",
 786                             mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
 787 #endif
 788 
 789                         break;
 790 
 791                 case ACPI_MADT_TYPE_RESERVED:
 792                 default:
 793                         break;
 794                 }
 795 
 796                 /* advance to next entry */
 797                 madt_seen += ap->Length;
 798                 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
 799         }
 800 
 801         /*
 802          * allocate enough space for possible hot-adding of CPUs.
 803          * max_ncpus may be less than apic_nproc if it's set by user.
 804          */
 805         if (plat_dr_support_cpu()) {
 806                 apic_max_nproc = max_ncpus;
 807         }
 808         apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
 809         if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
 810                 goto cleanup;
 811 
 812         /*
 813          * ACPI doesn't provide the local apic ver, get it directly from the
 814          * local apic
 815          */
 816         ver = apic_reg_ops->apic_read(APIC_VERS_REG);
 817         for (i = 0; i < apic_nproc; i++) {
 818                 apic_cpus[i].aci_local_id = local_ids[i];
 819                 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
 820                 apic_cpus[i].aci_processor_id = proc_ids[i];
 821                 /* Only build mapping info for CPUs present at boot. */
 822                 if (i < boot_ncpus)
 823                         (void) acpica_map_cpu(i, proc_ids[i]);
 824         }
 825 
 826         /*
 827          * To support CPU dynamic reconfiguration, the apic CPU info structure
 828          * for each possible CPU will be pre-allocated at boot time.
 829          * The state for each apic CPU info structure will be assigned according
 830          * to the following rules:
 831          * Rule 1:
 832          *      Slot index range: [0, min(apic_nproc, boot_ncpus))
 833          *      State flags: 0
 834          *      Note: cpu exists and will be configured/enabled at boot time
 835          * Rule 2:
 836          *      Slot index range: [boot_ncpus, apic_nproc)
 837          *      State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
 838          *      Note: cpu exists but won't be configured/enabled at boot time
 839          * Rule 3:
 840          *      Slot index range: [apic_nproc, boot_ncpus)
 841          *      State flags: APIC_CPU_FREE
 842          *      Note: cpu doesn't exist at boot time
 843          * Rule 4:
 844          *      Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
 845          *      State flags: APIC_CPU_FREE
 846          *      Note: cpu doesn't exist at boot time
 847          */
 848         CPUSET_ZERO(apic_cpumask);
 849         for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
 850                 CPUSET_ADD(apic_cpumask, i);
 851                 apic_cpus[i].aci_status = 0;
 852         }
 853         for (i = boot_ncpus; i < apic_nproc; i++) {
 854                 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
 855         }
 856         for (i = apic_nproc; i < boot_ncpus; i++) {
 857                 apic_cpus[i].aci_status = APIC_CPU_FREE;
 858         }
 859         for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
 860                 apic_cpus[i].aci_status = APIC_CPU_FREE;
 861         }
 862 
 863         for (i = 0; i < apic_io_max; i++) {
 864                 ioapic_ix = i;
 865 
 866                 /*
 867                  * need to check Sitka on the following acpi problem
 868                  * On the Sitka, the ioapic's apic_id field isn't reporting
 869                  * the actual io apic id. We have reported this problem
 870                  * to Intel. Until they fix the problem, we will get the
 871                  * actual id directly from the ioapic.
 872                  */
 873                 id = ioapic_read(ioapic_ix, APIC_ID_CMD);
 874                 hid = (uchar_t)(id >> 24);
 875 
 876                 if (hid != apic_io_id[i]) {
 877                         if (apic_io_id[i] == 0)
 878                                 apic_io_id[i] = hid;
 879                         else { /* set ioapic id to whatever reported by ACPI */
 880                                 id = ((uint32_t)apic_io_id[i]) << 24;
 881                                 ioapic_write(ioapic_ix, APIC_ID_CMD, id);
 882                         }
 883                 }
 884                 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
 885                 apic_io_ver[i] = (uchar_t)(ver & 0xff);
 886                 intmax = (ver >> 16) & 0xff;
 887                 apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
 888                 if (apic_first_avail_irq <= apic_io_vectend[i])
 889                         apic_first_avail_irq = apic_io_vectend[i] + 1;
 890         }
 891 
 892 
 893         /*
 894          * Process SCI configuration here
 895          * An error may be returned here if
 896          * acpi-user-options specifies legacy mode
 897          * (no SCI, no ACPI mode)
 898          */
 899         if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
 900                 sci = -1;
 901 
 902         /*
 903          * Now call acpi_init() to generate namespaces
 904          * If this fails, we don't attempt to use ACPI
 905          * even if we were able to get a MADT above
 906          */
 907         if (acpica_init() != AE_OK)
 908                 goto cleanup;
 909 
 910         /*
 911          * Call acpica_build_processor_map() now that we have
 912          * ACPI namesspace access
 913          */
 914         (void) acpica_build_processor_map();
 915 
 916         /*
 917          * Squirrel away the SCI and flags for later on
 918          * in apic_picinit() when we're ready
 919          */
 920         apic_sci_vect = sci;
 921         apic_sci_flags = sci_flags;
 922 
 923         if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
 924                 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
 925 
 926         if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
 927                 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
 928 
 929         if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
 930                 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
 931 
 932         if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
 933                 goto cleanup;
 934 
 935         /* Enable ACPI APIC interrupt routing */
 936         if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
 937                 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
 938                 apic_enable_acpi = 1;
 939                 if (apic_sci_vect > 0) {
 940                         acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
 941                 }
 942                 if (apic_use_acpi_madt_only) {
 943                         cmn_err(CE_CONT,
 944                             "?Using ACPI for CPU/IOAPIC information ONLY\n");
 945                 }
 946 
 947 #if !defined(__xpv)
 948                 /*
 949                  * probe ACPI for hpet information here which is used later
 950                  * in apic_picinit().
 951                  */
 952                 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
 953                         cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
 954                 }
 955 #endif
 956 
 957                 kmem_free(local_ids, NCPU * sizeof (uint32_t));
 958                 kmem_free(proc_ids, NCPU * sizeof (uint32_t));
 959                 return (PSM_SUCCESS);
 960         }
 961         /* if setting APIC mode failed above, we fall through to cleanup */
 962 
 963 cleanup:
 964         apic_free_apic_cpus();
 965         if (apicadr != NULL) {
 966                 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
 967                 apicadr = NULL;
 968         }
 969         apic_max_nproc = -1;
 970         apic_nproc = 0;
 971         for (i = 0; i < apic_io_max; i++) {
 972                 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
 973                 apicioadr[i] = NULL;
 974         }
 975         apic_io_max = 0;
 976         acpi_isop = NULL;
 977         acpi_iso_cnt = 0;
 978         acpi_nmi_sp = NULL;
 979         acpi_nmi_scnt = 0;
 980         acpi_nmi_cp = NULL;
 981         acpi_nmi_ccnt = 0;
 982         kmem_free(local_ids, NCPU * sizeof (uint32_t));
 983         kmem_free(proc_ids, NCPU * sizeof (uint32_t));
 984         return (PSM_FAILURE);
 985 }
 986 
 987 /*
 988  * Handle default configuration. Fill in reqd global variables & tables
 989  * Fill all details as MP table does not give any more info
 990  */
 991 static int
 992 apic_handle_defconf()
 993 {
 994         uint_t  lid;
 995 
 996         /* Failed to probe ACPI MADT tables, disable CPU DR. */
 997         apic_max_nproc = -1;
 998         apic_free_apic_cpus();
 999         plat_dr_disable_cpu();
1000 
1001         apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1002             APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1003         apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1004             APIC_LOCAL_MEMLEN, PROT_READ);
1005         apic_cpus_size = 2 * sizeof (*apic_cpus);
1006         apic_cpus = (apic_cpus_info_t *)
1007             kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1008         if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1009                 goto apic_handle_defconf_fail;
1010         CPUSET_ONLY(apic_cpumask, 0);
1011         CPUSET_ADD(apic_cpumask, 1);
1012         apic_nproc = 2;
1013         lid = apic_reg_ops->apic_read(APIC_LID_REG);
1014         apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1015         /*
1016          * According to the PC+MP spec 1.1, the local ids
1017          * for the default configuration has to be 0 or 1
1018          */
1019         if (apic_cpus[0].aci_local_id == 1)
1020                 apic_cpus[1].aci_local_id = 0;
1021         else if (apic_cpus[0].aci_local_id == 0)
1022                 apic_cpus[1].aci_local_id = 1;
1023         else
1024                 goto apic_handle_defconf_fail;
1025 
1026         apic_io_id[0] = 2;
1027         apic_io_max = 1;
1028         if (apic_defconf >= 5) {
1029                 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1030                 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1031                 apic_io_ver[0] = APIC_INTEGRATED_VERS;
1032         } else {
1033                 apic_cpus[0].aci_local_ver = 0;         /* 82489 DX */
1034                 apic_cpus[1].aci_local_ver = 0;
1035                 apic_io_ver[0] = 0;
1036         }
1037         if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1038                 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1039                     inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1040         return (PSM_SUCCESS);
1041 
1042 apic_handle_defconf_fail:
1043         if (apicadr)
1044                 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1045         if (apicioadr[0])
1046                 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1047         return (PSM_FAILURE);
1048 }
1049 
1050 /* Parse the entries in MP configuration table and collect info that we need */
1051 static int
1052 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1053 {
1054         struct  apic_procent    *procp;
1055         struct  apic_bus        *busp;
1056         struct  apic_io_entry   *ioapicp;
1057         struct  apic_io_intr    *intrp;
1058         int                     ioapic_ix;
1059         uint_t  lid;
1060         uint32_t        id;
1061         uchar_t hid;
1062         int     warned = 0;
1063 
1064         /*LINTED: pointer cast may result in improper alignment */
1065         procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1066 
1067         /* No need to count cpu entries if we won't use them */
1068         if (!bypass_cpus_and_ioapics) {
1069 
1070                 /* Find max # of CPUS and allocate structure accordingly */
1071                 apic_nproc = 0;
1072                 CPUSET_ZERO(apic_cpumask);
1073                 while (procp->proc_entry == APIC_CPU_ENTRY) {
1074                         if (procp->proc_cpuflags & CPUFLAGS_EN) {
1075                                 if (apic_nproc < NCPU && use_mp &&
1076                                     apic_nproc < boot_ncpus) {
1077                                         CPUSET_ADD(apic_cpumask, apic_nproc);
1078                                         apic_nproc++;
1079                                 } else if (apic_nproc == NCPU && !warned) {
1080                                         cmn_err(CE_WARN, "%s: CPU limit "
1081                                             "exceeded"
1082 #if !defined(__amd64)
1083                                             " for 32-bit mode"
1084 #endif
1085                                             "; Solaris will use %d CPUs.",
1086                                             psm_name,  NCPU);
1087                                         warned = 1;
1088                                 }
1089 
1090                         }
1091                         procp++;
1092                 }
1093                 apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1094                 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1095                     kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1096                         return (PSM_FAILURE);
1097         }
1098 
1099         /*LINTED: pointer cast may result in improper alignment */
1100         procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1101 
1102         /*
1103          * start with index 1 as 0 needs to be filled in with Boot CPU, but
1104          * if we're bypassing this information, it has already been filled
1105          * in by acpi_probe(), so don't overwrite it.
1106          */
1107         if (!bypass_cpus_and_ioapics)
1108                 apic_nproc = 1;
1109 
1110         while (procp->proc_entry == APIC_CPU_ENTRY) {
1111                 /* check whether the cpu exists or not */
1112                 if (!bypass_cpus_and_ioapics &&
1113                     procp->proc_cpuflags & CPUFLAGS_EN) {
1114                         if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1115                                 lid = apic_reg_ops->apic_read(APIC_LID_REG);
1116                                 apic_cpus[0].aci_local_id = procp->proc_apicid;
1117                                 if (apic_cpus[0].aci_local_id !=
1118                                     (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1119                                         return (PSM_FAILURE);
1120                                 }
1121                                 apic_cpus[0].aci_local_ver =
1122                                     procp->proc_version;
1123                         } else if (apic_nproc < NCPU && use_mp &&
1124                             apic_nproc < boot_ncpus) {
1125                                 apic_cpus[apic_nproc].aci_local_id =
1126                                     procp->proc_apicid;
1127 
1128                                 apic_cpus[apic_nproc].aci_local_ver =
1129                                     procp->proc_version;
1130                                 apic_nproc++;
1131 
1132                         }
1133                 }
1134                 procp++;
1135         }
1136 
1137         /*
1138          * Save start of bus entries for later use.
1139          * Get EISA level cntrl if EISA bus is present.
1140          * Also get the CPI bus id for single CPI bus case
1141          */
1142         apic_busp = busp = (struct apic_bus *)procp;
1143         while (busp->bus_entry == APIC_BUS_ENTRY) {
1144                 lid = apic_find_bus_type((char *)&busp->bus_str1);
1145                 if (lid == BUS_EISA) {
1146                         eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1147                             inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1148                 } else if (lid == BUS_PCI) {
1149                         /*
1150                          * apic_single_pci_busid will be used only if
1151                          * apic_pic_bus_total is equal to 1
1152                          */
1153                         apic_pci_bus_total++;
1154                         apic_single_pci_busid = busp->bus_id;
1155                 }
1156                 busp++;
1157         }
1158 
1159         ioapicp = (struct apic_io_entry *)busp;
1160 
1161         if (!bypass_cpus_and_ioapics)
1162                 apic_io_max = 0;
1163         do {
1164                 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1165                         if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1166                                 apic_io_id[apic_io_max] = ioapicp->io_apicid;
1167                                 apic_io_ver[apic_io_max] = ioapicp->io_version;
1168                                 apicioadr[apic_io_max] =
1169                                     (void *)mapin_ioapic(
1170                                     (uint32_t)ioapicp->io_apic_addr,
1171                                     APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1172 
1173                                 if (!apicioadr[apic_io_max])
1174                                         return (PSM_FAILURE);
1175 
1176                                 ioapic_mask_workaround[apic_io_max] =
1177                                     apic_is_ioapic_AMD_813x(
1178                                     ioapicp->io_apic_addr);
1179 
1180                                 ioapic_ix = apic_io_max;
1181                                 id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1182                                 hid = (uchar_t)(id >> 24);
1183 
1184                                 if (hid != apic_io_id[apic_io_max]) {
1185                                         if (apic_io_id[apic_io_max] == 0)
1186                                                 apic_io_id[apic_io_max] = hid;
1187                                         else {
1188                                                 /*
1189                                                  * set ioapic id to whatever
1190                                                  * reported by MPS
1191                                                  *
1192                                                  * may not need to set index
1193                                                  * again ???
1194                                                  * take it out and try
1195                                                  */
1196 
1197                                                 id = ((uint32_t)
1198                                                     apic_io_id[apic_io_max]) <<
1199                                                     24;
1200 
1201                                                 ioapic_write(ioapic_ix,
1202                                                     APIC_ID_CMD, id);
1203                                         }
1204                                 }
1205                                 apic_io_max++;
1206                         }
1207                 }
1208                 ioapicp++;
1209         } while (ioapicp->io_entry == APIC_IO_ENTRY);
1210 
1211         apic_io_intrp = (struct apic_io_intr *)ioapicp;
1212 
1213         intrp = apic_io_intrp;
1214         while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1215                 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1216                     (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1217                         apic_irq_translate = 1;
1218                         break;
1219                 }
1220                 intrp++;
1221         }
1222 
1223         return (PSM_SUCCESS);
1224 }
1225 
1226 boolean_t
1227 apic_cpu_in_range(int cpu)
1228 {
1229         cpu &= ~IRQ_USER_BOUND;
1230         /* Check whether cpu id is in valid range. */
1231         if (cpu < 0 || cpu >= apic_nproc) {
1232                 return (B_FALSE);
1233         } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1234                 /*
1235                  * Check whether cpuid is in valid range if CPU DR is enabled.
1236                  */
1237                 return (B_FALSE);
1238         } else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1239                 return (B_FALSE);
1240         }
1241 
1242         return (B_TRUE);
1243 }
1244 
1245 processorid_t
1246 apic_get_next_bind_cpu(void)
1247 {
1248         int i, count;
1249         processorid_t cpuid = 0;
1250 
1251         for (count = 0; count < apic_nproc; count++) {
1252                 if (apic_next_bind_cpu >= apic_nproc) {
1253                         apic_next_bind_cpu = 0;
1254                 }
1255                 i = apic_next_bind_cpu++;
1256                 if (apic_cpu_in_range(i)) {
1257                         cpuid = i;
1258                         break;
1259                 }
1260         }
1261 
1262         return (cpuid);
1263 }
1264 
1265 uint16_t
1266 apic_get_apic_version()
1267 {
1268         int i;
1269         uchar_t min_io_apic_ver = 0;
1270         static uint16_t version;                /* Cache as value is constant */
1271         static boolean_t found = B_FALSE;       /* Accomodate zero version */
1272 
1273         if (found == B_FALSE) {
1274                 found = B_TRUE;
1275 
1276                 /*
1277                  * Don't assume all IO APICs in the system are the same.
1278                  *
1279                  * Set to the minimum version.
1280                  */
1281                 for (i = 0; i < apic_io_max; i++) {
1282                         if ((apic_io_ver[i] != 0) &&
1283                             ((min_io_apic_ver == 0) ||
1284                             (min_io_apic_ver >= apic_io_ver[i])))
1285                                 min_io_apic_ver = apic_io_ver[i];
1286                 }
1287 
1288                 /* Assume all local APICs are of the same version. */
1289                 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1290         }
1291         return (version);
1292 }
1293 
1294 static struct apic_mpfps_hdr *
1295 apic_find_fps_sig(caddr_t cptr, int len)
1296 {
1297         int     i;
1298 
1299         /* Look for the pattern "_MP_" */
1300         for (i = 0; i < len; i += 16) {
1301                 if ((*(cptr+i) == '_') &&
1302                     (*(cptr+i+1) == 'M') &&
1303                     (*(cptr+i+2) == 'P') &&
1304                     (*(cptr+i+3) == '_'))
1305                     /*LINTED: pointer cast may result in improper alignment */
1306                         return ((struct apic_mpfps_hdr *)(cptr + i));
1307         }
1308         return (NULL);
1309 }
1310 
1311 static int
1312 apic_checksum(caddr_t bptr, int len)
1313 {
1314         int     i;
1315         uchar_t cksum;
1316 
1317         cksum = 0;
1318         for (i = 0; i < len; i++)
1319                 cksum += *bptr++;
1320         return ((int)cksum);
1321 }
1322 
1323 /*
1324  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1325  * needs special handling.  We may need to chase up the device tree,
1326  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1327  * to find the IPIN at the root bus that relates to the IPIN on the
1328  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1329  * in the MP table or the ACPI namespace for this device itself.
1330  * We handle both cases in the search below.
1331  */
1332 /* this is the non-acpi version */
1333 int
1334 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1335                         struct apic_io_intr **intrp)
1336 {
1337         dev_info_t *dipp, *dip;
1338         int pci_irq;
1339         ddi_acc_handle_t cfg_handle;
1340         int bridge_devno, bridge_bus;
1341         int ipin;
1342 
1343         dip = idip;
1344 
1345         /*CONSTCOND*/
1346         while (1) {
1347                 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1348                     (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1349                         return (-1);
1350                 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1351                     PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1352                     PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1353                         pci_config_teardown(&cfg_handle);
1354                         if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1355                             NULL) != 0)
1356                                 return (-1);
1357                         /*
1358                          * This is the rotating scheme documented in the
1359                          * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1360                          * behind another PCI-to-PCI bridge, then it needs
1361                          * to keep ascending until an interrupt entry is
1362                          * found or the root is reached.
1363                          */
1364                         ipin = (child_devno + child_ipin) % PCI_INTD;
1365                                 if (bridge_bus == 0 && apic_pci_bus_total == 1)
1366                                         bridge_bus = (int)apic_single_pci_busid;
1367                                 pci_irq = ((bridge_devno & 0x1f) << 2) |
1368                                     (ipin & 0x3);
1369                                 if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1370                                     bridge_bus)) != NULL) {
1371                                         return (pci_irq);
1372                                 }
1373                         dip = dipp;
1374                         child_devno = bridge_devno;
1375                         child_ipin = ipin;
1376                 } else {
1377                         pci_config_teardown(&cfg_handle);
1378                         return (-1);
1379                 }
1380         }
1381         /*LINTED: function will not fall off the bottom */
1382 }
1383 
1384 uchar_t
1385 acpi_find_ioapic(int irq)
1386 {
1387         int i;
1388 
1389         for (i = 0; i < apic_io_max; i++) {
1390                 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1391                         return ((uchar_t)i);
1392         }
1393         return (0xFF);  /* shouldn't happen */
1394 }
1395 
1396 /*
1397  * See if two irqs are compatible for sharing a vector.
1398  * Currently we only support sharing of PCI devices.
1399  */
1400 static int
1401 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1402 {
1403         uint_t  level1, po1;
1404         uint_t  level2, po2;
1405 
1406         /* Assume active high by default */
1407         po1 = 0;
1408         po2 = 0;
1409 
1410         if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1411                 return (0);
1412 
1413         if (iflag1.intr_el == INTR_EL_CONFORM)
1414                 level1 = AV_LEVEL;
1415         else
1416                 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1417 
1418         if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1419             (iflag1.intr_po == INTR_PO_CONFORM)))
1420                 po1 = AV_ACTIVE_LOW;
1421 
1422         if (iflag2.intr_el == INTR_EL_CONFORM)
1423                 level2 = AV_LEVEL;
1424         else
1425                 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1426 
1427         if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1428             (iflag2.intr_po == INTR_PO_CONFORM)))
1429                 po2 = AV_ACTIVE_LOW;
1430 
1431         if ((level1 == level2) && (po1 == po2))
1432                 return (1);
1433 
1434         return (0);
1435 }
1436 
1437 struct apic_io_intr *
1438 apic_find_io_intr_w_busid(int irqno, int busid)
1439 {
1440         struct  apic_io_intr    *intrp;
1441 
1442         /*
1443          * It can have more than 1 entry with same source bus IRQ,
1444          * but unique with the source bus id
1445          */
1446         intrp = apic_io_intrp;
1447         if (intrp != NULL) {
1448                 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1449                         if (intrp->intr_irq == irqno &&
1450                             intrp->intr_busid == busid &&
1451                             intrp->intr_type == IO_INTR_INT)
1452                                 return (intrp);
1453                         intrp++;
1454                 }
1455         }
1456         APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1457             "busid %x:%x\n", irqno, busid));
1458         return ((struct apic_io_intr *)NULL);
1459 }
1460 
1461 
1462 struct mps_bus_info {
1463         char    *bus_name;
1464         int     bus_id;
1465 } bus_info_array[] = {
1466         "ISA ", BUS_ISA,
1467         "PCI ", BUS_PCI,
1468         "EISA ", BUS_EISA,
1469         "XPRESS", BUS_XPRESS,
1470         "PCMCIA", BUS_PCMCIA,
1471         "VL ", BUS_VL,
1472         "CBUS ", BUS_CBUS,
1473         "CBUSII", BUS_CBUSII,
1474         "FUTURE", BUS_FUTURE,
1475         "INTERN", BUS_INTERN,
1476         "MBI ", BUS_MBI,
1477         "MBII ", BUS_MBII,
1478         "MPI ", BUS_MPI,
1479         "MPSA ", BUS_MPSA,
1480         "NUBUS ", BUS_NUBUS,
1481         "TC ", BUS_TC,
1482         "VME ", BUS_VME,
1483         "PCI-E ", BUS_PCIE
1484 };
1485 
1486 static int
1487 apic_find_bus_type(char *bus)
1488 {
1489         int     i = 0;
1490 
1491         for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1492                 if (strncmp(bus, bus_info_array[i].bus_name,
1493                     strlen(bus_info_array[i].bus_name)) == 0)
1494                         return (bus_info_array[i].bus_id);
1495         APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1496         return (0);
1497 }
1498 
1499 static int
1500 apic_find_bus(int busid)
1501 {
1502         struct  apic_bus        *busp;
1503 
1504         busp = apic_busp;
1505         while (busp->bus_entry == APIC_BUS_ENTRY) {
1506                 if (busp->bus_id == busid)
1507                         return (apic_find_bus_type((char *)&busp->bus_str1));
1508                 busp++;
1509         }
1510         APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1511         return (0);
1512 }
1513 
1514 int
1515 apic_find_bus_id(int bustype)
1516 {
1517         struct  apic_bus        *busp;
1518 
1519         busp = apic_busp;
1520         while (busp->bus_entry == APIC_BUS_ENTRY) {
1521                 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1522                         return (busp->bus_id);
1523                 busp++;
1524         }
1525         APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1526             bustype));
1527         return (-1);
1528 }
1529 
1530 /*
1531  * Check if a particular irq need to be reserved for any io_intr
1532  */
1533 static struct apic_io_intr *
1534 apic_find_io_intr(int irqno)
1535 {
1536         struct  apic_io_intr    *intrp;
1537 
1538         intrp = apic_io_intrp;
1539         if (intrp != NULL) {
1540                 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1541                         if (intrp->intr_irq == irqno &&
1542                             intrp->intr_type == IO_INTR_INT)
1543                                 return (intrp);
1544                         intrp++;
1545                 }
1546         }
1547         return ((struct apic_io_intr *)NULL);
1548 }
1549 
1550 /*
1551  * Check if the given ioapicindex intin combination has already been assigned
1552  * an irq. If so return irqno. Else -1
1553  */
1554 int
1555 apic_find_intin(uchar_t ioapic, uchar_t intin)
1556 {
1557         apic_irq_t *irqptr;
1558         int     i;
1559 
1560         /* find ioapic and intin in the apic_irq_table[] and return the index */
1561         for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1562                 irqptr = apic_irq_table[i];
1563                 while (irqptr) {
1564                         if ((irqptr->airq_mps_intr_index >= 0) &&
1565                             (irqptr->airq_intin_no == intin) &&
1566                             (irqptr->airq_ioapicindex == ioapic)) {
1567                                 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1568                                     "entry for ioapic:intin %x:%x "
1569                                     "shared interrupts ?", ioapic, intin));
1570                                 return (i);
1571                         }
1572                         irqptr = irqptr->airq_next;
1573                 }
1574         }
1575         return (-1);
1576 }
1577 
1578 int
1579 apic_allocate_irq(int irq)
1580 {
1581         int     freeirq, i;
1582 
1583         if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1584                 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1585                     (irq - 1))) == -1) {
1586                         /*
1587                          * if BIOS really defines every single irq in the mps
1588                          * table, then don't worry about conflicting with
1589                          * them, just use any free slot in apic_irq_table
1590                          */
1591                         for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1592                                 if ((apic_irq_table[i] == NULL) ||
1593                                     apic_irq_table[i]->airq_mps_intr_index ==
1594                                     FREE_INDEX) {
1595                                 freeirq = i;
1596                                 break;
1597                         }
1598                 }
1599                 if (freeirq == -1) {
1600                         /* This shouldn't happen, but just in case */
1601                         cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1602                         return (-1);
1603                 }
1604         }
1605         if (apic_irq_table[freeirq] == NULL) {
1606                 apic_irq_table[freeirq] =
1607                     kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1608                 if (apic_irq_table[freeirq] == NULL) {
1609                         cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1610                             psm_name);
1611                         return (-1);
1612                 }
1613                 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1614                 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1615         }
1616         return (freeirq);
1617 }
1618 
1619 static int
1620 apic_find_free_irq(int start, int end)
1621 {
1622         int     i;
1623 
1624         for (i = start; i <= end; i++)
1625                 /* Check if any I/O entry needs this IRQ */
1626                 if (apic_find_io_intr(i) == NULL) {
1627                         /* Then see if it is free */
1628                         if ((apic_irq_table[i] == NULL) ||
1629                             (apic_irq_table[i]->airq_mps_intr_index ==
1630                             FREE_INDEX)) {
1631                                 return (i);
1632                         }
1633                 }
1634         return (-1);
1635 }
1636 
1637 /*
1638  * compute the polarity, trigger mode and vector for programming into
1639  * the I/O apic and record in airq_rdt_entry.
1640  */
1641 void
1642 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1643 {
1644         int     ioapicindex, bus_type, vector;
1645         short   intr_index;
1646         uint_t  level, po, io_po;
1647         struct apic_io_intr *iointrp;
1648 
1649         intr_index = irqptr->airq_mps_intr_index;
1650         DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1651             "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1652             (void *)irqptr->airq_dip, irqptr->airq_vector));
1653 
1654         if (intr_index == RESERVE_INDEX) {
1655                 apic_error |= APIC_ERR_INVALID_INDEX;
1656                 return;
1657         } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1658                 return;
1659         }
1660 
1661         vector = irqptr->airq_vector;
1662         ioapicindex = irqptr->airq_ioapicindex;
1663         /* Assume edge triggered by default */
1664         level = 0;
1665         /* Assume active high by default */
1666         po = 0;
1667 
1668         if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1669                 ASSERT(irq < 16);
1670                 if (eisa_level_intr_mask & (1 << irq))
1671                         level = AV_LEVEL;
1672                 if (intr_index == FREE_INDEX && apic_defconf == 0)
1673                         apic_error |= APIC_ERR_INVALID_INDEX;
1674         } else if (intr_index == ACPI_INDEX) {
1675                 bus_type = irqptr->airq_iflag.bustype;
1676                 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1677                         if (bus_type == BUS_PCI)
1678                                 level = AV_LEVEL;
1679                 } else
1680                         level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1681                             AV_LEVEL : 0;
1682                 if (level &&
1683                     ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1684                     (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1685                     bus_type == BUS_PCI)))
1686                         po = AV_ACTIVE_LOW;
1687         } else {
1688                 iointrp = apic_io_intrp + intr_index;
1689                 bus_type = apic_find_bus(iointrp->intr_busid);
1690                 if (iointrp->intr_el == INTR_EL_CONFORM) {
1691                         if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1692                                 level = AV_LEVEL;
1693                         else if (bus_type == BUS_PCI)
1694                                 level = AV_LEVEL;
1695                 } else
1696                         level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1697                             AV_LEVEL : 0;
1698                 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1699                     (iointrp->intr_po == INTR_PO_CONFORM &&
1700                     bus_type == BUS_PCI)))
1701                         po = AV_ACTIVE_LOW;
1702         }
1703         if (level)
1704                 apic_level_intr[irq] = 1;
1705         /*
1706          * The 82489DX External APIC cannot do active low polarity interrupts.
1707          */
1708         if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1709                 io_po = po;
1710         else
1711                 io_po = 0;
1712 
1713         if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1714                 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1715                     "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1716                     irqptr->airq_intin_no, level, io_po, vector,
1717                     irqptr->airq_cpu);
1718 
1719         irqptr->airq_rdt_entry = level|io_po|vector;
1720 }
1721 
1722 int
1723 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1724     int ipin, int *pci_irqp, iflag_t *intr_flagp)
1725 {
1726 
1727         int status;
1728         acpi_psm_lnk_t acpipsmlnk;
1729 
1730         if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1731             intr_flagp)) == ACPI_PSM_SUCCESS) {
1732                 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1733                     "from cache for device %s, instance #%d\n", psm_name,
1734                     *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1735                 return (status);
1736         }
1737 
1738         bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1739 
1740         if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1741             &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1742                 APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1743                     " acpi_translate_pci_irq failed for device %s, instance"
1744                     " #%d", psm_name, ddi_get_name(dip),
1745                     ddi_get_instance(dip)));
1746                 return (status);
1747         }
1748 
1749         if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1750                 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1751                     intr_flagp);
1752                 if (status != ACPI_PSM_SUCCESS) {
1753                         status = acpi_get_current_irq_resource(&acpipsmlnk,
1754                             pci_irqp, intr_flagp);
1755                 }
1756         }
1757 
1758         if (status == ACPI_PSM_SUCCESS) {
1759                 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1760                     intr_flagp, &acpipsmlnk);
1761 
1762                 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1763                     "new irq %d for device %s, instance #%d\n", psm_name,
1764                     *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1765         }
1766 
1767         return (status);
1768 }
1769 
1770 /*
1771  * Adds an entry to the irq list passed in, and returns the new list.
1772  * Entries are added in priority order (lower numerical priorities are
1773  * placed closer to the head of the list)
1774  */
1775 static prs_irq_list_t *
1776 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1777     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1778 {
1779         struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1780 
1781         newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1782 
1783         newent->list_prio = priority;
1784         newent->irq = irq;
1785         newent->intrflags = *iflagp;
1786         newent->prsprv = *prsprvp;
1787         /* ->next is NULL from kmem_zalloc */
1788 
1789         /*
1790          * New list -- return the new entry as the list.
1791          */
1792         if (listp == NULL)
1793                 return (newent);
1794 
1795         /*
1796          * Save original list pointer for return (since we're not modifying
1797          * the head)
1798          */
1799         origlistp = listp;
1800 
1801         /*
1802          * Insertion sort, with entries with identical keys stored AFTER
1803          * existing entries (the less-than-or-equal test of priority does
1804          * this for us).
1805          */
1806         while (listp != NULL && listp->list_prio <= priority) {
1807                 prevp = listp;
1808                 listp = listp->next;
1809         }
1810 
1811         newent->next = listp;
1812 
1813         if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1814                 return (newent);
1815         } else {
1816                 prevp->next = newent;
1817                 return (origlistp);
1818         }
1819 }
1820 
1821 /*
1822  * Frees the list passed in, deallocating all memory and leaving *listpp
1823  * set to NULL.
1824  */
1825 static void
1826 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1827 {
1828         struct prs_irq_list_ent *nextp;
1829 
1830         ASSERT(listpp != NULL);
1831 
1832         while (*listpp != NULL) {
1833                 nextp = (*listpp)->next;
1834                 kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1835                 *listpp = nextp;
1836         }
1837 }
1838 
1839 /*
1840  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1841  * irqs returned by the link device's _PRS method.  The irqs are chosen
1842  * to minimize contention in situations where the interrupt link device
1843  * can be programmed to steer interrupts to different interrupt controller
1844  * inputs (some of which may already be in use).  The list is sorted in order
1845  * of irqs to use, with the highest priority given to interrupt controller
1846  * inputs that are not shared.   When an interrupt controller input
1847  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1848  * returned list in the order that minimizes sharing (thereby ensuring lowest
1849  * possible latency from interrupt trigger time to ISR execution time).
1850  */
1851 static prs_irq_list_t *
1852 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1853     int crs_irq)
1854 {
1855         int32_t irq;
1856         int i;
1857         prs_irq_list_t *prsirqlistp = NULL;
1858         iflag_t iflags;
1859 
1860         while (irqlistent != NULL) {
1861                 irqlistent->intr_flags.bustype = BUS_PCI;
1862 
1863                 for (i = 0; i < irqlistent->num_irqs; i++) {
1864 
1865                         irq = irqlistent->irqs[i];
1866 
1867                         if (irq <= 0) {
1868                                 /* invalid irq number */
1869                                 continue;
1870                         }
1871 
1872                         if ((irq < 16) && (apic_reserved_irqlist[irq]))
1873                                 continue;
1874 
1875                         if ((apic_irq_table[irq] == NULL) ||
1876                             (apic_irq_table[irq]->airq_dip == dip)) {
1877 
1878                                 prsirqlistp = acpi_insert_prs_irq_ent(
1879                                     prsirqlistp, 0 /* Highest priority */, irq,
1880                                     &irqlistent->intr_flags,
1881                                     &irqlistent->acpi_prs_prv);
1882 
1883                                 /*
1884                                  * If we do not prefer the current irq from _CRS
1885                                  * or if we do and this irq is the same as the
1886                                  * current irq from _CRS, this is the one
1887                                  * to pick.
1888                                  */
1889                                 if (!(apic_prefer_crs) || (irq == crs_irq)) {
1890                                         return (prsirqlistp);
1891                                 }
1892                                 continue;
1893                         }
1894 
1895                         /*
1896                          * Edge-triggered interrupts cannot be shared
1897                          */
1898                         if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1899                                 continue;
1900 
1901                         /*
1902                          * To work around BIOSes that contain incorrect
1903                          * interrupt polarity information in interrupt
1904                          * descriptors returned by _PRS, we assume that
1905                          * the polarity of the other device sharing this
1906                          * interrupt controller input is compatible.
1907                          * If it's not, the caller will catch it when
1908                          * the caller invokes the link device's _CRS method
1909                          * (after invoking its _SRS method).
1910                          */
1911                         iflags = irqlistent->intr_flags;
1912                         iflags.intr_po =
1913                             apic_irq_table[irq]->airq_iflag.intr_po;
1914 
1915                         if (!acpi_intr_compatible(iflags,
1916                             apic_irq_table[irq]->airq_iflag)) {
1917                                 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1918                                     "not compatible [%x:%x:%x !~ %x:%x:%x]",
1919                                     psm_name, irq,
1920                                     iflags.intr_po,
1921                                     iflags.intr_el,
1922                                     iflags.bustype,
1923                                     apic_irq_table[irq]->airq_iflag.intr_po,
1924                                     apic_irq_table[irq]->airq_iflag.intr_el,
1925                                     apic_irq_table[irq]->airq_iflag.bustype));
1926                                 continue;
1927                         }
1928 
1929                         /*
1930                          * If we prefer the irq from _CRS, no need
1931                          * to search any further (and make sure
1932                          * to add this irq with the highest priority
1933                          * so it's tried first).
1934                          */
1935                         if (crs_irq == irq && apic_prefer_crs) {
1936 
1937                                 return (acpi_insert_prs_irq_ent(
1938                                     prsirqlistp,
1939                                     0 /* Highest priority */,
1940                                     irq, &iflags,
1941                                     &irqlistent->acpi_prs_prv));
1942                         }
1943 
1944                         /*
1945                          * Priority is equal to the share count (lower
1946                          * share count is higher priority). Note that
1947                          * the intr flags passed in here are the ones we
1948                          * changed above -- if incorrect, it will be
1949                          * caught by the caller's _CRS flags comparison.
1950                          */
1951                         prsirqlistp = acpi_insert_prs_irq_ent(
1952                             prsirqlistp,
1953                             apic_irq_table[irq]->airq_share, irq,
1954                             &iflags, &irqlistent->acpi_prs_prv);
1955                 }
1956 
1957                 /* Go to the next irqlist entry */
1958                 irqlistent = irqlistent->next;
1959         }
1960 
1961         return (prsirqlistp);
1962 }
1963 
1964 /*
1965  * Configures the irq for the interrupt link device identified by
1966  * acpipsmlnkp.
1967  *
1968  * Gets the current and the list of possible irq settings for the
1969  * device. If apic_unconditional_srs is not set, and the current
1970  * resource setting is in the list of possible irq settings,
1971  * current irq resource setting is passed to the caller.
1972  *
1973  * Otherwise, picks an irq number from the list of possible irq
1974  * settings, and sets the irq of the device to this value.
1975  * If prefer_crs is set, among a set of irq numbers in the list that have
1976  * the least number of devices sharing the interrupt, we pick current irq
1977  * resource setting if it is a member of this set.
1978  *
1979  * Passes the irq number in the value pointed to by pci_irqp, and
1980  * polarity and sensitivity in the structure pointed to by dipintrflagp
1981  * to the caller.
1982  *
1983  * Note that if setting the irq resource failed, but successfuly obtained
1984  * the current irq resource settings, passes the current irq resources
1985  * and considers it a success.
1986  *
1987  * Returns:
1988  * ACPI_PSM_SUCCESS on success.
1989  *
1990  * ACPI_PSM_FAILURE if an error occured during the configuration or
1991  * if a suitable irq was not found for this device, or if setting the
1992  * irq resource and obtaining the current resource fails.
1993  *
1994  */
1995 static int
1996 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
1997     int *pci_irqp, iflag_t *dipintr_flagp)
1998 {
1999         int32_t irq;
2000         int cur_irq = -1;
2001         acpi_irqlist_t *irqlistp;
2002         prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2003         boolean_t found_irq = B_FALSE;
2004 
2005         dipintr_flagp->bustype = BUS_PCI;
2006 
2007         if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2008             == ACPI_PSM_FAILURE) {
2009                 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2010                     "or assign IRQ for device %s, instance #%d: The system was "
2011                     "unable to get the list of potential IRQs from ACPI.",
2012                     psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2013 
2014                 return (ACPI_PSM_FAILURE);
2015         }
2016 
2017         if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2018             dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2019             (cur_irq > 0)) {
2020                 /*
2021                  * If an IRQ is set in CRS and that IRQ exists in the set
2022                  * returned from _PRS, return that IRQ, otherwise print
2023                  * a warning
2024                  */
2025 
2026                 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2027                     == ACPI_PSM_SUCCESS) {
2028 
2029                         ASSERT(pci_irqp != NULL);
2030                         *pci_irqp = cur_irq;
2031                         acpi_free_irqlist(irqlistp);
2032                         return (ACPI_PSM_SUCCESS);
2033                 }
2034 
2035                 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2036                     "current irq %d for device %s, instance #%d in ACPI's "
2037                     "list of possible irqs for this device. Picking one from "
2038                     " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2039                     ddi_get_instance(dip)));
2040         }
2041 
2042         if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2043             cur_irq)) == NULL) {
2044 
2045                 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2046                     "suitable irq from the list of possible irqs for device "
2047                     "%s, instance #%d in ACPI's list of possible irqs",
2048                     psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2049 
2050                 acpi_free_irqlist(irqlistp);
2051                 return (ACPI_PSM_FAILURE);
2052         }
2053 
2054         acpi_free_irqlist(irqlistp);
2055 
2056         for (prs_irq_entp = prs_irq_listp;
2057             prs_irq_entp != NULL && found_irq == B_FALSE;
2058             prs_irq_entp = prs_irq_entp->next) {
2059 
2060                 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2061                 irq = prs_irq_entp->irq;
2062 
2063                 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2064                     "device %s instance #%d\n", psm_name, irq,
2065                     ddi_get_name(dip), ddi_get_instance(dip)));
2066 
2067                 if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2068                     == ACPI_PSM_SUCCESS) {
2069                         /*
2070                          * setting irq was successful, check to make sure CRS
2071                          * reflects that. If CRS does not agree with what we
2072                          * set, return the irq that was set.
2073                          */
2074 
2075                         if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2076                             dipintr_flagp) == ACPI_PSM_SUCCESS) {
2077 
2078                                 if (cur_irq != irq)
2079                                         APIC_VERBOSE_IRQ((CE_WARN,
2080                                             "!%s: IRQ resource set "
2081                                             "(irqno %d) for device %s "
2082                                             "instance #%d, differs from "
2083                                             "current setting irqno %d",
2084                                             psm_name, irq, ddi_get_name(dip),
2085                                             ddi_get_instance(dip), cur_irq));
2086                         } else {
2087                                 /*
2088                                  * On at least one system, there was a bug in
2089                                  * a DSDT method called by _STA, causing _STA to
2090                                  * indicate that the link device was disabled
2091                                  * (when, in fact, it was enabled).  Since _SRS
2092                                  * succeeded, assume that _CRS is lying and use
2093                                  * the iflags from this _PRS interrupt choice.
2094                                  * If we're wrong about the flags, the polarity
2095                                  * will be incorrect and we may get an interrupt
2096                                  * storm, but there's not much else we can do
2097                                  * at this point.
2098                                  */
2099                                 *dipintr_flagp = prs_irq_entp->intrflags;
2100                         }
2101 
2102                         /*
2103                          * Return the irq that was set, and not what _CRS
2104                          * reports, since _CRS has been seen to return
2105                          * different IRQs than what was passed to _SRS on some
2106                          * systems (and just not return successfully on others).
2107                          */
2108                         cur_irq = irq;
2109                         found_irq = B_TRUE;
2110                 } else {
2111                         APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2112                             "irq %d failed for device %s instance #%d",
2113                             psm_name, irq, ddi_get_name(dip),
2114                             ddi_get_instance(dip)));
2115 
2116                         if (cur_irq == -1) {
2117                                 acpi_destroy_prs_irq_list(&prs_irq_listp);
2118                                 return (ACPI_PSM_FAILURE);
2119                         }
2120                 }
2121         }
2122 
2123         acpi_destroy_prs_irq_list(&prs_irq_listp);
2124 
2125         if (!found_irq)
2126                 return (ACPI_PSM_FAILURE);
2127 
2128         ASSERT(pci_irqp != NULL);
2129         *pci_irqp = cur_irq;
2130         return (ACPI_PSM_SUCCESS);
2131 }
2132 
2133 void
2134 ioapic_disable_redirection()
2135 {
2136         int ioapic_ix;
2137         int intin_max;
2138         int intin_ix;
2139 
2140         /* Disable the I/O APIC redirection entries */
2141         for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2142 
2143                 /* Bits 23-16 define the maximum redirection entries */
2144                 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2145                     & 0xff;
2146 
2147                 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2148                         /*
2149                          * The assumption here is that this is safe, even for
2150                          * systems with IOAPICs that suffer from the hardware
2151                          * erratum because all devices have been quiesced before
2152                          * this function is called from apic_shutdown()
2153                          * (or equivalent). If that assumption turns out to be
2154                          * false, this mask operation can induce the same
2155                          * erratum result we're trying to avoid.
2156                          */
2157                         ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2158                             AV_MASK);
2159                 }
2160         }
2161 }
2162 
2163 /*
2164  * Looks for an IOAPIC with the specified physical address in the /ioapics
2165  * node in the device tree (created by the PCI enumerator).
2166  */
2167 static boolean_t
2168 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2169 {
2170         /*
2171          * Look in /ioapics, for the ioapic with
2172          * the physical address given
2173          */
2174         dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2175         dev_info_t *ioapic_child;
2176         boolean_t rv = B_FALSE;
2177         int vid, did;
2178         uint64_t ioapic_paddr;
2179         boolean_t done = B_FALSE;
2180 
2181         if (ioapicsnode == NULL)
2182                 return (B_FALSE);
2183 
2184         /* Load first child: */
2185         ioapic_child = ddi_get_child(ioapicsnode);
2186         while (!done && ioapic_child != 0) { /* Iterate over children */
2187 
2188                 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2189                     ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2190                     != 0 && physaddr == ioapic_paddr) {
2191 
2192                         vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2193                             DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2194 
2195                         if (vid == VENID_AMD) {
2196 
2197                                 did = ddi_prop_get_int(DDI_DEV_T_ANY,
2198                                     ioapic_child, DDI_PROP_DONTPASS,
2199                                     IOAPICS_PROP_DEVID, 0);
2200 
2201                                 if (did == DEVID_8131_IOAPIC ||
2202                                     did == DEVID_8132_IOAPIC) {
2203                                         rv = B_TRUE;
2204                                         done = B_TRUE;
2205                                 }
2206                         }
2207                 }
2208 
2209                 if (!done)
2210                         ioapic_child = ddi_get_next_sibling(ioapic_child);
2211         }
2212 
2213         /* The ioapics node was held by ddi_find_devinfo, so release it */
2214         ndi_rele_devi(ioapicsnode);
2215         return (rv);
2216 }
2217 
2218 struct apic_state {
2219         int32_t as_task_reg;
2220         int32_t as_dest_reg;
2221         int32_t as_format_reg;
2222         int32_t as_local_timer;
2223         int32_t as_pcint_vect;
2224         int32_t as_int_vect0;
2225         int32_t as_int_vect1;
2226         int32_t as_err_vect;
2227         int32_t as_init_count;
2228         int32_t as_divide_reg;
2229         int32_t as_spur_int_reg;
2230         uint32_t as_ioapic_ids[MAX_IO_APIC];
2231 };
2232 
2233 
2234 static int
2235 apic_acpi_enter_apicmode(void)
2236 {
2237         ACPI_OBJECT_LIST        arglist;
2238         ACPI_OBJECT             arg;
2239         ACPI_STATUS             status;
2240 
2241         /* Setup parameter object */
2242         arglist.Count = 1;
2243         arglist.Pointer = &arg;
2244         arg.Type = ACPI_TYPE_INTEGER;
2245         arg.Integer.Value = ACPI_APIC_MODE;
2246 
2247         status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2248         if (ACPI_FAILURE(status))
2249                 return (PSM_FAILURE);
2250         else
2251                 return (PSM_SUCCESS);
2252 }
2253 
2254 
2255 static void
2256 apic_save_state(struct apic_state *sp)
2257 {
2258         int     i, cpuid;
2259         ulong_t iflag;
2260 
2261         PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2262         /*
2263          * First the local APIC.
2264          */
2265         sp->as_task_reg = apic_reg_ops->apic_get_pri();
2266         sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2267         if (apic_mode == LOCAL_APIC)
2268                 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2269         sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2270         sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2271         sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2272         sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2273         sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2274         sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2275         sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2276         sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2277 
2278         /*
2279          * If on the boot processor then save the IOAPICs' IDs
2280          */
2281         if ((cpuid = psm_get_cpu_id()) == 0) {
2282 
2283                 iflag = intr_clear();
2284                 lock_set(&apic_ioapic_lock);
2285 
2286                 for (i = 0; i < apic_io_max; i++)
2287                         sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2288 
2289                 lock_clear(&apic_ioapic_lock);
2290                 intr_restore(iflag);
2291         }
2292 
2293         /* apic_state() is currently invoked only in Suspend/Resume */
2294         apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2295 }
2296 
2297 static void
2298 apic_restore_state(struct apic_state *sp)
2299 {
2300         int     i;
2301         ulong_t iflag;
2302 
2303         /*
2304          * First the local APIC.
2305          */
2306         apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2307         if (apic_mode == LOCAL_APIC) {
2308                 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2309                 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2310         }
2311         apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2312         apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2313         apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2314         apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2315         apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2316         apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2317         apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2318         apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2319 
2320         /*
2321          * the following only needs to be done once, so we do it on the
2322          * boot processor, since we know that we only have one of those
2323          */
2324         if (psm_get_cpu_id() == 0) {
2325 
2326                 iflag = intr_clear();
2327                 lock_set(&apic_ioapic_lock);
2328 
2329                 /* Restore IOAPICs' APIC IDs */
2330                 for (i = 0; i < apic_io_max; i++) {
2331                         ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2332                 }
2333 
2334                 lock_clear(&apic_ioapic_lock);
2335                 intr_restore(iflag);
2336 
2337                 /*
2338                  * Reenter APIC mode before restoring LNK devices
2339                  */
2340                 (void) apic_acpi_enter_apicmode();
2341 
2342                 /*
2343                  * restore acpi link device mappings
2344                  */
2345                 acpi_restore_link_devices();
2346         }
2347 }
2348 
2349 /*
2350  * Returns 0 on success
2351  */
2352 int
2353 apic_state(psm_state_request_t *rp)
2354 {
2355         PMD(PMD_SX, ("apic_state "))
2356         switch (rp->psr_cmd) {
2357         case PSM_STATE_ALLOC:
2358                 rp->req.psm_state_req.psr_state =
2359                     kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2360                 if (rp->req.psm_state_req.psr_state == NULL)
2361                         return (ENOMEM);
2362                 rp->req.psm_state_req.psr_state_size =
2363                     sizeof (struct apic_state);
2364                 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2365                     rp->req.psm_state_req.psr_state,
2366                     rp->req.psm_state_req.psr_state_size))
2367                 return (0);
2368 
2369         case PSM_STATE_FREE:
2370                 kmem_free(rp->req.psm_state_req.psr_state,
2371                     rp->req.psm_state_req.psr_state_size);
2372                 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2373                     rp->req.psm_state_req.psr_state,
2374                     rp->req.psm_state_req.psr_state_size))
2375                 return (0);
2376 
2377         case PSM_STATE_SAVE:
2378                 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2379                     rp->req.psm_state_req.psr_state,
2380                     rp->req.psm_state_req.psr_state_size))
2381                 apic_save_state(rp->req.psm_state_req.psr_state);
2382                 return (0);
2383 
2384         case PSM_STATE_RESTORE:
2385                 apic_restore_state(rp->req.psm_state_req.psr_state);
2386                 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2387                     rp->req.psm_state_req.psr_state,
2388                     rp->req.psm_state_req.psr_state_size))
2389                 return (0);
2390 
2391         default:
2392                 return (EINVAL);
2393         }
2394 }