1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
31 */
32
33 /*
34 * To understand how the apix module interacts with the interrupt subsystem read
35 * the theory statement in uts/i86pc/os/intr.c.
36 */
37
38 /*
39 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42 * PSMI 1.5 extensions are supported in Solaris Nevada.
43 * PSMI 1.6 extensions are supported in Solaris Nevada.
44 * PSMI 1.7 extensions are supported in Solaris Nevada.
45 */
46 #define PSMI_1_7
47
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>
61 #include <sys/promif.h>
62 #include <sys/x86_archext.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/uadmin.h>
65 #include <sys/panic.h>
66 #include <sys/debug.h>
67 #include <sys/archsystm.h>
68 #include <sys/trap.h>
69 #include <sys/machsystm.h>
70 #include <sys/sysmacros.h>
71 #include <sys/cpuvar.h>
72 #include <sys/rm_platter.h>
73 #include <sys/privregs.h>
74 #include <sys/note.h>
75 #include <sys/pci_intr_lib.h>
76 #include <sys/spl.h>
77 #include <sys/clock.h>
78 #include <sys/cyclic.h>
79 #include <sys/dditypes.h>
80 #include <sys/sunddi.h>
81 #include <sys/x_call.h>
82 #include <sys/reboot.h>
83 #include <sys/mach_intr.h>
84 #include <sys/apix.h>
85 #include <sys/apix_irm_impl.h>
86
87 static int apix_probe();
88 static void apix_init();
89 static void apix_picinit(void);
90 static int apix_intr_enter(int, int *);
91 static void apix_intr_exit(int, int);
92 static void apix_setspl(int);
93 static int apix_disable_intr(processorid_t);
94 static void apix_enable_intr(processorid_t);
95 static int apix_get_clkvect(int);
96 static int apix_get_ipivect(int, int);
97 static void apix_post_cyclic_setup(void *);
98 static int apix_post_cpu_start();
99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
100 psm_intr_op_t, int *);
101
102 /*
103 * Helper functions for apix_intr_ops()
104 */
105 static void apix_redistribute_compute(void);
106 static int apix_get_pending(apix_vector_t *);
107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
109 static char *apix_get_apic_type(void);
110 static int apix_intx_get_pending(int);
111 static void apix_intx_set_mask(int irqno);
112 static void apix_intx_clear_mask(int irqno);
113 static int apix_intx_get_shared(int irqno);
114 static void apix_intx_set_shared(int irqno, int delta);
115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
116 struct intrspec *);
117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
118
119 extern int apic_clkinit(int);
120
121 /* IRM initialization for APIX PSM module */
122 extern void apix_irm_init(void);
123
124 extern int irm_enable;
125
126 /*
127 * Local static data
128 */
129 static struct psm_ops apix_ops = {
130 apix_probe,
131
132 apix_init,
133 apix_picinit,
134 apix_intr_enter,
135 apix_intr_exit,
136 apix_setspl,
137 apix_addspl,
138 apix_delspl,
139 apix_disable_intr,
140 apix_enable_intr,
141 NULL, /* psm_softlvl_to_irq */
142 NULL, /* psm_set_softintr */
143
144 apic_set_idlecpu,
145 apic_unset_idlecpu,
146
147 apic_clkinit,
148 apix_get_clkvect,
149 NULL, /* psm_hrtimeinit */
150 apic_gethrtime,
151
152 apic_get_next_processorid,
153 apic_cpu_start,
154 apix_post_cpu_start,
155 apic_shutdown,
156 apix_get_ipivect,
157 apic_send_ipi,
158
159 NULL, /* psm_translate_irq */
160 NULL, /* psm_notify_error */
161 NULL, /* psm_notify_func */
162 apic_timer_reprogram,
163 apic_timer_enable,
164 apic_timer_disable,
165 apix_post_cyclic_setup,
166 apic_preshutdown,
167 apix_intr_ops, /* Advanced DDI Interrupt framework */
168 apic_state, /* save, restore apic state for S3 */
169 apic_cpu_ops, /* CPU control interface. */
170 };
171
172 struct psm_ops *psmops = &apix_ops;
173
174 static struct psm_info apix_psm_info = {
175 PSM_INFO_VER01_7, /* version */
176 PSM_OWN_EXCLUSIVE, /* ownership */
177 &apix_ops, /* operation */
178 APIX_NAME, /* machine name */
179 "apix MPv1.4 compatible",
180 };
181
182 static void *apix_hdlp;
183
184 static int apix_is_enabled = 0;
185
186 /*
187 * Flag to indicate if APIX is to be enabled only for platforms
188 * with specific hw feature(s).
189 */
190 int apix_hw_chk_enable = 1;
191
192 /*
193 * Hw features that are checked for enabling APIX support.
194 */
195 #define APIX_SUPPORT_X2APIC 0x00000001
196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
197
198 /*
199 * apix_lock is used for cpu selection and vector re-binding
200 */
201 lock_t apix_lock;
202 apix_impl_t *apixs[NCPU];
203 /*
204 * Mapping between device interrupt and the allocated vector. Indexed
205 * by major number.
206 */
207 apix_dev_vector_t **apix_dev_vector;
208 /*
209 * Mapping between device major number and cpu id. It gets used
210 * when interrupt binding policy round robin with affinity is
211 * applied. With that policy, devices with the same major number
212 * will be bound to the same CPU.
213 */
214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */
215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */
216
217 int apix_nipis = 16; /* Maximum number of IPIs */
218 /*
219 * Maximum number of vectors in a CPU that can be used for interrupt
220 * allocation (including IPIs and the reserved vectors).
221 */
222 int apix_cpu_nvectors = APIX_NVECTOR;
223
224 /* gcpu.h */
225
226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
227 extern void apic_change_eoi();
228
229 /*
230 * This is the loadable module wrapper
231 */
232
233 int
234 _init(void)
235 {
236 if (apic_coarse_hrtime)
237 apix_ops.psm_gethrtime = &apic_gettime;
238 return (psm_mod_init(&apix_hdlp, &apix_psm_info));
239 }
240
241 int
242 _fini(void)
243 {
244 return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
245 }
246
247 int
248 _info(struct modinfo *modinfop)
249 {
250 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
251 }
252
253 static int
254 apix_probe()
255 {
256 int rval;
257
258 if (apix_enable == 0)
259 return (PSM_FAILURE);
260
261 /* check for hw features if specified */
262 if (apix_hw_chk_enable) {
263 /* check if x2APIC mode is supported */
264 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
265 APIX_SUPPORT_X2APIC) {
266 if (!((apic_local_mode() == LOCAL_X2APIC) ||
267 apic_detect_x2apic())) {
268 /* x2APIC mode is not supported in the hw */
269 apix_enable = 0;
270 }
271 }
272 if (apix_enable == 0)
273 return (PSM_FAILURE);
274 }
275
276 rval = apic_probe_common(apix_psm_info.p_mach_idstring);
277 if (rval == PSM_SUCCESS)
278 apix_is_enabled = 1;
279 else
280 apix_is_enabled = 0;
281 return (rval);
282 }
283
284 /*
285 * Initialize the data structures needed by pcplusmpx module.
286 * Specifically, the data structures used by addspl() and delspl()
287 * routines.
288 */
289 static void
290 apix_softinit()
291 {
292 int i, *iptr;
293 apix_impl_t *hdlp;
294 int nproc;
295
296 nproc = max(apic_nproc, apic_max_nproc);
297
298 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
299 for (i = 0; i < nproc; i++) {
300 apixs[i] = &hdlp[i];
301 apixs[i]->x_cpuid = i;
302 LOCK_INIT_CLEAR(&apixs[i]->x_lock);
303 }
304
305 /* cpu 0 is always up (for now) */
306 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
307
308 iptr = (int *)&apic_irq_table[0];
309 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
310 apic_level_intr[i] = 0;
311 *iptr++ = NULL;
312 }
313 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
314
315 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
316 KM_SLEEP);
317
318 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
319 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
320 KM_SLEEP);
321 for (i = 0; i < devcnt; i++)
322 apix_major_to_cpu[i] = IRQ_UNINIT;
323 }
324
325 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
326 }
327
328 static int
329 apix_get_pending_spl(void)
330 {
331 int cpuid = CPU->cpu_id;
332
333 return (bsrw_insn(apixs[cpuid]->x_intr_pending));
334 }
335
336 static uintptr_t
337 apix_get_intr_handler(int cpu, short vec)
338 {
339 apix_vector_t *apix_vector;
340
341 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
342 if (cpu >= apic_nproc)
343 return (NULL);
344
345 apix_vector = apixs[cpu]->x_vectbl[vec];
346
347 return ((uintptr_t)(apix_vector->v_autovect));
348 }
349
350 #if defined(__amd64)
351 static unsigned char dummy_cpu_pri[MAXIPL + 1] = {
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0, 0
354 };
355 #endif
356
357 static void
358 apix_init()
359 {
360 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
361
362 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
363
364 do_interrupt_common = apix_do_interrupt;
365 addintr = apix_add_avintr;
366 remintr = apix_rem_avintr;
367 get_pending_spl = apix_get_pending_spl;
368 get_intr_handler = apix_get_intr_handler;
369 psm_get_localapicid = apic_get_localapicid;
370 psm_get_ioapicid = apic_get_ioapicid;
371
372 apix_softinit();
373 #if defined(__amd64)
374 /*
375 * Make cpu-specific interrupt info point to cr8pri vector
376 */
377 CPU->cpu_pri_data = dummy_cpu_pri;
378 #else
379 if (cpuid_have_cr8access(CPU))
380 apic_have_32bit_cr8 = 1;
381 #endif /* __amd64 */
382
383 /*
384 * Initialize IRM pool parameters
385 */
386 if (irm_enable) {
387 int i;
388 int lowest_irq;
389 int highest_irq;
390
391 /* number of CPUs present */
392 apix_irminfo.apix_ncpus = apic_nproc;
393 /* total number of entries in all of the IOAPICs present */
394 lowest_irq = apic_io_vectbase[0];
395 highest_irq = apic_io_vectend[0];
396 for (i = 1; i < apic_io_max; i++) {
397 if (apic_io_vectbase[i] < lowest_irq)
398 lowest_irq = apic_io_vectbase[i];
399 if (apic_io_vectend[i] > highest_irq)
400 highest_irq = apic_io_vectend[i];
401 }
402 apix_irminfo.apix_ioapic_max_vectors =
403 highest_irq - lowest_irq + 1;
404 /*
405 * Number of available per-CPU vectors excluding
406 * reserved vectors for Dtrace, int80, system-call,
407 * fast-trap, etc.
408 */
409 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
410 APIX_SW_RESERVED_VECTORS;
411
412 /* Number of vectors (pre) allocated (SCI and HPET) */
413 apix_irminfo.apix_vectors_allocated = 0;
414 if (apic_hpet_vect != -1)
415 apix_irminfo.apix_vectors_allocated++;
416 if (apic_sci_vect != -1)
417 apix_irminfo.apix_vectors_allocated++;
418 }
419 }
420
421 static void
422 apix_init_intr()
423 {
424 processorid_t cpun = psm_get_cpu_id();
425 uint_t nlvt;
426 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
427 extern void cmi_cmci_trap(void);
428
429 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
430
431 if (apic_mode == LOCAL_APIC) {
432 /*
433 * We are running APIC in MMIO mode.
434 */
435 if (apic_flat_model) {
436 apic_reg_ops->apic_write(APIC_FORMAT_REG,
437 APIC_FLAT_MODEL);
438 } else {
439 apic_reg_ops->apic_write(APIC_FORMAT_REG,
440 APIC_CLUSTER_MODEL);
441 }
442
443 apic_reg_ops->apic_write(APIC_DEST_REG,
444 AV_HIGH_ORDER >> cpun);
445 }
446
447 if (apic_directed_EOI_supported()) {
448 /*
449 * Setting the 12th bit in the Spurious Interrupt Vector
450 * Register suppresses broadcast EOIs generated by the local
451 * APIC. The suppression of broadcast EOIs happens only when
452 * interrupts are level-triggered.
453 */
454 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
455 }
456
457 /* need to enable APIC before unmasking NMI */
458 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
459
460 /*
461 * Presence of an invalid vector with delivery mode AV_FIXED can
462 * cause an error interrupt, even if the entry is masked...so
463 * write a valid vector to LVT entries along with the mask bit
464 */
465
466 /* All APICs have timer and LINT0/1 */
467 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
468 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
469 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */
470
471 /*
472 * On integrated APICs, the number of LVT entries is
473 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
474 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
475 */
476
477 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
478 nlvt = 3;
479 } else {
480 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
481 0xFF) + 1;
482 }
483
484 if (nlvt >= 5) {
485 /* Enable performance counter overflow interrupt */
486
487 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
488 apic_enable_cpcovf_intr = 0;
489 if (apic_enable_cpcovf_intr) {
490 if (apic_cpcovf_vect == 0) {
491 int ipl = APIC_PCINT_IPL;
492
493 apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
494 ASSERT(apic_cpcovf_vect);
495
496 (void) add_avintr(NULL, ipl,
497 (avfunc)kcpc_hw_overflow_intr,
498 "apic pcint", apic_cpcovf_vect,
499 NULL, NULL, NULL, NULL);
500 kcpc_hw_overflow_intr_installed = 1;
501 kcpc_hw_enable_cpc_intr =
502 apic_cpcovf_mask_clear;
503 }
504 apic_reg_ops->apic_write(APIC_PCINT_VECT,
505 apic_cpcovf_vect);
506 }
507 }
508
509 if (nlvt >= 6) {
510 /* Only mask TM intr if the BIOS apparently doesn't use it */
511
512 uint32_t lvtval;
513
514 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
515 if (((lvtval & AV_MASK) == AV_MASK) ||
516 ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
517 apic_reg_ops->apic_write(APIC_THERM_VECT,
518 AV_MASK|APIC_RESV_IRQ);
519 }
520 }
521
522 /* Enable error interrupt */
523
524 if (nlvt >= 4 && apic_enable_error_intr) {
525 if (apic_errvect == 0) {
526 int ipl = 0xf; /* get highest priority intr */
527 apic_errvect = apix_get_ipivect(ipl, -1);
528 ASSERT(apic_errvect);
529 /*
530 * Not PSMI compliant, but we are going to merge
531 * with ON anyway
532 */
533 (void) add_avintr(NULL, ipl,
534 (avfunc)apic_error_intr, "apic error intr",
535 apic_errvect, NULL, NULL, NULL, NULL);
536 }
537 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
538 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
539 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
540 }
541
542 /* Enable CMCI interrupt */
543 if (cmi_enable_cmci) {
544 mutex_enter(&cmci_cpu_setup_lock);
545 if (cmci_cpu_setup_registered == 0) {
546 mutex_enter(&cpu_lock);
547 register_cpu_setup_func(cmci_cpu_setup, NULL);
548 mutex_exit(&cpu_lock);
549 cmci_cpu_setup_registered = 1;
550 }
551 mutex_exit(&cmci_cpu_setup_lock);
552
553 if (apic_cmci_vect == 0) {
554 int ipl = 0x2;
555 apic_cmci_vect = apix_get_ipivect(ipl, -1);
556 ASSERT(apic_cmci_vect);
557
558 (void) add_avintr(NULL, ipl,
559 (avfunc)cmi_cmci_trap, "apic cmci intr",
560 apic_cmci_vect, NULL, NULL, NULL, NULL);
561 }
562 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
563 }
564
565 apic_reg_ops->apic_write_task_reg(0);
566 }
567
568 static void
569 apix_picinit(void)
570 {
571 int i, j;
572 uint_t isr;
573
574 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
575
576 /*
577 * initialize interrupt remapping before apic
578 * hardware initialization
579 */
580 apic_intrmap_init(apic_mode);
581 if (apic_vt_ops == psm_vt_ops)
582 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
583
584 /*
585 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
586 * bit on without clearing it with EOI. Since softint
587 * uses vector 0x20 to interrupt itself, so softint will
588 * not work on this machine. In order to fix this problem
589 * a check is made to verify all the isr bits are clear.
590 * If not, EOIs are issued to clear the bits.
591 */
592 for (i = 7; i >= 1; i--) {
593 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
594 if (isr != 0)
595 for (j = 0; ((j < 32) && (isr != 0)); j++)
596 if (isr & (1 << j)) {
597 apic_reg_ops->apic_write(
598 APIC_EOI_REG, 0);
599 isr &= ~(1 << j);
600 apic_error |= APIC_ERR_BOOT_EOI;
601 }
602 }
603
604 /* set a flag so we know we have run apic_picinit() */
605 apic_picinit_called = 1;
606 LOCK_INIT_CLEAR(&apic_gethrtime_lock);
607 LOCK_INIT_CLEAR(&apic_ioapic_lock);
608 LOCK_INIT_CLEAR(&apic_error_lock);
609 LOCK_INIT_CLEAR(&apic_mode_switch_lock);
610
611 picsetup(); /* initialise the 8259 */
612
613 /* add nmi handler - least priority nmi handler */
614 LOCK_INIT_CLEAR(&apic_nmi_lock);
615
616 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
617 "apix NMI handler", (caddr_t)NULL))
618 cmn_err(CE_WARN, "apix: Unable to add nmi handler");
619
620 apix_init_intr();
621
622 /* enable apic mode if imcr present */
623 if (apic_imcrp) {
624 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
625 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
626 }
627
628 ioapix_init_intr(IOAPIC_MASK);
629
630 /* setup global IRM pool if applicable */
631 if (irm_enable)
632 apix_irm_init();
633 }
634
635 static __inline__ void
636 apix_send_eoi(void)
637 {
638 if (apic_mode == LOCAL_APIC)
639 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
640 else
641 X2APIC_WRITE(APIC_EOI_REG, 0);
642 }
643
644 /*
645 * platform_intr_enter
646 *
647 * Called at the beginning of the interrupt service routine, but unlike
648 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt
649 * controller to enable other HW interrupts but interrupts are still
650 * masked by the IF flag.
651 *
652 * Return -1 for spurious interrupts
653 *
654 */
655 static int
656 apix_intr_enter(int ipl, int *vectorp)
657 {
658 struct cpu *cpu = CPU;
659 uint32_t cpuid = CPU->cpu_id;
660 apic_cpus_info_t *cpu_infop;
661 uchar_t vector;
662 apix_vector_t *vecp;
663 int nipl = -1;
664
665 /*
666 * The real vector delivered is (*vectorp + 0x20), but our caller
667 * subtracts 0x20 from the vector before passing it to us.
668 * (That's why APIC_BASE_VECT is 0x20.)
669 */
670 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
671
672 cpu_infop = &apic_cpus[cpuid];
673 if (vector == APIC_SPUR_INTR) {
674 cpu_infop->aci_spur_cnt++;
675 return (APIC_INT_SPURIOUS);
676 }
677
678 vecp = xv_vector(cpuid, vector);
679 if (vecp == NULL) {
680 if (APIX_IS_FAKE_INTR(vector))
681 nipl = apix_rebindinfo.i_pri;
682 apix_send_eoi();
683 return (nipl);
684 }
685 nipl = vecp->v_pri;
686
687 /* if interrupted by the clock, increment apic_nsec_since_boot */
688 if (vector == (apic_clkvect + APIC_BASE_VECT)) {
689 if (!apic_oneshot) {
690 /* NOTE: this is not MT aware */
691 apic_hrtime_stamp++;
692 apic_nsec_since_boot += apic_nsec_per_intr;
693 apic_hrtime_stamp++;
694 last_count_read = apic_hertz_count;
695 apix_redistribute_compute();
696 }
697
698 apix_send_eoi();
699
700 return (nipl);
701 }
702
703 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
704
705 /* pre-EOI handling for level-triggered interrupts */
706 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
707 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
708 apix_level_intr_pre_eoi(vecp->v_inum);
709
710 /* send back EOI */
711 apix_send_eoi();
712
713 cpu_infop->aci_current[nipl] = vector;
714 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
715 cpu_infop->aci_curipl = (uchar_t)nipl;
716 cpu_infop->aci_ISR_in_progress |= 1 << nipl;
717 }
718
719 #ifdef DEBUG
720 if (vector >= APIX_IPI_MIN)
721 return (nipl); /* skip IPI */
722
723 APIC_DEBUG_BUF_PUT(vector);
724 APIC_DEBUG_BUF_PUT(vecp->v_inum);
725 APIC_DEBUG_BUF_PUT(nipl);
726 APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
727 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
728 drv_usecwait(apic_stretch_interrupts);
729 #endif /* DEBUG */
730
731 return (nipl);
732 }
733
734 /*
735 * Any changes made to this function must also change X2APIC
736 * version of intr_exit.
737 */
738 static void
739 apix_intr_exit(int prev_ipl, int arg2)
740 {
741 int cpuid = psm_get_cpu_id();
742 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
743 apix_impl_t *apixp = apixs[cpuid];
744
745 UNREFERENCED_1PARAMETER(arg2);
746
747 cpu_infop->aci_curipl = (uchar_t)prev_ipl;
748 /* ISR above current pri could not be in progress */
749 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
750
751 if (apixp->x_obsoletes != NULL) {
752 if (APIX_CPU_LOCK_HELD(cpuid))
753 return;
754
755 APIX_ENTER_CPU_LOCK(cpuid);
756 (void) apix_obsolete_vector(apixp->x_obsoletes);
757 APIX_LEAVE_CPU_LOCK(cpuid);
758 }
759 }
760
761 /*
762 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the
763 * given ipl, but apix never uses the TPR and we never mask a subset of the
764 * interrupts. They are either all blocked by the IF flag or all can come in.
765 *
766 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts
767 * can come in if currently enabled by the IF flag. This table shows the state
768 * of the IF flag when we leave this function.
769 *
770 * curr IF | ipl == 15 ipl != 15
771 * --------+---------------------------
772 * 0 | 0 0
773 * 1 | 0 1
774 */
775 static void
776 apix_setspl(int ipl)
777 {
778 /*
779 * Interrupts at ipl above this cannot be in progress, so the following
780 * mask is ok.
781 */
782 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
783
784 if (ipl == XC_HI_PIL)
785 cli();
786 }
787
788 int
789 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
790 {
791 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
792 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
793 apix_vector_t *vecp = xv_vector(cpuid, vector);
794
795 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
796 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
797
798 if (vecp->v_type == APIX_TYPE_FIXED)
799 apix_intx_set_shared(vecp->v_inum, 1);
800
801 /* There are more interrupts, so it's already been enabled */
802 if (vecp->v_share > 1)
803 return (PSM_SUCCESS);
804
805 /* return if it is not hardware interrupt */
806 if (vecp->v_type == APIX_TYPE_IPI)
807 return (PSM_SUCCESS);
808
809 /*
810 * if apix_picinit() has not been called yet, just return.
811 * At the end of apic_picinit(), we will call setup_io_intr().
812 */
813 if (!apic_picinit_called)
814 return (PSM_SUCCESS);
815
816 (void) apix_setup_io_intr(vecp);
817
818 return (PSM_SUCCESS);
819 }
820
821 int
822 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
823 {
824 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
825 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
826 apix_vector_t *vecp = xv_vector(cpuid, vector);
827
828 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
829 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
830
831 if (vecp->v_type == APIX_TYPE_FIXED)
832 apix_intx_set_shared(vecp->v_inum, -1);
833
834 /* There are more interrupts */
835 if (vecp->v_share > 1)
836 return (PSM_SUCCESS);
837
838 /* return if it is not hardware interrupt */
839 if (vecp->v_type == APIX_TYPE_IPI)
840 return (PSM_SUCCESS);
841
842 if (!apic_picinit_called) {
843 cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
844 virtvec);
845 return (PSM_SUCCESS);
846 }
847
848 apix_disable_vector(vecp);
849
850 return (PSM_SUCCESS);
851 }
852
853 /*
854 * Try and disable all interrupts. We just assign interrupts to other
855 * processors based on policy. If any were bound by user request, we
856 * let them continue and return failure. We do not bother to check
857 * for cache affinity while rebinding.
858 */
859 static int
860 apix_disable_intr(processorid_t cpun)
861 {
862 apix_impl_t *apixp = apixs[cpun];
863 apix_vector_t *vecp, *newp;
864 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
865
866 lock_set(&apix_lock);
867
868 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
869 apic_cpus[cpun].aci_curipl = 0;
870
871 /* if this is for SUSPEND operation, skip rebinding */
872 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
873 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
874 vecp = apixp->x_vectbl[i];
875 if (!IS_VECT_ENABLED(vecp))
876 continue;
877
878 apix_disable_vector(vecp);
879 }
880 lock_clear(&apix_lock);
881 return (PSM_SUCCESS);
882 }
883
884 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
885 vecp = apixp->x_vectbl[i];
886 if (!IS_VECT_ENABLED(vecp))
887 continue;
888
889 if (vecp->v_flags & APIX_VECT_USER_BOUND) {
890 hardbound++;
891 continue;
892 }
893 type = vecp->v_type;
894
895 /*
896 * If there are bound interrupts on this cpu, then
897 * rebind them to other processors.
898 */
899 loop = 0;
900 do {
901 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
902
903 if (type != APIX_TYPE_MSI)
904 newp = apix_set_cpu(vecp, bindcpu, &ret);
905 else
906 newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
907 } while ((newp == NULL) && (loop++ < apic_nproc));
908
909 if (loop >= apic_nproc) {
910 errbound++;
911 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
912 vecp->v_cpuid, vecp->v_vector);
913 }
914 }
915
916 lock_clear(&apix_lock);
917
918 if (hardbound || errbound) {
919 cmn_err(CE_WARN, "Could not disable interrupts on %d"
920 "due to user bound interrupts or failed operation",
921 cpun);
922 return (PSM_FAILURE);
923 }
924
925 return (PSM_SUCCESS);
926 }
927
928 /*
929 * Bind interrupts to specified CPU
930 */
931 static void
932 apix_enable_intr(processorid_t cpun)
933 {
934 apix_vector_t *vecp;
935 int i, ret;
936 processorid_t n;
937
938 lock_set(&apix_lock);
939
940 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
941
942 /* interrupt enabling for system resume */
943 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
944 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
945 vecp = xv_vector(cpun, i);
946 if (!IS_VECT_ENABLED(vecp))
947 continue;
948
949 apix_enable_vector(vecp);
950 }
951 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
952 }
953
954 for (n = 0; n < apic_nproc; n++) {
955 if (!apic_cpu_in_range(n) || n == cpun ||
956 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
957 continue;
958
959 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
960 vecp = xv_vector(n, i);
961 if (!IS_VECT_ENABLED(vecp) ||
962 vecp->v_bound_cpuid != cpun)
963 continue;
964
965 if (vecp->v_type != APIX_TYPE_MSI)
966 (void) apix_set_cpu(vecp, cpun, &ret);
967 else
968 (void) apix_grp_set_cpu(vecp, cpun, &ret);
969 }
970 }
971
972 lock_clear(&apix_lock);
973 }
974
975 /*
976 * Allocate vector for IPI
977 * type == -1 indicates it is an internal request. Do not change
978 * resv_vector for these requests.
979 */
980 static int
981 apix_get_ipivect(int ipl, int type)
982 {
983 uchar_t vector;
984
985 if ((vector = apix_alloc_ipi(ipl)) > 0) {
986 if (type != -1)
987 apic_resv_vector[ipl] = vector;
988 return (vector);
989 }
990 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
991 return (-1); /* shouldn't happen */
992 }
993
994 static int
995 apix_get_clkvect(int ipl)
996 {
997 int vector;
998
999 if ((vector = apix_get_ipivect(ipl, -1)) == -1)
1000 return (-1);
1001
1002 apic_clkvect = vector - APIC_BASE_VECT;
1003 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
1004 apic_clkvect));
1005 return (vector);
1006 }
1007
1008 static int
1009 apix_post_cpu_start()
1010 {
1011 int cpun;
1012 static int cpus_started = 1;
1013
1014 /* We know this CPU + BSP started successfully. */
1015 cpus_started++;
1016
1017 /*
1018 * On BSP we would have enabled X2APIC, if supported by processor,
1019 * in acpi_probe(), but on AP we do it here.
1020 *
1021 * We enable X2APIC mode only if BSP is running in X2APIC & the
1022 * local APIC mode of the current CPU is MMIO (xAPIC).
1023 */
1024 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1025 apic_local_mode() == LOCAL_APIC) {
1026 apic_enable_x2apic();
1027 }
1028
1029 /*
1030 * Switch back to x2apic IPI sending method for performance when target
1031 * CPU has entered x2apic mode.
1032 */
1033 if (apic_mode == LOCAL_X2APIC) {
1034 apic_switch_ipi_callback(B_FALSE);
1035 }
1036
1037 splx(ipltospl(LOCK_LEVEL));
1038 apix_init_intr();
1039
1040 /*
1041 * since some systems don't enable the internal cache on the non-boot
1042 * cpus, so we have to enable them here
1043 */
1044 setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1045
1046 #ifdef DEBUG
1047 APIC_AV_PENDING_SET();
1048 #else
1049 if (apic_mode == LOCAL_APIC)
1050 APIC_AV_PENDING_SET();
1051 #endif /* DEBUG */
1052
1053 /*
1054 * We may be booting, or resuming from suspend; aci_status will
1055 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1056 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1057 */
1058 cpun = psm_get_cpu_id();
1059 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1060
1061 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1062
1063 return (PSM_SUCCESS);
1064 }
1065
1066 /*
1067 * If this module needs a periodic handler for the interrupt distribution, it
1068 * can be added here. The argument to the periodic handler is not currently
1069 * used, but is reserved for future.
1070 */
1071 static void
1072 apix_post_cyclic_setup(void *arg)
1073 {
1074 UNREFERENCED_1PARAMETER(arg);
1075
1076 cyc_handler_t cyh;
1077 cyc_time_t cyt;
1078
1079 /* cpu_lock is held */
1080 /* set up a periodic handler for intr redistribution */
1081
1082 /*
1083 * In peridoc mode intr redistribution processing is done in
1084 * apic_intr_enter during clk intr processing
1085 */
1086 if (!apic_oneshot)
1087 return;
1088
1089 /*
1090 * Register a periodical handler for the redistribution processing.
1091 * Though we would generally prefer to use the DDI interface for
1092 * periodic handler invocation, ddi_periodic_add(9F), we are
1093 * unfortunately already holding cpu_lock, which ddi_periodic_add will
1094 * attempt to take for us. Thus, we add our own cyclic directly:
1095 */
1096 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute;
1097 cyh.cyh_arg = NULL;
1098 cyh.cyh_level = CY_LOW_LEVEL;
1099
1100 cyt.cyt_when = 0;
1101 cyt.cyt_interval = apic_redistribute_sample_interval;
1102
1103 apic_cyclic_id = cyclic_add(&cyh, &cyt);
1104 }
1105
1106 /*
1107 * Called the first time we enable x2apic mode on this cpu.
1108 * Update some of the function pointers to use x2apic routines.
1109 */
1110 void
1111 x2apic_update_psm()
1112 {
1113 struct psm_ops *pops = &apix_ops;
1114
1115 ASSERT(pops != NULL);
1116
1117 /*
1118 * The pcplusmp module's version of x2apic_update_psm makes additional
1119 * changes that we do not have to make here. It needs to make those
1120 * changes because pcplusmp relies on the TPR register and the means of
1121 * addressing that changes when using the local apic versus the x2apic.
1122 * It's also worth noting that the apix driver specific function end up
1123 * being apix_foo as opposed to apic_foo and x2apic_foo.
1124 */
1125 pops->psm_send_ipi = x2apic_send_ipi;
1126
1127 send_dirintf = pops->psm_send_ipi;
1128
1129 apic_mode = LOCAL_X2APIC;
1130 apic_change_ops();
1131 }
1132
1133 /*
1134 * This function provides external interface to the nexus for all
1135 * functionalities related to the new DDI interrupt framework.
1136 *
1137 * Input:
1138 * dip - pointer to the dev_info structure of the requested device
1139 * hdlp - pointer to the internal interrupt handle structure for the
1140 * requested interrupt
1141 * intr_op - opcode for this call
1142 * result - pointer to the integer that will hold the result to be
1143 * passed back if return value is PSM_SUCCESS
1144 *
1145 * Output:
1146 * return value is either PSM_SUCCESS or PSM_FAILURE
1147 */
1148 static int
1149 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1150 psm_intr_op_t intr_op, int *result)
1151 {
1152 int cap;
1153 apix_vector_t *vecp, *newvecp;
1154 struct intrspec *ispec, intr_spec;
1155 processorid_t target;
1156
1157 ispec = &intr_spec;
1158 ispec->intrspec_pri = hdlp->ih_pri;
1159 ispec->intrspec_vec = hdlp->ih_inum;
1160 ispec->intrspec_func = hdlp->ih_cb_func;
1161
1162 switch (intr_op) {
1163 case PSM_INTR_OP_ALLOC_VECTORS:
1164 switch (hdlp->ih_type) {
1165 case DDI_INTR_TYPE_MSI:
1166 /* allocate MSI vectors */
1167 *result = apix_alloc_msi(dip, hdlp->ih_inum,
1168 hdlp->ih_scratch1,
1169 (int)(uintptr_t)hdlp->ih_scratch2);
1170 break;
1171 case DDI_INTR_TYPE_MSIX:
1172 /* allocate MSI-X vectors */
1173 *result = apix_alloc_msix(dip, hdlp->ih_inum,
1174 hdlp->ih_scratch1,
1175 (int)(uintptr_t)hdlp->ih_scratch2);
1176 break;
1177 case DDI_INTR_TYPE_FIXED:
1178 /* allocate or share vector for fixed */
1179 if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
1180 return (PSM_FAILURE);
1181 }
1182 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1183 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
1184 ispec);
1185 break;
1186 default:
1187 return (PSM_FAILURE);
1188 }
1189 break;
1190 case PSM_INTR_OP_FREE_VECTORS:
1191 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
1192 hdlp->ih_type);
1193 break;
1194 case PSM_INTR_OP_XLATE_VECTOR:
1195 /*
1196 * Vectors are allocated by ALLOC and freed by FREE.
1197 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
1198 */
1199 *result = APIX_INVALID_VECT;
1200 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1201 if (vecp != NULL) {
1202 *result = APIX_VIRTVECTOR(vecp->v_cpuid,
1203 vecp->v_vector);
1204 break;
1205 }
1206
1207 /*
1208 * No vector to device mapping exists. If this is FIXED type
1209 * then check if this IRQ is already mapped for another device
1210 * then return the vector number for it (i.e. shared IRQ case).
1211 * Otherwise, return PSM_FAILURE.
1212 */
1213 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
1214 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
1215 ispec);
1216 *result = (vecp == NULL) ? APIX_INVALID_VECT :
1217 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
1218 }
1219 if (*result == APIX_INVALID_VECT)
1220 return (PSM_FAILURE);
1221 break;
1222 case PSM_INTR_OP_GET_PENDING:
1223 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1224 if (vecp == NULL)
1225 return (PSM_FAILURE);
1226
1227 *result = apix_get_pending(vecp);
1228 break;
1229 case PSM_INTR_OP_CLEAR_MASK:
1230 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1231 return (PSM_FAILURE);
1232
1233 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1234 if (vecp == NULL)
1235 return (PSM_FAILURE);
1236
1237 apix_intx_clear_mask(vecp->v_inum);
1238 break;
1239 case PSM_INTR_OP_SET_MASK:
1240 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1241 return (PSM_FAILURE);
1242
1243 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1244 if (vecp == NULL)
1245 return (PSM_FAILURE);
1246
1247 apix_intx_set_mask(vecp->v_inum);
1248 break;
1249 case PSM_INTR_OP_GET_SHARED:
1250 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1251 return (PSM_FAILURE);
1252
1253 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1254 if (vecp == NULL)
1255 return (PSM_FAILURE);
1256
1257 *result = apix_intx_get_shared(vecp->v_inum);
1258 break;
1259 case PSM_INTR_OP_SET_PRI:
1260 /*
1261 * Called prior to adding the interrupt handler or when
1262 * an interrupt handler is unassigned.
1263 */
1264 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1265 return (PSM_SUCCESS);
1266
1267 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
1268 return (PSM_FAILURE);
1269
1270 break;
1271 case PSM_INTR_OP_SET_CPU:
1272 case PSM_INTR_OP_GRP_SET_CPU:
1273 /*
1274 * The interrupt handle given here has been allocated
1275 * specifically for this command, and ih_private carries
1276 * a CPU value.
1277 */
1278 *result = EINVAL;
1279 target = (int)(intptr_t)hdlp->ih_private;
1280 if (!apic_cpu_in_range(target)) {
1281 DDI_INTR_IMPLDBG((CE_WARN,
1282 "[grp_]set_cpu: cpu out of range: %d\n", target));
1283 return (PSM_FAILURE);
1284 }
1285
1286 lock_set(&apix_lock);
1287
1288 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
1289 if (!IS_VECT_ENABLED(vecp)) {
1290 DDI_INTR_IMPLDBG((CE_WARN,
1291 "[grp]_set_cpu: invalid vector 0x%x\n",
1292 hdlp->ih_vector));
1293 lock_clear(&apix_lock);
1294 return (PSM_FAILURE);
1295 }
1296
1297 *result = 0;
1298
1299 if (intr_op == PSM_INTR_OP_SET_CPU)
1300 newvecp = apix_set_cpu(vecp, target, result);
1301 else
1302 newvecp = apix_grp_set_cpu(vecp, target, result);
1303
1304 lock_clear(&apix_lock);
1305
1306 if (newvecp == NULL) {
1307 *result = EIO;
1308 return (PSM_FAILURE);
1309 }
1310 newvecp->v_bound_cpuid = target;
1311 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
1312 newvecp->v_vector);
1313 break;
1314
1315 case PSM_INTR_OP_GET_INTR:
1316 /*
1317 * The interrupt handle given here has been allocated
1318 * specifically for this command, and ih_private carries
1319 * a pointer to a apic_get_intr_t.
1320 */
1321 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
1322 return (PSM_FAILURE);
1323 break;
1324
1325 case PSM_INTR_OP_CHECK_MSI:
1326 /*
1327 * Check MSI/X is supported or not at APIC level and
1328 * masked off the MSI/X bits in hdlp->ih_type if not
1329 * supported before return. If MSI/X is supported,
1330 * leave the ih_type unchanged and return.
1331 *
1332 * hdlp->ih_type passed in from the nexus has all the
1333 * interrupt types supported by the device.
1334 */
1335 if (apic_support_msi == 0) { /* uninitialized */
1336 /*
1337 * if apic_support_msi is not set, call
1338 * apic_check_msi_support() to check whether msi
1339 * is supported first
1340 */
1341 if (apic_check_msi_support() == PSM_SUCCESS)
1342 apic_support_msi = 1; /* supported */
1343 else
1344 apic_support_msi = -1; /* not-supported */
1345 }
1346 if (apic_support_msi == 1) {
1347 if (apic_msix_enable)
1348 *result = hdlp->ih_type;
1349 else
1350 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
1351 } else
1352 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1353 DDI_INTR_TYPE_MSIX);
1354 break;
1355 case PSM_INTR_OP_GET_CAP:
1356 cap = DDI_INTR_FLAG_PENDING;
1357 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1358 cap |= DDI_INTR_FLAG_MASKABLE;
1359 *result = cap;
1360 break;
1361 case PSM_INTR_OP_APIC_TYPE:
1362 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
1363 apix_get_apic_type();
1364 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
1365 APIX_IPI_MIN;
1366 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
1367 apic_nproc;
1368 hdlp->ih_ver = apic_get_apic_version();
1369 break;
1370 case PSM_INTR_OP_SET_CAP:
1371 default:
1372 return (PSM_FAILURE);
1373 }
1374
1375 return (PSM_SUCCESS);
1376 }
1377
1378 static void
1379 apix_cleanup_busy(void)
1380 {
1381 int i, j;
1382 apix_vector_t *vecp;
1383
1384 for (i = 0; i < apic_nproc; i++) {
1385 if (!apic_cpu_in_range(i))
1386 continue;
1387 apic_cpus[i].aci_busy = 0;
1388 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
1389 if ((vecp = xv_vector(i, j)) != NULL)
1390 vecp->v_busy = 0;
1391 }
1392 }
1393 }
1394
1395 static void
1396 apix_redistribute_compute(void)
1397 {
1398 int i, j, max_busy;
1399
1400 if (!apic_enable_dynamic_migration)
1401 return;
1402
1403 if (++apic_nticks == apic_sample_factor_redistribution) {
1404 /*
1405 * Time to call apic_intr_redistribute().
1406 * reset apic_nticks. This will cause max_busy
1407 * to be calculated below and if it is more than
1408 * apic_int_busy, we will do the whole thing
1409 */
1410 apic_nticks = 0;
1411 }
1412 max_busy = 0;
1413 for (i = 0; i < apic_nproc; i++) {
1414 if (!apic_cpu_in_range(i))
1415 continue;
1416 /*
1417 * Check if curipl is non zero & if ISR is in
1418 * progress
1419 */
1420 if (((j = apic_cpus[i].aci_curipl) != 0) &&
1421 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1422
1423 int vect;
1424 apic_cpus[i].aci_busy++;
1425 vect = apic_cpus[i].aci_current[j];
1426 apixs[i]->x_vectbl[vect]->v_busy++;
1427 }
1428
1429 if (!apic_nticks &&
1430 (apic_cpus[i].aci_busy > max_busy))
1431 max_busy = apic_cpus[i].aci_busy;
1432 }
1433 if (!apic_nticks) {
1434 if (max_busy > apic_int_busy_mark) {
1435 /*
1436 * We could make the following check be
1437 * skipped > 1 in which case, we get a
1438 * redistribution at half the busy mark (due to
1439 * double interval). Need to be able to collect
1440 * more empirical data to decide if that is a
1441 * good strategy. Punt for now.
1442 */
1443 apix_cleanup_busy();
1444 apic_skipped_redistribute = 0;
1445 } else
1446 apic_skipped_redistribute++;
1447 }
1448 }
1449
1450 /*
1451 * intr_ops() service routines
1452 */
1453
1454 static int
1455 apix_get_pending(apix_vector_t *vecp)
1456 {
1457 int bit, index, irr, pending;
1458
1459 /* need to get on the bound cpu */
1460 mutex_enter(&cpu_lock);
1461 affinity_set(vecp->v_cpuid);
1462
1463 index = vecp->v_vector / 32;
1464 bit = vecp->v_vector % 32;
1465 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
1466
1467 affinity_clear();
1468 mutex_exit(&cpu_lock);
1469
1470 pending = (irr & (1 << bit)) ? 1 : 0;
1471 if (!pending && vecp->v_type == APIX_TYPE_FIXED)
1472 pending = apix_intx_get_pending(vecp->v_inum);
1473
1474 return (pending);
1475 }
1476
1477 static apix_vector_t *
1478 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
1479 {
1480 apix_vector_t *vecp;
1481 processorid_t cpuid;
1482 int32_t virt_vec = 0;
1483
1484 switch (flags & PSMGI_INTRBY_FLAGS) {
1485 case PSMGI_INTRBY_IRQ:
1486 return (apix_intx_get_vector(hdlp->ih_vector));
1487 case PSMGI_INTRBY_VEC:
1488 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
1489
1490 cpuid = APIX_VIRTVEC_CPU(virt_vec);
1491 if (!apic_cpu_in_range(cpuid))
1492 return (NULL);
1493
1494 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
1495 break;
1496 case PSMGI_INTRBY_DEFAULT:
1497 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
1498 hdlp->ih_type);
1499 break;
1500 default:
1501 return (NULL);
1502 }
1503
1504 return (vecp);
1505 }
1506
1507 static int
1508 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
1509 apic_get_intr_t *intr_params_p)
1510 {
1511 apix_vector_t *vecp;
1512 struct autovec *av_dev;
1513 int i;
1514
1515 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
1516 if (IS_VECT_FREE(vecp)) {
1517 intr_params_p->avgi_num_devs = 0;
1518 intr_params_p->avgi_cpu_id = 0;
1519 intr_params_p->avgi_req_flags = 0;
1520 return (PSM_SUCCESS);
1521 }
1522
1523 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
1524 intr_params_p->avgi_cpu_id = vecp->v_cpuid;
1525
1526 /* Return user bound info for intrd. */
1527 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
1528 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
1529 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
1530 }
1531 }
1532
1533 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
1534 intr_params_p->avgi_vector = vecp->v_vector;
1535
1536 if (intr_params_p->avgi_req_flags &
1537 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
1538 /* Get number of devices from apic_irq table shared field. */
1539 intr_params_p->avgi_num_devs = vecp->v_share;
1540
1541 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) {
1542
1543 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS;
1544
1545 /* Some devices have NULL dip. Don't count these. */
1546 if (intr_params_p->avgi_num_devs > 0) {
1547 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1548 av_dev = av_dev->av_link) {
1549 if (av_dev->av_vector && av_dev->av_dip)
1550 i++;
1551 }
1552 intr_params_p->avgi_num_devs =
1553 (uint8_t)MIN(intr_params_p->avgi_num_devs, i);
1554 }
1555
1556 /* There are no viable dips to return. */
1557 if (intr_params_p->avgi_num_devs == 0) {
1558 intr_params_p->avgi_dip_list = NULL;
1559
1560 } else { /* Return list of dips */
1561
1562 /* Allocate space in array for that number of devs. */
1563 intr_params_p->avgi_dip_list = kmem_zalloc(
1564 intr_params_p->avgi_num_devs *
1565 sizeof (dev_info_t *),
1566 KM_NOSLEEP);
1567 if (intr_params_p->avgi_dip_list == NULL) {
1568 DDI_INTR_IMPLDBG((CE_WARN,
1569 "apix_get_vector_intr_info: no memory"));
1570 return (PSM_FAILURE);
1571 }
1572
1573 /*
1574 * Loop through the device list of the autovec table
1575 * filling in the dip array.
1576 *
1577 * Note that the autovect table may have some special
1578 * entries which contain NULL dips. These will be
1579 * ignored.
1580 */
1581 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1582 av_dev = av_dev->av_link) {
1583 if (av_dev->av_vector && av_dev->av_dip)
1584 intr_params_p->avgi_dip_list[i++] =
1585 av_dev->av_dip;
1586 }
1587 }
1588 }
1589
1590 return (PSM_SUCCESS);
1591 }
1592
1593 static char *
1594 apix_get_apic_type(void)
1595 {
1596 return (apix_psm_info.p_mach_idstring);
1597 }
1598
1599 apix_vector_t *
1600 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1601 {
1602 apix_vector_t *newp = NULL;
1603 dev_info_t *dip;
1604 int inum, cap_ptr;
1605 ddi_acc_handle_t handle;
1606 ddi_intr_msix_t *msix_p = NULL;
1607 ushort_t msix_ctrl;
1608 uintptr_t off;
1609 uint32_t mask;
1610
1611 ASSERT(LOCK_HELD(&apix_lock));
1612 *result = ENXIO;
1613
1614 /* Fail if this is an MSI intr and is part of a group. */
1615 if (vecp->v_type == APIX_TYPE_MSI) {
1616 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
1617 return (NULL);
1618 else
1619 return (apix_grp_set_cpu(vecp, new_cpu, result));
1620 }
1621
1622 /*
1623 * Mask MSI-X. It's unmasked when MSI-X gets enabled.
1624 */
1625 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
1626 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1627 return (NULL);
1628 inum = vecp->v_devp->dv_inum;
1629
1630 handle = i_ddi_get_pci_config_handle(dip);
1631 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1632 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1633 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
1634 /*
1635 * Function is not masked, then mask "inum"th
1636 * entry in the MSI-X table
1637 */
1638 msix_p = i_ddi_get_msix(dip);
1639 off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1640 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1641 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1642 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
1643 mask | 1);
1644 }
1645 }
1646
1647 *result = 0;
1648 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
1649 *result = EIO;
1650
1651 /* Restore mask bit */
1652 if (msix_p != NULL)
1653 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
1654
1655 return (newp);
1656 }
1657
1658 /*
1659 * Set cpu for MSIs
1660 */
1661 apix_vector_t *
1662 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1663 {
1664 apix_vector_t *newp, *vp;
1665 uint32_t orig_cpu = vecp->v_cpuid;
1666 int orig_vect = vecp->v_vector;
1667 int i, num_vectors, cap_ptr, msi_mask_off;
1668 uint32_t msi_pvm;
1669 ushort_t msi_ctrl;
1670 ddi_acc_handle_t handle;
1671 dev_info_t *dip;
1672
1673 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
1674 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
1675
1676 ASSERT(LOCK_HELD(&apix_lock));
1677
1678 *result = ENXIO;
1679
1680 if (vecp->v_type != APIX_TYPE_MSI) {
1681 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
1682 return (NULL);
1683 }
1684
1685 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1686 return (NULL);
1687
1688 num_vectors = i_ddi_intr_get_current_nintrs(dip);
1689 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
1690 APIC_VERBOSE(INTR, (CE_WARN,
1691 "set_grp: base vec not part of a grp or not aligned: "
1692 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
1693 return (NULL);
1694 }
1695
1696 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
1697 return (NULL);
1698
1699 *result = EIO;
1700 for (i = 1; i < num_vectors; i++) {
1701 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
1702 return (NULL);
1703 #ifdef DEBUG
1704 /*
1705 * Sanity check: CPU and dip is the same for all entries.
1706 * May be called when first msi to be enabled, at this time
1707 * add_avintr() is not called for other msi
1708 */
1709 if ((vp->v_share != 0) &&
1710 ((APIX_GET_DIP(vp) != dip) ||
1711 (vp->v_cpuid != vecp->v_cpuid))) {
1712 APIC_VERBOSE(INTR, (CE_WARN,
1713 "set_grp: cpu or dip for vec 0x%x difft than for "
1714 "vec 0x%x\n", orig_vect, orig_vect + i));
1715 APIC_VERBOSE(INTR, (CE_WARN,
1716 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
1717 vp->v_cpuid, (void *)dip,
1718 (void *)APIX_GET_DIP(vp)));
1719 return (NULL);
1720 }
1721 #endif /* DEBUG */
1722 }
1723
1724 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1725 handle = i_ddi_get_pci_config_handle(dip);
1726 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1727
1728 /* MSI Per vector masking is supported. */
1729 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1730 if (msi_ctrl & PCI_MSI_64BIT_MASK)
1731 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
1732 else
1733 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
1734 msi_pvm = pci_config_get32(handle, msi_mask_off);
1735 pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
1736 APIC_VERBOSE(INTR, (CE_CONT,
1737 "set_grp: pvm supported. Mask set to 0x%x\n",
1738 pci_config_get32(handle, msi_mask_off)));
1739 }
1740
1741 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
1742 *result = 0;
1743
1744 /* Reenable vectors if per vector masking is supported. */
1745 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1746 pci_config_put32(handle, msi_mask_off, msi_pvm);
1747 APIC_VERBOSE(INTR, (CE_CONT,
1748 "set_grp: pvm supported. Mask restored to 0x%x\n",
1749 pci_config_get32(handle, msi_mask_off)));
1750 }
1751
1752 return (newp);
1753 }
1754
1755 void
1756 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
1757 {
1758 apic_irq_t *irqp;
1759
1760 mutex_enter(&airq_mutex);
1761 irqp = apic_irq_table[irqno];
1762 irqp->airq_cpu = cpuid;
1763 irqp->airq_vector = vector;
1764 apic_record_rdt_entry(irqp, irqno);
1765 mutex_exit(&airq_mutex);
1766 }
1767
1768 apix_vector_t *
1769 apix_intx_get_vector(int irqno)
1770 {
1771 apic_irq_t *irqp;
1772 uint32_t cpuid;
1773 uchar_t vector;
1774
1775 mutex_enter(&airq_mutex);
1776 irqp = apic_irq_table[irqno & 0xff];
1777 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
1778 mutex_exit(&airq_mutex);
1779 return (NULL);
1780 }
1781 cpuid = irqp->airq_cpu;
1782 vector = irqp->airq_vector;
1783 mutex_exit(&airq_mutex);
1784
1785 return (xv_vector(cpuid, vector));
1786 }
1787
1788 /*
1789 * Must called with interrupts disabled and apic_ioapic_lock held
1790 */
1791 void
1792 apix_intx_enable(int irqno)
1793 {
1794 uchar_t ioapicindex, intin;
1795 apic_irq_t *irqp = apic_irq_table[irqno];
1796 ioapic_rdt_t irdt;
1797 apic_cpus_info_t *cpu_infop;
1798 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1799
1800 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1801
1802 ioapicindex = irqp->airq_ioapicindex;
1803 intin = irqp->airq_intin_no;
1804 cpu_infop = &apic_cpus[irqp->airq_cpu];
1805
1806 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
1807 irdt.ir_hi = cpu_infop->aci_local_id;
1808
1809 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
1810 vecp->v_type, 1, ioapicindex);
1811 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
1812 (void *)&irdt, vecp->v_type, 1);
1813 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
1814
1815 /* write RDT entry high dword - destination */
1816 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
1817 irdt.ir_hi);
1818
1819 /* Write the vector, trigger, and polarity portion of the RDT */
1820 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
1821
1822 vecp->v_state = APIX_STATE_ENABLED;
1823
1824 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
1825 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
1826 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
1827 }
1828
1829 /*
1830 * Must called with interrupts disabled and apic_ioapic_lock held
1831 */
1832 void
1833 apix_intx_disable(int irqno)
1834 {
1835 apic_irq_t *irqp = apic_irq_table[irqno];
1836 int ioapicindex, intin;
1837
1838 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1839 /*
1840 * The assumption here is that this is safe, even for
1841 * systems with IOAPICs that suffer from the hardware
1842 * erratum because all devices have been quiesced before
1843 * they unregister their interrupt handlers. If that
1844 * assumption turns out to be false, this mask operation
1845 * can induce the same erratum result we're trying to
1846 * avoid.
1847 */
1848 ioapicindex = irqp->airq_ioapicindex;
1849 intin = irqp->airq_intin_no;
1850 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
1851
1852 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
1853 " intin 0x%x\n", ioapicindex, intin));
1854 }
1855
1856 void
1857 apix_intx_free(int irqno)
1858 {
1859 apic_irq_t *irqp;
1860
1861 mutex_enter(&airq_mutex);
1862 irqp = apic_irq_table[irqno];
1863
1864 if (IS_IRQ_FREE(irqp)) {
1865 mutex_exit(&airq_mutex);
1866 return;
1867 }
1868
1869 irqp->airq_mps_intr_index = FREE_INDEX;
1870 irqp->airq_cpu = IRQ_UNINIT;
1871 irqp->airq_vector = APIX_INVALID_VECT;
1872 mutex_exit(&airq_mutex);
1873 }
1874
1875 #ifdef DEBUG
1876 int apix_intr_deliver_timeouts = 0;
1877 int apix_intr_rirr_timeouts = 0;
1878 int apix_intr_rirr_reset_failure = 0;
1879 #endif
1880 int apix_max_reps_irr_pending = 10;
1881
1882 #define GET_RDT_BITS(ioapic, intin, bits) \
1883 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
1884 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000)
1885
1886 int
1887 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
1888 {
1889 apic_irq_t *irqp = apic_irq_table[irqno];
1890 ulong_t iflag;
1891 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
1892
1893 ASSERT(irqp != NULL);
1894
1895 iflag = intr_clear();
1896 lock_set(&apic_ioapic_lock);
1897
1898 ioapic_ix = irqp->airq_ioapicindex;
1899 intin_no = irqp->airq_intin_no;
1900 level = apic_level_intr[irqno];
1901
1902 /*
1903 * Wait for the delivery status bit to be cleared. This should
1904 * be a very small amount of time.
1905 */
1906 repeats = 0;
1907 do {
1908 repeats++;
1909
1910 for (waited = 0; waited < apic_max_reps_clear_pending;
1911 waited++) {
1912 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
1913 break;
1914 }
1915 if (!level)
1916 break;
1917
1918 /*
1919 * Mask the RDT entry for level-triggered interrupts.
1920 */
1921 irqp->airq_rdt_entry |= AV_MASK;
1922 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1923 intin_no);
1924 if ((masked = (rdt_entry & AV_MASK)) == 0) {
1925 /* Mask it */
1926 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1927 AV_MASK | rdt_entry);
1928 }
1929
1930 /*
1931 * If there was a race and an interrupt was injected
1932 * just before we masked, check for that case here.
1933 * Then, unmask the RDT entry and try again. If we're
1934 * on our last try, don't unmask (because we want the
1935 * RDT entry to remain masked for the rest of the
1936 * function).
1937 */
1938 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1939 intin_no);
1940 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
1941 (repeats < apic_max_reps_clear_pending)) {
1942 /* Unmask it */
1943 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1944 intin_no, rdt_entry & ~AV_MASK);
1945 irqp->airq_rdt_entry &= ~AV_MASK;
1946 }
1947 } while ((rdt_entry & AV_PENDING) &&
1948 (repeats < apic_max_reps_clear_pending));
1949
1950 #ifdef DEBUG
1951 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
1952 apix_intr_deliver_timeouts++;
1953 #endif
1954
1955 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
1956 goto done;
1957
1958 /*
1959 * wait for remote IRR to be cleared for level-triggered
1960 * interrupts
1961 */
1962 repeats = 0;
1963 do {
1964 repeats++;
1965
1966 for (waited = 0; waited < apic_max_reps_clear_pending;
1967 waited++) {
1968 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
1969 == 0)
1970 break;
1971 }
1972
1973 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1974 lock_clear(&apic_ioapic_lock);
1975 intr_restore(iflag);
1976
1977 delay(APIX_CHECK_IRR_DELAY);
1978
1979 iflag = intr_clear();
1980 lock_set(&apic_ioapic_lock);
1981 }
1982 } while (repeats < apix_max_reps_irr_pending);
1983
1984 if (repeats >= apix_max_reps_irr_pending) {
1985 #ifdef DEBUG
1986 apix_intr_rirr_timeouts++;
1987 #endif
1988
1989 /*
1990 * If we waited and the Remote IRR bit is still not cleared,
1991 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1992 * times for this interrupt, try the last-ditch workaround:
1993 */
1994 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1995 /*
1996 * Trying to clear the bit through normal
1997 * channels has failed. So as a last-ditch
1998 * effort, try to set the trigger mode to
1999 * edge, then to level. This has been
2000 * observed to work on many systems.
2001 */
2002 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2003 intin_no,
2004 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2005 intin_no) & ~AV_LEVEL);
2006 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2007 intin_no,
2008 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2009 intin_no) | AV_LEVEL);
2010 }
2011
2012 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
2013 #ifdef DEBUG
2014 apix_intr_rirr_reset_failure++;
2015 #endif
2016 lock_clear(&apic_ioapic_lock);
2017 intr_restore(iflag);
2018 prom_printf("apix: Remote IRR still "
2019 "not clear for IOAPIC %d intin %d.\n"
2020 "\tInterrupts to this pin may cease "
2021 "functioning.\n", ioapic_ix, intin_no);
2022 return (1); /* return failure */
2023 }
2024 }
2025
2026 done:
2027 /* change apic_irq_table */
2028 lock_clear(&apic_ioapic_lock);
2029 intr_restore(iflag);
2030 apix_intx_set_vector(irqno, cpuid, vector);
2031 iflag = intr_clear();
2032 lock_set(&apic_ioapic_lock);
2033
2034 /* reprogramme IO-APIC RDT entry */
2035 apix_intx_enable(irqno);
2036
2037 lock_clear(&apic_ioapic_lock);
2038 intr_restore(iflag);
2039
2040 return (0);
2041 }
2042
2043 static int
2044 apix_intx_get_pending(int irqno)
2045 {
2046 apic_irq_t *irqp;
2047 int intin, ioapicindex, pending;
2048 ulong_t iflag;
2049
2050 mutex_enter(&airq_mutex);
2051 irqp = apic_irq_table[irqno];
2052 if (IS_IRQ_FREE(irqp)) {
2053 mutex_exit(&airq_mutex);
2054 return (0);
2055 }
2056
2057 /* check IO-APIC delivery status */
2058 intin = irqp->airq_intin_no;
2059 ioapicindex = irqp->airq_ioapicindex;
2060 mutex_exit(&airq_mutex);
2061
2062 iflag = intr_clear();
2063 lock_set(&apic_ioapic_lock);
2064
2065 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
2066 AV_PENDING) ? 1 : 0;
2067
2068 lock_clear(&apic_ioapic_lock);
2069 intr_restore(iflag);
2070
2071 return (pending);
2072 }
2073
2074 /*
2075 * This function will mask the interrupt on the I/O APIC
2076 */
2077 static void
2078 apix_intx_set_mask(int irqno)
2079 {
2080 int intin, ioapixindex, rdt_entry;
2081 ulong_t iflag;
2082 apic_irq_t *irqp;
2083
2084 mutex_enter(&airq_mutex);
2085 irqp = apic_irq_table[irqno];
2086
2087 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2088
2089 intin = irqp->airq_intin_no;
2090 ioapixindex = irqp->airq_ioapicindex;
2091 mutex_exit(&airq_mutex);
2092
2093 iflag = intr_clear();
2094 lock_set(&apic_ioapic_lock);
2095
2096 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2097
2098 /* clear mask */
2099 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2100 (AV_MASK | rdt_entry));
2101
2102 lock_clear(&apic_ioapic_lock);
2103 intr_restore(iflag);
2104 }
2105
2106 /*
2107 * This function will clear the mask for the interrupt on the I/O APIC
2108 */
2109 static void
2110 apix_intx_clear_mask(int irqno)
2111 {
2112 int intin, ioapixindex, rdt_entry;
2113 ulong_t iflag;
2114 apic_irq_t *irqp;
2115
2116 mutex_enter(&airq_mutex);
2117 irqp = apic_irq_table[irqno];
2118
2119 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2120
2121 intin = irqp->airq_intin_no;
2122 ioapixindex = irqp->airq_ioapicindex;
2123 mutex_exit(&airq_mutex);
2124
2125 iflag = intr_clear();
2126 lock_set(&apic_ioapic_lock);
2127
2128 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2129
2130 /* clear mask */
2131 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2132 ((~AV_MASK) & rdt_entry));
2133
2134 lock_clear(&apic_ioapic_lock);
2135 intr_restore(iflag);
2136 }
2137
2138 /*
2139 * For level-triggered interrupt, mask the IRQ line. Mask means
2140 * new interrupts will not be delivered. The interrupt already
2141 * accepted by a local APIC is not affected
2142 */
2143 void
2144 apix_level_intr_pre_eoi(int irq)
2145 {
2146 apic_irq_t *irqp = apic_irq_table[irq];
2147 int apic_ix, intin_ix;
2148
2149 if (irqp == NULL)
2150 return;
2151
2152 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
2153
2154 lock_set(&apic_ioapic_lock);
2155
2156 intin_ix = irqp->airq_intin_no;
2157 apic_ix = irqp->airq_ioapicindex;
2158
2159 if (irqp->airq_cpu != CPU->cpu_id) {
2160 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
2161 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2162 lock_clear(&apic_ioapic_lock);
2163 return;
2164 }
2165
2166 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
2167 /*
2168 * This is a IOxAPIC and there is EOI register:
2169 * Change the vector to reserved unused vector, so that
2170 * the EOI from Local APIC won't clear the Remote IRR for
2171 * this level trigger interrupt. Instead, we'll manually
2172 * clear it in apix_post_hardint() after ISR handling.
2173 */
2174 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2175 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
2176 } else {
2177 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2178 AV_MASK | irqp->airq_rdt_entry);
2179 }
2180
2181 lock_clear(&apic_ioapic_lock);
2182 }
2183
2184 /*
2185 * For level-triggered interrupt, unmask the IRQ line
2186 * or restore the original vector number.
2187 */
2188 void
2189 apix_level_intr_post_dispatch(int irq)
2190 {
2191 apic_irq_t *irqp = apic_irq_table[irq];
2192 int apic_ix, intin_ix;
2193
2194 if (irqp == NULL)
2195 return;
2196
2197 lock_set(&apic_ioapic_lock);
2198
2199 intin_ix = irqp->airq_intin_no;
2200 apic_ix = irqp->airq_ioapicindex;
2201
2202 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
2203 /*
2204 * Already sent EOI back to Local APIC.
2205 * Send EOI to IO-APIC
2206 */
2207 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2208 } else {
2209 /* clear the mask or restore the vector */
2210 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2211 irqp->airq_rdt_entry);
2212
2213 /* send EOI to IOxAPIC */
2214 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
2215 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2216 }
2217
2218 lock_clear(&apic_ioapic_lock);
2219 }
2220
2221 static int
2222 apix_intx_get_shared(int irqno)
2223 {
2224 apic_irq_t *irqp;
2225 int share;
2226
2227 mutex_enter(&airq_mutex);
2228 irqp = apic_irq_table[irqno];
2229 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
2230 mutex_exit(&airq_mutex);
2231 return (0);
2232 }
2233 share = irqp->airq_share;
2234 mutex_exit(&airq_mutex);
2235
2236 return (share);
2237 }
2238
2239 static void
2240 apix_intx_set_shared(int irqno, int delta)
2241 {
2242 apic_irq_t *irqp;
2243
2244 mutex_enter(&airq_mutex);
2245 irqp = apic_irq_table[irqno];
2246 if (IS_IRQ_FREE(irqp)) {
2247 mutex_exit(&airq_mutex);
2248 return;
2249 }
2250 irqp->airq_share += delta;
2251 mutex_exit(&airq_mutex);
2252 }
2253
2254 /*
2255 * Setup IRQ table. Return IRQ no or -1 on failure
2256 */
2257 static int
2258 apix_intx_setup(dev_info_t *dip, int inum, int irqno,
2259 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
2260 {
2261 int origirq = ispec->intrspec_vec;
2262 int newirq;
2263 short intr_index;
2264 uchar_t ipin, ioapic, ioapicindex;
2265 apic_irq_t *irqp;
2266
2267 UNREFERENCED_1PARAMETER(inum);
2268
2269 if (intrp != NULL) {
2270 intr_index = (short)(intrp - apic_io_intrp);
2271 ioapic = intrp->intr_destid;
2272 ipin = intrp->intr_destintin;
2273
2274 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
2275 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2276 if (apic_io_id[ioapicindex] == ioapic)
2277 break;
2278 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2279 (ioapic == INTR_ALL_APIC));
2280
2281 /* check whether this intin# has been used by another irqno */
2282 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
2283 return (newirq);
2284
2285 } else if (iflagp != NULL) { /* ACPI */
2286 intr_index = ACPI_INDEX;
2287 ioapicindex = acpi_find_ioapic(irqno);
2288 ASSERT(ioapicindex != 0xFF);
2289 ioapic = apic_io_id[ioapicindex];
2290 ipin = irqno - apic_io_vectbase[ioapicindex];
2291
2292 if (apic_irq_table[irqno] &&
2293 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2294 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2295 apic_irq_table[irqno]->airq_ioapicindex ==
2296 ioapicindex);
2297 return (irqno);
2298 }
2299
2300 } else { /* default configuration */
2301 intr_index = DEFAULT_INDEX;
2302 ioapicindex = 0;
2303 ioapic = apic_io_id[ioapicindex];
2304 ipin = (uchar_t)irqno;
2305 }
2306
2307 /* allocate a new IRQ no */
2308 if ((irqp = apic_irq_table[irqno]) == NULL) {
2309 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2310 apic_irq_table[irqno] = irqp;
2311 } else {
2312 if (irqp->airq_mps_intr_index != FREE_INDEX) {
2313 newirq = apic_allocate_irq(apic_first_avail_irq);
2314 if (newirq == -1) {
2315 return (-1);
2316 }
2317 irqno = newirq;
2318 irqp = apic_irq_table[irqno];
2319 ASSERT(irqp != NULL);
2320 }
2321 }
2322 apic_max_device_irq = max(irqno, apic_max_device_irq);
2323 apic_min_device_irq = min(irqno, apic_min_device_irq);
2324
2325 irqp->airq_mps_intr_index = intr_index;
2326 irqp->airq_ioapicindex = ioapicindex;
2327 irqp->airq_intin_no = ipin;
2328 irqp->airq_dip = dip;
2329 irqp->airq_origirq = (uchar_t)origirq;
2330 if (iflagp != NULL)
2331 irqp->airq_iflag = *iflagp;
2332 irqp->airq_cpu = IRQ_UNINIT;
2333 irqp->airq_vector = 0;
2334
2335 return (irqno);
2336 }
2337
2338 /*
2339 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
2340 */
2341 static int
2342 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
2343 struct intrspec *ispec)
2344 {
2345 int irqno = ispec->intrspec_vec;
2346 int newirq, i;
2347 iflag_t intr_flag;
2348 ACPI_SUBTABLE_HEADER *hp;
2349 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
2350 struct apic_io_intr *intrp;
2351
2352 if (!apic_enable_acpi || apic_use_acpi_madt_only) {
2353 int busid;
2354
2355 if (bustype == 0)
2356 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
2357
2358 /* loop checking BUS_ISA/BUS_EISA */
2359 for (i = 0; i < 2; i++) {
2360 if (((busid = apic_find_bus_id(bustype)) != -1) &&
2361 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
2362 != NULL)) {
2363 return (apix_intx_setup(dip, inum, irqno,
2364 intrp, ispec, NULL));
2365 }
2366 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
2367 }
2368
2369 /* fall back to default configuration */
2370 return (-1);
2371 }
2372
2373 /* search iso entries first */
2374 if (acpi_iso_cnt != 0) {
2375 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
2376 i = 0;
2377 while (i < acpi_iso_cnt) {
2378 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
2379 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
2380 if (isop->Bus == 0 &&
2381 isop->SourceIrq == irqno) {
2382 newirq = isop->GlobalIrq;
2383 intr_flag.intr_po = isop->IntiFlags &
2384 ACPI_MADT_POLARITY_MASK;
2385 intr_flag.intr_el = (isop->IntiFlags &
2386 ACPI_MADT_TRIGGER_MASK) >> 2;
2387 intr_flag.bustype = BUS_ISA;
2388
2389 return (apix_intx_setup(dip, inum,
2390 newirq, NULL, ispec, &intr_flag));
2391 }
2392 i++;
2393 }
2394 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
2395 hp->Length);
2396 }
2397 }
2398 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
2399 intr_flag.intr_el = INTR_EL_EDGE;
2400 intr_flag.bustype = BUS_ISA;
2401 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
2402 }
2403
2404
2405 /*
2406 * Setup IRQ table for pci devices. Return IRQ no or -1 on error
2407 */
2408 static int
2409 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
2410 struct intrspec *ispec)
2411 {
2412 int busid, devid, pci_irq;
2413 ddi_acc_handle_t cfg_handle;
2414 uchar_t ipin;
2415 iflag_t intr_flag;
2416 struct apic_io_intr *intrp;
2417
2418 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
2419 return (-1);
2420
2421 if (busid == 0 && apic_pci_bus_total == 1)
2422 busid = (int)apic_single_pci_busid;
2423
2424 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
2425 return (-1);
2426 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
2427 pci_config_teardown(&cfg_handle);
2428
2429 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */
2430 if (apic_acpi_translate_pci_irq(dip, busid, devid,
2431 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
2432 return (-1);
2433
2434 intr_flag.bustype = (uchar_t)bustype;
2435 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
2436 &intr_flag));
2437 }
2438
2439 /* MP configuration table */
2440 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
2441 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
2442 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
2443 if (pci_irq == -1)
2444 return (-1);
2445 }
2446
2447 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
2448 }
2449
2450 /*
2451 * Translate and return IRQ no
2452 */
2453 static int
2454 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
2455 {
2456 int newirq, irqno = ispec->intrspec_vec;
2457 int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
2458 int bustype = 0, dev_len;
2459 char dev_type[16];
2460
2461 if (apic_defconf) {
2462 mutex_enter(&airq_mutex);
2463 goto defconf;
2464 }
2465
2466 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
2467 mutex_enter(&airq_mutex);
2468 goto nonpci;
2469 }
2470
2471 /*
2472 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
2473 * to avoid extra buffer allocation.
2474 */
2475 dev_len = sizeof (dev_type);
2476 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
2477 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
2478 &dev_len) == DDI_PROP_SUCCESS) {
2479 if ((strcmp(dev_type, "pci") == 0) ||
2480 (strcmp(dev_type, "pciex") == 0))
2481 parent_is_pci_or_pciex = 1;
2482 }
2483
2484 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2485 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
2486 &dev_len) == DDI_PROP_SUCCESS) {
2487 if (strstr(dev_type, "pciex"))
2488 child_is_pciex = 1;
2489 }
2490
2491 mutex_enter(&airq_mutex);
2492
2493 if (parent_is_pci_or_pciex) {
2494 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
2495 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
2496 if (newirq != -1)
2497 goto done;
2498 bustype = 0;
2499 } else if (strcmp(dev_type, "isa") == 0)
2500 bustype = BUS_ISA;
2501 else if (strcmp(dev_type, "eisa") == 0)
2502 bustype = BUS_EISA;
2503
2504 nonpci:
2505 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
2506 if (newirq != -1)
2507 goto done;
2508
2509 defconf:
2510 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
2511 if (newirq == -1) {
2512 mutex_exit(&airq_mutex);
2513 return (-1);
2514 }
2515 done:
2516 ASSERT(apic_irq_table[newirq]);
2517 mutex_exit(&airq_mutex);
2518 return (newirq);
2519 }
2520
2521 static int
2522 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2523 {
2524 int irqno;
2525 apix_vector_t *vecp;
2526
2527 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2528 return (0);
2529
2530 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
2531 return (0);
2532
2533 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
2534 "irqno=0x%x cpuid=%d vector=0x%x\n",
2535 (void *)dip, ddi_driver_name(dip), irqno,
2536 vecp->v_cpuid, vecp->v_vector));
2537
2538 return (1);
2539 }
2540
2541 /*
2542 * Return the vector number if the translated IRQ for this device
2543 * has a vector mapping setup. If no IRQ setup exists or no vector is
2544 * allocated to it then return 0.
2545 */
2546 static apix_vector_t *
2547 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2548 {
2549 int irqno;
2550 apix_vector_t *vecp;
2551
2552 /* get the IRQ number */
2553 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2554 return (NULL);
2555
2556 /* get the vector number if a vector is allocated to this irqno */
2557 vecp = apix_intx_get_vector(irqno);
2558
2559 return (vecp);
2560 }
2561
2562 /* stub function */
2563 int
2564 apix_loaded(void)
2565 {
2566 return (apix_is_enabled);
2567 }