1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 OmniTI Computer Consulting, Inc. All rights reserved. 27 * Copyright (c) 2014, Tegile Systems Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright (c) 2000 to 2010, LSI Corporation. 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms of all code within 35 * this file that is exclusively owned by LSI, with or without 36 * modification, is permitted provided that, in addition to the CDDL 1.0 37 * License requirements, the following conditions are met: 38 * 39 * Neither the name of the author nor the names of its contributors may be 40 * used to endorse or promote products derived from this software without 41 * specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 46 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 47 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 48 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 49 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 50 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 51 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 52 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 54 * DAMAGE. 55 */ 56 57 /* 58 * mptsas - This is a driver based on LSI Logic's MPT2.0/2.5 interface. 59 * 60 */ 61 62 #if defined(lint) || defined(DEBUG) 63 #define MPTSAS_DEBUG 64 #endif 65 66 /* 67 * standard header files. 68 */ 69 #include <sys/note.h> 70 #include <sys/scsi/scsi.h> 71 #include <sys/pci.h> 72 #include <sys/file.h> 73 #include <sys/policy.h> 74 #include <sys/model.h> 75 #include <sys/sysevent.h> 76 #include <sys/sysevent/eventdefs.h> 77 #include <sys/sysevent/dr.h> 78 #include <sys/sata/sata_defs.h> 79 #include <sys/scsi/generic/sas.h> 80 #include <sys/scsi/impl/scsi_sas.h> 81 82 #pragma pack(1) 83 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_type.h> 84 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2.h> 85 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_cnfg.h> 86 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_init.h> 87 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_ioc.h> 88 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_sas.h> 89 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_tool.h> 90 #include <sys/scsi/adapters/mpt_sas/mpi/mpi2_raid.h> 91 #pragma pack() 92 93 /* 94 * private header files. 95 * 96 */ 97 #include <sys/scsi/impl/scsi_reset_notify.h> 98 #include <sys/scsi/adapters/mpt_sas/mptsas_var.h> 99 #include <sys/scsi/adapters/mpt_sas/mptsas_ioctl.h> 100 #include <sys/scsi/adapters/mpt_sas/mptsas_smhba.h> 101 #include <sys/scsi/adapters/mpt_sas/mptsas_hash.h> 102 #include <sys/raidioctl.h> 103 104 #include <sys/fs/dv_node.h> /* devfs_clean */ 105 106 /* 107 * FMA header files 108 */ 109 #include <sys/ddifm.h> 110 #include <sys/fm/protocol.h> 111 #include <sys/fm/util.h> 112 #include <sys/fm/io/ddi.h> 113 114 /* 115 * autoconfiguration data and routines. 116 */ 117 static int mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 118 static int mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd); 119 static int mptsas_power(dev_info_t *dip, int component, int level); 120 121 /* 122 * cb_ops function 123 */ 124 static int mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, 125 cred_t *credp, int *rval); 126 #ifdef __sparc 127 static int mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd); 128 #else /* __sparc */ 129 static int mptsas_quiesce(dev_info_t *devi); 130 #endif /* __sparc */ 131 132 /* 133 * Resource initilaization for hardware 134 */ 135 static void mptsas_setup_cmd_reg(mptsas_t *mpt); 136 static void mptsas_disable_bus_master(mptsas_t *mpt); 137 static void mptsas_hba_fini(mptsas_t *mpt); 138 static void mptsas_cfg_fini(mptsas_t *mptsas_blkp); 139 static int mptsas_hba_setup(mptsas_t *mpt); 140 static void mptsas_hba_teardown(mptsas_t *mpt); 141 static int mptsas_config_space_init(mptsas_t *mpt); 142 static void mptsas_config_space_fini(mptsas_t *mpt); 143 static void mptsas_iport_register(mptsas_t *mpt); 144 static int mptsas_smp_setup(mptsas_t *mpt); 145 static void mptsas_smp_teardown(mptsas_t *mpt); 146 static int mptsas_cache_create(mptsas_t *mpt); 147 static void mptsas_cache_destroy(mptsas_t *mpt); 148 static int mptsas_alloc_request_frames(mptsas_t *mpt); 149 static int mptsas_alloc_reply_frames(mptsas_t *mpt); 150 static int mptsas_alloc_free_queue(mptsas_t *mpt); 151 static int mptsas_alloc_post_queue(mptsas_t *mpt); 152 static void mptsas_alloc_reply_args(mptsas_t *mpt); 153 static int mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd); 154 static void mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd); 155 static int mptsas_init_chip(mptsas_t *mpt, int first_time); 156 157 /* 158 * SCSA function prototypes 159 */ 160 static int mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt); 161 static int mptsas_scsi_reset(struct scsi_address *ap, int level); 162 static int mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt); 163 static int mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly); 164 static int mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, 165 int tgtonly); 166 static void mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt); 167 static struct scsi_pkt *mptsas_scsi_init_pkt(struct scsi_address *ap, 168 struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen, 169 int tgtlen, int flags, int (*callback)(), caddr_t arg); 170 static void mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt); 171 static void mptsas_scsi_destroy_pkt(struct scsi_address *ap, 172 struct scsi_pkt *pkt); 173 static int mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 174 scsi_hba_tran_t *hba_tran, struct scsi_device *sd); 175 static void mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip, 176 scsi_hba_tran_t *hba_tran, struct scsi_device *sd); 177 static int mptsas_scsi_reset_notify(struct scsi_address *ap, int flag, 178 void (*callback)(caddr_t), caddr_t arg); 179 static int mptsas_get_name(struct scsi_device *sd, char *name, int len); 180 static int mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len); 181 static int mptsas_scsi_quiesce(dev_info_t *dip); 182 static int mptsas_scsi_unquiesce(dev_info_t *dip); 183 static int mptsas_bus_config(dev_info_t *pdip, uint_t flags, 184 ddi_bus_config_op_t op, void *arg, dev_info_t **childp); 185 186 /* 187 * SMP functions 188 */ 189 static int mptsas_smp_start(struct smp_pkt *smp_pkt); 190 191 /* 192 * internal function prototypes. 193 */ 194 static void mptsas_list_add(mptsas_t *mpt); 195 static void mptsas_list_del(mptsas_t *mpt); 196 197 static int mptsas_quiesce_bus(mptsas_t *mpt); 198 static int mptsas_unquiesce_bus(mptsas_t *mpt); 199 200 static int mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size); 201 static void mptsas_free_handshake_msg(mptsas_t *mpt); 202 203 static void mptsas_ncmds_checkdrain(void *arg); 204 205 static int mptsas_prepare_pkt(mptsas_cmd_t *cmd); 206 static int mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *sp); 207 static int mptsas_accept_txwq_and_pkt(mptsas_t *mpt, mptsas_cmd_t *sp); 208 static void mptsas_accept_tx_waitq(mptsas_t *mpt); 209 210 static int mptsas_do_detach(dev_info_t *dev); 211 static int mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl); 212 static int mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, 213 struct scsi_pkt *pkt); 214 static int mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp); 215 216 static void mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd); 217 static void mptsas_handle_event(void *args); 218 static int mptsas_handle_event_sync(void *args); 219 static void mptsas_handle_dr(void *args); 220 static void mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node, 221 dev_info_t *pdip); 222 223 static void mptsas_restart_cmd(void *); 224 225 static void mptsas_flush_hba(mptsas_t *mpt); 226 static void mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, 227 uint8_t tasktype); 228 static void mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, 229 uchar_t reason, uint_t stat); 230 231 static uint_t mptsas_intr(caddr_t arg1, caddr_t arg2); 232 static void mptsas_process_intr(mptsas_t *mpt, 233 pMpi2ReplyDescriptorsUnion_t reply_desc_union); 234 static void mptsas_handle_scsi_io_success(mptsas_t *mpt, 235 pMpi2ReplyDescriptorsUnion_t reply_desc); 236 static void mptsas_handle_address_reply(mptsas_t *mpt, 237 pMpi2ReplyDescriptorsUnion_t reply_desc); 238 static int mptsas_wait_intr(mptsas_t *mpt, int polltime); 239 static void mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, 240 uint32_t *control, pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl); 241 242 static void mptsas_watch(void *arg); 243 static void mptsas_watchsubr(mptsas_t *mpt); 244 static void mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt); 245 246 static void mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd); 247 static int mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply, 248 uint8_t *data, uint32_t request_size, uint32_t reply_size, 249 uint32_t data_size, uint32_t direction, uint8_t *dataout, 250 uint32_t dataout_size, short timeout, int mode); 251 static int mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl); 252 253 static uint8_t mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, 254 uint32_t unique_id); 255 static void mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd); 256 static int mptsas_post_fw_diag_buffer(mptsas_t *mpt, 257 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 258 static int mptsas_release_fw_diag_buffer(mptsas_t *mpt, 259 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 260 uint32_t diag_type); 261 static int mptsas_diag_register(mptsas_t *mpt, 262 mptsas_fw_diag_register_t *diag_register, uint32_t *return_code); 263 static int mptsas_diag_unregister(mptsas_t *mpt, 264 mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 265 static int mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query, 266 uint32_t *return_code); 267 static int mptsas_diag_read_buffer(mptsas_t *mpt, 268 mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 269 uint32_t *return_code, int ioctl_mode); 270 static int mptsas_diag_release(mptsas_t *mpt, 271 mptsas_fw_diag_release_t *diag_release, uint32_t *return_code); 272 static int mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, 273 uint8_t *diag_action, uint32_t length, uint32_t *return_code, 274 int ioctl_mode); 275 static int mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *data, 276 int mode); 277 278 static int mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd, 279 int cmdlen, int tgtlen, int statuslen, int kf); 280 static void mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd); 281 282 static int mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags); 283 static void mptsas_kmem_cache_destructor(void *buf, void *cdrarg); 284 285 static int mptsas_cache_frames_constructor(void *buf, void *cdrarg, 286 int kmflags); 287 static void mptsas_cache_frames_destructor(void *buf, void *cdrarg); 288 289 static void mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply, 290 mptsas_cmd_t *cmd); 291 static void mptsas_check_task_mgt(mptsas_t *mpt, 292 pMpi2SCSIManagementReply_t reply, mptsas_cmd_t *cmd); 293 static int mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap, 294 mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp, 295 int *resid); 296 297 static int mptsas_alloc_active_slots(mptsas_t *mpt, int flag); 298 static void mptsas_free_active_slots(mptsas_t *mpt); 299 static int mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd); 300 301 static void mptsas_restart_hba(mptsas_t *mpt); 302 static void mptsas_restart_waitq(mptsas_t *mpt); 303 304 static void mptsas_deliver_doneq_thread(mptsas_t *mpt); 305 static void mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd); 306 static void mptsas_doneq_mv(mptsas_t *mpt, uint64_t t); 307 308 static mptsas_cmd_t *mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t); 309 static void mptsas_doneq_empty(mptsas_t *mpt); 310 static void mptsas_doneq_thread(mptsas_doneq_thread_arg_t *arg); 311 312 static mptsas_cmd_t *mptsas_waitq_rm(mptsas_t *mpt); 313 static void mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd); 314 static mptsas_cmd_t *mptsas_tx_waitq_rm(mptsas_t *mpt); 315 static void mptsas_tx_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd); 316 317 318 static void mptsas_start_watch_reset_delay(); 319 static void mptsas_setup_bus_reset_delay(mptsas_t *mpt); 320 static void mptsas_watch_reset_delay(void *arg); 321 static int mptsas_watch_reset_delay_subr(mptsas_t *mpt); 322 323 /* 324 * helper functions 325 */ 326 static void mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd); 327 328 static dev_info_t *mptsas_find_child(dev_info_t *pdip, char *name); 329 static dev_info_t *mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy); 330 static dev_info_t *mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, 331 int lun); 332 static mdi_pathinfo_t *mptsas_find_path_addr(dev_info_t *pdip, uint64_t sasaddr, 333 int lun); 334 static mdi_pathinfo_t *mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy); 335 static dev_info_t *mptsas_find_smp_child(dev_info_t *pdip, char *str_wwn); 336 337 static int mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, 338 int *lun); 339 static int mptsas_parse_smp_name(char *name, uint64_t *wwn); 340 341 static mptsas_target_t *mptsas_phy_to_tgt(mptsas_t *mpt, 342 mptsas_phymask_t phymask, uint8_t phy); 343 static mptsas_target_t *mptsas_wwid_to_ptgt(mptsas_t *mpt, 344 mptsas_phymask_t phymask, uint64_t wwid); 345 static mptsas_smp_t *mptsas_wwid_to_psmp(mptsas_t *mpt, 346 mptsas_phymask_t phymask, uint64_t wwid); 347 348 static int mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, 349 uchar_t page, unsigned char *buf, int len, int *rlen, uchar_t evpd); 350 351 static int mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address, 352 uint16_t *handle, mptsas_target_t **pptgt); 353 static void mptsas_update_phymask(mptsas_t *mpt); 354 355 static int mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt, 356 uint32_t *status, uint8_t cmd); 357 static dev_info_t *mptsas_get_dip_from_dev(dev_t dev, 358 mptsas_phymask_t *phymask); 359 static mptsas_target_t *mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, 360 mptsas_phymask_t phymask); 361 static int mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt); 362 363 364 /* 365 * Enumeration / DR functions 366 */ 367 static void mptsas_config_all(dev_info_t *pdip); 368 static int mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun, 369 dev_info_t **lundip); 370 static int mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun, 371 dev_info_t **lundip); 372 373 static int mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt); 374 static int mptsas_offline_target(dev_info_t *pdip, char *name); 375 376 static int mptsas_config_raid(dev_info_t *pdip, uint16_t target, 377 dev_info_t **dip); 378 379 static int mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt); 380 static int mptsas_probe_lun(dev_info_t *pdip, int lun, 381 dev_info_t **dip, mptsas_target_t *ptgt); 382 383 static int mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq, 384 dev_info_t **dip, mptsas_target_t *ptgt, int lun); 385 386 static int mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *sd, 387 char *guid, dev_info_t **dip, mptsas_target_t *ptgt, int lun); 388 static int mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *sd, 389 char *guid, dev_info_t **dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, 390 int lun); 391 392 static void mptsas_offline_missed_luns(dev_info_t *pdip, 393 uint16_t *repluns, int lun_cnt, mptsas_target_t *ptgt); 394 static int mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip, 395 mdi_pathinfo_t *rpip, uint_t flags); 396 397 static int mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, 398 dev_info_t **smp_dip); 399 static int mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 400 uint_t flags); 401 402 static int mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, 403 int mode, int *rval); 404 static int mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, 405 int mode, int *rval); 406 static int mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, 407 int mode, int *rval); 408 static void mptsas_record_event(void *args); 409 static int mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, 410 int mode); 411 412 mptsas_target_t *mptsas_tgt_alloc(mptsas_t *, uint16_t, uint64_t, 413 uint32_t, mptsas_phymask_t, uint8_t); 414 static mptsas_smp_t *mptsas_smp_alloc(mptsas_t *, mptsas_smp_t *); 415 static int mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 416 dev_info_t **smp_dip); 417 418 /* 419 * Power management functions 420 */ 421 static int mptsas_get_pci_cap(mptsas_t *mpt); 422 static int mptsas_init_pm(mptsas_t *mpt); 423 424 /* 425 * MPT MSI tunable: 426 * 427 * By default MSI is enabled on all supported platforms. 428 */ 429 boolean_t mptsas_enable_msi = B_TRUE; 430 boolean_t mptsas_physical_bind_failed_page_83 = B_FALSE; 431 432 /* 433 * Global switch for use of MPI2.5 FAST PATH. 434 * We don't really know what FAST PATH actually does, so if it is suspected 435 * to cause problems it can be turned off by setting this variable to B_FALSE. 436 */ 437 boolean_t mptsas_use_fastpath = B_TRUE; 438 439 static int mptsas_register_intrs(mptsas_t *); 440 static void mptsas_unregister_intrs(mptsas_t *); 441 static int mptsas_add_intrs(mptsas_t *, int); 442 static void mptsas_rem_intrs(mptsas_t *); 443 444 /* 445 * FMA Prototypes 446 */ 447 static void mptsas_fm_init(mptsas_t *mpt); 448 static void mptsas_fm_fini(mptsas_t *mpt); 449 static int mptsas_fm_error_cb(dev_info_t *, ddi_fm_error_t *, const void *); 450 451 extern pri_t minclsyspri, maxclsyspri; 452 453 /* 454 * This device is created by the SCSI pseudo nexus driver (SCSI vHCI). It is 455 * under this device that the paths to a physical device are created when 456 * MPxIO is used. 457 */ 458 extern dev_info_t *scsi_vhci_dip; 459 460 /* 461 * Tunable timeout value for Inquiry VPD page 0x83 462 * By default the value is 30 seconds. 463 */ 464 int mptsas_inq83_retry_timeout = 30; 465 466 /* 467 * This is used to allocate memory for message frame storage, not for 468 * data I/O DMA. All message frames must be stored in the first 4G of 469 * physical memory. 470 */ 471 ddi_dma_attr_t mptsas_dma_attrs = { 472 DMA_ATTR_V0, /* attribute layout version */ 473 0x0ull, /* address low - should be 0 (longlong) */ 474 0xffffffffull, /* address high - 32-bit max range */ 475 0x00ffffffull, /* count max - max DMA object size */ 476 4, /* allocation alignment requirements */ 477 0x78, /* burstsizes - binary encoded values */ 478 1, /* minxfer - gran. of DMA engine */ 479 0x00ffffffull, /* maxxfer - gran. of DMA engine */ 480 0xffffffffull, /* max segment size (DMA boundary) */ 481 MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */ 482 512, /* granularity - device transfer size */ 483 0 /* flags, set to 0 */ 484 }; 485 486 /* 487 * This is used for data I/O DMA memory allocation. (full 64-bit DMA 488 * physical addresses are supported.) 489 */ 490 ddi_dma_attr_t mptsas_dma_attrs64 = { 491 DMA_ATTR_V0, /* attribute layout version */ 492 0x0ull, /* address low - should be 0 (longlong) */ 493 0xffffffffffffffffull, /* address high - 64-bit max */ 494 0x00ffffffull, /* count max - max DMA object size */ 495 4, /* allocation alignment requirements */ 496 0x78, /* burstsizes - binary encoded values */ 497 1, /* minxfer - gran. of DMA engine */ 498 0x00ffffffull, /* maxxfer - gran. of DMA engine */ 499 0xffffffffull, /* max segment size (DMA boundary) */ 500 MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */ 501 512, /* granularity - device transfer size */ 502 DDI_DMA_RELAXED_ORDERING /* flags, enable relaxed ordering */ 503 }; 504 505 ddi_device_acc_attr_t mptsas_dev_attr = { 506 DDI_DEVICE_ATTR_V1, 507 DDI_STRUCTURE_LE_ACC, 508 DDI_STRICTORDER_ACC, 509 DDI_DEFAULT_ACC 510 }; 511 512 static struct cb_ops mptsas_cb_ops = { 513 scsi_hba_open, /* open */ 514 scsi_hba_close, /* close */ 515 nodev, /* strategy */ 516 nodev, /* print */ 517 nodev, /* dump */ 518 nodev, /* read */ 519 nodev, /* write */ 520 mptsas_ioctl, /* ioctl */ 521 nodev, /* devmap */ 522 nodev, /* mmap */ 523 nodev, /* segmap */ 524 nochpoll, /* chpoll */ 525 ddi_prop_op, /* cb_prop_op */ 526 NULL, /* streamtab */ 527 D_MP, /* cb_flag */ 528 CB_REV, /* rev */ 529 nodev, /* aread */ 530 nodev /* awrite */ 531 }; 532 533 static struct dev_ops mptsas_ops = { 534 DEVO_REV, /* devo_rev, */ 535 0, /* refcnt */ 536 ddi_no_info, /* info */ 537 nulldev, /* identify */ 538 nulldev, /* probe */ 539 mptsas_attach, /* attach */ 540 mptsas_detach, /* detach */ 541 #ifdef __sparc 542 mptsas_reset, 543 #else 544 nodev, /* reset */ 545 #endif /* __sparc */ 546 &mptsas_cb_ops, /* driver operations */ 547 NULL, /* bus operations */ 548 mptsas_power, /* power management */ 549 #ifdef __sparc 550 ddi_quiesce_not_needed 551 #else 552 mptsas_quiesce /* quiesce */ 553 #endif /* __sparc */ 554 }; 555 556 557 #define MPTSAS_MOD_STRING "MPTSAS HBA Driver 00.00.00.24" 558 559 static struct modldrv modldrv = { 560 &mod_driverops, /* Type of module. This one is a driver */ 561 MPTSAS_MOD_STRING, /* Name of the module. */ 562 &mptsas_ops, /* driver ops */ 563 }; 564 565 static struct modlinkage modlinkage = { 566 MODREV_1, &modldrv, NULL 567 }; 568 #define TARGET_PROP "target" 569 #define LUN_PROP "lun" 570 #define LUN64_PROP "lun64" 571 #define SAS_PROP "sas-mpt" 572 #define MDI_GUID "wwn" 573 #define NDI_GUID "guid" 574 #define MPTSAS_DEV_GONE "mptsas_dev_gone" 575 576 /* 577 * Local static data 578 */ 579 #if defined(MPTSAS_DEBUG) 580 /* 581 * Flags to indicate which debug messages are to be printed and which go to the 582 * debug log ring buffer. Default is to not print anything, and to log 583 * everything except the watchsubr() output which normally happens every second. 584 */ 585 uint32_t mptsas_debugprt_flags = 0x0; 586 uint32_t mptsas_debuglog_flags = ~(1U << 30); 587 #endif /* defined(MPTSAS_DEBUG) */ 588 uint32_t mptsas_debug_resets = 0; 589 590 static kmutex_t mptsas_global_mutex; 591 static void *mptsas_state; /* soft state ptr */ 592 static krwlock_t mptsas_global_rwlock; 593 594 static kmutex_t mptsas_log_mutex; 595 static char mptsas_log_buf[256]; 596 _NOTE(MUTEX_PROTECTS_DATA(mptsas_log_mutex, mptsas_log_buf)) 597 598 static mptsas_t *mptsas_head, *mptsas_tail; 599 static clock_t mptsas_scsi_watchdog_tick; 600 static clock_t mptsas_tick; 601 static timeout_id_t mptsas_reset_watch; 602 static timeout_id_t mptsas_timeout_id; 603 static int mptsas_timeouts_enabled = 0; 604 /* 605 * warlock directives 606 */ 607 _NOTE(SCHEME_PROTECTS_DATA("unique per pkt", scsi_pkt \ 608 mptsas_cmd NcrTableIndirect buf scsi_cdb scsi_status)) 609 _NOTE(SCHEME_PROTECTS_DATA("unique per pkt", smp_pkt)) 610 _NOTE(SCHEME_PROTECTS_DATA("stable data", scsi_device scsi_address)) 611 _NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", mptsas_tgt_private)) 612 _NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", scsi_hba_tran::tran_tgt_private)) 613 614 /* 615 * SM - HBA statics 616 */ 617 char *mptsas_driver_rev = MPTSAS_MOD_STRING; 618 619 #ifdef MPTSAS_DEBUG 620 void debug_enter(char *); 621 #endif 622 623 /* 624 * Notes: 625 * - scsi_hba_init(9F) initializes SCSI HBA modules 626 * - must call scsi_hba_fini(9F) if modload() fails 627 */ 628 int 629 _init(void) 630 { 631 int status; 632 /* CONSTCOND */ 633 ASSERT(NO_COMPETING_THREADS); 634 635 NDBG0(("_init")); 636 637 status = ddi_soft_state_init(&mptsas_state, MPTSAS_SIZE, 638 MPTSAS_INITIAL_SOFT_SPACE); 639 if (status != 0) { 640 return (status); 641 } 642 643 if ((status = scsi_hba_init(&modlinkage)) != 0) { 644 ddi_soft_state_fini(&mptsas_state); 645 return (status); 646 } 647 648 mutex_init(&mptsas_global_mutex, NULL, MUTEX_DRIVER, NULL); 649 rw_init(&mptsas_global_rwlock, NULL, RW_DRIVER, NULL); 650 mutex_init(&mptsas_log_mutex, NULL, MUTEX_DRIVER, NULL); 651 652 if ((status = mod_install(&modlinkage)) != 0) { 653 mutex_destroy(&mptsas_log_mutex); 654 rw_destroy(&mptsas_global_rwlock); 655 mutex_destroy(&mptsas_global_mutex); 656 ddi_soft_state_fini(&mptsas_state); 657 scsi_hba_fini(&modlinkage); 658 } 659 660 return (status); 661 } 662 663 /* 664 * Notes: 665 * - scsi_hba_fini(9F) uninitializes SCSI HBA modules 666 */ 667 int 668 _fini(void) 669 { 670 int status; 671 /* CONSTCOND */ 672 ASSERT(NO_COMPETING_THREADS); 673 674 NDBG0(("_fini")); 675 676 if ((status = mod_remove(&modlinkage)) == 0) { 677 ddi_soft_state_fini(&mptsas_state); 678 scsi_hba_fini(&modlinkage); 679 mutex_destroy(&mptsas_global_mutex); 680 rw_destroy(&mptsas_global_rwlock); 681 mutex_destroy(&mptsas_log_mutex); 682 } 683 return (status); 684 } 685 686 /* 687 * The loadable-module _info(9E) entry point 688 */ 689 int 690 _info(struct modinfo *modinfop) 691 { 692 /* CONSTCOND */ 693 ASSERT(NO_COMPETING_THREADS); 694 NDBG0(("mptsas _info")); 695 696 return (mod_info(&modlinkage, modinfop)); 697 } 698 699 static int 700 mptsas_target_eval_devhdl(const void *op, void *arg) 701 { 702 uint16_t dh = *(uint16_t *)arg; 703 const mptsas_target_t *tp = op; 704 705 return ((int)tp->m_devhdl - (int)dh); 706 } 707 708 static int 709 mptsas_target_eval_slot(const void *op, void *arg) 710 { 711 mptsas_led_control_t *lcp = arg; 712 const mptsas_target_t *tp = op; 713 714 if (tp->m_enclosure != lcp->Enclosure) 715 return ((int)tp->m_enclosure - (int)lcp->Enclosure); 716 717 return ((int)tp->m_slot_num - (int)lcp->Slot); 718 } 719 720 static int 721 mptsas_target_eval_nowwn(const void *op, void *arg) 722 { 723 uint8_t phy = *(uint8_t *)arg; 724 const mptsas_target_t *tp = op; 725 726 if (tp->m_addr.mta_wwn != 0) 727 return (-1); 728 729 return ((int)tp->m_phynum - (int)phy); 730 } 731 732 static int 733 mptsas_smp_eval_devhdl(const void *op, void *arg) 734 { 735 uint16_t dh = *(uint16_t *)arg; 736 const mptsas_smp_t *sp = op; 737 738 return ((int)sp->m_devhdl - (int)dh); 739 } 740 741 static uint64_t 742 mptsas_target_addr_hash(const void *tp) 743 { 744 const mptsas_target_addr_t *tap = tp; 745 746 return ((tap->mta_wwn & 0xffffffffffffULL) | 747 ((uint64_t)tap->mta_phymask << 48)); 748 } 749 750 static int 751 mptsas_target_addr_cmp(const void *a, const void *b) 752 { 753 const mptsas_target_addr_t *aap = a; 754 const mptsas_target_addr_t *bap = b; 755 756 if (aap->mta_wwn < bap->mta_wwn) 757 return (-1); 758 if (aap->mta_wwn > bap->mta_wwn) 759 return (1); 760 return ((int)bap->mta_phymask - (int)aap->mta_phymask); 761 } 762 763 static void 764 mptsas_target_free(void *op) 765 { 766 kmem_free(op, sizeof (mptsas_target_t)); 767 } 768 769 static void 770 mptsas_smp_free(void *op) 771 { 772 kmem_free(op, sizeof (mptsas_smp_t)); 773 } 774 775 static void 776 mptsas_destroy_hashes(mptsas_t *mpt) 777 { 778 mptsas_target_t *tp; 779 mptsas_smp_t *sp; 780 781 for (tp = refhash_first(mpt->m_targets); tp != NULL; 782 tp = refhash_next(mpt->m_targets, tp)) { 783 refhash_remove(mpt->m_targets, tp); 784 } 785 for (sp = refhash_first(mpt->m_smp_targets); sp != NULL; 786 sp = refhash_next(mpt->m_smp_targets, sp)) { 787 refhash_remove(mpt->m_smp_targets, sp); 788 } 789 refhash_destroy(mpt->m_targets); 790 refhash_destroy(mpt->m_smp_targets); 791 mpt->m_targets = NULL; 792 mpt->m_smp_targets = NULL; 793 } 794 795 static int 796 mptsas_iport_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 797 { 798 dev_info_t *pdip; 799 mptsas_t *mpt; 800 scsi_hba_tran_t *hba_tran; 801 char *iport = NULL; 802 char phymask[MPTSAS_MAX_PHYS]; 803 mptsas_phymask_t phy_mask = 0; 804 int dynamic_port = 0; 805 uint32_t page_address; 806 char initiator_wwnstr[MPTSAS_WWN_STRLEN]; 807 int rval = DDI_FAILURE; 808 int i = 0; 809 uint8_t numphys = 0; 810 uint8_t phy_id; 811 uint8_t phy_port = 0; 812 uint16_t attached_devhdl = 0; 813 uint32_t dev_info; 814 uint64_t attached_sas_wwn; 815 uint16_t dev_hdl; 816 uint16_t pdev_hdl; 817 uint16_t bay_num, enclosure, io_flags; 818 char attached_wwnstr[MPTSAS_WWN_STRLEN]; 819 820 /* CONSTCOND */ 821 ASSERT(NO_COMPETING_THREADS); 822 823 switch (cmd) { 824 case DDI_ATTACH: 825 break; 826 827 case DDI_RESUME: 828 /* 829 * If this a scsi-iport node, nothing to do here. 830 */ 831 return (DDI_SUCCESS); 832 833 default: 834 return (DDI_FAILURE); 835 } 836 837 pdip = ddi_get_parent(dip); 838 839 if ((hba_tran = ndi_flavorv_get(pdip, SCSA_FLAVOR_SCSI_DEVICE)) == 840 NULL) { 841 cmn_err(CE_WARN, "Failed attach iport because fail to " 842 "get tran vector for the HBA node"); 843 return (DDI_FAILURE); 844 } 845 846 mpt = TRAN2MPT(hba_tran); 847 ASSERT(mpt != NULL); 848 if (mpt == NULL) 849 return (DDI_FAILURE); 850 851 if ((hba_tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == 852 NULL) { 853 mptsas_log(mpt, CE_WARN, "Failed attach iport because fail to " 854 "get tran vector for the iport node"); 855 return (DDI_FAILURE); 856 } 857 858 /* 859 * Overwrite parent's tran_hba_private to iport's tran vector 860 */ 861 hba_tran->tran_hba_private = mpt; 862 863 ddi_report_dev(dip); 864 865 /* 866 * Get SAS address for initiator port according dev_handle 867 */ 868 iport = ddi_get_name_addr(dip); 869 if (iport && strncmp(iport, "v0", 2) == 0) { 870 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 871 MPTSAS_VIRTUAL_PORT, 1) != 872 DDI_PROP_SUCCESS) { 873 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, 874 MPTSAS_VIRTUAL_PORT); 875 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 876 "prop update failed"); 877 return (DDI_FAILURE); 878 } 879 return (DDI_SUCCESS); 880 } 881 882 mutex_enter(&mpt->m_mutex); 883 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 884 bzero(phymask, sizeof (phymask)); 885 (void) sprintf(phymask, 886 "%x", mpt->m_phy_info[i].phy_mask); 887 if (strcmp(phymask, iport) == 0) { 888 break; 889 } 890 } 891 892 if (i == MPTSAS_MAX_PHYS) { 893 mptsas_log(mpt, CE_WARN, "Failed attach port %s because port" 894 "seems not exist", iport); 895 mutex_exit(&mpt->m_mutex); 896 return (DDI_FAILURE); 897 } 898 899 phy_mask = mpt->m_phy_info[i].phy_mask; 900 901 if (mpt->m_phy_info[i].port_flags & AUTO_PORT_CONFIGURATION) 902 dynamic_port = 1; 903 else 904 dynamic_port = 0; 905 906 /* 907 * Update PHY info for smhba 908 */ 909 if (mptsas_smhba_phy_init(mpt)) { 910 mutex_exit(&mpt->m_mutex); 911 mptsas_log(mpt, CE_WARN, "mptsas phy update " 912 "failed"); 913 return (DDI_FAILURE); 914 } 915 916 mutex_exit(&mpt->m_mutex); 917 918 numphys = 0; 919 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 920 if ((phy_mask >> i) & 0x01) { 921 numphys++; 922 } 923 } 924 925 bzero(initiator_wwnstr, sizeof (initiator_wwnstr)); 926 (void) sprintf(initiator_wwnstr, "w%016"PRIx64, 927 mpt->un.m_base_wwid); 928 929 if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, 930 SCSI_ADDR_PROP_INITIATOR_PORT, initiator_wwnstr) != 931 DDI_PROP_SUCCESS) { 932 (void) ddi_prop_remove(DDI_DEV_T_NONE, 933 dip, SCSI_ADDR_PROP_INITIATOR_PORT); 934 mptsas_log(mpt, CE_WARN, "mptsas Initiator port " 935 "prop update failed"); 936 return (DDI_FAILURE); 937 } 938 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 939 MPTSAS_NUM_PHYS, numphys) != 940 DDI_PROP_SUCCESS) { 941 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, MPTSAS_NUM_PHYS); 942 return (DDI_FAILURE); 943 } 944 945 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 946 "phymask", phy_mask) != 947 DDI_PROP_SUCCESS) { 948 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "phymask"); 949 mptsas_log(mpt, CE_WARN, "mptsas phy mask " 950 "prop update failed"); 951 return (DDI_FAILURE); 952 } 953 954 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 955 "dynamic-port", dynamic_port) != 956 DDI_PROP_SUCCESS) { 957 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "dynamic-port"); 958 mptsas_log(mpt, CE_WARN, "mptsas dynamic port " 959 "prop update failed"); 960 return (DDI_FAILURE); 961 } 962 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 963 MPTSAS_VIRTUAL_PORT, 0) != 964 DDI_PROP_SUCCESS) { 965 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, 966 MPTSAS_VIRTUAL_PORT); 967 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 968 "prop update failed"); 969 return (DDI_FAILURE); 970 } 971 mptsas_smhba_set_all_phy_props(mpt, dip, numphys, phy_mask, 972 &attached_devhdl); 973 974 mutex_enter(&mpt->m_mutex); 975 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 976 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)attached_devhdl; 977 rval = mptsas_get_sas_device_page0(mpt, page_address, &dev_hdl, 978 &attached_sas_wwn, &dev_info, &phy_port, &phy_id, 979 &pdev_hdl, &bay_num, &enclosure, &io_flags); 980 if (rval != DDI_SUCCESS) { 981 mptsas_log(mpt, CE_WARN, 982 "Failed to get device page0 for handle:%d", 983 attached_devhdl); 984 mutex_exit(&mpt->m_mutex); 985 return (DDI_FAILURE); 986 } 987 988 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 989 bzero(phymask, sizeof (phymask)); 990 (void) sprintf(phymask, "%x", mpt->m_phy_info[i].phy_mask); 991 if (strcmp(phymask, iport) == 0) { 992 (void) sprintf(&mpt->m_phy_info[i].smhba_info.path[0], 993 "%x", 994 mpt->m_phy_info[i].phy_mask); 995 } 996 } 997 mutex_exit(&mpt->m_mutex); 998 999 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 1000 (void) sprintf(attached_wwnstr, "w%016"PRIx64, 1001 attached_sas_wwn); 1002 if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, 1003 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 1004 DDI_PROP_SUCCESS) { 1005 (void) ddi_prop_remove(DDI_DEV_T_NONE, 1006 dip, SCSI_ADDR_PROP_ATTACHED_PORT); 1007 return (DDI_FAILURE); 1008 } 1009 1010 /* Create kstats for each phy on this iport */ 1011 1012 mptsas_create_phy_stats(mpt, iport, dip); 1013 1014 /* 1015 * register sas hba iport with mdi (MPxIO/vhci) 1016 */ 1017 if (mdi_phci_register(MDI_HCI_CLASS_SCSI, 1018 dip, 0) == MDI_SUCCESS) { 1019 mpt->m_mpxio_enable = TRUE; 1020 } 1021 return (DDI_SUCCESS); 1022 } 1023 1024 /* 1025 * Notes: 1026 * Set up all device state and allocate data structures, 1027 * mutexes, condition variables, etc. for device operation. 1028 * Add interrupts needed. 1029 * Return DDI_SUCCESS if device is ready, else return DDI_FAILURE. 1030 */ 1031 static int 1032 mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1033 { 1034 mptsas_t *mpt = NULL; 1035 int instance, i, j; 1036 int doneq_thread_num; 1037 char intr_added = 0; 1038 char map_setup = 0; 1039 char config_setup = 0; 1040 char hba_attach_setup = 0; 1041 char smp_attach_setup = 0; 1042 char mutex_init_done = 0; 1043 char event_taskq_create = 0; 1044 char dr_taskq_create = 0; 1045 char doneq_thread_create = 0; 1046 char added_watchdog = 0; 1047 scsi_hba_tran_t *hba_tran; 1048 uint_t mem_bar = MEM_SPACE; 1049 int rval = DDI_FAILURE; 1050 1051 /* CONSTCOND */ 1052 ASSERT(NO_COMPETING_THREADS); 1053 1054 if (scsi_hba_iport_unit_address(dip)) { 1055 return (mptsas_iport_attach(dip, cmd)); 1056 } 1057 1058 switch (cmd) { 1059 case DDI_ATTACH: 1060 break; 1061 1062 case DDI_RESUME: 1063 if ((hba_tran = ddi_get_driver_private(dip)) == NULL) 1064 return (DDI_FAILURE); 1065 1066 mpt = TRAN2MPT(hba_tran); 1067 1068 if (!mpt) { 1069 return (DDI_FAILURE); 1070 } 1071 1072 /* 1073 * Reset hardware and softc to "no outstanding commands" 1074 * Note that a check condition can result on first command 1075 * to a target. 1076 */ 1077 mutex_enter(&mpt->m_mutex); 1078 1079 /* 1080 * raise power. 1081 */ 1082 if (mpt->m_options & MPTSAS_OPT_PM) { 1083 mutex_exit(&mpt->m_mutex); 1084 (void) pm_busy_component(dip, 0); 1085 rval = pm_power_has_changed(dip, 0, PM_LEVEL_D0); 1086 if (rval == DDI_SUCCESS) { 1087 mutex_enter(&mpt->m_mutex); 1088 } else { 1089 /* 1090 * The pm_raise_power() call above failed, 1091 * and that can only occur if we were unable 1092 * to reset the hardware. This is probably 1093 * due to unhealty hardware, and because 1094 * important filesystems(such as the root 1095 * filesystem) could be on the attached disks, 1096 * it would not be a good idea to continue, 1097 * as we won't be entirely certain we are 1098 * writing correct data. So we panic() here 1099 * to not only prevent possible data corruption, 1100 * but to give developers or end users a hope 1101 * of identifying and correcting any problems. 1102 */ 1103 fm_panic("mptsas could not reset hardware " 1104 "during resume"); 1105 } 1106 } 1107 1108 mpt->m_suspended = 0; 1109 1110 /* 1111 * Reinitialize ioc 1112 */ 1113 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1114 if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) { 1115 mutex_exit(&mpt->m_mutex); 1116 if (mpt->m_options & MPTSAS_OPT_PM) { 1117 (void) pm_idle_component(dip, 0); 1118 } 1119 fm_panic("mptsas init chip fail during resume"); 1120 } 1121 /* 1122 * mptsas_update_driver_data needs interrupts so enable them 1123 * first. 1124 */ 1125 MPTSAS_ENABLE_INTR(mpt); 1126 mptsas_update_driver_data(mpt); 1127 1128 /* start requests, if possible */ 1129 mptsas_restart_hba(mpt); 1130 1131 mutex_exit(&mpt->m_mutex); 1132 1133 /* 1134 * Restart watch thread 1135 */ 1136 mutex_enter(&mptsas_global_mutex); 1137 if (mptsas_timeout_id == 0) { 1138 mptsas_timeout_id = timeout(mptsas_watch, NULL, 1139 mptsas_tick); 1140 mptsas_timeouts_enabled = 1; 1141 } 1142 mutex_exit(&mptsas_global_mutex); 1143 1144 /* report idle status to pm framework */ 1145 if (mpt->m_options & MPTSAS_OPT_PM) { 1146 (void) pm_idle_component(dip, 0); 1147 } 1148 1149 return (DDI_SUCCESS); 1150 1151 default: 1152 return (DDI_FAILURE); 1153 1154 } 1155 1156 instance = ddi_get_instance(dip); 1157 1158 /* 1159 * Allocate softc information. 1160 */ 1161 if (ddi_soft_state_zalloc(mptsas_state, instance) != DDI_SUCCESS) { 1162 mptsas_log(NULL, CE_WARN, 1163 "mptsas%d: cannot allocate soft state", instance); 1164 goto fail; 1165 } 1166 1167 mpt = ddi_get_soft_state(mptsas_state, instance); 1168 1169 if (mpt == NULL) { 1170 mptsas_log(NULL, CE_WARN, 1171 "mptsas%d: cannot get soft state", instance); 1172 goto fail; 1173 } 1174 1175 /* Indicate that we are 'sizeof (scsi_*(9S))' clean. */ 1176 scsi_size_clean(dip); 1177 1178 mpt->m_dip = dip; 1179 mpt->m_instance = instance; 1180 1181 /* Make a per-instance copy of the structures */ 1182 mpt->m_io_dma_attr = mptsas_dma_attrs64; 1183 mpt->m_msg_dma_attr = mptsas_dma_attrs; 1184 mpt->m_reg_acc_attr = mptsas_dev_attr; 1185 mpt->m_dev_acc_attr = mptsas_dev_attr; 1186 1187 /* 1188 * Initialize FMA 1189 */ 1190 mpt->m_fm_capabilities = ddi_getprop(DDI_DEV_T_ANY, mpt->m_dip, 1191 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 1192 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 1193 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 1194 1195 mptsas_fm_init(mpt); 1196 1197 if (mptsas_alloc_handshake_msg(mpt, 1198 sizeof (Mpi2SCSITaskManagementRequest_t)) == DDI_FAILURE) { 1199 mptsas_log(mpt, CE_WARN, "cannot initialize handshake msg."); 1200 goto fail; 1201 } 1202 1203 /* 1204 * Setup configuration space 1205 */ 1206 if (mptsas_config_space_init(mpt) == FALSE) { 1207 mptsas_log(mpt, CE_WARN, "mptsas_config_space_init failed"); 1208 goto fail; 1209 } 1210 config_setup++; 1211 1212 if (ddi_regs_map_setup(dip, mem_bar, (caddr_t *)&mpt->m_reg, 1213 0, 0, &mpt->m_reg_acc_attr, &mpt->m_datap) != DDI_SUCCESS) { 1214 mptsas_log(mpt, CE_WARN, "map setup failed"); 1215 goto fail; 1216 } 1217 map_setup++; 1218 1219 /* 1220 * A taskq is created for dealing with the event handler 1221 */ 1222 if ((mpt->m_event_taskq = ddi_taskq_create(dip, "mptsas_event_taskq", 1223 1, TASKQ_DEFAULTPRI, 0)) == NULL) { 1224 mptsas_log(mpt, CE_NOTE, "ddi_taskq_create failed"); 1225 goto fail; 1226 } 1227 event_taskq_create++; 1228 1229 /* 1230 * A taskq is created for dealing with dr events 1231 */ 1232 if ((mpt->m_dr_taskq = ddi_taskq_create(dip, 1233 "mptsas_dr_taskq", 1234 1, TASKQ_DEFAULTPRI, 0)) == NULL) { 1235 mptsas_log(mpt, CE_NOTE, "ddi_taskq_create for discovery " 1236 "failed"); 1237 goto fail; 1238 } 1239 dr_taskq_create++; 1240 1241 mpt->m_doneq_thread_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1242 0, "mptsas_doneq_thread_threshold_prop", 10); 1243 mpt->m_doneq_length_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1244 0, "mptsas_doneq_length_threshold_prop", 8); 1245 mpt->m_doneq_thread_n = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1246 0, "mptsas_doneq_thread_n_prop", 8); 1247 1248 if (mpt->m_doneq_thread_n) { 1249 cv_init(&mpt->m_doneq_thread_cv, NULL, CV_DRIVER, NULL); 1250 mutex_init(&mpt->m_doneq_mutex, NULL, MUTEX_DRIVER, NULL); 1251 1252 mutex_enter(&mpt->m_doneq_mutex); 1253 mpt->m_doneq_thread_id = 1254 kmem_zalloc(sizeof (mptsas_doneq_thread_list_t) 1255 * mpt->m_doneq_thread_n, KM_SLEEP); 1256 1257 for (j = 0; j < mpt->m_doneq_thread_n; j++) { 1258 cv_init(&mpt->m_doneq_thread_id[j].cv, NULL, 1259 CV_DRIVER, NULL); 1260 mutex_init(&mpt->m_doneq_thread_id[j].mutex, NULL, 1261 MUTEX_DRIVER, NULL); 1262 mutex_enter(&mpt->m_doneq_thread_id[j].mutex); 1263 mpt->m_doneq_thread_id[j].flag |= 1264 MPTSAS_DONEQ_THREAD_ACTIVE; 1265 mpt->m_doneq_thread_id[j].arg.mpt = mpt; 1266 mpt->m_doneq_thread_id[j].arg.t = j; 1267 mpt->m_doneq_thread_id[j].threadp = 1268 thread_create(NULL, 0, mptsas_doneq_thread, 1269 &mpt->m_doneq_thread_id[j].arg, 1270 0, &p0, TS_RUN, minclsyspri); 1271 mpt->m_doneq_thread_id[j].donetail = 1272 &mpt->m_doneq_thread_id[j].doneq; 1273 mutex_exit(&mpt->m_doneq_thread_id[j].mutex); 1274 } 1275 mutex_exit(&mpt->m_doneq_mutex); 1276 doneq_thread_create++; 1277 } 1278 1279 /* 1280 * Disable hardware interrupt since we're not ready to 1281 * handle it yet. 1282 */ 1283 MPTSAS_DISABLE_INTR(mpt); 1284 if (mptsas_register_intrs(mpt) == FALSE) 1285 goto fail; 1286 intr_added++; 1287 1288 /* Initialize mutex used in interrupt handler */ 1289 mutex_init(&mpt->m_mutex, NULL, MUTEX_DRIVER, 1290 DDI_INTR_PRI(mpt->m_intr_pri)); 1291 mutex_init(&mpt->m_passthru_mutex, NULL, MUTEX_DRIVER, NULL); 1292 mutex_init(&mpt->m_tx_waitq_mutex, NULL, MUTEX_DRIVER, 1293 DDI_INTR_PRI(mpt->m_intr_pri)); 1294 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1295 mutex_init(&mpt->m_phy_info[i].smhba_info.phy_mutex, 1296 NULL, MUTEX_DRIVER, 1297 DDI_INTR_PRI(mpt->m_intr_pri)); 1298 } 1299 1300 cv_init(&mpt->m_cv, NULL, CV_DRIVER, NULL); 1301 cv_init(&mpt->m_passthru_cv, NULL, CV_DRIVER, NULL); 1302 cv_init(&mpt->m_fw_cv, NULL, CV_DRIVER, NULL); 1303 cv_init(&mpt->m_config_cv, NULL, CV_DRIVER, NULL); 1304 cv_init(&mpt->m_fw_diag_cv, NULL, CV_DRIVER, NULL); 1305 mutex_init_done++; 1306 1307 mutex_enter(&mpt->m_mutex); 1308 /* 1309 * Initialize power management component 1310 */ 1311 if (mpt->m_options & MPTSAS_OPT_PM) { 1312 if (mptsas_init_pm(mpt)) { 1313 mutex_exit(&mpt->m_mutex); 1314 mptsas_log(mpt, CE_WARN, "mptsas pm initialization " 1315 "failed"); 1316 goto fail; 1317 } 1318 } 1319 1320 /* 1321 * Initialize chip using Message Unit Reset, if allowed 1322 */ 1323 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1324 if (mptsas_init_chip(mpt, TRUE) == DDI_FAILURE) { 1325 mutex_exit(&mpt->m_mutex); 1326 mptsas_log(mpt, CE_WARN, "mptsas chip initialization failed"); 1327 goto fail; 1328 } 1329 1330 /* 1331 * Fill in the phy_info structure and get the base WWID 1332 */ 1333 if (mptsas_get_manufacture_page5(mpt) == DDI_FAILURE) { 1334 mptsas_log(mpt, CE_WARN, 1335 "mptsas_get_manufacture_page5 failed!"); 1336 goto fail; 1337 } 1338 1339 if (mptsas_get_sas_io_unit_page_hndshk(mpt)) { 1340 mptsas_log(mpt, CE_WARN, 1341 "mptsas_get_sas_io_unit_page_hndshk failed!"); 1342 goto fail; 1343 } 1344 1345 if (mptsas_get_manufacture_page0(mpt) == DDI_FAILURE) { 1346 mptsas_log(mpt, CE_WARN, 1347 "mptsas_get_manufacture_page0 failed!"); 1348 goto fail; 1349 } 1350 1351 mutex_exit(&mpt->m_mutex); 1352 1353 /* 1354 * Register the iport for multiple port HBA 1355 */ 1356 mptsas_iport_register(mpt); 1357 1358 /* 1359 * initialize SCSI HBA transport structure 1360 */ 1361 if (mptsas_hba_setup(mpt) == FALSE) 1362 goto fail; 1363 hba_attach_setup++; 1364 1365 if (mptsas_smp_setup(mpt) == FALSE) 1366 goto fail; 1367 smp_attach_setup++; 1368 1369 if (mptsas_cache_create(mpt) == FALSE) 1370 goto fail; 1371 1372 mpt->m_scsi_reset_delay = ddi_prop_get_int(DDI_DEV_T_ANY, 1373 dip, 0, "scsi-reset-delay", SCSI_DEFAULT_RESET_DELAY); 1374 if (mpt->m_scsi_reset_delay == 0) { 1375 mptsas_log(mpt, CE_NOTE, 1376 "scsi_reset_delay of 0 is not recommended," 1377 " resetting to SCSI_DEFAULT_RESET_DELAY\n"); 1378 mpt->m_scsi_reset_delay = SCSI_DEFAULT_RESET_DELAY; 1379 } 1380 1381 /* 1382 * Initialize the wait and done FIFO queue 1383 */ 1384 mpt->m_donetail = &mpt->m_doneq; 1385 mpt->m_waitqtail = &mpt->m_waitq; 1386 mpt->m_tx_waitqtail = &mpt->m_tx_waitq; 1387 mpt->m_tx_draining = 0; 1388 1389 /* 1390 * ioc cmd queue initialize 1391 */ 1392 mpt->m_ioc_event_cmdtail = &mpt->m_ioc_event_cmdq; 1393 mpt->m_dev_handle = 0xFFFF; 1394 1395 MPTSAS_ENABLE_INTR(mpt); 1396 1397 /* 1398 * enable event notification 1399 */ 1400 mutex_enter(&mpt->m_mutex); 1401 if (mptsas_ioc_enable_event_notification(mpt)) { 1402 mutex_exit(&mpt->m_mutex); 1403 goto fail; 1404 } 1405 mutex_exit(&mpt->m_mutex); 1406 1407 /* 1408 * used for mptsas_watch 1409 */ 1410 mptsas_list_add(mpt); 1411 1412 mutex_enter(&mptsas_global_mutex); 1413 if (mptsas_timeouts_enabled == 0) { 1414 mptsas_scsi_watchdog_tick = ddi_prop_get_int(DDI_DEV_T_ANY, 1415 dip, 0, "scsi-watchdog-tick", DEFAULT_WD_TICK); 1416 1417 mptsas_tick = mptsas_scsi_watchdog_tick * 1418 drv_usectohz((clock_t)1000000); 1419 1420 mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick); 1421 mptsas_timeouts_enabled = 1; 1422 } 1423 mutex_exit(&mptsas_global_mutex); 1424 added_watchdog++; 1425 1426 /* 1427 * Initialize PHY info for smhba. 1428 * This requires watchdog to be enabled otherwise if interrupts 1429 * don't work the system will hang. 1430 */ 1431 if (mptsas_smhba_setup(mpt)) { 1432 mptsas_log(mpt, CE_WARN, "mptsas phy initialization " 1433 "failed"); 1434 goto fail; 1435 } 1436 1437 /* Check all dma handles allocated in attach */ 1438 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) 1439 != DDI_SUCCESS) || 1440 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) 1441 != DDI_SUCCESS) || 1442 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) 1443 != DDI_SUCCESS) || 1444 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) 1445 != DDI_SUCCESS) || 1446 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) 1447 != DDI_SUCCESS)) { 1448 goto fail; 1449 } 1450 1451 /* Check all acc handles allocated in attach */ 1452 if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) || 1453 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) 1454 != DDI_SUCCESS) || 1455 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) 1456 != DDI_SUCCESS) || 1457 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) 1458 != DDI_SUCCESS) || 1459 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) 1460 != DDI_SUCCESS) || 1461 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) 1462 != DDI_SUCCESS) || 1463 (mptsas_check_acc_handle(mpt->m_config_handle) 1464 != DDI_SUCCESS)) { 1465 goto fail; 1466 } 1467 1468 /* 1469 * After this point, we are not going to fail the attach. 1470 */ 1471 1472 /* Print message of HBA present */ 1473 ddi_report_dev(dip); 1474 1475 /* report idle status to pm framework */ 1476 if (mpt->m_options & MPTSAS_OPT_PM) { 1477 (void) pm_idle_component(dip, 0); 1478 } 1479 1480 return (DDI_SUCCESS); 1481 1482 fail: 1483 mptsas_log(mpt, CE_WARN, "attach failed"); 1484 mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE); 1485 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST); 1486 if (mpt) { 1487 /* deallocate in reverse order */ 1488 if (added_watchdog) { 1489 mptsas_list_del(mpt); 1490 mutex_enter(&mptsas_global_mutex); 1491 1492 if (mptsas_timeout_id && (mptsas_head == NULL)) { 1493 timeout_id_t tid = mptsas_timeout_id; 1494 mptsas_timeouts_enabled = 0; 1495 mptsas_timeout_id = 0; 1496 mutex_exit(&mptsas_global_mutex); 1497 (void) untimeout(tid); 1498 mutex_enter(&mptsas_global_mutex); 1499 } 1500 mutex_exit(&mptsas_global_mutex); 1501 } 1502 1503 mptsas_cache_destroy(mpt); 1504 1505 if (smp_attach_setup) { 1506 mptsas_smp_teardown(mpt); 1507 } 1508 if (hba_attach_setup) { 1509 mptsas_hba_teardown(mpt); 1510 } 1511 1512 if (mpt->m_targets) 1513 refhash_destroy(mpt->m_targets); 1514 if (mpt->m_smp_targets) 1515 refhash_destroy(mpt->m_smp_targets); 1516 1517 if (mpt->m_active) { 1518 mptsas_free_active_slots(mpt); 1519 } 1520 if (intr_added) { 1521 mptsas_unregister_intrs(mpt); 1522 } 1523 1524 if (doneq_thread_create) { 1525 mutex_enter(&mpt->m_doneq_mutex); 1526 doneq_thread_num = mpt->m_doneq_thread_n; 1527 for (j = 0; j < mpt->m_doneq_thread_n; j++) { 1528 mutex_enter(&mpt->m_doneq_thread_id[j].mutex); 1529 mpt->m_doneq_thread_id[j].flag &= 1530 (~MPTSAS_DONEQ_THREAD_ACTIVE); 1531 cv_signal(&mpt->m_doneq_thread_id[j].cv); 1532 mutex_exit(&mpt->m_doneq_thread_id[j].mutex); 1533 } 1534 while (mpt->m_doneq_thread_n) { 1535 cv_wait(&mpt->m_doneq_thread_cv, 1536 &mpt->m_doneq_mutex); 1537 } 1538 for (j = 0; j < doneq_thread_num; j++) { 1539 cv_destroy(&mpt->m_doneq_thread_id[j].cv); 1540 mutex_destroy(&mpt->m_doneq_thread_id[j].mutex); 1541 } 1542 kmem_free(mpt->m_doneq_thread_id, 1543 sizeof (mptsas_doneq_thread_list_t) 1544 * doneq_thread_num); 1545 mutex_exit(&mpt->m_doneq_mutex); 1546 cv_destroy(&mpt->m_doneq_thread_cv); 1547 mutex_destroy(&mpt->m_doneq_mutex); 1548 } 1549 if (event_taskq_create) { 1550 ddi_taskq_destroy(mpt->m_event_taskq); 1551 } 1552 if (dr_taskq_create) { 1553 ddi_taskq_destroy(mpt->m_dr_taskq); 1554 } 1555 if (mutex_init_done) { 1556 mutex_destroy(&mpt->m_tx_waitq_mutex); 1557 mutex_destroy(&mpt->m_passthru_mutex); 1558 mutex_destroy(&mpt->m_mutex); 1559 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1560 mutex_destroy( 1561 &mpt->m_phy_info[i].smhba_info.phy_mutex); 1562 } 1563 cv_destroy(&mpt->m_cv); 1564 cv_destroy(&mpt->m_passthru_cv); 1565 cv_destroy(&mpt->m_fw_cv); 1566 cv_destroy(&mpt->m_config_cv); 1567 cv_destroy(&mpt->m_fw_diag_cv); 1568 } 1569 1570 if (map_setup) { 1571 mptsas_cfg_fini(mpt); 1572 } 1573 if (config_setup) { 1574 mptsas_config_space_fini(mpt); 1575 } 1576 mptsas_free_handshake_msg(mpt); 1577 mptsas_hba_fini(mpt); 1578 1579 mptsas_fm_fini(mpt); 1580 ddi_soft_state_free(mptsas_state, instance); 1581 ddi_prop_remove_all(dip); 1582 } 1583 return (DDI_FAILURE); 1584 } 1585 1586 static int 1587 mptsas_suspend(dev_info_t *devi) 1588 { 1589 mptsas_t *mpt, *g; 1590 scsi_hba_tran_t *tran; 1591 1592 if (scsi_hba_iport_unit_address(devi)) { 1593 return (DDI_SUCCESS); 1594 } 1595 1596 if ((tran = ddi_get_driver_private(devi)) == NULL) 1597 return (DDI_SUCCESS); 1598 1599 mpt = TRAN2MPT(tran); 1600 if (!mpt) { 1601 return (DDI_SUCCESS); 1602 } 1603 1604 mutex_enter(&mpt->m_mutex); 1605 1606 if (mpt->m_suspended++) { 1607 mutex_exit(&mpt->m_mutex); 1608 return (DDI_SUCCESS); 1609 } 1610 1611 /* 1612 * Cancel timeout threads for this mpt 1613 */ 1614 if (mpt->m_quiesce_timeid) { 1615 timeout_id_t tid = mpt->m_quiesce_timeid; 1616 mpt->m_quiesce_timeid = 0; 1617 mutex_exit(&mpt->m_mutex); 1618 (void) untimeout(tid); 1619 mutex_enter(&mpt->m_mutex); 1620 } 1621 1622 if (mpt->m_restart_cmd_timeid) { 1623 timeout_id_t tid = mpt->m_restart_cmd_timeid; 1624 mpt->m_restart_cmd_timeid = 0; 1625 mutex_exit(&mpt->m_mutex); 1626 (void) untimeout(tid); 1627 mutex_enter(&mpt->m_mutex); 1628 } 1629 1630 mutex_exit(&mpt->m_mutex); 1631 1632 (void) pm_idle_component(mpt->m_dip, 0); 1633 1634 /* 1635 * Cancel watch threads if all mpts suspended 1636 */ 1637 rw_enter(&mptsas_global_rwlock, RW_WRITER); 1638 for (g = mptsas_head; g != NULL; g = g->m_next) { 1639 if (!g->m_suspended) 1640 break; 1641 } 1642 rw_exit(&mptsas_global_rwlock); 1643 1644 mutex_enter(&mptsas_global_mutex); 1645 if (g == NULL) { 1646 timeout_id_t tid; 1647 1648 mptsas_timeouts_enabled = 0; 1649 if (mptsas_timeout_id) { 1650 tid = mptsas_timeout_id; 1651 mptsas_timeout_id = 0; 1652 mutex_exit(&mptsas_global_mutex); 1653 (void) untimeout(tid); 1654 mutex_enter(&mptsas_global_mutex); 1655 } 1656 if (mptsas_reset_watch) { 1657 tid = mptsas_reset_watch; 1658 mptsas_reset_watch = 0; 1659 mutex_exit(&mptsas_global_mutex); 1660 (void) untimeout(tid); 1661 mutex_enter(&mptsas_global_mutex); 1662 } 1663 } 1664 mutex_exit(&mptsas_global_mutex); 1665 1666 mutex_enter(&mpt->m_mutex); 1667 1668 /* 1669 * If this mpt is not in full power(PM_LEVEL_D0), just return. 1670 */ 1671 if ((mpt->m_options & MPTSAS_OPT_PM) && 1672 (mpt->m_power_level != PM_LEVEL_D0)) { 1673 mutex_exit(&mpt->m_mutex); 1674 return (DDI_SUCCESS); 1675 } 1676 1677 /* Disable HBA interrupts in hardware */ 1678 MPTSAS_DISABLE_INTR(mpt); 1679 /* 1680 * Send RAID action system shutdown to sync IR 1681 */ 1682 mptsas_raid_action_system_shutdown(mpt); 1683 1684 mutex_exit(&mpt->m_mutex); 1685 1686 /* drain the taskq */ 1687 ddi_taskq_wait(mpt->m_event_taskq); 1688 ddi_taskq_wait(mpt->m_dr_taskq); 1689 1690 return (DDI_SUCCESS); 1691 } 1692 1693 #ifdef __sparc 1694 /*ARGSUSED*/ 1695 static int 1696 mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd) 1697 { 1698 mptsas_t *mpt; 1699 scsi_hba_tran_t *tran; 1700 1701 /* 1702 * If this call is for iport, just return. 1703 */ 1704 if (scsi_hba_iport_unit_address(devi)) 1705 return (DDI_SUCCESS); 1706 1707 if ((tran = ddi_get_driver_private(devi)) == NULL) 1708 return (DDI_SUCCESS); 1709 1710 if ((mpt = TRAN2MPT(tran)) == NULL) 1711 return (DDI_SUCCESS); 1712 1713 /* 1714 * Send RAID action system shutdown to sync IR. Disable HBA 1715 * interrupts in hardware first. 1716 */ 1717 MPTSAS_DISABLE_INTR(mpt); 1718 mptsas_raid_action_system_shutdown(mpt); 1719 1720 return (DDI_SUCCESS); 1721 } 1722 #else /* __sparc */ 1723 /* 1724 * quiesce(9E) entry point. 1725 * 1726 * This function is called when the system is single-threaded at high 1727 * PIL with preemption disabled. Therefore, this function must not be 1728 * blocked. 1729 * 1730 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. 1731 * DDI_FAILURE indicates an error condition and should almost never happen. 1732 */ 1733 static int 1734 mptsas_quiesce(dev_info_t *devi) 1735 { 1736 mptsas_t *mpt; 1737 scsi_hba_tran_t *tran; 1738 1739 /* 1740 * If this call is for iport, just return. 1741 */ 1742 if (scsi_hba_iport_unit_address(devi)) 1743 return (DDI_SUCCESS); 1744 1745 if ((tran = ddi_get_driver_private(devi)) == NULL) 1746 return (DDI_SUCCESS); 1747 1748 if ((mpt = TRAN2MPT(tran)) == NULL) 1749 return (DDI_SUCCESS); 1750 1751 /* Disable HBA interrupts in hardware */ 1752 MPTSAS_DISABLE_INTR(mpt); 1753 /* Send RAID action system shutdonw to sync IR */ 1754 mptsas_raid_action_system_shutdown(mpt); 1755 1756 return (DDI_SUCCESS); 1757 } 1758 #endif /* __sparc */ 1759 1760 /* 1761 * detach(9E). Remove all device allocations and system resources; 1762 * disable device interrupts. 1763 * Return DDI_SUCCESS if done; DDI_FAILURE if there's a problem. 1764 */ 1765 static int 1766 mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 1767 { 1768 /* CONSTCOND */ 1769 ASSERT(NO_COMPETING_THREADS); 1770 NDBG0(("mptsas_detach: dip=0x%p cmd=0x%p", (void *)devi, (void *)cmd)); 1771 1772 switch (cmd) { 1773 case DDI_DETACH: 1774 return (mptsas_do_detach(devi)); 1775 1776 case DDI_SUSPEND: 1777 return (mptsas_suspend(devi)); 1778 1779 default: 1780 return (DDI_FAILURE); 1781 } 1782 /* NOTREACHED */ 1783 } 1784 1785 static int 1786 mptsas_do_detach(dev_info_t *dip) 1787 { 1788 mptsas_t *mpt; 1789 scsi_hba_tran_t *tran; 1790 int circ = 0; 1791 int circ1 = 0; 1792 mdi_pathinfo_t *pip = NULL; 1793 int i; 1794 int doneq_thread_num = 0; 1795 1796 NDBG0(("mptsas_do_detach: dip=0x%p", (void *)dip)); 1797 1798 if ((tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == NULL) 1799 return (DDI_FAILURE); 1800 1801 mpt = TRAN2MPT(tran); 1802 if (!mpt) { 1803 return (DDI_FAILURE); 1804 } 1805 /* 1806 * Still have pathinfo child, should not detach mpt driver 1807 */ 1808 if (scsi_hba_iport_unit_address(dip)) { 1809 if (mpt->m_mpxio_enable) { 1810 /* 1811 * MPxIO enabled for the iport 1812 */ 1813 ndi_devi_enter(scsi_vhci_dip, &circ1); 1814 ndi_devi_enter(dip, &circ); 1815 while (pip = mdi_get_next_client_path(dip, NULL)) { 1816 if (mdi_pi_free(pip, 0) == MDI_SUCCESS) { 1817 continue; 1818 } 1819 ndi_devi_exit(dip, circ); 1820 ndi_devi_exit(scsi_vhci_dip, circ1); 1821 NDBG12(("detach failed because of " 1822 "outstanding path info")); 1823 return (DDI_FAILURE); 1824 } 1825 ndi_devi_exit(dip, circ); 1826 ndi_devi_exit(scsi_vhci_dip, circ1); 1827 (void) mdi_phci_unregister(dip, 0); 1828 } 1829 1830 ddi_prop_remove_all(dip); 1831 1832 return (DDI_SUCCESS); 1833 } 1834 1835 /* Make sure power level is D0 before accessing registers */ 1836 if (mpt->m_options & MPTSAS_OPT_PM) { 1837 (void) pm_busy_component(dip, 0); 1838 if (mpt->m_power_level != PM_LEVEL_D0) { 1839 if (pm_raise_power(dip, 0, PM_LEVEL_D0) != 1840 DDI_SUCCESS) { 1841 mptsas_log(mpt, CE_WARN, 1842 "mptsas%d: Raise power request failed.", 1843 mpt->m_instance); 1844 (void) pm_idle_component(dip, 0); 1845 return (DDI_FAILURE); 1846 } 1847 } 1848 } 1849 1850 /* 1851 * Send RAID action system shutdown to sync IR. After action, send a 1852 * Message Unit Reset. Since after that DMA resource will be freed, 1853 * set ioc to READY state will avoid HBA initiated DMA operation. 1854 */ 1855 mutex_enter(&mpt->m_mutex); 1856 MPTSAS_DISABLE_INTR(mpt); 1857 mptsas_raid_action_system_shutdown(mpt); 1858 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1859 (void) mptsas_ioc_reset(mpt, FALSE); 1860 mutex_exit(&mpt->m_mutex); 1861 mptsas_rem_intrs(mpt); 1862 ddi_taskq_destroy(mpt->m_event_taskq); 1863 ddi_taskq_destroy(mpt->m_dr_taskq); 1864 1865 if (mpt->m_doneq_thread_n) { 1866 mutex_enter(&mpt->m_doneq_mutex); 1867 doneq_thread_num = mpt->m_doneq_thread_n; 1868 for (i = 0; i < mpt->m_doneq_thread_n; i++) { 1869 mutex_enter(&mpt->m_doneq_thread_id[i].mutex); 1870 mpt->m_doneq_thread_id[i].flag &= 1871 (~MPTSAS_DONEQ_THREAD_ACTIVE); 1872 cv_signal(&mpt->m_doneq_thread_id[i].cv); 1873 mutex_exit(&mpt->m_doneq_thread_id[i].mutex); 1874 } 1875 while (mpt->m_doneq_thread_n) { 1876 cv_wait(&mpt->m_doneq_thread_cv, 1877 &mpt->m_doneq_mutex); 1878 } 1879 for (i = 0; i < doneq_thread_num; i++) { 1880 cv_destroy(&mpt->m_doneq_thread_id[i].cv); 1881 mutex_destroy(&mpt->m_doneq_thread_id[i].mutex); 1882 } 1883 kmem_free(mpt->m_doneq_thread_id, 1884 sizeof (mptsas_doneq_thread_list_t) 1885 * doneq_thread_num); 1886 mutex_exit(&mpt->m_doneq_mutex); 1887 cv_destroy(&mpt->m_doneq_thread_cv); 1888 mutex_destroy(&mpt->m_doneq_mutex); 1889 } 1890 1891 scsi_hba_reset_notify_tear_down(mpt->m_reset_notify_listf); 1892 1893 mptsas_list_del(mpt); 1894 1895 /* 1896 * Cancel timeout threads for this mpt 1897 */ 1898 mutex_enter(&mpt->m_mutex); 1899 if (mpt->m_quiesce_timeid) { 1900 timeout_id_t tid = mpt->m_quiesce_timeid; 1901 mpt->m_quiesce_timeid = 0; 1902 mutex_exit(&mpt->m_mutex); 1903 (void) untimeout(tid); 1904 mutex_enter(&mpt->m_mutex); 1905 } 1906 1907 if (mpt->m_restart_cmd_timeid) { 1908 timeout_id_t tid = mpt->m_restart_cmd_timeid; 1909 mpt->m_restart_cmd_timeid = 0; 1910 mutex_exit(&mpt->m_mutex); 1911 (void) untimeout(tid); 1912 mutex_enter(&mpt->m_mutex); 1913 } 1914 1915 mutex_exit(&mpt->m_mutex); 1916 1917 /* 1918 * last mpt? ... if active, CANCEL watch threads. 1919 */ 1920 mutex_enter(&mptsas_global_mutex); 1921 if (mptsas_head == NULL) { 1922 timeout_id_t tid; 1923 /* 1924 * Clear mptsas_timeouts_enable so that the watch thread 1925 * gets restarted on DDI_ATTACH 1926 */ 1927 mptsas_timeouts_enabled = 0; 1928 if (mptsas_timeout_id) { 1929 tid = mptsas_timeout_id; 1930 mptsas_timeout_id = 0; 1931 mutex_exit(&mptsas_global_mutex); 1932 (void) untimeout(tid); 1933 mutex_enter(&mptsas_global_mutex); 1934 } 1935 if (mptsas_reset_watch) { 1936 tid = mptsas_reset_watch; 1937 mptsas_reset_watch = 0; 1938 mutex_exit(&mptsas_global_mutex); 1939 (void) untimeout(tid); 1940 mutex_enter(&mptsas_global_mutex); 1941 } 1942 } 1943 mutex_exit(&mptsas_global_mutex); 1944 1945 /* 1946 * Delete Phy stats 1947 */ 1948 mptsas_destroy_phy_stats(mpt); 1949 1950 mptsas_destroy_hashes(mpt); 1951 1952 /* 1953 * Delete nt_active. 1954 */ 1955 mutex_enter(&mpt->m_mutex); 1956 mptsas_free_active_slots(mpt); 1957 mutex_exit(&mpt->m_mutex); 1958 1959 /* deallocate everything that was allocated in mptsas_attach */ 1960 mptsas_cache_destroy(mpt); 1961 1962 mptsas_hba_fini(mpt); 1963 mptsas_cfg_fini(mpt); 1964 1965 /* Lower the power informing PM Framework */ 1966 if (mpt->m_options & MPTSAS_OPT_PM) { 1967 if (pm_lower_power(dip, 0, PM_LEVEL_D3) != DDI_SUCCESS) 1968 mptsas_log(mpt, CE_WARN, 1969 "!mptsas%d: Lower power request failed " 1970 "during detach, ignoring.", 1971 mpt->m_instance); 1972 } 1973 1974 mutex_destroy(&mpt->m_tx_waitq_mutex); 1975 mutex_destroy(&mpt->m_passthru_mutex); 1976 mutex_destroy(&mpt->m_mutex); 1977 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1978 mutex_destroy(&mpt->m_phy_info[i].smhba_info.phy_mutex); 1979 } 1980 cv_destroy(&mpt->m_cv); 1981 cv_destroy(&mpt->m_passthru_cv); 1982 cv_destroy(&mpt->m_fw_cv); 1983 cv_destroy(&mpt->m_config_cv); 1984 cv_destroy(&mpt->m_fw_diag_cv); 1985 1986 1987 mptsas_smp_teardown(mpt); 1988 mptsas_hba_teardown(mpt); 1989 1990 mptsas_config_space_fini(mpt); 1991 1992 mptsas_free_handshake_msg(mpt); 1993 1994 mptsas_fm_fini(mpt); 1995 ddi_soft_state_free(mptsas_state, ddi_get_instance(dip)); 1996 ddi_prop_remove_all(dip); 1997 1998 return (DDI_SUCCESS); 1999 } 2000 2001 static void 2002 mptsas_list_add(mptsas_t *mpt) 2003 { 2004 rw_enter(&mptsas_global_rwlock, RW_WRITER); 2005 2006 if (mptsas_head == NULL) { 2007 mptsas_head = mpt; 2008 } else { 2009 mptsas_tail->m_next = mpt; 2010 } 2011 mptsas_tail = mpt; 2012 rw_exit(&mptsas_global_rwlock); 2013 } 2014 2015 static void 2016 mptsas_list_del(mptsas_t *mpt) 2017 { 2018 mptsas_t *m; 2019 /* 2020 * Remove device instance from the global linked list 2021 */ 2022 rw_enter(&mptsas_global_rwlock, RW_WRITER); 2023 if (mptsas_head == mpt) { 2024 m = mptsas_head = mpt->m_next; 2025 } else { 2026 for (m = mptsas_head; m != NULL; m = m->m_next) { 2027 if (m->m_next == mpt) { 2028 m->m_next = mpt->m_next; 2029 break; 2030 } 2031 } 2032 if (m == NULL) { 2033 mptsas_log(mpt, CE_PANIC, "Not in softc list!"); 2034 } 2035 } 2036 2037 if (mptsas_tail == mpt) { 2038 mptsas_tail = m; 2039 } 2040 rw_exit(&mptsas_global_rwlock); 2041 } 2042 2043 static int 2044 mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size) 2045 { 2046 ddi_dma_attr_t task_dma_attrs; 2047 2048 mpt->m_hshk_dma_size = 0; 2049 task_dma_attrs = mpt->m_msg_dma_attr; 2050 task_dma_attrs.dma_attr_sgllen = 1; 2051 task_dma_attrs.dma_attr_granular = (uint32_t)(alloc_size); 2052 2053 /* allocate Task Management ddi_dma resources */ 2054 if (mptsas_dma_addr_create(mpt, task_dma_attrs, 2055 &mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl, &mpt->m_hshk_memp, 2056 alloc_size, NULL) == FALSE) { 2057 return (DDI_FAILURE); 2058 } 2059 mpt->m_hshk_dma_size = alloc_size; 2060 2061 return (DDI_SUCCESS); 2062 } 2063 2064 static void 2065 mptsas_free_handshake_msg(mptsas_t *mpt) 2066 { 2067 if (mpt->m_hshk_dma_size == 0) 2068 return; 2069 mptsas_dma_addr_destroy(&mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl); 2070 mpt->m_hshk_dma_size = 0; 2071 } 2072 2073 static int 2074 mptsas_hba_setup(mptsas_t *mpt) 2075 { 2076 scsi_hba_tran_t *hba_tran; 2077 int tran_flags; 2078 2079 /* Allocate a transport structure */ 2080 hba_tran = mpt->m_tran = scsi_hba_tran_alloc(mpt->m_dip, 2081 SCSI_HBA_CANSLEEP); 2082 ASSERT(mpt->m_tran != NULL); 2083 2084 hba_tran->tran_hba_private = mpt; 2085 hba_tran->tran_tgt_private = NULL; 2086 2087 hba_tran->tran_tgt_init = mptsas_scsi_tgt_init; 2088 hba_tran->tran_tgt_free = mptsas_scsi_tgt_free; 2089 2090 hba_tran->tran_start = mptsas_scsi_start; 2091 hba_tran->tran_reset = mptsas_scsi_reset; 2092 hba_tran->tran_abort = mptsas_scsi_abort; 2093 hba_tran->tran_getcap = mptsas_scsi_getcap; 2094 hba_tran->tran_setcap = mptsas_scsi_setcap; 2095 hba_tran->tran_init_pkt = mptsas_scsi_init_pkt; 2096 hba_tran->tran_destroy_pkt = mptsas_scsi_destroy_pkt; 2097 2098 hba_tran->tran_dmafree = mptsas_scsi_dmafree; 2099 hba_tran->tran_sync_pkt = mptsas_scsi_sync_pkt; 2100 hba_tran->tran_reset_notify = mptsas_scsi_reset_notify; 2101 2102 hba_tran->tran_get_bus_addr = mptsas_get_bus_addr; 2103 hba_tran->tran_get_name = mptsas_get_name; 2104 2105 hba_tran->tran_quiesce = mptsas_scsi_quiesce; 2106 hba_tran->tran_unquiesce = mptsas_scsi_unquiesce; 2107 hba_tran->tran_bus_reset = NULL; 2108 2109 hba_tran->tran_add_eventcall = NULL; 2110 hba_tran->tran_get_eventcookie = NULL; 2111 hba_tran->tran_post_event = NULL; 2112 hba_tran->tran_remove_eventcall = NULL; 2113 2114 hba_tran->tran_bus_config = mptsas_bus_config; 2115 2116 hba_tran->tran_interconnect_type = INTERCONNECT_SAS; 2117 2118 /* 2119 * All children of the HBA are iports. We need tran was cloned. 2120 * So we pass the flags to SCSA. SCSI_HBA_TRAN_CLONE will be 2121 * inherited to iport's tran vector. 2122 */ 2123 tran_flags = (SCSI_HBA_HBA | SCSI_HBA_TRAN_CLONE); 2124 2125 if (scsi_hba_attach_setup(mpt->m_dip, &mpt->m_msg_dma_attr, 2126 hba_tran, tran_flags) != DDI_SUCCESS) { 2127 mptsas_log(mpt, CE_WARN, "hba attach setup failed"); 2128 scsi_hba_tran_free(hba_tran); 2129 mpt->m_tran = NULL; 2130 return (FALSE); 2131 } 2132 return (TRUE); 2133 } 2134 2135 static void 2136 mptsas_hba_teardown(mptsas_t *mpt) 2137 { 2138 (void) scsi_hba_detach(mpt->m_dip); 2139 if (mpt->m_tran != NULL) { 2140 scsi_hba_tran_free(mpt->m_tran); 2141 mpt->m_tran = NULL; 2142 } 2143 } 2144 2145 static void 2146 mptsas_iport_register(mptsas_t *mpt) 2147 { 2148 int i, j; 2149 mptsas_phymask_t mask = 0x0; 2150 /* 2151 * initial value of mask is 0 2152 */ 2153 mutex_enter(&mpt->m_mutex); 2154 for (i = 0; i < mpt->m_num_phys; i++) { 2155 mptsas_phymask_t phy_mask = 0x0; 2156 char phy_mask_name[MPTSAS_MAX_PHYS]; 2157 uint8_t current_port; 2158 2159 if (mpt->m_phy_info[i].attached_devhdl == 0) 2160 continue; 2161 2162 bzero(phy_mask_name, sizeof (phy_mask_name)); 2163 2164 current_port = mpt->m_phy_info[i].port_num; 2165 2166 if ((mask & (1 << i)) != 0) 2167 continue; 2168 2169 for (j = 0; j < mpt->m_num_phys; j++) { 2170 if (mpt->m_phy_info[j].attached_devhdl && 2171 (mpt->m_phy_info[j].port_num == current_port)) { 2172 phy_mask |= (1 << j); 2173 } 2174 } 2175 mask = mask | phy_mask; 2176 2177 for (j = 0; j < mpt->m_num_phys; j++) { 2178 if ((phy_mask >> j) & 0x01) { 2179 mpt->m_phy_info[j].phy_mask = phy_mask; 2180 } 2181 } 2182 2183 (void) sprintf(phy_mask_name, "%x", phy_mask); 2184 2185 mutex_exit(&mpt->m_mutex); 2186 /* 2187 * register a iport 2188 */ 2189 (void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name); 2190 mutex_enter(&mpt->m_mutex); 2191 } 2192 mutex_exit(&mpt->m_mutex); 2193 /* 2194 * register a virtual port for RAID volume always 2195 */ 2196 (void) scsi_hba_iport_register(mpt->m_dip, "v0"); 2197 2198 } 2199 2200 static int 2201 mptsas_smp_setup(mptsas_t *mpt) 2202 { 2203 mpt->m_smptran = smp_hba_tran_alloc(mpt->m_dip); 2204 ASSERT(mpt->m_smptran != NULL); 2205 mpt->m_smptran->smp_tran_hba_private = mpt; 2206 mpt->m_smptran->smp_tran_start = mptsas_smp_start; 2207 if (smp_hba_attach_setup(mpt->m_dip, mpt->m_smptran) != DDI_SUCCESS) { 2208 mptsas_log(mpt, CE_WARN, "smp attach setup failed"); 2209 smp_hba_tran_free(mpt->m_smptran); 2210 mpt->m_smptran = NULL; 2211 return (FALSE); 2212 } 2213 /* 2214 * Initialize smp hash table 2215 */ 2216 mpt->m_smp_targets = refhash_create(MPTSAS_SMP_BUCKET_COUNT, 2217 mptsas_target_addr_hash, mptsas_target_addr_cmp, 2218 mptsas_smp_free, sizeof (mptsas_smp_t), 2219 offsetof(mptsas_smp_t, m_link), offsetof(mptsas_smp_t, m_addr), 2220 KM_SLEEP); 2221 mpt->m_smp_devhdl = 0xFFFF; 2222 2223 return (TRUE); 2224 } 2225 2226 static void 2227 mptsas_smp_teardown(mptsas_t *mpt) 2228 { 2229 (void) smp_hba_detach(mpt->m_dip); 2230 if (mpt->m_smptran != NULL) { 2231 smp_hba_tran_free(mpt->m_smptran); 2232 mpt->m_smptran = NULL; 2233 } 2234 mpt->m_smp_devhdl = 0; 2235 } 2236 2237 static int 2238 mptsas_cache_create(mptsas_t *mpt) 2239 { 2240 int instance = mpt->m_instance; 2241 char buf[64]; 2242 2243 /* 2244 * create kmem cache for packets 2245 */ 2246 (void) sprintf(buf, "mptsas%d_cache", instance); 2247 mpt->m_kmem_cache = kmem_cache_create(buf, 2248 sizeof (struct mptsas_cmd) + scsi_pkt_size(), 8, 2249 mptsas_kmem_cache_constructor, mptsas_kmem_cache_destructor, 2250 NULL, (void *)mpt, NULL, 0); 2251 2252 if (mpt->m_kmem_cache == NULL) { 2253 mptsas_log(mpt, CE_WARN, "creating kmem cache failed"); 2254 return (FALSE); 2255 } 2256 2257 /* 2258 * create kmem cache for extra SGL frames if SGL cannot 2259 * be accomodated into main request frame. 2260 */ 2261 (void) sprintf(buf, "mptsas%d_cache_frames", instance); 2262 mpt->m_cache_frames = kmem_cache_create(buf, 2263 sizeof (mptsas_cache_frames_t), 8, 2264 mptsas_cache_frames_constructor, mptsas_cache_frames_destructor, 2265 NULL, (void *)mpt, NULL, 0); 2266 2267 if (mpt->m_cache_frames == NULL) { 2268 mptsas_log(mpt, CE_WARN, "creating cache for frames failed"); 2269 return (FALSE); 2270 } 2271 2272 return (TRUE); 2273 } 2274 2275 static void 2276 mptsas_cache_destroy(mptsas_t *mpt) 2277 { 2278 /* deallocate in reverse order */ 2279 if (mpt->m_cache_frames) { 2280 kmem_cache_destroy(mpt->m_cache_frames); 2281 mpt->m_cache_frames = NULL; 2282 } 2283 if (mpt->m_kmem_cache) { 2284 kmem_cache_destroy(mpt->m_kmem_cache); 2285 mpt->m_kmem_cache = NULL; 2286 } 2287 } 2288 2289 static int 2290 mptsas_power(dev_info_t *dip, int component, int level) 2291 { 2292 #ifndef __lock_lint 2293 _NOTE(ARGUNUSED(component)) 2294 #endif 2295 mptsas_t *mpt; 2296 int rval = DDI_SUCCESS; 2297 int polls = 0; 2298 uint32_t ioc_status; 2299 2300 if (scsi_hba_iport_unit_address(dip) != 0) 2301 return (DDI_SUCCESS); 2302 2303 mpt = ddi_get_soft_state(mptsas_state, ddi_get_instance(dip)); 2304 if (mpt == NULL) { 2305 return (DDI_FAILURE); 2306 } 2307 2308 mutex_enter(&mpt->m_mutex); 2309 2310 /* 2311 * If the device is busy, don't lower its power level 2312 */ 2313 if (mpt->m_busy && (mpt->m_power_level > level)) { 2314 mutex_exit(&mpt->m_mutex); 2315 return (DDI_FAILURE); 2316 } 2317 switch (level) { 2318 case PM_LEVEL_D0: 2319 NDBG11(("mptsas%d: turning power ON.", mpt->m_instance)); 2320 MPTSAS_POWER_ON(mpt); 2321 /* 2322 * Wait up to 30 seconds for IOC to come out of reset. 2323 */ 2324 while (((ioc_status = ddi_get32(mpt->m_datap, 2325 &mpt->m_reg->Doorbell)) & 2326 MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 2327 if (polls++ > 3000) { 2328 break; 2329 } 2330 delay(drv_usectohz(10000)); 2331 } 2332 /* 2333 * If IOC is not in operational state, try to hard reset it. 2334 */ 2335 if ((ioc_status & MPI2_IOC_STATE_MASK) != 2336 MPI2_IOC_STATE_OPERATIONAL) { 2337 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 2338 if (mptsas_restart_ioc(mpt) == DDI_FAILURE) { 2339 mptsas_log(mpt, CE_WARN, 2340 "mptsas_power: hard reset failed"); 2341 mutex_exit(&mpt->m_mutex); 2342 return (DDI_FAILURE); 2343 } 2344 } 2345 mpt->m_power_level = PM_LEVEL_D0; 2346 break; 2347 case PM_LEVEL_D3: 2348 NDBG11(("mptsas%d: turning power OFF.", mpt->m_instance)); 2349 MPTSAS_POWER_OFF(mpt); 2350 break; 2351 default: 2352 mptsas_log(mpt, CE_WARN, "mptsas%d: unknown power level <%x>.", 2353 mpt->m_instance, level); 2354 rval = DDI_FAILURE; 2355 break; 2356 } 2357 mutex_exit(&mpt->m_mutex); 2358 return (rval); 2359 } 2360 2361 /* 2362 * Initialize configuration space and figure out which 2363 * chip and revison of the chip the mpt driver is using. 2364 */ 2365 static int 2366 mptsas_config_space_init(mptsas_t *mpt) 2367 { 2368 NDBG0(("mptsas_config_space_init")); 2369 2370 if (mpt->m_config_handle != NULL) 2371 return (TRUE); 2372 2373 if (pci_config_setup(mpt->m_dip, 2374 &mpt->m_config_handle) != DDI_SUCCESS) { 2375 mptsas_log(mpt, CE_WARN, "cannot map configuration space."); 2376 return (FALSE); 2377 } 2378 2379 /* 2380 * This is a workaround for a XMITS ASIC bug which does not 2381 * drive the CBE upper bits. 2382 */ 2383 if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) & 2384 PCI_STAT_PERROR) { 2385 pci_config_put16(mpt->m_config_handle, PCI_CONF_STAT, 2386 PCI_STAT_PERROR); 2387 } 2388 2389 mptsas_setup_cmd_reg(mpt); 2390 2391 /* 2392 * Get the chip device id: 2393 */ 2394 mpt->m_devid = pci_config_get16(mpt->m_config_handle, PCI_CONF_DEVID); 2395 2396 /* 2397 * Save the revision. 2398 */ 2399 mpt->m_revid = pci_config_get8(mpt->m_config_handle, PCI_CONF_REVID); 2400 2401 /* 2402 * Save the SubSystem Vendor and Device IDs 2403 */ 2404 mpt->m_svid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBVENID); 2405 mpt->m_ssid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBSYSID); 2406 2407 /* 2408 * Set the latency timer to 0x40 as specified by the upa -> pci 2409 * bridge chip design team. This may be done by the sparc pci 2410 * bus nexus driver, but the driver should make sure the latency 2411 * timer is correct for performance reasons. 2412 */ 2413 pci_config_put8(mpt->m_config_handle, PCI_CONF_LATENCY_TIMER, 2414 MPTSAS_LATENCY_TIMER); 2415 2416 (void) mptsas_get_pci_cap(mpt); 2417 return (TRUE); 2418 } 2419 2420 static void 2421 mptsas_config_space_fini(mptsas_t *mpt) 2422 { 2423 if (mpt->m_config_handle != NULL) { 2424 mptsas_disable_bus_master(mpt); 2425 pci_config_teardown(&mpt->m_config_handle); 2426 mpt->m_config_handle = NULL; 2427 } 2428 } 2429 2430 static void 2431 mptsas_setup_cmd_reg(mptsas_t *mpt) 2432 { 2433 ushort_t cmdreg; 2434 2435 /* 2436 * Set the command register to the needed values. 2437 */ 2438 cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM); 2439 cmdreg |= (PCI_COMM_ME | PCI_COMM_SERR_ENABLE | 2440 PCI_COMM_PARITY_DETECT | PCI_COMM_MAE); 2441 cmdreg &= ~PCI_COMM_IO; 2442 pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg); 2443 } 2444 2445 static void 2446 mptsas_disable_bus_master(mptsas_t *mpt) 2447 { 2448 ushort_t cmdreg; 2449 2450 /* 2451 * Clear the master enable bit in the PCI command register. 2452 * This prevents any bus mastering activity like DMA. 2453 */ 2454 cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM); 2455 cmdreg &= ~PCI_COMM_ME; 2456 pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg); 2457 } 2458 2459 int 2460 mptsas_dma_alloc(mptsas_t *mpt, mptsas_dma_alloc_state_t *dma_statep) 2461 { 2462 ddi_dma_attr_t attrs; 2463 2464 attrs = mpt->m_io_dma_attr; 2465 attrs.dma_attr_sgllen = 1; 2466 2467 ASSERT(dma_statep != NULL); 2468 2469 if (mptsas_dma_addr_create(mpt, attrs, &dma_statep->handle, 2470 &dma_statep->accessp, &dma_statep->memp, dma_statep->size, 2471 &dma_statep->cookie) == FALSE) { 2472 return (DDI_FAILURE); 2473 } 2474 2475 return (DDI_SUCCESS); 2476 } 2477 2478 void 2479 mptsas_dma_free(mptsas_dma_alloc_state_t *dma_statep) 2480 { 2481 ASSERT(dma_statep != NULL); 2482 mptsas_dma_addr_destroy(&dma_statep->handle, &dma_statep->accessp); 2483 dma_statep->size = 0; 2484 } 2485 2486 int 2487 mptsas_do_dma(mptsas_t *mpt, uint32_t size, int var, int (*callback)()) 2488 { 2489 ddi_dma_attr_t attrs; 2490 ddi_dma_handle_t dma_handle; 2491 caddr_t memp; 2492 ddi_acc_handle_t accessp; 2493 int rval; 2494 2495 ASSERT(mutex_owned(&mpt->m_mutex)); 2496 2497 attrs = mpt->m_msg_dma_attr; 2498 attrs.dma_attr_sgllen = 1; 2499 attrs.dma_attr_granular = size; 2500 2501 if (mptsas_dma_addr_create(mpt, attrs, &dma_handle, 2502 &accessp, &memp, size, NULL) == FALSE) { 2503 return (DDI_FAILURE); 2504 } 2505 2506 rval = (*callback) (mpt, memp, var, accessp); 2507 2508 if ((mptsas_check_dma_handle(dma_handle) != DDI_SUCCESS) || 2509 (mptsas_check_acc_handle(accessp) != DDI_SUCCESS)) { 2510 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 2511 rval = DDI_FAILURE; 2512 } 2513 2514 mptsas_dma_addr_destroy(&dma_handle, &accessp); 2515 return (rval); 2516 2517 } 2518 2519 static int 2520 mptsas_alloc_request_frames(mptsas_t *mpt) 2521 { 2522 ddi_dma_attr_t frame_dma_attrs; 2523 caddr_t memp; 2524 ddi_dma_cookie_t cookie; 2525 size_t mem_size; 2526 2527 /* 2528 * re-alloc when it has already alloced 2529 */ 2530 mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl, 2531 &mpt->m_acc_req_frame_hdl); 2532 2533 /* 2534 * The size of the request frame pool is: 2535 * Number of Request Frames * Request Frame Size 2536 */ 2537 mem_size = mpt->m_max_requests * mpt->m_req_frame_size; 2538 2539 /* 2540 * set the DMA attributes. System Request Message Frames must be 2541 * aligned on a 16-byte boundry. 2542 */ 2543 frame_dma_attrs = mpt->m_msg_dma_attr; 2544 frame_dma_attrs.dma_attr_align = 16; 2545 frame_dma_attrs.dma_attr_sgllen = 1; 2546 2547 /* 2548 * allocate the request frame pool. 2549 */ 2550 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2551 &mpt->m_dma_req_frame_hdl, &mpt->m_acc_req_frame_hdl, &memp, 2552 mem_size, &cookie) == FALSE) { 2553 return (DDI_FAILURE); 2554 } 2555 2556 /* 2557 * Store the request frame memory address. This chip uses this 2558 * address to dma to and from the driver's frame. The second 2559 * address is the address mpt uses to fill in the frame. 2560 */ 2561 mpt->m_req_frame_dma_addr = cookie.dmac_laddress; 2562 mpt->m_req_frame = memp; 2563 2564 /* 2565 * Clear the request frame pool. 2566 */ 2567 bzero(mpt->m_req_frame, mem_size); 2568 2569 return (DDI_SUCCESS); 2570 } 2571 2572 static int 2573 mptsas_alloc_reply_frames(mptsas_t *mpt) 2574 { 2575 ddi_dma_attr_t frame_dma_attrs; 2576 caddr_t memp; 2577 ddi_dma_cookie_t cookie; 2578 size_t mem_size; 2579 2580 /* 2581 * re-alloc when it has already alloced 2582 */ 2583 mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl, 2584 &mpt->m_acc_reply_frame_hdl); 2585 2586 /* 2587 * The size of the reply frame pool is: 2588 * Number of Reply Frames * Reply Frame Size 2589 */ 2590 mem_size = mpt->m_max_replies * mpt->m_reply_frame_size; 2591 2592 /* 2593 * set the DMA attributes. System Reply Message Frames must be 2594 * aligned on a 4-byte boundry. This is the default. 2595 */ 2596 frame_dma_attrs = mpt->m_msg_dma_attr; 2597 frame_dma_attrs.dma_attr_sgllen = 1; 2598 2599 /* 2600 * allocate the reply frame pool 2601 */ 2602 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2603 &mpt->m_dma_reply_frame_hdl, &mpt->m_acc_reply_frame_hdl, &memp, 2604 mem_size, &cookie) == FALSE) { 2605 return (DDI_FAILURE); 2606 } 2607 2608 /* 2609 * Store the reply frame memory address. This chip uses this 2610 * address to dma to and from the driver's frame. The second 2611 * address is the address mpt uses to process the frame. 2612 */ 2613 mpt->m_reply_frame_dma_addr = cookie.dmac_laddress; 2614 mpt->m_reply_frame = memp; 2615 2616 /* 2617 * Clear the reply frame pool. 2618 */ 2619 bzero(mpt->m_reply_frame, mem_size); 2620 2621 return (DDI_SUCCESS); 2622 } 2623 2624 static int 2625 mptsas_alloc_free_queue(mptsas_t *mpt) 2626 { 2627 ddi_dma_attr_t frame_dma_attrs; 2628 caddr_t memp; 2629 ddi_dma_cookie_t cookie; 2630 size_t mem_size; 2631 2632 /* 2633 * re-alloc when it has already alloced 2634 */ 2635 mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl, 2636 &mpt->m_acc_free_queue_hdl); 2637 2638 /* 2639 * The reply free queue size is: 2640 * Reply Free Queue Depth * 4 2641 * The "4" is the size of one 32 bit address (low part of 64-bit 2642 * address) 2643 */ 2644 mem_size = mpt->m_free_queue_depth * 4; 2645 2646 /* 2647 * set the DMA attributes The Reply Free Queue must be aligned on a 2648 * 16-byte boundry. 2649 */ 2650 frame_dma_attrs = mpt->m_msg_dma_attr; 2651 frame_dma_attrs.dma_attr_align = 16; 2652 frame_dma_attrs.dma_attr_sgllen = 1; 2653 2654 /* 2655 * allocate the reply free queue 2656 */ 2657 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2658 &mpt->m_dma_free_queue_hdl, &mpt->m_acc_free_queue_hdl, &memp, 2659 mem_size, &cookie) == FALSE) { 2660 return (DDI_FAILURE); 2661 } 2662 2663 /* 2664 * Store the reply free queue memory address. This chip uses this 2665 * address to read from the reply free queue. The second address 2666 * is the address mpt uses to manage the queue. 2667 */ 2668 mpt->m_free_queue_dma_addr = cookie.dmac_laddress; 2669 mpt->m_free_queue = memp; 2670 2671 /* 2672 * Clear the reply free queue memory. 2673 */ 2674 bzero(mpt->m_free_queue, mem_size); 2675 2676 return (DDI_SUCCESS); 2677 } 2678 2679 static int 2680 mptsas_alloc_post_queue(mptsas_t *mpt) 2681 { 2682 ddi_dma_attr_t frame_dma_attrs; 2683 caddr_t memp; 2684 ddi_dma_cookie_t cookie; 2685 size_t mem_size; 2686 2687 /* 2688 * re-alloc when it has already alloced 2689 */ 2690 mptsas_dma_addr_destroy(&mpt->m_dma_post_queue_hdl, 2691 &mpt->m_acc_post_queue_hdl); 2692 2693 /* 2694 * The reply descriptor post queue size is: 2695 * Reply Descriptor Post Queue Depth * 8 2696 * The "8" is the size of each descriptor (8 bytes or 64 bits). 2697 */ 2698 mem_size = mpt->m_post_queue_depth * 8; 2699 2700 /* 2701 * set the DMA attributes. The Reply Descriptor Post Queue must be 2702 * aligned on a 16-byte boundry. 2703 */ 2704 frame_dma_attrs = mpt->m_msg_dma_attr; 2705 frame_dma_attrs.dma_attr_align = 16; 2706 frame_dma_attrs.dma_attr_sgllen = 1; 2707 2708 /* 2709 * allocate the reply post queue 2710 */ 2711 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2712 &mpt->m_dma_post_queue_hdl, &mpt->m_acc_post_queue_hdl, &memp, 2713 mem_size, &cookie) == FALSE) { 2714 return (DDI_FAILURE); 2715 } 2716 2717 /* 2718 * Store the reply descriptor post queue memory address. This chip 2719 * uses this address to write to the reply descriptor post queue. The 2720 * second address is the address mpt uses to manage the queue. 2721 */ 2722 mpt->m_post_queue_dma_addr = cookie.dmac_laddress; 2723 mpt->m_post_queue = memp; 2724 2725 /* 2726 * Clear the reply post queue memory. 2727 */ 2728 bzero(mpt->m_post_queue, mem_size); 2729 2730 return (DDI_SUCCESS); 2731 } 2732 2733 static void 2734 mptsas_alloc_reply_args(mptsas_t *mpt) 2735 { 2736 if (mpt->m_replyh_args == NULL) { 2737 mpt->m_replyh_args = kmem_zalloc(sizeof (m_replyh_arg_t) * 2738 mpt->m_max_replies, KM_SLEEP); 2739 } 2740 } 2741 2742 static int 2743 mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd) 2744 { 2745 mptsas_cache_frames_t *frames = NULL; 2746 if (cmd->cmd_extra_frames == NULL) { 2747 frames = kmem_cache_alloc(mpt->m_cache_frames, KM_NOSLEEP); 2748 if (frames == NULL) { 2749 return (DDI_FAILURE); 2750 } 2751 cmd->cmd_extra_frames = frames; 2752 } 2753 return (DDI_SUCCESS); 2754 } 2755 2756 static void 2757 mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd) 2758 { 2759 if (cmd->cmd_extra_frames) { 2760 kmem_cache_free(mpt->m_cache_frames, 2761 (void *)cmd->cmd_extra_frames); 2762 cmd->cmd_extra_frames = NULL; 2763 } 2764 } 2765 2766 static void 2767 mptsas_cfg_fini(mptsas_t *mpt) 2768 { 2769 NDBG0(("mptsas_cfg_fini")); 2770 ddi_regs_map_free(&mpt->m_datap); 2771 } 2772 2773 static void 2774 mptsas_hba_fini(mptsas_t *mpt) 2775 { 2776 NDBG0(("mptsas_hba_fini")); 2777 2778 /* 2779 * Free up any allocated memory 2780 */ 2781 mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl, 2782 &mpt->m_acc_req_frame_hdl); 2783 2784 mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl, 2785 &mpt->m_acc_reply_frame_hdl); 2786 2787 mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl, 2788 &mpt->m_acc_free_queue_hdl); 2789 2790 mptsas_dma_addr_destroy(&mpt->m_dma_post_queue_hdl, 2791 &mpt->m_acc_post_queue_hdl); 2792 2793 if (mpt->m_replyh_args != NULL) { 2794 kmem_free(mpt->m_replyh_args, sizeof (m_replyh_arg_t) 2795 * mpt->m_max_replies); 2796 } 2797 } 2798 2799 static int 2800 mptsas_name_child(dev_info_t *lun_dip, char *name, int len) 2801 { 2802 int lun = 0; 2803 char *sas_wwn = NULL; 2804 int phynum = -1; 2805 int reallen = 0; 2806 2807 /* Get the target num */ 2808 lun = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, DDI_PROP_DONTPASS, 2809 LUN_PROP, 0); 2810 2811 if ((phynum = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, 2812 DDI_PROP_DONTPASS, "sata-phy", -1)) != -1) { 2813 /* 2814 * Stick in the address of form "pPHY,LUN" 2815 */ 2816 reallen = snprintf(name, len, "p%x,%x", phynum, lun); 2817 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lun_dip, 2818 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &sas_wwn) 2819 == DDI_PROP_SUCCESS) { 2820 /* 2821 * Stick in the address of the form "wWWN,LUN" 2822 */ 2823 reallen = snprintf(name, len, "%s,%x", sas_wwn, lun); 2824 ddi_prop_free(sas_wwn); 2825 } else { 2826 return (DDI_FAILURE); 2827 } 2828 2829 ASSERT(reallen < len); 2830 if (reallen >= len) { 2831 mptsas_log(0, CE_WARN, "!mptsas_get_name: name parameter " 2832 "length too small, it needs to be %d bytes", reallen + 1); 2833 } 2834 return (DDI_SUCCESS); 2835 } 2836 2837 /* 2838 * tran_tgt_init(9E) - target device instance initialization 2839 */ 2840 static int 2841 mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 2842 scsi_hba_tran_t *hba_tran, struct scsi_device *sd) 2843 { 2844 #ifndef __lock_lint 2845 _NOTE(ARGUNUSED(hba_tran)) 2846 #endif 2847 2848 /* 2849 * At this point, the scsi_device structure already exists 2850 * and has been initialized. 2851 * 2852 * Use this function to allocate target-private data structures, 2853 * if needed by this HBA. Add revised flow-control and queue 2854 * properties for child here, if desired and if you can tell they 2855 * support tagged queueing by now. 2856 */ 2857 mptsas_t *mpt; 2858 int lun = sd->sd_address.a_lun; 2859 mdi_pathinfo_t *pip = NULL; 2860 mptsas_tgt_private_t *tgt_private = NULL; 2861 mptsas_target_t *ptgt = NULL; 2862 char *psas_wwn = NULL; 2863 mptsas_phymask_t phymask = 0; 2864 uint64_t sas_wwn = 0; 2865 mptsas_target_addr_t addr; 2866 mpt = SDEV2MPT(sd); 2867 2868 ASSERT(scsi_hba_iport_unit_address(hba_dip) != 0); 2869 2870 NDBG0(("mptsas_scsi_tgt_init: hbadip=0x%p tgtdip=0x%p lun=%d", 2871 (void *)hba_dip, (void *)tgt_dip, lun)); 2872 2873 if (ndi_dev_is_persistent_node(tgt_dip) == 0) { 2874 (void) ndi_merge_node(tgt_dip, mptsas_name_child); 2875 ddi_set_name_addr(tgt_dip, NULL); 2876 return (DDI_FAILURE); 2877 } 2878 /* 2879 * phymask is 0 means the virtual port for RAID 2880 */ 2881 phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, hba_dip, 0, 2882 "phymask", 0); 2883 if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) { 2884 if ((pip = (void *)(sd->sd_private)) == NULL) { 2885 /* 2886 * Very bad news if this occurs. Somehow scsi_vhci has 2887 * lost the pathinfo node for this target. 2888 */ 2889 return (DDI_NOT_WELL_FORMED); 2890 } 2891 2892 if (mdi_prop_lookup_int(pip, LUN_PROP, &lun) != 2893 DDI_PROP_SUCCESS) { 2894 mptsas_log(mpt, CE_WARN, "Get lun property failed\n"); 2895 return (DDI_FAILURE); 2896 } 2897 2898 if (mdi_prop_lookup_string(pip, SCSI_ADDR_PROP_TARGET_PORT, 2899 &psas_wwn) == MDI_SUCCESS) { 2900 if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) { 2901 sas_wwn = 0; 2902 } 2903 (void) mdi_prop_free(psas_wwn); 2904 } 2905 } else { 2906 lun = ddi_prop_get_int(DDI_DEV_T_ANY, tgt_dip, 2907 DDI_PROP_DONTPASS, LUN_PROP, 0); 2908 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, tgt_dip, 2909 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &psas_wwn) == 2910 DDI_PROP_SUCCESS) { 2911 if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) { 2912 sas_wwn = 0; 2913 } 2914 ddi_prop_free(psas_wwn); 2915 } else { 2916 sas_wwn = 0; 2917 } 2918 } 2919 2920 ASSERT((sas_wwn != 0) || (phymask != 0)); 2921 addr.mta_wwn = sas_wwn; 2922 addr.mta_phymask = phymask; 2923 mutex_enter(&mpt->m_mutex); 2924 ptgt = refhash_lookup(mpt->m_targets, &addr); 2925 mutex_exit(&mpt->m_mutex); 2926 if (ptgt == NULL) { 2927 mptsas_log(mpt, CE_WARN, "!tgt_init: target doesn't exist or " 2928 "gone already! phymask:%x, saswwn %"PRIx64, phymask, 2929 sas_wwn); 2930 return (DDI_FAILURE); 2931 } 2932 if (hba_tran->tran_tgt_private == NULL) { 2933 tgt_private = kmem_zalloc(sizeof (mptsas_tgt_private_t), 2934 KM_SLEEP); 2935 tgt_private->t_lun = lun; 2936 tgt_private->t_private = ptgt; 2937 hba_tran->tran_tgt_private = tgt_private; 2938 } 2939 2940 if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) { 2941 return (DDI_SUCCESS); 2942 } 2943 mutex_enter(&mpt->m_mutex); 2944 2945 if (ptgt->m_deviceinfo & 2946 (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 2947 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 2948 uchar_t *inq89 = NULL; 2949 int inq89_len = 0x238; 2950 int reallen = 0; 2951 int rval = 0; 2952 struct sata_id *sid = NULL; 2953 char model[SATA_ID_MODEL_LEN + 1]; 2954 char fw[SATA_ID_FW_LEN + 1]; 2955 char *vid, *pid; 2956 int i; 2957 2958 mutex_exit(&mpt->m_mutex); 2959 /* 2960 * According SCSI/ATA Translation -2 (SAT-2) revision 01a 2961 * chapter 12.4.2 VPD page 89h includes 512 bytes ATA IDENTIFY 2962 * DEVICE data or ATA IDENTIFY PACKET DEVICE data. 2963 */ 2964 inq89 = kmem_zalloc(inq89_len, KM_SLEEP); 2965 rval = mptsas_inquiry(mpt, ptgt, 0, 0x89, 2966 inq89, inq89_len, &reallen, 1); 2967 2968 if (rval != 0) { 2969 if (inq89 != NULL) { 2970 kmem_free(inq89, inq89_len); 2971 } 2972 2973 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 2974 "0x89 for SATA target:%x failed!", ptgt->m_devhdl); 2975 return (DDI_SUCCESS); 2976 } 2977 sid = (void *)(&inq89[60]); 2978 2979 swab(sid->ai_model, model, SATA_ID_MODEL_LEN); 2980 swab(sid->ai_fw, fw, SATA_ID_FW_LEN); 2981 2982 model[SATA_ID_MODEL_LEN] = 0; 2983 fw[SATA_ID_FW_LEN] = 0; 2984 2985 /* 2986 * split model into into vid/pid 2987 */ 2988 for (i = 0, pid = model; i < SATA_ID_MODEL_LEN; i++, pid++) 2989 if ((*pid == ' ') || (*pid == '\t')) 2990 break; 2991 if (i < SATA_ID_MODEL_LEN) { 2992 vid = model; 2993 /* 2994 * terminate vid, establish pid 2995 */ 2996 *pid++ = 0; 2997 } else { 2998 /* 2999 * vid will stay "ATA ", the rule is same 3000 * as sata framework implementation. 3001 */ 3002 vid = NULL; 3003 /* 3004 * model is all pid 3005 */ 3006 pid = model; 3007 } 3008 3009 /* 3010 * override SCSA "inquiry-*" properties 3011 */ 3012 if (vid) 3013 (void) scsi_device_prop_update_inqstring(sd, 3014 INQUIRY_VENDOR_ID, vid, strlen(vid)); 3015 if (pid) 3016 (void) scsi_device_prop_update_inqstring(sd, 3017 INQUIRY_PRODUCT_ID, pid, strlen(pid)); 3018 (void) scsi_device_prop_update_inqstring(sd, 3019 INQUIRY_REVISION_ID, fw, strlen(fw)); 3020 3021 if (inq89 != NULL) { 3022 kmem_free(inq89, inq89_len); 3023 } 3024 } else { 3025 mutex_exit(&mpt->m_mutex); 3026 } 3027 3028 return (DDI_SUCCESS); 3029 } 3030 /* 3031 * tran_tgt_free(9E) - target device instance deallocation 3032 */ 3033 static void 3034 mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip, 3035 scsi_hba_tran_t *hba_tran, struct scsi_device *sd) 3036 { 3037 #ifndef __lock_lint 3038 _NOTE(ARGUNUSED(hba_dip, tgt_dip, hba_tran, sd)) 3039 #endif 3040 3041 mptsas_tgt_private_t *tgt_private = hba_tran->tran_tgt_private; 3042 3043 if (tgt_private != NULL) { 3044 kmem_free(tgt_private, sizeof (mptsas_tgt_private_t)); 3045 hba_tran->tran_tgt_private = NULL; 3046 } 3047 } 3048 3049 /* 3050 * scsi_pkt handling 3051 * 3052 * Visible to the external world via the transport structure. 3053 */ 3054 3055 /* 3056 * Notes: 3057 * - transport the command to the addressed SCSI target/lun device 3058 * - normal operation is to schedule the command to be transported, 3059 * and return TRAN_ACCEPT if this is successful. 3060 * - if NO_INTR, tran_start must poll device for command completion 3061 */ 3062 static int 3063 mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt) 3064 { 3065 #ifndef __lock_lint 3066 _NOTE(ARGUNUSED(ap)) 3067 #endif 3068 mptsas_t *mpt = PKT2MPT(pkt); 3069 mptsas_cmd_t *cmd = PKT2CMD(pkt); 3070 int rval; 3071 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3072 3073 NDBG1(("mptsas_scsi_start: pkt=0x%p", (void *)pkt)); 3074 ASSERT(ptgt); 3075 if (ptgt == NULL) 3076 return (TRAN_FATAL_ERROR); 3077 3078 /* 3079 * prepare the pkt before taking mutex. 3080 */ 3081 rval = mptsas_prepare_pkt(cmd); 3082 if (rval != TRAN_ACCEPT) { 3083 return (rval); 3084 } 3085 3086 /* 3087 * Send the command to target/lun, however your HBA requires it. 3088 * If busy, return TRAN_BUSY; if there's some other formatting error 3089 * in the packet, return TRAN_BADPKT; otherwise, fall through to the 3090 * return of TRAN_ACCEPT. 3091 * 3092 * Remember that access to shared resources, including the mptsas_t 3093 * data structure and the HBA hardware registers, must be protected 3094 * with mutexes, here and everywhere. 3095 * 3096 * Also remember that at interrupt time, you'll get an argument 3097 * to the interrupt handler which is a pointer to your mptsas_t 3098 * structure; you'll have to remember which commands are outstanding 3099 * and which scsi_pkt is the currently-running command so the 3100 * interrupt handler can refer to the pkt to set completion 3101 * status, call the target driver back through pkt_comp, etc. 3102 * 3103 * If the instance lock is held by other thread, don't spin to wait 3104 * for it. Instead, queue the cmd and next time when the instance lock 3105 * is not held, accept all the queued cmd. A extra tx_waitq is 3106 * introduced to protect the queue. 3107 * 3108 * The polled cmd will not be queud and accepted as usual. 3109 * 3110 * Under the tx_waitq mutex, record whether a thread is draining 3111 * the tx_waitq. An IO requesting thread that finds the instance 3112 * mutex contended appends to the tx_waitq and while holding the 3113 * tx_wait mutex, if the draining flag is not set, sets it and then 3114 * proceeds to spin for the instance mutex. This scheme ensures that 3115 * the last cmd in a burst be processed. 3116 * 3117 * we enable this feature only when the helper threads are enabled, 3118 * at which we think the loads are heavy. 3119 * 3120 * per instance mutex m_tx_waitq_mutex is introduced to protect the 3121 * m_tx_waitqtail, m_tx_waitq, m_tx_draining. 3122 */ 3123 3124 if (mpt->m_doneq_thread_n) { 3125 if (mutex_tryenter(&mpt->m_mutex) != 0) { 3126 rval = mptsas_accept_txwq_and_pkt(mpt, cmd); 3127 mutex_exit(&mpt->m_mutex); 3128 } else if (cmd->cmd_pkt_flags & FLAG_NOINTR) { 3129 mutex_enter(&mpt->m_mutex); 3130 rval = mptsas_accept_txwq_and_pkt(mpt, cmd); 3131 mutex_exit(&mpt->m_mutex); 3132 } else { 3133 mutex_enter(&mpt->m_tx_waitq_mutex); 3134 /* 3135 * ptgt->m_dr_flag is protected by m_mutex or 3136 * m_tx_waitq_mutex. In this case, m_tx_waitq_mutex 3137 * is acquired. 3138 */ 3139 if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) { 3140 if (cmd->cmd_pkt_flags & FLAG_NOQUEUE) { 3141 /* 3142 * The command should be allowed to 3143 * retry by returning TRAN_BUSY to 3144 * to stall the I/O's which come from 3145 * scsi_vhci since the device/path is 3146 * in unstable state now. 3147 */ 3148 mutex_exit(&mpt->m_tx_waitq_mutex); 3149 return (TRAN_BUSY); 3150 } else { 3151 /* 3152 * The device is offline, just fail the 3153 * command by returning 3154 * TRAN_FATAL_ERROR. 3155 */ 3156 mutex_exit(&mpt->m_tx_waitq_mutex); 3157 return (TRAN_FATAL_ERROR); 3158 } 3159 } 3160 if (mpt->m_tx_draining) { 3161 cmd->cmd_flags |= CFLAG_TXQ; 3162 *mpt->m_tx_waitqtail = cmd; 3163 mpt->m_tx_waitqtail = &cmd->cmd_linkp; 3164 mutex_exit(&mpt->m_tx_waitq_mutex); 3165 } else { /* drain the queue */ 3166 mpt->m_tx_draining = 1; 3167 mutex_exit(&mpt->m_tx_waitq_mutex); 3168 mutex_enter(&mpt->m_mutex); 3169 rval = mptsas_accept_txwq_and_pkt(mpt, cmd); 3170 mutex_exit(&mpt->m_mutex); 3171 } 3172 } 3173 } else { 3174 mutex_enter(&mpt->m_mutex); 3175 /* 3176 * ptgt->m_dr_flag is protected by m_mutex or m_tx_waitq_mutex 3177 * in this case, m_mutex is acquired. 3178 */ 3179 if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) { 3180 if (cmd->cmd_pkt_flags & FLAG_NOQUEUE) { 3181 /* 3182 * commands should be allowed to retry by 3183 * returning TRAN_BUSY to stall the I/O's 3184 * which come from scsi_vhci since the device/ 3185 * path is in unstable state now. 3186 */ 3187 mutex_exit(&mpt->m_mutex); 3188 return (TRAN_BUSY); 3189 } else { 3190 /* 3191 * The device is offline, just fail the 3192 * command by returning TRAN_FATAL_ERROR. 3193 */ 3194 mutex_exit(&mpt->m_mutex); 3195 return (TRAN_FATAL_ERROR); 3196 } 3197 } 3198 rval = mptsas_accept_pkt(mpt, cmd); 3199 mutex_exit(&mpt->m_mutex); 3200 } 3201 3202 return (rval); 3203 } 3204 3205 /* 3206 * Accept all the queued cmds(if any) before accept the current one. 3207 */ 3208 static int 3209 mptsas_accept_txwq_and_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd) 3210 { 3211 int rval; 3212 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3213 3214 ASSERT(mutex_owned(&mpt->m_mutex)); 3215 /* 3216 * The call to mptsas_accept_tx_waitq() must always be performed 3217 * because that is where mpt->m_tx_draining is cleared. 3218 */ 3219 mutex_enter(&mpt->m_tx_waitq_mutex); 3220 mptsas_accept_tx_waitq(mpt); 3221 mutex_exit(&mpt->m_tx_waitq_mutex); 3222 /* 3223 * ptgt->m_dr_flag is protected by m_mutex or m_tx_waitq_mutex 3224 * in this case, m_mutex is acquired. 3225 */ 3226 if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) { 3227 if (cmd->cmd_pkt_flags & FLAG_NOQUEUE) { 3228 /* 3229 * The command should be allowed to retry by returning 3230 * TRAN_BUSY to stall the I/O's which come from 3231 * scsi_vhci since the device/path is in unstable state 3232 * now. 3233 */ 3234 return (TRAN_BUSY); 3235 } else { 3236 /* 3237 * The device is offline, just fail the command by 3238 * return TRAN_FATAL_ERROR. 3239 */ 3240 return (TRAN_FATAL_ERROR); 3241 } 3242 } 3243 rval = mptsas_accept_pkt(mpt, cmd); 3244 3245 return (rval); 3246 } 3247 3248 static int 3249 mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd) 3250 { 3251 int rval = TRAN_ACCEPT; 3252 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3253 3254 NDBG1(("mptsas_accept_pkt: cmd=0x%p", (void *)cmd)); 3255 3256 ASSERT(mutex_owned(&mpt->m_mutex)); 3257 3258 if ((cmd->cmd_flags & CFLAG_PREPARED) == 0) { 3259 rval = mptsas_prepare_pkt(cmd); 3260 if (rval != TRAN_ACCEPT) { 3261 cmd->cmd_flags &= ~CFLAG_TRANFLAG; 3262 return (rval); 3263 } 3264 } 3265 3266 /* 3267 * reset the throttle if we were draining 3268 */ 3269 if ((ptgt->m_t_ncmds == 0) && 3270 (ptgt->m_t_throttle == DRAIN_THROTTLE)) { 3271 NDBG23(("reset throttle")); 3272 ASSERT(ptgt->m_reset_delay == 0); 3273 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 3274 } 3275 3276 /* 3277 * If HBA is being reset, the DevHandles are being re-initialized, 3278 * which means that they could be invalid even if the target is still 3279 * attached. Check if being reset and if DevHandle is being 3280 * re-initialized. If this is the case, return BUSY so the I/O can be 3281 * retried later. 3282 */ 3283 if ((ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) && mpt->m_in_reset) { 3284 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 3285 if (cmd->cmd_flags & CFLAG_TXQ) { 3286 mptsas_doneq_add(mpt, cmd); 3287 mptsas_doneq_empty(mpt); 3288 return (rval); 3289 } else { 3290 return (TRAN_BUSY); 3291 } 3292 } 3293 3294 /* 3295 * If device handle has already been invalidated, just 3296 * fail the command. In theory, command from scsi_vhci 3297 * client is impossible send down command with invalid 3298 * devhdl since devhdl is set after path offline, target 3299 * driver is not suppose to select a offlined path. 3300 */ 3301 if (ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) { 3302 NDBG3(("rejecting command, it might because invalid devhdl " 3303 "request.")); 3304 mptsas_set_pkt_reason(mpt, cmd, CMD_DEV_GONE, STAT_TERMINATED); 3305 if (cmd->cmd_flags & CFLAG_TXQ) { 3306 mptsas_doneq_add(mpt, cmd); 3307 mptsas_doneq_empty(mpt); 3308 return (rval); 3309 } else { 3310 return (TRAN_FATAL_ERROR); 3311 } 3312 } 3313 /* 3314 * The first case is the normal case. mpt gets a command from the 3315 * target driver and starts it. 3316 * Since SMID 0 is reserved and the TM slot is reserved, the actual max 3317 * commands is m_max_requests - 2. 3318 */ 3319 if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) && 3320 (ptgt->m_t_throttle > HOLD_THROTTLE) && 3321 (ptgt->m_t_ncmds < ptgt->m_t_throttle) && 3322 (ptgt->m_reset_delay == 0) && 3323 (ptgt->m_t_nwait == 0) && 3324 ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0)) { 3325 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 3326 (void) mptsas_start_cmd(mpt, cmd); 3327 } else { 3328 mptsas_waitq_add(mpt, cmd); 3329 } 3330 } else { 3331 /* 3332 * Add this pkt to the work queue 3333 */ 3334 mptsas_waitq_add(mpt, cmd); 3335 3336 if (cmd->cmd_pkt_flags & FLAG_NOINTR) { 3337 (void) mptsas_poll(mpt, cmd, MPTSAS_POLL_TIME); 3338 3339 /* 3340 * Only flush the doneq if this is not a TM 3341 * cmd. For TM cmds the flushing of the 3342 * doneq will be done in those routines. 3343 */ 3344 if ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) { 3345 mptsas_doneq_empty(mpt); 3346 } 3347 } 3348 } 3349 return (rval); 3350 } 3351 3352 int 3353 mptsas_save_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 3354 { 3355 mptsas_slots_t *slots = mpt->m_active; 3356 uint_t slot, start_rotor; 3357 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3358 3359 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 3360 3361 /* 3362 * Account for reserved TM request slot and reserved SMID of 0. 3363 */ 3364 ASSERT(slots->m_n_normal == (mpt->m_max_requests - 2)); 3365 3366 /* 3367 * Find the next available slot, beginning at m_rotor. If no slot is 3368 * available, we'll return FALSE to indicate that. This mechanism 3369 * considers only the normal slots, not the reserved slot 0 nor the 3370 * task management slot m_n_normal + 1. The rotor is left to point to 3371 * the normal slot after the one we select, unless we select the last 3372 * normal slot in which case it returns to slot 1. 3373 */ 3374 start_rotor = slots->m_rotor; 3375 do { 3376 slot = slots->m_rotor++; 3377 if (slots->m_rotor > slots->m_n_normal) 3378 slots->m_rotor = 1; 3379 3380 if (slots->m_rotor == start_rotor) 3381 break; 3382 } while (slots->m_slot[slot] != NULL); 3383 3384 if (slots->m_slot[slot] != NULL) 3385 return (FALSE); 3386 3387 ASSERT(slot != 0 && slot <= slots->m_n_normal); 3388 3389 cmd->cmd_slot = slot; 3390 slots->m_slot[slot] = cmd; 3391 mpt->m_ncmds++; 3392 3393 /* 3394 * only increment per target ncmds if this is not a 3395 * command that has no target associated with it (i.e. a 3396 * event acknoledgment) 3397 */ 3398 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 3399 /* 3400 * Expiration time is set in mptsas_start_cmd 3401 */ 3402 ptgt->m_t_ncmds++; 3403 cmd->cmd_active_expiration = 0; 3404 } else { 3405 /* 3406 * Initialize expiration time for passthrough commands, 3407 */ 3408 cmd->cmd_active_expiration = gethrtime() + 3409 (hrtime_t)cmd->cmd_pkt->pkt_time * NANOSEC; 3410 } 3411 return (TRUE); 3412 } 3413 3414 /* 3415 * prepare the pkt: 3416 * the pkt may have been resubmitted or just reused so 3417 * initialize some fields and do some checks. 3418 */ 3419 static int 3420 mptsas_prepare_pkt(mptsas_cmd_t *cmd) 3421 { 3422 struct scsi_pkt *pkt = CMD2PKT(cmd); 3423 3424 NDBG1(("mptsas_prepare_pkt: cmd=0x%p", (void *)cmd)); 3425 3426 /* 3427 * Reinitialize some fields that need it; the packet may 3428 * have been resubmitted 3429 */ 3430 pkt->pkt_reason = CMD_CMPLT; 3431 pkt->pkt_state = 0; 3432 pkt->pkt_statistics = 0; 3433 pkt->pkt_resid = 0; 3434 cmd->cmd_age = 0; 3435 cmd->cmd_pkt_flags = pkt->pkt_flags; 3436 3437 /* 3438 * zero status byte. 3439 */ 3440 *(pkt->pkt_scbp) = 0; 3441 3442 if (cmd->cmd_flags & CFLAG_DMAVALID) { 3443 pkt->pkt_resid = cmd->cmd_dmacount; 3444 3445 /* 3446 * consistent packets need to be sync'ed first 3447 * (only for data going out) 3448 */ 3449 if ((cmd->cmd_flags & CFLAG_CMDIOPB) && 3450 (cmd->cmd_flags & CFLAG_DMASEND)) { 3451 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 3452 DDI_DMA_SYNC_FORDEV); 3453 } 3454 } 3455 3456 cmd->cmd_flags = 3457 (cmd->cmd_flags & ~(CFLAG_TRANFLAG)) | 3458 CFLAG_PREPARED | CFLAG_IN_TRANSPORT; 3459 3460 return (TRAN_ACCEPT); 3461 } 3462 3463 /* 3464 * tran_init_pkt(9E) - allocate scsi_pkt(9S) for command 3465 * 3466 * One of three possibilities: 3467 * - allocate scsi_pkt 3468 * - allocate scsi_pkt and DMA resources 3469 * - allocate DMA resources to an already-allocated pkt 3470 */ 3471 static struct scsi_pkt * 3472 mptsas_scsi_init_pkt(struct scsi_address *ap, struct scsi_pkt *pkt, 3473 struct buf *bp, int cmdlen, int statuslen, int tgtlen, int flags, 3474 int (*callback)(), caddr_t arg) 3475 { 3476 mptsas_cmd_t *cmd, *new_cmd; 3477 mptsas_t *mpt = ADDR2MPT(ap); 3478 int failure = 1; 3479 uint_t oldcookiec; 3480 mptsas_target_t *ptgt = NULL; 3481 int rval; 3482 mptsas_tgt_private_t *tgt_private; 3483 int kf; 3484 3485 kf = (callback == SLEEP_FUNC)? KM_SLEEP: KM_NOSLEEP; 3486 3487 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran-> 3488 tran_tgt_private; 3489 ASSERT(tgt_private != NULL); 3490 if (tgt_private == NULL) { 3491 return (NULL); 3492 } 3493 ptgt = tgt_private->t_private; 3494 ASSERT(ptgt != NULL); 3495 if (ptgt == NULL) 3496 return (NULL); 3497 ap->a_target = ptgt->m_devhdl; 3498 ap->a_lun = tgt_private->t_lun; 3499 3500 ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC); 3501 #ifdef MPTSAS_TEST_EXTRN_ALLOC 3502 statuslen *= 100; tgtlen *= 4; 3503 #endif 3504 NDBG3(("mptsas_scsi_init_pkt:\n" 3505 "\ttgt=%d in=0x%p bp=0x%p clen=%d slen=%d tlen=%d flags=%x", 3506 ap->a_target, (void *)pkt, (void *)bp, 3507 cmdlen, statuslen, tgtlen, flags)); 3508 3509 /* 3510 * Allocate the new packet. 3511 */ 3512 if (pkt == NULL) { 3513 ddi_dma_handle_t save_dma_handle; 3514 ddi_dma_handle_t save_arq_dma_handle; 3515 struct buf *save_arq_bp; 3516 ddi_dma_cookie_t save_arqcookie; 3517 3518 cmd = kmem_cache_alloc(mpt->m_kmem_cache, kf); 3519 3520 if (cmd) { 3521 save_dma_handle = cmd->cmd_dmahandle; 3522 save_arq_dma_handle = cmd->cmd_arqhandle; 3523 save_arq_bp = cmd->cmd_arq_buf; 3524 save_arqcookie = cmd->cmd_arqcookie; 3525 bzero(cmd, sizeof (*cmd) + scsi_pkt_size()); 3526 cmd->cmd_dmahandle = save_dma_handle; 3527 cmd->cmd_arqhandle = save_arq_dma_handle; 3528 cmd->cmd_arq_buf = save_arq_bp; 3529 cmd->cmd_arqcookie = save_arqcookie; 3530 3531 pkt = (void *)((uchar_t *)cmd + 3532 sizeof (struct mptsas_cmd)); 3533 pkt->pkt_ha_private = (opaque_t)cmd; 3534 pkt->pkt_address = *ap; 3535 pkt->pkt_private = (opaque_t)cmd->cmd_pkt_private; 3536 pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb; 3537 pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb; 3538 cmd->cmd_pkt = (struct scsi_pkt *)pkt; 3539 cmd->cmd_cdblen = (uchar_t)cmdlen; 3540 cmd->cmd_scblen = statuslen; 3541 cmd->cmd_rqslen = SENSE_LENGTH; 3542 cmd->cmd_tgt_addr = ptgt; 3543 failure = 0; 3544 } 3545 3546 if (failure || (cmdlen > sizeof (cmd->cmd_cdb)) || 3547 (tgtlen > PKT_PRIV_LEN) || 3548 (statuslen > EXTCMDS_STATUS_SIZE)) { 3549 if (failure == 0) { 3550 /* 3551 * if extern alloc fails, all will be 3552 * deallocated, including cmd 3553 */ 3554 failure = mptsas_pkt_alloc_extern(mpt, cmd, 3555 cmdlen, tgtlen, statuslen, kf); 3556 } 3557 if (failure) { 3558 /* 3559 * if extern allocation fails, it will 3560 * deallocate the new pkt as well 3561 */ 3562 return (NULL); 3563 } 3564 } 3565 new_cmd = cmd; 3566 3567 } else { 3568 cmd = PKT2CMD(pkt); 3569 new_cmd = NULL; 3570 } 3571 3572 3573 /* grab cmd->cmd_cookiec here as oldcookiec */ 3574 3575 oldcookiec = cmd->cmd_cookiec; 3576 3577 /* 3578 * If the dma was broken up into PARTIAL transfers cmd_nwin will be 3579 * greater than 0 and we'll need to grab the next dma window 3580 */ 3581 /* 3582 * SLM-not doing extra command frame right now; may add later 3583 */ 3584 3585 if (cmd->cmd_nwin > 0) { 3586 3587 /* 3588 * Make sure we havn't gone past the the total number 3589 * of windows 3590 */ 3591 if (++cmd->cmd_winindex >= cmd->cmd_nwin) { 3592 return (NULL); 3593 } 3594 if (ddi_dma_getwin(cmd->cmd_dmahandle, cmd->cmd_winindex, 3595 &cmd->cmd_dma_offset, &cmd->cmd_dma_len, 3596 &cmd->cmd_cookie, &cmd->cmd_cookiec) == DDI_FAILURE) { 3597 return (NULL); 3598 } 3599 goto get_dma_cookies; 3600 } 3601 3602 3603 if (flags & PKT_XARQ) { 3604 cmd->cmd_flags |= CFLAG_XARQ; 3605 } 3606 3607 /* 3608 * DMA resource allocation. This version assumes your 3609 * HBA has some sort of bus-mastering or onboard DMA capability, with a 3610 * scatter-gather list of length MPTSAS_MAX_DMA_SEGS, as given in the 3611 * ddi_dma_attr_t structure and passed to scsi_impl_dmaget. 3612 */ 3613 if (bp && (bp->b_bcount != 0) && 3614 (cmd->cmd_flags & CFLAG_DMAVALID) == 0) { 3615 3616 int cnt, dma_flags; 3617 mptti_t *dmap; /* ptr to the S/G list */ 3618 3619 /* 3620 * Set up DMA memory and position to the next DMA segment. 3621 */ 3622 ASSERT(cmd->cmd_dmahandle != NULL); 3623 3624 if (bp->b_flags & B_READ) { 3625 dma_flags = DDI_DMA_READ; 3626 cmd->cmd_flags &= ~CFLAG_DMASEND; 3627 } else { 3628 dma_flags = DDI_DMA_WRITE; 3629 cmd->cmd_flags |= CFLAG_DMASEND; 3630 } 3631 if (flags & PKT_CONSISTENT) { 3632 cmd->cmd_flags |= CFLAG_CMDIOPB; 3633 dma_flags |= DDI_DMA_CONSISTENT; 3634 } 3635 3636 if (flags & PKT_DMA_PARTIAL) { 3637 dma_flags |= DDI_DMA_PARTIAL; 3638 } 3639 3640 /* 3641 * workaround for byte hole issue on psycho and 3642 * schizo pre 2.1 3643 */ 3644 if ((bp->b_flags & B_READ) && ((bp->b_flags & 3645 (B_PAGEIO|B_REMAPPED)) != B_PAGEIO) && 3646 ((uintptr_t)bp->b_un.b_addr & 0x7)) { 3647 dma_flags |= DDI_DMA_CONSISTENT; 3648 } 3649 3650 rval = ddi_dma_buf_bind_handle(cmd->cmd_dmahandle, bp, 3651 dma_flags, callback, arg, 3652 &cmd->cmd_cookie, &cmd->cmd_cookiec); 3653 if (rval == DDI_DMA_PARTIAL_MAP) { 3654 (void) ddi_dma_numwin(cmd->cmd_dmahandle, 3655 &cmd->cmd_nwin); 3656 cmd->cmd_winindex = 0; 3657 (void) ddi_dma_getwin(cmd->cmd_dmahandle, 3658 cmd->cmd_winindex, &cmd->cmd_dma_offset, 3659 &cmd->cmd_dma_len, &cmd->cmd_cookie, 3660 &cmd->cmd_cookiec); 3661 } else if (rval && (rval != DDI_DMA_MAPPED)) { 3662 switch (rval) { 3663 case DDI_DMA_NORESOURCES: 3664 bioerror(bp, 0); 3665 break; 3666 case DDI_DMA_BADATTR: 3667 case DDI_DMA_NOMAPPING: 3668 bioerror(bp, EFAULT); 3669 break; 3670 case DDI_DMA_TOOBIG: 3671 default: 3672 bioerror(bp, EINVAL); 3673 break; 3674 } 3675 cmd->cmd_flags &= ~CFLAG_DMAVALID; 3676 if (new_cmd) { 3677 mptsas_scsi_destroy_pkt(ap, pkt); 3678 } 3679 return ((struct scsi_pkt *)NULL); 3680 } 3681 3682 get_dma_cookies: 3683 cmd->cmd_flags |= CFLAG_DMAVALID; 3684 ASSERT(cmd->cmd_cookiec > 0); 3685 3686 if (cmd->cmd_cookiec > MPTSAS_MAX_CMD_SEGS) { 3687 mptsas_log(mpt, CE_NOTE, "large cookiec received %d\n", 3688 cmd->cmd_cookiec); 3689 bioerror(bp, EINVAL); 3690 if (new_cmd) { 3691 mptsas_scsi_destroy_pkt(ap, pkt); 3692 } 3693 return ((struct scsi_pkt *)NULL); 3694 } 3695 3696 /* 3697 * Allocate extra SGL buffer if needed. 3698 */ 3699 if ((cmd->cmd_cookiec > MPTSAS_MAX_FRAME_SGES64(mpt)) && 3700 (cmd->cmd_extra_frames == NULL)) { 3701 if (mptsas_alloc_extra_sgl_frame(mpt, cmd) == 3702 DDI_FAILURE) { 3703 mptsas_log(mpt, CE_WARN, "MPT SGL mem alloc " 3704 "failed"); 3705 bioerror(bp, ENOMEM); 3706 if (new_cmd) { 3707 mptsas_scsi_destroy_pkt(ap, pkt); 3708 } 3709 return ((struct scsi_pkt *)NULL); 3710 } 3711 } 3712 3713 /* 3714 * Always use scatter-gather transfer 3715 * Use the loop below to store physical addresses of 3716 * DMA segments, from the DMA cookies, into your HBA's 3717 * scatter-gather list. 3718 * We need to ensure we have enough kmem alloc'd 3719 * for the sg entries since we are no longer using an 3720 * array inside mptsas_cmd_t. 3721 * 3722 * We check cmd->cmd_cookiec against oldcookiec so 3723 * the scatter-gather list is correctly allocated 3724 */ 3725 3726 if (oldcookiec != cmd->cmd_cookiec) { 3727 if (cmd->cmd_sg != (mptti_t *)NULL) { 3728 kmem_free(cmd->cmd_sg, sizeof (mptti_t) * 3729 oldcookiec); 3730 cmd->cmd_sg = NULL; 3731 } 3732 } 3733 3734 if (cmd->cmd_sg == (mptti_t *)NULL) { 3735 cmd->cmd_sg = kmem_alloc((size_t)(sizeof (mptti_t)* 3736 cmd->cmd_cookiec), kf); 3737 3738 if (cmd->cmd_sg == (mptti_t *)NULL) { 3739 mptsas_log(mpt, CE_WARN, 3740 "unable to kmem_alloc enough memory " 3741 "for scatter/gather list"); 3742 /* 3743 * if we have an ENOMEM condition we need to behave 3744 * the same way as the rest of this routine 3745 */ 3746 3747 bioerror(bp, ENOMEM); 3748 if (new_cmd) { 3749 mptsas_scsi_destroy_pkt(ap, pkt); 3750 } 3751 return ((struct scsi_pkt *)NULL); 3752 } 3753 } 3754 3755 dmap = cmd->cmd_sg; 3756 3757 ASSERT(cmd->cmd_cookie.dmac_size != 0); 3758 3759 /* 3760 * store the first segment into the S/G list 3761 */ 3762 dmap->count = cmd->cmd_cookie.dmac_size; 3763 dmap->addr.address64.Low = (uint32_t) 3764 (cmd->cmd_cookie.dmac_laddress & 0xffffffffull); 3765 dmap->addr.address64.High = (uint32_t) 3766 (cmd->cmd_cookie.dmac_laddress >> 32); 3767 3768 /* 3769 * dmacount counts the size of the dma for this window 3770 * (if partial dma is being used). totaldmacount 3771 * keeps track of the total amount of dma we have 3772 * transferred for all the windows (needed to calculate 3773 * the resid value below). 3774 */ 3775 cmd->cmd_dmacount = cmd->cmd_cookie.dmac_size; 3776 cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size; 3777 3778 /* 3779 * We already stored the first DMA scatter gather segment, 3780 * start at 1 if we need to store more. 3781 */ 3782 for (cnt = 1; cnt < cmd->cmd_cookiec; cnt++) { 3783 /* 3784 * Get next DMA cookie 3785 */ 3786 ddi_dma_nextcookie(cmd->cmd_dmahandle, 3787 &cmd->cmd_cookie); 3788 dmap++; 3789 3790 cmd->cmd_dmacount += cmd->cmd_cookie.dmac_size; 3791 cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size; 3792 3793 /* 3794 * store the segment parms into the S/G list 3795 */ 3796 dmap->count = cmd->cmd_cookie.dmac_size; 3797 dmap->addr.address64.Low = (uint32_t) 3798 (cmd->cmd_cookie.dmac_laddress & 0xffffffffull); 3799 dmap->addr.address64.High = (uint32_t) 3800 (cmd->cmd_cookie.dmac_laddress >> 32); 3801 } 3802 3803 /* 3804 * If this was partially allocated we set the resid 3805 * the amount of data NOT transferred in this window 3806 * If there is only one window, the resid will be 0 3807 */ 3808 pkt->pkt_resid = (bp->b_bcount - cmd->cmd_totaldmacount); 3809 NDBG3(("mptsas_scsi_init_pkt: cmd_dmacount=%d.", 3810 cmd->cmd_dmacount)); 3811 } 3812 return (pkt); 3813 } 3814 3815 /* 3816 * tran_destroy_pkt(9E) - scsi_pkt(9s) deallocation 3817 * 3818 * Notes: 3819 * - also frees DMA resources if allocated 3820 * - implicit DMA synchonization 3821 */ 3822 static void 3823 mptsas_scsi_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 3824 { 3825 mptsas_cmd_t *cmd = PKT2CMD(pkt); 3826 mptsas_t *mpt = ADDR2MPT(ap); 3827 3828 NDBG3(("mptsas_scsi_destroy_pkt: target=%d pkt=0x%p", 3829 ap->a_target, (void *)pkt)); 3830 3831 if (cmd->cmd_flags & CFLAG_DMAVALID) { 3832 (void) ddi_dma_unbind_handle(cmd->cmd_dmahandle); 3833 cmd->cmd_flags &= ~CFLAG_DMAVALID; 3834 } 3835 3836 if (cmd->cmd_sg) { 3837 kmem_free(cmd->cmd_sg, sizeof (mptti_t) * cmd->cmd_cookiec); 3838 cmd->cmd_sg = NULL; 3839 } 3840 3841 mptsas_free_extra_sgl_frame(mpt, cmd); 3842 3843 if ((cmd->cmd_flags & 3844 (CFLAG_FREE | CFLAG_CDBEXTERN | CFLAG_PRIVEXTERN | 3845 CFLAG_SCBEXTERN)) == 0) { 3846 cmd->cmd_flags = CFLAG_FREE; 3847 kmem_cache_free(mpt->m_kmem_cache, (void *)cmd); 3848 } else { 3849 mptsas_pkt_destroy_extern(mpt, cmd); 3850 } 3851 } 3852 3853 /* 3854 * kmem cache constructor and destructor: 3855 * When constructing, we bzero the cmd and allocate the dma handle 3856 * When destructing, just free the dma handle 3857 */ 3858 static int 3859 mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags) 3860 { 3861 mptsas_cmd_t *cmd = buf; 3862 mptsas_t *mpt = cdrarg; 3863 struct scsi_address ap; 3864 uint_t cookiec; 3865 ddi_dma_attr_t arq_dma_attr; 3866 int (*callback)(caddr_t); 3867 3868 callback = (kmflags == KM_SLEEP)? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT; 3869 3870 NDBG4(("mptsas_kmem_cache_constructor")); 3871 3872 ap.a_hba_tran = mpt->m_tran; 3873 ap.a_target = 0; 3874 ap.a_lun = 0; 3875 3876 /* 3877 * allocate a dma handle 3878 */ 3879 if ((ddi_dma_alloc_handle(mpt->m_dip, &mpt->m_io_dma_attr, callback, 3880 NULL, &cmd->cmd_dmahandle)) != DDI_SUCCESS) { 3881 cmd->cmd_dmahandle = NULL; 3882 return (-1); 3883 } 3884 3885 cmd->cmd_arq_buf = scsi_alloc_consistent_buf(&ap, (struct buf *)NULL, 3886 SENSE_LENGTH, B_READ, callback, NULL); 3887 if (cmd->cmd_arq_buf == NULL) { 3888 ddi_dma_free_handle(&cmd->cmd_dmahandle); 3889 cmd->cmd_dmahandle = NULL; 3890 return (-1); 3891 } 3892 3893 /* 3894 * allocate a arq handle 3895 */ 3896 arq_dma_attr = mpt->m_msg_dma_attr; 3897 arq_dma_attr.dma_attr_sgllen = 1; 3898 if ((ddi_dma_alloc_handle(mpt->m_dip, &arq_dma_attr, callback, 3899 NULL, &cmd->cmd_arqhandle)) != DDI_SUCCESS) { 3900 ddi_dma_free_handle(&cmd->cmd_dmahandle); 3901 scsi_free_consistent_buf(cmd->cmd_arq_buf); 3902 cmd->cmd_dmahandle = NULL; 3903 cmd->cmd_arqhandle = NULL; 3904 return (-1); 3905 } 3906 3907 if (ddi_dma_buf_bind_handle(cmd->cmd_arqhandle, 3908 cmd->cmd_arq_buf, (DDI_DMA_READ | DDI_DMA_CONSISTENT), 3909 callback, NULL, &cmd->cmd_arqcookie, &cookiec) != DDI_SUCCESS) { 3910 ddi_dma_free_handle(&cmd->cmd_dmahandle); 3911 ddi_dma_free_handle(&cmd->cmd_arqhandle); 3912 scsi_free_consistent_buf(cmd->cmd_arq_buf); 3913 cmd->cmd_dmahandle = NULL; 3914 cmd->cmd_arqhandle = NULL; 3915 cmd->cmd_arq_buf = NULL; 3916 return (-1); 3917 } 3918 3919 return (0); 3920 } 3921 3922 static void 3923 mptsas_kmem_cache_destructor(void *buf, void *cdrarg) 3924 { 3925 #ifndef __lock_lint 3926 _NOTE(ARGUNUSED(cdrarg)) 3927 #endif 3928 mptsas_cmd_t *cmd = buf; 3929 3930 NDBG4(("mptsas_kmem_cache_destructor")); 3931 3932 if (cmd->cmd_arqhandle) { 3933 (void) ddi_dma_unbind_handle(cmd->cmd_arqhandle); 3934 ddi_dma_free_handle(&cmd->cmd_arqhandle); 3935 cmd->cmd_arqhandle = NULL; 3936 } 3937 if (cmd->cmd_arq_buf) { 3938 scsi_free_consistent_buf(cmd->cmd_arq_buf); 3939 cmd->cmd_arq_buf = NULL; 3940 } 3941 if (cmd->cmd_dmahandle) { 3942 ddi_dma_free_handle(&cmd->cmd_dmahandle); 3943 cmd->cmd_dmahandle = NULL; 3944 } 3945 } 3946 3947 static int 3948 mptsas_cache_frames_constructor(void *buf, void *cdrarg, int kmflags) 3949 { 3950 mptsas_cache_frames_t *p = buf; 3951 mptsas_t *mpt = cdrarg; 3952 ddi_dma_attr_t frame_dma_attr; 3953 size_t mem_size, alloc_len; 3954 ddi_dma_cookie_t cookie; 3955 uint_t ncookie; 3956 int (*callback)(caddr_t) = (kmflags == KM_SLEEP) 3957 ? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT; 3958 3959 frame_dma_attr = mpt->m_msg_dma_attr; 3960 frame_dma_attr.dma_attr_align = 0x10; 3961 frame_dma_attr.dma_attr_sgllen = 1; 3962 3963 if (ddi_dma_alloc_handle(mpt->m_dip, &frame_dma_attr, callback, NULL, 3964 &p->m_dma_hdl) != DDI_SUCCESS) { 3965 mptsas_log(mpt, CE_WARN, "Unable to allocate dma handle for" 3966 " extra SGL."); 3967 return (DDI_FAILURE); 3968 } 3969 3970 mem_size = (mpt->m_max_request_frames - 1) * mpt->m_req_frame_size; 3971 3972 if (ddi_dma_mem_alloc(p->m_dma_hdl, mem_size, &mpt->m_dev_acc_attr, 3973 DDI_DMA_CONSISTENT, callback, NULL, (caddr_t *)&p->m_frames_addr, 3974 &alloc_len, &p->m_acc_hdl) != DDI_SUCCESS) { 3975 ddi_dma_free_handle(&p->m_dma_hdl); 3976 p->m_dma_hdl = NULL; 3977 mptsas_log(mpt, CE_WARN, "Unable to allocate dma memory for" 3978 " extra SGL."); 3979 return (DDI_FAILURE); 3980 } 3981 3982 if (ddi_dma_addr_bind_handle(p->m_dma_hdl, NULL, p->m_frames_addr, 3983 alloc_len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, callback, NULL, 3984 &cookie, &ncookie) != DDI_DMA_MAPPED) { 3985 (void) ddi_dma_mem_free(&p->m_acc_hdl); 3986 ddi_dma_free_handle(&p->m_dma_hdl); 3987 p->m_dma_hdl = NULL; 3988 mptsas_log(mpt, CE_WARN, "Unable to bind DMA resources for" 3989 " extra SGL"); 3990 return (DDI_FAILURE); 3991 } 3992 3993 /* 3994 * Store the SGL memory address. This chip uses this 3995 * address to dma to and from the driver. The second 3996 * address is the address mpt uses to fill in the SGL. 3997 */ 3998 p->m_phys_addr = cookie.dmac_address; 3999 4000 return (DDI_SUCCESS); 4001 } 4002 4003 static void 4004 mptsas_cache_frames_destructor(void *buf, void *cdrarg) 4005 { 4006 #ifndef __lock_lint 4007 _NOTE(ARGUNUSED(cdrarg)) 4008 #endif 4009 mptsas_cache_frames_t *p = buf; 4010 if (p->m_dma_hdl != NULL) { 4011 (void) ddi_dma_unbind_handle(p->m_dma_hdl); 4012 (void) ddi_dma_mem_free(&p->m_acc_hdl); 4013 ddi_dma_free_handle(&p->m_dma_hdl); 4014 p->m_phys_addr = NULL; 4015 p->m_frames_addr = NULL; 4016 p->m_dma_hdl = NULL; 4017 p->m_acc_hdl = NULL; 4018 } 4019 4020 } 4021 4022 /* 4023 * allocate and deallocate external pkt space (ie. not part of mptsas_cmd) 4024 * for non-standard length cdb, pkt_private, status areas 4025 * if allocation fails, then deallocate all external space and the pkt 4026 */ 4027 /* ARGSUSED */ 4028 static int 4029 mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd, 4030 int cmdlen, int tgtlen, int statuslen, int kf) 4031 { 4032 caddr_t cdbp, scbp, tgt; 4033 int (*callback)(caddr_t) = (kf == KM_SLEEP) ? 4034 DDI_DMA_SLEEP : DDI_DMA_DONTWAIT; 4035 struct scsi_address ap; 4036 size_t senselength; 4037 ddi_dma_attr_t ext_arq_dma_attr; 4038 uint_t cookiec; 4039 4040 NDBG3(("mptsas_pkt_alloc_extern: " 4041 "cmd=0x%p cmdlen=%d tgtlen=%d statuslen=%d kf=%x", 4042 (void *)cmd, cmdlen, tgtlen, statuslen, kf)); 4043 4044 tgt = cdbp = scbp = NULL; 4045 cmd->cmd_scblen = statuslen; 4046 cmd->cmd_privlen = (uchar_t)tgtlen; 4047 4048 if (cmdlen > sizeof (cmd->cmd_cdb)) { 4049 if ((cdbp = kmem_zalloc((size_t)cmdlen, kf)) == NULL) { 4050 goto fail; 4051 } 4052 cmd->cmd_pkt->pkt_cdbp = (opaque_t)cdbp; 4053 cmd->cmd_flags |= CFLAG_CDBEXTERN; 4054 } 4055 if (tgtlen > PKT_PRIV_LEN) { 4056 if ((tgt = kmem_zalloc((size_t)tgtlen, kf)) == NULL) { 4057 goto fail; 4058 } 4059 cmd->cmd_flags |= CFLAG_PRIVEXTERN; 4060 cmd->cmd_pkt->pkt_private = tgt; 4061 } 4062 if (statuslen > EXTCMDS_STATUS_SIZE) { 4063 if ((scbp = kmem_zalloc((size_t)statuslen, kf)) == NULL) { 4064 goto fail; 4065 } 4066 cmd->cmd_flags |= CFLAG_SCBEXTERN; 4067 cmd->cmd_pkt->pkt_scbp = (opaque_t)scbp; 4068 4069 /* allocate sense data buf for DMA */ 4070 4071 senselength = statuslen - MPTSAS_GET_ITEM_OFF( 4072 struct scsi_arq_status, sts_sensedata); 4073 cmd->cmd_rqslen = (uchar_t)senselength; 4074 4075 ap.a_hba_tran = mpt->m_tran; 4076 ap.a_target = 0; 4077 ap.a_lun = 0; 4078 4079 cmd->cmd_ext_arq_buf = scsi_alloc_consistent_buf(&ap, 4080 (struct buf *)NULL, senselength, B_READ, 4081 callback, NULL); 4082 4083 if (cmd->cmd_ext_arq_buf == NULL) { 4084 goto fail; 4085 } 4086 /* 4087 * allocate a extern arq handle and bind the buf 4088 */ 4089 ext_arq_dma_attr = mpt->m_msg_dma_attr; 4090 ext_arq_dma_attr.dma_attr_sgllen = 1; 4091 if ((ddi_dma_alloc_handle(mpt->m_dip, 4092 &ext_arq_dma_attr, callback, 4093 NULL, &cmd->cmd_ext_arqhandle)) != DDI_SUCCESS) { 4094 goto fail; 4095 } 4096 4097 if (ddi_dma_buf_bind_handle(cmd->cmd_ext_arqhandle, 4098 cmd->cmd_ext_arq_buf, (DDI_DMA_READ | DDI_DMA_CONSISTENT), 4099 callback, NULL, &cmd->cmd_ext_arqcookie, 4100 &cookiec) 4101 != DDI_SUCCESS) { 4102 goto fail; 4103 } 4104 cmd->cmd_flags |= CFLAG_EXTARQBUFVALID; 4105 } 4106 return (0); 4107 fail: 4108 mptsas_pkt_destroy_extern(mpt, cmd); 4109 return (1); 4110 } 4111 4112 /* 4113 * deallocate external pkt space and deallocate the pkt 4114 */ 4115 static void 4116 mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd) 4117 { 4118 NDBG3(("mptsas_pkt_destroy_extern: cmd=0x%p", (void *)cmd)); 4119 4120 if (cmd->cmd_flags & CFLAG_FREE) { 4121 mptsas_log(mpt, CE_PANIC, 4122 "mptsas_pkt_destroy_extern: freeing free packet"); 4123 _NOTE(NOT_REACHED) 4124 /* NOTREACHED */ 4125 } 4126 if (cmd->cmd_flags & CFLAG_CDBEXTERN) { 4127 kmem_free(cmd->cmd_pkt->pkt_cdbp, (size_t)cmd->cmd_cdblen); 4128 } 4129 if (cmd->cmd_flags & CFLAG_SCBEXTERN) { 4130 kmem_free(cmd->cmd_pkt->pkt_scbp, (size_t)cmd->cmd_scblen); 4131 if (cmd->cmd_flags & CFLAG_EXTARQBUFVALID) { 4132 (void) ddi_dma_unbind_handle(cmd->cmd_ext_arqhandle); 4133 } 4134 if (cmd->cmd_ext_arqhandle) { 4135 ddi_dma_free_handle(&cmd->cmd_ext_arqhandle); 4136 cmd->cmd_ext_arqhandle = NULL; 4137 } 4138 if (cmd->cmd_ext_arq_buf) 4139 scsi_free_consistent_buf(cmd->cmd_ext_arq_buf); 4140 } 4141 if (cmd->cmd_flags & CFLAG_PRIVEXTERN) { 4142 kmem_free(cmd->cmd_pkt->pkt_private, (size_t)cmd->cmd_privlen); 4143 } 4144 cmd->cmd_flags = CFLAG_FREE; 4145 kmem_cache_free(mpt->m_kmem_cache, (void *)cmd); 4146 } 4147 4148 /* 4149 * tran_sync_pkt(9E) - explicit DMA synchronization 4150 */ 4151 /*ARGSUSED*/ 4152 static void 4153 mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 4154 { 4155 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4156 4157 NDBG3(("mptsas_scsi_sync_pkt: target=%d, pkt=0x%p", 4158 ap->a_target, (void *)pkt)); 4159 4160 if (cmd->cmd_dmahandle) { 4161 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 4162 (cmd->cmd_flags & CFLAG_DMASEND) ? 4163 DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU); 4164 } 4165 } 4166 4167 /* 4168 * tran_dmafree(9E) - deallocate DMA resources allocated for command 4169 */ 4170 /*ARGSUSED*/ 4171 static void 4172 mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt) 4173 { 4174 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4175 mptsas_t *mpt = ADDR2MPT(ap); 4176 4177 NDBG3(("mptsas_scsi_dmafree: target=%d pkt=0x%p", 4178 ap->a_target, (void *)pkt)); 4179 4180 if (cmd->cmd_flags & CFLAG_DMAVALID) { 4181 (void) ddi_dma_unbind_handle(cmd->cmd_dmahandle); 4182 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4183 } 4184 4185 if (cmd->cmd_flags & CFLAG_EXTARQBUFVALID) { 4186 (void) ddi_dma_unbind_handle(cmd->cmd_ext_arqhandle); 4187 cmd->cmd_flags &= ~CFLAG_EXTARQBUFVALID; 4188 } 4189 4190 mptsas_free_extra_sgl_frame(mpt, cmd); 4191 } 4192 4193 static void 4194 mptsas_pkt_comp(struct scsi_pkt *pkt, mptsas_cmd_t *cmd) 4195 { 4196 if ((cmd->cmd_flags & CFLAG_CMDIOPB) && 4197 (!(cmd->cmd_flags & CFLAG_DMASEND))) { 4198 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 4199 DDI_DMA_SYNC_FORCPU); 4200 } 4201 (*pkt->pkt_comp)(pkt); 4202 } 4203 4204 static void 4205 mptsas_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame, 4206 ddi_acc_handle_t acc_hdl, uint_t cookiec, uint32_t end_flags) 4207 { 4208 pMpi2SGESimple64_t sge; 4209 mptti_t *dmap; 4210 uint32_t flags; 4211 4212 dmap = cmd->cmd_sg; 4213 4214 sge = (pMpi2SGESimple64_t)(&frame->SGL); 4215 while (cookiec--) { 4216 ddi_put32(acc_hdl, 4217 &sge->Address.Low, dmap->addr.address64.Low); 4218 ddi_put32(acc_hdl, 4219 &sge->Address.High, dmap->addr.address64.High); 4220 ddi_put32(acc_hdl, &sge->FlagsLength, 4221 dmap->count); 4222 flags = ddi_get32(acc_hdl, &sge->FlagsLength); 4223 flags |= ((uint32_t) 4224 (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 4225 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4226 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 4227 MPI2_SGE_FLAGS_SHIFT); 4228 4229 /* 4230 * If this is the last cookie, we set the flags 4231 * to indicate so 4232 */ 4233 if (cookiec == 0) { 4234 flags |= end_flags; 4235 } 4236 if (cmd->cmd_flags & CFLAG_DMASEND) { 4237 flags |= (MPI2_SGE_FLAGS_HOST_TO_IOC << 4238 MPI2_SGE_FLAGS_SHIFT); 4239 } else { 4240 flags |= (MPI2_SGE_FLAGS_IOC_TO_HOST << 4241 MPI2_SGE_FLAGS_SHIFT); 4242 } 4243 ddi_put32(acc_hdl, &sge->FlagsLength, flags); 4244 dmap++; 4245 sge++; 4246 } 4247 } 4248 4249 static void 4250 mptsas_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd, 4251 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4252 { 4253 pMpi2SGESimple64_t sge; 4254 pMpi2SGEChain64_t sgechain; 4255 uint_t cookiec; 4256 mptti_t *dmap; 4257 uint32_t flags; 4258 4259 /* 4260 * Save the number of entries in the DMA 4261 * Scatter/Gather list 4262 */ 4263 cookiec = cmd->cmd_cookiec; 4264 4265 /* 4266 * Hereby we start to deal with multiple frames. 4267 * The process is as follows: 4268 * 1. Determine how many frames are needed for SGL element 4269 * storage; Note that all frames are stored in contiguous 4270 * memory space and in 64-bit DMA mode each element is 4271 * 3 double-words (12 bytes) long. 4272 * 2. Fill up the main frame. We need to do this separately 4273 * since it contains the SCSI IO request header and needs 4274 * dedicated processing. Note that the last 4 double-words 4275 * of the SCSI IO header is for SGL element storage 4276 * (MPI2_SGE_IO_UNION). 4277 * 3. Fill the chain element in the main frame, so the DMA 4278 * engine can use the following frames. 4279 * 4. Enter a loop to fill the remaining frames. Note that the 4280 * last frame contains no chain element. The remaining 4281 * frames go into the mpt SGL buffer allocated on the fly, 4282 * not immediately following the main message frame, as in 4283 * Gen1. 4284 * Some restrictions: 4285 * 1. For 64-bit DMA, the simple element and chain element 4286 * are both of 3 double-words (12 bytes) in size, even 4287 * though all frames are stored in the first 4G of mem 4288 * range and the higher 32-bits of the address are always 0. 4289 * 2. On some controllers (like the 1064/1068), a frame can 4290 * hold SGL elements with the last 1 or 2 double-words 4291 * (4 or 8 bytes) un-used. On these controllers, we should 4292 * recognize that there's not enough room for another SGL 4293 * element and move the sge pointer to the next frame. 4294 */ 4295 int i, j, k, l, frames, sgemax; 4296 int temp; 4297 uint8_t chainflags; 4298 uint16_t chainlength; 4299 mptsas_cache_frames_t *p; 4300 4301 /* 4302 * Sgemax is the number of SGE's that will fit 4303 * each extra frame and frames is total 4304 * number of frames we'll need. 1 sge entry per 4305 * frame is reseverd for the chain element thus the -1 below. 4306 */ 4307 sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_SGE_SIMPLE64)) 4308 - 1); 4309 temp = (cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) / sgemax; 4310 4311 /* 4312 * A little check to see if we need to round up the number 4313 * of frames we need 4314 */ 4315 if ((cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) - (temp * 4316 sgemax) > 1) { 4317 frames = (temp + 1); 4318 } else { 4319 frames = temp; 4320 } 4321 dmap = cmd->cmd_sg; 4322 sge = (pMpi2SGESimple64_t)(&frame->SGL); 4323 4324 /* 4325 * First fill in the main frame 4326 */ 4327 j = MPTSAS_MAX_FRAME_SGES64(mpt) - 1; 4328 mptsas_sge_mainframe(cmd, frame, acc_hdl, j, 4329 ((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT) << 4330 MPI2_SGE_FLAGS_SHIFT)); 4331 dmap += j; 4332 sge += j; 4333 j++; 4334 4335 /* 4336 * Fill in the chain element in the main frame. 4337 * About calculation on ChainOffset: 4338 * 1. Struct msg_scsi_io_request has 4 double-words (16 bytes) 4339 * in the end reserved for SGL element storage 4340 * (MPI2_SGE_IO_UNION); we should count it in our 4341 * calculation. See its definition in the header file. 4342 * 2. Constant j is the counter of the current SGL element 4343 * that will be processed, and (j - 1) is the number of 4344 * SGL elements that have been processed (stored in the 4345 * main frame). 4346 * 3. ChainOffset value should be in units of double-words (4 4347 * bytes) so the last value should be divided by 4. 4348 */ 4349 ddi_put8(acc_hdl, &frame->ChainOffset, 4350 (sizeof (MPI2_SCSI_IO_REQUEST) - 4351 sizeof (MPI2_SGE_IO_UNION) + 4352 (j - 1) * sizeof (MPI2_SGE_SIMPLE64)) >> 2); 4353 sgechain = (pMpi2SGEChain64_t)sge; 4354 chainflags = (MPI2_SGE_FLAGS_CHAIN_ELEMENT | 4355 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4356 MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 4357 ddi_put8(acc_hdl, &sgechain->Flags, chainflags); 4358 4359 /* 4360 * The size of the next frame is the accurate size of space 4361 * (in bytes) used to store the SGL elements. j is the counter 4362 * of SGL elements. (j - 1) is the number of SGL elements that 4363 * have been processed (stored in frames). 4364 */ 4365 if (frames >= 2) { 4366 ASSERT(mpt->m_req_frame_size >= sizeof (MPI2_SGE_SIMPLE64)); 4367 chainlength = mpt->m_req_frame_size / 4368 sizeof (MPI2_SGE_SIMPLE64) * 4369 sizeof (MPI2_SGE_SIMPLE64); 4370 } else { 4371 chainlength = ((cookiec - (j - 1)) * 4372 sizeof (MPI2_SGE_SIMPLE64)); 4373 } 4374 4375 p = cmd->cmd_extra_frames; 4376 4377 ddi_put16(acc_hdl, &sgechain->Length, chainlength); 4378 ddi_put32(acc_hdl, &sgechain->Address.Low, 4379 p->m_phys_addr); 4380 /* SGL is allocated in the first 4G mem range */ 4381 ddi_put32(acc_hdl, &sgechain->Address.High, 0); 4382 4383 /* 4384 * If there are more than 2 frames left we have to 4385 * fill in the next chain offset to the location of 4386 * the chain element in the next frame. 4387 * sgemax is the number of simple elements in an extra 4388 * frame. Note that the value NextChainOffset should be 4389 * in double-words (4 bytes). 4390 */ 4391 if (frames >= 2) { 4392 ddi_put8(acc_hdl, &sgechain->NextChainOffset, 4393 (sgemax * sizeof (MPI2_SGE_SIMPLE64)) >> 2); 4394 } else { 4395 ddi_put8(acc_hdl, &sgechain->NextChainOffset, 0); 4396 } 4397 4398 /* 4399 * Jump to next frame; 4400 * Starting here, chain buffers go into the per command SGL. 4401 * This buffer is allocated when chain buffers are needed. 4402 */ 4403 sge = (pMpi2SGESimple64_t)p->m_frames_addr; 4404 i = cookiec; 4405 4406 /* 4407 * Start filling in frames with SGE's. If we 4408 * reach the end of frame and still have SGE's 4409 * to fill we need to add a chain element and 4410 * use another frame. j will be our counter 4411 * for what cookie we are at and i will be 4412 * the total cookiec. k is the current frame 4413 */ 4414 for (k = 1; k <= frames; k++) { 4415 for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) { 4416 4417 /* 4418 * If we have reached the end of frame 4419 * and we have more SGE's to fill in 4420 * we have to fill the final entry 4421 * with a chain element and then 4422 * continue to the next frame 4423 */ 4424 if ((l == (sgemax + 1)) && (k != frames)) { 4425 sgechain = (pMpi2SGEChain64_t)sge; 4426 j--; 4427 chainflags = ( 4428 MPI2_SGE_FLAGS_CHAIN_ELEMENT | 4429 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4430 MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 4431 ddi_put8(p->m_acc_hdl, 4432 &sgechain->Flags, chainflags); 4433 /* 4434 * k is the frame counter and (k + 1) 4435 * is the number of the next frame. 4436 * Note that frames are in contiguous 4437 * memory space. 4438 */ 4439 ddi_put32(p->m_acc_hdl, 4440 &sgechain->Address.Low, 4441 (p->m_phys_addr + 4442 (mpt->m_req_frame_size * k))); 4443 ddi_put32(p->m_acc_hdl, 4444 &sgechain->Address.High, 0); 4445 4446 /* 4447 * If there are more than 2 frames left 4448 * we have to next chain offset to 4449 * the location of the chain element 4450 * in the next frame and fill in the 4451 * length of the next chain 4452 */ 4453 if ((frames - k) >= 2) { 4454 ddi_put8(p->m_acc_hdl, 4455 &sgechain->NextChainOffset, 4456 (sgemax * 4457 sizeof (MPI2_SGE_SIMPLE64)) 4458 >> 2); 4459 ddi_put16(p->m_acc_hdl, 4460 &sgechain->Length, 4461 mpt->m_req_frame_size / 4462 sizeof (MPI2_SGE_SIMPLE64) * 4463 sizeof (MPI2_SGE_SIMPLE64)); 4464 } else { 4465 /* 4466 * This is the last frame. Set 4467 * the NextChainOffset to 0 and 4468 * Length is the total size of 4469 * all remaining simple elements 4470 */ 4471 ddi_put8(p->m_acc_hdl, 4472 &sgechain->NextChainOffset, 4473 0); 4474 ddi_put16(p->m_acc_hdl, 4475 &sgechain->Length, 4476 (cookiec - j) * 4477 sizeof (MPI2_SGE_SIMPLE64)); 4478 } 4479 4480 /* Jump to the next frame */ 4481 sge = (pMpi2SGESimple64_t) 4482 ((char *)p->m_frames_addr + 4483 (int)mpt->m_req_frame_size * k); 4484 4485 continue; 4486 } 4487 4488 ddi_put32(p->m_acc_hdl, 4489 &sge->Address.Low, 4490 dmap->addr.address64.Low); 4491 ddi_put32(p->m_acc_hdl, 4492 &sge->Address.High, 4493 dmap->addr.address64.High); 4494 ddi_put32(p->m_acc_hdl, 4495 &sge->FlagsLength, dmap->count); 4496 flags = ddi_get32(p->m_acc_hdl, 4497 &sge->FlagsLength); 4498 flags |= ((uint32_t)( 4499 MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 4500 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4501 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 4502 MPI2_SGE_FLAGS_SHIFT); 4503 4504 /* 4505 * If we are at the end of the frame and 4506 * there is another frame to fill in 4507 * we set the last simple element as last 4508 * element 4509 */ 4510 if ((l == sgemax) && (k != frames)) { 4511 flags |= ((uint32_t) 4512 (MPI2_SGE_FLAGS_LAST_ELEMENT) << 4513 MPI2_SGE_FLAGS_SHIFT); 4514 } 4515 4516 /* 4517 * If this is the final cookie we 4518 * indicate it by setting the flags 4519 */ 4520 if (j == i) { 4521 flags |= ((uint32_t) 4522 (MPI2_SGE_FLAGS_LAST_ELEMENT | 4523 MPI2_SGE_FLAGS_END_OF_BUFFER | 4524 MPI2_SGE_FLAGS_END_OF_LIST) << 4525 MPI2_SGE_FLAGS_SHIFT); 4526 } 4527 if (cmd->cmd_flags & CFLAG_DMASEND) { 4528 flags |= 4529 (MPI2_SGE_FLAGS_HOST_TO_IOC << 4530 MPI2_SGE_FLAGS_SHIFT); 4531 } else { 4532 flags |= 4533 (MPI2_SGE_FLAGS_IOC_TO_HOST << 4534 MPI2_SGE_FLAGS_SHIFT); 4535 } 4536 ddi_put32(p->m_acc_hdl, 4537 &sge->FlagsLength, flags); 4538 dmap++; 4539 sge++; 4540 } 4541 } 4542 4543 /* 4544 * Sync DMA with the chain buffers that were just created 4545 */ 4546 (void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 4547 } 4548 4549 static void 4550 mptsas_ieee_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame, 4551 ddi_acc_handle_t acc_hdl, uint_t cookiec, uint8_t end_flag) 4552 { 4553 pMpi2IeeeSgeSimple64_t ieeesge; 4554 mptti_t *dmap; 4555 uint8_t flags; 4556 4557 dmap = cmd->cmd_sg; 4558 4559 NDBG1(("mptsas_ieee_sge_mainframe: cookiec=%d, %s", cookiec, 4560 cmd->cmd_flags & CFLAG_DMASEND?"Out":"In")); 4561 4562 ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL); 4563 while (cookiec--) { 4564 ddi_put32(acc_hdl, 4565 &ieeesge->Address.Low, dmap->addr.address64.Low); 4566 ddi_put32(acc_hdl, 4567 &ieeesge->Address.High, dmap->addr.address64.High); 4568 ddi_put32(acc_hdl, &ieeesge->Length, 4569 dmap->count); 4570 NDBG1(("mptsas_ieee_sge_mainframe: len=%d", dmap->count)); 4571 flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 4572 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4573 4574 /* 4575 * If this is the last cookie, we set the flags 4576 * to indicate so 4577 */ 4578 if (cookiec == 0) { 4579 flags |= end_flag; 4580 } 4581 4582 ddi_put8(acc_hdl, &ieeesge->Flags, flags); 4583 dmap++; 4584 ieeesge++; 4585 } 4586 } 4587 4588 static void 4589 mptsas_ieee_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd, 4590 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4591 { 4592 pMpi2IeeeSgeSimple64_t ieeesge; 4593 pMpi25IeeeSgeChain64_t ieeesgechain; 4594 uint_t cookiec; 4595 mptti_t *dmap; 4596 uint8_t flags; 4597 4598 /* 4599 * Save the number of entries in the DMA 4600 * Scatter/Gather list 4601 */ 4602 cookiec = cmd->cmd_cookiec; 4603 4604 NDBG1(("mptsas_ieee_sge_chain: cookiec=%d", cookiec)); 4605 4606 /* 4607 * Hereby we start to deal with multiple frames. 4608 * The process is as follows: 4609 * 1. Determine how many frames are needed for SGL element 4610 * storage; Note that all frames are stored in contiguous 4611 * memory space and in 64-bit DMA mode each element is 4612 * 4 double-words (16 bytes) long. 4613 * 2. Fill up the main frame. We need to do this separately 4614 * since it contains the SCSI IO request header and needs 4615 * dedicated processing. Note that the last 4 double-words 4616 * of the SCSI IO header is for SGL element storage 4617 * (MPI2_SGE_IO_UNION). 4618 * 3. Fill the chain element in the main frame, so the DMA 4619 * engine can use the following frames. 4620 * 4. Enter a loop to fill the remaining frames. Note that the 4621 * last frame contains no chain element. The remaining 4622 * frames go into the mpt SGL buffer allocated on the fly, 4623 * not immediately following the main message frame, as in 4624 * Gen1. 4625 * Restrictions: 4626 * For 64-bit DMA, the simple element and chain element 4627 * are both of 4 double-words (16 bytes) in size, even 4628 * though all frames are stored in the first 4G of mem 4629 * range and the higher 32-bits of the address are always 0. 4630 */ 4631 int i, j, k, l, frames, sgemax; 4632 int temp; 4633 uint8_t chainflags; 4634 uint32_t chainlength; 4635 mptsas_cache_frames_t *p; 4636 4637 /* 4638 * Sgemax is the number of SGE's that will fit 4639 * each extra frame and frames is total 4640 * number of frames we'll need. 1 sge entry per 4641 * frame is reseverd for the chain element thus the -1 below. 4642 */ 4643 sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_IEEE_SGE_SIMPLE64)) 4644 - 1); 4645 temp = (cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) / sgemax; 4646 4647 /* 4648 * A little check to see if we need to round up the number 4649 * of frames we need 4650 */ 4651 if ((cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) - (temp * 4652 sgemax) > 1) { 4653 frames = (temp + 1); 4654 } else { 4655 frames = temp; 4656 } 4657 NDBG1(("mptsas_ieee_sge_chain: temp=%d, frames=%d", temp, frames)); 4658 dmap = cmd->cmd_sg; 4659 ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL); 4660 4661 /* 4662 * First fill in the main frame 4663 */ 4664 j = MPTSAS_MAX_FRAME_SGES64(mpt) - 1; 4665 mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, j, 0); 4666 dmap += j; 4667 ieeesge += j; 4668 j++; 4669 4670 /* 4671 * Fill in the chain element in the main frame. 4672 * About calculation on ChainOffset: 4673 * 1. Struct msg_scsi_io_request has 4 double-words (16 bytes) 4674 * in the end reserved for SGL element storage 4675 * (MPI2_SGE_IO_UNION); we should count it in our 4676 * calculation. See its definition in the header file. 4677 * 2. Constant j is the counter of the current SGL element 4678 * that will be processed, and (j - 1) is the number of 4679 * SGL elements that have been processed (stored in the 4680 * main frame). 4681 * 3. ChainOffset value should be in units of quad-words (16 4682 * bytes) so the last value should be divided by 16. 4683 */ 4684 ddi_put8(acc_hdl, &frame->ChainOffset, 4685 (sizeof (MPI2_SCSI_IO_REQUEST) - 4686 sizeof (MPI2_SGE_IO_UNION) + 4687 (j - 1) * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4); 4688 ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge; 4689 chainflags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 4690 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4691 ddi_put8(acc_hdl, &ieeesgechain->Flags, chainflags); 4692 4693 /* 4694 * The size of the next frame is the accurate size of space 4695 * (in bytes) used to store the SGL elements. j is the counter 4696 * of SGL elements. (j - 1) is the number of SGL elements that 4697 * have been processed (stored in frames). 4698 */ 4699 if (frames >= 2) { 4700 ASSERT(mpt->m_req_frame_size >= 4701 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 4702 chainlength = mpt->m_req_frame_size / 4703 sizeof (MPI2_IEEE_SGE_SIMPLE64) * 4704 sizeof (MPI2_IEEE_SGE_SIMPLE64); 4705 } else { 4706 chainlength = ((cookiec - (j - 1)) * 4707 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 4708 } 4709 4710 p = cmd->cmd_extra_frames; 4711 4712 ddi_put32(acc_hdl, &ieeesgechain->Length, chainlength); 4713 ddi_put32(acc_hdl, &ieeesgechain->Address.Low, 4714 p->m_phys_addr); 4715 /* SGL is allocated in the first 4G mem range */ 4716 ddi_put32(acc_hdl, &ieeesgechain->Address.High, 0); 4717 4718 /* 4719 * If there are more than 2 frames left we have to 4720 * fill in the next chain offset to the location of 4721 * the chain element in the next frame. 4722 * sgemax is the number of simple elements in an extra 4723 * frame. Note that the value NextChainOffset should be 4724 * in double-words (4 bytes). 4725 */ 4726 if (frames >= 2) { 4727 ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 4728 (sgemax * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4); 4729 } else { 4730 ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 0); 4731 } 4732 4733 /* 4734 * Jump to next frame; 4735 * Starting here, chain buffers go into the per command SGL. 4736 * This buffer is allocated when chain buffers are needed. 4737 */ 4738 ieeesge = (pMpi2IeeeSgeSimple64_t)p->m_frames_addr; 4739 i = cookiec; 4740 4741 /* 4742 * Start filling in frames with SGE's. If we 4743 * reach the end of frame and still have SGE's 4744 * to fill we need to add a chain element and 4745 * use another frame. j will be our counter 4746 * for what cookie we are at and i will be 4747 * the total cookiec. k is the current frame 4748 */ 4749 for (k = 1; k <= frames; k++) { 4750 for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) { 4751 4752 /* 4753 * If we have reached the end of frame 4754 * and we have more SGE's to fill in 4755 * we have to fill the final entry 4756 * with a chain element and then 4757 * continue to the next frame 4758 */ 4759 if ((l == (sgemax + 1)) && (k != frames)) { 4760 ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge; 4761 j--; 4762 chainflags = 4763 MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 4764 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 4765 ddi_put8(p->m_acc_hdl, 4766 &ieeesgechain->Flags, chainflags); 4767 /* 4768 * k is the frame counter and (k + 1) 4769 * is the number of the next frame. 4770 * Note that frames are in contiguous 4771 * memory space. 4772 */ 4773 ddi_put32(p->m_acc_hdl, 4774 &ieeesgechain->Address.Low, 4775 (p->m_phys_addr + 4776 (mpt->m_req_frame_size * k))); 4777 ddi_put32(p->m_acc_hdl, 4778 &ieeesgechain->Address.High, 0); 4779 4780 /* 4781 * If there are more than 2 frames left 4782 * we have to next chain offset to 4783 * the location of the chain element 4784 * in the next frame and fill in the 4785 * length of the next chain 4786 */ 4787 if ((frames - k) >= 2) { 4788 ddi_put8(p->m_acc_hdl, 4789 &ieeesgechain->NextChainOffset, 4790 (sgemax * 4791 sizeof (MPI2_IEEE_SGE_SIMPLE64)) 4792 >> 4); 4793 ASSERT(mpt->m_req_frame_size >= 4794 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 4795 ddi_put32(p->m_acc_hdl, 4796 &ieeesgechain->Length, 4797 mpt->m_req_frame_size / 4798 sizeof (MPI2_IEEE_SGE_SIMPLE64) * 4799 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 4800 } else { 4801 /* 4802 * This is the last frame. Set 4803 * the NextChainOffset to 0 and 4804 * Length is the total size of 4805 * all remaining simple elements 4806 */ 4807 ddi_put8(p->m_acc_hdl, 4808 &ieeesgechain->NextChainOffset, 4809 0); 4810 ddi_put32(p->m_acc_hdl, 4811 &ieeesgechain->Length, 4812 (cookiec - j) * 4813 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 4814 } 4815 4816 /* Jump to the next frame */ 4817 ieeesge = (pMpi2IeeeSgeSimple64_t) 4818 ((char *)p->m_frames_addr + 4819 (int)mpt->m_req_frame_size * k); 4820 4821 continue; 4822 } 4823 4824 ddi_put32(p->m_acc_hdl, 4825 &ieeesge->Address.Low, 4826 dmap->addr.address64.Low); 4827 ddi_put32(p->m_acc_hdl, 4828 &ieeesge->Address.High, 4829 dmap->addr.address64.High); 4830 ddi_put32(p->m_acc_hdl, 4831 &ieeesge->Length, dmap->count); 4832 flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 4833 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4834 4835 /* 4836 * If we are at the end of the frame and 4837 * there is another frame to fill in 4838 * do we need to do anything? 4839 * if ((l == sgemax) && (k != frames)) { 4840 * } 4841 */ 4842 4843 /* 4844 * If this is the final cookie set end of list. 4845 */ 4846 if (j == i) { 4847 flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 4848 } 4849 4850 ddi_put8(p->m_acc_hdl, &ieeesge->Flags, flags); 4851 dmap++; 4852 ieeesge++; 4853 } 4854 } 4855 4856 /* 4857 * Sync DMA with the chain buffers that were just created 4858 */ 4859 (void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 4860 } 4861 4862 static void 4863 mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, uint32_t *control, 4864 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4865 { 4866 ASSERT(cmd->cmd_flags & CFLAG_DMAVALID); 4867 4868 NDBG1(("mptsas_sge_setup: cookiec=%d", cmd->cmd_cookiec)); 4869 4870 /* 4871 * Set read/write bit in control. 4872 */ 4873 if (cmd->cmd_flags & CFLAG_DMASEND) { 4874 *control |= MPI2_SCSIIO_CONTROL_WRITE; 4875 } else { 4876 *control |= MPI2_SCSIIO_CONTROL_READ; 4877 } 4878 4879 ddi_put32(acc_hdl, &frame->DataLength, cmd->cmd_dmacount); 4880 4881 /* 4882 * We have 4 cases here. First where we can fit all the 4883 * SG elements into the main frame, and the case 4884 * where we can't. The SG element is also different when using 4885 * MPI2.5 interface. 4886 * If we have more cookies than we can attach to a frame 4887 * we will need to use a chain element to point 4888 * a location of memory where the rest of the S/G 4889 * elements reside. 4890 */ 4891 if (cmd->cmd_cookiec <= MPTSAS_MAX_FRAME_SGES64(mpt)) { 4892 if (mpt->m_MPI25) { 4893 mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, 4894 cmd->cmd_cookiec, 4895 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 4896 } else { 4897 mptsas_sge_mainframe(cmd, frame, acc_hdl, 4898 cmd->cmd_cookiec, 4899 ((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT 4900 | MPI2_SGE_FLAGS_END_OF_BUFFER 4901 | MPI2_SGE_FLAGS_END_OF_LIST) << 4902 MPI2_SGE_FLAGS_SHIFT)); 4903 } 4904 } else { 4905 if (mpt->m_MPI25) { 4906 mptsas_ieee_sge_chain(mpt, cmd, frame, acc_hdl); 4907 } else { 4908 mptsas_sge_chain(mpt, cmd, frame, acc_hdl); 4909 } 4910 } 4911 } 4912 4913 /* 4914 * Interrupt handling 4915 * Utility routine. Poll for status of a command sent to HBA 4916 * without interrupts (a FLAG_NOINTR command). 4917 */ 4918 int 4919 mptsas_poll(mptsas_t *mpt, mptsas_cmd_t *poll_cmd, int polltime) 4920 { 4921 int rval = TRUE; 4922 4923 NDBG5(("mptsas_poll: cmd=0x%p", (void *)poll_cmd)); 4924 4925 if ((poll_cmd->cmd_flags & CFLAG_TM_CMD) == 0) { 4926 mptsas_restart_hba(mpt); 4927 } 4928 4929 /* 4930 * Wait, using drv_usecwait(), long enough for the command to 4931 * reasonably return from the target if the target isn't 4932 * "dead". A polled command may well be sent from scsi_poll, and 4933 * there are retries built in to scsi_poll if the transport 4934 * accepted the packet (TRAN_ACCEPT). scsi_poll waits 1 second 4935 * and retries the transport up to scsi_poll_busycnt times 4936 * (currently 60) if 4937 * 1. pkt_reason is CMD_INCOMPLETE and pkt_state is 0, or 4938 * 2. pkt_reason is CMD_CMPLT and *pkt_scbp has STATUS_BUSY 4939 * 4940 * limit the waiting to avoid a hang in the event that the 4941 * cmd never gets started but we are still receiving interrupts 4942 */ 4943 while (!(poll_cmd->cmd_flags & CFLAG_FINISHED)) { 4944 if (mptsas_wait_intr(mpt, polltime) == FALSE) { 4945 NDBG5(("mptsas_poll: command incomplete")); 4946 rval = FALSE; 4947 break; 4948 } 4949 } 4950 4951 if (rval == FALSE) { 4952 4953 /* 4954 * this isn't supposed to happen, the hba must be wedged 4955 * Mark this cmd as a timeout. 4956 */ 4957 mptsas_set_pkt_reason(mpt, poll_cmd, CMD_TIMEOUT, 4958 (STAT_TIMEOUT|STAT_ABORTED)); 4959 4960 if (poll_cmd->cmd_queued == FALSE) { 4961 4962 NDBG5(("mptsas_poll: not on waitq")); 4963 4964 poll_cmd->cmd_pkt->pkt_state |= 4965 (STATE_GOT_BUS|STATE_GOT_TARGET|STATE_SENT_CMD); 4966 } else { 4967 4968 /* find and remove it from the waitq */ 4969 NDBG5(("mptsas_poll: delete from waitq")); 4970 mptsas_waitq_delete(mpt, poll_cmd); 4971 } 4972 4973 } 4974 mptsas_fma_check(mpt, poll_cmd); 4975 NDBG5(("mptsas_poll: done")); 4976 return (rval); 4977 } 4978 4979 /* 4980 * Used for polling cmds and TM function 4981 */ 4982 static int 4983 mptsas_wait_intr(mptsas_t *mpt, int polltime) 4984 { 4985 int cnt; 4986 pMpi2ReplyDescriptorsUnion_t reply_desc_union; 4987 uint32_t int_mask; 4988 4989 NDBG5(("mptsas_wait_intr")); 4990 4991 mpt->m_polled_intr = 1; 4992 4993 /* 4994 * Get the current interrupt mask and disable interrupts. When 4995 * re-enabling ints, set mask to saved value. 4996 */ 4997 int_mask = ddi_get32(mpt->m_datap, &mpt->m_reg->HostInterruptMask); 4998 MPTSAS_DISABLE_INTR(mpt); 4999 5000 /* 5001 * Keep polling for at least (polltime * 1000) seconds 5002 */ 5003 for (cnt = 0; cnt < polltime; cnt++) { 5004 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5005 DDI_DMA_SYNC_FORCPU); 5006 5007 reply_desc_union = (pMpi2ReplyDescriptorsUnion_t) 5008 MPTSAS_GET_NEXT_REPLY(mpt, mpt->m_post_index); 5009 5010 if (ddi_get32(mpt->m_acc_post_queue_hdl, 5011 &reply_desc_union->Words.Low) == 0xFFFFFFFF || 5012 ddi_get32(mpt->m_acc_post_queue_hdl, 5013 &reply_desc_union->Words.High) == 0xFFFFFFFF) { 5014 drv_usecwait(1000); 5015 continue; 5016 } 5017 5018 /* 5019 * The reply is valid, process it according to its 5020 * type. 5021 */ 5022 mptsas_process_intr(mpt, reply_desc_union); 5023 5024 if (++mpt->m_post_index == mpt->m_post_queue_depth) { 5025 mpt->m_post_index = 0; 5026 } 5027 5028 /* 5029 * Update the global reply index 5030 */ 5031 ddi_put32(mpt->m_datap, 5032 &mpt->m_reg->ReplyPostHostIndex, mpt->m_post_index); 5033 mpt->m_polled_intr = 0; 5034 5035 /* 5036 * Re-enable interrupts and quit. 5037 */ 5038 ddi_put32(mpt->m_datap, &mpt->m_reg->HostInterruptMask, 5039 int_mask); 5040 return (TRUE); 5041 5042 } 5043 5044 /* 5045 * Clear polling flag, re-enable interrupts and quit. 5046 */ 5047 mpt->m_polled_intr = 0; 5048 ddi_put32(mpt->m_datap, &mpt->m_reg->HostInterruptMask, int_mask); 5049 return (FALSE); 5050 } 5051 5052 static void 5053 mptsas_handle_scsi_io_success(mptsas_t *mpt, 5054 pMpi2ReplyDescriptorsUnion_t reply_desc) 5055 { 5056 pMpi2SCSIIOSuccessReplyDescriptor_t scsi_io_success; 5057 uint16_t SMID; 5058 mptsas_slots_t *slots = mpt->m_active; 5059 mptsas_cmd_t *cmd = NULL; 5060 struct scsi_pkt *pkt; 5061 5062 ASSERT(mutex_owned(&mpt->m_mutex)); 5063 5064 scsi_io_success = (pMpi2SCSIIOSuccessReplyDescriptor_t)reply_desc; 5065 SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &scsi_io_success->SMID); 5066 5067 /* 5068 * This is a success reply so just complete the IO. First, do a sanity 5069 * check on the SMID. The final slot is used for TM requests, which 5070 * would not come into this reply handler. 5071 */ 5072 if ((SMID == 0) || (SMID > slots->m_n_normal)) { 5073 mptsas_log(mpt, CE_WARN, "?Received invalid SMID of %d\n", 5074 SMID); 5075 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5076 return; 5077 } 5078 5079 cmd = slots->m_slot[SMID]; 5080 5081 /* 5082 * print warning and return if the slot is empty 5083 */ 5084 if (cmd == NULL) { 5085 mptsas_log(mpt, CE_WARN, "?NULL command for successful SCSI IO " 5086 "in slot %d", SMID); 5087 return; 5088 } 5089 5090 pkt = CMD2PKT(cmd); 5091 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | STATE_SENT_CMD | 5092 STATE_GOT_STATUS); 5093 if (cmd->cmd_flags & CFLAG_DMAVALID) { 5094 pkt->pkt_state |= STATE_XFERRED_DATA; 5095 } 5096 pkt->pkt_resid = 0; 5097 5098 if (cmd->cmd_flags & CFLAG_PASSTHRU) { 5099 cmd->cmd_flags |= CFLAG_FINISHED; 5100 cv_broadcast(&mpt->m_passthru_cv); 5101 return; 5102 } else { 5103 mptsas_remove_cmd(mpt, cmd); 5104 } 5105 5106 if (cmd->cmd_flags & CFLAG_RETRY) { 5107 /* 5108 * The target returned QFULL or busy, do not add tihs 5109 * pkt to the doneq since the hba will retry 5110 * this cmd. 5111 * 5112 * The pkt has already been resubmitted in 5113 * mptsas_handle_qfull() or in mptsas_check_scsi_io_error(). 5114 * Remove this cmd_flag here. 5115 */ 5116 cmd->cmd_flags &= ~CFLAG_RETRY; 5117 } else { 5118 mptsas_doneq_add(mpt, cmd); 5119 } 5120 } 5121 5122 static void 5123 mptsas_handle_address_reply(mptsas_t *mpt, 5124 pMpi2ReplyDescriptorsUnion_t reply_desc) 5125 { 5126 pMpi2AddressReplyDescriptor_t address_reply; 5127 pMPI2DefaultReply_t reply; 5128 mptsas_fw_diagnostic_buffer_t *pBuffer; 5129 uint32_t reply_addr; 5130 uint16_t SMID, iocstatus; 5131 mptsas_slots_t *slots = mpt->m_active; 5132 mptsas_cmd_t *cmd = NULL; 5133 uint8_t function, buffer_type; 5134 m_replyh_arg_t *args; 5135 int reply_frame_no; 5136 5137 ASSERT(mutex_owned(&mpt->m_mutex)); 5138 5139 address_reply = (pMpi2AddressReplyDescriptor_t)reply_desc; 5140 reply_addr = ddi_get32(mpt->m_acc_post_queue_hdl, 5141 &address_reply->ReplyFrameAddress); 5142 SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &address_reply->SMID); 5143 5144 /* 5145 * If reply frame is not in the proper range we should ignore this 5146 * message and exit the interrupt handler. 5147 */ 5148 if ((reply_addr < mpt->m_reply_frame_dma_addr) || 5149 (reply_addr >= (mpt->m_reply_frame_dma_addr + 5150 (mpt->m_reply_frame_size * mpt->m_max_replies))) || 5151 ((reply_addr - mpt->m_reply_frame_dma_addr) % 5152 mpt->m_reply_frame_size != 0)) { 5153 mptsas_log(mpt, CE_WARN, "?Received invalid reply frame " 5154 "address 0x%x\n", reply_addr); 5155 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5156 return; 5157 } 5158 5159 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 5160 DDI_DMA_SYNC_FORCPU); 5161 reply = (pMPI2DefaultReply_t)(mpt->m_reply_frame + (reply_addr - 5162 mpt->m_reply_frame_dma_addr)); 5163 function = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->Function); 5164 5165 NDBG31(("mptsas_handle_address_reply: function 0x%x, reply_addr=0x%x", 5166 function, reply_addr)); 5167 5168 /* 5169 * don't get slot information and command for events since these values 5170 * don't exist 5171 */ 5172 if ((function != MPI2_FUNCTION_EVENT_NOTIFICATION) && 5173 (function != MPI2_FUNCTION_DIAG_BUFFER_POST)) { 5174 /* 5175 * This could be a TM reply, which use the last allocated SMID, 5176 * so allow for that. 5177 */ 5178 if ((SMID == 0) || (SMID > (slots->m_n_normal + 1))) { 5179 mptsas_log(mpt, CE_WARN, "?Received invalid SMID of " 5180 "%d\n", SMID); 5181 ddi_fm_service_impact(mpt->m_dip, 5182 DDI_SERVICE_UNAFFECTED); 5183 return; 5184 } 5185 5186 cmd = slots->m_slot[SMID]; 5187 5188 /* 5189 * print warning and return if the slot is empty 5190 */ 5191 if (cmd == NULL) { 5192 mptsas_log(mpt, CE_WARN, "?NULL command for address " 5193 "reply in slot %d", SMID); 5194 return; 5195 } 5196 if ((cmd->cmd_flags & 5197 (CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) { 5198 cmd->cmd_rfm = reply_addr; 5199 cmd->cmd_flags |= CFLAG_FINISHED; 5200 cv_broadcast(&mpt->m_passthru_cv); 5201 cv_broadcast(&mpt->m_config_cv); 5202 cv_broadcast(&mpt->m_fw_diag_cv); 5203 return; 5204 } else if (!(cmd->cmd_flags & CFLAG_FW_CMD)) { 5205 mptsas_remove_cmd(mpt, cmd); 5206 } 5207 NDBG31(("\t\tmptsas_process_intr: slot=%d", SMID)); 5208 } 5209 /* 5210 * Depending on the function, we need to handle 5211 * the reply frame (and cmd) differently. 5212 */ 5213 switch (function) { 5214 case MPI2_FUNCTION_SCSI_IO_REQUEST: 5215 mptsas_check_scsi_io_error(mpt, (pMpi2SCSIIOReply_t)reply, cmd); 5216 break; 5217 case MPI2_FUNCTION_SCSI_TASK_MGMT: 5218 cmd->cmd_rfm = reply_addr; 5219 mptsas_check_task_mgt(mpt, (pMpi2SCSIManagementReply_t)reply, 5220 cmd); 5221 break; 5222 case MPI2_FUNCTION_FW_DOWNLOAD: 5223 cmd->cmd_flags |= CFLAG_FINISHED; 5224 cv_signal(&mpt->m_fw_cv); 5225 break; 5226 case MPI2_FUNCTION_EVENT_NOTIFICATION: 5227 reply_frame_no = (reply_addr - mpt->m_reply_frame_dma_addr) / 5228 mpt->m_reply_frame_size; 5229 args = &mpt->m_replyh_args[reply_frame_no]; 5230 args->mpt = (void *)mpt; 5231 args->rfm = reply_addr; 5232 5233 /* 5234 * Record the event if its type is enabled in 5235 * this mpt instance by ioctl. 5236 */ 5237 mptsas_record_event(args); 5238 5239 /* 5240 * Handle time critical events 5241 * NOT_RESPONDING/ADDED only now 5242 */ 5243 if (mptsas_handle_event_sync(args) == DDI_SUCCESS) { 5244 /* 5245 * Would not return main process, 5246 * just let taskq resolve ack action 5247 * and ack would be sent in taskq thread 5248 */ 5249 NDBG20(("send mptsas_handle_event_sync success")); 5250 } 5251 5252 if (mpt->m_in_reset) { 5253 NDBG20(("dropping event received during reset")); 5254 return; 5255 } 5256 5257 if ((ddi_taskq_dispatch(mpt->m_event_taskq, mptsas_handle_event, 5258 (void *)args, DDI_NOSLEEP)) != DDI_SUCCESS) { 5259 mptsas_log(mpt, CE_WARN, "No memory available" 5260 "for dispatch taskq"); 5261 /* 5262 * Return the reply frame to the free queue. 5263 */ 5264 ddi_put32(mpt->m_acc_free_queue_hdl, 5265 &((uint32_t *)(void *) 5266 mpt->m_free_queue)[mpt->m_free_index], reply_addr); 5267 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 5268 DDI_DMA_SYNC_FORDEV); 5269 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 5270 mpt->m_free_index = 0; 5271 } 5272 5273 ddi_put32(mpt->m_datap, 5274 &mpt->m_reg->ReplyFreeHostIndex, mpt->m_free_index); 5275 } 5276 return; 5277 case MPI2_FUNCTION_DIAG_BUFFER_POST: 5278 /* 5279 * If SMID is 0, this implies that the reply is due to a 5280 * release function with a status that the buffer has been 5281 * released. Set the buffer flags accordingly. 5282 */ 5283 if (SMID == 0) { 5284 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 5285 &reply->IOCStatus); 5286 buffer_type = ddi_get8(mpt->m_acc_reply_frame_hdl, 5287 &(((pMpi2DiagBufferPostReply_t)reply)->BufferType)); 5288 if (iocstatus == MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) { 5289 pBuffer = 5290 &mpt->m_fw_diag_buffer_list[buffer_type]; 5291 pBuffer->valid_data = TRUE; 5292 pBuffer->owned_by_firmware = FALSE; 5293 pBuffer->immediate = FALSE; 5294 } 5295 } else { 5296 /* 5297 * Normal handling of diag post reply with SMID. 5298 */ 5299 cmd = slots->m_slot[SMID]; 5300 5301 /* 5302 * print warning and return if the slot is empty 5303 */ 5304 if (cmd == NULL) { 5305 mptsas_log(mpt, CE_WARN, "?NULL command for " 5306 "address reply in slot %d", SMID); 5307 return; 5308 } 5309 cmd->cmd_rfm = reply_addr; 5310 cmd->cmd_flags |= CFLAG_FINISHED; 5311 cv_broadcast(&mpt->m_fw_diag_cv); 5312 } 5313 return; 5314 default: 5315 mptsas_log(mpt, CE_WARN, "Unknown function 0x%x ", function); 5316 break; 5317 } 5318 5319 /* 5320 * Return the reply frame to the free queue. 5321 */ 5322 ddi_put32(mpt->m_acc_free_queue_hdl, 5323 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 5324 reply_addr); 5325 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 5326 DDI_DMA_SYNC_FORDEV); 5327 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 5328 mpt->m_free_index = 0; 5329 } 5330 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 5331 mpt->m_free_index); 5332 5333 if (cmd->cmd_flags & CFLAG_FW_CMD) 5334 return; 5335 5336 if (cmd->cmd_flags & CFLAG_RETRY) { 5337 /* 5338 * The target returned QFULL or busy, do not add this 5339 * pkt to the doneq since the hba will retry 5340 * this cmd. 5341 * 5342 * The pkt has already been resubmitted in 5343 * mptsas_handle_qfull() or in mptsas_check_scsi_io_error(). 5344 * Remove this cmd_flag here. 5345 */ 5346 cmd->cmd_flags &= ~CFLAG_RETRY; 5347 } else { 5348 mptsas_doneq_add(mpt, cmd); 5349 } 5350 } 5351 5352 static void 5353 mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply, 5354 mptsas_cmd_t *cmd) 5355 { 5356 uint8_t scsi_status, scsi_state; 5357 uint16_t ioc_status; 5358 uint32_t xferred, sensecount, responsedata, loginfo = 0; 5359 struct scsi_pkt *pkt; 5360 struct scsi_arq_status *arqstat; 5361 struct buf *bp; 5362 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 5363 uint8_t *sensedata = NULL; 5364 uint64_t sas_wwn; 5365 uint8_t phy; 5366 char wwn_str[MPTSAS_WWN_STRLEN]; 5367 5368 if ((cmd->cmd_flags & (CFLAG_SCBEXTERN | CFLAG_EXTARQBUFVALID)) == 5369 (CFLAG_SCBEXTERN | CFLAG_EXTARQBUFVALID)) { 5370 bp = cmd->cmd_ext_arq_buf; 5371 } else { 5372 bp = cmd->cmd_arq_buf; 5373 } 5374 5375 scsi_status = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIStatus); 5376 ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus); 5377 scsi_state = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIState); 5378 xferred = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->TransferCount); 5379 sensecount = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->SenseCount); 5380 responsedata = ddi_get32(mpt->m_acc_reply_frame_hdl, 5381 &reply->ResponseInfo); 5382 5383 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 5384 sas_wwn = ptgt->m_addr.mta_wwn; 5385 phy = ptgt->m_phynum; 5386 if (sas_wwn == 0) { 5387 (void) sprintf(wwn_str, "p%x", phy); 5388 } else { 5389 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 5390 } 5391 loginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 5392 &reply->IOCLogInfo); 5393 mptsas_log(mpt, CE_NOTE, 5394 "?Log info 0x%x received for target %d %s.\n" 5395 "\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x", 5396 loginfo, Tgt(cmd), wwn_str, scsi_status, ioc_status, 5397 scsi_state); 5398 } 5399 5400 NDBG31(("\t\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x", 5401 scsi_status, ioc_status, scsi_state)); 5402 5403 pkt = CMD2PKT(cmd); 5404 *(pkt->pkt_scbp) = scsi_status; 5405 5406 if (loginfo == 0x31170000) { 5407 /* 5408 * if loginfo PL_LOGINFO_CODE_IO_DEVICE_MISSING_DELAY_RETRY 5409 * 0x31170000 comes, that means the device missing delay 5410 * is in progressing, the command need retry later. 5411 */ 5412 *(pkt->pkt_scbp) = STATUS_BUSY; 5413 return; 5414 } 5415 5416 if ((scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) && 5417 ((ioc_status & MPI2_IOCSTATUS_MASK) == 5418 MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE)) { 5419 pkt->pkt_reason = CMD_INCOMPLETE; 5420 pkt->pkt_state |= STATE_GOT_BUS; 5421 if (ptgt->m_reset_delay == 0) { 5422 mptsas_set_throttle(mpt, ptgt, 5423 DRAIN_THROTTLE); 5424 } 5425 return; 5426 } 5427 5428 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) { 5429 responsedata &= 0x000000FF; 5430 if (responsedata & MPTSAS_SCSI_RESPONSE_CODE_TLR_OFF) { 5431 mptsas_log(mpt, CE_NOTE, "Do not support the TLR\n"); 5432 pkt->pkt_reason = CMD_TLR_OFF; 5433 return; 5434 } 5435 } 5436 5437 5438 switch (scsi_status) { 5439 case MPI2_SCSI_STATUS_CHECK_CONDITION: 5440 pkt->pkt_resid = (cmd->cmd_dmacount - xferred); 5441 arqstat = (void*)(pkt->pkt_scbp); 5442 arqstat->sts_rqpkt_status = *((struct scsi_status *) 5443 (pkt->pkt_scbp)); 5444 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | 5445 STATE_SENT_CMD | STATE_GOT_STATUS | STATE_ARQ_DONE); 5446 if (cmd->cmd_flags & CFLAG_XARQ) { 5447 pkt->pkt_state |= STATE_XARQ_DONE; 5448 } 5449 if (pkt->pkt_resid != cmd->cmd_dmacount) { 5450 pkt->pkt_state |= STATE_XFERRED_DATA; 5451 } 5452 arqstat->sts_rqpkt_reason = pkt->pkt_reason; 5453 arqstat->sts_rqpkt_state = pkt->pkt_state; 5454 arqstat->sts_rqpkt_state |= STATE_XFERRED_DATA; 5455 arqstat->sts_rqpkt_statistics = pkt->pkt_statistics; 5456 sensedata = (uint8_t *)&arqstat->sts_sensedata; 5457 5458 bcopy((uchar_t *)bp->b_un.b_addr, sensedata, 5459 ((cmd->cmd_rqslen >= sensecount) ? sensecount : 5460 cmd->cmd_rqslen)); 5461 arqstat->sts_rqpkt_resid = (cmd->cmd_rqslen - sensecount); 5462 cmd->cmd_flags |= CFLAG_CMDARQ; 5463 /* 5464 * Set proper status for pkt if autosense was valid 5465 */ 5466 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 5467 struct scsi_status zero_status = { 0 }; 5468 arqstat->sts_rqpkt_status = zero_status; 5469 } 5470 5471 /* 5472 * ASC=0x47 is parity error 5473 * ASC=0x48 is initiator detected error received 5474 */ 5475 if ((scsi_sense_key(sensedata) == KEY_ABORTED_COMMAND) && 5476 ((scsi_sense_asc(sensedata) == 0x47) || 5477 (scsi_sense_asc(sensedata) == 0x48))) { 5478 mptsas_log(mpt, CE_NOTE, "Aborted_command!"); 5479 } 5480 5481 /* 5482 * ASC/ASCQ=0x3F/0x0E means report_luns data changed 5483 * ASC/ASCQ=0x25/0x00 means invalid lun 5484 */ 5485 if (((scsi_sense_key(sensedata) == KEY_UNIT_ATTENTION) && 5486 (scsi_sense_asc(sensedata) == 0x3F) && 5487 (scsi_sense_ascq(sensedata) == 0x0E)) || 5488 ((scsi_sense_key(sensedata) == KEY_ILLEGAL_REQUEST) && 5489 (scsi_sense_asc(sensedata) == 0x25) && 5490 (scsi_sense_ascq(sensedata) == 0x00))) { 5491 mptsas_topo_change_list_t *topo_node = NULL; 5492 5493 topo_node = kmem_zalloc( 5494 sizeof (mptsas_topo_change_list_t), 5495 KM_NOSLEEP); 5496 if (topo_node == NULL) { 5497 mptsas_log(mpt, CE_NOTE, "No memory" 5498 "resource for handle SAS dynamic" 5499 "reconfigure.\n"); 5500 break; 5501 } 5502 topo_node->mpt = mpt; 5503 topo_node->event = MPTSAS_DR_EVENT_RECONFIG_TARGET; 5504 topo_node->un.phymask = ptgt->m_addr.mta_phymask; 5505 topo_node->devhdl = ptgt->m_devhdl; 5506 topo_node->object = (void *)ptgt; 5507 topo_node->flags = MPTSAS_TOPO_FLAG_LUN_ASSOCIATED; 5508 5509 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 5510 mptsas_handle_dr, 5511 (void *)topo_node, 5512 DDI_NOSLEEP)) != DDI_SUCCESS) { 5513 kmem_free(topo_node, 5514 sizeof (mptsas_topo_change_list_t)); 5515 mptsas_log(mpt, CE_NOTE, "mptsas start taskq" 5516 "for handle SAS dynamic reconfigure" 5517 "failed. \n"); 5518 } 5519 } 5520 break; 5521 case MPI2_SCSI_STATUS_GOOD: 5522 switch (ioc_status & MPI2_IOCSTATUS_MASK) { 5523 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 5524 pkt->pkt_reason = CMD_DEV_GONE; 5525 pkt->pkt_state |= STATE_GOT_BUS; 5526 if (ptgt->m_reset_delay == 0) { 5527 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 5528 } 5529 NDBG31(("lost disk for target%d, command:%x", 5530 Tgt(cmd), pkt->pkt_cdbp[0])); 5531 break; 5532 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 5533 NDBG31(("data overrun: xferred=%d", xferred)); 5534 NDBG31(("dmacount=%d", cmd->cmd_dmacount)); 5535 pkt->pkt_reason = CMD_DATA_OVR; 5536 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET 5537 | STATE_SENT_CMD | STATE_GOT_STATUS 5538 | STATE_XFERRED_DATA); 5539 pkt->pkt_resid = 0; 5540 break; 5541 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 5542 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 5543 NDBG31(("data underrun: xferred=%d", xferred)); 5544 NDBG31(("dmacount=%d", cmd->cmd_dmacount)); 5545 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET 5546 | STATE_SENT_CMD | STATE_GOT_STATUS); 5547 pkt->pkt_resid = (cmd->cmd_dmacount - xferred); 5548 if (pkt->pkt_resid != cmd->cmd_dmacount) { 5549 pkt->pkt_state |= STATE_XFERRED_DATA; 5550 } 5551 break; 5552 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 5553 if (cmd->cmd_active_expiration <= gethrtime()) { 5554 /* 5555 * When timeout requested, propagate 5556 * proper reason and statistics to 5557 * target drivers. 5558 */ 5559 mptsas_set_pkt_reason(mpt, cmd, CMD_TIMEOUT, 5560 STAT_BUS_RESET | STAT_TIMEOUT); 5561 } else { 5562 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 5563 STAT_BUS_RESET); 5564 } 5565 break; 5566 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 5567 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 5568 mptsas_set_pkt_reason(mpt, 5569 cmd, CMD_RESET, STAT_DEV_RESET); 5570 break; 5571 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 5572 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 5573 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET); 5574 mptsas_set_pkt_reason(mpt, 5575 cmd, CMD_TERMINATED, STAT_TERMINATED); 5576 break; 5577 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 5578 case MPI2_IOCSTATUS_BUSY: 5579 /* 5580 * set throttles to drain 5581 */ 5582 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 5583 ptgt = refhash_next(mpt->m_targets, ptgt)) { 5584 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 5585 } 5586 5587 /* 5588 * retry command 5589 */ 5590 cmd->cmd_flags |= CFLAG_RETRY; 5591 cmd->cmd_pkt_flags |= FLAG_HEAD; 5592 5593 (void) mptsas_accept_pkt(mpt, cmd); 5594 break; 5595 default: 5596 mptsas_log(mpt, CE_WARN, 5597 "unknown ioc_status = %x\n", ioc_status); 5598 mptsas_log(mpt, CE_CONT, "scsi_state = %x, transfer " 5599 "count = %x, scsi_status = %x", scsi_state, 5600 xferred, scsi_status); 5601 break; 5602 } 5603 break; 5604 case MPI2_SCSI_STATUS_TASK_SET_FULL: 5605 mptsas_handle_qfull(mpt, cmd); 5606 break; 5607 case MPI2_SCSI_STATUS_BUSY: 5608 NDBG31(("scsi_status busy received")); 5609 break; 5610 case MPI2_SCSI_STATUS_RESERVATION_CONFLICT: 5611 NDBG31(("scsi_status reservation conflict received")); 5612 break; 5613 default: 5614 mptsas_log(mpt, CE_WARN, "scsi_status=%x, ioc_status=%x\n", 5615 scsi_status, ioc_status); 5616 mptsas_log(mpt, CE_WARN, 5617 "mptsas_process_intr: invalid scsi status\n"); 5618 break; 5619 } 5620 } 5621 5622 static void 5623 mptsas_check_task_mgt(mptsas_t *mpt, pMpi2SCSIManagementReply_t reply, 5624 mptsas_cmd_t *cmd) 5625 { 5626 uint8_t task_type; 5627 uint16_t ioc_status; 5628 uint32_t log_info; 5629 uint16_t dev_handle; 5630 struct scsi_pkt *pkt = CMD2PKT(cmd); 5631 5632 task_type = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->TaskType); 5633 ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus); 5634 log_info = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->IOCLogInfo); 5635 dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->DevHandle); 5636 5637 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5638 mptsas_log(mpt, CE_WARN, "mptsas_check_task_mgt: Task 0x%x " 5639 "failed. IOCStatus=0x%x IOCLogInfo=0x%x target=%d\n", 5640 task_type, ioc_status, log_info, dev_handle); 5641 pkt->pkt_reason = CMD_INCOMPLETE; 5642 return; 5643 } 5644 5645 switch (task_type) { 5646 case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK: 5647 case MPI2_SCSITASKMGMT_TASKTYPE_CLEAR_TASK_SET: 5648 case MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK: 5649 case MPI2_SCSITASKMGMT_TASKTYPE_CLR_ACA: 5650 case MPI2_SCSITASKMGMT_TASKTYPE_QRY_TASK_SET: 5651 case MPI2_SCSITASKMGMT_TASKTYPE_QRY_UNIT_ATTENTION: 5652 break; 5653 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 5654 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 5655 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 5656 /* 5657 * Check for invalid DevHandle of 0 in case application 5658 * sends bad command. DevHandle of 0 could cause problems. 5659 */ 5660 if (dev_handle == 0) { 5661 mptsas_log(mpt, CE_WARN, "!Can't flush target with" 5662 " DevHandle of 0."); 5663 } else { 5664 mptsas_flush_target(mpt, dev_handle, Lun(cmd), 5665 task_type); 5666 } 5667 break; 5668 default: 5669 mptsas_log(mpt, CE_WARN, "Unknown task management type %d.", 5670 task_type); 5671 mptsas_log(mpt, CE_WARN, "ioc status = %x", ioc_status); 5672 break; 5673 } 5674 } 5675 5676 static void 5677 mptsas_doneq_thread(mptsas_doneq_thread_arg_t *arg) 5678 { 5679 mptsas_t *mpt = arg->mpt; 5680 uint64_t t = arg->t; 5681 mptsas_cmd_t *cmd; 5682 struct scsi_pkt *pkt; 5683 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 5684 5685 mutex_enter(&item->mutex); 5686 while (item->flag & MPTSAS_DONEQ_THREAD_ACTIVE) { 5687 if (!item->doneq) { 5688 cv_wait(&item->cv, &item->mutex); 5689 } 5690 pkt = NULL; 5691 if ((cmd = mptsas_doneq_thread_rm(mpt, t)) != NULL) { 5692 cmd->cmd_flags |= CFLAG_COMPLETED; 5693 pkt = CMD2PKT(cmd); 5694 } 5695 mutex_exit(&item->mutex); 5696 if (pkt) { 5697 mptsas_pkt_comp(pkt, cmd); 5698 } 5699 mutex_enter(&item->mutex); 5700 } 5701 mutex_exit(&item->mutex); 5702 mutex_enter(&mpt->m_doneq_mutex); 5703 mpt->m_doneq_thread_n--; 5704 cv_broadcast(&mpt->m_doneq_thread_cv); 5705 mutex_exit(&mpt->m_doneq_mutex); 5706 } 5707 5708 5709 /* 5710 * mpt interrupt handler. 5711 */ 5712 static uint_t 5713 mptsas_intr(caddr_t arg1, caddr_t arg2) 5714 { 5715 mptsas_t *mpt = (void *)arg1; 5716 pMpi2ReplyDescriptorsUnion_t reply_desc_union; 5717 uchar_t did_reply = FALSE; 5718 5719 NDBG1(("mptsas_intr: arg1 0x%p arg2 0x%p", (void *)arg1, (void *)arg2)); 5720 5721 mutex_enter(&mpt->m_mutex); 5722 5723 /* 5724 * If interrupts are shared by two channels then check whether this 5725 * interrupt is genuinely for this channel by making sure first the 5726 * chip is in high power state. 5727 */ 5728 if ((mpt->m_options & MPTSAS_OPT_PM) && 5729 (mpt->m_power_level != PM_LEVEL_D0)) { 5730 mutex_exit(&mpt->m_mutex); 5731 return (DDI_INTR_UNCLAIMED); 5732 } 5733 5734 /* 5735 * If polling, interrupt was triggered by some shared interrupt because 5736 * IOC interrupts are disabled during polling, so polling routine will 5737 * handle any replies. Considering this, if polling is happening, 5738 * return with interrupt unclaimed. 5739 */ 5740 if (mpt->m_polled_intr) { 5741 mutex_exit(&mpt->m_mutex); 5742 mptsas_log(mpt, CE_WARN, "mpt_sas: Unclaimed interrupt"); 5743 return (DDI_INTR_UNCLAIMED); 5744 } 5745 5746 /* 5747 * Read the istat register. 5748 */ 5749 if ((INTPENDING(mpt)) != 0) { 5750 /* 5751 * read fifo until empty. 5752 */ 5753 #ifndef __lock_lint 5754 _NOTE(CONSTCOND) 5755 #endif 5756 while (TRUE) { 5757 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5758 DDI_DMA_SYNC_FORCPU); 5759 reply_desc_union = (pMpi2ReplyDescriptorsUnion_t) 5760 MPTSAS_GET_NEXT_REPLY(mpt, mpt->m_post_index); 5761 5762 if (ddi_get32(mpt->m_acc_post_queue_hdl, 5763 &reply_desc_union->Words.Low) == 0xFFFFFFFF || 5764 ddi_get32(mpt->m_acc_post_queue_hdl, 5765 &reply_desc_union->Words.High) == 0xFFFFFFFF) { 5766 break; 5767 } 5768 5769 /* 5770 * The reply is valid, process it according to its 5771 * type. Also, set a flag for updating the reply index 5772 * after they've all been processed. 5773 */ 5774 did_reply = TRUE; 5775 5776 mptsas_process_intr(mpt, reply_desc_union); 5777 5778 /* 5779 * Increment post index and roll over if needed. 5780 */ 5781 if (++mpt->m_post_index == mpt->m_post_queue_depth) { 5782 mpt->m_post_index = 0; 5783 } 5784 } 5785 5786 /* 5787 * Update the global reply index if at least one reply was 5788 * processed. 5789 */ 5790 if (did_reply) { 5791 ddi_put32(mpt->m_datap, 5792 &mpt->m_reg->ReplyPostHostIndex, mpt->m_post_index); 5793 } 5794 } else { 5795 mutex_exit(&mpt->m_mutex); 5796 return (DDI_INTR_UNCLAIMED); 5797 } 5798 NDBG1(("mptsas_intr complete")); 5799 5800 /* 5801 * If no helper threads are created, process the doneq in ISR. If 5802 * helpers are created, use the doneq length as a metric to measure the 5803 * load on the interrupt CPU. If it is long enough, which indicates the 5804 * load is heavy, then we deliver the IO completions to the helpers. 5805 * This measurement has some limitations, although it is simple and 5806 * straightforward and works well for most of the cases at present. 5807 */ 5808 if (!mpt->m_doneq_thread_n || 5809 (mpt->m_doneq_len <= mpt->m_doneq_length_threshold)) { 5810 mptsas_doneq_empty(mpt); 5811 } else { 5812 mptsas_deliver_doneq_thread(mpt); 5813 } 5814 5815 /* 5816 * If there are queued cmd, start them now. 5817 */ 5818 if (mpt->m_waitq != NULL) { 5819 mptsas_restart_waitq(mpt); 5820 } 5821 5822 mutex_exit(&mpt->m_mutex); 5823 return (DDI_INTR_CLAIMED); 5824 } 5825 5826 static void 5827 mptsas_process_intr(mptsas_t *mpt, 5828 pMpi2ReplyDescriptorsUnion_t reply_desc_union) 5829 { 5830 uint8_t reply_type; 5831 5832 ASSERT(mutex_owned(&mpt->m_mutex)); 5833 5834 /* 5835 * The reply is valid, process it according to its 5836 * type. Also, set a flag for updated the reply index 5837 * after they've all been processed. 5838 */ 5839 reply_type = ddi_get8(mpt->m_acc_post_queue_hdl, 5840 &reply_desc_union->Default.ReplyFlags); 5841 reply_type &= MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 5842 if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 5843 reply_type == MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS) { 5844 mptsas_handle_scsi_io_success(mpt, reply_desc_union); 5845 } else if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 5846 mptsas_handle_address_reply(mpt, reply_desc_union); 5847 } else { 5848 mptsas_log(mpt, CE_WARN, "?Bad reply type %x", reply_type); 5849 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5850 } 5851 5852 /* 5853 * Clear the reply descriptor for re-use and increment 5854 * index. 5855 */ 5856 ddi_put64(mpt->m_acc_post_queue_hdl, 5857 &((uint64_t *)(void *)mpt->m_post_queue)[mpt->m_post_index], 5858 0xFFFFFFFFFFFFFFFF); 5859 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5860 DDI_DMA_SYNC_FORDEV); 5861 } 5862 5863 /* 5864 * handle qfull condition 5865 */ 5866 static void 5867 mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd) 5868 { 5869 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 5870 5871 if ((++cmd->cmd_qfull_retries > ptgt->m_qfull_retries) || 5872 (ptgt->m_qfull_retries == 0)) { 5873 /* 5874 * We have exhausted the retries on QFULL, or, 5875 * the target driver has indicated that it 5876 * wants to handle QFULL itself by setting 5877 * qfull-retries capability to 0. In either case 5878 * we want the target driver's QFULL handling 5879 * to kick in. We do this by having pkt_reason 5880 * as CMD_CMPLT and pkt_scbp as STATUS_QFULL. 5881 */ 5882 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 5883 } else { 5884 if (ptgt->m_reset_delay == 0) { 5885 ptgt->m_t_throttle = 5886 max((ptgt->m_t_ncmds - 2), 0); 5887 } 5888 5889 cmd->cmd_pkt_flags |= FLAG_HEAD; 5890 cmd->cmd_flags &= ~(CFLAG_TRANFLAG); 5891 cmd->cmd_flags |= CFLAG_RETRY; 5892 5893 (void) mptsas_accept_pkt(mpt, cmd); 5894 5895 /* 5896 * when target gives queue full status with no commands 5897 * outstanding (m_t_ncmds == 0), throttle is set to 0 5898 * (HOLD_THROTTLE), and the queue full handling start 5899 * (see psarc/1994/313); if there are commands outstanding, 5900 * throttle is set to (m_t_ncmds - 2) 5901 */ 5902 if (ptgt->m_t_throttle == HOLD_THROTTLE) { 5903 /* 5904 * By setting throttle to QFULL_THROTTLE, we 5905 * avoid submitting new commands and in 5906 * mptsas_restart_cmd find out slots which need 5907 * their throttles to be cleared. 5908 */ 5909 mptsas_set_throttle(mpt, ptgt, QFULL_THROTTLE); 5910 if (mpt->m_restart_cmd_timeid == 0) { 5911 mpt->m_restart_cmd_timeid = 5912 timeout(mptsas_restart_cmd, mpt, 5913 ptgt->m_qfull_retry_interval); 5914 } 5915 } 5916 } 5917 } 5918 5919 mptsas_phymask_t 5920 mptsas_physport_to_phymask(mptsas_t *mpt, uint8_t physport) 5921 { 5922 mptsas_phymask_t phy_mask = 0; 5923 uint8_t i = 0; 5924 5925 NDBG20(("mptsas%d physport_to_phymask enter", mpt->m_instance)); 5926 5927 ASSERT(mutex_owned(&mpt->m_mutex)); 5928 5929 /* 5930 * If physport is 0xFF, this is a RAID volume. Use phymask of 0. 5931 */ 5932 if (physport == 0xFF) { 5933 return (0); 5934 } 5935 5936 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 5937 if (mpt->m_phy_info[i].attached_devhdl && 5938 (mpt->m_phy_info[i].phy_mask != 0) && 5939 (mpt->m_phy_info[i].port_num == physport)) { 5940 phy_mask = mpt->m_phy_info[i].phy_mask; 5941 break; 5942 } 5943 } 5944 NDBG20(("mptsas%d physport_to_phymask:physport :%x phymask :%x, ", 5945 mpt->m_instance, physport, phy_mask)); 5946 return (phy_mask); 5947 } 5948 5949 /* 5950 * mpt free device handle after device gone, by use of passthrough 5951 */ 5952 static int 5953 mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl) 5954 { 5955 Mpi2SasIoUnitControlRequest_t req; 5956 Mpi2SasIoUnitControlReply_t rep; 5957 int ret; 5958 5959 ASSERT(mutex_owned(&mpt->m_mutex)); 5960 5961 /* 5962 * Need to compose a SAS IO Unit Control request message 5963 * and call mptsas_do_passthru() function 5964 */ 5965 bzero(&req, sizeof (req)); 5966 bzero(&rep, sizeof (rep)); 5967 5968 req.Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL; 5969 req.Operation = MPI2_SAS_OP_REMOVE_DEVICE; 5970 req.DevHandle = LE_16(devhdl); 5971 5972 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL, 5973 sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL); 5974 if (ret != 0) { 5975 cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit " 5976 "Control error %d", ret); 5977 return (DDI_FAILURE); 5978 } 5979 5980 /* do passthrough success, check the ioc status */ 5981 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 5982 cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit " 5983 "Control IOCStatus %d", LE_16(rep.IOCStatus)); 5984 return (DDI_FAILURE); 5985 } 5986 5987 return (DDI_SUCCESS); 5988 } 5989 5990 static void 5991 mptsas_update_phymask(mptsas_t *mpt) 5992 { 5993 mptsas_phymask_t mask = 0, phy_mask; 5994 char *phy_mask_name; 5995 uint8_t current_port; 5996 int i, j; 5997 5998 NDBG20(("mptsas%d update phymask ", mpt->m_instance)); 5999 6000 ASSERT(mutex_owned(&mpt->m_mutex)); 6001 6002 (void) mptsas_get_sas_io_unit_page(mpt); 6003 6004 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6005 6006 for (i = 0; i < mpt->m_num_phys; i++) { 6007 phy_mask = 0x00; 6008 6009 if (mpt->m_phy_info[i].attached_devhdl == 0) 6010 continue; 6011 6012 bzero(phy_mask_name, sizeof (phy_mask_name)); 6013 6014 current_port = mpt->m_phy_info[i].port_num; 6015 6016 if ((mask & (1 << i)) != 0) 6017 continue; 6018 6019 for (j = 0; j < mpt->m_num_phys; j++) { 6020 if (mpt->m_phy_info[j].attached_devhdl && 6021 (mpt->m_phy_info[j].port_num == current_port)) { 6022 phy_mask |= (1 << j); 6023 } 6024 } 6025 mask = mask | phy_mask; 6026 6027 for (j = 0; j < mpt->m_num_phys; j++) { 6028 if ((phy_mask >> j) & 0x01) { 6029 mpt->m_phy_info[j].phy_mask = phy_mask; 6030 } 6031 } 6032 6033 (void) sprintf(phy_mask_name, "%x", phy_mask); 6034 6035 mutex_exit(&mpt->m_mutex); 6036 /* 6037 * register a iport, if the port has already been existed 6038 * SCSA will do nothing and just return. 6039 */ 6040 (void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name); 6041 mutex_enter(&mpt->m_mutex); 6042 } 6043 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6044 NDBG20(("mptsas%d update phymask return", mpt->m_instance)); 6045 } 6046 6047 /* 6048 * mptsas_handle_dr is a task handler for DR, the DR action includes: 6049 * 1. Directly attched Device Added/Removed. 6050 * 2. Expander Device Added/Removed. 6051 * 3. Indirectly Attached Device Added/Expander. 6052 * 4. LUNs of a existing device status change. 6053 * 5. RAID volume created/deleted. 6054 * 6. Member of RAID volume is released because of RAID deletion. 6055 * 7. Physical disks are removed because of RAID creation. 6056 */ 6057 static void 6058 mptsas_handle_dr(void *args) { 6059 mptsas_topo_change_list_t *topo_node = NULL; 6060 mptsas_topo_change_list_t *save_node = NULL; 6061 mptsas_t *mpt; 6062 dev_info_t *parent = NULL; 6063 mptsas_phymask_t phymask = 0; 6064 char *phy_mask_name; 6065 uint8_t flags = 0, physport = 0xff; 6066 uint8_t port_update = 0; 6067 uint_t event; 6068 6069 topo_node = (mptsas_topo_change_list_t *)args; 6070 6071 mpt = topo_node->mpt; 6072 event = topo_node->event; 6073 flags = topo_node->flags; 6074 6075 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6076 6077 NDBG20(("mptsas%d handle_dr enter", mpt->m_instance)); 6078 6079 switch (event) { 6080 case MPTSAS_DR_EVENT_RECONFIG_TARGET: 6081 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6082 (flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE) || 6083 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6084 /* 6085 * Direct attached or expander attached device added 6086 * into system or a Phys Disk that is being unhidden. 6087 */ 6088 port_update = 1; 6089 } 6090 break; 6091 case MPTSAS_DR_EVENT_RECONFIG_SMP: 6092 /* 6093 * New expander added into system, it must be the head 6094 * of topo_change_list_t 6095 */ 6096 port_update = 1; 6097 break; 6098 default: 6099 port_update = 0; 6100 break; 6101 } 6102 /* 6103 * All cases port_update == 1 may cause initiator port form change 6104 */ 6105 mutex_enter(&mpt->m_mutex); 6106 if (mpt->m_port_chng && port_update) { 6107 /* 6108 * mpt->m_port_chng flag indicates some PHYs of initiator 6109 * port have changed to online. So when expander added or 6110 * directly attached device online event come, we force to 6111 * update port information by issueing SAS IO Unit Page and 6112 * update PHYMASKs. 6113 */ 6114 (void) mptsas_update_phymask(mpt); 6115 mpt->m_port_chng = 0; 6116 6117 } 6118 mutex_exit(&mpt->m_mutex); 6119 while (topo_node) { 6120 phymask = 0; 6121 if (parent == NULL) { 6122 physport = topo_node->un.physport; 6123 event = topo_node->event; 6124 flags = topo_node->flags; 6125 if (event & (MPTSAS_DR_EVENT_OFFLINE_TARGET | 6126 MPTSAS_DR_EVENT_OFFLINE_SMP)) { 6127 /* 6128 * For all offline events, phymask is known 6129 */ 6130 phymask = topo_node->un.phymask; 6131 goto find_parent; 6132 } 6133 if (event & MPTSAS_TOPO_FLAG_REMOVE_HANDLE) { 6134 goto handle_topo_change; 6135 } 6136 if (flags & MPTSAS_TOPO_FLAG_LUN_ASSOCIATED) { 6137 phymask = topo_node->un.phymask; 6138 goto find_parent; 6139 } 6140 6141 if ((flags == 6142 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) && 6143 (event == MPTSAS_DR_EVENT_RECONFIG_TARGET)) { 6144 /* 6145 * There is no any field in IR_CONFIG_CHANGE 6146 * event indicate physport/phynum, let's get 6147 * parent after SAS Device Page0 request. 6148 */ 6149 goto handle_topo_change; 6150 } 6151 6152 mutex_enter(&mpt->m_mutex); 6153 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6154 /* 6155 * If the direct attached device added or a 6156 * phys disk is being unhidden, argument 6157 * physport actually is PHY#, so we have to get 6158 * phymask according PHY#. 6159 */ 6160 physport = mpt->m_phy_info[physport].port_num; 6161 } 6162 6163 /* 6164 * Translate physport to phymask so that we can search 6165 * parent dip. 6166 */ 6167 phymask = mptsas_physport_to_phymask(mpt, 6168 physport); 6169 mutex_exit(&mpt->m_mutex); 6170 6171 find_parent: 6172 bzero(phy_mask_name, MPTSAS_MAX_PHYS); 6173 /* 6174 * For RAID topology change node, write the iport name 6175 * as v0. 6176 */ 6177 if (flags & MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6178 (void) sprintf(phy_mask_name, "v0"); 6179 } else { 6180 /* 6181 * phymask can bo 0 if the drive has been 6182 * pulled by the time an add event is 6183 * processed. If phymask is 0, just skip this 6184 * event and continue. 6185 */ 6186 if (phymask == 0) { 6187 mutex_enter(&mpt->m_mutex); 6188 save_node = topo_node; 6189 topo_node = topo_node->next; 6190 ASSERT(save_node); 6191 kmem_free(save_node, 6192 sizeof (mptsas_topo_change_list_t)); 6193 mutex_exit(&mpt->m_mutex); 6194 6195 parent = NULL; 6196 continue; 6197 } 6198 (void) sprintf(phy_mask_name, "%x", phymask); 6199 } 6200 parent = scsi_hba_iport_find(mpt->m_dip, 6201 phy_mask_name); 6202 if (parent == NULL) { 6203 mptsas_log(mpt, CE_WARN, "Failed to find an " 6204 "iport, should not happen!"); 6205 goto out; 6206 } 6207 6208 } 6209 ASSERT(parent); 6210 handle_topo_change: 6211 6212 mutex_enter(&mpt->m_mutex); 6213 /* 6214 * If HBA is being reset, don't perform operations depending 6215 * on the IOC. We must free the topo list, however. 6216 */ 6217 if (!mpt->m_in_reset) 6218 mptsas_handle_topo_change(topo_node, parent); 6219 else 6220 NDBG20(("skipping topo change received during reset")); 6221 save_node = topo_node; 6222 topo_node = topo_node->next; 6223 ASSERT(save_node); 6224 kmem_free(save_node, sizeof (mptsas_topo_change_list_t)); 6225 mutex_exit(&mpt->m_mutex); 6226 6227 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6228 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) || 6229 (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED)) { 6230 /* 6231 * If direct attached device associated, make sure 6232 * reset the parent before start the next one. But 6233 * all devices associated with expander shares the 6234 * parent. Also, reset parent if this is for RAID. 6235 */ 6236 parent = NULL; 6237 } 6238 } 6239 out: 6240 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6241 } 6242 6243 static void 6244 mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node, 6245 dev_info_t *parent) 6246 { 6247 mptsas_target_t *ptgt = NULL; 6248 mptsas_smp_t *psmp = NULL; 6249 mptsas_t *mpt = (void *)topo_node->mpt; 6250 uint16_t devhdl; 6251 uint16_t attached_devhdl; 6252 uint64_t sas_wwn = 0; 6253 int rval = 0; 6254 uint32_t page_address; 6255 uint8_t phy, flags; 6256 char *addr = NULL; 6257 dev_info_t *lundip; 6258 int circ = 0, circ1 = 0; 6259 char attached_wwnstr[MPTSAS_WWN_STRLEN]; 6260 6261 NDBG20(("mptsas%d handle_topo_change enter, devhdl 0x%x," 6262 "event 0x%x, flags 0x%x", mpt->m_instance, topo_node->devhdl, 6263 topo_node->event, topo_node->flags)); 6264 6265 ASSERT(mutex_owned(&mpt->m_mutex)); 6266 6267 switch (topo_node->event) { 6268 case MPTSAS_DR_EVENT_RECONFIG_TARGET: 6269 { 6270 char *phy_mask_name; 6271 mptsas_phymask_t phymask = 0; 6272 6273 if (topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6274 /* 6275 * Get latest RAID info. 6276 */ 6277 (void) mptsas_get_raid_info(mpt); 6278 ptgt = refhash_linear_search(mpt->m_targets, 6279 mptsas_target_eval_devhdl, &topo_node->devhdl); 6280 if (ptgt == NULL) 6281 break; 6282 } else { 6283 ptgt = (void *)topo_node->object; 6284 } 6285 6286 if (ptgt == NULL) { 6287 /* 6288 * If a Phys Disk was deleted, RAID info needs to be 6289 * updated to reflect the new topology. 6290 */ 6291 (void) mptsas_get_raid_info(mpt); 6292 6293 /* 6294 * Get sas device page 0 by DevHandle to make sure if 6295 * SSP/SATA end device exist. 6296 */ 6297 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 6298 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 6299 topo_node->devhdl; 6300 6301 rval = mptsas_get_target_device_info(mpt, page_address, 6302 &devhdl, &ptgt); 6303 if (rval == DEV_INFO_WRONG_DEVICE_TYPE) { 6304 mptsas_log(mpt, CE_NOTE, 6305 "mptsas_handle_topo_change: target %d is " 6306 "not a SAS/SATA device. \n", 6307 topo_node->devhdl); 6308 } else if (rval == DEV_INFO_FAIL_ALLOC) { 6309 mptsas_log(mpt, CE_NOTE, 6310 "mptsas_handle_topo_change: could not " 6311 "allocate memory. \n"); 6312 } 6313 /* 6314 * If rval is DEV_INFO_PHYS_DISK than there is nothing 6315 * else to do, just leave. 6316 */ 6317 if (rval != DEV_INFO_SUCCESS) { 6318 return; 6319 } 6320 } 6321 6322 ASSERT(ptgt->m_devhdl == topo_node->devhdl); 6323 6324 mutex_exit(&mpt->m_mutex); 6325 flags = topo_node->flags; 6326 6327 if (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) { 6328 phymask = ptgt->m_addr.mta_phymask; 6329 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6330 (void) sprintf(phy_mask_name, "%x", phymask); 6331 parent = scsi_hba_iport_find(mpt->m_dip, 6332 phy_mask_name); 6333 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6334 if (parent == NULL) { 6335 mptsas_log(mpt, CE_WARN, "Failed to find a " 6336 "iport for PD, should not happen!"); 6337 mutex_enter(&mpt->m_mutex); 6338 break; 6339 } 6340 } 6341 6342 if (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6343 ndi_devi_enter(parent, &circ1); 6344 (void) mptsas_config_raid(parent, topo_node->devhdl, 6345 &lundip); 6346 ndi_devi_exit(parent, circ1); 6347 } else { 6348 /* 6349 * hold nexus for bus configure 6350 */ 6351 ndi_devi_enter(scsi_vhci_dip, &circ); 6352 ndi_devi_enter(parent, &circ1); 6353 rval = mptsas_config_target(parent, ptgt); 6354 /* 6355 * release nexus for bus configure 6356 */ 6357 ndi_devi_exit(parent, circ1); 6358 ndi_devi_exit(scsi_vhci_dip, circ); 6359 6360 /* 6361 * Add parent's props for SMHBA support 6362 */ 6363 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6364 bzero(attached_wwnstr, 6365 sizeof (attached_wwnstr)); 6366 (void) sprintf(attached_wwnstr, "w%016"PRIx64, 6367 ptgt->m_addr.mta_wwn); 6368 if (ddi_prop_update_string(DDI_DEV_T_NONE, 6369 parent, 6370 SCSI_ADDR_PROP_ATTACHED_PORT, 6371 attached_wwnstr) 6372 != DDI_PROP_SUCCESS) { 6373 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6374 parent, 6375 SCSI_ADDR_PROP_ATTACHED_PORT); 6376 mptsas_log(mpt, CE_WARN, "Failed to" 6377 "attached-port props"); 6378 return; 6379 } 6380 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6381 MPTSAS_NUM_PHYS, 1) != 6382 DDI_PROP_SUCCESS) { 6383 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6384 parent, MPTSAS_NUM_PHYS); 6385 mptsas_log(mpt, CE_WARN, "Failed to" 6386 " create num-phys props"); 6387 return; 6388 } 6389 6390 /* 6391 * Update PHY info for smhba 6392 */ 6393 mutex_enter(&mpt->m_mutex); 6394 if (mptsas_smhba_phy_init(mpt)) { 6395 mutex_exit(&mpt->m_mutex); 6396 mptsas_log(mpt, CE_WARN, "mptsas phy" 6397 " update failed"); 6398 return; 6399 } 6400 mutex_exit(&mpt->m_mutex); 6401 6402 /* 6403 * topo_node->un.physport is really the PHY# 6404 * for direct attached devices 6405 */ 6406 mptsas_smhba_set_one_phy_props(mpt, parent, 6407 topo_node->un.physport, &attached_devhdl); 6408 6409 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6410 MPTSAS_VIRTUAL_PORT, 0) != 6411 DDI_PROP_SUCCESS) { 6412 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6413 parent, MPTSAS_VIRTUAL_PORT); 6414 mptsas_log(mpt, CE_WARN, 6415 "mptsas virtual-port" 6416 "port prop update failed"); 6417 return; 6418 } 6419 } 6420 } 6421 mutex_enter(&mpt->m_mutex); 6422 6423 NDBG20(("mptsas%d handle_topo_change to online devhdl:%x, " 6424 "phymask:%x.", mpt->m_instance, ptgt->m_devhdl, 6425 ptgt->m_addr.mta_phymask)); 6426 break; 6427 } 6428 case MPTSAS_DR_EVENT_OFFLINE_TARGET: 6429 { 6430 devhdl = topo_node->devhdl; 6431 ptgt = refhash_linear_search(mpt->m_targets, 6432 mptsas_target_eval_devhdl, &devhdl); 6433 if (ptgt == NULL) 6434 break; 6435 6436 sas_wwn = ptgt->m_addr.mta_wwn; 6437 phy = ptgt->m_phynum; 6438 6439 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 6440 6441 if (sas_wwn) { 6442 (void) sprintf(addr, "w%016"PRIx64, sas_wwn); 6443 } else { 6444 (void) sprintf(addr, "p%x", phy); 6445 } 6446 ASSERT(ptgt->m_devhdl == devhdl); 6447 6448 if ((topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) || 6449 (topo_node->flags == 6450 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6451 /* 6452 * Get latest RAID info if RAID volume status changes 6453 * or Phys Disk status changes 6454 */ 6455 (void) mptsas_get_raid_info(mpt); 6456 } 6457 /* 6458 * Abort all outstanding command on the device 6459 */ 6460 rval = mptsas_do_scsi_reset(mpt, devhdl); 6461 if (rval) { 6462 NDBG20(("mptsas%d handle_topo_change to reset target " 6463 "before offline devhdl:%x, phymask:%x, rval:%x", 6464 mpt->m_instance, ptgt->m_devhdl, 6465 ptgt->m_addr.mta_phymask, rval)); 6466 } 6467 6468 mutex_exit(&mpt->m_mutex); 6469 6470 ndi_devi_enter(scsi_vhci_dip, &circ); 6471 ndi_devi_enter(parent, &circ1); 6472 rval = mptsas_offline_target(parent, addr); 6473 ndi_devi_exit(parent, circ1); 6474 ndi_devi_exit(scsi_vhci_dip, circ); 6475 NDBG20(("mptsas%d handle_topo_change to offline devhdl:%x, " 6476 "phymask:%x, rval:%x", mpt->m_instance, 6477 ptgt->m_devhdl, ptgt->m_addr.mta_phymask, rval)); 6478 6479 kmem_free(addr, SCSI_MAXNAMELEN); 6480 6481 /* 6482 * Clear parent's props for SMHBA support 6483 */ 6484 flags = topo_node->flags; 6485 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6486 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 6487 if (ddi_prop_update_string(DDI_DEV_T_NONE, parent, 6488 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 6489 DDI_PROP_SUCCESS) { 6490 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6491 SCSI_ADDR_PROP_ATTACHED_PORT); 6492 mptsas_log(mpt, CE_WARN, "mptsas attached port " 6493 "prop update failed"); 6494 break; 6495 } 6496 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6497 MPTSAS_NUM_PHYS, 0) != 6498 DDI_PROP_SUCCESS) { 6499 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6500 MPTSAS_NUM_PHYS); 6501 mptsas_log(mpt, CE_WARN, "mptsas num phys " 6502 "prop update failed"); 6503 break; 6504 } 6505 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6506 MPTSAS_VIRTUAL_PORT, 1) != 6507 DDI_PROP_SUCCESS) { 6508 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6509 MPTSAS_VIRTUAL_PORT); 6510 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 6511 "prop update failed"); 6512 break; 6513 } 6514 } 6515 6516 mutex_enter(&mpt->m_mutex); 6517 ptgt->m_led_status = 0; 6518 (void) mptsas_flush_led_status(mpt, ptgt); 6519 if (rval == DDI_SUCCESS) { 6520 refhash_remove(mpt->m_targets, ptgt); 6521 ptgt = NULL; 6522 } else { 6523 /* 6524 * clean DR_INTRANSITION flag to allow I/O down to 6525 * PHCI driver since failover finished. 6526 * Invalidate the devhdl 6527 */ 6528 ptgt->m_devhdl = MPTSAS_INVALID_DEVHDL; 6529 ptgt->m_tgt_unconfigured = 0; 6530 mutex_enter(&mpt->m_tx_waitq_mutex); 6531 ptgt->m_dr_flag = MPTSAS_DR_INACTIVE; 6532 mutex_exit(&mpt->m_tx_waitq_mutex); 6533 } 6534 6535 /* 6536 * Send SAS IO Unit Control to free the dev handle 6537 */ 6538 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6539 (flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE)) { 6540 rval = mptsas_free_devhdl(mpt, devhdl); 6541 6542 NDBG20(("mptsas%d handle_topo_change to remove " 6543 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, 6544 rval)); 6545 } 6546 6547 break; 6548 } 6549 case MPTSAS_TOPO_FLAG_REMOVE_HANDLE: 6550 { 6551 devhdl = topo_node->devhdl; 6552 /* 6553 * If this is the remove handle event, do a reset first. 6554 */ 6555 if (topo_node->event == MPTSAS_TOPO_FLAG_REMOVE_HANDLE) { 6556 rval = mptsas_do_scsi_reset(mpt, devhdl); 6557 if (rval) { 6558 NDBG20(("mpt%d reset target before remove " 6559 "devhdl:%x, rval:%x", mpt->m_instance, 6560 devhdl, rval)); 6561 } 6562 } 6563 6564 /* 6565 * Send SAS IO Unit Control to free the dev handle 6566 */ 6567 rval = mptsas_free_devhdl(mpt, devhdl); 6568 NDBG20(("mptsas%d handle_topo_change to remove " 6569 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, 6570 rval)); 6571 break; 6572 } 6573 case MPTSAS_DR_EVENT_RECONFIG_SMP: 6574 { 6575 mptsas_smp_t smp; 6576 dev_info_t *smpdip; 6577 6578 devhdl = topo_node->devhdl; 6579 6580 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL & 6581 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)devhdl; 6582 rval = mptsas_get_sas_expander_page0(mpt, page_address, &smp); 6583 if (rval != DDI_SUCCESS) { 6584 mptsas_log(mpt, CE_WARN, "failed to online smp, " 6585 "handle %x", devhdl); 6586 return; 6587 } 6588 6589 psmp = mptsas_smp_alloc(mpt, &smp); 6590 if (psmp == NULL) { 6591 return; 6592 } 6593 6594 mutex_exit(&mpt->m_mutex); 6595 ndi_devi_enter(parent, &circ1); 6596 (void) mptsas_online_smp(parent, psmp, &smpdip); 6597 ndi_devi_exit(parent, circ1); 6598 6599 mutex_enter(&mpt->m_mutex); 6600 break; 6601 } 6602 case MPTSAS_DR_EVENT_OFFLINE_SMP: 6603 { 6604 devhdl = topo_node->devhdl; 6605 uint32_t dev_info; 6606 6607 psmp = refhash_linear_search(mpt->m_smp_targets, 6608 mptsas_smp_eval_devhdl, &devhdl); 6609 if (psmp == NULL) 6610 break; 6611 /* 6612 * The mptsas_smp_t data is released only if the dip is offlined 6613 * successfully. 6614 */ 6615 mutex_exit(&mpt->m_mutex); 6616 6617 ndi_devi_enter(parent, &circ1); 6618 rval = mptsas_offline_smp(parent, psmp, NDI_DEVI_REMOVE); 6619 ndi_devi_exit(parent, circ1); 6620 6621 dev_info = psmp->m_deviceinfo; 6622 if ((dev_info & DEVINFO_DIRECT_ATTACHED) == 6623 DEVINFO_DIRECT_ATTACHED) { 6624 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6625 MPTSAS_VIRTUAL_PORT, 1) != 6626 DDI_PROP_SUCCESS) { 6627 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6628 MPTSAS_VIRTUAL_PORT); 6629 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 6630 "prop update failed"); 6631 return; 6632 } 6633 /* 6634 * Check whether the smp connected to the iport, 6635 */ 6636 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6637 MPTSAS_NUM_PHYS, 0) != 6638 DDI_PROP_SUCCESS) { 6639 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6640 MPTSAS_NUM_PHYS); 6641 mptsas_log(mpt, CE_WARN, "mptsas num phys" 6642 "prop update failed"); 6643 return; 6644 } 6645 /* 6646 * Clear parent's attached-port props 6647 */ 6648 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 6649 if (ddi_prop_update_string(DDI_DEV_T_NONE, parent, 6650 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 6651 DDI_PROP_SUCCESS) { 6652 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6653 SCSI_ADDR_PROP_ATTACHED_PORT); 6654 mptsas_log(mpt, CE_WARN, "mptsas attached port " 6655 "prop update failed"); 6656 return; 6657 } 6658 } 6659 6660 mutex_enter(&mpt->m_mutex); 6661 NDBG20(("mptsas%d handle_topo_change to remove devhdl:%x, " 6662 "rval:%x", mpt->m_instance, psmp->m_devhdl, rval)); 6663 if (rval == DDI_SUCCESS) { 6664 refhash_remove(mpt->m_smp_targets, psmp); 6665 } else { 6666 psmp->m_devhdl = MPTSAS_INVALID_DEVHDL; 6667 } 6668 6669 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 6670 6671 break; 6672 } 6673 default: 6674 return; 6675 } 6676 } 6677 6678 /* 6679 * Record the event if its type is enabled in mpt instance by ioctl. 6680 */ 6681 static void 6682 mptsas_record_event(void *args) 6683 { 6684 m_replyh_arg_t *replyh_arg; 6685 pMpi2EventNotificationReply_t eventreply; 6686 uint32_t event, rfm; 6687 mptsas_t *mpt; 6688 int i, j; 6689 uint16_t event_data_len; 6690 boolean_t sendAEN = FALSE; 6691 6692 replyh_arg = (m_replyh_arg_t *)args; 6693 rfm = replyh_arg->rfm; 6694 mpt = replyh_arg->mpt; 6695 6696 eventreply = (pMpi2EventNotificationReply_t) 6697 (mpt->m_reply_frame + (rfm - mpt->m_reply_frame_dma_addr)); 6698 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 6699 6700 6701 /* 6702 * Generate a system event to let anyone who cares know that a 6703 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 6704 * event mask is set to. 6705 */ 6706 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 6707 sendAEN = TRUE; 6708 } 6709 6710 /* 6711 * Record the event only if it is not masked. Determine which dword 6712 * and bit of event mask to test. 6713 */ 6714 i = (uint8_t)(event / 32); 6715 j = (uint8_t)(event % 32); 6716 if ((i < 4) && ((1 << j) & mpt->m_event_mask[i])) { 6717 i = mpt->m_event_index; 6718 mpt->m_events[i].Type = event; 6719 mpt->m_events[i].Number = ++mpt->m_event_number; 6720 bzero(mpt->m_events[i].Data, MPTSAS_MAX_EVENT_DATA_LENGTH * 4); 6721 event_data_len = ddi_get16(mpt->m_acc_reply_frame_hdl, 6722 &eventreply->EventDataLength); 6723 6724 if (event_data_len > 0) { 6725 /* 6726 * Limit data to size in m_event entry 6727 */ 6728 if (event_data_len > MPTSAS_MAX_EVENT_DATA_LENGTH) { 6729 event_data_len = MPTSAS_MAX_EVENT_DATA_LENGTH; 6730 } 6731 for (j = 0; j < event_data_len; j++) { 6732 mpt->m_events[i].Data[j] = 6733 ddi_get32(mpt->m_acc_reply_frame_hdl, 6734 &(eventreply->EventData[j])); 6735 } 6736 6737 /* 6738 * check for index wrap-around 6739 */ 6740 if (++i == MPTSAS_EVENT_QUEUE_SIZE) { 6741 i = 0; 6742 } 6743 mpt->m_event_index = (uint8_t)i; 6744 6745 /* 6746 * Set flag to send the event. 6747 */ 6748 sendAEN = TRUE; 6749 } 6750 } 6751 6752 /* 6753 * Generate a system event if flag is set to let anyone who cares know 6754 * that an event has occurred. 6755 */ 6756 if (sendAEN) { 6757 (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 6758 "SAS", NULL, NULL, DDI_NOSLEEP); 6759 } 6760 } 6761 6762 #define SMP_RESET_IN_PROGRESS MPI2_EVENT_SAS_TOPO_LR_SMP_RESET_IN_PROGRESS 6763 /* 6764 * handle sync events from ioc in interrupt 6765 * return value: 6766 * DDI_SUCCESS: The event is handled by this func 6767 * DDI_FAILURE: Event is not handled 6768 */ 6769 static int 6770 mptsas_handle_event_sync(void *args) 6771 { 6772 m_replyh_arg_t *replyh_arg; 6773 pMpi2EventNotificationReply_t eventreply; 6774 uint32_t event, rfm; 6775 mptsas_t *mpt; 6776 uint_t iocstatus; 6777 6778 replyh_arg = (m_replyh_arg_t *)args; 6779 rfm = replyh_arg->rfm; 6780 mpt = replyh_arg->mpt; 6781 6782 ASSERT(mutex_owned(&mpt->m_mutex)); 6783 6784 eventreply = (pMpi2EventNotificationReply_t) 6785 (mpt->m_reply_frame + (rfm - mpt->m_reply_frame_dma_addr)); 6786 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 6787 6788 if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 6789 &eventreply->IOCStatus)) { 6790 if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 6791 mptsas_log(mpt, CE_WARN, 6792 "!mptsas_handle_event_sync: event 0x%x, " 6793 "IOCStatus=0x%x, " 6794 "IOCLogInfo=0x%x", event, iocstatus, 6795 ddi_get32(mpt->m_acc_reply_frame_hdl, 6796 &eventreply->IOCLogInfo)); 6797 } else { 6798 mptsas_log(mpt, CE_WARN, 6799 "mptsas_handle_event_sync: event 0x%x, " 6800 "IOCStatus=0x%x, " 6801 "(IOCLogInfo=0x%x)", event, iocstatus, 6802 ddi_get32(mpt->m_acc_reply_frame_hdl, 6803 &eventreply->IOCLogInfo)); 6804 } 6805 } 6806 6807 /* 6808 * figure out what kind of event we got and handle accordingly 6809 */ 6810 switch (event) { 6811 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 6812 { 6813 pMpi2EventDataSasTopologyChangeList_t sas_topo_change_list; 6814 uint8_t num_entries, expstatus, phy; 6815 uint8_t phystatus, physport, state, i; 6816 uint8_t start_phy_num, link_rate; 6817 uint16_t dev_handle, reason_code; 6818 uint16_t enc_handle, expd_handle; 6819 char string[80], curr[80], prev[80]; 6820 mptsas_topo_change_list_t *topo_head = NULL; 6821 mptsas_topo_change_list_t *topo_tail = NULL; 6822 mptsas_topo_change_list_t *topo_node = NULL; 6823 mptsas_target_t *ptgt; 6824 mptsas_smp_t *psmp; 6825 uint8_t flags = 0, exp_flag; 6826 smhba_info_t *pSmhba = NULL; 6827 6828 NDBG20(("mptsas_handle_event_sync: SAS topology change")); 6829 6830 sas_topo_change_list = (pMpi2EventDataSasTopologyChangeList_t) 6831 eventreply->EventData; 6832 6833 enc_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 6834 &sas_topo_change_list->EnclosureHandle); 6835 expd_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 6836 &sas_topo_change_list->ExpanderDevHandle); 6837 num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl, 6838 &sas_topo_change_list->NumEntries); 6839 start_phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl, 6840 &sas_topo_change_list->StartPhyNum); 6841 expstatus = ddi_get8(mpt->m_acc_reply_frame_hdl, 6842 &sas_topo_change_list->ExpStatus); 6843 physport = ddi_get8(mpt->m_acc_reply_frame_hdl, 6844 &sas_topo_change_list->PhysicalPort); 6845 6846 string[0] = 0; 6847 if (expd_handle) { 6848 flags = MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED; 6849 switch (expstatus) { 6850 case MPI2_EVENT_SAS_TOPO_ES_ADDED: 6851 (void) sprintf(string, " added"); 6852 /* 6853 * New expander device added 6854 */ 6855 mpt->m_port_chng = 1; 6856 topo_node = kmem_zalloc( 6857 sizeof (mptsas_topo_change_list_t), 6858 KM_SLEEP); 6859 topo_node->mpt = mpt; 6860 topo_node->event = MPTSAS_DR_EVENT_RECONFIG_SMP; 6861 topo_node->un.physport = physport; 6862 topo_node->devhdl = expd_handle; 6863 topo_node->flags = flags; 6864 topo_node->object = NULL; 6865 if (topo_head == NULL) { 6866 topo_head = topo_tail = topo_node; 6867 } else { 6868 topo_tail->next = topo_node; 6869 topo_tail = topo_node; 6870 } 6871 break; 6872 case MPI2_EVENT_SAS_TOPO_ES_NOT_RESPONDING: 6873 (void) sprintf(string, " not responding, " 6874 "removed"); 6875 psmp = refhash_linear_search(mpt->m_smp_targets, 6876 mptsas_smp_eval_devhdl, &expd_handle); 6877 if (psmp == NULL) 6878 break; 6879 6880 topo_node = kmem_zalloc( 6881 sizeof (mptsas_topo_change_list_t), 6882 KM_SLEEP); 6883 topo_node->mpt = mpt; 6884 topo_node->un.phymask = 6885 psmp->m_addr.mta_phymask; 6886 topo_node->event = MPTSAS_DR_EVENT_OFFLINE_SMP; 6887 topo_node->devhdl = expd_handle; 6888 topo_node->flags = flags; 6889 topo_node->object = NULL; 6890 if (topo_head == NULL) { 6891 topo_head = topo_tail = topo_node; 6892 } else { 6893 topo_tail->next = topo_node; 6894 topo_tail = topo_node; 6895 } 6896 break; 6897 case MPI2_EVENT_SAS_TOPO_ES_RESPONDING: 6898 break; 6899 case MPI2_EVENT_SAS_TOPO_ES_DELAY_NOT_RESPONDING: 6900 (void) sprintf(string, " not responding, " 6901 "delaying removal"); 6902 break; 6903 default: 6904 break; 6905 } 6906 } else { 6907 flags = MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE; 6908 } 6909 6910 NDBG20(("SAS TOPOLOGY CHANGE for enclosure %x expander %x%s\n", 6911 enc_handle, expd_handle, string)); 6912 for (i = 0; i < num_entries; i++) { 6913 phy = i + start_phy_num; 6914 phystatus = ddi_get8(mpt->m_acc_reply_frame_hdl, 6915 &sas_topo_change_list->PHY[i].PhyStatus); 6916 dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 6917 &sas_topo_change_list->PHY[i].AttachedDevHandle); 6918 reason_code = phystatus & MPI2_EVENT_SAS_TOPO_RC_MASK; 6919 /* 6920 * Filter out processing of Phy Vacant Status unless 6921 * the reason code is "Not Responding". Process all 6922 * other combinations of Phy Status and Reason Codes. 6923 */ 6924 if ((phystatus & 6925 MPI2_EVENT_SAS_TOPO_PHYSTATUS_VACANT) && 6926 (reason_code != 6927 MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING)) { 6928 continue; 6929 } 6930 curr[0] = 0; 6931 prev[0] = 0; 6932 string[0] = 0; 6933 switch (reason_code) { 6934 case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED: 6935 { 6936 NDBG20(("mptsas%d phy %d physical_port %d " 6937 "dev_handle %d added", mpt->m_instance, phy, 6938 physport, dev_handle)); 6939 link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl, 6940 &sas_topo_change_list->PHY[i].LinkRate); 6941 state = (link_rate & 6942 MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >> 6943 MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT; 6944 switch (state) { 6945 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 6946 (void) sprintf(curr, "is disabled"); 6947 break; 6948 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 6949 (void) sprintf(curr, "is offline, " 6950 "failed speed negotiation"); 6951 break; 6952 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 6953 (void) sprintf(curr, "SATA OOB " 6954 "complete"); 6955 break; 6956 case SMP_RESET_IN_PROGRESS: 6957 (void) sprintf(curr, "SMP reset in " 6958 "progress"); 6959 break; 6960 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 6961 (void) sprintf(curr, "is online at " 6962 "1.5 Gbps"); 6963 break; 6964 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 6965 (void) sprintf(curr, "is online at 3.0 " 6966 "Gbps"); 6967 break; 6968 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 6969 (void) sprintf(curr, "is online at 6.0 " 6970 "Gbps"); 6971 break; 6972 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 6973 (void) sprintf(curr, 6974 "is online at 12.0 Gbps"); 6975 break; 6976 default: 6977 (void) sprintf(curr, "state is " 6978 "unknown"); 6979 break; 6980 } 6981 /* 6982 * New target device added into the system. 6983 * Set association flag according to if an 6984 * expander is used or not. 6985 */ 6986 exp_flag = 6987 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE; 6988 if (flags == 6989 MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) { 6990 flags = exp_flag; 6991 } 6992 topo_node = kmem_zalloc( 6993 sizeof (mptsas_topo_change_list_t), 6994 KM_SLEEP); 6995 topo_node->mpt = mpt; 6996 topo_node->event = 6997 MPTSAS_DR_EVENT_RECONFIG_TARGET; 6998 if (expd_handle == 0) { 6999 /* 7000 * Per MPI 2, if expander dev handle 7001 * is 0, it's a directly attached 7002 * device. So driver use PHY to decide 7003 * which iport is associated 7004 */ 7005 physport = phy; 7006 mpt->m_port_chng = 1; 7007 } 7008 topo_node->un.physport = physport; 7009 topo_node->devhdl = dev_handle; 7010 topo_node->flags = flags; 7011 topo_node->object = NULL; 7012 if (topo_head == NULL) { 7013 topo_head = topo_tail = topo_node; 7014 } else { 7015 topo_tail->next = topo_node; 7016 topo_tail = topo_node; 7017 } 7018 break; 7019 } 7020 case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING: 7021 { 7022 NDBG20(("mptsas%d phy %d physical_port %d " 7023 "dev_handle %d removed", mpt->m_instance, 7024 phy, physport, dev_handle)); 7025 /* 7026 * Set association flag according to if an 7027 * expander is used or not. 7028 */ 7029 exp_flag = 7030 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE; 7031 if (flags == 7032 MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) { 7033 flags = exp_flag; 7034 } 7035 /* 7036 * Target device is removed from the system 7037 * Before the device is really offline from 7038 * from system. 7039 */ 7040 ptgt = refhash_linear_search(mpt->m_targets, 7041 mptsas_target_eval_devhdl, &dev_handle); 7042 /* 7043 * If ptgt is NULL here, it means that the 7044 * DevHandle is not in the hash table. This is 7045 * reasonable sometimes. For example, if a 7046 * disk was pulled, then added, then pulled 7047 * again, the disk will not have been put into 7048 * the hash table because the add event will 7049 * have an invalid phymask. BUT, this does not 7050 * mean that the DevHandle is invalid. The 7051 * controller will still have a valid DevHandle 7052 * that must be removed. To do this, use the 7053 * MPTSAS_TOPO_FLAG_REMOVE_HANDLE event. 7054 */ 7055 if (ptgt == NULL) { 7056 topo_node = kmem_zalloc( 7057 sizeof (mptsas_topo_change_list_t), 7058 KM_SLEEP); 7059 topo_node->mpt = mpt; 7060 topo_node->un.phymask = 0; 7061 topo_node->event = 7062 MPTSAS_TOPO_FLAG_REMOVE_HANDLE; 7063 topo_node->devhdl = dev_handle; 7064 topo_node->flags = flags; 7065 topo_node->object = NULL; 7066 if (topo_head == NULL) { 7067 topo_head = topo_tail = 7068 topo_node; 7069 } else { 7070 topo_tail->next = topo_node; 7071 topo_tail = topo_node; 7072 } 7073 break; 7074 } 7075 7076 /* 7077 * Update DR flag immediately avoid I/O failure 7078 * before failover finish. Pay attention to the 7079 * mutex protect, we need grab m_tx_waitq_mutex 7080 * during set m_dr_flag because we won't add 7081 * the following command into waitq, instead, 7082 * we need return TRAN_BUSY in the tran_start 7083 * context. 7084 */ 7085 mutex_enter(&mpt->m_tx_waitq_mutex); 7086 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7087 mutex_exit(&mpt->m_tx_waitq_mutex); 7088 7089 topo_node = kmem_zalloc( 7090 sizeof (mptsas_topo_change_list_t), 7091 KM_SLEEP); 7092 topo_node->mpt = mpt; 7093 topo_node->un.phymask = 7094 ptgt->m_addr.mta_phymask; 7095 topo_node->event = 7096 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7097 topo_node->devhdl = dev_handle; 7098 topo_node->flags = flags; 7099 topo_node->object = NULL; 7100 if (topo_head == NULL) { 7101 topo_head = topo_tail = topo_node; 7102 } else { 7103 topo_tail->next = topo_node; 7104 topo_tail = topo_node; 7105 } 7106 break; 7107 } 7108 case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED: 7109 link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl, 7110 &sas_topo_change_list->PHY[i].LinkRate); 7111 state = (link_rate & 7112 MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >> 7113 MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT; 7114 pSmhba = &mpt->m_phy_info[i].smhba_info; 7115 pSmhba->negotiated_link_rate = state; 7116 switch (state) { 7117 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7118 (void) sprintf(curr, "is disabled"); 7119 mptsas_smhba_log_sysevent(mpt, 7120 ESC_SAS_PHY_EVENT, 7121 SAS_PHY_REMOVE, 7122 &mpt->m_phy_info[i].smhba_info); 7123 mpt->m_phy_info[i].smhba_info. 7124 negotiated_link_rate 7125 = 0x1; 7126 break; 7127 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7128 (void) sprintf(curr, "is offline, " 7129 "failed speed negotiation"); 7130 mptsas_smhba_log_sysevent(mpt, 7131 ESC_SAS_PHY_EVENT, 7132 SAS_PHY_OFFLINE, 7133 &mpt->m_phy_info[i].smhba_info); 7134 break; 7135 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7136 (void) sprintf(curr, "SATA OOB " 7137 "complete"); 7138 break; 7139 case SMP_RESET_IN_PROGRESS: 7140 (void) sprintf(curr, "SMP reset in " 7141 "progress"); 7142 break; 7143 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7144 (void) sprintf(curr, "is online at " 7145 "1.5 Gbps"); 7146 if ((expd_handle == 0) && 7147 (enc_handle == 1)) { 7148 mpt->m_port_chng = 1; 7149 } 7150 mptsas_smhba_log_sysevent(mpt, 7151 ESC_SAS_PHY_EVENT, 7152 SAS_PHY_ONLINE, 7153 &mpt->m_phy_info[i].smhba_info); 7154 break; 7155 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7156 (void) sprintf(curr, "is online at 3.0 " 7157 "Gbps"); 7158 if ((expd_handle == 0) && 7159 (enc_handle == 1)) { 7160 mpt->m_port_chng = 1; 7161 } 7162 mptsas_smhba_log_sysevent(mpt, 7163 ESC_SAS_PHY_EVENT, 7164 SAS_PHY_ONLINE, 7165 &mpt->m_phy_info[i].smhba_info); 7166 break; 7167 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7168 (void) sprintf(curr, "is online at " 7169 "6.0 Gbps"); 7170 if ((expd_handle == 0) && 7171 (enc_handle == 1)) { 7172 mpt->m_port_chng = 1; 7173 } 7174 mptsas_smhba_log_sysevent(mpt, 7175 ESC_SAS_PHY_EVENT, 7176 SAS_PHY_ONLINE, 7177 &mpt->m_phy_info[i].smhba_info); 7178 break; 7179 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7180 (void) sprintf(curr, "is online at " 7181 "12.0 Gbps"); 7182 if ((expd_handle == 0) && 7183 (enc_handle == 1)) { 7184 mpt->m_port_chng = 1; 7185 } 7186 mptsas_smhba_log_sysevent(mpt, 7187 ESC_SAS_PHY_EVENT, 7188 SAS_PHY_ONLINE, 7189 &mpt->m_phy_info[i].smhba_info); 7190 break; 7191 default: 7192 (void) sprintf(curr, "state is " 7193 "unknown"); 7194 break; 7195 } 7196 7197 state = (link_rate & 7198 MPI2_EVENT_SAS_TOPO_LR_PREV_MASK) >> 7199 MPI2_EVENT_SAS_TOPO_LR_PREV_SHIFT; 7200 switch (state) { 7201 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7202 (void) sprintf(prev, ", was disabled"); 7203 break; 7204 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7205 (void) sprintf(prev, ", was offline, " 7206 "failed speed negotiation"); 7207 break; 7208 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7209 (void) sprintf(prev, ", was SATA OOB " 7210 "complete"); 7211 break; 7212 case SMP_RESET_IN_PROGRESS: 7213 (void) sprintf(prev, ", was SMP reset " 7214 "in progress"); 7215 break; 7216 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7217 (void) sprintf(prev, ", was online at " 7218 "1.5 Gbps"); 7219 break; 7220 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7221 (void) sprintf(prev, ", was online at " 7222 "3.0 Gbps"); 7223 break; 7224 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7225 (void) sprintf(prev, ", was online at " 7226 "6.0 Gbps"); 7227 break; 7228 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7229 (void) sprintf(prev, ", was online at " 7230 "12.0 Gbps"); 7231 break; 7232 default: 7233 break; 7234 } 7235 (void) sprintf(&string[strlen(string)], "link " 7236 "changed, "); 7237 break; 7238 case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE: 7239 continue; 7240 case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING: 7241 (void) sprintf(&string[strlen(string)], 7242 "target not responding, delaying " 7243 "removal"); 7244 break; 7245 } 7246 NDBG20(("mptsas%d phy %d DevHandle %x, %s%s%s\n", 7247 mpt->m_instance, phy, dev_handle, string, curr, 7248 prev)); 7249 } 7250 if (topo_head != NULL) { 7251 /* 7252 * Launch DR taskq to handle topology change 7253 */ 7254 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 7255 mptsas_handle_dr, (void *)topo_head, 7256 DDI_NOSLEEP)) != DDI_SUCCESS) { 7257 while (topo_head != NULL) { 7258 topo_node = topo_head; 7259 topo_head = topo_head->next; 7260 kmem_free(topo_node, 7261 sizeof (mptsas_topo_change_list_t)); 7262 } 7263 mptsas_log(mpt, CE_NOTE, "mptsas start taskq " 7264 "for handle SAS DR event failed. \n"); 7265 } 7266 } 7267 break; 7268 } 7269 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 7270 { 7271 Mpi2EventDataIrConfigChangeList_t *irChangeList; 7272 mptsas_topo_change_list_t *topo_head = NULL; 7273 mptsas_topo_change_list_t *topo_tail = NULL; 7274 mptsas_topo_change_list_t *topo_node = NULL; 7275 mptsas_target_t *ptgt; 7276 uint8_t num_entries, i, reason; 7277 uint16_t volhandle, diskhandle; 7278 7279 irChangeList = (pMpi2EventDataIrConfigChangeList_t) 7280 eventreply->EventData; 7281 num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl, 7282 &irChangeList->NumElements); 7283 7284 NDBG20(("mptsas%d IR_CONFIGURATION_CHANGE_LIST event received", 7285 mpt->m_instance)); 7286 7287 for (i = 0; i < num_entries; i++) { 7288 reason = ddi_get8(mpt->m_acc_reply_frame_hdl, 7289 &irChangeList->ConfigElement[i].ReasonCode); 7290 volhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7291 &irChangeList->ConfigElement[i].VolDevHandle); 7292 diskhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7293 &irChangeList->ConfigElement[i].PhysDiskDevHandle); 7294 7295 switch (reason) { 7296 case MPI2_EVENT_IR_CHANGE_RC_ADDED: 7297 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED: 7298 { 7299 NDBG20(("mptsas %d volume added\n", 7300 mpt->m_instance)); 7301 7302 topo_node = kmem_zalloc( 7303 sizeof (mptsas_topo_change_list_t), 7304 KM_SLEEP); 7305 7306 topo_node->mpt = mpt; 7307 topo_node->event = 7308 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7309 topo_node->un.physport = 0xff; 7310 topo_node->devhdl = volhandle; 7311 topo_node->flags = 7312 MPTSAS_TOPO_FLAG_RAID_ASSOCIATED; 7313 topo_node->object = NULL; 7314 if (topo_head == NULL) { 7315 topo_head = topo_tail = topo_node; 7316 } else { 7317 topo_tail->next = topo_node; 7318 topo_tail = topo_node; 7319 } 7320 break; 7321 } 7322 case MPI2_EVENT_IR_CHANGE_RC_REMOVED: 7323 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED: 7324 { 7325 NDBG20(("mptsas %d volume deleted\n", 7326 mpt->m_instance)); 7327 ptgt = refhash_linear_search(mpt->m_targets, 7328 mptsas_target_eval_devhdl, &volhandle); 7329 if (ptgt == NULL) 7330 break; 7331 7332 /* 7333 * Clear any flags related to volume 7334 */ 7335 (void) mptsas_delete_volume(mpt, volhandle); 7336 7337 /* 7338 * Update DR flag immediately avoid I/O failure 7339 */ 7340 mutex_enter(&mpt->m_tx_waitq_mutex); 7341 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7342 mutex_exit(&mpt->m_tx_waitq_mutex); 7343 7344 topo_node = kmem_zalloc( 7345 sizeof (mptsas_topo_change_list_t), 7346 KM_SLEEP); 7347 topo_node->mpt = mpt; 7348 topo_node->un.phymask = 7349 ptgt->m_addr.mta_phymask; 7350 topo_node->event = 7351 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7352 topo_node->devhdl = volhandle; 7353 topo_node->flags = 7354 MPTSAS_TOPO_FLAG_RAID_ASSOCIATED; 7355 topo_node->object = (void *)ptgt; 7356 if (topo_head == NULL) { 7357 topo_head = topo_tail = topo_node; 7358 } else { 7359 topo_tail->next = topo_node; 7360 topo_tail = topo_node; 7361 } 7362 break; 7363 } 7364 case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED: 7365 case MPI2_EVENT_IR_CHANGE_RC_HIDE: 7366 { 7367 ptgt = refhash_linear_search(mpt->m_targets, 7368 mptsas_target_eval_devhdl, &diskhandle); 7369 if (ptgt == NULL) 7370 break; 7371 7372 /* 7373 * Update DR flag immediately avoid I/O failure 7374 */ 7375 mutex_enter(&mpt->m_tx_waitq_mutex); 7376 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7377 mutex_exit(&mpt->m_tx_waitq_mutex); 7378 7379 topo_node = kmem_zalloc( 7380 sizeof (mptsas_topo_change_list_t), 7381 KM_SLEEP); 7382 topo_node->mpt = mpt; 7383 topo_node->un.phymask = 7384 ptgt->m_addr.mta_phymask; 7385 topo_node->event = 7386 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7387 topo_node->devhdl = diskhandle; 7388 topo_node->flags = 7389 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED; 7390 topo_node->object = (void *)ptgt; 7391 if (topo_head == NULL) { 7392 topo_head = topo_tail = topo_node; 7393 } else { 7394 topo_tail->next = topo_node; 7395 topo_tail = topo_node; 7396 } 7397 break; 7398 } 7399 case MPI2_EVENT_IR_CHANGE_RC_UNHIDE: 7400 case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED: 7401 { 7402 /* 7403 * The physical drive is released by a IR 7404 * volume. But we cannot get the the physport 7405 * or phynum from the event data, so we only 7406 * can get the physport/phynum after SAS 7407 * Device Page0 request for the devhdl. 7408 */ 7409 topo_node = kmem_zalloc( 7410 sizeof (mptsas_topo_change_list_t), 7411 KM_SLEEP); 7412 topo_node->mpt = mpt; 7413 topo_node->un.phymask = 0; 7414 topo_node->event = 7415 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7416 topo_node->devhdl = diskhandle; 7417 topo_node->flags = 7418 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED; 7419 topo_node->object = NULL; 7420 mpt->m_port_chng = 1; 7421 if (topo_head == NULL) { 7422 topo_head = topo_tail = topo_node; 7423 } else { 7424 topo_tail->next = topo_node; 7425 topo_tail = topo_node; 7426 } 7427 break; 7428 } 7429 default: 7430 break; 7431 } 7432 } 7433 7434 if (topo_head != NULL) { 7435 /* 7436 * Launch DR taskq to handle topology change 7437 */ 7438 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 7439 mptsas_handle_dr, (void *)topo_head, 7440 DDI_NOSLEEP)) != DDI_SUCCESS) { 7441 while (topo_head != NULL) { 7442 topo_node = topo_head; 7443 topo_head = topo_head->next; 7444 kmem_free(topo_node, 7445 sizeof (mptsas_topo_change_list_t)); 7446 } 7447 mptsas_log(mpt, CE_NOTE, "mptsas start taskq " 7448 "for handle SAS DR event failed. \n"); 7449 } 7450 } 7451 break; 7452 } 7453 default: 7454 return (DDI_FAILURE); 7455 } 7456 7457 return (DDI_SUCCESS); 7458 } 7459 7460 /* 7461 * handle events from ioc 7462 */ 7463 static void 7464 mptsas_handle_event(void *args) 7465 { 7466 m_replyh_arg_t *replyh_arg; 7467 pMpi2EventNotificationReply_t eventreply; 7468 uint32_t event, iocloginfo, rfm; 7469 uint32_t status; 7470 uint8_t port; 7471 mptsas_t *mpt; 7472 uint_t iocstatus; 7473 7474 replyh_arg = (m_replyh_arg_t *)args; 7475 rfm = replyh_arg->rfm; 7476 mpt = replyh_arg->mpt; 7477 7478 mutex_enter(&mpt->m_mutex); 7479 /* 7480 * If HBA is being reset, drop incoming event. 7481 */ 7482 if (mpt->m_in_reset) { 7483 NDBG20(("dropping event received prior to reset")); 7484 mutex_exit(&mpt->m_mutex); 7485 return; 7486 } 7487 7488 eventreply = (pMpi2EventNotificationReply_t) 7489 (mpt->m_reply_frame + (rfm - mpt->m_reply_frame_dma_addr)); 7490 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7491 7492 if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 7493 &eventreply->IOCStatus)) { 7494 if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 7495 mptsas_log(mpt, CE_WARN, 7496 "!mptsas_handle_event: IOCStatus=0x%x, " 7497 "IOCLogInfo=0x%x", iocstatus, 7498 ddi_get32(mpt->m_acc_reply_frame_hdl, 7499 &eventreply->IOCLogInfo)); 7500 } else { 7501 mptsas_log(mpt, CE_WARN, 7502 "mptsas_handle_event: IOCStatus=0x%x, " 7503 "IOCLogInfo=0x%x", iocstatus, 7504 ddi_get32(mpt->m_acc_reply_frame_hdl, 7505 &eventreply->IOCLogInfo)); 7506 } 7507 } 7508 7509 /* 7510 * figure out what kind of event we got and handle accordingly 7511 */ 7512 switch (event) { 7513 case MPI2_EVENT_LOG_ENTRY_ADDED: 7514 break; 7515 case MPI2_EVENT_LOG_DATA: 7516 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 7517 &eventreply->IOCLogInfo); 7518 NDBG20(("mptsas %d log info %x received.\n", mpt->m_instance, 7519 iocloginfo)); 7520 break; 7521 case MPI2_EVENT_STATE_CHANGE: 7522 NDBG20(("mptsas%d state change.", mpt->m_instance)); 7523 break; 7524 case MPI2_EVENT_HARD_RESET_RECEIVED: 7525 NDBG20(("mptsas%d event change.", mpt->m_instance)); 7526 break; 7527 case MPI2_EVENT_SAS_DISCOVERY: 7528 { 7529 MPI2_EVENT_DATA_SAS_DISCOVERY *sasdiscovery; 7530 char string[80]; 7531 uint8_t rc; 7532 7533 sasdiscovery = 7534 (pMpi2EventDataSasDiscovery_t)eventreply->EventData; 7535 7536 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 7537 &sasdiscovery->ReasonCode); 7538 port = ddi_get8(mpt->m_acc_reply_frame_hdl, 7539 &sasdiscovery->PhysicalPort); 7540 status = ddi_get32(mpt->m_acc_reply_frame_hdl, 7541 &sasdiscovery->DiscoveryStatus); 7542 7543 string[0] = 0; 7544 switch (rc) { 7545 case MPI2_EVENT_SAS_DISC_RC_STARTED: 7546 (void) sprintf(string, "STARTING"); 7547 break; 7548 case MPI2_EVENT_SAS_DISC_RC_COMPLETED: 7549 (void) sprintf(string, "COMPLETED"); 7550 break; 7551 default: 7552 (void) sprintf(string, "UNKNOWN"); 7553 break; 7554 } 7555 7556 NDBG20(("SAS DISCOVERY is %s for port %d, status %x", string, 7557 port, status)); 7558 7559 break; 7560 } 7561 case MPI2_EVENT_EVENT_CHANGE: 7562 NDBG20(("mptsas%d event change.", mpt->m_instance)); 7563 break; 7564 case MPI2_EVENT_TASK_SET_FULL: 7565 { 7566 pMpi2EventDataTaskSetFull_t taskfull; 7567 7568 taskfull = (pMpi2EventDataTaskSetFull_t)eventreply->EventData; 7569 7570 NDBG20(("TASK_SET_FULL received for mptsas%d, depth %d\n", 7571 mpt->m_instance, ddi_get16(mpt->m_acc_reply_frame_hdl, 7572 &taskfull->CurrentDepth))); 7573 break; 7574 } 7575 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 7576 { 7577 /* 7578 * SAS TOPOLOGY CHANGE LIST Event has already been handled 7579 * in mptsas_handle_event_sync() of interrupt context 7580 */ 7581 break; 7582 } 7583 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 7584 { 7585 pMpi2EventDataSasEnclDevStatusChange_t encstatus; 7586 uint8_t rc; 7587 char string[80]; 7588 7589 encstatus = (pMpi2EventDataSasEnclDevStatusChange_t) 7590 eventreply->EventData; 7591 7592 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 7593 &encstatus->ReasonCode); 7594 switch (rc) { 7595 case MPI2_EVENT_SAS_ENCL_RC_ADDED: 7596 (void) sprintf(string, "added"); 7597 break; 7598 case MPI2_EVENT_SAS_ENCL_RC_NOT_RESPONDING: 7599 (void) sprintf(string, ", not responding"); 7600 break; 7601 default: 7602 break; 7603 } 7604 NDBG20(("mptsas%d ENCLOSURE STATUS CHANGE for enclosure " 7605 "%x%s\n", mpt->m_instance, 7606 ddi_get16(mpt->m_acc_reply_frame_hdl, 7607 &encstatus->EnclosureHandle), string)); 7608 break; 7609 } 7610 7611 /* 7612 * MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE is handled by 7613 * mptsas_handle_event_sync,in here just send ack message. 7614 */ 7615 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 7616 { 7617 pMpi2EventDataSasDeviceStatusChange_t statuschange; 7618 uint8_t rc; 7619 uint16_t devhdl; 7620 uint64_t wwn = 0; 7621 uint32_t wwn_lo, wwn_hi; 7622 7623 statuschange = (pMpi2EventDataSasDeviceStatusChange_t) 7624 eventreply->EventData; 7625 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 7626 &statuschange->ReasonCode); 7627 wwn_lo = ddi_get32(mpt->m_acc_reply_frame_hdl, 7628 (uint32_t *)(void *)&statuschange->SASAddress); 7629 wwn_hi = ddi_get32(mpt->m_acc_reply_frame_hdl, 7630 (uint32_t *)(void *)&statuschange->SASAddress + 1); 7631 wwn = ((uint64_t)wwn_hi << 32) | wwn_lo; 7632 devhdl = ddi_get16(mpt->m_acc_reply_frame_hdl, 7633 &statuschange->DevHandle); 7634 7635 NDBG13(("MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE wwn is %"PRIx64, 7636 wwn)); 7637 7638 switch (rc) { 7639 case MPI2_EVENT_SAS_DEV_STAT_RC_SMART_DATA: 7640 NDBG20(("SMART data received, ASC/ASCQ = %02x/%02x", 7641 ddi_get8(mpt->m_acc_reply_frame_hdl, 7642 &statuschange->ASC), 7643 ddi_get8(mpt->m_acc_reply_frame_hdl, 7644 &statuschange->ASCQ))); 7645 break; 7646 7647 case MPI2_EVENT_SAS_DEV_STAT_RC_UNSUPPORTED: 7648 NDBG20(("Device not supported")); 7649 break; 7650 7651 case MPI2_EVENT_SAS_DEV_STAT_RC_INTERNAL_DEVICE_RESET: 7652 NDBG20(("IOC internally generated the Target Reset " 7653 "for devhdl:%x", devhdl)); 7654 break; 7655 7656 case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_INTERNAL_DEV_RESET: 7657 NDBG20(("IOC's internally generated Target Reset " 7658 "completed for devhdl:%x", devhdl)); 7659 break; 7660 7661 case MPI2_EVENT_SAS_DEV_STAT_RC_TASK_ABORT_INTERNAL: 7662 NDBG20(("IOC internally generated Abort Task")); 7663 break; 7664 7665 case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_TASK_ABORT_INTERNAL: 7666 NDBG20(("IOC's internally generated Abort Task " 7667 "completed")); 7668 break; 7669 7670 case MPI2_EVENT_SAS_DEV_STAT_RC_ABORT_TASK_SET_INTERNAL: 7671 NDBG20(("IOC internally generated Abort Task Set")); 7672 break; 7673 7674 case MPI2_EVENT_SAS_DEV_STAT_RC_CLEAR_TASK_SET_INTERNAL: 7675 NDBG20(("IOC internally generated Clear Task Set")); 7676 break; 7677 7678 case MPI2_EVENT_SAS_DEV_STAT_RC_QUERY_TASK_INTERNAL: 7679 NDBG20(("IOC internally generated Query Task")); 7680 break; 7681 7682 case MPI2_EVENT_SAS_DEV_STAT_RC_ASYNC_NOTIFICATION: 7683 NDBG20(("Device sent an Asynchronous Notification")); 7684 break; 7685 7686 default: 7687 break; 7688 } 7689 break; 7690 } 7691 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 7692 { 7693 /* 7694 * IR TOPOLOGY CHANGE LIST Event has already been handled 7695 * in mpt_handle_event_sync() of interrupt context 7696 */ 7697 break; 7698 } 7699 case MPI2_EVENT_IR_OPERATION_STATUS: 7700 { 7701 Mpi2EventDataIrOperationStatus_t *irOpStatus; 7702 char reason_str[80]; 7703 uint8_t rc, percent; 7704 uint16_t handle; 7705 7706 irOpStatus = (pMpi2EventDataIrOperationStatus_t) 7707 eventreply->EventData; 7708 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 7709 &irOpStatus->RAIDOperation); 7710 percent = ddi_get8(mpt->m_acc_reply_frame_hdl, 7711 &irOpStatus->PercentComplete); 7712 handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7713 &irOpStatus->VolDevHandle); 7714 7715 switch (rc) { 7716 case MPI2_EVENT_IR_RAIDOP_RESYNC: 7717 (void) sprintf(reason_str, "resync"); 7718 break; 7719 case MPI2_EVENT_IR_RAIDOP_ONLINE_CAP_EXPANSION: 7720 (void) sprintf(reason_str, "online capacity " 7721 "expansion"); 7722 break; 7723 case MPI2_EVENT_IR_RAIDOP_CONSISTENCY_CHECK: 7724 (void) sprintf(reason_str, "consistency check"); 7725 break; 7726 default: 7727 (void) sprintf(reason_str, "unknown reason %x", 7728 rc); 7729 } 7730 7731 NDBG20(("mptsas%d raid operational status: (%s)" 7732 "\thandle(0x%04x), percent complete(%d)\n", 7733 mpt->m_instance, reason_str, handle, percent)); 7734 break; 7735 } 7736 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 7737 { 7738 pMpi2EventDataSasBroadcastPrimitive_t sas_broadcast; 7739 uint8_t phy_num; 7740 uint8_t primitive; 7741 7742 sas_broadcast = (pMpi2EventDataSasBroadcastPrimitive_t) 7743 eventreply->EventData; 7744 7745 phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl, 7746 &sas_broadcast->PhyNum); 7747 primitive = ddi_get8(mpt->m_acc_reply_frame_hdl, 7748 &sas_broadcast->Primitive); 7749 7750 switch (primitive) { 7751 case MPI2_EVENT_PRIMITIVE_CHANGE: 7752 mptsas_smhba_log_sysevent(mpt, 7753 ESC_SAS_HBA_PORT_BROADCAST, 7754 SAS_PORT_BROADCAST_CHANGE, 7755 &mpt->m_phy_info[phy_num].smhba_info); 7756 break; 7757 case MPI2_EVENT_PRIMITIVE_SES: 7758 mptsas_smhba_log_sysevent(mpt, 7759 ESC_SAS_HBA_PORT_BROADCAST, 7760 SAS_PORT_BROADCAST_SES, 7761 &mpt->m_phy_info[phy_num].smhba_info); 7762 break; 7763 case MPI2_EVENT_PRIMITIVE_EXPANDER: 7764 mptsas_smhba_log_sysevent(mpt, 7765 ESC_SAS_HBA_PORT_BROADCAST, 7766 SAS_PORT_BROADCAST_D01_4, 7767 &mpt->m_phy_info[phy_num].smhba_info); 7768 break; 7769 case MPI2_EVENT_PRIMITIVE_ASYNCHRONOUS_EVENT: 7770 mptsas_smhba_log_sysevent(mpt, 7771 ESC_SAS_HBA_PORT_BROADCAST, 7772 SAS_PORT_BROADCAST_D04_7, 7773 &mpt->m_phy_info[phy_num].smhba_info); 7774 break; 7775 case MPI2_EVENT_PRIMITIVE_RESERVED3: 7776 mptsas_smhba_log_sysevent(mpt, 7777 ESC_SAS_HBA_PORT_BROADCAST, 7778 SAS_PORT_BROADCAST_D16_7, 7779 &mpt->m_phy_info[phy_num].smhba_info); 7780 break; 7781 case MPI2_EVENT_PRIMITIVE_RESERVED4: 7782 mptsas_smhba_log_sysevent(mpt, 7783 ESC_SAS_HBA_PORT_BROADCAST, 7784 SAS_PORT_BROADCAST_D29_7, 7785 &mpt->m_phy_info[phy_num].smhba_info); 7786 break; 7787 case MPI2_EVENT_PRIMITIVE_CHANGE0_RESERVED: 7788 mptsas_smhba_log_sysevent(mpt, 7789 ESC_SAS_HBA_PORT_BROADCAST, 7790 SAS_PORT_BROADCAST_D24_0, 7791 &mpt->m_phy_info[phy_num].smhba_info); 7792 break; 7793 case MPI2_EVENT_PRIMITIVE_CHANGE1_RESERVED: 7794 mptsas_smhba_log_sysevent(mpt, 7795 ESC_SAS_HBA_PORT_BROADCAST, 7796 SAS_PORT_BROADCAST_D27_4, 7797 &mpt->m_phy_info[phy_num].smhba_info); 7798 break; 7799 default: 7800 NDBG16(("mptsas%d: unknown BROADCAST PRIMITIVE" 7801 " %x received", 7802 mpt->m_instance, primitive)); 7803 break; 7804 } 7805 NDBG16(("mptsas%d sas broadcast primitive: " 7806 "\tprimitive(0x%04x), phy(%d) complete\n", 7807 mpt->m_instance, primitive, phy_num)); 7808 break; 7809 } 7810 case MPI2_EVENT_IR_VOLUME: 7811 { 7812 Mpi2EventDataIrVolume_t *irVolume; 7813 uint16_t devhandle; 7814 uint32_t state; 7815 int config, vol; 7816 uint8_t found = FALSE; 7817 7818 irVolume = (pMpi2EventDataIrVolume_t)eventreply->EventData; 7819 state = ddi_get32(mpt->m_acc_reply_frame_hdl, 7820 &irVolume->NewValue); 7821 devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7822 &irVolume->VolDevHandle); 7823 7824 NDBG20(("EVENT_IR_VOLUME event is received")); 7825 7826 /* 7827 * Get latest RAID info and then find the DevHandle for this 7828 * event in the configuration. If the DevHandle is not found 7829 * just exit the event. 7830 */ 7831 (void) mptsas_get_raid_info(mpt); 7832 for (config = 0; (config < mpt->m_num_raid_configs) && 7833 (!found); config++) { 7834 for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) { 7835 if (mpt->m_raidconfig[config].m_raidvol[vol]. 7836 m_raidhandle == devhandle) { 7837 found = TRUE; 7838 break; 7839 } 7840 } 7841 } 7842 if (!found) { 7843 break; 7844 } 7845 7846 switch (irVolume->ReasonCode) { 7847 case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED: 7848 { 7849 uint32_t i; 7850 mpt->m_raidconfig[config].m_raidvol[vol].m_settings = 7851 state; 7852 7853 i = state & MPI2_RAIDVOL0_SETTING_MASK_WRITE_CACHING; 7854 mptsas_log(mpt, CE_NOTE, " Volume %d settings changed" 7855 ", auto-config of hot-swap drives is %s" 7856 ", write caching is %s" 7857 ", hot-spare pool mask is %02x\n", 7858 vol, state & 7859 MPI2_RAIDVOL0_SETTING_AUTO_CONFIG_HSWAP_DISABLE 7860 ? "disabled" : "enabled", 7861 i == MPI2_RAIDVOL0_SETTING_UNCHANGED 7862 ? "controlled by member disks" : 7863 i == MPI2_RAIDVOL0_SETTING_DISABLE_WRITE_CACHING 7864 ? "disabled" : 7865 i == MPI2_RAIDVOL0_SETTING_ENABLE_WRITE_CACHING 7866 ? "enabled" : 7867 "incorrectly set", 7868 (state >> 16) & 0xff); 7869 break; 7870 } 7871 case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED: 7872 { 7873 mpt->m_raidconfig[config].m_raidvol[vol].m_state = 7874 (uint8_t)state; 7875 7876 mptsas_log(mpt, CE_NOTE, 7877 "Volume %d is now %s\n", vol, 7878 state == MPI2_RAID_VOL_STATE_OPTIMAL 7879 ? "optimal" : 7880 state == MPI2_RAID_VOL_STATE_DEGRADED 7881 ? "degraded" : 7882 state == MPI2_RAID_VOL_STATE_ONLINE 7883 ? "online" : 7884 state == MPI2_RAID_VOL_STATE_INITIALIZING 7885 ? "initializing" : 7886 state == MPI2_RAID_VOL_STATE_FAILED 7887 ? "failed" : 7888 state == MPI2_RAID_VOL_STATE_MISSING 7889 ? "missing" : 7890 "state unknown"); 7891 break; 7892 } 7893 case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED: 7894 { 7895 mpt->m_raidconfig[config].m_raidvol[vol]. 7896 m_statusflags = state; 7897 7898 mptsas_log(mpt, CE_NOTE, 7899 " Volume %d is now %s%s%s%s%s%s%s%s%s\n", 7900 vol, 7901 state & MPI2_RAIDVOL0_STATUS_FLAG_ENABLED 7902 ? ", enabled" : ", disabled", 7903 state & MPI2_RAIDVOL0_STATUS_FLAG_QUIESCED 7904 ? ", quiesced" : "", 7905 state & MPI2_RAIDVOL0_STATUS_FLAG_VOLUME_INACTIVE 7906 ? ", inactive" : ", active", 7907 state & 7908 MPI2_RAIDVOL0_STATUS_FLAG_BAD_BLOCK_TABLE_FULL 7909 ? ", bad block table is full" : "", 7910 state & 7911 MPI2_RAIDVOL0_STATUS_FLAG_RESYNC_IN_PROGRESS 7912 ? ", resync in progress" : "", 7913 state & MPI2_RAIDVOL0_STATUS_FLAG_BACKGROUND_INIT 7914 ? ", background initialization in progress" : "", 7915 state & 7916 MPI2_RAIDVOL0_STATUS_FLAG_CAPACITY_EXPANSION 7917 ? ", capacity expansion in progress" : "", 7918 state & 7919 MPI2_RAIDVOL0_STATUS_FLAG_CONSISTENCY_CHECK 7920 ? ", consistency check in progress" : "", 7921 state & MPI2_RAIDVOL0_STATUS_FLAG_DATA_SCRUB 7922 ? ", data scrub in progress" : ""); 7923 break; 7924 } 7925 default: 7926 break; 7927 } 7928 break; 7929 } 7930 case MPI2_EVENT_IR_PHYSICAL_DISK: 7931 { 7932 Mpi2EventDataIrPhysicalDisk_t *irPhysDisk; 7933 uint16_t devhandle, enchandle, slot; 7934 uint32_t status, state; 7935 uint8_t physdisknum, reason; 7936 7937 irPhysDisk = (Mpi2EventDataIrPhysicalDisk_t *) 7938 eventreply->EventData; 7939 physdisknum = ddi_get8(mpt->m_acc_reply_frame_hdl, 7940 &irPhysDisk->PhysDiskNum); 7941 devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7942 &irPhysDisk->PhysDiskDevHandle); 7943 enchandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7944 &irPhysDisk->EnclosureHandle); 7945 slot = ddi_get16(mpt->m_acc_reply_frame_hdl, 7946 &irPhysDisk->Slot); 7947 state = ddi_get32(mpt->m_acc_reply_frame_hdl, 7948 &irPhysDisk->NewValue); 7949 reason = ddi_get8(mpt->m_acc_reply_frame_hdl, 7950 &irPhysDisk->ReasonCode); 7951 7952 NDBG20(("EVENT_IR_PHYSICAL_DISK event is received")); 7953 7954 switch (reason) { 7955 case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED: 7956 mptsas_log(mpt, CE_NOTE, 7957 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 7958 "for enclosure with handle 0x%x is now in hot " 7959 "spare pool %d", 7960 physdisknum, devhandle, slot, enchandle, 7961 (state >> 16) & 0xff); 7962 break; 7963 7964 case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED: 7965 status = state; 7966 mptsas_log(mpt, CE_NOTE, 7967 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 7968 "for enclosure with handle 0x%x is now " 7969 "%s%s%s%s%s\n", physdisknum, devhandle, slot, 7970 enchandle, 7971 status & MPI2_PHYSDISK0_STATUS_FLAG_INACTIVE_VOLUME 7972 ? ", inactive" : ", active", 7973 status & MPI2_PHYSDISK0_STATUS_FLAG_OUT_OF_SYNC 7974 ? ", out of sync" : "", 7975 status & MPI2_PHYSDISK0_STATUS_FLAG_QUIESCED 7976 ? ", quiesced" : "", 7977 status & 7978 MPI2_PHYSDISK0_STATUS_FLAG_WRITE_CACHE_ENABLED 7979 ? ", write cache enabled" : "", 7980 status & MPI2_PHYSDISK0_STATUS_FLAG_OCE_TARGET 7981 ? ", capacity expansion target" : ""); 7982 break; 7983 7984 case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED: 7985 mptsas_log(mpt, CE_NOTE, 7986 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 7987 "for enclosure with handle 0x%x is now %s\n", 7988 physdisknum, devhandle, slot, enchandle, 7989 state == MPI2_RAID_PD_STATE_OPTIMAL 7990 ? "optimal" : 7991 state == MPI2_RAID_PD_STATE_REBUILDING 7992 ? "rebuilding" : 7993 state == MPI2_RAID_PD_STATE_DEGRADED 7994 ? "degraded" : 7995 state == MPI2_RAID_PD_STATE_HOT_SPARE 7996 ? "a hot spare" : 7997 state == MPI2_RAID_PD_STATE_ONLINE 7998 ? "online" : 7999 state == MPI2_RAID_PD_STATE_OFFLINE 8000 ? "offline" : 8001 state == MPI2_RAID_PD_STATE_NOT_COMPATIBLE 8002 ? "not compatible" : 8003 state == MPI2_RAID_PD_STATE_NOT_CONFIGURED 8004 ? "not configured" : 8005 "state unknown"); 8006 break; 8007 } 8008 break; 8009 } 8010 default: 8011 NDBG20(("mptsas%d: unknown event %x received", 8012 mpt->m_instance, event)); 8013 break; 8014 } 8015 8016 /* 8017 * Return the reply frame to the free queue. 8018 */ 8019 ddi_put32(mpt->m_acc_free_queue_hdl, 8020 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], rfm); 8021 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 8022 DDI_DMA_SYNC_FORDEV); 8023 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 8024 mpt->m_free_index = 0; 8025 } 8026 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 8027 mpt->m_free_index); 8028 mutex_exit(&mpt->m_mutex); 8029 } 8030 8031 /* 8032 * invoked from timeout() to restart qfull cmds with throttle == 0 8033 */ 8034 static void 8035 mptsas_restart_cmd(void *arg) 8036 { 8037 mptsas_t *mpt = arg; 8038 mptsas_target_t *ptgt = NULL; 8039 8040 mutex_enter(&mpt->m_mutex); 8041 8042 mpt->m_restart_cmd_timeid = 0; 8043 8044 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 8045 ptgt = refhash_next(mpt->m_targets, ptgt)) { 8046 if (ptgt->m_reset_delay == 0) { 8047 if (ptgt->m_t_throttle == QFULL_THROTTLE) { 8048 mptsas_set_throttle(mpt, ptgt, 8049 MAX_THROTTLE); 8050 } 8051 } 8052 } 8053 mptsas_restart_hba(mpt); 8054 mutex_exit(&mpt->m_mutex); 8055 } 8056 8057 void 8058 mptsas_remove_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 8059 { 8060 int slot; 8061 mptsas_slots_t *slots = mpt->m_active; 8062 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8063 8064 ASSERT(cmd != NULL); 8065 ASSERT(cmd->cmd_queued == FALSE); 8066 8067 /* 8068 * Task Management cmds are removed in their own routines. Also, 8069 * we don't want to modify timeout based on TM cmds. 8070 */ 8071 if (cmd->cmd_flags & CFLAG_TM_CMD) { 8072 return; 8073 } 8074 8075 slot = cmd->cmd_slot; 8076 8077 /* 8078 * remove the cmd. 8079 */ 8080 if (cmd == slots->m_slot[slot]) { 8081 NDBG31(("mptsas_remove_cmd: removing cmd=0x%p, flags " 8082 "0x%x", (void *)cmd, cmd->cmd_flags)); 8083 slots->m_slot[slot] = NULL; 8084 mpt->m_ncmds--; 8085 8086 /* 8087 * only decrement per target ncmds if command 8088 * has a target associated with it. 8089 */ 8090 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 8091 ptgt->m_t_ncmds--; 8092 /* 8093 * reset throttle if we just ran an untagged command 8094 * to a tagged target 8095 */ 8096 if ((ptgt->m_t_ncmds == 0) && 8097 ((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0)) { 8098 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8099 } 8100 8101 /* 8102 * Remove this command from the active queue. 8103 */ 8104 if (cmd->cmd_active_expiration != 0) { 8105 TAILQ_REMOVE(&ptgt->m_active_cmdq, cmd, 8106 cmd_active_link); 8107 cmd->cmd_active_expiration = 0; 8108 } 8109 } 8110 } 8111 8112 /* 8113 * This is all we need to do for ioc commands. 8114 */ 8115 if (cmd->cmd_flags & CFLAG_CMDIOC) { 8116 mptsas_return_to_pool(mpt, cmd); 8117 return; 8118 } 8119 8120 ASSERT(cmd != slots->m_slot[cmd->cmd_slot]); 8121 } 8122 8123 /* 8124 * accept all cmds on the tx_waitq if any and then 8125 * start a fresh request from the top of the device queue. 8126 * 8127 * since there are always cmds queued on the tx_waitq, and rare cmds on 8128 * the instance waitq, so this function should not be invoked in the ISR, 8129 * the mptsas_restart_waitq() is invoked in the ISR instead. otherwise, the 8130 * burden belongs to the IO dispatch CPUs is moved the interrupt CPU. 8131 */ 8132 static void 8133 mptsas_restart_hba(mptsas_t *mpt) 8134 { 8135 ASSERT(mutex_owned(&mpt->m_mutex)); 8136 8137 mutex_enter(&mpt->m_tx_waitq_mutex); 8138 if (mpt->m_tx_waitq) { 8139 mptsas_accept_tx_waitq(mpt); 8140 } 8141 mutex_exit(&mpt->m_tx_waitq_mutex); 8142 mptsas_restart_waitq(mpt); 8143 } 8144 8145 /* 8146 * start a fresh request from the top of the device queue 8147 */ 8148 static void 8149 mptsas_restart_waitq(mptsas_t *mpt) 8150 { 8151 mptsas_cmd_t *cmd, *next_cmd; 8152 mptsas_target_t *ptgt = NULL; 8153 8154 NDBG1(("mptsas_restart_waitq: mpt=0x%p", (void *)mpt)); 8155 8156 ASSERT(mutex_owned(&mpt->m_mutex)); 8157 8158 /* 8159 * If there is a reset delay, don't start any cmds. Otherwise, start 8160 * as many cmds as possible. 8161 * Since SMID 0 is reserved and the TM slot is reserved, the actual max 8162 * commands is m_max_requests - 2. 8163 */ 8164 cmd = mpt->m_waitq; 8165 8166 while (cmd != NULL) { 8167 next_cmd = cmd->cmd_linkp; 8168 if (cmd->cmd_flags & CFLAG_PASSTHRU) { 8169 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8170 /* 8171 * passthru command get slot need 8172 * set CFLAG_PREPARED. 8173 */ 8174 cmd->cmd_flags |= CFLAG_PREPARED; 8175 mptsas_waitq_delete(mpt, cmd); 8176 mptsas_start_passthru(mpt, cmd); 8177 } 8178 cmd = next_cmd; 8179 continue; 8180 } 8181 if (cmd->cmd_flags & CFLAG_CONFIG) { 8182 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8183 /* 8184 * Send the config page request and delete it 8185 * from the waitq. 8186 */ 8187 cmd->cmd_flags |= CFLAG_PREPARED; 8188 mptsas_waitq_delete(mpt, cmd); 8189 mptsas_start_config_page_access(mpt, cmd); 8190 } 8191 cmd = next_cmd; 8192 continue; 8193 } 8194 if (cmd->cmd_flags & CFLAG_FW_DIAG) { 8195 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8196 /* 8197 * Send the FW Diag request and delete if from 8198 * the waitq. 8199 */ 8200 cmd->cmd_flags |= CFLAG_PREPARED; 8201 mptsas_waitq_delete(mpt, cmd); 8202 mptsas_start_diag(mpt, cmd); 8203 } 8204 cmd = next_cmd; 8205 continue; 8206 } 8207 8208 ptgt = cmd->cmd_tgt_addr; 8209 if (ptgt && (ptgt->m_t_throttle == DRAIN_THROTTLE) && 8210 (ptgt->m_t_ncmds == 0)) { 8211 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8212 } 8213 if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) && 8214 (ptgt && (ptgt->m_reset_delay == 0)) && 8215 (ptgt && (ptgt->m_t_ncmds < 8216 ptgt->m_t_throttle))) { 8217 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8218 mptsas_waitq_delete(mpt, cmd); 8219 (void) mptsas_start_cmd(mpt, cmd); 8220 } 8221 } 8222 cmd = next_cmd; 8223 } 8224 } 8225 /* 8226 * Cmds are queued if tran_start() doesn't get the m_mutexlock(no wait). 8227 * Accept all those queued cmds before new cmd is accept so that the 8228 * cmds are sent in order. 8229 */ 8230 static void 8231 mptsas_accept_tx_waitq(mptsas_t *mpt) 8232 { 8233 mptsas_cmd_t *cmd; 8234 8235 ASSERT(mutex_owned(&mpt->m_mutex)); 8236 ASSERT(mutex_owned(&mpt->m_tx_waitq_mutex)); 8237 8238 /* 8239 * A Bus Reset could occur at any time and flush the tx_waitq, 8240 * so we cannot count on the tx_waitq to contain even one cmd. 8241 * And when the m_tx_waitq_mutex is released and run 8242 * mptsas_accept_pkt(), the tx_waitq may be flushed. 8243 */ 8244 cmd = mpt->m_tx_waitq; 8245 for (;;) { 8246 if ((cmd = mpt->m_tx_waitq) == NULL) { 8247 mpt->m_tx_draining = 0; 8248 break; 8249 } 8250 if ((mpt->m_tx_waitq = cmd->cmd_linkp) == NULL) { 8251 mpt->m_tx_waitqtail = &mpt->m_tx_waitq; 8252 } 8253 cmd->cmd_linkp = NULL; 8254 mutex_exit(&mpt->m_tx_waitq_mutex); 8255 if (mptsas_accept_pkt(mpt, cmd) != TRAN_ACCEPT) 8256 cmn_err(CE_WARN, "mpt: mptsas_accept_tx_waitq: failed " 8257 "to accept cmd on queue\n"); 8258 mutex_enter(&mpt->m_tx_waitq_mutex); 8259 } 8260 } 8261 8262 8263 /* 8264 * mpt tag type lookup 8265 */ 8266 static char mptsas_tag_lookup[] = 8267 {0, MSG_HEAD_QTAG, MSG_ORDERED_QTAG, 0, MSG_SIMPLE_QTAG}; 8268 8269 static int 8270 mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 8271 { 8272 struct scsi_pkt *pkt = CMD2PKT(cmd); 8273 uint32_t control = 0; 8274 caddr_t mem; 8275 pMpi2SCSIIORequest_t io_request; 8276 ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl; 8277 ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl; 8278 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8279 uint16_t SMID, io_flags = 0; 8280 uint32_t request_desc_low, request_desc_high; 8281 mptsas_cmd_t *c; 8282 8283 NDBG1(("mptsas_start_cmd: cmd=0x%p, flags 0x%x", (void *)cmd, 8284 cmd->cmd_flags)); 8285 8286 /* 8287 * Set SMID and increment index. Rollover to 1 instead of 0 if index 8288 * is at the max. 0 is an invalid SMID, so we call the first index 1. 8289 */ 8290 SMID = cmd->cmd_slot; 8291 8292 /* 8293 * It is possible for back to back device reset to 8294 * happen before the reset delay has expired. That's 8295 * ok, just let the device reset go out on the bus. 8296 */ 8297 if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) { 8298 ASSERT(ptgt->m_reset_delay == 0); 8299 } 8300 8301 /* 8302 * if a non-tagged cmd is submitted to an active tagged target 8303 * then drain before submitting this cmd; SCSI-2 allows RQSENSE 8304 * to be untagged 8305 */ 8306 if (((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0) && 8307 (ptgt->m_t_ncmds > 1) && 8308 ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) && 8309 (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE)) { 8310 if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) { 8311 NDBG23(("target=%d, untagged cmd, start draining\n", 8312 ptgt->m_devhdl)); 8313 8314 if (ptgt->m_reset_delay == 0) { 8315 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 8316 } 8317 8318 mptsas_remove_cmd(mpt, cmd); 8319 cmd->cmd_pkt_flags |= FLAG_HEAD; 8320 mptsas_waitq_add(mpt, cmd); 8321 } 8322 return (DDI_FAILURE); 8323 } 8324 8325 /* 8326 * Set correct tag bits. 8327 */ 8328 if (cmd->cmd_pkt_flags & FLAG_TAGMASK) { 8329 switch (mptsas_tag_lookup[((cmd->cmd_pkt_flags & 8330 FLAG_TAGMASK) >> 12)]) { 8331 case MSG_SIMPLE_QTAG: 8332 control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 8333 break; 8334 case MSG_HEAD_QTAG: 8335 control |= MPI2_SCSIIO_CONTROL_HEADOFQ; 8336 break; 8337 case MSG_ORDERED_QTAG: 8338 control |= MPI2_SCSIIO_CONTROL_ORDEREDQ; 8339 break; 8340 default: 8341 mptsas_log(mpt, CE_WARN, "mpt: Invalid tag type\n"); 8342 break; 8343 } 8344 } else { 8345 if (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE) { 8346 ptgt->m_t_throttle = 1; 8347 } 8348 control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 8349 } 8350 8351 if (cmd->cmd_pkt_flags & FLAG_TLR) { 8352 control |= MPI2_SCSIIO_CONTROL_TLR_ON; 8353 } 8354 8355 mem = mpt->m_req_frame + (mpt->m_req_frame_size * SMID); 8356 io_request = (pMpi2SCSIIORequest_t)mem; 8357 8358 bzero(io_request, sizeof (Mpi2SCSIIORequest_t)); 8359 ddi_put8(acc_hdl, &io_request->SGLOffset0, offsetof 8360 (MPI2_SCSI_IO_REQUEST, SGL) / 4); 8361 mptsas_init_std_hdr(acc_hdl, io_request, ptgt->m_devhdl, Lun(cmd), 0, 8362 MPI2_FUNCTION_SCSI_IO_REQUEST); 8363 8364 (void) ddi_rep_put8(acc_hdl, (uint8_t *)pkt->pkt_cdbp, 8365 io_request->CDB.CDB32, cmd->cmd_cdblen, DDI_DEV_AUTOINCR); 8366 8367 io_flags = cmd->cmd_cdblen; 8368 if (mptsas_use_fastpath && 8369 ptgt->m_io_flags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) { 8370 io_flags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH; 8371 request_desc_low = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 8372 } else { 8373 request_desc_low = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 8374 } 8375 ddi_put16(acc_hdl, &io_request->IoFlags, io_flags); 8376 /* 8377 * setup the Scatter/Gather DMA list for this request 8378 */ 8379 if (cmd->cmd_cookiec > 0) { 8380 mptsas_sge_setup(mpt, cmd, &control, io_request, acc_hdl); 8381 } else { 8382 ddi_put32(acc_hdl, &io_request->SGL.MpiSimple.FlagsLength, 8383 ((uint32_t)MPI2_SGE_FLAGS_LAST_ELEMENT | 8384 MPI2_SGE_FLAGS_END_OF_BUFFER | 8385 MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 8386 MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT); 8387 } 8388 8389 /* 8390 * save ARQ information 8391 */ 8392 ddi_put8(acc_hdl, &io_request->SenseBufferLength, cmd->cmd_rqslen); 8393 if ((cmd->cmd_flags & (CFLAG_SCBEXTERN | CFLAG_EXTARQBUFVALID)) == 8394 (CFLAG_SCBEXTERN | CFLAG_EXTARQBUFVALID)) { 8395 ddi_put32(acc_hdl, &io_request->SenseBufferLowAddress, 8396 cmd->cmd_ext_arqcookie.dmac_address); 8397 } else { 8398 ddi_put32(acc_hdl, &io_request->SenseBufferLowAddress, 8399 cmd->cmd_arqcookie.dmac_address); 8400 } 8401 8402 ddi_put32(acc_hdl, &io_request->Control, control); 8403 8404 NDBG31(("starting message=%d(0x%p), with cmd=0x%p", 8405 SMID, (void *)io_request, (void *)cmd)); 8406 8407 (void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 8408 8409 /* 8410 * Build request descriptor and write it to the request desc post reg. 8411 */ 8412 request_desc_low |= (SMID << 16); 8413 request_desc_high = ptgt->m_devhdl << 16; 8414 MPTSAS_START_CMD(mpt, request_desc_low, request_desc_high); 8415 8416 /* 8417 * Start timeout. 8418 */ 8419 cmd->cmd_active_expiration = 8420 gethrtime() + (hrtime_t)pkt->pkt_time * NANOSEC; 8421 #ifdef MPTSAS_TEST 8422 /* 8423 * Force timeouts to happen immediately. 8424 */ 8425 if (mptsas_test_timeouts) 8426 cmd->cmd_active_expiration = gethrtime(); 8427 #endif 8428 c = TAILQ_FIRST(&ptgt->m_active_cmdq); 8429 if (c == NULL || 8430 c->cmd_active_expiration < cmd->cmd_active_expiration) { 8431 /* 8432 * Common case is that this is the last pending expiration 8433 * (or queue is empty). Insert at head of the queue. 8434 */ 8435 TAILQ_INSERT_HEAD(&ptgt->m_active_cmdq, cmd, cmd_active_link); 8436 } else { 8437 /* 8438 * Queue is not empty and first element expires later than 8439 * this command. Search for element expiring sooner. 8440 */ 8441 while ((c = TAILQ_NEXT(c, cmd_active_link)) != NULL) { 8442 if (c->cmd_active_expiration < 8443 cmd->cmd_active_expiration) { 8444 TAILQ_INSERT_BEFORE(c, cmd, cmd_active_link); 8445 break; 8446 } 8447 } 8448 if (c == NULL) { 8449 /* 8450 * No element found expiring sooner, append to 8451 * non-empty queue. 8452 */ 8453 TAILQ_INSERT_TAIL(&ptgt->m_active_cmdq, cmd, 8454 cmd_active_link); 8455 } 8456 } 8457 8458 if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) || 8459 (mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) { 8460 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 8461 return (DDI_FAILURE); 8462 } 8463 return (DDI_SUCCESS); 8464 } 8465 8466 /* 8467 * Select a helper thread to handle current doneq 8468 */ 8469 static void 8470 mptsas_deliver_doneq_thread(mptsas_t *mpt) 8471 { 8472 uint64_t t, i; 8473 uint32_t min = 0xffffffff; 8474 mptsas_doneq_thread_list_t *item; 8475 8476 for (i = 0; i < mpt->m_doneq_thread_n; i++) { 8477 item = &mpt->m_doneq_thread_id[i]; 8478 /* 8479 * If the completed command on help thread[i] less than 8480 * doneq_thread_threshold, then pick the thread[i]. Otherwise 8481 * pick a thread which has least completed command. 8482 */ 8483 8484 mutex_enter(&item->mutex); 8485 if (item->len < mpt->m_doneq_thread_threshold) { 8486 t = i; 8487 mutex_exit(&item->mutex); 8488 break; 8489 } 8490 if (item->len < min) { 8491 min = item->len; 8492 t = i; 8493 } 8494 mutex_exit(&item->mutex); 8495 } 8496 mutex_enter(&mpt->m_doneq_thread_id[t].mutex); 8497 mptsas_doneq_mv(mpt, t); 8498 cv_signal(&mpt->m_doneq_thread_id[t].cv); 8499 mutex_exit(&mpt->m_doneq_thread_id[t].mutex); 8500 } 8501 8502 /* 8503 * move the current global doneq to the doneq of thead[t] 8504 */ 8505 static void 8506 mptsas_doneq_mv(mptsas_t *mpt, uint64_t t) 8507 { 8508 mptsas_cmd_t *cmd; 8509 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 8510 8511 ASSERT(mutex_owned(&item->mutex)); 8512 while ((cmd = mpt->m_doneq) != NULL) { 8513 if ((mpt->m_doneq = cmd->cmd_linkp) == NULL) { 8514 mpt->m_donetail = &mpt->m_doneq; 8515 } 8516 cmd->cmd_linkp = NULL; 8517 *item->donetail = cmd; 8518 item->donetail = &cmd->cmd_linkp; 8519 mpt->m_doneq_len--; 8520 item->len++; 8521 } 8522 } 8523 8524 void 8525 mptsas_fma_check(mptsas_t *mpt, mptsas_cmd_t *cmd) 8526 { 8527 struct scsi_pkt *pkt = CMD2PKT(cmd); 8528 8529 /* Check all acc and dma handles */ 8530 if ((mptsas_check_acc_handle(mpt->m_datap) != 8531 DDI_SUCCESS) || 8532 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 8533 DDI_SUCCESS) || 8534 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) != 8535 DDI_SUCCESS) || 8536 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) != 8537 DDI_SUCCESS) || 8538 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) != 8539 DDI_SUCCESS) || 8540 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) != 8541 DDI_SUCCESS) || 8542 (mptsas_check_acc_handle(mpt->m_config_handle) != 8543 DDI_SUCCESS)) { 8544 ddi_fm_service_impact(mpt->m_dip, 8545 DDI_SERVICE_UNAFFECTED); 8546 ddi_fm_acc_err_clear(mpt->m_config_handle, 8547 DDI_FME_VER0); 8548 pkt->pkt_reason = CMD_TRAN_ERR; 8549 pkt->pkt_statistics = 0; 8550 } 8551 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 8552 DDI_SUCCESS) || 8553 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) != 8554 DDI_SUCCESS) || 8555 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) != 8556 DDI_SUCCESS) || 8557 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) != 8558 DDI_SUCCESS) || 8559 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) != 8560 DDI_SUCCESS)) { 8561 ddi_fm_service_impact(mpt->m_dip, 8562 DDI_SERVICE_UNAFFECTED); 8563 pkt->pkt_reason = CMD_TRAN_ERR; 8564 pkt->pkt_statistics = 0; 8565 } 8566 if (cmd->cmd_dmahandle && 8567 (mptsas_check_dma_handle(cmd->cmd_dmahandle) != DDI_SUCCESS)) { 8568 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 8569 pkt->pkt_reason = CMD_TRAN_ERR; 8570 pkt->pkt_statistics = 0; 8571 } 8572 if ((cmd->cmd_extra_frames && 8573 ((mptsas_check_dma_handle(cmd->cmd_extra_frames->m_dma_hdl) != 8574 DDI_SUCCESS) || 8575 (mptsas_check_acc_handle(cmd->cmd_extra_frames->m_acc_hdl) != 8576 DDI_SUCCESS)))) { 8577 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 8578 pkt->pkt_reason = CMD_TRAN_ERR; 8579 pkt->pkt_statistics = 0; 8580 } 8581 if (cmd->cmd_arqhandle && 8582 (mptsas_check_dma_handle(cmd->cmd_arqhandle) != DDI_SUCCESS)) { 8583 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 8584 pkt->pkt_reason = CMD_TRAN_ERR; 8585 pkt->pkt_statistics = 0; 8586 } 8587 if (cmd->cmd_ext_arqhandle && 8588 (mptsas_check_dma_handle(cmd->cmd_ext_arqhandle) != DDI_SUCCESS)) { 8589 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 8590 pkt->pkt_reason = CMD_TRAN_ERR; 8591 pkt->pkt_statistics = 0; 8592 } 8593 } 8594 8595 /* 8596 * These routines manipulate the queue of commands that 8597 * are waiting for their completion routines to be called. 8598 * The queue is usually in FIFO order but on an MP system 8599 * it's possible for the completion routines to get out 8600 * of order. If that's a problem you need to add a global 8601 * mutex around the code that calls the completion routine 8602 * in the interrupt handler. 8603 */ 8604 static void 8605 mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd) 8606 { 8607 struct scsi_pkt *pkt = CMD2PKT(cmd); 8608 8609 NDBG31(("mptsas_doneq_add: cmd=0x%p", (void *)cmd)); 8610 8611 ASSERT((cmd->cmd_flags & CFLAG_COMPLETED) == 0); 8612 cmd->cmd_linkp = NULL; 8613 cmd->cmd_flags |= CFLAG_FINISHED; 8614 cmd->cmd_flags &= ~CFLAG_IN_TRANSPORT; 8615 8616 mptsas_fma_check(mpt, cmd); 8617 8618 /* 8619 * only add scsi pkts that have completion routines to 8620 * the doneq. no intr cmds do not have callbacks. 8621 */ 8622 if (pkt && (pkt->pkt_comp)) { 8623 *mpt->m_donetail = cmd; 8624 mpt->m_donetail = &cmd->cmd_linkp; 8625 mpt->m_doneq_len++; 8626 } 8627 } 8628 8629 static mptsas_cmd_t * 8630 mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t) 8631 { 8632 mptsas_cmd_t *cmd; 8633 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 8634 8635 /* pop one off the done queue */ 8636 if ((cmd = item->doneq) != NULL) { 8637 /* if the queue is now empty fix the tail pointer */ 8638 NDBG31(("mptsas_doneq_thread_rm: cmd=0x%p", (void *)cmd)); 8639 if ((item->doneq = cmd->cmd_linkp) == NULL) { 8640 item->donetail = &item->doneq; 8641 } 8642 cmd->cmd_linkp = NULL; 8643 item->len--; 8644 } 8645 return (cmd); 8646 } 8647 8648 static void 8649 mptsas_doneq_empty(mptsas_t *mpt) 8650 { 8651 if (mpt->m_doneq && !mpt->m_in_callback) { 8652 mptsas_cmd_t *cmd, *next; 8653 struct scsi_pkt *pkt; 8654 8655 mpt->m_in_callback = 1; 8656 cmd = mpt->m_doneq; 8657 mpt->m_doneq = NULL; 8658 mpt->m_donetail = &mpt->m_doneq; 8659 mpt->m_doneq_len = 0; 8660 8661 mutex_exit(&mpt->m_mutex); 8662 /* 8663 * run the completion routines of all the 8664 * completed commands 8665 */ 8666 while (cmd != NULL) { 8667 next = cmd->cmd_linkp; 8668 cmd->cmd_linkp = NULL; 8669 /* run this command's completion routine */ 8670 cmd->cmd_flags |= CFLAG_COMPLETED; 8671 pkt = CMD2PKT(cmd); 8672 mptsas_pkt_comp(pkt, cmd); 8673 cmd = next; 8674 } 8675 mutex_enter(&mpt->m_mutex); 8676 mpt->m_in_callback = 0; 8677 } 8678 } 8679 8680 /* 8681 * These routines manipulate the target's queue of pending requests 8682 */ 8683 void 8684 mptsas_waitq_add(mptsas_t *mpt, mptsas_cmd_t *cmd) 8685 { 8686 NDBG7(("mptsas_waitq_add: cmd=0x%p", (void *)cmd)); 8687 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8688 cmd->cmd_queued = TRUE; 8689 if (ptgt) 8690 ptgt->m_t_nwait++; 8691 if (cmd->cmd_pkt_flags & FLAG_HEAD) { 8692 if ((cmd->cmd_linkp = mpt->m_waitq) == NULL) { 8693 mpt->m_waitqtail = &cmd->cmd_linkp; 8694 } 8695 mpt->m_waitq = cmd; 8696 } else { 8697 cmd->cmd_linkp = NULL; 8698 *(mpt->m_waitqtail) = cmd; 8699 mpt->m_waitqtail = &cmd->cmd_linkp; 8700 } 8701 } 8702 8703 static mptsas_cmd_t * 8704 mptsas_waitq_rm(mptsas_t *mpt) 8705 { 8706 mptsas_cmd_t *cmd; 8707 mptsas_target_t *ptgt; 8708 NDBG7(("mptsas_waitq_rm")); 8709 8710 MPTSAS_WAITQ_RM(mpt, cmd); 8711 8712 NDBG7(("mptsas_waitq_rm: cmd=0x%p", (void *)cmd)); 8713 if (cmd) { 8714 ptgt = cmd->cmd_tgt_addr; 8715 if (ptgt) { 8716 ptgt->m_t_nwait--; 8717 ASSERT(ptgt->m_t_nwait >= 0); 8718 } 8719 } 8720 return (cmd); 8721 } 8722 8723 /* 8724 * remove specified cmd from the middle of the wait queue. 8725 */ 8726 static void 8727 mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd) 8728 { 8729 mptsas_cmd_t *prevp = mpt->m_waitq; 8730 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8731 8732 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 8733 (void *)mpt, (void *)cmd)); 8734 if (ptgt) { 8735 ptgt->m_t_nwait--; 8736 ASSERT(ptgt->m_t_nwait >= 0); 8737 } 8738 8739 if (prevp == cmd) { 8740 if ((mpt->m_waitq = cmd->cmd_linkp) == NULL) 8741 mpt->m_waitqtail = &mpt->m_waitq; 8742 8743 cmd->cmd_linkp = NULL; 8744 cmd->cmd_queued = FALSE; 8745 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 8746 (void *)mpt, (void *)cmd)); 8747 return; 8748 } 8749 8750 while (prevp != NULL) { 8751 if (prevp->cmd_linkp == cmd) { 8752 if ((prevp->cmd_linkp = cmd->cmd_linkp) == NULL) 8753 mpt->m_waitqtail = &prevp->cmd_linkp; 8754 8755 cmd->cmd_linkp = NULL; 8756 cmd->cmd_queued = FALSE; 8757 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 8758 (void *)mpt, (void *)cmd)); 8759 return; 8760 } 8761 prevp = prevp->cmd_linkp; 8762 } 8763 cmn_err(CE_PANIC, "mpt: mptsas_waitq_delete: queue botch"); 8764 } 8765 8766 static mptsas_cmd_t * 8767 mptsas_tx_waitq_rm(mptsas_t *mpt) 8768 { 8769 mptsas_cmd_t *cmd; 8770 NDBG7(("mptsas_tx_waitq_rm")); 8771 8772 MPTSAS_TX_WAITQ_RM(mpt, cmd); 8773 8774 NDBG7(("mptsas_tx_waitq_rm: cmd=0x%p", (void *)cmd)); 8775 8776 return (cmd); 8777 } 8778 8779 /* 8780 * remove specified cmd from the middle of the tx_waitq. 8781 */ 8782 static void 8783 mptsas_tx_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd) 8784 { 8785 mptsas_cmd_t *prevp = mpt->m_tx_waitq; 8786 8787 NDBG7(("mptsas_tx_waitq_delete: mpt=0x%p cmd=0x%p", 8788 (void *)mpt, (void *)cmd)); 8789 8790 if (prevp == cmd) { 8791 if ((mpt->m_tx_waitq = cmd->cmd_linkp) == NULL) 8792 mpt->m_tx_waitqtail = &mpt->m_tx_waitq; 8793 8794 cmd->cmd_linkp = NULL; 8795 cmd->cmd_queued = FALSE; 8796 NDBG7(("mptsas_tx_waitq_delete: mpt=0x%p cmd=0x%p", 8797 (void *)mpt, (void *)cmd)); 8798 return; 8799 } 8800 8801 while (prevp != NULL) { 8802 if (prevp->cmd_linkp == cmd) { 8803 if ((prevp->cmd_linkp = cmd->cmd_linkp) == NULL) 8804 mpt->m_tx_waitqtail = &prevp->cmd_linkp; 8805 8806 cmd->cmd_linkp = NULL; 8807 cmd->cmd_queued = FALSE; 8808 NDBG7(("mptsas_tx_waitq_delete: mpt=0x%p cmd=0x%p", 8809 (void *)mpt, (void *)cmd)); 8810 return; 8811 } 8812 prevp = prevp->cmd_linkp; 8813 } 8814 cmn_err(CE_PANIC, "mpt: mptsas_tx_waitq_delete: queue botch"); 8815 } 8816 8817 /* 8818 * device and bus reset handling 8819 * 8820 * Notes: 8821 * - RESET_ALL: reset the controller 8822 * - RESET_TARGET: reset the target specified in scsi_address 8823 */ 8824 static int 8825 mptsas_scsi_reset(struct scsi_address *ap, int level) 8826 { 8827 mptsas_t *mpt = ADDR2MPT(ap); 8828 int rval; 8829 mptsas_tgt_private_t *tgt_private; 8830 mptsas_target_t *ptgt = NULL; 8831 8832 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran->tran_tgt_private; 8833 ptgt = tgt_private->t_private; 8834 if (ptgt == NULL) { 8835 return (FALSE); 8836 } 8837 NDBG22(("mptsas_scsi_reset: target=%d level=%d", ptgt->m_devhdl, 8838 level)); 8839 8840 mutex_enter(&mpt->m_mutex); 8841 /* 8842 * if we are not in panic set up a reset delay for this target 8843 */ 8844 if (!ddi_in_panic()) { 8845 mptsas_setup_bus_reset_delay(mpt); 8846 } else { 8847 drv_usecwait(mpt->m_scsi_reset_delay * 1000); 8848 } 8849 rval = mptsas_do_scsi_reset(mpt, ptgt->m_devhdl); 8850 mutex_exit(&mpt->m_mutex); 8851 8852 /* 8853 * The transport layer expect to only see TRUE and 8854 * FALSE. Therefore, we will adjust the return value 8855 * if mptsas_do_scsi_reset returns FAILED. 8856 */ 8857 if (rval == FAILED) 8858 rval = FALSE; 8859 return (rval); 8860 } 8861 8862 static int 8863 mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl) 8864 { 8865 int rval = FALSE; 8866 uint8_t config, disk; 8867 8868 ASSERT(mutex_owned(&mpt->m_mutex)); 8869 8870 if (mptsas_debug_resets) { 8871 mptsas_log(mpt, CE_WARN, "mptsas_do_scsi_reset: target=%d", 8872 devhdl); 8873 } 8874 8875 /* 8876 * Issue a Target Reset message to the target specified but not to a 8877 * disk making up a raid volume. Just look through the RAID config 8878 * Phys Disk list of DevHandles. If the target's DevHandle is in this 8879 * list, then don't reset this target. 8880 */ 8881 for (config = 0; config < mpt->m_num_raid_configs; config++) { 8882 for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) { 8883 if (devhdl == mpt->m_raidconfig[config]. 8884 m_physdisk_devhdl[disk]) { 8885 return (TRUE); 8886 } 8887 } 8888 } 8889 8890 rval = mptsas_ioc_task_management(mpt, 8891 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, devhdl, 0, NULL, 0, 0); 8892 8893 mptsas_doneq_empty(mpt); 8894 return (rval); 8895 } 8896 8897 static int 8898 mptsas_scsi_reset_notify(struct scsi_address *ap, int flag, 8899 void (*callback)(caddr_t), caddr_t arg) 8900 { 8901 mptsas_t *mpt = ADDR2MPT(ap); 8902 8903 NDBG22(("mptsas_scsi_reset_notify: tgt=%d", ap->a_target)); 8904 8905 return (scsi_hba_reset_notify_setup(ap, flag, callback, arg, 8906 &mpt->m_mutex, &mpt->m_reset_notify_listf)); 8907 } 8908 8909 static int 8910 mptsas_get_name(struct scsi_device *sd, char *name, int len) 8911 { 8912 dev_info_t *lun_dip = NULL; 8913 8914 ASSERT(sd != NULL); 8915 ASSERT(name != NULL); 8916 lun_dip = sd->sd_dev; 8917 ASSERT(lun_dip != NULL); 8918 8919 if (mptsas_name_child(lun_dip, name, len) == DDI_SUCCESS) { 8920 return (1); 8921 } else { 8922 return (0); 8923 } 8924 } 8925 8926 static int 8927 mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len) 8928 { 8929 return (mptsas_get_name(sd, name, len)); 8930 } 8931 8932 void 8933 mptsas_set_throttle(mptsas_t *mpt, mptsas_target_t *ptgt, int what) 8934 { 8935 8936 NDBG25(("mptsas_set_throttle: throttle=%x", what)); 8937 8938 /* 8939 * if the bus is draining/quiesced, no changes to the throttles 8940 * are allowed. Not allowing change of throttles during draining 8941 * limits error recovery but will reduce draining time 8942 * 8943 * all throttles should have been set to HOLD_THROTTLE 8944 */ 8945 if (mpt->m_softstate & (MPTSAS_SS_QUIESCED | MPTSAS_SS_DRAINING)) { 8946 return; 8947 } 8948 8949 if (what == HOLD_THROTTLE) { 8950 ptgt->m_t_throttle = HOLD_THROTTLE; 8951 } else if (ptgt->m_reset_delay == 0) { 8952 ptgt->m_t_throttle = what; 8953 } 8954 } 8955 8956 /* 8957 * Clean up from a device reset. 8958 * For the case of target reset, this function clears the waitq of all 8959 * commands for a particular target. For the case of abort task set, this 8960 * function clears the waitq of all commonds for a particular target/lun. 8961 */ 8962 static void 8963 mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, uint8_t tasktype) 8964 { 8965 mptsas_slots_t *slots = mpt->m_active; 8966 mptsas_cmd_t *cmd, *next_cmd; 8967 int slot; 8968 uchar_t reason; 8969 uint_t stat; 8970 hrtime_t timestamp; 8971 8972 NDBG25(("mptsas_flush_target: target=%d lun=%d", target, lun)); 8973 8974 timestamp = gethrtime(); 8975 8976 /* 8977 * Make sure the I/O Controller has flushed all cmds 8978 * that are associated with this target for a target reset 8979 * and target/lun for abort task set. 8980 * Account for TM requests, which use the last SMID. 8981 */ 8982 for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) { 8983 if ((cmd = slots->m_slot[slot]) == NULL) 8984 continue; 8985 reason = CMD_RESET; 8986 stat = STAT_DEV_RESET; 8987 switch (tasktype) { 8988 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 8989 if (Tgt(cmd) == target) { 8990 if (cmd->cmd_active_expiration <= timestamp) { 8991 /* 8992 * When timeout requested, propagate 8993 * proper reason and statistics to 8994 * target drivers. 8995 */ 8996 reason = CMD_TIMEOUT; 8997 stat |= STAT_TIMEOUT; 8998 } 8999 NDBG25(("mptsas_flush_target discovered non-" 9000 "NULL cmd in slot %d, tasktype 0x%x", slot, 9001 tasktype)); 9002 mptsas_dump_cmd(mpt, cmd); 9003 mptsas_remove_cmd(mpt, cmd); 9004 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9005 mptsas_doneq_add(mpt, cmd); 9006 } 9007 break; 9008 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 9009 reason = CMD_ABORTED; 9010 stat = STAT_ABORTED; 9011 /*FALLTHROUGH*/ 9012 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 9013 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9014 9015 NDBG25(("mptsas_flush_target discovered non-" 9016 "NULL cmd in slot %d, tasktype 0x%x", slot, 9017 tasktype)); 9018 mptsas_dump_cmd(mpt, cmd); 9019 mptsas_remove_cmd(mpt, cmd); 9020 mptsas_set_pkt_reason(mpt, cmd, reason, 9021 stat); 9022 mptsas_doneq_add(mpt, cmd); 9023 } 9024 break; 9025 default: 9026 break; 9027 } 9028 } 9029 9030 /* 9031 * Flush the waitq and tx_waitq of this target's cmds 9032 */ 9033 cmd = mpt->m_waitq; 9034 9035 reason = CMD_RESET; 9036 stat = STAT_DEV_RESET; 9037 9038 switch (tasktype) { 9039 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 9040 while (cmd != NULL) { 9041 next_cmd = cmd->cmd_linkp; 9042 if (Tgt(cmd) == target) { 9043 mptsas_waitq_delete(mpt, cmd); 9044 mptsas_set_pkt_reason(mpt, cmd, 9045 reason, stat); 9046 mptsas_doneq_add(mpt, cmd); 9047 } 9048 cmd = next_cmd; 9049 } 9050 mutex_enter(&mpt->m_tx_waitq_mutex); 9051 cmd = mpt->m_tx_waitq; 9052 while (cmd != NULL) { 9053 next_cmd = cmd->cmd_linkp; 9054 if (Tgt(cmd) == target) { 9055 mptsas_tx_waitq_delete(mpt, cmd); 9056 mutex_exit(&mpt->m_tx_waitq_mutex); 9057 mptsas_set_pkt_reason(mpt, cmd, 9058 reason, stat); 9059 mptsas_doneq_add(mpt, cmd); 9060 mutex_enter(&mpt->m_tx_waitq_mutex); 9061 } 9062 cmd = next_cmd; 9063 } 9064 mutex_exit(&mpt->m_tx_waitq_mutex); 9065 break; 9066 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 9067 reason = CMD_ABORTED; 9068 stat = STAT_ABORTED; 9069 /*FALLTHROUGH*/ 9070 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 9071 while (cmd != NULL) { 9072 next_cmd = cmd->cmd_linkp; 9073 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9074 mptsas_waitq_delete(mpt, cmd); 9075 mptsas_set_pkt_reason(mpt, cmd, 9076 reason, stat); 9077 mptsas_doneq_add(mpt, cmd); 9078 } 9079 cmd = next_cmd; 9080 } 9081 mutex_enter(&mpt->m_tx_waitq_mutex); 9082 cmd = mpt->m_tx_waitq; 9083 while (cmd != NULL) { 9084 next_cmd = cmd->cmd_linkp; 9085 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9086 mptsas_tx_waitq_delete(mpt, cmd); 9087 mutex_exit(&mpt->m_tx_waitq_mutex); 9088 mptsas_set_pkt_reason(mpt, cmd, 9089 reason, stat); 9090 mptsas_doneq_add(mpt, cmd); 9091 mutex_enter(&mpt->m_tx_waitq_mutex); 9092 } 9093 cmd = next_cmd; 9094 } 9095 mutex_exit(&mpt->m_tx_waitq_mutex); 9096 break; 9097 default: 9098 mptsas_log(mpt, CE_WARN, "Unknown task management type %d.", 9099 tasktype); 9100 break; 9101 } 9102 } 9103 9104 /* 9105 * Clean up hba state, abort all outstanding command and commands in waitq 9106 * reset timeout of all targets. 9107 */ 9108 static void 9109 mptsas_flush_hba(mptsas_t *mpt) 9110 { 9111 mptsas_slots_t *slots = mpt->m_active; 9112 mptsas_cmd_t *cmd; 9113 int slot; 9114 9115 NDBG25(("mptsas_flush_hba")); 9116 9117 /* 9118 * The I/O Controller should have already sent back 9119 * all commands via the scsi I/O reply frame. Make 9120 * sure all commands have been flushed. 9121 * Account for TM request, which use the last SMID. 9122 */ 9123 for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) { 9124 if ((cmd = slots->m_slot[slot]) == NULL) 9125 continue; 9126 9127 if (cmd->cmd_flags & CFLAG_CMDIOC) { 9128 /* 9129 * Need to make sure to tell everyone that might be 9130 * waiting on this command that it's going to fail. If 9131 * we get here, this command will never timeout because 9132 * the active command table is going to be re-allocated, 9133 * so there will be nothing to check against a time out. 9134 * Instead, mark the command as failed due to reset. 9135 */ 9136 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 9137 STAT_BUS_RESET); 9138 if ((cmd->cmd_flags & 9139 (CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) { 9140 cmd->cmd_flags |= CFLAG_FINISHED; 9141 cv_broadcast(&mpt->m_passthru_cv); 9142 cv_broadcast(&mpt->m_config_cv); 9143 cv_broadcast(&mpt->m_fw_diag_cv); 9144 } 9145 continue; 9146 } 9147 9148 NDBG25(("mptsas_flush_hba discovered non-NULL cmd in slot %d", 9149 slot)); 9150 mptsas_dump_cmd(mpt, cmd); 9151 9152 mptsas_remove_cmd(mpt, cmd); 9153 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9154 mptsas_doneq_add(mpt, cmd); 9155 } 9156 9157 /* 9158 * Flush the waitq. 9159 */ 9160 while ((cmd = mptsas_waitq_rm(mpt)) != NULL) { 9161 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9162 if ((cmd->cmd_flags & CFLAG_PASSTHRU) || 9163 (cmd->cmd_flags & CFLAG_CONFIG) || 9164 (cmd->cmd_flags & CFLAG_FW_DIAG)) { 9165 cmd->cmd_flags |= CFLAG_FINISHED; 9166 cv_broadcast(&mpt->m_passthru_cv); 9167 cv_broadcast(&mpt->m_config_cv); 9168 cv_broadcast(&mpt->m_fw_diag_cv); 9169 } else { 9170 mptsas_doneq_add(mpt, cmd); 9171 } 9172 } 9173 9174 /* 9175 * Flush the tx_waitq 9176 */ 9177 mutex_enter(&mpt->m_tx_waitq_mutex); 9178 while ((cmd = mptsas_tx_waitq_rm(mpt)) != NULL) { 9179 mutex_exit(&mpt->m_tx_waitq_mutex); 9180 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9181 mptsas_doneq_add(mpt, cmd); 9182 mutex_enter(&mpt->m_tx_waitq_mutex); 9183 } 9184 mutex_exit(&mpt->m_tx_waitq_mutex); 9185 9186 /* 9187 * Drain the taskqs prior to reallocating resources. 9188 */ 9189 mutex_exit(&mpt->m_mutex); 9190 ddi_taskq_wait(mpt->m_event_taskq); 9191 ddi_taskq_wait(mpt->m_dr_taskq); 9192 mutex_enter(&mpt->m_mutex); 9193 } 9194 9195 /* 9196 * set pkt_reason and OR in pkt_statistics flag 9197 */ 9198 static void 9199 mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, uchar_t reason, 9200 uint_t stat) 9201 { 9202 #ifndef __lock_lint 9203 _NOTE(ARGUNUSED(mpt)) 9204 #endif 9205 9206 NDBG25(("mptsas_set_pkt_reason: cmd=0x%p reason=%x stat=%x", 9207 (void *)cmd, reason, stat)); 9208 9209 if (cmd) { 9210 if (cmd->cmd_pkt->pkt_reason == CMD_CMPLT) { 9211 cmd->cmd_pkt->pkt_reason = reason; 9212 } 9213 cmd->cmd_pkt->pkt_statistics |= stat; 9214 } 9215 } 9216 9217 static void 9218 mptsas_start_watch_reset_delay() 9219 { 9220 NDBG22(("mptsas_start_watch_reset_delay")); 9221 9222 mutex_enter(&mptsas_global_mutex); 9223 if (mptsas_reset_watch == NULL && mptsas_timeouts_enabled) { 9224 mptsas_reset_watch = timeout(mptsas_watch_reset_delay, NULL, 9225 drv_usectohz((clock_t) 9226 MPTSAS_WATCH_RESET_DELAY_TICK * 1000)); 9227 ASSERT(mptsas_reset_watch != NULL); 9228 } 9229 mutex_exit(&mptsas_global_mutex); 9230 } 9231 9232 static void 9233 mptsas_setup_bus_reset_delay(mptsas_t *mpt) 9234 { 9235 mptsas_target_t *ptgt = NULL; 9236 9237 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 9238 9239 NDBG22(("mptsas_setup_bus_reset_delay")); 9240 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9241 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9242 mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE); 9243 ptgt->m_reset_delay = mpt->m_scsi_reset_delay; 9244 } 9245 9246 mptsas_start_watch_reset_delay(); 9247 } 9248 9249 /* 9250 * mptsas_watch_reset_delay(_subr) is invoked by timeout() and checks every 9251 * mpt instance for active reset delays 9252 */ 9253 static void 9254 mptsas_watch_reset_delay(void *arg) 9255 { 9256 #ifndef __lock_lint 9257 _NOTE(ARGUNUSED(arg)) 9258 #endif 9259 9260 mptsas_t *mpt; 9261 int not_done = 0; 9262 9263 NDBG22(("mptsas_watch_reset_delay")); 9264 9265 mutex_enter(&mptsas_global_mutex); 9266 mptsas_reset_watch = 0; 9267 mutex_exit(&mptsas_global_mutex); 9268 rw_enter(&mptsas_global_rwlock, RW_READER); 9269 for (mpt = mptsas_head; mpt != NULL; mpt = mpt->m_next) { 9270 if (mpt->m_tran == 0) { 9271 continue; 9272 } 9273 mutex_enter(&mpt->m_mutex); 9274 not_done += mptsas_watch_reset_delay_subr(mpt); 9275 mutex_exit(&mpt->m_mutex); 9276 } 9277 rw_exit(&mptsas_global_rwlock); 9278 9279 if (not_done) { 9280 mptsas_start_watch_reset_delay(); 9281 } 9282 } 9283 9284 static int 9285 mptsas_watch_reset_delay_subr(mptsas_t *mpt) 9286 { 9287 int done = 0; 9288 int restart = 0; 9289 mptsas_target_t *ptgt = NULL; 9290 9291 NDBG22(("mptsas_watch_reset_delay_subr: mpt=0x%p", (void *)mpt)); 9292 9293 ASSERT(mutex_owned(&mpt->m_mutex)); 9294 9295 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9296 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9297 if (ptgt->m_reset_delay != 0) { 9298 ptgt->m_reset_delay -= 9299 MPTSAS_WATCH_RESET_DELAY_TICK; 9300 if (ptgt->m_reset_delay <= 0) { 9301 ptgt->m_reset_delay = 0; 9302 mptsas_set_throttle(mpt, ptgt, 9303 MAX_THROTTLE); 9304 restart++; 9305 } else { 9306 done = -1; 9307 } 9308 } 9309 } 9310 9311 if (restart > 0) { 9312 mptsas_restart_hba(mpt); 9313 } 9314 return (done); 9315 } 9316 9317 #ifdef MPTSAS_TEST 9318 static void 9319 mptsas_test_reset(mptsas_t *mpt, int target) 9320 { 9321 mptsas_target_t *ptgt = NULL; 9322 9323 if (mptsas_rtest == target) { 9324 if (mptsas_do_scsi_reset(mpt, target) == TRUE) { 9325 mptsas_rtest = -1; 9326 } 9327 if (mptsas_rtest == -1) { 9328 NDBG22(("mptsas_test_reset success")); 9329 } 9330 } 9331 } 9332 #endif 9333 9334 /* 9335 * abort handling: 9336 * 9337 * Notes: 9338 * - if pkt is not NULL, abort just that command 9339 * - if pkt is NULL, abort all outstanding commands for target 9340 */ 9341 static int 9342 mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt) 9343 { 9344 mptsas_t *mpt = ADDR2MPT(ap); 9345 int rval; 9346 mptsas_tgt_private_t *tgt_private; 9347 int target, lun; 9348 9349 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran-> 9350 tran_tgt_private; 9351 ASSERT(tgt_private != NULL); 9352 target = tgt_private->t_private->m_devhdl; 9353 lun = tgt_private->t_lun; 9354 9355 NDBG23(("mptsas_scsi_abort: target=%d.%d", target, lun)); 9356 9357 mutex_enter(&mpt->m_mutex); 9358 rval = mptsas_do_scsi_abort(mpt, target, lun, pkt); 9359 mutex_exit(&mpt->m_mutex); 9360 return (rval); 9361 } 9362 9363 static int 9364 mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, struct scsi_pkt *pkt) 9365 { 9366 mptsas_cmd_t *sp = NULL; 9367 mptsas_slots_t *slots = mpt->m_active; 9368 int rval = FALSE; 9369 9370 ASSERT(mutex_owned(&mpt->m_mutex)); 9371 9372 /* 9373 * Abort the command pkt on the target/lun in ap. If pkt is 9374 * NULL, abort all outstanding commands on that target/lun. 9375 * If you can abort them, return 1, else return 0. 9376 * Each packet that's aborted should be sent back to the target 9377 * driver through the callback routine, with pkt_reason set to 9378 * CMD_ABORTED. 9379 * 9380 * abort cmd pkt on HBA hardware; clean out of outstanding 9381 * command lists, etc. 9382 */ 9383 if (pkt != NULL) { 9384 /* abort the specified packet */ 9385 sp = PKT2CMD(pkt); 9386 9387 if (sp->cmd_queued) { 9388 NDBG23(("mptsas_do_scsi_abort: queued sp=0x%p aborted", 9389 (void *)sp)); 9390 mptsas_waitq_delete(mpt, sp); 9391 mptsas_set_pkt_reason(mpt, sp, CMD_ABORTED, 9392 STAT_ABORTED); 9393 mptsas_doneq_add(mpt, sp); 9394 rval = TRUE; 9395 goto done; 9396 } 9397 9398 /* 9399 * Have mpt firmware abort this command 9400 */ 9401 9402 if (slots->m_slot[sp->cmd_slot] != NULL) { 9403 rval = mptsas_ioc_task_management(mpt, 9404 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK, target, 9405 lun, NULL, 0, 0); 9406 9407 /* 9408 * The transport layer expects only TRUE and FALSE. 9409 * Therefore, if mptsas_ioc_task_management returns 9410 * FAILED we will return FALSE. 9411 */ 9412 if (rval == FAILED) 9413 rval = FALSE; 9414 goto done; 9415 } 9416 } 9417 9418 /* 9419 * If pkt is NULL then abort task set 9420 */ 9421 rval = mptsas_ioc_task_management(mpt, 9422 MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET, target, lun, NULL, 0, 0); 9423 9424 /* 9425 * The transport layer expects only TRUE and FALSE. 9426 * Therefore, if mptsas_ioc_task_management returns 9427 * FAILED we will return FALSE. 9428 */ 9429 if (rval == FAILED) 9430 rval = FALSE; 9431 9432 #ifdef MPTSAS_TEST 9433 if (rval && mptsas_test_stop) { 9434 debug_enter("mptsas_do_scsi_abort"); 9435 } 9436 #endif 9437 9438 done: 9439 mptsas_doneq_empty(mpt); 9440 return (rval); 9441 } 9442 9443 /* 9444 * capability handling: 9445 * (*tran_getcap). Get the capability named, and return its value. 9446 */ 9447 static int 9448 mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly) 9449 { 9450 mptsas_t *mpt = ADDR2MPT(ap); 9451 int ckey; 9452 int rval = FALSE; 9453 9454 NDBG24(("mptsas_scsi_getcap: target=%d, cap=%s tgtonly=%x", 9455 ap->a_target, cap, tgtonly)); 9456 9457 mutex_enter(&mpt->m_mutex); 9458 9459 if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) { 9460 mutex_exit(&mpt->m_mutex); 9461 return (UNDEFINED); 9462 } 9463 9464 switch (ckey) { 9465 case SCSI_CAP_DMA_MAX: 9466 rval = (int)mpt->m_msg_dma_attr.dma_attr_maxxfer; 9467 break; 9468 case SCSI_CAP_ARQ: 9469 rval = TRUE; 9470 break; 9471 case SCSI_CAP_MSG_OUT: 9472 case SCSI_CAP_PARITY: 9473 case SCSI_CAP_UNTAGGED_QING: 9474 rval = TRUE; 9475 break; 9476 case SCSI_CAP_TAGGED_QING: 9477 rval = TRUE; 9478 break; 9479 case SCSI_CAP_RESET_NOTIFICATION: 9480 rval = TRUE; 9481 break; 9482 case SCSI_CAP_LINKED_CMDS: 9483 rval = FALSE; 9484 break; 9485 case SCSI_CAP_QFULL_RETRIES: 9486 rval = ((mptsas_tgt_private_t *)(ap->a_hba_tran-> 9487 tran_tgt_private))->t_private->m_qfull_retries; 9488 break; 9489 case SCSI_CAP_QFULL_RETRY_INTERVAL: 9490 rval = drv_hztousec(((mptsas_tgt_private_t *) 9491 (ap->a_hba_tran->tran_tgt_private))-> 9492 t_private->m_qfull_retry_interval) / 1000; 9493 break; 9494 case SCSI_CAP_CDB_LEN: 9495 rval = CDB_GROUP4; 9496 break; 9497 case SCSI_CAP_INTERCONNECT_TYPE: 9498 rval = INTERCONNECT_SAS; 9499 break; 9500 case SCSI_CAP_TRAN_LAYER_RETRIES: 9501 if (mpt->m_ioc_capabilities & 9502 MPI2_IOCFACTS_CAPABILITY_TLR) 9503 rval = TRUE; 9504 else 9505 rval = FALSE; 9506 break; 9507 default: 9508 rval = UNDEFINED; 9509 break; 9510 } 9511 9512 NDBG24(("mptsas_scsi_getcap: %s, rval=%x", cap, rval)); 9513 9514 mutex_exit(&mpt->m_mutex); 9515 return (rval); 9516 } 9517 9518 /* 9519 * (*tran_setcap). Set the capability named to the value given. 9520 */ 9521 static int 9522 mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, int tgtonly) 9523 { 9524 mptsas_t *mpt = ADDR2MPT(ap); 9525 int ckey; 9526 int rval = FALSE; 9527 9528 NDBG24(("mptsas_scsi_setcap: target=%d, cap=%s value=%x tgtonly=%x", 9529 ap->a_target, cap, value, tgtonly)); 9530 9531 if (!tgtonly) { 9532 return (rval); 9533 } 9534 9535 mutex_enter(&mpt->m_mutex); 9536 9537 if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) { 9538 mutex_exit(&mpt->m_mutex); 9539 return (UNDEFINED); 9540 } 9541 9542 switch (ckey) { 9543 case SCSI_CAP_DMA_MAX: 9544 case SCSI_CAP_MSG_OUT: 9545 case SCSI_CAP_PARITY: 9546 case SCSI_CAP_INITIATOR_ID: 9547 case SCSI_CAP_LINKED_CMDS: 9548 case SCSI_CAP_UNTAGGED_QING: 9549 case SCSI_CAP_RESET_NOTIFICATION: 9550 /* 9551 * None of these are settable via 9552 * the capability interface. 9553 */ 9554 break; 9555 case SCSI_CAP_ARQ: 9556 /* 9557 * We cannot turn off arq so return false if asked to 9558 */ 9559 if (value) { 9560 rval = TRUE; 9561 } else { 9562 rval = FALSE; 9563 } 9564 break; 9565 case SCSI_CAP_TAGGED_QING: 9566 mptsas_set_throttle(mpt, ((mptsas_tgt_private_t *) 9567 (ap->a_hba_tran->tran_tgt_private))->t_private, 9568 MAX_THROTTLE); 9569 rval = TRUE; 9570 break; 9571 case SCSI_CAP_QFULL_RETRIES: 9572 ((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))-> 9573 t_private->m_qfull_retries = (uchar_t)value; 9574 rval = TRUE; 9575 break; 9576 case SCSI_CAP_QFULL_RETRY_INTERVAL: 9577 ((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))-> 9578 t_private->m_qfull_retry_interval = 9579 drv_usectohz(value * 1000); 9580 rval = TRUE; 9581 break; 9582 default: 9583 rval = UNDEFINED; 9584 break; 9585 } 9586 mutex_exit(&mpt->m_mutex); 9587 return (rval); 9588 } 9589 9590 /* 9591 * Utility routine for mptsas_ifsetcap/ifgetcap 9592 */ 9593 /*ARGSUSED*/ 9594 static int 9595 mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp) 9596 { 9597 NDBG24(("mptsas_scsi_capchk: cap=%s", cap)); 9598 9599 if (!cap) 9600 return (FALSE); 9601 9602 *cidxp = scsi_hba_lookup_capstr(cap); 9603 return (TRUE); 9604 } 9605 9606 static int 9607 mptsas_alloc_active_slots(mptsas_t *mpt, int flag) 9608 { 9609 mptsas_slots_t *old_active = mpt->m_active; 9610 mptsas_slots_t *new_active; 9611 size_t size; 9612 9613 /* 9614 * if there are active commands, then we cannot 9615 * change size of active slots array. 9616 */ 9617 ASSERT(mpt->m_ncmds == 0); 9618 9619 size = MPTSAS_SLOTS_SIZE(mpt); 9620 new_active = kmem_zalloc(size, flag); 9621 if (new_active == NULL) { 9622 NDBG1(("new active alloc failed")); 9623 return (-1); 9624 } 9625 /* 9626 * Since SMID 0 is reserved and the TM slot is reserved, the 9627 * number of slots that can be used at any one time is 9628 * m_max_requests - 2. 9629 */ 9630 new_active->m_n_normal = (mpt->m_max_requests - 2); 9631 new_active->m_size = size; 9632 new_active->m_rotor = 1; 9633 if (old_active) 9634 mptsas_free_active_slots(mpt); 9635 mpt->m_active = new_active; 9636 9637 return (0); 9638 } 9639 9640 static void 9641 mptsas_free_active_slots(mptsas_t *mpt) 9642 { 9643 mptsas_slots_t *active = mpt->m_active; 9644 size_t size; 9645 9646 if (active == NULL) 9647 return; 9648 size = active->m_size; 9649 kmem_free(active, size); 9650 mpt->m_active = NULL; 9651 } 9652 9653 /* 9654 * Error logging, printing, and debug print routines. 9655 */ 9656 static char *mptsas_label = "mpt_sas"; 9657 9658 /*PRINTFLIKE3*/ 9659 void 9660 mptsas_log(mptsas_t *mpt, int level, char *fmt, ...) 9661 { 9662 dev_info_t *dev; 9663 va_list ap; 9664 9665 if (mpt) { 9666 dev = mpt->m_dip; 9667 } else { 9668 dev = 0; 9669 } 9670 9671 mutex_enter(&mptsas_log_mutex); 9672 9673 va_start(ap, fmt); 9674 (void) vsprintf(mptsas_log_buf, fmt, ap); 9675 va_end(ap); 9676 9677 if (level == CE_CONT) { 9678 scsi_log(dev, mptsas_label, level, "%s\n", mptsas_log_buf); 9679 } else { 9680 scsi_log(dev, mptsas_label, level, "%s", mptsas_log_buf); 9681 } 9682 9683 mutex_exit(&mptsas_log_mutex); 9684 } 9685 9686 #ifdef MPTSAS_DEBUG 9687 /* 9688 * Use a circular buffer to log messages to private memory. 9689 * Increment idx atomically to minimize risk to miss lines. 9690 * It's fast and does not hold up the proceedings too much. 9691 */ 9692 static const size_t mptsas_dbglog_linecnt = MPTSAS_DBGLOG_LINECNT; 9693 static const size_t mptsas_dbglog_linelen = MPTSAS_DBGLOG_LINELEN; 9694 static char mptsas_dbglog_bufs[MPTSAS_DBGLOG_LINECNT][MPTSAS_DBGLOG_LINELEN]; 9695 static uint32_t mptsas_dbglog_idx = 0; 9696 9697 /*PRINTFLIKE1*/ 9698 void 9699 mptsas_debug_log(char *fmt, ...) 9700 { 9701 va_list ap; 9702 uint32_t idx; 9703 9704 idx = atomic_inc_32_nv(&mptsas_dbglog_idx) & 9705 (mptsas_dbglog_linecnt - 1); 9706 9707 va_start(ap, fmt); 9708 (void) vsnprintf(mptsas_dbglog_bufs[idx], 9709 mptsas_dbglog_linelen, fmt, ap); 9710 va_end(ap); 9711 } 9712 9713 /*PRINTFLIKE1*/ 9714 void 9715 mptsas_printf(char *fmt, ...) 9716 { 9717 dev_info_t *dev = 0; 9718 va_list ap; 9719 9720 mutex_enter(&mptsas_log_mutex); 9721 9722 va_start(ap, fmt); 9723 (void) vsprintf(mptsas_log_buf, fmt, ap); 9724 va_end(ap); 9725 9726 #ifdef PROM_PRINTF 9727 prom_printf("%s:\t%s\n", mptsas_label, mptsas_log_buf); 9728 #else 9729 scsi_log(dev, mptsas_label, CE_CONT, "!%s\n", mptsas_log_buf); 9730 #endif 9731 mutex_exit(&mptsas_log_mutex); 9732 } 9733 #endif 9734 9735 /* 9736 * timeout handling 9737 */ 9738 static void 9739 mptsas_watch(void *arg) 9740 { 9741 #ifndef __lock_lint 9742 _NOTE(ARGUNUSED(arg)) 9743 #endif 9744 9745 mptsas_t *mpt; 9746 uint32_t doorbell; 9747 9748 NDBG30(("mptsas_watch")); 9749 9750 rw_enter(&mptsas_global_rwlock, RW_READER); 9751 for (mpt = mptsas_head; mpt != (mptsas_t *)NULL; mpt = mpt->m_next) { 9752 9753 mutex_enter(&mpt->m_mutex); 9754 9755 /* Skip device if not powered on */ 9756 if (mpt->m_options & MPTSAS_OPT_PM) { 9757 if (mpt->m_power_level == PM_LEVEL_D0) { 9758 (void) pm_busy_component(mpt->m_dip, 0); 9759 mpt->m_busy = 1; 9760 } else { 9761 mutex_exit(&mpt->m_mutex); 9762 continue; 9763 } 9764 } 9765 9766 /* 9767 * Check if controller is in a FAULT state. If so, reset it. 9768 */ 9769 doorbell = ddi_get32(mpt->m_datap, &mpt->m_reg->Doorbell); 9770 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 9771 doorbell &= MPI2_DOORBELL_DATA_MASK; 9772 mptsas_log(mpt, CE_WARN, "MPT Firmware Fault, " 9773 "code: %04x", doorbell); 9774 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 9775 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 9776 mptsas_log(mpt, CE_WARN, "Reset failed" 9777 "after fault was detected"); 9778 } 9779 } 9780 9781 /* 9782 * For now, always call mptsas_watchsubr. 9783 */ 9784 mptsas_watchsubr(mpt); 9785 9786 if (mpt->m_options & MPTSAS_OPT_PM) { 9787 mpt->m_busy = 0; 9788 (void) pm_idle_component(mpt->m_dip, 0); 9789 } 9790 9791 mutex_exit(&mpt->m_mutex); 9792 } 9793 rw_exit(&mptsas_global_rwlock); 9794 9795 mutex_enter(&mptsas_global_mutex); 9796 if (mptsas_timeouts_enabled) 9797 mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick); 9798 mutex_exit(&mptsas_global_mutex); 9799 } 9800 9801 static void 9802 mptsas_watchsubr(mptsas_t *mpt) 9803 { 9804 int i; 9805 mptsas_cmd_t *cmd; 9806 mptsas_target_t *ptgt = NULL; 9807 hrtime_t timestamp = gethrtime(); 9808 9809 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 9810 9811 NDBG30(("mptsas_watchsubr: mpt=0x%p", (void *)mpt)); 9812 9813 #ifdef MPTSAS_TEST 9814 if (mptsas_enable_untagged) { 9815 mptsas_test_untagged++; 9816 } 9817 #endif 9818 9819 /* 9820 * Check for commands stuck in active slot 9821 * Account for TM requests, which use the last SMID. 9822 */ 9823 for (i = 0; i <= mpt->m_active->m_n_normal; i++) { 9824 if ((cmd = mpt->m_active->m_slot[i]) != NULL) { 9825 if (cmd->cmd_active_expiration <= timestamp) { 9826 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 9827 /* 9828 * There seems to be a command stuck 9829 * in the active slot. Drain throttle. 9830 */ 9831 mptsas_set_throttle(mpt, 9832 cmd->cmd_tgt_addr, 9833 DRAIN_THROTTLE); 9834 } else if (cmd->cmd_flags & 9835 (CFLAG_PASSTHRU | CFLAG_CONFIG | 9836 CFLAG_FW_DIAG)) { 9837 /* 9838 * passthrough command timeout 9839 */ 9840 cmd->cmd_flags |= (CFLAG_FINISHED | 9841 CFLAG_TIMEOUT); 9842 cv_broadcast(&mpt->m_passthru_cv); 9843 cv_broadcast(&mpt->m_config_cv); 9844 cv_broadcast(&mpt->m_fw_diag_cv); 9845 } 9846 } 9847 } 9848 } 9849 9850 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9851 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9852 /* 9853 * If we were draining due to a qfull condition, 9854 * go back to full throttle. 9855 */ 9856 if ((ptgt->m_t_throttle < MAX_THROTTLE) && 9857 (ptgt->m_t_throttle > HOLD_THROTTLE) && 9858 (ptgt->m_t_ncmds < ptgt->m_t_throttle)) { 9859 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 9860 mptsas_restart_hba(mpt); 9861 } 9862 9863 cmd = TAILQ_LAST(&ptgt->m_active_cmdq, mptsas_active_cmdq); 9864 if (cmd == NULL) 9865 continue; 9866 9867 if (cmd->cmd_active_expiration <= timestamp) { 9868 /* 9869 * Earliest command timeout expired. Drain throttle. 9870 */ 9871 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 9872 9873 /* 9874 * Check for remaining commands. 9875 */ 9876 cmd = TAILQ_FIRST(&ptgt->m_active_cmdq); 9877 if (cmd->cmd_active_expiration > timestamp) { 9878 /* 9879 * Wait for remaining commands to complete or 9880 * time out. 9881 */ 9882 NDBG23(("command timed out, pending drain")); 9883 continue; 9884 } 9885 9886 /* 9887 * All command timeouts expired. 9888 */ 9889 mptsas_log(mpt, CE_NOTE, "Timeout of %d seconds " 9890 "expired with %d commands on target %d lun %d.", 9891 cmd->cmd_pkt->pkt_time, ptgt->m_t_ncmds, 9892 ptgt->m_devhdl, Lun(cmd)); 9893 9894 mptsas_cmd_timeout(mpt, ptgt); 9895 } else if (cmd->cmd_active_expiration <= 9896 timestamp + (hrtime_t)mptsas_scsi_watchdog_tick * NANOSEC) { 9897 NDBG23(("pending timeout")); 9898 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 9899 } 9900 } 9901 } 9902 9903 /* 9904 * timeout recovery 9905 */ 9906 static void 9907 mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt) 9908 { 9909 uint16_t devhdl; 9910 uint64_t sas_wwn; 9911 uint8_t phy; 9912 char wwn_str[MPTSAS_WWN_STRLEN]; 9913 9914 devhdl = ptgt->m_devhdl; 9915 sas_wwn = ptgt->m_addr.mta_wwn; 9916 phy = ptgt->m_phynum; 9917 if (sas_wwn == 0) { 9918 (void) sprintf(wwn_str, "p%x", phy); 9919 } else { 9920 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 9921 } 9922 9923 NDBG29(("mptsas_cmd_timeout: target=%d", devhdl)); 9924 mptsas_log(mpt, CE_WARN, "Disconnected command timeout for " 9925 "target %d %s, enclosure %u", devhdl, wwn_str, 9926 ptgt->m_enclosure); 9927 9928 /* 9929 * Abort all outstanding commands on the device. 9930 */ 9931 NDBG29(("mptsas_cmd_timeout: device reset")); 9932 if (mptsas_do_scsi_reset(mpt, devhdl) != TRUE) { 9933 mptsas_log(mpt, CE_WARN, "Target %d reset for command timeout " 9934 "recovery failed!", devhdl); 9935 } 9936 } 9937 9938 /* 9939 * Device / Hotplug control 9940 */ 9941 static int 9942 mptsas_scsi_quiesce(dev_info_t *dip) 9943 { 9944 mptsas_t *mpt; 9945 scsi_hba_tran_t *tran; 9946 9947 tran = ddi_get_driver_private(dip); 9948 if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL) 9949 return (-1); 9950 9951 return (mptsas_quiesce_bus(mpt)); 9952 } 9953 9954 static int 9955 mptsas_scsi_unquiesce(dev_info_t *dip) 9956 { 9957 mptsas_t *mpt; 9958 scsi_hba_tran_t *tran; 9959 9960 tran = ddi_get_driver_private(dip); 9961 if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL) 9962 return (-1); 9963 9964 return (mptsas_unquiesce_bus(mpt)); 9965 } 9966 9967 static int 9968 mptsas_quiesce_bus(mptsas_t *mpt) 9969 { 9970 mptsas_target_t *ptgt = NULL; 9971 9972 NDBG28(("mptsas_quiesce_bus")); 9973 mutex_enter(&mpt->m_mutex); 9974 9975 /* Set all the throttles to zero */ 9976 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9977 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9978 mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE); 9979 } 9980 9981 /* If there are any outstanding commands in the queue */ 9982 if (mpt->m_ncmds) { 9983 mpt->m_softstate |= MPTSAS_SS_DRAINING; 9984 mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain, 9985 mpt, (MPTSAS_QUIESCE_TIMEOUT * drv_usectohz(1000000))); 9986 if (cv_wait_sig(&mpt->m_cv, &mpt->m_mutex) == 0) { 9987 /* 9988 * Quiesce has been interrupted 9989 */ 9990 mpt->m_softstate &= ~MPTSAS_SS_DRAINING; 9991 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9992 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9993 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 9994 } 9995 mptsas_restart_hba(mpt); 9996 if (mpt->m_quiesce_timeid != 0) { 9997 timeout_id_t tid = mpt->m_quiesce_timeid; 9998 mpt->m_quiesce_timeid = 0; 9999 mutex_exit(&mpt->m_mutex); 10000 (void) untimeout(tid); 10001 return (-1); 10002 } 10003 mutex_exit(&mpt->m_mutex); 10004 return (-1); 10005 } else { 10006 /* Bus has been quiesced */ 10007 ASSERT(mpt->m_quiesce_timeid == 0); 10008 mpt->m_softstate &= ~MPTSAS_SS_DRAINING; 10009 mpt->m_softstate |= MPTSAS_SS_QUIESCED; 10010 mutex_exit(&mpt->m_mutex); 10011 return (0); 10012 } 10013 } 10014 /* Bus was not busy - QUIESCED */ 10015 mutex_exit(&mpt->m_mutex); 10016 10017 return (0); 10018 } 10019 10020 static int 10021 mptsas_unquiesce_bus(mptsas_t *mpt) 10022 { 10023 mptsas_target_t *ptgt = NULL; 10024 10025 NDBG28(("mptsas_unquiesce_bus")); 10026 mutex_enter(&mpt->m_mutex); 10027 mpt->m_softstate &= ~MPTSAS_SS_QUIESCED; 10028 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10029 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10030 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 10031 } 10032 mptsas_restart_hba(mpt); 10033 mutex_exit(&mpt->m_mutex); 10034 return (0); 10035 } 10036 10037 static void 10038 mptsas_ncmds_checkdrain(void *arg) 10039 { 10040 mptsas_t *mpt = arg; 10041 mptsas_target_t *ptgt = NULL; 10042 10043 mutex_enter(&mpt->m_mutex); 10044 if (mpt->m_softstate & MPTSAS_SS_DRAINING) { 10045 mpt->m_quiesce_timeid = 0; 10046 if (mpt->m_ncmds == 0) { 10047 /* Command queue has been drained */ 10048 cv_signal(&mpt->m_cv); 10049 } else { 10050 /* 10051 * The throttle may have been reset because 10052 * of a SCSI bus reset 10053 */ 10054 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10055 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10056 mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE); 10057 } 10058 10059 mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain, 10060 mpt, (MPTSAS_QUIESCE_TIMEOUT * 10061 drv_usectohz(1000000))); 10062 } 10063 } 10064 mutex_exit(&mpt->m_mutex); 10065 } 10066 10067 /*ARGSUSED*/ 10068 static void 10069 mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 10070 { 10071 int i; 10072 uint8_t *cp = (uchar_t *)cmd->cmd_pkt->pkt_cdbp; 10073 char buf[128]; 10074 10075 buf[0] = '\0'; 10076 NDBG25(("?Cmd (0x%p) dump for Target %d Lun %d:\n", (void *)cmd, 10077 Tgt(cmd), Lun(cmd))); 10078 (void) sprintf(&buf[0], "\tcdb=["); 10079 for (i = 0; i < (int)cmd->cmd_cdblen; i++) { 10080 (void) sprintf(&buf[strlen(buf)], " 0x%x", *cp++); 10081 } 10082 (void) sprintf(&buf[strlen(buf)], " ]"); 10083 NDBG25(("?%s\n", buf)); 10084 NDBG25(("?pkt_flags=0x%x pkt_statistics=0x%x pkt_state=0x%x\n", 10085 cmd->cmd_pkt->pkt_flags, cmd->cmd_pkt->pkt_statistics, 10086 cmd->cmd_pkt->pkt_state)); 10087 NDBG25(("?pkt_scbp=0x%x cmd_flags=0x%x\n", cmd->cmd_pkt->pkt_scbp ? 10088 *(cmd->cmd_pkt->pkt_scbp) : 0, cmd->cmd_flags)); 10089 } 10090 10091 static void 10092 mptsas_passthru_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt, 10093 pMpi2SGESimple64_t sgep) 10094 { 10095 uint32_t sge_flags; 10096 uint32_t data_size, dataout_size; 10097 ddi_dma_cookie_t data_cookie; 10098 ddi_dma_cookie_t dataout_cookie; 10099 10100 data_size = pt->data_size; 10101 dataout_size = pt->dataout_size; 10102 data_cookie = pt->data_cookie; 10103 dataout_cookie = pt->dataout_cookie; 10104 10105 if (dataout_size) { 10106 sge_flags = dataout_size | 10107 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 10108 MPI2_SGE_FLAGS_END_OF_BUFFER | 10109 MPI2_SGE_FLAGS_HOST_TO_IOC | 10110 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 10111 MPI2_SGE_FLAGS_SHIFT); 10112 ddi_put32(acc_hdl, &sgep->FlagsLength, sge_flags); 10113 ddi_put32(acc_hdl, &sgep->Address.Low, 10114 (uint32_t)(dataout_cookie.dmac_laddress & 10115 0xffffffffull)); 10116 ddi_put32(acc_hdl, &sgep->Address.High, 10117 (uint32_t)(dataout_cookie.dmac_laddress 10118 >> 32)); 10119 sgep++; 10120 } 10121 sge_flags = data_size; 10122 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 10123 MPI2_SGE_FLAGS_LAST_ELEMENT | 10124 MPI2_SGE_FLAGS_END_OF_BUFFER | 10125 MPI2_SGE_FLAGS_END_OF_LIST | 10126 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 10127 MPI2_SGE_FLAGS_SHIFT); 10128 if (pt->direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) { 10129 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 10130 MPI2_SGE_FLAGS_SHIFT); 10131 } else { 10132 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 10133 MPI2_SGE_FLAGS_SHIFT); 10134 } 10135 ddi_put32(acc_hdl, &sgep->FlagsLength, 10136 sge_flags); 10137 ddi_put32(acc_hdl, &sgep->Address.Low, 10138 (uint32_t)(data_cookie.dmac_laddress & 10139 0xffffffffull)); 10140 ddi_put32(acc_hdl, &sgep->Address.High, 10141 (uint32_t)(data_cookie.dmac_laddress >> 32)); 10142 } 10143 10144 static void 10145 mptsas_passthru_ieee_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt, 10146 pMpi2IeeeSgeSimple64_t ieeesgep) 10147 { 10148 uint8_t sge_flags; 10149 uint32_t data_size, dataout_size; 10150 ddi_dma_cookie_t data_cookie; 10151 ddi_dma_cookie_t dataout_cookie; 10152 10153 data_size = pt->data_size; 10154 dataout_size = pt->dataout_size; 10155 data_cookie = pt->data_cookie; 10156 dataout_cookie = pt->dataout_cookie; 10157 10158 sge_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 10159 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 10160 if (dataout_size) { 10161 ddi_put32(acc_hdl, &ieeesgep->Length, dataout_size); 10162 ddi_put32(acc_hdl, &ieeesgep->Address.Low, 10163 (uint32_t)(dataout_cookie.dmac_laddress & 10164 0xffffffffull)); 10165 ddi_put32(acc_hdl, &ieeesgep->Address.High, 10166 (uint32_t)(dataout_cookie.dmac_laddress >> 32)); 10167 ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags); 10168 ieeesgep++; 10169 } 10170 sge_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 10171 ddi_put32(acc_hdl, &ieeesgep->Length, data_size); 10172 ddi_put32(acc_hdl, &ieeesgep->Address.Low, 10173 (uint32_t)(data_cookie.dmac_laddress & 0xffffffffull)); 10174 ddi_put32(acc_hdl, &ieeesgep->Address.High, 10175 (uint32_t)(data_cookie.dmac_laddress >> 32)); 10176 ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags); 10177 } 10178 10179 static void 10180 mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd) 10181 { 10182 caddr_t memp; 10183 pMPI2RequestHeader_t request_hdrp; 10184 struct scsi_pkt *pkt = cmd->cmd_pkt; 10185 mptsas_pt_request_t *pt = pkt->pkt_ha_private; 10186 uint32_t request_size; 10187 uint32_t request_desc_low, request_desc_high = 0; 10188 uint32_t i, sense_bufp; 10189 uint8_t desc_type; 10190 uint8_t *request, function; 10191 ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl; 10192 ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl; 10193 10194 desc_type = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 10195 10196 request = pt->request; 10197 request_size = pt->request_size; 10198 10199 /* 10200 * Store the passthrough message in memory location 10201 * corresponding to our slot number 10202 */ 10203 memp = mpt->m_req_frame + (mpt->m_req_frame_size * cmd->cmd_slot); 10204 request_hdrp = (pMPI2RequestHeader_t)memp; 10205 bzero(memp, mpt->m_req_frame_size); 10206 10207 for (i = 0; i < request_size; i++) { 10208 bcopy(request + i, memp + i, 1); 10209 } 10210 10211 NDBG15(("mptsas_start_passthru: Func 0x%x, MsgFlags 0x%x, " 10212 "size=%d, in %d, out %d", request_hdrp->Function, 10213 request_hdrp->MsgFlags, request_size, 10214 pt->data_size, pt->dataout_size)); 10215 10216 /* 10217 * Add an SGE, even if the length is zero. 10218 */ 10219 if (mpt->m_MPI25 && pt->simple == 0) { 10220 mptsas_passthru_ieee_sge(acc_hdl, pt, 10221 (pMpi2IeeeSgeSimple64_t) 10222 ((uint8_t *)request_hdrp + pt->sgl_offset)); 10223 } else { 10224 mptsas_passthru_sge(acc_hdl, pt, 10225 (pMpi2SGESimple64_t) 10226 ((uint8_t *)request_hdrp + pt->sgl_offset)); 10227 } 10228 10229 function = request_hdrp->Function; 10230 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 10231 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 10232 pMpi2SCSIIORequest_t scsi_io_req; 10233 10234 NDBG15(("mptsas_start_passthru: Is SCSI IO Req")); 10235 scsi_io_req = (pMpi2SCSIIORequest_t)request_hdrp; 10236 /* 10237 * Put SGE for data and data_out buffer at the end of 10238 * scsi_io_request message header.(64 bytes in total) 10239 * Following above SGEs, the residual space will be 10240 * used by sense data. 10241 */ 10242 ddi_put8(acc_hdl, 10243 &scsi_io_req->SenseBufferLength, 10244 (uint8_t)(request_size - 64)); 10245 10246 sense_bufp = mpt->m_req_frame_dma_addr + 10247 (mpt->m_req_frame_size * cmd->cmd_slot); 10248 sense_bufp += 64; 10249 ddi_put32(acc_hdl, 10250 &scsi_io_req->SenseBufferLowAddress, sense_bufp); 10251 10252 /* 10253 * Set SGLOffset0 value 10254 */ 10255 ddi_put8(acc_hdl, &scsi_io_req->SGLOffset0, 10256 offsetof(MPI2_SCSI_IO_REQUEST, SGL) / 4); 10257 10258 /* 10259 * Setup descriptor info. RAID passthrough must use the 10260 * default request descriptor which is already set, so if this 10261 * is a SCSI IO request, change the descriptor to SCSI IO. 10262 */ 10263 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 10264 desc_type = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 10265 request_desc_high = (ddi_get16(acc_hdl, 10266 &scsi_io_req->DevHandle) << 16); 10267 } 10268 } 10269 10270 /* 10271 * We must wait till the message has been completed before 10272 * beginning the next message so we wait for this one to 10273 * finish. 10274 */ 10275 (void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 10276 request_desc_low = (cmd->cmd_slot << 16) + desc_type; 10277 cmd->cmd_rfm = NULL; 10278 MPTSAS_START_CMD(mpt, request_desc_low, request_desc_high); 10279 if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) || 10280 (mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) { 10281 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 10282 } 10283 } 10284 10285 typedef void (mptsas_pre_f)(mptsas_t *, mptsas_pt_request_t *); 10286 static mptsas_pre_f mpi_pre_ioc_facts; 10287 static mptsas_pre_f mpi_pre_port_facts; 10288 static mptsas_pre_f mpi_pre_fw_download; 10289 static mptsas_pre_f mpi_pre_fw_25_download; 10290 static mptsas_pre_f mpi_pre_fw_upload; 10291 static mptsas_pre_f mpi_pre_fw_25_upload; 10292 static mptsas_pre_f mpi_pre_sata_passthrough; 10293 static mptsas_pre_f mpi_pre_smp_passthrough; 10294 static mptsas_pre_f mpi_pre_config; 10295 static mptsas_pre_f mpi_pre_sas_io_unit_control; 10296 static mptsas_pre_f mpi_pre_scsi_io_req; 10297 10298 /* 10299 * Prepare the pt for a SAS2 FW_DOWNLOAD request. 10300 */ 10301 static void 10302 mpi_pre_fw_download(mptsas_t *mpt, mptsas_pt_request_t *pt) 10303 { 10304 pMpi2FWDownloadTCSGE_t tcsge; 10305 pMpi2FWDownloadRequest req; 10306 10307 /* 10308 * If SAS3, call separate function. 10309 */ 10310 if (mpt->m_MPI25) { 10311 mpi_pre_fw_25_download(mpt, pt); 10312 return; 10313 } 10314 10315 /* 10316 * User requests should come in with the Transaction 10317 * context element where the SGL will go. Putting the 10318 * SGL after that seems to work, but don't really know 10319 * why. Other drivers tend to create an extra SGL and 10320 * refer to the TCE through that. 10321 */ 10322 req = (pMpi2FWDownloadRequest)pt->request; 10323 tcsge = (pMpi2FWDownloadTCSGE_t)&req->SGL; 10324 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 10325 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 10326 mptsas_log(mpt, CE_WARN, "FW Download tce invalid!"); 10327 } 10328 10329 pt->sgl_offset = offsetof(MPI2_FW_DOWNLOAD_REQUEST, SGL) + 10330 sizeof (*tcsge); 10331 if (pt->request_size != pt->sgl_offset) 10332 NDBG15(("mpi_pre_fw_download(): Incorrect req size, " 10333 "0x%x, should be 0x%x, dataoutsz 0x%x", 10334 (int)pt->request_size, (int)pt->sgl_offset, 10335 (int)pt->dataout_size)); 10336 if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY)) 10337 NDBG15(("mpi_pre_fw_download(): Incorrect rep size, " 10338 "0x%x, should be 0x%x", pt->data_size, 10339 (int)sizeof (MPI2_FW_DOWNLOAD_REPLY))); 10340 } 10341 10342 /* 10343 * Prepare the pt for a SAS3 FW_DOWNLOAD request. 10344 */ 10345 static void 10346 mpi_pre_fw_25_download(mptsas_t *mpt, mptsas_pt_request_t *pt) 10347 { 10348 pMpi2FWDownloadTCSGE_t tcsge; 10349 pMpi2FWDownloadRequest req2; 10350 pMpi25FWDownloadRequest req25; 10351 10352 /* 10353 * User requests should come in with the Transaction 10354 * context element where the SGL will go. The new firmware 10355 * Doesn't use TCE and has space in the main request for 10356 * this information. So move to the right place. 10357 */ 10358 req2 = (pMpi2FWDownloadRequest)pt->request; 10359 req25 = (pMpi25FWDownloadRequest)pt->request; 10360 tcsge = (pMpi2FWDownloadTCSGE_t)&req2->SGL; 10361 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 10362 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 10363 mptsas_log(mpt, CE_WARN, "FW Download tce invalid!"); 10364 } 10365 req25->ImageOffset = tcsge->ImageOffset; 10366 req25->ImageSize = tcsge->ImageSize; 10367 10368 pt->sgl_offset = offsetof(MPI25_FW_DOWNLOAD_REQUEST, SGL); 10369 if (pt->request_size != pt->sgl_offset) 10370 NDBG15(("mpi_pre_fw_25_download(): Incorrect req size, " 10371 "0x%x, should be 0x%x, dataoutsz 0x%x", 10372 pt->request_size, pt->sgl_offset, 10373 pt->dataout_size)); 10374 if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY)) 10375 NDBG15(("mpi_pre_fw_25_download(): Incorrect rep size, " 10376 "0x%x, should be 0x%x", pt->data_size, 10377 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 10378 } 10379 10380 /* 10381 * Prepare the pt for a SAS2 FW_UPLOAD request. 10382 */ 10383 static void 10384 mpi_pre_fw_upload(mptsas_t *mpt, mptsas_pt_request_t *pt) 10385 { 10386 pMpi2FWUploadTCSGE_t tcsge; 10387 pMpi2FWUploadRequest_t req; 10388 10389 /* 10390 * If SAS3, call separate function. 10391 */ 10392 if (mpt->m_MPI25) { 10393 mpi_pre_fw_25_upload(mpt, pt); 10394 return; 10395 } 10396 10397 /* 10398 * User requests should come in with the Transaction 10399 * context element where the SGL will go. Putting the 10400 * SGL after that seems to work, but don't really know 10401 * why. Other drivers tend to create an extra SGL and 10402 * refer to the TCE through that. 10403 */ 10404 req = (pMpi2FWUploadRequest_t)pt->request; 10405 tcsge = (pMpi2FWUploadTCSGE_t)&req->SGL; 10406 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 10407 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 10408 mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!"); 10409 } 10410 10411 pt->sgl_offset = offsetof(MPI2_FW_UPLOAD_REQUEST, SGL) + 10412 sizeof (*tcsge); 10413 if (pt->request_size != pt->sgl_offset) 10414 NDBG15(("mpi_pre_fw_upload(): Incorrect req size, " 10415 "0x%x, should be 0x%x, dataoutsz 0x%x", 10416 pt->request_size, pt->sgl_offset, 10417 pt->dataout_size)); 10418 if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY)) 10419 NDBG15(("mpi_pre_fw_upload(): Incorrect rep size, " 10420 "0x%x, should be 0x%x", pt->data_size, 10421 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 10422 } 10423 10424 /* 10425 * Prepare the pt a SAS3 FW_UPLOAD request. 10426 */ 10427 static void 10428 mpi_pre_fw_25_upload(mptsas_t *mpt, mptsas_pt_request_t *pt) 10429 { 10430 pMpi2FWUploadTCSGE_t tcsge; 10431 pMpi2FWUploadRequest_t req2; 10432 pMpi25FWUploadRequest_t req25; 10433 10434 /* 10435 * User requests should come in with the Transaction 10436 * context element where the SGL will go. The new firmware 10437 * Doesn't use TCE and has space in the main request for 10438 * this information. So move to the right place. 10439 */ 10440 req2 = (pMpi2FWUploadRequest_t)pt->request; 10441 req25 = (pMpi25FWUploadRequest_t)pt->request; 10442 tcsge = (pMpi2FWUploadTCSGE_t)&req2->SGL; 10443 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 10444 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 10445 mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!"); 10446 } 10447 req25->ImageOffset = tcsge->ImageOffset; 10448 req25->ImageSize = tcsge->ImageSize; 10449 10450 pt->sgl_offset = offsetof(MPI25_FW_UPLOAD_REQUEST, SGL); 10451 if (pt->request_size != pt->sgl_offset) 10452 NDBG15(("mpi_pre_fw_25_upload(): Incorrect req size, " 10453 "0x%x, should be 0x%x, dataoutsz 0x%x", 10454 pt->request_size, pt->sgl_offset, 10455 pt->dataout_size)); 10456 if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY)) 10457 NDBG15(("mpi_pre_fw_25_upload(): Incorrect rep size, " 10458 "0x%x, should be 0x%x", pt->data_size, 10459 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 10460 } 10461 10462 /* 10463 * Prepare the pt for an IOC_FACTS request. 10464 */ 10465 static void 10466 mpi_pre_ioc_facts(mptsas_t *mpt, mptsas_pt_request_t *pt) 10467 { 10468 #ifndef __lock_lint 10469 _NOTE(ARGUNUSED(mpt)) 10470 #endif 10471 if (pt->request_size != sizeof (MPI2_IOC_FACTS_REQUEST)) 10472 NDBG15(("mpi_pre_ioc_facts(): Incorrect req size, " 10473 "0x%x, should be 0x%x, dataoutsz 0x%x", 10474 pt->request_size, 10475 (int)sizeof (MPI2_IOC_FACTS_REQUEST), 10476 pt->dataout_size)); 10477 if (pt->data_size != sizeof (MPI2_IOC_FACTS_REPLY)) 10478 NDBG15(("mpi_pre_ioc_facts(): Incorrect rep size, " 10479 "0x%x, should be 0x%x", pt->data_size, 10480 (int)sizeof (MPI2_IOC_FACTS_REPLY))); 10481 pt->sgl_offset = (uint16_t)pt->request_size; 10482 } 10483 10484 /* 10485 * Prepare the pt for a PORT_FACTS request. 10486 */ 10487 static void 10488 mpi_pre_port_facts(mptsas_t *mpt, mptsas_pt_request_t *pt) 10489 { 10490 #ifndef __lock_lint 10491 _NOTE(ARGUNUSED(mpt)) 10492 #endif 10493 if (pt->request_size != sizeof (MPI2_PORT_FACTS_REQUEST)) 10494 NDBG15(("mpi_pre_port_facts(): Incorrect req size, " 10495 "0x%x, should be 0x%x, dataoutsz 0x%x", 10496 pt->request_size, 10497 (int)sizeof (MPI2_PORT_FACTS_REQUEST), 10498 pt->dataout_size)); 10499 if (pt->data_size != sizeof (MPI2_PORT_FACTS_REPLY)) 10500 NDBG15(("mpi_pre_port_facts(): Incorrect rep size, " 10501 "0x%x, should be 0x%x", pt->data_size, 10502 (int)sizeof (MPI2_PORT_FACTS_REPLY))); 10503 pt->sgl_offset = (uint16_t)pt->request_size; 10504 } 10505 10506 /* 10507 * Prepare pt for a SATA_PASSTHROUGH request. 10508 */ 10509 static void 10510 mpi_pre_sata_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt) 10511 { 10512 #ifndef __lock_lint 10513 _NOTE(ARGUNUSED(mpt)) 10514 #endif 10515 pt->sgl_offset = offsetof(MPI2_SATA_PASSTHROUGH_REQUEST, SGL); 10516 if (pt->request_size != pt->sgl_offset) 10517 NDBG15(("mpi_pre_sata_passthrough(): Incorrect req size, " 10518 "0x%x, should be 0x%x, dataoutsz 0x%x", 10519 pt->request_size, pt->sgl_offset, 10520 pt->dataout_size)); 10521 if (pt->data_size != sizeof (MPI2_SATA_PASSTHROUGH_REPLY)) 10522 NDBG15(("mpi_pre_sata_passthrough(): Incorrect rep size, " 10523 "0x%x, should be 0x%x", pt->data_size, 10524 (int)sizeof (MPI2_SATA_PASSTHROUGH_REPLY))); 10525 } 10526 10527 static void 10528 mpi_pre_smp_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt) 10529 { 10530 #ifndef __lock_lint 10531 _NOTE(ARGUNUSED(mpt)) 10532 #endif 10533 pt->sgl_offset = offsetof(MPI2_SMP_PASSTHROUGH_REQUEST, SGL); 10534 if (pt->request_size != pt->sgl_offset) 10535 NDBG15(("mpi_pre_smp_passthrough(): Incorrect req size, " 10536 "0x%x, should be 0x%x, dataoutsz 0x%x", 10537 pt->request_size, pt->sgl_offset, 10538 pt->dataout_size)); 10539 if (pt->data_size != sizeof (MPI2_SMP_PASSTHROUGH_REPLY)) 10540 NDBG15(("mpi_pre_smp_passthrough(): Incorrect rep size, " 10541 "0x%x, should be 0x%x", pt->data_size, 10542 (int)sizeof (MPI2_SMP_PASSTHROUGH_REPLY))); 10543 } 10544 10545 /* 10546 * Prepare pt for a CONFIG request. 10547 */ 10548 static void 10549 mpi_pre_config(mptsas_t *mpt, mptsas_pt_request_t *pt) 10550 { 10551 #ifndef __lock_lint 10552 _NOTE(ARGUNUSED(mpt)) 10553 #endif 10554 pt->sgl_offset = offsetof(MPI2_CONFIG_REQUEST, PageBufferSGE); 10555 if (pt->request_size != pt->sgl_offset) 10556 NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, " 10557 "should be 0x%x, dataoutsz 0x%x", pt->request_size, 10558 pt->sgl_offset, pt->dataout_size)); 10559 if (pt->data_size != sizeof (MPI2_CONFIG_REPLY)) 10560 NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, " 10561 "should be 0x%x", pt->data_size, 10562 (int)sizeof (MPI2_CONFIG_REPLY))); 10563 pt->simple = 1; 10564 } 10565 10566 /* 10567 * Prepare pt for a SCSI_IO_REQ request. 10568 */ 10569 static void 10570 mpi_pre_scsi_io_req(mptsas_t *mpt, mptsas_pt_request_t *pt) 10571 { 10572 #ifndef __lock_lint 10573 _NOTE(ARGUNUSED(mpt)) 10574 #endif 10575 pt->sgl_offset = offsetof(MPI2_SCSI_IO_REQUEST, SGL); 10576 if (pt->request_size != pt->sgl_offset) 10577 NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, " 10578 "should be 0x%x, dataoutsz 0x%x", pt->request_size, 10579 pt->sgl_offset, 10580 pt->dataout_size)); 10581 if (pt->data_size != sizeof (MPI2_SCSI_IO_REPLY)) 10582 NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, " 10583 "should be 0x%x", pt->data_size, 10584 (int)sizeof (MPI2_SCSI_IO_REPLY))); 10585 } 10586 10587 /* 10588 * Prepare the mptsas_cmd for a SAS_IO_UNIT_CONTROL request. 10589 */ 10590 static void 10591 mpi_pre_sas_io_unit_control(mptsas_t *mpt, mptsas_pt_request_t *pt) 10592 { 10593 #ifndef __lock_lint 10594 _NOTE(ARGUNUSED(mpt)) 10595 #endif 10596 pt->sgl_offset = (uint16_t)pt->request_size; 10597 } 10598 10599 /* 10600 * A set of functions to prepare an mptsas_cmd for the various 10601 * supported requests. 10602 */ 10603 static struct mptsas_func { 10604 U8 Function; 10605 char *Name; 10606 mptsas_pre_f *f_pre; 10607 } mptsas_func_list[] = { 10608 { MPI2_FUNCTION_IOC_FACTS, "IOC_FACTS", mpi_pre_ioc_facts }, 10609 { MPI2_FUNCTION_PORT_FACTS, "PORT_FACTS", mpi_pre_port_facts }, 10610 { MPI2_FUNCTION_FW_DOWNLOAD, "FW_DOWNLOAD", mpi_pre_fw_download }, 10611 { MPI2_FUNCTION_FW_UPLOAD, "FW_UPLOAD", mpi_pre_fw_upload }, 10612 { MPI2_FUNCTION_SATA_PASSTHROUGH, "SATA_PASSTHROUGH", 10613 mpi_pre_sata_passthrough }, 10614 { MPI2_FUNCTION_SMP_PASSTHROUGH, "SMP_PASSTHROUGH", 10615 mpi_pre_smp_passthrough}, 10616 { MPI2_FUNCTION_SCSI_IO_REQUEST, "SCSI_IO_REQUEST", 10617 mpi_pre_scsi_io_req}, 10618 { MPI2_FUNCTION_CONFIG, "CONFIG", mpi_pre_config}, 10619 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, "SAS_IO_UNIT_CONTROL", 10620 mpi_pre_sas_io_unit_control }, 10621 { 0xFF, NULL, NULL } /* list end */ 10622 }; 10623 10624 static void 10625 mptsas_prep_sgl_offset(mptsas_t *mpt, mptsas_pt_request_t *pt) 10626 { 10627 pMPI2RequestHeader_t hdr; 10628 struct mptsas_func *f; 10629 10630 hdr = (pMPI2RequestHeader_t)pt->request; 10631 10632 for (f = mptsas_func_list; f->f_pre != NULL; f++) { 10633 if (hdr->Function == f->Function) { 10634 f->f_pre(mpt, pt); 10635 NDBG15(("mptsas_prep_sgl_offset: Function %s," 10636 " sgl_offset 0x%x", f->Name, 10637 pt->sgl_offset)); 10638 return; 10639 } 10640 } 10641 NDBG15(("mptsas_prep_sgl_offset: Unknown Function 0x%02x," 10642 " returning req_size 0x%x for sgl_offset", 10643 hdr->Function, pt->request_size)); 10644 pt->sgl_offset = (uint16_t)pt->request_size; 10645 } 10646 10647 10648 static int 10649 mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply, 10650 uint8_t *data, uint32_t request_size, uint32_t reply_size, 10651 uint32_t data_size, uint32_t direction, uint8_t *dataout, 10652 uint32_t dataout_size, short timeout, int mode) 10653 { 10654 mptsas_pt_request_t pt; 10655 mptsas_dma_alloc_state_t data_dma_state; 10656 mptsas_dma_alloc_state_t dataout_dma_state; 10657 caddr_t memp; 10658 mptsas_cmd_t *cmd = NULL; 10659 struct scsi_pkt *pkt; 10660 uint32_t reply_len = 0, sense_len = 0; 10661 pMPI2RequestHeader_t request_hdrp; 10662 pMPI2RequestHeader_t request_msg; 10663 pMPI2DefaultReply_t reply_msg; 10664 Mpi2SCSIIOReply_t rep_msg; 10665 int i, status = 0, pt_flags = 0, rv = 0; 10666 int rvalue; 10667 uint8_t function; 10668 10669 ASSERT(mutex_owned(&mpt->m_mutex)); 10670 10671 reply_msg = (pMPI2DefaultReply_t)(&rep_msg); 10672 bzero(reply_msg, sizeof (MPI2_DEFAULT_REPLY)); 10673 request_msg = kmem_zalloc(request_size, KM_SLEEP); 10674 10675 mutex_exit(&mpt->m_mutex); 10676 /* 10677 * copy in the request buffer since it could be used by 10678 * another thread when the pt request into waitq 10679 */ 10680 if (ddi_copyin(request, request_msg, request_size, mode)) { 10681 mutex_enter(&mpt->m_mutex); 10682 status = EFAULT; 10683 mptsas_log(mpt, CE_WARN, "failed to copy request data"); 10684 goto out; 10685 } 10686 mutex_enter(&mpt->m_mutex); 10687 10688 function = request_msg->Function; 10689 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 10690 pMpi2SCSITaskManagementRequest_t task; 10691 task = (pMpi2SCSITaskManagementRequest_t)request_msg; 10692 mptsas_setup_bus_reset_delay(mpt); 10693 rv = mptsas_ioc_task_management(mpt, task->TaskType, 10694 task->DevHandle, (int)task->LUN[1], reply, reply_size, 10695 mode); 10696 10697 if (rv != TRUE) { 10698 status = EIO; 10699 mptsas_log(mpt, CE_WARN, "task management failed"); 10700 } 10701 goto out; 10702 } 10703 10704 if (data_size != 0) { 10705 data_dma_state.size = data_size; 10706 if (mptsas_dma_alloc(mpt, &data_dma_state) != DDI_SUCCESS) { 10707 status = ENOMEM; 10708 mptsas_log(mpt, CE_WARN, "failed to alloc DMA " 10709 "resource"); 10710 goto out; 10711 } 10712 pt_flags |= MPTSAS_DATA_ALLOCATED; 10713 if (direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) { 10714 mutex_exit(&mpt->m_mutex); 10715 for (i = 0; i < data_size; i++) { 10716 if (ddi_copyin(data + i, (uint8_t *) 10717 data_dma_state.memp + i, 1, mode)) { 10718 mutex_enter(&mpt->m_mutex); 10719 status = EFAULT; 10720 mptsas_log(mpt, CE_WARN, "failed to " 10721 "copy read data"); 10722 goto out; 10723 } 10724 } 10725 mutex_enter(&mpt->m_mutex); 10726 } 10727 } else { 10728 bzero(&data_dma_state, sizeof (data_dma_state)); 10729 } 10730 10731 if (dataout_size != 0) { 10732 dataout_dma_state.size = dataout_size; 10733 if (mptsas_dma_alloc(mpt, &dataout_dma_state) != DDI_SUCCESS) { 10734 status = ENOMEM; 10735 mptsas_log(mpt, CE_WARN, "failed to alloc DMA " 10736 "resource"); 10737 goto out; 10738 } 10739 pt_flags |= MPTSAS_DATAOUT_ALLOCATED; 10740 mutex_exit(&mpt->m_mutex); 10741 for (i = 0; i < dataout_size; i++) { 10742 if (ddi_copyin(dataout + i, (uint8_t *) 10743 dataout_dma_state.memp + i, 1, mode)) { 10744 mutex_enter(&mpt->m_mutex); 10745 mptsas_log(mpt, CE_WARN, "failed to copy out" 10746 " data"); 10747 status = EFAULT; 10748 goto out; 10749 } 10750 } 10751 mutex_enter(&mpt->m_mutex); 10752 } else { 10753 bzero(&dataout_dma_state, sizeof (dataout_dma_state)); 10754 } 10755 10756 if ((rvalue = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 10757 status = EAGAIN; 10758 mptsas_log(mpt, CE_NOTE, "event ack command pool is full"); 10759 goto out; 10760 } 10761 pt_flags |= MPTSAS_REQUEST_POOL_CMD; 10762 10763 bzero((caddr_t)cmd, sizeof (*cmd)); 10764 bzero((caddr_t)pkt, scsi_pkt_size()); 10765 bzero((caddr_t)&pt, sizeof (pt)); 10766 10767 cmd->ioc_cmd_slot = (uint32_t)(rvalue); 10768 10769 pt.request = (uint8_t *)request_msg; 10770 pt.direction = direction; 10771 pt.simple = 0; 10772 pt.request_size = request_size; 10773 pt.data_size = data_size; 10774 pt.dataout_size = dataout_size; 10775 pt.data_cookie = data_dma_state.cookie; 10776 pt.dataout_cookie = dataout_dma_state.cookie; 10777 mptsas_prep_sgl_offset(mpt, &pt); 10778 10779 /* 10780 * Form a blank cmd/pkt to store the acknowledgement message 10781 */ 10782 pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb[0]; 10783 pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb; 10784 pkt->pkt_ha_private = (opaque_t)&pt; 10785 pkt->pkt_flags = FLAG_HEAD; 10786 pkt->pkt_time = timeout; 10787 cmd->cmd_pkt = pkt; 10788 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_PASSTHRU; 10789 10790 /* 10791 * Save the command in a slot 10792 */ 10793 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 10794 /* 10795 * Once passthru command get slot, set cmd_flags 10796 * CFLAG_PREPARED. 10797 */ 10798 cmd->cmd_flags |= CFLAG_PREPARED; 10799 mptsas_start_passthru(mpt, cmd); 10800 } else { 10801 mptsas_waitq_add(mpt, cmd); 10802 } 10803 10804 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 10805 cv_wait(&mpt->m_passthru_cv, &mpt->m_mutex); 10806 } 10807 10808 if (cmd->cmd_flags & CFLAG_PREPARED) { 10809 memp = mpt->m_req_frame + (mpt->m_req_frame_size * 10810 cmd->cmd_slot); 10811 request_hdrp = (pMPI2RequestHeader_t)memp; 10812 } 10813 10814 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 10815 status = ETIMEDOUT; 10816 mptsas_log(mpt, CE_WARN, "passthrough command timeout"); 10817 pt_flags |= MPTSAS_CMD_TIMEOUT; 10818 goto out; 10819 } 10820 10821 if (cmd->cmd_rfm) { 10822 /* 10823 * cmd_rfm is zero means the command reply is a CONTEXT 10824 * reply and no PCI Write to post the free reply SMFA 10825 * because no reply message frame is used. 10826 * cmd_rfm is non-zero means the reply is a ADDRESS 10827 * reply and reply message frame is used. 10828 */ 10829 pt_flags |= MPTSAS_ADDRESS_REPLY; 10830 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 10831 DDI_DMA_SYNC_FORCPU); 10832 reply_msg = (pMPI2DefaultReply_t) 10833 (mpt->m_reply_frame + (cmd->cmd_rfm - 10834 mpt->m_reply_frame_dma_addr)); 10835 } 10836 10837 mptsas_fma_check(mpt, cmd); 10838 if (pkt->pkt_reason == CMD_TRAN_ERR) { 10839 status = EAGAIN; 10840 mptsas_log(mpt, CE_WARN, "passthru fma error"); 10841 goto out; 10842 } 10843 if (pkt->pkt_reason == CMD_RESET) { 10844 status = EAGAIN; 10845 mptsas_log(mpt, CE_WARN, "ioc reset abort passthru"); 10846 goto out; 10847 } 10848 10849 if (pkt->pkt_reason == CMD_INCOMPLETE) { 10850 status = EIO; 10851 mptsas_log(mpt, CE_WARN, "passthrough command incomplete"); 10852 goto out; 10853 } 10854 10855 mutex_exit(&mpt->m_mutex); 10856 if (cmd->cmd_flags & CFLAG_PREPARED) { 10857 function = request_hdrp->Function; 10858 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 10859 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 10860 reply_len = sizeof (MPI2_SCSI_IO_REPLY); 10861 sense_len = reply_size - reply_len; 10862 } else { 10863 reply_len = reply_size; 10864 sense_len = 0; 10865 } 10866 10867 for (i = 0; i < reply_len; i++) { 10868 if (ddi_copyout((uint8_t *)reply_msg + i, reply + i, 1, 10869 mode)) { 10870 mutex_enter(&mpt->m_mutex); 10871 status = EFAULT; 10872 mptsas_log(mpt, CE_WARN, "failed to copy out " 10873 "reply data"); 10874 goto out; 10875 } 10876 } 10877 for (i = 0; i < sense_len; i++) { 10878 if (ddi_copyout((uint8_t *)request_hdrp + 64 + i, 10879 reply + reply_len + i, 1, mode)) { 10880 mutex_enter(&mpt->m_mutex); 10881 status = EFAULT; 10882 mptsas_log(mpt, CE_WARN, "failed to copy out " 10883 "sense data"); 10884 goto out; 10885 } 10886 } 10887 } 10888 10889 if (data_size) { 10890 if (direction != MPTSAS_PASS_THRU_DIRECTION_WRITE) { 10891 (void) ddi_dma_sync(data_dma_state.handle, 0, 0, 10892 DDI_DMA_SYNC_FORCPU); 10893 for (i = 0; i < data_size; i++) { 10894 if (ddi_copyout((uint8_t *)( 10895 data_dma_state.memp + i), data + i, 1, 10896 mode)) { 10897 mutex_enter(&mpt->m_mutex); 10898 status = EFAULT; 10899 mptsas_log(mpt, CE_WARN, "failed to " 10900 "copy out the reply data"); 10901 goto out; 10902 } 10903 } 10904 } 10905 } 10906 mutex_enter(&mpt->m_mutex); 10907 out: 10908 /* 10909 * Put the reply frame back on the free queue, increment the free 10910 * index, and write the new index to the free index register. But only 10911 * if this reply is an ADDRESS reply. 10912 */ 10913 if (pt_flags & MPTSAS_ADDRESS_REPLY) { 10914 ddi_put32(mpt->m_acc_free_queue_hdl, 10915 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 10916 cmd->cmd_rfm); 10917 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 10918 DDI_DMA_SYNC_FORDEV); 10919 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 10920 mpt->m_free_index = 0; 10921 } 10922 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 10923 mpt->m_free_index); 10924 } 10925 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 10926 mptsas_remove_cmd(mpt, cmd); 10927 pt_flags &= (~MPTSAS_REQUEST_POOL_CMD); 10928 } 10929 if (pt_flags & MPTSAS_REQUEST_POOL_CMD) 10930 mptsas_return_to_pool(mpt, cmd); 10931 if (pt_flags & MPTSAS_DATA_ALLOCATED) { 10932 if (mptsas_check_dma_handle(data_dma_state.handle) != 10933 DDI_SUCCESS) { 10934 ddi_fm_service_impact(mpt->m_dip, 10935 DDI_SERVICE_UNAFFECTED); 10936 status = EFAULT; 10937 } 10938 mptsas_dma_free(&data_dma_state); 10939 } 10940 if (pt_flags & MPTSAS_DATAOUT_ALLOCATED) { 10941 if (mptsas_check_dma_handle(dataout_dma_state.handle) != 10942 DDI_SUCCESS) { 10943 ddi_fm_service_impact(mpt->m_dip, 10944 DDI_SERVICE_UNAFFECTED); 10945 status = EFAULT; 10946 } 10947 mptsas_dma_free(&dataout_dma_state); 10948 } 10949 if (pt_flags & MPTSAS_CMD_TIMEOUT) { 10950 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 10951 mptsas_log(mpt, CE_WARN, "mptsas_restart_ioc failed"); 10952 } 10953 } 10954 if (request_msg) 10955 kmem_free(request_msg, request_size); 10956 10957 return (status); 10958 } 10959 10960 static int 10961 mptsas_pass_thru(mptsas_t *mpt, mptsas_pass_thru_t *data, int mode) 10962 { 10963 /* 10964 * If timeout is 0, set timeout to default of 60 seconds. 10965 */ 10966 if (data->Timeout == 0) { 10967 data->Timeout = MPTSAS_PASS_THRU_TIME_DEFAULT; 10968 } 10969 10970 if (((data->DataSize == 0) && 10971 (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_NONE)) || 10972 ((data->DataSize != 0) && 10973 ((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_READ) || 10974 (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_WRITE) || 10975 ((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) && 10976 (data->DataOutSize != 0))))) { 10977 if (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) { 10978 data->DataDirection = MPTSAS_PASS_THRU_DIRECTION_READ; 10979 } else { 10980 data->DataOutSize = 0; 10981 } 10982 /* 10983 * Send passthru request messages 10984 */ 10985 return (mptsas_do_passthru(mpt, 10986 (uint8_t *)((uintptr_t)data->PtrRequest), 10987 (uint8_t *)((uintptr_t)data->PtrReply), 10988 (uint8_t *)((uintptr_t)data->PtrData), 10989 data->RequestSize, data->ReplySize, 10990 data->DataSize, data->DataDirection, 10991 (uint8_t *)((uintptr_t)data->PtrDataOut), 10992 data->DataOutSize, data->Timeout, mode)); 10993 } else { 10994 return (EINVAL); 10995 } 10996 } 10997 10998 static uint8_t 10999 mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, uint32_t unique_id) 11000 { 11001 uint8_t index; 11002 11003 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 11004 if (mpt->m_fw_diag_buffer_list[index].unique_id == unique_id) { 11005 return (index); 11006 } 11007 } 11008 11009 return (MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND); 11010 } 11011 11012 static void 11013 mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd) 11014 { 11015 pMpi2DiagBufferPostRequest_t pDiag_post_msg; 11016 pMpi2DiagReleaseRequest_t pDiag_release_msg; 11017 struct scsi_pkt *pkt = cmd->cmd_pkt; 11018 mptsas_diag_request_t *diag = pkt->pkt_ha_private; 11019 uint32_t request_desc_low, i; 11020 11021 ASSERT(mutex_owned(&mpt->m_mutex)); 11022 11023 /* 11024 * Form the diag message depending on the post or release function. 11025 */ 11026 if (diag->function == MPI2_FUNCTION_DIAG_BUFFER_POST) { 11027 pDiag_post_msg = (pMpi2DiagBufferPostRequest_t) 11028 (mpt->m_req_frame + (mpt->m_req_frame_size * 11029 cmd->cmd_slot)); 11030 bzero(pDiag_post_msg, mpt->m_req_frame_size); 11031 ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->Function, 11032 diag->function); 11033 ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->BufferType, 11034 diag->pBuffer->buffer_type); 11035 ddi_put8(mpt->m_acc_req_frame_hdl, 11036 &pDiag_post_msg->ExtendedType, 11037 diag->pBuffer->extended_type); 11038 ddi_put32(mpt->m_acc_req_frame_hdl, 11039 &pDiag_post_msg->BufferLength, 11040 diag->pBuffer->buffer_data.size); 11041 for (i = 0; i < (sizeof (pDiag_post_msg->ProductSpecific) / 4); 11042 i++) { 11043 ddi_put32(mpt->m_acc_req_frame_hdl, 11044 &pDiag_post_msg->ProductSpecific[i], 11045 diag->pBuffer->product_specific[i]); 11046 } 11047 ddi_put32(mpt->m_acc_req_frame_hdl, 11048 &pDiag_post_msg->BufferAddress.Low, 11049 (uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress 11050 & 0xffffffffull)); 11051 ddi_put32(mpt->m_acc_req_frame_hdl, 11052 &pDiag_post_msg->BufferAddress.High, 11053 (uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress 11054 >> 32)); 11055 } else { 11056 pDiag_release_msg = (pMpi2DiagReleaseRequest_t) 11057 (mpt->m_req_frame + (mpt->m_req_frame_size * 11058 cmd->cmd_slot)); 11059 bzero(pDiag_release_msg, mpt->m_req_frame_size); 11060 ddi_put8(mpt->m_acc_req_frame_hdl, 11061 &pDiag_release_msg->Function, diag->function); 11062 ddi_put8(mpt->m_acc_req_frame_hdl, 11063 &pDiag_release_msg->BufferType, 11064 diag->pBuffer->buffer_type); 11065 } 11066 11067 /* 11068 * Send the message 11069 */ 11070 (void) ddi_dma_sync(mpt->m_dma_req_frame_hdl, 0, 0, 11071 DDI_DMA_SYNC_FORDEV); 11072 request_desc_low = (cmd->cmd_slot << 16) + 11073 MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 11074 cmd->cmd_rfm = NULL; 11075 MPTSAS_START_CMD(mpt, request_desc_low, 0); 11076 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 11077 DDI_SUCCESS) || 11078 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 11079 DDI_SUCCESS)) { 11080 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 11081 } 11082 } 11083 11084 static int 11085 mptsas_post_fw_diag_buffer(mptsas_t *mpt, 11086 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 11087 { 11088 mptsas_diag_request_t diag; 11089 int status, slot_num, post_flags = 0; 11090 mptsas_cmd_t *cmd = NULL; 11091 struct scsi_pkt *pkt; 11092 pMpi2DiagBufferPostReply_t reply; 11093 uint16_t iocstatus; 11094 uint32_t iocloginfo, transfer_length; 11095 11096 /* 11097 * If buffer is not enabled, just leave. 11098 */ 11099 *return_code = MPTSAS_FW_DIAG_ERROR_POST_FAILED; 11100 if (!pBuffer->enabled) { 11101 status = DDI_FAILURE; 11102 goto out; 11103 } 11104 11105 /* 11106 * Clear some flags initially. 11107 */ 11108 pBuffer->force_release = FALSE; 11109 pBuffer->valid_data = FALSE; 11110 pBuffer->owned_by_firmware = FALSE; 11111 11112 /* 11113 * Get a cmd buffer from the cmd buffer pool 11114 */ 11115 if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 11116 status = DDI_FAILURE; 11117 mptsas_log(mpt, CE_NOTE, "command pool is full: Post FW Diag"); 11118 goto out; 11119 } 11120 post_flags |= MPTSAS_REQUEST_POOL_CMD; 11121 11122 bzero((caddr_t)cmd, sizeof (*cmd)); 11123 bzero((caddr_t)pkt, scsi_pkt_size()); 11124 11125 cmd->ioc_cmd_slot = (uint32_t)(slot_num); 11126 11127 diag.pBuffer = pBuffer; 11128 diag.function = MPI2_FUNCTION_DIAG_BUFFER_POST; 11129 11130 /* 11131 * Form a blank cmd/pkt to store the acknowledgement message 11132 */ 11133 pkt->pkt_ha_private = (opaque_t)&diag; 11134 pkt->pkt_flags = FLAG_HEAD; 11135 pkt->pkt_time = 60; 11136 cmd->cmd_pkt = pkt; 11137 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG; 11138 11139 /* 11140 * Save the command in a slot 11141 */ 11142 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 11143 /* 11144 * Once passthru command get slot, set cmd_flags 11145 * CFLAG_PREPARED. 11146 */ 11147 cmd->cmd_flags |= CFLAG_PREPARED; 11148 mptsas_start_diag(mpt, cmd); 11149 } else { 11150 mptsas_waitq_add(mpt, cmd); 11151 } 11152 11153 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 11154 cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex); 11155 } 11156 11157 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 11158 status = DDI_FAILURE; 11159 mptsas_log(mpt, CE_WARN, "Post FW Diag command timeout"); 11160 goto out; 11161 } 11162 11163 /* 11164 * cmd_rfm points to the reply message if a reply was given. Check the 11165 * IOCStatus to make sure everything went OK with the FW diag request 11166 * and set buffer flags. 11167 */ 11168 if (cmd->cmd_rfm) { 11169 post_flags |= MPTSAS_ADDRESS_REPLY; 11170 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 11171 DDI_DMA_SYNC_FORCPU); 11172 reply = (pMpi2DiagBufferPostReply_t)(mpt->m_reply_frame + 11173 (cmd->cmd_rfm - mpt->m_reply_frame_dma_addr)); 11174 11175 /* 11176 * Get the reply message data 11177 */ 11178 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 11179 &reply->IOCStatus); 11180 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 11181 &reply->IOCLogInfo); 11182 transfer_length = ddi_get32(mpt->m_acc_reply_frame_hdl, 11183 &reply->TransferLength); 11184 11185 /* 11186 * If post failed quit. 11187 */ 11188 if (iocstatus != MPI2_IOCSTATUS_SUCCESS) { 11189 status = DDI_FAILURE; 11190 NDBG13(("post FW Diag Buffer failed: IOCStatus=0x%x, " 11191 "IOCLogInfo=0x%x, TransferLength=0x%x", iocstatus, 11192 iocloginfo, transfer_length)); 11193 goto out; 11194 } 11195 11196 /* 11197 * Post was successful. 11198 */ 11199 pBuffer->valid_data = TRUE; 11200 pBuffer->owned_by_firmware = TRUE; 11201 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 11202 status = DDI_SUCCESS; 11203 } 11204 11205 out: 11206 /* 11207 * Put the reply frame back on the free queue, increment the free 11208 * index, and write the new index to the free index register. But only 11209 * if this reply is an ADDRESS reply. 11210 */ 11211 if (post_flags & MPTSAS_ADDRESS_REPLY) { 11212 ddi_put32(mpt->m_acc_free_queue_hdl, 11213 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 11214 cmd->cmd_rfm); 11215 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 11216 DDI_DMA_SYNC_FORDEV); 11217 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 11218 mpt->m_free_index = 0; 11219 } 11220 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 11221 mpt->m_free_index); 11222 } 11223 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 11224 mptsas_remove_cmd(mpt, cmd); 11225 post_flags &= (~MPTSAS_REQUEST_POOL_CMD); 11226 } 11227 if (post_flags & MPTSAS_REQUEST_POOL_CMD) { 11228 mptsas_return_to_pool(mpt, cmd); 11229 } 11230 11231 return (status); 11232 } 11233 11234 static int 11235 mptsas_release_fw_diag_buffer(mptsas_t *mpt, 11236 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 11237 uint32_t diag_type) 11238 { 11239 mptsas_diag_request_t diag; 11240 int status, slot_num, rel_flags = 0; 11241 mptsas_cmd_t *cmd = NULL; 11242 struct scsi_pkt *pkt; 11243 pMpi2DiagReleaseReply_t reply; 11244 uint16_t iocstatus; 11245 uint32_t iocloginfo; 11246 11247 /* 11248 * If buffer is not enabled, just leave. 11249 */ 11250 *return_code = MPTSAS_FW_DIAG_ERROR_RELEASE_FAILED; 11251 if (!pBuffer->enabled) { 11252 mptsas_log(mpt, CE_NOTE, "This buffer type is not supported " 11253 "by the IOC"); 11254 status = DDI_FAILURE; 11255 goto out; 11256 } 11257 11258 /* 11259 * Clear some flags initially. 11260 */ 11261 pBuffer->force_release = FALSE; 11262 pBuffer->valid_data = FALSE; 11263 pBuffer->owned_by_firmware = FALSE; 11264 11265 /* 11266 * Get a cmd buffer from the cmd buffer pool 11267 */ 11268 if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 11269 status = DDI_FAILURE; 11270 mptsas_log(mpt, CE_NOTE, "command pool is full: Release FW " 11271 "Diag"); 11272 goto out; 11273 } 11274 rel_flags |= MPTSAS_REQUEST_POOL_CMD; 11275 11276 bzero((caddr_t)cmd, sizeof (*cmd)); 11277 bzero((caddr_t)pkt, scsi_pkt_size()); 11278 11279 cmd->ioc_cmd_slot = (uint32_t)(slot_num); 11280 11281 diag.pBuffer = pBuffer; 11282 diag.function = MPI2_FUNCTION_DIAG_RELEASE; 11283 11284 /* 11285 * Form a blank cmd/pkt to store the acknowledgement message 11286 */ 11287 pkt->pkt_ha_private = (opaque_t)&diag; 11288 pkt->pkt_flags = FLAG_HEAD; 11289 pkt->pkt_time = 60; 11290 cmd->cmd_pkt = pkt; 11291 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG; 11292 11293 /* 11294 * Save the command in a slot 11295 */ 11296 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 11297 /* 11298 * Once passthru command get slot, set cmd_flags 11299 * CFLAG_PREPARED. 11300 */ 11301 cmd->cmd_flags |= CFLAG_PREPARED; 11302 mptsas_start_diag(mpt, cmd); 11303 } else { 11304 mptsas_waitq_add(mpt, cmd); 11305 } 11306 11307 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 11308 cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex); 11309 } 11310 11311 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 11312 status = DDI_FAILURE; 11313 mptsas_log(mpt, CE_WARN, "Release FW Diag command timeout"); 11314 goto out; 11315 } 11316 11317 /* 11318 * cmd_rfm points to the reply message if a reply was given. Check the 11319 * IOCStatus to make sure everything went OK with the FW diag request 11320 * and set buffer flags. 11321 */ 11322 if (cmd->cmd_rfm) { 11323 rel_flags |= MPTSAS_ADDRESS_REPLY; 11324 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 11325 DDI_DMA_SYNC_FORCPU); 11326 reply = (pMpi2DiagReleaseReply_t)(mpt->m_reply_frame + 11327 (cmd->cmd_rfm - mpt->m_reply_frame_dma_addr)); 11328 11329 /* 11330 * Get the reply message data 11331 */ 11332 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 11333 &reply->IOCStatus); 11334 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 11335 &reply->IOCLogInfo); 11336 11337 /* 11338 * If release failed quit. 11339 */ 11340 if ((iocstatus != MPI2_IOCSTATUS_SUCCESS) || 11341 pBuffer->owned_by_firmware) { 11342 status = DDI_FAILURE; 11343 NDBG13(("release FW Diag Buffer failed: " 11344 "IOCStatus=0x%x, IOCLogInfo=0x%x", iocstatus, 11345 iocloginfo)); 11346 goto out; 11347 } 11348 11349 /* 11350 * Release was successful. 11351 */ 11352 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 11353 status = DDI_SUCCESS; 11354 11355 /* 11356 * If this was for an UNREGISTER diag type command, clear the 11357 * unique ID. 11358 */ 11359 if (diag_type == MPTSAS_FW_DIAG_TYPE_UNREGISTER) { 11360 pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID; 11361 } 11362 } 11363 11364 out: 11365 /* 11366 * Put the reply frame back on the free queue, increment the free 11367 * index, and write the new index to the free index register. But only 11368 * if this reply is an ADDRESS reply. 11369 */ 11370 if (rel_flags & MPTSAS_ADDRESS_REPLY) { 11371 ddi_put32(mpt->m_acc_free_queue_hdl, 11372 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 11373 cmd->cmd_rfm); 11374 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 11375 DDI_DMA_SYNC_FORDEV); 11376 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 11377 mpt->m_free_index = 0; 11378 } 11379 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 11380 mpt->m_free_index); 11381 } 11382 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 11383 mptsas_remove_cmd(mpt, cmd); 11384 rel_flags &= (~MPTSAS_REQUEST_POOL_CMD); 11385 } 11386 if (rel_flags & MPTSAS_REQUEST_POOL_CMD) { 11387 mptsas_return_to_pool(mpt, cmd); 11388 } 11389 11390 return (status); 11391 } 11392 11393 static int 11394 mptsas_diag_register(mptsas_t *mpt, mptsas_fw_diag_register_t *diag_register, 11395 uint32_t *return_code) 11396 { 11397 mptsas_fw_diagnostic_buffer_t *pBuffer; 11398 uint8_t extended_type, buffer_type, i; 11399 uint32_t buffer_size; 11400 uint32_t unique_id; 11401 int status; 11402 11403 ASSERT(mutex_owned(&mpt->m_mutex)); 11404 11405 extended_type = diag_register->ExtendedType; 11406 buffer_type = diag_register->BufferType; 11407 buffer_size = diag_register->RequestedBufferSize; 11408 unique_id = diag_register->UniqueId; 11409 11410 /* 11411 * Check for valid buffer type 11412 */ 11413 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 11414 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11415 return (DDI_FAILURE); 11416 } 11417 11418 /* 11419 * Get the current buffer and look up the unique ID. The unique ID 11420 * should not be found. If it is, the ID is already in use. 11421 */ 11422 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 11423 pBuffer = &mpt->m_fw_diag_buffer_list[buffer_type]; 11424 if (i != MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 11425 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11426 return (DDI_FAILURE); 11427 } 11428 11429 /* 11430 * The buffer's unique ID should not be registered yet, and the given 11431 * unique ID cannot be 0. 11432 */ 11433 if ((pBuffer->unique_id != MPTSAS_FW_DIAG_INVALID_UID) || 11434 (unique_id == MPTSAS_FW_DIAG_INVALID_UID)) { 11435 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11436 return (DDI_FAILURE); 11437 } 11438 11439 /* 11440 * If this buffer is already posted as immediate, just change owner. 11441 */ 11442 if (pBuffer->immediate && pBuffer->owned_by_firmware && 11443 (pBuffer->unique_id == MPTSAS_FW_DIAG_INVALID_UID)) { 11444 pBuffer->immediate = FALSE; 11445 pBuffer->unique_id = unique_id; 11446 return (DDI_SUCCESS); 11447 } 11448 11449 /* 11450 * Post a new buffer after checking if it's enabled. The DMA buffer 11451 * that is allocated will be contiguous (sgl_len = 1). 11452 */ 11453 if (!pBuffer->enabled) { 11454 *return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER; 11455 return (DDI_FAILURE); 11456 } 11457 bzero(&pBuffer->buffer_data, sizeof (mptsas_dma_alloc_state_t)); 11458 pBuffer->buffer_data.size = buffer_size; 11459 if (mptsas_dma_alloc(mpt, &pBuffer->buffer_data) != DDI_SUCCESS) { 11460 mptsas_log(mpt, CE_WARN, "failed to alloc DMA resource for " 11461 "diag buffer: size = %d bytes", buffer_size); 11462 *return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER; 11463 return (DDI_FAILURE); 11464 } 11465 11466 /* 11467 * Copy the given info to the diag buffer and post the buffer. 11468 */ 11469 pBuffer->buffer_type = buffer_type; 11470 pBuffer->immediate = FALSE; 11471 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 11472 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 11473 i++) { 11474 pBuffer->product_specific[i] = 11475 diag_register->ProductSpecific[i]; 11476 } 11477 } 11478 pBuffer->extended_type = extended_type; 11479 pBuffer->unique_id = unique_id; 11480 status = mptsas_post_fw_diag_buffer(mpt, pBuffer, return_code); 11481 11482 if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) != 11483 DDI_SUCCESS) { 11484 mptsas_log(mpt, CE_WARN, "Check of DMA handle failed in " 11485 "mptsas_diag_register."); 11486 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 11487 status = DDI_FAILURE; 11488 } 11489 11490 /* 11491 * In case there was a failure, free the DMA buffer. 11492 */ 11493 if (status == DDI_FAILURE) { 11494 mptsas_dma_free(&pBuffer->buffer_data); 11495 } 11496 11497 return (status); 11498 } 11499 11500 static int 11501 mptsas_diag_unregister(mptsas_t *mpt, 11502 mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 11503 { 11504 mptsas_fw_diagnostic_buffer_t *pBuffer; 11505 uint8_t i; 11506 uint32_t unique_id; 11507 int status; 11508 11509 ASSERT(mutex_owned(&mpt->m_mutex)); 11510 11511 unique_id = diag_unregister->UniqueId; 11512 11513 /* 11514 * Get the current buffer and look up the unique ID. The unique ID 11515 * should be there. 11516 */ 11517 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 11518 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 11519 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11520 return (DDI_FAILURE); 11521 } 11522 11523 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 11524 11525 /* 11526 * Try to release the buffer from FW before freeing it. If release 11527 * fails, don't free the DMA buffer in case FW tries to access it 11528 * later. If buffer is not owned by firmware, can't release it. 11529 */ 11530 if (!pBuffer->owned_by_firmware) { 11531 status = DDI_SUCCESS; 11532 } else { 11533 status = mptsas_release_fw_diag_buffer(mpt, pBuffer, 11534 return_code, MPTSAS_FW_DIAG_TYPE_UNREGISTER); 11535 } 11536 11537 /* 11538 * At this point, return the current status no matter what happens with 11539 * the DMA buffer. 11540 */ 11541 pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID; 11542 if (status == DDI_SUCCESS) { 11543 if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) != 11544 DDI_SUCCESS) { 11545 mptsas_log(mpt, CE_WARN, "Check of DMA handle failed " 11546 "in mptsas_diag_unregister."); 11547 ddi_fm_service_impact(mpt->m_dip, 11548 DDI_SERVICE_UNAFFECTED); 11549 } 11550 mptsas_dma_free(&pBuffer->buffer_data); 11551 } 11552 11553 return (status); 11554 } 11555 11556 static int 11557 mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query, 11558 uint32_t *return_code) 11559 { 11560 mptsas_fw_diagnostic_buffer_t *pBuffer; 11561 uint8_t i; 11562 uint32_t unique_id; 11563 11564 ASSERT(mutex_owned(&mpt->m_mutex)); 11565 11566 unique_id = diag_query->UniqueId; 11567 11568 /* 11569 * If ID is valid, query on ID. 11570 * If ID is invalid, query on buffer type. 11571 */ 11572 if (unique_id == MPTSAS_FW_DIAG_INVALID_UID) { 11573 i = diag_query->BufferType; 11574 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 11575 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11576 return (DDI_FAILURE); 11577 } 11578 } else { 11579 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 11580 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 11581 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11582 return (DDI_FAILURE); 11583 } 11584 } 11585 11586 /* 11587 * Fill query structure with the diag buffer info. 11588 */ 11589 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 11590 diag_query->BufferType = pBuffer->buffer_type; 11591 diag_query->ExtendedType = pBuffer->extended_type; 11592 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 11593 for (i = 0; i < (sizeof (diag_query->ProductSpecific) / 4); 11594 i++) { 11595 diag_query->ProductSpecific[i] = 11596 pBuffer->product_specific[i]; 11597 } 11598 } 11599 diag_query->TotalBufferSize = pBuffer->buffer_data.size; 11600 diag_query->DriverAddedBufferSize = 0; 11601 diag_query->UniqueId = pBuffer->unique_id; 11602 diag_query->ApplicationFlags = 0; 11603 diag_query->DiagnosticFlags = 0; 11604 11605 /* 11606 * Set/Clear application flags 11607 */ 11608 if (pBuffer->immediate) { 11609 diag_query->ApplicationFlags &= ~MPTSAS_FW_DIAG_FLAG_APP_OWNED; 11610 } else { 11611 diag_query->ApplicationFlags |= MPTSAS_FW_DIAG_FLAG_APP_OWNED; 11612 } 11613 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 11614 diag_query->ApplicationFlags |= 11615 MPTSAS_FW_DIAG_FLAG_BUFFER_VALID; 11616 } else { 11617 diag_query->ApplicationFlags &= 11618 ~MPTSAS_FW_DIAG_FLAG_BUFFER_VALID; 11619 } 11620 if (pBuffer->owned_by_firmware) { 11621 diag_query->ApplicationFlags |= 11622 MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 11623 } else { 11624 diag_query->ApplicationFlags &= 11625 ~MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 11626 } 11627 11628 return (DDI_SUCCESS); 11629 } 11630 11631 static int 11632 mptsas_diag_read_buffer(mptsas_t *mpt, 11633 mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 11634 uint32_t *return_code, int ioctl_mode) 11635 { 11636 mptsas_fw_diagnostic_buffer_t *pBuffer; 11637 uint8_t i, *pData; 11638 uint32_t unique_id, byte; 11639 int status; 11640 11641 ASSERT(mutex_owned(&mpt->m_mutex)); 11642 11643 unique_id = diag_read_buffer->UniqueId; 11644 11645 /* 11646 * Get the current buffer and look up the unique ID. The unique ID 11647 * should be there. 11648 */ 11649 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 11650 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 11651 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11652 return (DDI_FAILURE); 11653 } 11654 11655 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 11656 11657 /* 11658 * Make sure requested read is within limits 11659 */ 11660 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 11661 pBuffer->buffer_data.size) { 11662 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11663 return (DDI_FAILURE); 11664 } 11665 11666 /* 11667 * Copy the requested data from DMA to the diag_read_buffer. The DMA 11668 * buffer that was allocated is one contiguous buffer. 11669 */ 11670 pData = (uint8_t *)(pBuffer->buffer_data.memp + 11671 diag_read_buffer->StartingOffset); 11672 (void) ddi_dma_sync(pBuffer->buffer_data.handle, 0, 0, 11673 DDI_DMA_SYNC_FORCPU); 11674 for (byte = 0; byte < diag_read_buffer->BytesToRead; byte++) { 11675 if (ddi_copyout(pData + byte, ioctl_buf + byte, 1, ioctl_mode) 11676 != 0) { 11677 return (DDI_FAILURE); 11678 } 11679 } 11680 diag_read_buffer->Status = 0; 11681 11682 /* 11683 * Set or clear the Force Release flag. 11684 */ 11685 if (pBuffer->force_release) { 11686 diag_read_buffer->Flags |= MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE; 11687 } else { 11688 diag_read_buffer->Flags &= ~MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE; 11689 } 11690 11691 /* 11692 * If buffer is to be reregistered, make sure it's not already owned by 11693 * firmware first. 11694 */ 11695 status = DDI_SUCCESS; 11696 if (!pBuffer->owned_by_firmware) { 11697 if (diag_read_buffer->Flags & MPTSAS_FW_DIAG_FLAG_REREGISTER) { 11698 status = mptsas_post_fw_diag_buffer(mpt, pBuffer, 11699 return_code); 11700 } 11701 } 11702 11703 return (status); 11704 } 11705 11706 static int 11707 mptsas_diag_release(mptsas_t *mpt, mptsas_fw_diag_release_t *diag_release, 11708 uint32_t *return_code) 11709 { 11710 mptsas_fw_diagnostic_buffer_t *pBuffer; 11711 uint8_t i; 11712 uint32_t unique_id; 11713 int status; 11714 11715 ASSERT(mutex_owned(&mpt->m_mutex)); 11716 11717 unique_id = diag_release->UniqueId; 11718 11719 /* 11720 * Get the current buffer and look up the unique ID. The unique ID 11721 * should be there. 11722 */ 11723 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 11724 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 11725 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 11726 return (DDI_FAILURE); 11727 } 11728 11729 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 11730 11731 /* 11732 * If buffer is not owned by firmware, it's already been released. 11733 */ 11734 if (!pBuffer->owned_by_firmware) { 11735 *return_code = MPTSAS_FW_DIAG_ERROR_ALREADY_RELEASED; 11736 return (DDI_FAILURE); 11737 } 11738 11739 /* 11740 * Release the buffer. 11741 */ 11742 status = mptsas_release_fw_diag_buffer(mpt, pBuffer, return_code, 11743 MPTSAS_FW_DIAG_TYPE_RELEASE); 11744 return (status); 11745 } 11746 11747 static int 11748 mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, uint8_t *diag_action, 11749 uint32_t length, uint32_t *return_code, int ioctl_mode) 11750 { 11751 mptsas_fw_diag_register_t diag_register; 11752 mptsas_fw_diag_unregister_t diag_unregister; 11753 mptsas_fw_diag_query_t diag_query; 11754 mptsas_diag_read_buffer_t diag_read_buffer; 11755 mptsas_fw_diag_release_t diag_release; 11756 int status = DDI_SUCCESS; 11757 uint32_t original_return_code, read_buf_len; 11758 11759 ASSERT(mutex_owned(&mpt->m_mutex)); 11760 11761 original_return_code = *return_code; 11762 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 11763 11764 switch (action) { 11765 case MPTSAS_FW_DIAG_TYPE_REGISTER: 11766 if (!length) { 11767 *return_code = 11768 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11769 status = DDI_FAILURE; 11770 break; 11771 } 11772 if (ddi_copyin(diag_action, &diag_register, 11773 sizeof (diag_register), ioctl_mode) != 0) { 11774 return (DDI_FAILURE); 11775 } 11776 status = mptsas_diag_register(mpt, &diag_register, 11777 return_code); 11778 break; 11779 11780 case MPTSAS_FW_DIAG_TYPE_UNREGISTER: 11781 if (length < sizeof (diag_unregister)) { 11782 *return_code = 11783 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11784 status = DDI_FAILURE; 11785 break; 11786 } 11787 if (ddi_copyin(diag_action, &diag_unregister, 11788 sizeof (diag_unregister), ioctl_mode) != 0) { 11789 return (DDI_FAILURE); 11790 } 11791 status = mptsas_diag_unregister(mpt, &diag_unregister, 11792 return_code); 11793 break; 11794 11795 case MPTSAS_FW_DIAG_TYPE_QUERY: 11796 if (length < sizeof (diag_query)) { 11797 *return_code = 11798 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11799 status = DDI_FAILURE; 11800 break; 11801 } 11802 if (ddi_copyin(diag_action, &diag_query, 11803 sizeof (diag_query), ioctl_mode) != 0) { 11804 return (DDI_FAILURE); 11805 } 11806 status = mptsas_diag_query(mpt, &diag_query, 11807 return_code); 11808 if (status == DDI_SUCCESS) { 11809 if (ddi_copyout(&diag_query, diag_action, 11810 sizeof (diag_query), ioctl_mode) != 0) { 11811 return (DDI_FAILURE); 11812 } 11813 } 11814 break; 11815 11816 case MPTSAS_FW_DIAG_TYPE_READ_BUFFER: 11817 if (ddi_copyin(diag_action, &diag_read_buffer, 11818 sizeof (diag_read_buffer) - 4, ioctl_mode) != 0) { 11819 return (DDI_FAILURE); 11820 } 11821 read_buf_len = sizeof (diag_read_buffer) - 11822 sizeof (diag_read_buffer.DataBuffer) + 11823 diag_read_buffer.BytesToRead; 11824 if (length < read_buf_len) { 11825 *return_code = 11826 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11827 status = DDI_FAILURE; 11828 break; 11829 } 11830 status = mptsas_diag_read_buffer(mpt, 11831 &diag_read_buffer, diag_action + 11832 sizeof (diag_read_buffer) - 4, return_code, 11833 ioctl_mode); 11834 if (status == DDI_SUCCESS) { 11835 if (ddi_copyout(&diag_read_buffer, diag_action, 11836 sizeof (diag_read_buffer) - 4, ioctl_mode) 11837 != 0) { 11838 return (DDI_FAILURE); 11839 } 11840 } 11841 break; 11842 11843 case MPTSAS_FW_DIAG_TYPE_RELEASE: 11844 if (length < sizeof (diag_release)) { 11845 *return_code = 11846 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11847 status = DDI_FAILURE; 11848 break; 11849 } 11850 if (ddi_copyin(diag_action, &diag_release, 11851 sizeof (diag_release), ioctl_mode) != 0) { 11852 return (DDI_FAILURE); 11853 } 11854 status = mptsas_diag_release(mpt, &diag_release, 11855 return_code); 11856 break; 11857 11858 default: 11859 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 11860 status = DDI_FAILURE; 11861 break; 11862 } 11863 11864 if ((status == DDI_FAILURE) && 11865 (original_return_code == MPTSAS_FW_DIAG_NEW) && 11866 (*return_code != MPTSAS_FW_DIAG_ERROR_SUCCESS)) { 11867 status = DDI_SUCCESS; 11868 } 11869 11870 return (status); 11871 } 11872 11873 static int 11874 mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *user_data, int mode) 11875 { 11876 int status; 11877 mptsas_diag_action_t driver_data; 11878 11879 ASSERT(mutex_owned(&mpt->m_mutex)); 11880 11881 /* 11882 * Copy the user data to a driver data buffer. 11883 */ 11884 if (ddi_copyin(user_data, &driver_data, sizeof (mptsas_diag_action_t), 11885 mode) == 0) { 11886 /* 11887 * Send diag action request if Action is valid 11888 */ 11889 if (driver_data.Action == MPTSAS_FW_DIAG_TYPE_REGISTER || 11890 driver_data.Action == MPTSAS_FW_DIAG_TYPE_UNREGISTER || 11891 driver_data.Action == MPTSAS_FW_DIAG_TYPE_QUERY || 11892 driver_data.Action == MPTSAS_FW_DIAG_TYPE_READ_BUFFER || 11893 driver_data.Action == MPTSAS_FW_DIAG_TYPE_RELEASE) { 11894 status = mptsas_do_diag_action(mpt, driver_data.Action, 11895 (void *)(uintptr_t)driver_data.PtrDiagAction, 11896 driver_data.Length, &driver_data.ReturnCode, 11897 mode); 11898 if (status == DDI_SUCCESS) { 11899 if (ddi_copyout(&driver_data.ReturnCode, 11900 &user_data->ReturnCode, 11901 sizeof (user_data->ReturnCode), mode) 11902 != 0) { 11903 status = EFAULT; 11904 } else { 11905 status = 0; 11906 } 11907 } else { 11908 status = EIO; 11909 } 11910 } else { 11911 status = EINVAL; 11912 } 11913 } else { 11914 status = EFAULT; 11915 } 11916 11917 return (status); 11918 } 11919 11920 /* 11921 * This routine handles the "event query" ioctl. 11922 */ 11923 static int 11924 mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, int mode, 11925 int *rval) 11926 { 11927 int status; 11928 mptsas_event_query_t driverdata; 11929 uint8_t i; 11930 11931 driverdata.Entries = MPTSAS_EVENT_QUEUE_SIZE; 11932 11933 mutex_enter(&mpt->m_mutex); 11934 for (i = 0; i < 4; i++) { 11935 driverdata.Types[i] = mpt->m_event_mask[i]; 11936 } 11937 mutex_exit(&mpt->m_mutex); 11938 11939 if (ddi_copyout(&driverdata, data, sizeof (driverdata), mode) != 0) { 11940 status = EFAULT; 11941 } else { 11942 *rval = MPTIOCTL_STATUS_GOOD; 11943 status = 0; 11944 } 11945 11946 return (status); 11947 } 11948 11949 /* 11950 * This routine handles the "event enable" ioctl. 11951 */ 11952 static int 11953 mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, int mode, 11954 int *rval) 11955 { 11956 int status; 11957 mptsas_event_enable_t driverdata; 11958 uint8_t i; 11959 11960 if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) { 11961 mutex_enter(&mpt->m_mutex); 11962 for (i = 0; i < 4; i++) { 11963 mpt->m_event_mask[i] = driverdata.Types[i]; 11964 } 11965 mutex_exit(&mpt->m_mutex); 11966 11967 *rval = MPTIOCTL_STATUS_GOOD; 11968 status = 0; 11969 } else { 11970 status = EFAULT; 11971 } 11972 return (status); 11973 } 11974 11975 /* 11976 * This routine handles the "event report" ioctl. 11977 */ 11978 static int 11979 mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, int mode, 11980 int *rval) 11981 { 11982 int status; 11983 mptsas_event_report_t driverdata; 11984 11985 mutex_enter(&mpt->m_mutex); 11986 11987 if (ddi_copyin(&data->Size, &driverdata.Size, sizeof (driverdata.Size), 11988 mode) == 0) { 11989 if (driverdata.Size >= sizeof (mpt->m_events)) { 11990 if (ddi_copyout(mpt->m_events, data->Events, 11991 sizeof (mpt->m_events), mode) != 0) { 11992 status = EFAULT; 11993 } else { 11994 if (driverdata.Size > sizeof (mpt->m_events)) { 11995 driverdata.Size = 11996 sizeof (mpt->m_events); 11997 if (ddi_copyout(&driverdata.Size, 11998 &data->Size, 11999 sizeof (driverdata.Size), 12000 mode) != 0) { 12001 status = EFAULT; 12002 } else { 12003 *rval = MPTIOCTL_STATUS_GOOD; 12004 status = 0; 12005 } 12006 } else { 12007 *rval = MPTIOCTL_STATUS_GOOD; 12008 status = 0; 12009 } 12010 } 12011 } else { 12012 *rval = MPTIOCTL_STATUS_LEN_TOO_SHORT; 12013 status = 0; 12014 } 12015 } else { 12016 status = EFAULT; 12017 } 12018 12019 mutex_exit(&mpt->m_mutex); 12020 return (status); 12021 } 12022 12023 static void 12024 mptsas_lookup_pci_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data) 12025 { 12026 int *reg_data; 12027 uint_t reglen; 12028 12029 /* 12030 * Lookup the 'reg' property and extract the other data 12031 */ 12032 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip, 12033 DDI_PROP_DONTPASS, "reg", ®_data, ®len) == 12034 DDI_PROP_SUCCESS) { 12035 /* 12036 * Extract the PCI data from the 'reg' property first DWORD. 12037 * The entry looks like the following: 12038 * First DWORD: 12039 * Bits 0 - 7 8-bit Register number 12040 * Bits 8 - 10 3-bit Function number 12041 * Bits 11 - 15 5-bit Device number 12042 * Bits 16 - 23 8-bit Bus number 12043 * Bits 24 - 25 2-bit Address Space type identifier 12044 * 12045 */ 12046 adapter_data->PciInformation.u.bits.BusNumber = 12047 (reg_data[0] & 0x00FF0000) >> 16; 12048 adapter_data->PciInformation.u.bits.DeviceNumber = 12049 (reg_data[0] & 0x0000F800) >> 11; 12050 adapter_data->PciInformation.u.bits.FunctionNumber = 12051 (reg_data[0] & 0x00000700) >> 8; 12052 ddi_prop_free((void *)reg_data); 12053 } else { 12054 /* 12055 * If we can't determine the PCI data then we fill in FF's for 12056 * the data to indicate this. 12057 */ 12058 adapter_data->PCIDeviceHwId = 0xFFFFFFFF; 12059 adapter_data->MpiPortNumber = 0xFFFFFFFF; 12060 adapter_data->PciInformation.u.AsDWORD = 0xFFFFFFFF; 12061 } 12062 12063 /* 12064 * Saved in the mpt->m_fwversion 12065 */ 12066 adapter_data->MpiFirmwareVersion = mpt->m_fwversion; 12067 } 12068 12069 static void 12070 mptsas_read_adapter_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data) 12071 { 12072 char *driver_verstr = MPTSAS_MOD_STRING; 12073 12074 mptsas_lookup_pci_data(mpt, adapter_data); 12075 adapter_data->AdapterType = mpt->m_MPI25 ? 12076 MPTIOCTL_ADAPTER_TYPE_SAS3 : 12077 MPTIOCTL_ADAPTER_TYPE_SAS2; 12078 adapter_data->PCIDeviceHwId = (uint32_t)mpt->m_devid; 12079 adapter_data->PCIDeviceHwRev = (uint32_t)mpt->m_revid; 12080 adapter_data->SubSystemId = (uint32_t)mpt->m_ssid; 12081 adapter_data->SubsystemVendorId = (uint32_t)mpt->m_svid; 12082 (void) strcpy((char *)&adapter_data->DriverVersion[0], driver_verstr); 12083 adapter_data->BiosVersion = 0; 12084 (void) mptsas_get_bios_page3(mpt, &adapter_data->BiosVersion); 12085 } 12086 12087 static void 12088 mptsas_read_pci_info(mptsas_t *mpt, mptsas_pci_info_t *pci_info) 12089 { 12090 int *reg_data, i; 12091 uint_t reglen; 12092 12093 /* 12094 * Lookup the 'reg' property and extract the other data 12095 */ 12096 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip, 12097 DDI_PROP_DONTPASS, "reg", ®_data, ®len) == 12098 DDI_PROP_SUCCESS) { 12099 /* 12100 * Extract the PCI data from the 'reg' property first DWORD. 12101 * The entry looks like the following: 12102 * First DWORD: 12103 * Bits 8 - 10 3-bit Function number 12104 * Bits 11 - 15 5-bit Device number 12105 * Bits 16 - 23 8-bit Bus number 12106 */ 12107 pci_info->BusNumber = (reg_data[0] & 0x00FF0000) >> 16; 12108 pci_info->DeviceNumber = (reg_data[0] & 0x0000F800) >> 11; 12109 pci_info->FunctionNumber = (reg_data[0] & 0x00000700) >> 8; 12110 ddi_prop_free((void *)reg_data); 12111 } else { 12112 /* 12113 * If we can't determine the PCI info then we fill in FF's for 12114 * the data to indicate this. 12115 */ 12116 pci_info->BusNumber = 0xFFFFFFFF; 12117 pci_info->DeviceNumber = 0xFF; 12118 pci_info->FunctionNumber = 0xFF; 12119 } 12120 12121 /* 12122 * Now get the interrupt vector and the pci header. The vector can 12123 * only be 0 right now. The header is the first 256 bytes of config 12124 * space. 12125 */ 12126 pci_info->InterruptVector = 0; 12127 for (i = 0; i < sizeof (pci_info->PciHeader); i++) { 12128 pci_info->PciHeader[i] = pci_config_get8(mpt->m_config_handle, 12129 i); 12130 } 12131 } 12132 12133 static int 12134 mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, int mode) 12135 { 12136 int status = 0; 12137 mptsas_reg_access_t driverdata; 12138 12139 mutex_enter(&mpt->m_mutex); 12140 if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) { 12141 switch (driverdata.Command) { 12142 /* 12143 * IO access is not supported. 12144 */ 12145 case REG_IO_READ: 12146 case REG_IO_WRITE: 12147 mptsas_log(mpt, CE_WARN, "IO access is not " 12148 "supported. Use memory access."); 12149 status = EINVAL; 12150 break; 12151 12152 case REG_MEM_READ: 12153 driverdata.RegData = ddi_get32(mpt->m_datap, 12154 (uint32_t *)(void *)mpt->m_reg + 12155 driverdata.RegOffset); 12156 if (ddi_copyout(&driverdata.RegData, 12157 &data->RegData, 12158 sizeof (driverdata.RegData), mode) != 0) { 12159 mptsas_log(mpt, CE_WARN, "Register " 12160 "Read Failed"); 12161 status = EFAULT; 12162 } 12163 break; 12164 12165 case REG_MEM_WRITE: 12166 ddi_put32(mpt->m_datap, 12167 (uint32_t *)(void *)mpt->m_reg + 12168 driverdata.RegOffset, 12169 driverdata.RegData); 12170 break; 12171 12172 default: 12173 status = EINVAL; 12174 break; 12175 } 12176 } else { 12177 status = EFAULT; 12178 } 12179 12180 mutex_exit(&mpt->m_mutex); 12181 return (status); 12182 } 12183 12184 static int 12185 led_control(mptsas_t *mpt, intptr_t data, int mode) 12186 { 12187 int ret = 0; 12188 mptsas_led_control_t lc; 12189 mptsas_target_t *ptgt; 12190 12191 if (ddi_copyin((void *)data, &lc, sizeof (lc), mode) != 0) { 12192 return (EFAULT); 12193 } 12194 12195 if ((lc.Command != MPTSAS_LEDCTL_FLAG_SET && 12196 lc.Command != MPTSAS_LEDCTL_FLAG_GET) || 12197 lc.Led < MPTSAS_LEDCTL_LED_MIN || 12198 lc.Led > MPTSAS_LEDCTL_LED_MAX || 12199 (lc.Command == MPTSAS_LEDCTL_FLAG_SET && lc.LedStatus != 0 && 12200 lc.LedStatus != 1)) { 12201 return (EINVAL); 12202 } 12203 12204 if ((lc.Command == MPTSAS_LEDCTL_FLAG_SET && (mode & FWRITE) == 0) || 12205 (lc.Command == MPTSAS_LEDCTL_FLAG_GET && (mode & FREAD) == 0)) 12206 return (EACCES); 12207 12208 /* Locate the target we're interrogating... */ 12209 mutex_enter(&mpt->m_mutex); 12210 ptgt = refhash_linear_search(mpt->m_targets, 12211 mptsas_target_eval_slot, &lc); 12212 if (ptgt == NULL) { 12213 /* We could not find a target for that enclosure/slot. */ 12214 mutex_exit(&mpt->m_mutex); 12215 return (ENOENT); 12216 } 12217 12218 if (lc.Command == MPTSAS_LEDCTL_FLAG_SET) { 12219 /* Update our internal LED state. */ 12220 ptgt->m_led_status &= ~(1 << (lc.Led - 1)); 12221 ptgt->m_led_status |= lc.LedStatus << (lc.Led - 1); 12222 12223 /* Flush it to the controller. */ 12224 ret = mptsas_flush_led_status(mpt, ptgt); 12225 mutex_exit(&mpt->m_mutex); 12226 return (ret); 12227 } 12228 12229 /* Return our internal LED state. */ 12230 lc.LedStatus = (ptgt->m_led_status >> (lc.Led - 1)) & 1; 12231 mutex_exit(&mpt->m_mutex); 12232 12233 if (ddi_copyout(&lc, (void *)data, sizeof (lc), mode) != 0) { 12234 return (EFAULT); 12235 } 12236 12237 return (0); 12238 } 12239 12240 static int 12241 get_disk_info(mptsas_t *mpt, intptr_t data, int mode) 12242 { 12243 uint16_t i = 0; 12244 uint16_t count = 0; 12245 int ret = 0; 12246 mptsas_target_t *ptgt; 12247 mptsas_disk_info_t *di; 12248 STRUCT_DECL(mptsas_get_disk_info, gdi); 12249 12250 if ((mode & FREAD) == 0) 12251 return (EACCES); 12252 12253 STRUCT_INIT(gdi, get_udatamodel()); 12254 12255 if (ddi_copyin((void *)data, STRUCT_BUF(gdi), STRUCT_SIZE(gdi), 12256 mode) != 0) { 12257 return (EFAULT); 12258 } 12259 12260 /* Find out how many targets there are. */ 12261 mutex_enter(&mpt->m_mutex); 12262 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 12263 ptgt = refhash_next(mpt->m_targets, ptgt)) { 12264 count++; 12265 } 12266 mutex_exit(&mpt->m_mutex); 12267 12268 /* 12269 * If we haven't been asked to copy out information on each target, 12270 * then just return the count. 12271 */ 12272 STRUCT_FSET(gdi, DiskCount, count); 12273 if (STRUCT_FGETP(gdi, PtrDiskInfoArray) == NULL) 12274 goto copy_out; 12275 12276 /* 12277 * If we haven't been given a large enough buffer to copy out into, 12278 * let the caller know. 12279 */ 12280 if (STRUCT_FGET(gdi, DiskInfoArraySize) < 12281 count * sizeof (mptsas_disk_info_t)) { 12282 ret = ENOSPC; 12283 goto copy_out; 12284 } 12285 12286 di = kmem_zalloc(count * sizeof (mptsas_disk_info_t), KM_SLEEP); 12287 12288 mutex_enter(&mpt->m_mutex); 12289 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 12290 ptgt = refhash_next(mpt->m_targets, ptgt)) { 12291 if (i >= count) { 12292 /* 12293 * The number of targets changed while we weren't 12294 * looking, so give up. 12295 */ 12296 refhash_rele(mpt->m_targets, ptgt); 12297 mutex_exit(&mpt->m_mutex); 12298 kmem_free(di, count * sizeof (mptsas_disk_info_t)); 12299 return (EAGAIN); 12300 } 12301 di[i].Instance = mpt->m_instance; 12302 di[i].Enclosure = ptgt->m_enclosure; 12303 di[i].Slot = ptgt->m_slot_num; 12304 di[i].SasAddress = ptgt->m_addr.mta_wwn; 12305 i++; 12306 } 12307 mutex_exit(&mpt->m_mutex); 12308 STRUCT_FSET(gdi, DiskCount, i); 12309 12310 /* Copy out the disk information to the caller. */ 12311 if (ddi_copyout((void *)di, STRUCT_FGETP(gdi, PtrDiskInfoArray), 12312 i * sizeof (mptsas_disk_info_t), mode) != 0) { 12313 ret = EFAULT; 12314 } 12315 12316 kmem_free(di, count * sizeof (mptsas_disk_info_t)); 12317 12318 copy_out: 12319 if (ddi_copyout(STRUCT_BUF(gdi), (void *)data, STRUCT_SIZE(gdi), 12320 mode) != 0) { 12321 ret = EFAULT; 12322 } 12323 12324 return (ret); 12325 } 12326 12327 static int 12328 mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp, 12329 int *rval) 12330 { 12331 int status = 0; 12332 mptsas_t *mpt; 12333 mptsas_update_flash_t flashdata; 12334 mptsas_pass_thru_t passthru_data; 12335 mptsas_adapter_data_t adapter_data; 12336 mptsas_pci_info_t pci_info; 12337 int copylen; 12338 12339 int iport_flag = 0; 12340 dev_info_t *dip = NULL; 12341 mptsas_phymask_t phymask = 0; 12342 struct devctl_iocdata *dcp = NULL; 12343 char *addr = NULL; 12344 mptsas_target_t *ptgt = NULL; 12345 12346 *rval = MPTIOCTL_STATUS_GOOD; 12347 if (secpolicy_sys_config(credp, B_FALSE) != 0) { 12348 return (EPERM); 12349 } 12350 12351 mpt = ddi_get_soft_state(mptsas_state, MINOR2INST(getminor(dev))); 12352 if (mpt == NULL) { 12353 /* 12354 * Called from iport node, get the states 12355 */ 12356 iport_flag = 1; 12357 dip = mptsas_get_dip_from_dev(dev, &phymask); 12358 if (dip == NULL) { 12359 return (ENXIO); 12360 } 12361 mpt = DIP2MPT(dip); 12362 } 12363 /* Make sure power level is D0 before accessing registers */ 12364 mutex_enter(&mpt->m_mutex); 12365 if (mpt->m_options & MPTSAS_OPT_PM) { 12366 (void) pm_busy_component(mpt->m_dip, 0); 12367 if (mpt->m_power_level != PM_LEVEL_D0) { 12368 mutex_exit(&mpt->m_mutex); 12369 if (pm_raise_power(mpt->m_dip, 0, PM_LEVEL_D0) != 12370 DDI_SUCCESS) { 12371 mptsas_log(mpt, CE_WARN, 12372 "mptsas%d: mptsas_ioctl: Raise power " 12373 "request failed.", mpt->m_instance); 12374 (void) pm_idle_component(mpt->m_dip, 0); 12375 return (ENXIO); 12376 } 12377 } else { 12378 mutex_exit(&mpt->m_mutex); 12379 } 12380 } else { 12381 mutex_exit(&mpt->m_mutex); 12382 } 12383 12384 if (iport_flag) { 12385 status = scsi_hba_ioctl(dev, cmd, data, mode, credp, rval); 12386 if (status != 0) { 12387 goto out; 12388 } 12389 /* 12390 * The following code control the OK2RM LED, it doesn't affect 12391 * the ioctl return status. 12392 */ 12393 if ((cmd == DEVCTL_DEVICE_ONLINE) || 12394 (cmd == DEVCTL_DEVICE_OFFLINE)) { 12395 if (ndi_dc_allochdl((void *)data, &dcp) != 12396 NDI_SUCCESS) { 12397 goto out; 12398 } 12399 addr = ndi_dc_getaddr(dcp); 12400 ptgt = mptsas_addr_to_ptgt(mpt, addr, phymask); 12401 if (ptgt == NULL) { 12402 NDBG14(("mptsas_ioctl led control: tgt %s not " 12403 "found", addr)); 12404 ndi_dc_freehdl(dcp); 12405 goto out; 12406 } 12407 mutex_enter(&mpt->m_mutex); 12408 if (cmd == DEVCTL_DEVICE_ONLINE) { 12409 ptgt->m_tgt_unconfigured = 0; 12410 } else if (cmd == DEVCTL_DEVICE_OFFLINE) { 12411 ptgt->m_tgt_unconfigured = 1; 12412 } 12413 if (cmd == DEVCTL_DEVICE_OFFLINE) { 12414 ptgt->m_led_status |= 12415 (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)); 12416 } else { 12417 ptgt->m_led_status &= 12418 ~(1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)); 12419 } 12420 (void) mptsas_flush_led_status(mpt, ptgt); 12421 mutex_exit(&mpt->m_mutex); 12422 ndi_dc_freehdl(dcp); 12423 } 12424 goto out; 12425 } 12426 switch (cmd) { 12427 case MPTIOCTL_GET_DISK_INFO: 12428 status = get_disk_info(mpt, data, mode); 12429 break; 12430 case MPTIOCTL_LED_CONTROL: 12431 status = led_control(mpt, data, mode); 12432 break; 12433 case MPTIOCTL_UPDATE_FLASH: 12434 if (ddi_copyin((void *)data, &flashdata, 12435 sizeof (struct mptsas_update_flash), mode)) { 12436 status = EFAULT; 12437 break; 12438 } 12439 12440 mutex_enter(&mpt->m_mutex); 12441 if (mptsas_update_flash(mpt, 12442 (caddr_t)(long)flashdata.PtrBuffer, 12443 flashdata.ImageSize, flashdata.ImageType, mode)) { 12444 status = EFAULT; 12445 } 12446 12447 /* 12448 * Reset the chip to start using the new 12449 * firmware. Reset if failed also. 12450 */ 12451 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 12452 if (mptsas_restart_ioc(mpt) == DDI_FAILURE) { 12453 status = EFAULT; 12454 } 12455 mutex_exit(&mpt->m_mutex); 12456 break; 12457 case MPTIOCTL_PASS_THRU: 12458 /* 12459 * The user has requested to pass through a command to 12460 * be executed by the MPT firmware. Call our routine 12461 * which does this. Only allow one passthru IOCTL at 12462 * one time. Other threads will block on 12463 * m_passthru_mutex, which is of adaptive variant. 12464 */ 12465 if (ddi_copyin((void *)data, &passthru_data, 12466 sizeof (mptsas_pass_thru_t), mode)) { 12467 status = EFAULT; 12468 break; 12469 } 12470 mutex_enter(&mpt->m_passthru_mutex); 12471 mutex_enter(&mpt->m_mutex); 12472 status = mptsas_pass_thru(mpt, &passthru_data, mode); 12473 mutex_exit(&mpt->m_mutex); 12474 mutex_exit(&mpt->m_passthru_mutex); 12475 12476 break; 12477 case MPTIOCTL_GET_ADAPTER_DATA: 12478 /* 12479 * The user has requested to read adapter data. Call 12480 * our routine which does this. 12481 */ 12482 bzero(&adapter_data, sizeof (mptsas_adapter_data_t)); 12483 if (ddi_copyin((void *)data, (void *)&adapter_data, 12484 sizeof (mptsas_adapter_data_t), mode)) { 12485 status = EFAULT; 12486 break; 12487 } 12488 if (adapter_data.StructureLength >= 12489 sizeof (mptsas_adapter_data_t)) { 12490 adapter_data.StructureLength = (uint32_t) 12491 sizeof (mptsas_adapter_data_t); 12492 copylen = sizeof (mptsas_adapter_data_t); 12493 mutex_enter(&mpt->m_mutex); 12494 mptsas_read_adapter_data(mpt, &adapter_data); 12495 mutex_exit(&mpt->m_mutex); 12496 } else { 12497 adapter_data.StructureLength = (uint32_t) 12498 sizeof (mptsas_adapter_data_t); 12499 copylen = sizeof (adapter_data.StructureLength); 12500 *rval = MPTIOCTL_STATUS_LEN_TOO_SHORT; 12501 } 12502 if (ddi_copyout((void *)(&adapter_data), (void *)data, 12503 copylen, mode) != 0) { 12504 status = EFAULT; 12505 } 12506 break; 12507 case MPTIOCTL_GET_PCI_INFO: 12508 /* 12509 * The user has requested to read pci info. Call 12510 * our routine which does this. 12511 */ 12512 bzero(&pci_info, sizeof (mptsas_pci_info_t)); 12513 mutex_enter(&mpt->m_mutex); 12514 mptsas_read_pci_info(mpt, &pci_info); 12515 mutex_exit(&mpt->m_mutex); 12516 if (ddi_copyout((void *)(&pci_info), (void *)data, 12517 sizeof (mptsas_pci_info_t), mode) != 0) { 12518 status = EFAULT; 12519 } 12520 break; 12521 case MPTIOCTL_RESET_ADAPTER: 12522 mutex_enter(&mpt->m_mutex); 12523 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 12524 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 12525 mptsas_log(mpt, CE_WARN, "reset adapter IOCTL " 12526 "failed"); 12527 status = EFAULT; 12528 } 12529 mutex_exit(&mpt->m_mutex); 12530 break; 12531 case MPTIOCTL_DIAG_ACTION: 12532 /* 12533 * The user has done a diag buffer action. Call our 12534 * routine which does this. Only allow one diag action 12535 * at one time. 12536 */ 12537 mutex_enter(&mpt->m_mutex); 12538 if (mpt->m_diag_action_in_progress) { 12539 mutex_exit(&mpt->m_mutex); 12540 return (EBUSY); 12541 } 12542 mpt->m_diag_action_in_progress = 1; 12543 status = mptsas_diag_action(mpt, 12544 (mptsas_diag_action_t *)data, mode); 12545 mpt->m_diag_action_in_progress = 0; 12546 mutex_exit(&mpt->m_mutex); 12547 break; 12548 case MPTIOCTL_EVENT_QUERY: 12549 /* 12550 * The user has done an event query. Call our routine 12551 * which does this. 12552 */ 12553 status = mptsas_event_query(mpt, 12554 (mptsas_event_query_t *)data, mode, rval); 12555 break; 12556 case MPTIOCTL_EVENT_ENABLE: 12557 /* 12558 * The user has done an event enable. Call our routine 12559 * which does this. 12560 */ 12561 status = mptsas_event_enable(mpt, 12562 (mptsas_event_enable_t *)data, mode, rval); 12563 break; 12564 case MPTIOCTL_EVENT_REPORT: 12565 /* 12566 * The user has done an event report. Call our routine 12567 * which does this. 12568 */ 12569 status = mptsas_event_report(mpt, 12570 (mptsas_event_report_t *)data, mode, rval); 12571 break; 12572 case MPTIOCTL_REG_ACCESS: 12573 /* 12574 * The user has requested register access. Call our 12575 * routine which does this. 12576 */ 12577 status = mptsas_reg_access(mpt, 12578 (mptsas_reg_access_t *)data, mode); 12579 break; 12580 default: 12581 status = scsi_hba_ioctl(dev, cmd, data, mode, credp, 12582 rval); 12583 break; 12584 } 12585 12586 out: 12587 return (status); 12588 } 12589 12590 int 12591 mptsas_restart_ioc(mptsas_t *mpt) 12592 { 12593 int rval = DDI_SUCCESS; 12594 mptsas_target_t *ptgt = NULL; 12595 12596 ASSERT(mutex_owned(&mpt->m_mutex)); 12597 12598 /* 12599 * Set a flag telling I/O path that we're processing a reset. This is 12600 * needed because after the reset is complete, the hash table still 12601 * needs to be rebuilt. If I/Os are started before the hash table is 12602 * rebuilt, I/O errors will occur. This flag allows I/Os to be marked 12603 * so that they can be retried. 12604 */ 12605 mpt->m_in_reset = TRUE; 12606 12607 /* 12608 * Set all throttles to HOLD 12609 */ 12610 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 12611 ptgt = refhash_next(mpt->m_targets, ptgt)) { 12612 mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE); 12613 } 12614 12615 /* 12616 * Disable interrupts 12617 */ 12618 MPTSAS_DISABLE_INTR(mpt); 12619 12620 /* 12621 * Abort all commands: outstanding commands, commands in waitq and 12622 * tx_waitq. 12623 */ 12624 mptsas_flush_hba(mpt); 12625 12626 /* 12627 * Reinitialize the chip. 12628 */ 12629 if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) { 12630 rval = DDI_FAILURE; 12631 } 12632 12633 /* 12634 * Enable interrupts again 12635 */ 12636 MPTSAS_ENABLE_INTR(mpt); 12637 12638 /* 12639 * If mptsas_init_chip was successful, update the driver data. 12640 */ 12641 if (rval == DDI_SUCCESS) { 12642 mptsas_update_driver_data(mpt); 12643 } 12644 12645 /* 12646 * Reset the throttles 12647 */ 12648 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 12649 ptgt = refhash_next(mpt->m_targets, ptgt)) { 12650 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 12651 } 12652 12653 mptsas_doneq_empty(mpt); 12654 mptsas_restart_hba(mpt); 12655 12656 if (rval != DDI_SUCCESS) { 12657 mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE); 12658 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST); 12659 } 12660 12661 /* 12662 * Clear the reset flag so that I/Os can continue. 12663 */ 12664 mpt->m_in_reset = FALSE; 12665 12666 return (rval); 12667 } 12668 12669 static int 12670 mptsas_init_chip(mptsas_t *mpt, int first_time) 12671 { 12672 ddi_dma_cookie_t cookie; 12673 uint32_t i; 12674 int rval; 12675 12676 /* 12677 * Check to see if the firmware image is valid 12678 */ 12679 if (ddi_get32(mpt->m_datap, &mpt->m_reg->HostDiagnostic) & 12680 MPI2_DIAG_FLASH_BAD_SIG) { 12681 mptsas_log(mpt, CE_WARN, "mptsas bad flash signature!"); 12682 goto fail; 12683 } 12684 12685 /* 12686 * Reset the chip 12687 */ 12688 rval = mptsas_ioc_reset(mpt, first_time); 12689 if (rval == MPTSAS_RESET_FAIL) { 12690 mptsas_log(mpt, CE_WARN, "hard reset failed!"); 12691 goto fail; 12692 } 12693 12694 if ((rval == MPTSAS_SUCCESS_MUR) && (!first_time)) { 12695 goto mur; 12696 } 12697 /* 12698 * Setup configuration space 12699 */ 12700 if (mptsas_config_space_init(mpt) == FALSE) { 12701 mptsas_log(mpt, CE_WARN, "mptsas_config_space_init " 12702 "failed!"); 12703 goto fail; 12704 } 12705 12706 /* 12707 * IOC facts can change after a diag reset so all buffers that are 12708 * based on these numbers must be de-allocated and re-allocated. Get 12709 * new IOC facts each time chip is initialized. 12710 */ 12711 if (mptsas_ioc_get_facts(mpt) == DDI_FAILURE) { 12712 mptsas_log(mpt, CE_WARN, "mptsas_ioc_get_facts failed"); 12713 goto fail; 12714 } 12715 12716 mpt->m_targets = refhash_create(MPTSAS_TARGET_BUCKET_COUNT, 12717 mptsas_target_addr_hash, mptsas_target_addr_cmp, 12718 mptsas_target_free, sizeof (mptsas_target_t), 12719 offsetof(mptsas_target_t, m_link), 12720 offsetof(mptsas_target_t, m_addr), KM_SLEEP); 12721 12722 if (mptsas_alloc_active_slots(mpt, KM_SLEEP)) { 12723 goto fail; 12724 } 12725 /* 12726 * Allocate request message frames, reply free queue, reply descriptor 12727 * post queue, and reply message frames using latest IOC facts. 12728 */ 12729 if (mptsas_alloc_request_frames(mpt) == DDI_FAILURE) { 12730 mptsas_log(mpt, CE_WARN, "mptsas_alloc_request_frames failed"); 12731 goto fail; 12732 } 12733 if (mptsas_alloc_free_queue(mpt) == DDI_FAILURE) { 12734 mptsas_log(mpt, CE_WARN, "mptsas_alloc_free_queue failed!"); 12735 goto fail; 12736 } 12737 if (mptsas_alloc_post_queue(mpt) == DDI_FAILURE) { 12738 mptsas_log(mpt, CE_WARN, "mptsas_alloc_post_queue failed!"); 12739 goto fail; 12740 } 12741 if (mptsas_alloc_reply_frames(mpt) == DDI_FAILURE) { 12742 mptsas_log(mpt, CE_WARN, "mptsas_alloc_reply_frames failed!"); 12743 goto fail; 12744 } 12745 12746 mur: 12747 /* 12748 * Re-Initialize ioc to operational state 12749 */ 12750 if (mptsas_ioc_init(mpt) == DDI_FAILURE) { 12751 mptsas_log(mpt, CE_WARN, "mptsas_ioc_init failed"); 12752 goto fail; 12753 } 12754 12755 mptsas_alloc_reply_args(mpt); 12756 12757 /* 12758 * Initialize reply post index. Reply free index is initialized after 12759 * the next loop. 12760 */ 12761 mpt->m_post_index = 0; 12762 12763 /* 12764 * Initialize the Reply Free Queue with the physical addresses of our 12765 * reply frames. 12766 */ 12767 cookie.dmac_address = mpt->m_reply_frame_dma_addr; 12768 for (i = 0; i < mpt->m_max_replies; i++) { 12769 ddi_put32(mpt->m_acc_free_queue_hdl, 12770 &((uint32_t *)(void *)mpt->m_free_queue)[i], 12771 cookie.dmac_address); 12772 cookie.dmac_address += mpt->m_reply_frame_size; 12773 } 12774 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 12775 DDI_DMA_SYNC_FORDEV); 12776 12777 /* 12778 * Initialize the reply free index to one past the last frame on the 12779 * queue. This will signify that the queue is empty to start with. 12780 */ 12781 mpt->m_free_index = i; 12782 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, i); 12783 12784 /* 12785 * Initialize the reply post queue to 0xFFFFFFFF,0xFFFFFFFF's. 12786 */ 12787 for (i = 0; i < mpt->m_post_queue_depth; i++) { 12788 ddi_put64(mpt->m_acc_post_queue_hdl, 12789 &((uint64_t *)(void *)mpt->m_post_queue)[i], 12790 0xFFFFFFFFFFFFFFFF); 12791 } 12792 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 12793 DDI_DMA_SYNC_FORDEV); 12794 12795 /* 12796 * Enable ports 12797 */ 12798 if (mptsas_ioc_enable_port(mpt) == DDI_FAILURE) { 12799 mptsas_log(mpt, CE_WARN, "mptsas_ioc_enable_port failed"); 12800 goto fail; 12801 } 12802 12803 /* 12804 * enable events 12805 */ 12806 if (mptsas_ioc_enable_event_notification(mpt)) { 12807 goto fail; 12808 } 12809 12810 /* 12811 * We need checks in attach and these. 12812 * chip_init is called in mult. places 12813 */ 12814 12815 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 12816 DDI_SUCCESS) || 12817 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) != 12818 DDI_SUCCESS) || 12819 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) != 12820 DDI_SUCCESS) || 12821 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) != 12822 DDI_SUCCESS) || 12823 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) != 12824 DDI_SUCCESS)) { 12825 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 12826 goto fail; 12827 } 12828 12829 /* Check all acc handles */ 12830 if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) || 12831 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 12832 DDI_SUCCESS) || 12833 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) != 12834 DDI_SUCCESS) || 12835 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) != 12836 DDI_SUCCESS) || 12837 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) != 12838 DDI_SUCCESS) || 12839 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) != 12840 DDI_SUCCESS) || 12841 (mptsas_check_acc_handle(mpt->m_config_handle) != 12842 DDI_SUCCESS)) { 12843 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 12844 goto fail; 12845 } 12846 12847 return (DDI_SUCCESS); 12848 12849 fail: 12850 return (DDI_FAILURE); 12851 } 12852 12853 static int 12854 mptsas_get_pci_cap(mptsas_t *mpt) 12855 { 12856 ushort_t caps_ptr, cap, cap_count; 12857 12858 if (mpt->m_config_handle == NULL) 12859 return (FALSE); 12860 /* 12861 * Check if capabilities list is supported and if so, 12862 * get initial capabilities pointer and clear bits 0,1. 12863 */ 12864 if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) 12865 & PCI_STAT_CAP) { 12866 caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle, 12867 PCI_CONF_CAP_PTR), 4); 12868 } else { 12869 caps_ptr = PCI_CAP_NEXT_PTR_NULL; 12870 } 12871 12872 /* 12873 * Walk capabilities if supported. 12874 */ 12875 for (cap_count = 0; caps_ptr != PCI_CAP_NEXT_PTR_NULL; ) { 12876 12877 /* 12878 * Check that we haven't exceeded the maximum number of 12879 * capabilities and that the pointer is in a valid range. 12880 */ 12881 if (++cap_count > 48) { 12882 mptsas_log(mpt, CE_WARN, 12883 "too many device capabilities.\n"); 12884 break; 12885 } 12886 if (caps_ptr < 64) { 12887 mptsas_log(mpt, CE_WARN, 12888 "capabilities pointer 0x%x out of range.\n", 12889 caps_ptr); 12890 break; 12891 } 12892 12893 /* 12894 * Get next capability and check that it is valid. 12895 * For now, we only support power management. 12896 */ 12897 cap = pci_config_get8(mpt->m_config_handle, caps_ptr); 12898 switch (cap) { 12899 case PCI_CAP_ID_PM: 12900 mptsas_log(mpt, CE_NOTE, 12901 "?mptsas%d supports power management.\n", 12902 mpt->m_instance); 12903 mpt->m_options |= MPTSAS_OPT_PM; 12904 12905 /* Save PMCSR offset */ 12906 mpt->m_pmcsr_offset = caps_ptr + PCI_PMCSR; 12907 break; 12908 /* 12909 * The following capabilities are valid. Any others 12910 * will cause a message to be logged. 12911 */ 12912 case PCI_CAP_ID_VPD: 12913 case PCI_CAP_ID_MSI: 12914 case PCI_CAP_ID_PCIX: 12915 case PCI_CAP_ID_PCI_E: 12916 case PCI_CAP_ID_MSI_X: 12917 break; 12918 default: 12919 mptsas_log(mpt, CE_NOTE, 12920 "?mptsas%d unrecognized capability " 12921 "0x%x.\n", mpt->m_instance, cap); 12922 break; 12923 } 12924 12925 /* 12926 * Get next capabilities pointer and clear bits 0,1. 12927 */ 12928 caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle, 12929 (caps_ptr + PCI_CAP_NEXT_PTR)), 4); 12930 } 12931 return (TRUE); 12932 } 12933 12934 static int 12935 mptsas_init_pm(mptsas_t *mpt) 12936 { 12937 char pmc_name[16]; 12938 char *pmc[] = { 12939 NULL, 12940 "0=Off (PCI D3 State)", 12941 "3=On (PCI D0 State)", 12942 NULL 12943 }; 12944 uint16_t pmcsr_stat; 12945 12946 if (mptsas_get_pci_cap(mpt) == FALSE) { 12947 return (DDI_FAILURE); 12948 } 12949 /* 12950 * If PCI's capability does not support PM, then don't need 12951 * to registe the pm-components 12952 */ 12953 if (!(mpt->m_options & MPTSAS_OPT_PM)) 12954 return (DDI_SUCCESS); 12955 /* 12956 * If power management is supported by this chip, create 12957 * pm-components property for the power management framework 12958 */ 12959 (void) sprintf(pmc_name, "NAME=mptsas%d", mpt->m_instance); 12960 pmc[0] = pmc_name; 12961 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, mpt->m_dip, 12962 "pm-components", pmc, 3) != DDI_PROP_SUCCESS) { 12963 mpt->m_options &= ~MPTSAS_OPT_PM; 12964 mptsas_log(mpt, CE_WARN, 12965 "mptsas%d: pm-component property creation failed.", 12966 mpt->m_instance); 12967 return (DDI_FAILURE); 12968 } 12969 12970 /* 12971 * Power on device. 12972 */ 12973 (void) pm_busy_component(mpt->m_dip, 0); 12974 pmcsr_stat = pci_config_get16(mpt->m_config_handle, 12975 mpt->m_pmcsr_offset); 12976 if ((pmcsr_stat & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_D0) { 12977 mptsas_log(mpt, CE_WARN, "mptsas%d: Power up the device", 12978 mpt->m_instance); 12979 pci_config_put16(mpt->m_config_handle, mpt->m_pmcsr_offset, 12980 PCI_PMCSR_D0); 12981 } 12982 if (pm_power_has_changed(mpt->m_dip, 0, PM_LEVEL_D0) != DDI_SUCCESS) { 12983 mptsas_log(mpt, CE_WARN, "pm_power_has_changed failed"); 12984 return (DDI_FAILURE); 12985 } 12986 mpt->m_power_level = PM_LEVEL_D0; 12987 /* 12988 * Set pm idle delay. 12989 */ 12990 mpt->m_pm_idle_delay = ddi_prop_get_int(DDI_DEV_T_ANY, 12991 mpt->m_dip, 0, "mptsas-pm-idle-delay", MPTSAS_PM_IDLE_TIMEOUT); 12992 12993 return (DDI_SUCCESS); 12994 } 12995 12996 static int 12997 mptsas_register_intrs(mptsas_t *mpt) 12998 { 12999 dev_info_t *dip; 13000 int intr_types; 13001 13002 dip = mpt->m_dip; 13003 13004 /* Get supported interrupt types */ 13005 if (ddi_intr_get_supported_types(dip, &intr_types) != DDI_SUCCESS) { 13006 mptsas_log(mpt, CE_WARN, "ddi_intr_get_supported_types " 13007 "failed\n"); 13008 return (FALSE); 13009 } 13010 13011 NDBG6(("ddi_intr_get_supported_types() returned: 0x%x", intr_types)); 13012 13013 /* 13014 * Try MSI, but fall back to FIXED 13015 */ 13016 if (mptsas_enable_msi && (intr_types & DDI_INTR_TYPE_MSI)) { 13017 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) { 13018 NDBG0(("Using MSI interrupt type")); 13019 mpt->m_intr_type = DDI_INTR_TYPE_MSI; 13020 return (TRUE); 13021 } 13022 } 13023 if (intr_types & DDI_INTR_TYPE_FIXED) { 13024 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS) { 13025 NDBG0(("Using FIXED interrupt type")); 13026 mpt->m_intr_type = DDI_INTR_TYPE_FIXED; 13027 return (TRUE); 13028 } else { 13029 NDBG0(("FIXED interrupt registration failed")); 13030 return (FALSE); 13031 } 13032 } 13033 13034 return (FALSE); 13035 } 13036 13037 static void 13038 mptsas_unregister_intrs(mptsas_t *mpt) 13039 { 13040 mptsas_rem_intrs(mpt); 13041 } 13042 13043 /* 13044 * mptsas_add_intrs: 13045 * 13046 * Register FIXED or MSI interrupts. 13047 */ 13048 static int 13049 mptsas_add_intrs(mptsas_t *mpt, int intr_type) 13050 { 13051 dev_info_t *dip = mpt->m_dip; 13052 int avail, actual, count = 0; 13053 int i, flag, ret; 13054 13055 NDBG6(("mptsas_add_intrs:interrupt type 0x%x", intr_type)); 13056 13057 /* Get number of interrupts */ 13058 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 13059 if ((ret != DDI_SUCCESS) || (count <= 0)) { 13060 mptsas_log(mpt, CE_WARN, "ddi_intr_get_nintrs() failed, " 13061 "ret %d count %d\n", ret, count); 13062 13063 return (DDI_FAILURE); 13064 } 13065 13066 /* Get number of available interrupts */ 13067 ret = ddi_intr_get_navail(dip, intr_type, &avail); 13068 if ((ret != DDI_SUCCESS) || (avail == 0)) { 13069 mptsas_log(mpt, CE_WARN, "ddi_intr_get_navail() failed, " 13070 "ret %d avail %d\n", ret, avail); 13071 13072 return (DDI_FAILURE); 13073 } 13074 13075 if (avail < count) { 13076 mptsas_log(mpt, CE_NOTE, "ddi_intr_get_nvail returned %d, " 13077 "navail() returned %d", count, avail); 13078 } 13079 13080 /* Mpt only have one interrupt routine */ 13081 if ((intr_type == DDI_INTR_TYPE_MSI) && (count > 1)) { 13082 count = 1; 13083 } 13084 13085 /* Allocate an array of interrupt handles */ 13086 mpt->m_intr_size = count * sizeof (ddi_intr_handle_t); 13087 mpt->m_htable = kmem_alloc(mpt->m_intr_size, KM_SLEEP); 13088 13089 flag = DDI_INTR_ALLOC_NORMAL; 13090 13091 /* call ddi_intr_alloc() */ 13092 ret = ddi_intr_alloc(dip, mpt->m_htable, intr_type, 0, 13093 count, &actual, flag); 13094 13095 if ((ret != DDI_SUCCESS) || (actual == 0)) { 13096 mptsas_log(mpt, CE_WARN, "ddi_intr_alloc() failed, ret %d\n", 13097 ret); 13098 kmem_free(mpt->m_htable, mpt->m_intr_size); 13099 return (DDI_FAILURE); 13100 } 13101 13102 /* use interrupt count returned or abort? */ 13103 if (actual < count) { 13104 mptsas_log(mpt, CE_NOTE, "Requested: %d, Received: %d\n", 13105 count, actual); 13106 } 13107 13108 mpt->m_intr_cnt = actual; 13109 13110 /* 13111 * Get priority for first msi, assume remaining are all the same 13112 */ 13113 if ((ret = ddi_intr_get_pri(mpt->m_htable[0], 13114 &mpt->m_intr_pri)) != DDI_SUCCESS) { 13115 mptsas_log(mpt, CE_WARN, "ddi_intr_get_pri() failed %d\n", ret); 13116 13117 /* Free already allocated intr */ 13118 for (i = 0; i < actual; i++) { 13119 (void) ddi_intr_free(mpt->m_htable[i]); 13120 } 13121 13122 kmem_free(mpt->m_htable, mpt->m_intr_size); 13123 return (DDI_FAILURE); 13124 } 13125 13126 /* Test for high level mutex */ 13127 if (mpt->m_intr_pri >= ddi_intr_get_hilevel_pri()) { 13128 mptsas_log(mpt, CE_WARN, "mptsas_add_intrs: " 13129 "Hi level interrupt not supported\n"); 13130 13131 /* Free already allocated intr */ 13132 for (i = 0; i < actual; i++) { 13133 (void) ddi_intr_free(mpt->m_htable[i]); 13134 } 13135 13136 kmem_free(mpt->m_htable, mpt->m_intr_size); 13137 return (DDI_FAILURE); 13138 } 13139 13140 /* Call ddi_intr_add_handler() */ 13141 for (i = 0; i < actual; i++) { 13142 if ((ret = ddi_intr_add_handler(mpt->m_htable[i], mptsas_intr, 13143 (caddr_t)mpt, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 13144 mptsas_log(mpt, CE_WARN, "ddi_intr_add_handler() " 13145 "failed %d\n", ret); 13146 13147 /* Free already allocated intr */ 13148 for (i = 0; i < actual; i++) { 13149 (void) ddi_intr_free(mpt->m_htable[i]); 13150 } 13151 13152 kmem_free(mpt->m_htable, mpt->m_intr_size); 13153 return (DDI_FAILURE); 13154 } 13155 } 13156 13157 if ((ret = ddi_intr_get_cap(mpt->m_htable[0], &mpt->m_intr_cap)) 13158 != DDI_SUCCESS) { 13159 mptsas_log(mpt, CE_WARN, "ddi_intr_get_cap() failed %d\n", ret); 13160 13161 /* Free already allocated intr */ 13162 for (i = 0; i < actual; i++) { 13163 (void) ddi_intr_free(mpt->m_htable[i]); 13164 } 13165 13166 kmem_free(mpt->m_htable, mpt->m_intr_size); 13167 return (DDI_FAILURE); 13168 } 13169 13170 /* 13171 * Enable interrupts 13172 */ 13173 if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) { 13174 /* Call ddi_intr_block_enable() for MSI interrupts */ 13175 (void) ddi_intr_block_enable(mpt->m_htable, mpt->m_intr_cnt); 13176 } else { 13177 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 13178 for (i = 0; i < mpt->m_intr_cnt; i++) { 13179 (void) ddi_intr_enable(mpt->m_htable[i]); 13180 } 13181 } 13182 return (DDI_SUCCESS); 13183 } 13184 13185 /* 13186 * mptsas_rem_intrs: 13187 * 13188 * Unregister FIXED or MSI interrupts 13189 */ 13190 static void 13191 mptsas_rem_intrs(mptsas_t *mpt) 13192 { 13193 int i; 13194 13195 NDBG6(("mptsas_rem_intrs")); 13196 13197 /* Disable all interrupts */ 13198 if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) { 13199 /* Call ddi_intr_block_disable() */ 13200 (void) ddi_intr_block_disable(mpt->m_htable, mpt->m_intr_cnt); 13201 } else { 13202 for (i = 0; i < mpt->m_intr_cnt; i++) { 13203 (void) ddi_intr_disable(mpt->m_htable[i]); 13204 } 13205 } 13206 13207 /* Call ddi_intr_remove_handler() */ 13208 for (i = 0; i < mpt->m_intr_cnt; i++) { 13209 (void) ddi_intr_remove_handler(mpt->m_htable[i]); 13210 (void) ddi_intr_free(mpt->m_htable[i]); 13211 } 13212 13213 kmem_free(mpt->m_htable, mpt->m_intr_size); 13214 } 13215 13216 /* 13217 * The IO fault service error handling callback function 13218 */ 13219 /*ARGSUSED*/ 13220 static int 13221 mptsas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 13222 { 13223 /* 13224 * as the driver can always deal with an error in any dma or 13225 * access handle, we can just return the fme_status value. 13226 */ 13227 pci_ereport_post(dip, err, NULL); 13228 return (err->fme_status); 13229 } 13230 13231 /* 13232 * mptsas_fm_init - initialize fma capabilities and register with IO 13233 * fault services. 13234 */ 13235 static void 13236 mptsas_fm_init(mptsas_t *mpt) 13237 { 13238 /* 13239 * Need to change iblock to priority for new MSI intr 13240 */ 13241 ddi_iblock_cookie_t fm_ibc; 13242 13243 /* Only register with IO Fault Services if we have some capability */ 13244 if (mpt->m_fm_capabilities) { 13245 /* Adjust access and dma attributes for FMA */ 13246 mpt->m_reg_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; 13247 mpt->m_msg_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 13248 mpt->m_io_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 13249 13250 /* 13251 * Register capabilities with IO Fault Services. 13252 * mpt->m_fm_capabilities will be updated to indicate 13253 * capabilities actually supported (not requested.) 13254 */ 13255 ddi_fm_init(mpt->m_dip, &mpt->m_fm_capabilities, &fm_ibc); 13256 13257 /* 13258 * Initialize pci ereport capabilities if ereport 13259 * capable (should always be.) 13260 */ 13261 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) || 13262 DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 13263 pci_ereport_setup(mpt->m_dip); 13264 } 13265 13266 /* 13267 * Register error callback if error callback capable. 13268 */ 13269 if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 13270 ddi_fm_handler_register(mpt->m_dip, 13271 mptsas_fm_error_cb, (void *) mpt); 13272 } 13273 } 13274 } 13275 13276 /* 13277 * mptsas_fm_fini - Releases fma capabilities and un-registers with IO 13278 * fault services. 13279 * 13280 */ 13281 static void 13282 mptsas_fm_fini(mptsas_t *mpt) 13283 { 13284 /* Only unregister FMA capabilities if registered */ 13285 if (mpt->m_fm_capabilities) { 13286 13287 /* 13288 * Un-register error callback if error callback capable. 13289 */ 13290 13291 if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 13292 ddi_fm_handler_unregister(mpt->m_dip); 13293 } 13294 13295 /* 13296 * Release any resources allocated by pci_ereport_setup() 13297 */ 13298 13299 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) || 13300 DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 13301 pci_ereport_teardown(mpt->m_dip); 13302 } 13303 13304 /* Unregister from IO Fault Services */ 13305 ddi_fm_fini(mpt->m_dip); 13306 13307 /* Adjust access and dma attributes for FMA */ 13308 mpt->m_reg_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC; 13309 mpt->m_msg_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR; 13310 mpt->m_io_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR; 13311 13312 } 13313 } 13314 13315 int 13316 mptsas_check_acc_handle(ddi_acc_handle_t handle) 13317 { 13318 ddi_fm_error_t de; 13319 13320 if (handle == NULL) 13321 return (DDI_FAILURE); 13322 ddi_fm_acc_err_get(handle, &de, DDI_FME_VER0); 13323 return (de.fme_status); 13324 } 13325 13326 int 13327 mptsas_check_dma_handle(ddi_dma_handle_t handle) 13328 { 13329 ddi_fm_error_t de; 13330 13331 if (handle == NULL) 13332 return (DDI_FAILURE); 13333 ddi_fm_dma_err_get(handle, &de, DDI_FME_VER0); 13334 return (de.fme_status); 13335 } 13336 13337 void 13338 mptsas_fm_ereport(mptsas_t *mpt, char *detail) 13339 { 13340 uint64_t ena; 13341 char buf[FM_MAX_CLASS]; 13342 13343 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); 13344 ena = fm_ena_generate(0, FM_ENA_FMT1); 13345 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities)) { 13346 ddi_fm_ereport_post(mpt->m_dip, buf, ena, DDI_NOSLEEP, 13347 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); 13348 } 13349 } 13350 13351 static int 13352 mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address, 13353 uint16_t *dev_handle, mptsas_target_t **pptgt) 13354 { 13355 int rval; 13356 uint32_t dev_info; 13357 uint64_t sas_wwn; 13358 mptsas_phymask_t phymask; 13359 uint8_t physport, phynum, config, disk; 13360 uint64_t devicename; 13361 uint16_t pdev_hdl; 13362 mptsas_target_t *tmp_tgt = NULL; 13363 uint16_t bay_num, enclosure, io_flags; 13364 13365 ASSERT(*pptgt == NULL); 13366 13367 rval = mptsas_get_sas_device_page0(mpt, page_address, dev_handle, 13368 &sas_wwn, &dev_info, &physport, &phynum, &pdev_hdl, 13369 &bay_num, &enclosure, &io_flags); 13370 if (rval != DDI_SUCCESS) { 13371 rval = DEV_INFO_FAIL_PAGE0; 13372 return (rval); 13373 } 13374 13375 if ((dev_info & (MPI2_SAS_DEVICE_INFO_SSP_TARGET | 13376 MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 13377 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) == NULL) { 13378 rval = DEV_INFO_WRONG_DEVICE_TYPE; 13379 return (rval); 13380 } 13381 13382 /* 13383 * Check if the dev handle is for a Phys Disk. If so, set return value 13384 * and exit. Don't add Phys Disks to hash. 13385 */ 13386 for (config = 0; config < mpt->m_num_raid_configs; config++) { 13387 for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) { 13388 if (*dev_handle == mpt->m_raidconfig[config]. 13389 m_physdisk_devhdl[disk]) { 13390 rval = DEV_INFO_PHYS_DISK; 13391 return (rval); 13392 } 13393 } 13394 } 13395 13396 /* 13397 * Get SATA Device Name from SAS device page0 for 13398 * sata device, if device name doesn't exist, set mta_wwn to 13399 * 0 for direct attached SATA. For the device behind the expander 13400 * we still can use STP address assigned by expander. 13401 */ 13402 if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 13403 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 13404 mutex_exit(&mpt->m_mutex); 13405 /* alloc a tmp_tgt to send the cmd */ 13406 tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), 13407 KM_SLEEP); 13408 tmp_tgt->m_devhdl = *dev_handle; 13409 tmp_tgt->m_deviceinfo = dev_info; 13410 tmp_tgt->m_qfull_retries = QFULL_RETRIES; 13411 tmp_tgt->m_qfull_retry_interval = 13412 drv_usectohz(QFULL_RETRY_INTERVAL * 1000); 13413 tmp_tgt->m_t_throttle = MAX_THROTTLE; 13414 devicename = mptsas_get_sata_guid(mpt, tmp_tgt, 0); 13415 kmem_free(tmp_tgt, sizeof (struct mptsas_target)); 13416 mutex_enter(&mpt->m_mutex); 13417 if (devicename != 0 && (((devicename >> 56) & 0xf0) == 0x50)) { 13418 sas_wwn = devicename; 13419 } else if (dev_info & MPI2_SAS_DEVICE_INFO_DIRECT_ATTACH) { 13420 sas_wwn = 0; 13421 } 13422 } 13423 13424 phymask = mptsas_physport_to_phymask(mpt, physport); 13425 *pptgt = mptsas_tgt_alloc(mpt, *dev_handle, sas_wwn, 13426 dev_info, phymask, phynum); 13427 if (*pptgt == NULL) { 13428 mptsas_log(mpt, CE_WARN, "Failed to allocated target" 13429 "structure!"); 13430 rval = DEV_INFO_FAIL_ALLOC; 13431 return (rval); 13432 } 13433 (*pptgt)->m_io_flags = io_flags; 13434 (*pptgt)->m_enclosure = enclosure; 13435 (*pptgt)->m_slot_num = bay_num; 13436 return (DEV_INFO_SUCCESS); 13437 } 13438 13439 uint64_t 13440 mptsas_get_sata_guid(mptsas_t *mpt, mptsas_target_t *ptgt, int lun) 13441 { 13442 uint64_t sata_guid = 0, *pwwn = NULL; 13443 int target = ptgt->m_devhdl; 13444 uchar_t *inq83 = NULL; 13445 int inq83_len = 0xFF; 13446 uchar_t *dblk = NULL; 13447 int inq83_retry = 3; 13448 int rval = DDI_FAILURE; 13449 13450 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 13451 13452 inq83_retry: 13453 rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83, 13454 inq83_len, NULL, 1); 13455 if (rval != DDI_SUCCESS) { 13456 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 13457 "0x83 for target:%x, lun:%x failed!", target, lun); 13458 goto out; 13459 } 13460 /* According to SAT2, the first descriptor is logic unit name */ 13461 dblk = &inq83[4]; 13462 if ((dblk[1] & 0x30) != 0) { 13463 mptsas_log(mpt, CE_WARN, "!Descriptor is not lun associated."); 13464 goto out; 13465 } 13466 pwwn = (uint64_t *)(void *)(&dblk[4]); 13467 if ((dblk[4] & 0xf0) == 0x50) { 13468 sata_guid = BE_64(*pwwn); 13469 goto out; 13470 } else if (dblk[4] == 'A') { 13471 NDBG20(("SATA drive has no NAA format GUID.")); 13472 goto out; 13473 } else { 13474 /* The data is not ready, wait and retry */ 13475 inq83_retry--; 13476 if (inq83_retry <= 0) { 13477 goto out; 13478 } 13479 NDBG20(("The GUID is not ready, retry...")); 13480 delay(1 * drv_usectohz(1000000)); 13481 goto inq83_retry; 13482 } 13483 out: 13484 kmem_free(inq83, inq83_len); 13485 return (sata_guid); 13486 } 13487 13488 static int 13489 mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, uchar_t page, 13490 unsigned char *buf, int len, int *reallen, uchar_t evpd) 13491 { 13492 uchar_t cdb[CDB_GROUP0]; 13493 struct scsi_address ap; 13494 struct buf *data_bp = NULL; 13495 int resid = 0; 13496 int ret = DDI_FAILURE; 13497 13498 ASSERT(len <= 0xffff); 13499 13500 ap.a_target = MPTSAS_INVALID_DEVHDL; 13501 ap.a_lun = (uchar_t)(lun); 13502 ap.a_hba_tran = mpt->m_tran; 13503 13504 data_bp = scsi_alloc_consistent_buf(&ap, 13505 (struct buf *)NULL, len, B_READ, NULL_FUNC, NULL); 13506 if (data_bp == NULL) { 13507 return (ret); 13508 } 13509 bzero(cdb, CDB_GROUP0); 13510 cdb[0] = SCMD_INQUIRY; 13511 cdb[1] = evpd; 13512 cdb[2] = page; 13513 cdb[3] = (len & 0xff00) >> 8; 13514 cdb[4] = (len & 0x00ff); 13515 cdb[5] = 0; 13516 13517 ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP0, data_bp, 13518 &resid); 13519 if (ret == DDI_SUCCESS) { 13520 if (reallen) { 13521 *reallen = len - resid; 13522 } 13523 bcopy((caddr_t)data_bp->b_un.b_addr, buf, len); 13524 } 13525 if (data_bp) { 13526 scsi_free_consistent_buf(data_bp); 13527 } 13528 return (ret); 13529 } 13530 13531 static int 13532 mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap, 13533 mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp, 13534 int *resid) 13535 { 13536 struct scsi_pkt *pktp = NULL; 13537 scsi_hba_tran_t *tran_clone = NULL; 13538 mptsas_tgt_private_t *tgt_private = NULL; 13539 int ret = DDI_FAILURE; 13540 13541 /* 13542 * scsi_hba_tran_t->tran_tgt_private is used to pass the address 13543 * information to scsi_init_pkt, allocate a scsi_hba_tran structure 13544 * to simulate the cmds from sd 13545 */ 13546 tran_clone = kmem_alloc( 13547 sizeof (scsi_hba_tran_t), KM_SLEEP); 13548 if (tran_clone == NULL) { 13549 goto out; 13550 } 13551 bcopy((caddr_t)mpt->m_tran, 13552 (caddr_t)tran_clone, sizeof (scsi_hba_tran_t)); 13553 tgt_private = kmem_alloc( 13554 sizeof (mptsas_tgt_private_t), KM_SLEEP); 13555 if (tgt_private == NULL) { 13556 goto out; 13557 } 13558 tgt_private->t_lun = ap->a_lun; 13559 tgt_private->t_private = ptgt; 13560 tran_clone->tran_tgt_private = tgt_private; 13561 ap->a_hba_tran = tran_clone; 13562 13563 pktp = scsi_init_pkt(ap, (struct scsi_pkt *)NULL, 13564 data_bp, cdblen, sizeof (struct scsi_arq_status), 13565 0, PKT_CONSISTENT, NULL, NULL); 13566 if (pktp == NULL) { 13567 goto out; 13568 } 13569 bcopy(cdb, pktp->pkt_cdbp, cdblen); 13570 pktp->pkt_flags = FLAG_NOPARITY; 13571 if (scsi_poll(pktp) < 0) { 13572 goto out; 13573 } 13574 if (((struct scsi_status *)pktp->pkt_scbp)->sts_chk) { 13575 goto out; 13576 } 13577 if (resid != NULL) { 13578 *resid = pktp->pkt_resid; 13579 } 13580 13581 ret = DDI_SUCCESS; 13582 out: 13583 if (pktp) { 13584 scsi_destroy_pkt(pktp); 13585 } 13586 if (tran_clone) { 13587 kmem_free(tran_clone, sizeof (scsi_hba_tran_t)); 13588 } 13589 if (tgt_private) { 13590 kmem_free(tgt_private, sizeof (mptsas_tgt_private_t)); 13591 } 13592 return (ret); 13593 } 13594 static int 13595 mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, int *lun) 13596 { 13597 char *cp = NULL; 13598 char *ptr = NULL; 13599 size_t s = 0; 13600 char *wwid_str = NULL; 13601 char *lun_str = NULL; 13602 long lunnum; 13603 long phyid = -1; 13604 int rc = DDI_FAILURE; 13605 13606 ptr = name; 13607 ASSERT(ptr[0] == 'w' || ptr[0] == 'p'); 13608 ptr++; 13609 if ((cp = strchr(ptr, ',')) == NULL) { 13610 return (DDI_FAILURE); 13611 } 13612 13613 wwid_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 13614 s = (uintptr_t)cp - (uintptr_t)ptr; 13615 13616 bcopy(ptr, wwid_str, s); 13617 wwid_str[s] = '\0'; 13618 13619 ptr = ++cp; 13620 13621 if ((cp = strchr(ptr, '\0')) == NULL) { 13622 goto out; 13623 } 13624 lun_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 13625 s = (uintptr_t)cp - (uintptr_t)ptr; 13626 13627 bcopy(ptr, lun_str, s); 13628 lun_str[s] = '\0'; 13629 13630 if (name[0] == 'p') { 13631 rc = ddi_strtol(wwid_str, NULL, 0x10, &phyid); 13632 } else { 13633 rc = scsi_wwnstr_to_wwn(wwid_str, wwid); 13634 } 13635 if (rc != DDI_SUCCESS) 13636 goto out; 13637 13638 if (phyid != -1) { 13639 ASSERT(phyid < MPTSAS_MAX_PHYS); 13640 *phy = (uint8_t)phyid; 13641 } 13642 rc = ddi_strtol(lun_str, NULL, 0x10, &lunnum); 13643 if (rc != 0) 13644 goto out; 13645 13646 *lun = (int)lunnum; 13647 rc = DDI_SUCCESS; 13648 out: 13649 if (wwid_str) 13650 kmem_free(wwid_str, SCSI_MAXNAMELEN); 13651 if (lun_str) 13652 kmem_free(lun_str, SCSI_MAXNAMELEN); 13653 13654 return (rc); 13655 } 13656 13657 /* 13658 * mptsas_parse_smp_name() is to parse sas wwn string 13659 * which format is "wWWN" 13660 */ 13661 static int 13662 mptsas_parse_smp_name(char *name, uint64_t *wwn) 13663 { 13664 char *ptr = name; 13665 13666 if (*ptr != 'w') { 13667 return (DDI_FAILURE); 13668 } 13669 13670 ptr++; 13671 if (scsi_wwnstr_to_wwn(ptr, wwn)) { 13672 return (DDI_FAILURE); 13673 } 13674 return (DDI_SUCCESS); 13675 } 13676 13677 static int 13678 mptsas_bus_config(dev_info_t *pdip, uint_t flag, 13679 ddi_bus_config_op_t op, void *arg, dev_info_t **childp) 13680 { 13681 int ret = NDI_FAILURE; 13682 int circ = 0; 13683 int circ1 = 0; 13684 mptsas_t *mpt; 13685 char *ptr = NULL; 13686 char *devnm = NULL; 13687 uint64_t wwid = 0; 13688 uint8_t phy = 0xFF; 13689 int lun = 0; 13690 uint_t mflags = flag; 13691 int bconfig = TRUE; 13692 13693 if (scsi_hba_iport_unit_address(pdip) == 0) { 13694 return (DDI_FAILURE); 13695 } 13696 13697 mpt = DIP2MPT(pdip); 13698 if (!mpt) { 13699 return (DDI_FAILURE); 13700 } 13701 /* 13702 * Hold the nexus across the bus_config 13703 */ 13704 ndi_devi_enter(scsi_vhci_dip, &circ); 13705 ndi_devi_enter(pdip, &circ1); 13706 switch (op) { 13707 case BUS_CONFIG_ONE: 13708 /* parse wwid/target name out of name given */ 13709 if ((ptr = strchr((char *)arg, '@')) == NULL) { 13710 ret = NDI_FAILURE; 13711 break; 13712 } 13713 ptr++; 13714 if (strncmp((char *)arg, "smp", 3) == 0) { 13715 /* 13716 * This is a SMP target device 13717 */ 13718 ret = mptsas_parse_smp_name(ptr, &wwid); 13719 if (ret != DDI_SUCCESS) { 13720 ret = NDI_FAILURE; 13721 break; 13722 } 13723 ret = mptsas_config_smp(pdip, wwid, childp); 13724 } else if ((ptr[0] == 'w') || (ptr[0] == 'p')) { 13725 /* 13726 * OBP could pass down a non-canonical form 13727 * bootpath without LUN part when LUN is 0. 13728 * So driver need adjust the string. 13729 */ 13730 if (strchr(ptr, ',') == NULL) { 13731 devnm = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 13732 (void) sprintf(devnm, "%s,0", (char *)arg); 13733 ptr = strchr(devnm, '@'); 13734 ptr++; 13735 } 13736 13737 /* 13738 * The device path is wWWID format and the device 13739 * is not SMP target device. 13740 */ 13741 ret = mptsas_parse_address(ptr, &wwid, &phy, &lun); 13742 if (ret != DDI_SUCCESS) { 13743 ret = NDI_FAILURE; 13744 break; 13745 } 13746 *childp = NULL; 13747 if (ptr[0] == 'w') { 13748 ret = mptsas_config_one_addr(pdip, wwid, 13749 lun, childp); 13750 } else if (ptr[0] == 'p') { 13751 ret = mptsas_config_one_phy(pdip, phy, lun, 13752 childp); 13753 } 13754 13755 /* 13756 * If this is CD/DVD device in OBP path, the 13757 * ndi_busop_bus_config can be skipped as config one 13758 * operation is done above. 13759 */ 13760 if ((ret == NDI_SUCCESS) && (*childp != NULL) && 13761 (strcmp(ddi_node_name(*childp), "cdrom") == 0) && 13762 (strncmp((char *)arg, "disk", 4) == 0)) { 13763 bconfig = FALSE; 13764 ndi_hold_devi(*childp); 13765 } 13766 } else { 13767 ret = NDI_FAILURE; 13768 break; 13769 } 13770 13771 /* 13772 * DDI group instructed us to use this flag. 13773 */ 13774 mflags |= NDI_MDI_FALLBACK; 13775 break; 13776 case BUS_CONFIG_DRIVER: 13777 case BUS_CONFIG_ALL: 13778 mptsas_config_all(pdip); 13779 ret = NDI_SUCCESS; 13780 break; 13781 } 13782 13783 if ((ret == NDI_SUCCESS) && bconfig) { 13784 ret = ndi_busop_bus_config(pdip, mflags, op, 13785 (devnm == NULL) ? arg : devnm, childp, 0); 13786 } 13787 13788 ndi_devi_exit(pdip, circ1); 13789 ndi_devi_exit(scsi_vhci_dip, circ); 13790 if (devnm != NULL) 13791 kmem_free(devnm, SCSI_MAXNAMELEN); 13792 return (ret); 13793 } 13794 13795 static int 13796 mptsas_probe_lun(dev_info_t *pdip, int lun, dev_info_t **dip, 13797 mptsas_target_t *ptgt) 13798 { 13799 int rval = DDI_FAILURE; 13800 struct scsi_inquiry *sd_inq = NULL; 13801 mptsas_t *mpt = DIP2MPT(pdip); 13802 13803 sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP); 13804 13805 rval = mptsas_inquiry(mpt, ptgt, lun, 0, (uchar_t *)sd_inq, 13806 SUN_INQSIZE, 0, (uchar_t)0); 13807 13808 if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) { 13809 rval = mptsas_create_lun(pdip, sd_inq, dip, ptgt, lun); 13810 } else { 13811 rval = DDI_FAILURE; 13812 } 13813 13814 kmem_free(sd_inq, SUN_INQSIZE); 13815 return (rval); 13816 } 13817 13818 static int 13819 mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun, 13820 dev_info_t **lundip) 13821 { 13822 int rval; 13823 mptsas_t *mpt = DIP2MPT(pdip); 13824 int phymask; 13825 mptsas_target_t *ptgt = NULL; 13826 13827 /* 13828 * Get the physical port associated to the iport 13829 */ 13830 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 13831 "phymask", 0); 13832 13833 ptgt = mptsas_wwid_to_ptgt(mpt, phymask, sasaddr); 13834 if (ptgt == NULL) { 13835 /* 13836 * didn't match any device by searching 13837 */ 13838 return (DDI_FAILURE); 13839 } 13840 /* 13841 * If the LUN already exists and the status is online, 13842 * we just return the pointer to dev_info_t directly. 13843 * For the mdi_pathinfo node, we'll handle it in 13844 * mptsas_create_virt_lun() 13845 * TODO should be also in mptsas_handle_dr 13846 */ 13847 13848 *lundip = mptsas_find_child_addr(pdip, sasaddr, lun); 13849 if (*lundip != NULL) { 13850 /* 13851 * TODO Another senario is, we hotplug the same disk 13852 * on the same slot, the devhdl changed, is this 13853 * possible? 13854 * tgt_private->t_private != ptgt 13855 */ 13856 if (sasaddr != ptgt->m_addr.mta_wwn) { 13857 /* 13858 * The device has changed although the devhdl is the 13859 * same (Enclosure mapping mode, change drive on the 13860 * same slot) 13861 */ 13862 return (DDI_FAILURE); 13863 } 13864 return (DDI_SUCCESS); 13865 } 13866 13867 if (phymask == 0) { 13868 /* 13869 * Configure IR volume 13870 */ 13871 rval = mptsas_config_raid(pdip, ptgt->m_devhdl, lundip); 13872 return (rval); 13873 } 13874 rval = mptsas_probe_lun(pdip, lun, lundip, ptgt); 13875 13876 return (rval); 13877 } 13878 13879 static int 13880 mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun, 13881 dev_info_t **lundip) 13882 { 13883 int rval; 13884 mptsas_t *mpt = DIP2MPT(pdip); 13885 mptsas_phymask_t phymask; 13886 mptsas_target_t *ptgt = NULL; 13887 13888 /* 13889 * Get the physical port associated to the iport 13890 */ 13891 phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 13892 "phymask", 0); 13893 13894 ptgt = mptsas_phy_to_tgt(mpt, phymask, phy); 13895 if (ptgt == NULL) { 13896 /* 13897 * didn't match any device by searching 13898 */ 13899 return (DDI_FAILURE); 13900 } 13901 13902 /* 13903 * If the LUN already exists and the status is online, 13904 * we just return the pointer to dev_info_t directly. 13905 * For the mdi_pathinfo node, we'll handle it in 13906 * mptsas_create_virt_lun(). 13907 */ 13908 13909 *lundip = mptsas_find_child_phy(pdip, phy); 13910 if (*lundip != NULL) { 13911 return (DDI_SUCCESS); 13912 } 13913 13914 rval = mptsas_probe_lun(pdip, lun, lundip, ptgt); 13915 13916 return (rval); 13917 } 13918 13919 static int 13920 mptsas_retrieve_lundata(int lun_cnt, uint8_t *buf, uint16_t *lun_num, 13921 uint8_t *lun_addr_type) 13922 { 13923 uint32_t lun_idx = 0; 13924 13925 ASSERT(lun_num != NULL); 13926 ASSERT(lun_addr_type != NULL); 13927 13928 lun_idx = (lun_cnt + 1) * MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE; 13929 /* determine report luns addressing type */ 13930 switch (buf[lun_idx] & MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) { 13931 /* 13932 * Vendors in the field have been found to be concatenating 13933 * bus/target/lun to equal the complete lun value instead 13934 * of switching to flat space addressing 13935 */ 13936 /* 00b - peripheral device addressing method */ 13937 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_PERIPHERAL: 13938 /* FALLTHRU */ 13939 /* 10b - logical unit addressing method */ 13940 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_LOGICAL_UNIT: 13941 /* FALLTHRU */ 13942 /* 01b - flat space addressing method */ 13943 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_FLAT_SPACE: 13944 /* byte0 bit0-5=msb lun byte1 bit0-7=lsb lun */ 13945 *lun_addr_type = (buf[lun_idx] & 13946 MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) >> 6; 13947 *lun_num = (buf[lun_idx] & 0x3F) << 8; 13948 *lun_num |= buf[lun_idx + 1]; 13949 return (DDI_SUCCESS); 13950 default: 13951 return (DDI_FAILURE); 13952 } 13953 } 13954 13955 static int 13956 mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt) 13957 { 13958 struct buf *repluns_bp = NULL; 13959 struct scsi_address ap; 13960 uchar_t cdb[CDB_GROUP5]; 13961 int ret = DDI_FAILURE; 13962 int retry = 0; 13963 int lun_list_len = 0; 13964 uint16_t lun_num = 0; 13965 uint8_t lun_addr_type = 0; 13966 uint32_t lun_cnt = 0; 13967 uint32_t lun_total = 0; 13968 dev_info_t *cdip = NULL; 13969 uint16_t *saved_repluns = NULL; 13970 char *buffer = NULL; 13971 int buf_len = 128; 13972 mptsas_t *mpt = DIP2MPT(pdip); 13973 uint64_t sas_wwn = 0; 13974 uint8_t phy = 0xFF; 13975 uint32_t dev_info = 0; 13976 13977 mutex_enter(&mpt->m_mutex); 13978 sas_wwn = ptgt->m_addr.mta_wwn; 13979 phy = ptgt->m_phynum; 13980 dev_info = ptgt->m_deviceinfo; 13981 mutex_exit(&mpt->m_mutex); 13982 13983 if (sas_wwn == 0) { 13984 /* 13985 * It's a SATA without Device Name 13986 * So don't try multi-LUNs 13987 */ 13988 if (mptsas_find_child_phy(pdip, phy)) { 13989 return (DDI_SUCCESS); 13990 } else { 13991 /* 13992 * need configure and create node 13993 */ 13994 return (DDI_FAILURE); 13995 } 13996 } 13997 13998 /* 13999 * WWN (SAS address or Device Name exist) 14000 */ 14001 if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14002 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 14003 /* 14004 * SATA device with Device Name 14005 * So don't try multi-LUNs 14006 */ 14007 if (mptsas_find_child_addr(pdip, sas_wwn, 0)) { 14008 return (DDI_SUCCESS); 14009 } else { 14010 return (DDI_FAILURE); 14011 } 14012 } 14013 14014 do { 14015 ap.a_target = MPTSAS_INVALID_DEVHDL; 14016 ap.a_lun = 0; 14017 ap.a_hba_tran = mpt->m_tran; 14018 repluns_bp = scsi_alloc_consistent_buf(&ap, 14019 (struct buf *)NULL, buf_len, B_READ, NULL_FUNC, NULL); 14020 if (repluns_bp == NULL) { 14021 retry++; 14022 continue; 14023 } 14024 bzero(cdb, CDB_GROUP5); 14025 cdb[0] = SCMD_REPORT_LUNS; 14026 cdb[6] = (buf_len & 0xff000000) >> 24; 14027 cdb[7] = (buf_len & 0x00ff0000) >> 16; 14028 cdb[8] = (buf_len & 0x0000ff00) >> 8; 14029 cdb[9] = (buf_len & 0x000000ff); 14030 14031 ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP5, 14032 repluns_bp, NULL); 14033 if (ret != DDI_SUCCESS) { 14034 scsi_free_consistent_buf(repluns_bp); 14035 retry++; 14036 continue; 14037 } 14038 lun_list_len = BE_32(*(int *)((void *)( 14039 repluns_bp->b_un.b_addr))); 14040 if (buf_len >= lun_list_len + 8) { 14041 ret = DDI_SUCCESS; 14042 break; 14043 } 14044 scsi_free_consistent_buf(repluns_bp); 14045 buf_len = lun_list_len + 8; 14046 14047 } while (retry < 3); 14048 14049 if (ret != DDI_SUCCESS) 14050 return (ret); 14051 buffer = (char *)repluns_bp->b_un.b_addr; 14052 /* 14053 * find out the number of luns returned by the SCSI ReportLun call 14054 * and allocate buffer space 14055 */ 14056 lun_total = lun_list_len / MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE; 14057 saved_repluns = kmem_zalloc(sizeof (uint16_t) * lun_total, KM_SLEEP); 14058 if (saved_repluns == NULL) { 14059 scsi_free_consistent_buf(repluns_bp); 14060 return (DDI_FAILURE); 14061 } 14062 for (lun_cnt = 0; lun_cnt < lun_total; lun_cnt++) { 14063 if (mptsas_retrieve_lundata(lun_cnt, (uint8_t *)(buffer), 14064 &lun_num, &lun_addr_type) != DDI_SUCCESS) { 14065 continue; 14066 } 14067 saved_repluns[lun_cnt] = lun_num; 14068 if (cdip = mptsas_find_child_addr(pdip, sas_wwn, lun_num)) 14069 ret = DDI_SUCCESS; 14070 else 14071 ret = mptsas_probe_lun(pdip, lun_num, &cdip, 14072 ptgt); 14073 if ((ret == DDI_SUCCESS) && (cdip != NULL)) { 14074 (void) ndi_prop_remove(DDI_DEV_T_NONE, cdip, 14075 MPTSAS_DEV_GONE); 14076 } 14077 } 14078 mptsas_offline_missed_luns(pdip, saved_repluns, lun_total, ptgt); 14079 kmem_free(saved_repluns, sizeof (uint16_t) * lun_total); 14080 scsi_free_consistent_buf(repluns_bp); 14081 return (DDI_SUCCESS); 14082 } 14083 14084 static int 14085 mptsas_config_raid(dev_info_t *pdip, uint16_t target, dev_info_t **dip) 14086 { 14087 int rval = DDI_FAILURE; 14088 struct scsi_inquiry *sd_inq = NULL; 14089 mptsas_t *mpt = DIP2MPT(pdip); 14090 mptsas_target_t *ptgt = NULL; 14091 14092 mutex_enter(&mpt->m_mutex); 14093 ptgt = refhash_linear_search(mpt->m_targets, 14094 mptsas_target_eval_devhdl, &target); 14095 mutex_exit(&mpt->m_mutex); 14096 if (ptgt == NULL) { 14097 mptsas_log(mpt, CE_WARN, "Volume with VolDevHandle of 0x%x " 14098 "not found.", target); 14099 return (rval); 14100 } 14101 14102 sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP); 14103 rval = mptsas_inquiry(mpt, ptgt, 0, 0, (uchar_t *)sd_inq, 14104 SUN_INQSIZE, 0, (uchar_t)0); 14105 14106 if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) { 14107 rval = mptsas_create_phys_lun(pdip, sd_inq, NULL, dip, ptgt, 14108 0); 14109 } else { 14110 rval = DDI_FAILURE; 14111 } 14112 14113 kmem_free(sd_inq, SUN_INQSIZE); 14114 return (rval); 14115 } 14116 14117 /* 14118 * configure all RAID volumes for virtual iport 14119 */ 14120 static void 14121 mptsas_config_all_viport(dev_info_t *pdip) 14122 { 14123 mptsas_t *mpt = DIP2MPT(pdip); 14124 int config, vol; 14125 int target; 14126 dev_info_t *lundip = NULL; 14127 14128 /* 14129 * Get latest RAID info and search for any Volume DevHandles. If any 14130 * are found, configure the volume. 14131 */ 14132 mutex_enter(&mpt->m_mutex); 14133 for (config = 0; config < mpt->m_num_raid_configs; config++) { 14134 for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) { 14135 if (mpt->m_raidconfig[config].m_raidvol[vol].m_israid 14136 == 1) { 14137 target = mpt->m_raidconfig[config]. 14138 m_raidvol[vol].m_raidhandle; 14139 mutex_exit(&mpt->m_mutex); 14140 (void) mptsas_config_raid(pdip, target, 14141 &lundip); 14142 mutex_enter(&mpt->m_mutex); 14143 } 14144 } 14145 } 14146 mutex_exit(&mpt->m_mutex); 14147 } 14148 14149 static void 14150 mptsas_offline_missed_luns(dev_info_t *pdip, uint16_t *repluns, 14151 int lun_cnt, mptsas_target_t *ptgt) 14152 { 14153 dev_info_t *child = NULL, *savechild = NULL; 14154 mdi_pathinfo_t *pip = NULL, *savepip = NULL; 14155 uint64_t sas_wwn, wwid; 14156 uint8_t phy; 14157 int lun; 14158 int i; 14159 int find; 14160 char *addr; 14161 char *nodename; 14162 mptsas_t *mpt = DIP2MPT(pdip); 14163 14164 mutex_enter(&mpt->m_mutex); 14165 wwid = ptgt->m_addr.mta_wwn; 14166 mutex_exit(&mpt->m_mutex); 14167 14168 child = ddi_get_child(pdip); 14169 while (child) { 14170 find = 0; 14171 savechild = child; 14172 child = ddi_get_next_sibling(child); 14173 14174 nodename = ddi_node_name(savechild); 14175 if (strcmp(nodename, "smp") == 0) { 14176 continue; 14177 } 14178 14179 addr = ddi_get_name_addr(savechild); 14180 if (addr == NULL) { 14181 continue; 14182 } 14183 14184 if (mptsas_parse_address(addr, &sas_wwn, &phy, &lun) != 14185 DDI_SUCCESS) { 14186 continue; 14187 } 14188 14189 if (wwid == sas_wwn) { 14190 for (i = 0; i < lun_cnt; i++) { 14191 if (repluns[i] == lun) { 14192 find = 1; 14193 break; 14194 } 14195 } 14196 } else { 14197 continue; 14198 } 14199 if (find == 0) { 14200 /* 14201 * The lun has not been there already 14202 */ 14203 (void) mptsas_offline_lun(pdip, savechild, NULL, 14204 NDI_DEVI_REMOVE); 14205 } 14206 } 14207 14208 pip = mdi_get_next_client_path(pdip, NULL); 14209 while (pip) { 14210 find = 0; 14211 savepip = pip; 14212 addr = MDI_PI(pip)->pi_addr; 14213 14214 pip = mdi_get_next_client_path(pdip, pip); 14215 14216 if (addr == NULL) { 14217 continue; 14218 } 14219 14220 if (mptsas_parse_address(addr, &sas_wwn, &phy, 14221 &lun) != DDI_SUCCESS) { 14222 continue; 14223 } 14224 14225 if (sas_wwn == wwid) { 14226 for (i = 0; i < lun_cnt; i++) { 14227 if (repluns[i] == lun) { 14228 find = 1; 14229 break; 14230 } 14231 } 14232 } else { 14233 continue; 14234 } 14235 14236 if (find == 0) { 14237 /* 14238 * The lun has not been there already 14239 */ 14240 (void) mptsas_offline_lun(pdip, NULL, savepip, 14241 NDI_DEVI_REMOVE); 14242 } 14243 } 14244 } 14245 14246 void 14247 mptsas_update_hashtab(struct mptsas *mpt) 14248 { 14249 uint32_t page_address; 14250 int rval = 0; 14251 uint16_t dev_handle; 14252 mptsas_target_t *ptgt = NULL; 14253 mptsas_smp_t smp_node; 14254 14255 /* 14256 * Get latest RAID info. 14257 */ 14258 (void) mptsas_get_raid_info(mpt); 14259 14260 dev_handle = mpt->m_smp_devhdl; 14261 for (; mpt->m_done_traverse_smp == 0; ) { 14262 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL & 14263 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)dev_handle; 14264 if (mptsas_get_sas_expander_page0(mpt, page_address, &smp_node) 14265 != DDI_SUCCESS) { 14266 break; 14267 } 14268 mpt->m_smp_devhdl = dev_handle = smp_node.m_devhdl; 14269 (void) mptsas_smp_alloc(mpt, &smp_node); 14270 } 14271 14272 /* 14273 * Config target devices 14274 */ 14275 dev_handle = mpt->m_dev_handle; 14276 14277 /* 14278 * Do loop to get sas device page 0 by GetNextHandle till the 14279 * the last handle. If the sas device is a SATA/SSP target, 14280 * we try to config it. 14281 */ 14282 for (; mpt->m_done_traverse_dev == 0; ) { 14283 ptgt = NULL; 14284 page_address = 14285 (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 14286 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 14287 (uint32_t)dev_handle; 14288 rval = mptsas_get_target_device_info(mpt, page_address, 14289 &dev_handle, &ptgt); 14290 if ((rval == DEV_INFO_FAIL_PAGE0) || 14291 (rval == DEV_INFO_FAIL_ALLOC)) { 14292 break; 14293 } 14294 14295 mpt->m_dev_handle = dev_handle; 14296 } 14297 14298 } 14299 14300 void 14301 mptsas_update_driver_data(struct mptsas *mpt) 14302 { 14303 mptsas_target_t *tp; 14304 mptsas_smp_t *sp; 14305 14306 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 14307 14308 /* 14309 * TODO after hard reset, update the driver data structures 14310 * 1. update port/phymask mapping table mpt->m_phy_info 14311 * 2. invalid all the entries in hash table 14312 * m_devhdl = 0xffff and m_deviceinfo = 0 14313 * 3. call sas_device_page/expander_page to update hash table 14314 */ 14315 mptsas_update_phymask(mpt); 14316 /* 14317 * Invalid the existing entries 14318 * 14319 * XXX - It seems like we should just delete everything here. We are 14320 * holding the lock and are about to refresh all the targets in both 14321 * hashes anyway. Given the path we're in, what outstanding async 14322 * event could possibly be trying to reference one of these things 14323 * without taking the lock, and how would that be useful anyway? 14324 */ 14325 for (tp = refhash_first(mpt->m_targets); tp != NULL; 14326 tp = refhash_next(mpt->m_targets, tp)) { 14327 tp->m_devhdl = MPTSAS_INVALID_DEVHDL; 14328 tp->m_deviceinfo = 0; 14329 tp->m_dr_flag = MPTSAS_DR_INACTIVE; 14330 } 14331 for (sp = refhash_first(mpt->m_smp_targets); sp != NULL; 14332 sp = refhash_next(mpt->m_smp_targets, sp)) { 14333 sp->m_devhdl = MPTSAS_INVALID_DEVHDL; 14334 sp->m_deviceinfo = 0; 14335 } 14336 mpt->m_done_traverse_dev = 0; 14337 mpt->m_done_traverse_smp = 0; 14338 mpt->m_dev_handle = mpt->m_smp_devhdl = MPTSAS_INVALID_DEVHDL; 14339 mptsas_update_hashtab(mpt); 14340 } 14341 14342 static void 14343 mptsas_config_all(dev_info_t *pdip) 14344 { 14345 dev_info_t *smpdip = NULL; 14346 mptsas_t *mpt = DIP2MPT(pdip); 14347 int phymask = 0; 14348 mptsas_phymask_t phy_mask; 14349 mptsas_target_t *ptgt = NULL; 14350 mptsas_smp_t *psmp; 14351 14352 /* 14353 * Get the phymask associated to the iport 14354 */ 14355 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 14356 "phymask", 0); 14357 14358 /* 14359 * Enumerate RAID volumes here (phymask == 0). 14360 */ 14361 if (phymask == 0) { 14362 mptsas_config_all_viport(pdip); 14363 return; 14364 } 14365 14366 mutex_enter(&mpt->m_mutex); 14367 14368 if (!mpt->m_done_traverse_dev || !mpt->m_done_traverse_smp) { 14369 mptsas_update_hashtab(mpt); 14370 } 14371 14372 for (psmp = refhash_first(mpt->m_smp_targets); psmp != NULL; 14373 psmp = refhash_next(mpt->m_smp_targets, psmp)) { 14374 phy_mask = psmp->m_addr.mta_phymask; 14375 if (phy_mask == phymask) { 14376 smpdip = NULL; 14377 mutex_exit(&mpt->m_mutex); 14378 (void) mptsas_online_smp(pdip, psmp, &smpdip); 14379 mutex_enter(&mpt->m_mutex); 14380 } 14381 } 14382 14383 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 14384 ptgt = refhash_next(mpt->m_targets, ptgt)) { 14385 phy_mask = ptgt->m_addr.mta_phymask; 14386 if (phy_mask == phymask) { 14387 mutex_exit(&mpt->m_mutex); 14388 (void) mptsas_config_target(pdip, ptgt); 14389 mutex_enter(&mpt->m_mutex); 14390 } 14391 } 14392 mutex_exit(&mpt->m_mutex); 14393 } 14394 14395 static int 14396 mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt) 14397 { 14398 int rval = DDI_FAILURE; 14399 dev_info_t *tdip; 14400 14401 rval = mptsas_config_luns(pdip, ptgt); 14402 if (rval != DDI_SUCCESS) { 14403 /* 14404 * The return value means the SCMD_REPORT_LUNS 14405 * did not execute successfully. The target maybe 14406 * doesn't support such command. 14407 */ 14408 rval = mptsas_probe_lun(pdip, 0, &tdip, ptgt); 14409 } 14410 return (rval); 14411 } 14412 14413 /* 14414 * Return fail if not all the childs/paths are freed. 14415 * if there is any path under the HBA, the return value will be always fail 14416 * because we didn't call mdi_pi_free for path 14417 */ 14418 static int 14419 mptsas_offline_target(dev_info_t *pdip, char *name) 14420 { 14421 dev_info_t *child = NULL, *prechild = NULL; 14422 mdi_pathinfo_t *pip = NULL, *savepip = NULL; 14423 int tmp_rval, rval = DDI_SUCCESS; 14424 char *addr, *cp; 14425 size_t s; 14426 mptsas_t *mpt = DIP2MPT(pdip); 14427 14428 child = ddi_get_child(pdip); 14429 while (child) { 14430 addr = ddi_get_name_addr(child); 14431 prechild = child; 14432 child = ddi_get_next_sibling(child); 14433 14434 if (addr == NULL) { 14435 continue; 14436 } 14437 if ((cp = strchr(addr, ',')) == NULL) { 14438 continue; 14439 } 14440 14441 s = (uintptr_t)cp - (uintptr_t)addr; 14442 14443 if (strncmp(addr, name, s) != 0) { 14444 continue; 14445 } 14446 14447 tmp_rval = mptsas_offline_lun(pdip, prechild, NULL, 14448 NDI_DEVI_REMOVE); 14449 if (tmp_rval != DDI_SUCCESS) { 14450 rval = DDI_FAILURE; 14451 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 14452 prechild, MPTSAS_DEV_GONE) != 14453 DDI_PROP_SUCCESS) { 14454 mptsas_log(mpt, CE_WARN, "mptsas driver " 14455 "unable to create property for " 14456 "SAS %s (MPTSAS_DEV_GONE)", addr); 14457 } 14458 } 14459 } 14460 14461 pip = mdi_get_next_client_path(pdip, NULL); 14462 while (pip) { 14463 addr = MDI_PI(pip)->pi_addr; 14464 savepip = pip; 14465 pip = mdi_get_next_client_path(pdip, pip); 14466 if (addr == NULL) { 14467 continue; 14468 } 14469 14470 if ((cp = strchr(addr, ',')) == NULL) { 14471 continue; 14472 } 14473 14474 s = (uintptr_t)cp - (uintptr_t)addr; 14475 14476 if (strncmp(addr, name, s) != 0) { 14477 continue; 14478 } 14479 14480 (void) mptsas_offline_lun(pdip, NULL, savepip, 14481 NDI_DEVI_REMOVE); 14482 /* 14483 * driver will not invoke mdi_pi_free, so path will not 14484 * be freed forever, return DDI_FAILURE. 14485 */ 14486 rval = DDI_FAILURE; 14487 } 14488 return (rval); 14489 } 14490 14491 static int 14492 mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip, 14493 mdi_pathinfo_t *rpip, uint_t flags) 14494 { 14495 int rval = DDI_FAILURE; 14496 char *devname; 14497 dev_info_t *cdip, *parent; 14498 14499 if (rpip != NULL) { 14500 parent = scsi_vhci_dip; 14501 cdip = mdi_pi_get_client(rpip); 14502 } else if (rdip != NULL) { 14503 parent = pdip; 14504 cdip = rdip; 14505 } else { 14506 return (DDI_FAILURE); 14507 } 14508 14509 /* 14510 * Make sure node is attached otherwise 14511 * it won't have related cache nodes to 14512 * clean up. i_ddi_devi_attached is 14513 * similiar to i_ddi_node_state(cdip) >= 14514 * DS_ATTACHED. 14515 */ 14516 if (i_ddi_devi_attached(cdip)) { 14517 14518 /* Get full devname */ 14519 devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 14520 (void) ddi_deviname(cdip, devname); 14521 /* Clean cache */ 14522 (void) devfs_clean(parent, devname + 1, 14523 DV_CLEAN_FORCE); 14524 kmem_free(devname, MAXNAMELEN + 1); 14525 } 14526 if (rpip != NULL) { 14527 if (MDI_PI_IS_OFFLINE(rpip)) { 14528 rval = DDI_SUCCESS; 14529 } else { 14530 rval = mdi_pi_offline(rpip, 0); 14531 } 14532 } else { 14533 rval = ndi_devi_offline(cdip, flags); 14534 } 14535 14536 return (rval); 14537 } 14538 14539 static dev_info_t * 14540 mptsas_find_smp_child(dev_info_t *parent, char *str_wwn) 14541 { 14542 dev_info_t *child = NULL; 14543 char *smp_wwn = NULL; 14544 14545 child = ddi_get_child(parent); 14546 while (child) { 14547 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child, 14548 DDI_PROP_DONTPASS, SMP_WWN, &smp_wwn) 14549 != DDI_SUCCESS) { 14550 child = ddi_get_next_sibling(child); 14551 continue; 14552 } 14553 14554 if (strcmp(smp_wwn, str_wwn) == 0) { 14555 ddi_prop_free(smp_wwn); 14556 break; 14557 } 14558 child = ddi_get_next_sibling(child); 14559 ddi_prop_free(smp_wwn); 14560 } 14561 return (child); 14562 } 14563 14564 static int 14565 mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, uint_t flags) 14566 { 14567 int rval = DDI_FAILURE; 14568 char *devname; 14569 char wwn_str[MPTSAS_WWN_STRLEN]; 14570 dev_info_t *cdip; 14571 14572 (void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn); 14573 14574 cdip = mptsas_find_smp_child(pdip, wwn_str); 14575 14576 if (cdip == NULL) 14577 return (DDI_SUCCESS); 14578 14579 /* 14580 * Make sure node is attached otherwise 14581 * it won't have related cache nodes to 14582 * clean up. i_ddi_devi_attached is 14583 * similiar to i_ddi_node_state(cdip) >= 14584 * DS_ATTACHED. 14585 */ 14586 if (i_ddi_devi_attached(cdip)) { 14587 14588 /* Get full devname */ 14589 devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 14590 (void) ddi_deviname(cdip, devname); 14591 /* Clean cache */ 14592 (void) devfs_clean(pdip, devname + 1, 14593 DV_CLEAN_FORCE); 14594 kmem_free(devname, MAXNAMELEN + 1); 14595 } 14596 14597 rval = ndi_devi_offline(cdip, flags); 14598 14599 return (rval); 14600 } 14601 14602 static dev_info_t * 14603 mptsas_find_child(dev_info_t *pdip, char *name) 14604 { 14605 dev_info_t *child = NULL; 14606 char *rname = NULL; 14607 int rval = DDI_FAILURE; 14608 14609 rname = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14610 14611 child = ddi_get_child(pdip); 14612 while (child) { 14613 rval = mptsas_name_child(child, rname, SCSI_MAXNAMELEN); 14614 if (rval != DDI_SUCCESS) { 14615 child = ddi_get_next_sibling(child); 14616 bzero(rname, SCSI_MAXNAMELEN); 14617 continue; 14618 } 14619 14620 if (strcmp(rname, name) == 0) { 14621 break; 14622 } 14623 child = ddi_get_next_sibling(child); 14624 bzero(rname, SCSI_MAXNAMELEN); 14625 } 14626 14627 kmem_free(rname, SCSI_MAXNAMELEN); 14628 14629 return (child); 14630 } 14631 14632 14633 static dev_info_t * 14634 mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, int lun) 14635 { 14636 dev_info_t *child = NULL; 14637 char *name = NULL; 14638 char *addr = NULL; 14639 14640 name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14641 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14642 (void) sprintf(name, "%016"PRIx64, sasaddr); 14643 (void) sprintf(addr, "w%s,%x", name, lun); 14644 child = mptsas_find_child(pdip, addr); 14645 kmem_free(name, SCSI_MAXNAMELEN); 14646 kmem_free(addr, SCSI_MAXNAMELEN); 14647 return (child); 14648 } 14649 14650 static dev_info_t * 14651 mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy) 14652 { 14653 dev_info_t *child; 14654 char *addr; 14655 14656 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14657 (void) sprintf(addr, "p%x,0", phy); 14658 child = mptsas_find_child(pdip, addr); 14659 kmem_free(addr, SCSI_MAXNAMELEN); 14660 return (child); 14661 } 14662 14663 static mdi_pathinfo_t * 14664 mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy) 14665 { 14666 mdi_pathinfo_t *path; 14667 char *addr = NULL; 14668 14669 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14670 (void) sprintf(addr, "p%x,0", phy); 14671 path = mdi_pi_find(pdip, NULL, addr); 14672 kmem_free(addr, SCSI_MAXNAMELEN); 14673 return (path); 14674 } 14675 14676 static mdi_pathinfo_t * 14677 mptsas_find_path_addr(dev_info_t *parent, uint64_t sasaddr, int lun) 14678 { 14679 mdi_pathinfo_t *path; 14680 char *name = NULL; 14681 char *addr = NULL; 14682 14683 name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14684 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14685 (void) sprintf(name, "%016"PRIx64, sasaddr); 14686 (void) sprintf(addr, "w%s,%x", name, lun); 14687 path = mdi_pi_find(parent, NULL, addr); 14688 kmem_free(name, SCSI_MAXNAMELEN); 14689 kmem_free(addr, SCSI_MAXNAMELEN); 14690 14691 return (path); 14692 } 14693 14694 static int 14695 mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq, 14696 dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun) 14697 { 14698 int i = 0; 14699 uchar_t *inq83 = NULL; 14700 int inq83_len1 = 0xFF; 14701 int inq83_len = 0; 14702 int rval = DDI_FAILURE; 14703 ddi_devid_t devid; 14704 char *guid = NULL; 14705 int target = ptgt->m_devhdl; 14706 mdi_pathinfo_t *pip = NULL; 14707 mptsas_t *mpt = DIP2MPT(pdip); 14708 14709 /* 14710 * For DVD/CD ROM and tape devices and optical 14711 * devices, we won't try to enumerate them under 14712 * scsi_vhci, so no need to try page83 14713 */ 14714 if (sd_inq && (sd_inq->inq_dtype == DTYPE_RODIRECT || 14715 sd_inq->inq_dtype == DTYPE_OPTICAL || 14716 sd_inq->inq_dtype == DTYPE_ESI)) 14717 goto create_lun; 14718 14719 /* 14720 * The LCA returns good SCSI status, but corrupt page 83 data the first 14721 * time it is queried. The solution is to keep trying to request page83 14722 * and verify the GUID is not (DDI_NOT_WELL_FORMED) in 14723 * mptsas_inq83_retry_timeout seconds. If the timeout expires, driver 14724 * give up to get VPD page at this stage and fail the enumeration. 14725 */ 14726 14727 inq83 = kmem_zalloc(inq83_len1, KM_SLEEP); 14728 14729 for (i = 0; i < mptsas_inq83_retry_timeout; i++) { 14730 rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83, 14731 inq83_len1, &inq83_len, 1); 14732 if (rval != 0) { 14733 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 14734 "0x83 for target:%x, lun:%x failed!", target, lun); 14735 if (mptsas_physical_bind_failed_page_83 != B_FALSE) 14736 goto create_lun; 14737 goto out; 14738 } 14739 /* 14740 * create DEVID from inquiry data 14741 */ 14742 if ((rval = ddi_devid_scsi_encode( 14743 DEVID_SCSI_ENCODE_VERSION_LATEST, NULL, (uchar_t *)sd_inq, 14744 sizeof (struct scsi_inquiry), NULL, 0, inq83, 14745 (size_t)inq83_len, &devid)) == DDI_SUCCESS) { 14746 /* 14747 * extract GUID from DEVID 14748 */ 14749 guid = ddi_devid_to_guid(devid); 14750 14751 /* 14752 * Do not enable MPXIO if the strlen(guid) is greater 14753 * than MPTSAS_MAX_GUID_LEN, this constrain would be 14754 * handled by framework later. 14755 */ 14756 if (guid && (strlen(guid) > MPTSAS_MAX_GUID_LEN)) { 14757 ddi_devid_free_guid(guid); 14758 guid = NULL; 14759 if (mpt->m_mpxio_enable == TRUE) { 14760 mptsas_log(mpt, CE_NOTE, "!Target:%x, " 14761 "lun:%x doesn't have a valid GUID, " 14762 "multipathing for this drive is " 14763 "not enabled", target, lun); 14764 } 14765 } 14766 14767 /* 14768 * devid no longer needed 14769 */ 14770 ddi_devid_free(devid); 14771 break; 14772 } else if (rval == DDI_NOT_WELL_FORMED) { 14773 /* 14774 * return value of ddi_devid_scsi_encode equal to 14775 * DDI_NOT_WELL_FORMED means DEVID_RETRY, it worth 14776 * to retry inquiry page 0x83 and get GUID. 14777 */ 14778 NDBG20(("Not well formed devid, retry...")); 14779 delay(1 * drv_usectohz(1000000)); 14780 continue; 14781 } else { 14782 mptsas_log(mpt, CE_WARN, "!Encode devid failed for " 14783 "path target:%x, lun:%x", target, lun); 14784 rval = DDI_FAILURE; 14785 goto create_lun; 14786 } 14787 } 14788 14789 if (i == mptsas_inq83_retry_timeout) { 14790 mptsas_log(mpt, CE_WARN, "!Repeated page83 requests timeout " 14791 "for path target:%x, lun:%x", target, lun); 14792 } 14793 14794 rval = DDI_FAILURE; 14795 14796 create_lun: 14797 if ((guid != NULL) && (mpt->m_mpxio_enable == TRUE)) { 14798 rval = mptsas_create_virt_lun(pdip, sd_inq, guid, lun_dip, &pip, 14799 ptgt, lun); 14800 } 14801 if (rval != DDI_SUCCESS) { 14802 rval = mptsas_create_phys_lun(pdip, sd_inq, guid, lun_dip, 14803 ptgt, lun); 14804 14805 } 14806 out: 14807 if (guid != NULL) { 14808 /* 14809 * guid no longer needed 14810 */ 14811 ddi_devid_free_guid(guid); 14812 } 14813 if (inq83 != NULL) 14814 kmem_free(inq83, inq83_len1); 14815 return (rval); 14816 } 14817 14818 static int 14819 mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *inq, char *guid, 14820 dev_info_t **lun_dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, int lun) 14821 { 14822 int target; 14823 char *nodename = NULL; 14824 char **compatible = NULL; 14825 int ncompatible = 0; 14826 int mdi_rtn = MDI_FAILURE; 14827 int rval = DDI_FAILURE; 14828 char *old_guid = NULL; 14829 mptsas_t *mpt = DIP2MPT(pdip); 14830 char *lun_addr = NULL; 14831 char *wwn_str = NULL; 14832 char *attached_wwn_str = NULL; 14833 char *component = NULL; 14834 uint8_t phy = 0xFF; 14835 uint64_t sas_wwn; 14836 int64_t lun64 = 0; 14837 uint32_t devinfo; 14838 uint16_t dev_hdl; 14839 uint16_t pdev_hdl; 14840 uint64_t dev_sas_wwn; 14841 uint64_t pdev_sas_wwn; 14842 uint32_t pdev_info; 14843 uint8_t physport; 14844 uint8_t phy_id; 14845 uint32_t page_address; 14846 uint16_t bay_num, enclosure, io_flags; 14847 char pdev_wwn_str[MPTSAS_WWN_STRLEN]; 14848 uint32_t dev_info; 14849 14850 mutex_enter(&mpt->m_mutex); 14851 target = ptgt->m_devhdl; 14852 sas_wwn = ptgt->m_addr.mta_wwn; 14853 devinfo = ptgt->m_deviceinfo; 14854 phy = ptgt->m_phynum; 14855 mutex_exit(&mpt->m_mutex); 14856 14857 if (sas_wwn) { 14858 *pip = mptsas_find_path_addr(pdip, sas_wwn, lun); 14859 } else { 14860 *pip = mptsas_find_path_phy(pdip, phy); 14861 } 14862 14863 if (*pip != NULL) { 14864 *lun_dip = MDI_PI(*pip)->pi_client->ct_dip; 14865 ASSERT(*lun_dip != NULL); 14866 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, *lun_dip, 14867 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM), 14868 MDI_CLIENT_GUID_PROP, &old_guid) == DDI_SUCCESS) { 14869 if (strncmp(guid, old_guid, strlen(guid)) == 0) { 14870 /* 14871 * Same path back online again. 14872 */ 14873 (void) ddi_prop_free(old_guid); 14874 if ((!MDI_PI_IS_ONLINE(*pip)) && 14875 (!MDI_PI_IS_STANDBY(*pip)) && 14876 (ptgt->m_tgt_unconfigured == 0)) { 14877 rval = mdi_pi_online(*pip, 0); 14878 mutex_enter(&mpt->m_mutex); 14879 ptgt->m_led_status = 0; 14880 (void) mptsas_flush_led_status(mpt, 14881 ptgt); 14882 mutex_exit(&mpt->m_mutex); 14883 } else { 14884 rval = DDI_SUCCESS; 14885 } 14886 if (rval != DDI_SUCCESS) { 14887 mptsas_log(mpt, CE_WARN, "path:target: " 14888 "%x, lun:%x online failed!", target, 14889 lun); 14890 *pip = NULL; 14891 *lun_dip = NULL; 14892 } 14893 return (rval); 14894 } else { 14895 /* 14896 * The GUID of the LUN has changed which maybe 14897 * because customer mapped another volume to the 14898 * same LUN. 14899 */ 14900 mptsas_log(mpt, CE_WARN, "The GUID of the " 14901 "target:%x, lun:%x was changed, maybe " 14902 "because someone mapped another volume " 14903 "to the same LUN", target, lun); 14904 (void) ddi_prop_free(old_guid); 14905 if (!MDI_PI_IS_OFFLINE(*pip)) { 14906 rval = mdi_pi_offline(*pip, 0); 14907 if (rval != MDI_SUCCESS) { 14908 mptsas_log(mpt, CE_WARN, "path:" 14909 "target:%x, lun:%x offline " 14910 "failed!", target, lun); 14911 *pip = NULL; 14912 *lun_dip = NULL; 14913 return (DDI_FAILURE); 14914 } 14915 } 14916 if (mdi_pi_free(*pip, 0) != MDI_SUCCESS) { 14917 mptsas_log(mpt, CE_WARN, "path:target:" 14918 "%x, lun:%x free failed!", target, 14919 lun); 14920 *pip = NULL; 14921 *lun_dip = NULL; 14922 return (DDI_FAILURE); 14923 } 14924 } 14925 } else { 14926 mptsas_log(mpt, CE_WARN, "Can't get client-guid " 14927 "property for path:target:%x, lun:%x", target, lun); 14928 *pip = NULL; 14929 *lun_dip = NULL; 14930 return (DDI_FAILURE); 14931 } 14932 } 14933 scsi_hba_nodename_compatible_get(inq, NULL, 14934 inq->inq_dtype, NULL, &nodename, &compatible, &ncompatible); 14935 14936 /* 14937 * if nodename can't be determined then print a message and skip it 14938 */ 14939 if (nodename == NULL) { 14940 mptsas_log(mpt, CE_WARN, "mptsas driver found no compatible " 14941 "driver for target%d lun %d dtype:0x%02x", target, lun, 14942 inq->inq_dtype); 14943 return (DDI_FAILURE); 14944 } 14945 14946 wwn_str = kmem_zalloc(MPTSAS_WWN_STRLEN, KM_SLEEP); 14947 /* The property is needed by MPAPI */ 14948 (void) sprintf(wwn_str, "%016"PRIx64, sas_wwn); 14949 14950 lun_addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14951 if (guid) { 14952 (void) sprintf(lun_addr, "w%s,%x", wwn_str, lun); 14953 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 14954 } else { 14955 (void) sprintf(lun_addr, "p%x,%x", phy, lun); 14956 (void) sprintf(wwn_str, "p%x", phy); 14957 } 14958 14959 mdi_rtn = mdi_pi_alloc_compatible(pdip, nodename, 14960 guid, lun_addr, compatible, ncompatible, 14961 0, pip); 14962 if (mdi_rtn == MDI_SUCCESS) { 14963 14964 if (mdi_prop_update_string(*pip, MDI_GUID, 14965 guid) != DDI_SUCCESS) { 14966 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 14967 "create prop for target %d lun %d (MDI_GUID)", 14968 target, lun); 14969 mdi_rtn = MDI_FAILURE; 14970 goto virt_create_done; 14971 } 14972 14973 if (mdi_prop_update_int(*pip, LUN_PROP, 14974 lun) != DDI_SUCCESS) { 14975 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 14976 "create prop for target %d lun %d (LUN_PROP)", 14977 target, lun); 14978 mdi_rtn = MDI_FAILURE; 14979 goto virt_create_done; 14980 } 14981 lun64 = (int64_t)lun; 14982 if (mdi_prop_update_int64(*pip, LUN64_PROP, 14983 lun64) != DDI_SUCCESS) { 14984 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 14985 "create prop for target %d (LUN64_PROP)", 14986 target); 14987 mdi_rtn = MDI_FAILURE; 14988 goto virt_create_done; 14989 } 14990 if (mdi_prop_update_string_array(*pip, "compatible", 14991 compatible, ncompatible) != 14992 DDI_PROP_SUCCESS) { 14993 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 14994 "create prop for target %d lun %d (COMPATIBLE)", 14995 target, lun); 14996 mdi_rtn = MDI_FAILURE; 14997 goto virt_create_done; 14998 } 14999 if (sas_wwn && (mdi_prop_update_string(*pip, 15000 SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != DDI_PROP_SUCCESS)) { 15001 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 15002 "create prop for target %d lun %d " 15003 "(target-port)", target, lun); 15004 mdi_rtn = MDI_FAILURE; 15005 goto virt_create_done; 15006 } else if ((sas_wwn == 0) && (mdi_prop_update_int(*pip, 15007 "sata-phy", phy) != DDI_PROP_SUCCESS)) { 15008 /* 15009 * Direct attached SATA device without DeviceName 15010 */ 15011 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 15012 "create prop for SAS target %d lun %d " 15013 "(sata-phy)", target, lun); 15014 mdi_rtn = MDI_FAILURE; 15015 goto virt_create_done; 15016 } 15017 mutex_enter(&mpt->m_mutex); 15018 15019 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15020 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15021 (uint32_t)ptgt->m_devhdl; 15022 rval = mptsas_get_sas_device_page0(mpt, page_address, 15023 &dev_hdl, &dev_sas_wwn, &dev_info, &physport, 15024 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15025 if (rval != DDI_SUCCESS) { 15026 mutex_exit(&mpt->m_mutex); 15027 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 15028 "parent device for handle %d", page_address); 15029 mdi_rtn = MDI_FAILURE; 15030 goto virt_create_done; 15031 } 15032 15033 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15034 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl; 15035 rval = mptsas_get_sas_device_page0(mpt, page_address, 15036 &dev_hdl, &pdev_sas_wwn, &pdev_info, &physport, 15037 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15038 if (rval != DDI_SUCCESS) { 15039 mutex_exit(&mpt->m_mutex); 15040 mptsas_log(mpt, CE_WARN, "mptsas unable to get" 15041 "device info for handle %d", page_address); 15042 mdi_rtn = MDI_FAILURE; 15043 goto virt_create_done; 15044 } 15045 15046 mutex_exit(&mpt->m_mutex); 15047 15048 /* 15049 * If this device direct attached to the controller 15050 * set the attached-port to the base wwid 15051 */ 15052 if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 15053 != DEVINFO_DIRECT_ATTACHED) { 15054 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15055 pdev_sas_wwn); 15056 } else { 15057 /* 15058 * Update the iport's attached-port to guid 15059 */ 15060 if (sas_wwn == 0) { 15061 (void) sprintf(wwn_str, "p%x", phy); 15062 } else { 15063 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15064 } 15065 if (ddi_prop_update_string(DDI_DEV_T_NONE, 15066 pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 15067 DDI_PROP_SUCCESS) { 15068 mptsas_log(mpt, CE_WARN, 15069 "mptsas unable to create " 15070 "property for iport target-port" 15071 " %s (sas_wwn)", 15072 wwn_str); 15073 mdi_rtn = MDI_FAILURE; 15074 goto virt_create_done; 15075 } 15076 15077 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15078 mpt->un.m_base_wwid); 15079 } 15080 15081 if (mdi_prop_update_string(*pip, 15082 SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) != 15083 DDI_PROP_SUCCESS) { 15084 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15085 "property for iport attached-port %s (sas_wwn)", 15086 attached_wwn_str); 15087 mdi_rtn = MDI_FAILURE; 15088 goto virt_create_done; 15089 } 15090 15091 15092 if (inq->inq_dtype == 0) { 15093 component = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 15094 /* 15095 * set obp path for pathinfo 15096 */ 15097 (void) snprintf(component, MAXPATHLEN, 15098 "disk@%s", lun_addr); 15099 15100 if (mdi_pi_pathname_obp_set(*pip, component) != 15101 DDI_SUCCESS) { 15102 mptsas_log(mpt, CE_WARN, "mpt_sas driver " 15103 "unable to set obp-path for object %s", 15104 component); 15105 mdi_rtn = MDI_FAILURE; 15106 goto virt_create_done; 15107 } 15108 } 15109 15110 *lun_dip = MDI_PI(*pip)->pi_client->ct_dip; 15111 if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 15112 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 15113 if ((ndi_prop_update_int(DDI_DEV_T_NONE, *lun_dip, 15114 "pm-capable", 1)) != 15115 DDI_PROP_SUCCESS) { 15116 mptsas_log(mpt, CE_WARN, "mptsas driver" 15117 "failed to create pm-capable " 15118 "property, target %d", target); 15119 mdi_rtn = MDI_FAILURE; 15120 goto virt_create_done; 15121 } 15122 } 15123 /* 15124 * Create the phy-num property 15125 */ 15126 if (mdi_prop_update_int(*pip, "phy-num", 15127 ptgt->m_phynum) != DDI_SUCCESS) { 15128 mptsas_log(mpt, CE_WARN, "mptsas driver unable to " 15129 "create phy-num property for target %d lun %d", 15130 target, lun); 15131 mdi_rtn = MDI_FAILURE; 15132 goto virt_create_done; 15133 } 15134 NDBG20(("new path:%s onlining,", MDI_PI(*pip)->pi_addr)); 15135 mdi_rtn = mdi_pi_online(*pip, 0); 15136 if (mdi_rtn == MDI_SUCCESS) { 15137 mutex_enter(&mpt->m_mutex); 15138 ptgt->m_led_status = 0; 15139 (void) mptsas_flush_led_status(mpt, ptgt); 15140 mutex_exit(&mpt->m_mutex); 15141 } 15142 if (mdi_rtn == MDI_NOT_SUPPORTED) { 15143 mdi_rtn = MDI_FAILURE; 15144 } 15145 virt_create_done: 15146 if (*pip && mdi_rtn != MDI_SUCCESS) { 15147 (void) mdi_pi_free(*pip, 0); 15148 *pip = NULL; 15149 *lun_dip = NULL; 15150 } 15151 } 15152 15153 scsi_hba_nodename_compatible_free(nodename, compatible); 15154 if (lun_addr != NULL) { 15155 kmem_free(lun_addr, SCSI_MAXNAMELEN); 15156 } 15157 if (wwn_str != NULL) { 15158 kmem_free(wwn_str, MPTSAS_WWN_STRLEN); 15159 } 15160 if (component != NULL) { 15161 kmem_free(component, MAXPATHLEN); 15162 } 15163 15164 return ((mdi_rtn == MDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 15165 } 15166 15167 static int 15168 mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *inq, 15169 char *guid, dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun) 15170 { 15171 int target; 15172 int rval; 15173 int ndi_rtn = NDI_FAILURE; 15174 uint64_t be_sas_wwn; 15175 char *nodename = NULL; 15176 char **compatible = NULL; 15177 int ncompatible = 0; 15178 int instance = 0; 15179 mptsas_t *mpt = DIP2MPT(pdip); 15180 char *wwn_str = NULL; 15181 char *component = NULL; 15182 char *attached_wwn_str = NULL; 15183 uint8_t phy = 0xFF; 15184 uint64_t sas_wwn; 15185 uint32_t devinfo; 15186 uint16_t dev_hdl; 15187 uint16_t pdev_hdl; 15188 uint64_t pdev_sas_wwn; 15189 uint64_t dev_sas_wwn; 15190 uint32_t pdev_info; 15191 uint8_t physport; 15192 uint8_t phy_id; 15193 uint32_t page_address; 15194 uint16_t bay_num, enclosure, io_flags; 15195 char pdev_wwn_str[MPTSAS_WWN_STRLEN]; 15196 uint32_t dev_info; 15197 int64_t lun64 = 0; 15198 15199 mutex_enter(&mpt->m_mutex); 15200 target = ptgt->m_devhdl; 15201 sas_wwn = ptgt->m_addr.mta_wwn; 15202 devinfo = ptgt->m_deviceinfo; 15203 phy = ptgt->m_phynum; 15204 mutex_exit(&mpt->m_mutex); 15205 15206 /* 15207 * generate compatible property with binding-set "mpt" 15208 */ 15209 scsi_hba_nodename_compatible_get(inq, NULL, inq->inq_dtype, NULL, 15210 &nodename, &compatible, &ncompatible); 15211 15212 /* 15213 * if nodename can't be determined then print a message and skip it 15214 */ 15215 if (nodename == NULL) { 15216 mptsas_log(mpt, CE_WARN, "mptsas found no compatible driver " 15217 "for target %d lun %d", target, lun); 15218 return (DDI_FAILURE); 15219 } 15220 15221 ndi_rtn = ndi_devi_alloc(pdip, nodename, 15222 DEVI_SID_NODEID, lun_dip); 15223 15224 /* 15225 * if lun alloc success, set props 15226 */ 15227 if (ndi_rtn == NDI_SUCCESS) { 15228 15229 if (ndi_prop_update_int(DDI_DEV_T_NONE, 15230 *lun_dip, LUN_PROP, lun) != 15231 DDI_PROP_SUCCESS) { 15232 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15233 "property for target %d lun %d (LUN_PROP)", 15234 target, lun); 15235 ndi_rtn = NDI_FAILURE; 15236 goto phys_create_done; 15237 } 15238 15239 lun64 = (int64_t)lun; 15240 if (ndi_prop_update_int64(DDI_DEV_T_NONE, 15241 *lun_dip, LUN64_PROP, lun64) != 15242 DDI_PROP_SUCCESS) { 15243 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15244 "property for target %d lun64 %d (LUN64_PROP)", 15245 target, lun); 15246 ndi_rtn = NDI_FAILURE; 15247 goto phys_create_done; 15248 } 15249 if (ndi_prop_update_string_array(DDI_DEV_T_NONE, 15250 *lun_dip, "compatible", compatible, ncompatible) 15251 != DDI_PROP_SUCCESS) { 15252 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15253 "property for target %d lun %d (COMPATIBLE)", 15254 target, lun); 15255 ndi_rtn = NDI_FAILURE; 15256 goto phys_create_done; 15257 } 15258 15259 /* 15260 * We need the SAS WWN for non-multipath devices, so 15261 * we'll use the same property as that multipathing 15262 * devices need to present for MPAPI. If we don't have 15263 * a WWN (e.g. parallel SCSI), don't create the prop. 15264 */ 15265 wwn_str = kmem_zalloc(MPTSAS_WWN_STRLEN, KM_SLEEP); 15266 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15267 if (sas_wwn && ndi_prop_update_string(DDI_DEV_T_NONE, 15268 *lun_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) 15269 != DDI_PROP_SUCCESS) { 15270 mptsas_log(mpt, CE_WARN, "mptsas unable to " 15271 "create property for SAS target %d lun %d " 15272 "(target-port)", target, lun); 15273 ndi_rtn = NDI_FAILURE; 15274 goto phys_create_done; 15275 } 15276 15277 be_sas_wwn = BE_64(sas_wwn); 15278 if (sas_wwn && ndi_prop_update_byte_array( 15279 DDI_DEV_T_NONE, *lun_dip, "port-wwn", 15280 (uchar_t *)&be_sas_wwn, 8) != DDI_PROP_SUCCESS) { 15281 mptsas_log(mpt, CE_WARN, "mptsas unable to " 15282 "create property for SAS target %d lun %d " 15283 "(port-wwn)", target, lun); 15284 ndi_rtn = NDI_FAILURE; 15285 goto phys_create_done; 15286 } else if ((sas_wwn == 0) && (ndi_prop_update_int( 15287 DDI_DEV_T_NONE, *lun_dip, "sata-phy", phy) != 15288 DDI_PROP_SUCCESS)) { 15289 /* 15290 * Direct attached SATA device without DeviceName 15291 */ 15292 mptsas_log(mpt, CE_WARN, "mptsas unable to " 15293 "create property for SAS target %d lun %d " 15294 "(sata-phy)", target, lun); 15295 ndi_rtn = NDI_FAILURE; 15296 goto phys_create_done; 15297 } 15298 15299 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 15300 *lun_dip, SAS_PROP) != DDI_PROP_SUCCESS) { 15301 mptsas_log(mpt, CE_WARN, "mptsas unable to" 15302 "create property for SAS target %d lun %d" 15303 " (SAS_PROP)", target, lun); 15304 ndi_rtn = NDI_FAILURE; 15305 goto phys_create_done; 15306 } 15307 if (guid && (ndi_prop_update_string(DDI_DEV_T_NONE, 15308 *lun_dip, NDI_GUID, guid) != DDI_SUCCESS)) { 15309 mptsas_log(mpt, CE_WARN, "mptsas unable " 15310 "to create guid property for target %d " 15311 "lun %d", target, lun); 15312 ndi_rtn = NDI_FAILURE; 15313 goto phys_create_done; 15314 } 15315 15316 /* 15317 * The following code is to set properties for SM-HBA support, 15318 * it doesn't apply to RAID volumes 15319 */ 15320 if (ptgt->m_addr.mta_phymask == 0) 15321 goto phys_raid_lun; 15322 15323 mutex_enter(&mpt->m_mutex); 15324 15325 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15326 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15327 (uint32_t)ptgt->m_devhdl; 15328 rval = mptsas_get_sas_device_page0(mpt, page_address, 15329 &dev_hdl, &dev_sas_wwn, &dev_info, 15330 &physport, &phy_id, &pdev_hdl, 15331 &bay_num, &enclosure, &io_flags); 15332 if (rval != DDI_SUCCESS) { 15333 mutex_exit(&mpt->m_mutex); 15334 mptsas_log(mpt, CE_WARN, "mptsas unable to get" 15335 "parent device for handle %d.", page_address); 15336 ndi_rtn = NDI_FAILURE; 15337 goto phys_create_done; 15338 } 15339 15340 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15341 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl; 15342 rval = mptsas_get_sas_device_page0(mpt, page_address, 15343 &dev_hdl, &pdev_sas_wwn, &pdev_info, &physport, 15344 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15345 if (rval != DDI_SUCCESS) { 15346 mutex_exit(&mpt->m_mutex); 15347 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15348 "device for handle %d.", page_address); 15349 ndi_rtn = NDI_FAILURE; 15350 goto phys_create_done; 15351 } 15352 15353 mutex_exit(&mpt->m_mutex); 15354 15355 /* 15356 * If this device direct attached to the controller 15357 * set the attached-port to the base wwid 15358 */ 15359 if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 15360 != DEVINFO_DIRECT_ATTACHED) { 15361 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15362 pdev_sas_wwn); 15363 } else { 15364 /* 15365 * Update the iport's attached-port to guid 15366 */ 15367 if (sas_wwn == 0) { 15368 (void) sprintf(wwn_str, "p%x", phy); 15369 } else { 15370 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15371 } 15372 if (ddi_prop_update_string(DDI_DEV_T_NONE, 15373 pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 15374 DDI_PROP_SUCCESS) { 15375 mptsas_log(mpt, CE_WARN, 15376 "mptsas unable to create " 15377 "property for iport target-port" 15378 " %s (sas_wwn)", 15379 wwn_str); 15380 ndi_rtn = NDI_FAILURE; 15381 goto phys_create_done; 15382 } 15383 15384 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15385 mpt->un.m_base_wwid); 15386 } 15387 15388 if (ndi_prop_update_string(DDI_DEV_T_NONE, 15389 *lun_dip, SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) != 15390 DDI_PROP_SUCCESS) { 15391 mptsas_log(mpt, CE_WARN, 15392 "mptsas unable to create " 15393 "property for iport attached-port %s (sas_wwn)", 15394 attached_wwn_str); 15395 ndi_rtn = NDI_FAILURE; 15396 goto phys_create_done; 15397 } 15398 15399 if (IS_SATA_DEVICE(dev_info)) { 15400 if (ndi_prop_update_string(DDI_DEV_T_NONE, 15401 *lun_dip, MPTSAS_VARIANT, "sata") != 15402 DDI_PROP_SUCCESS) { 15403 mptsas_log(mpt, CE_WARN, 15404 "mptsas unable to create " 15405 "property for device variant "); 15406 ndi_rtn = NDI_FAILURE; 15407 goto phys_create_done; 15408 } 15409 } 15410 15411 if (IS_ATAPI_DEVICE(dev_info)) { 15412 if (ndi_prop_update_string(DDI_DEV_T_NONE, 15413 *lun_dip, MPTSAS_VARIANT, "atapi") != 15414 DDI_PROP_SUCCESS) { 15415 mptsas_log(mpt, CE_WARN, 15416 "mptsas unable to create " 15417 "property for device variant "); 15418 ndi_rtn = NDI_FAILURE; 15419 goto phys_create_done; 15420 } 15421 } 15422 15423 phys_raid_lun: 15424 /* 15425 * if this is a SAS controller, and the target is a SATA 15426 * drive, set the 'pm-capable' property for sd and if on 15427 * an OPL platform, also check if this is an ATAPI 15428 * device. 15429 */ 15430 instance = ddi_get_instance(mpt->m_dip); 15431 if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 15432 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 15433 NDBG2(("mptsas%d: creating pm-capable property, " 15434 "target %d", instance, target)); 15435 15436 if ((ndi_prop_update_int(DDI_DEV_T_NONE, 15437 *lun_dip, "pm-capable", 1)) != 15438 DDI_PROP_SUCCESS) { 15439 mptsas_log(mpt, CE_WARN, "mptsas " 15440 "failed to create pm-capable " 15441 "property, target %d", target); 15442 ndi_rtn = NDI_FAILURE; 15443 goto phys_create_done; 15444 } 15445 15446 } 15447 15448 if ((inq->inq_dtype == 0) || (inq->inq_dtype == 5)) { 15449 /* 15450 * add 'obp-path' properties for devinfo 15451 */ 15452 bzero(wwn_str, sizeof (wwn_str)); 15453 (void) sprintf(wwn_str, "%016"PRIx64, sas_wwn); 15454 component = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 15455 if (guid) { 15456 (void) snprintf(component, MAXPATHLEN, 15457 "disk@w%s,%x", wwn_str, lun); 15458 } else { 15459 (void) snprintf(component, MAXPATHLEN, 15460 "disk@p%x,%x", phy, lun); 15461 } 15462 if (ddi_pathname_obp_set(*lun_dip, component) 15463 != DDI_SUCCESS) { 15464 mptsas_log(mpt, CE_WARN, "mpt_sas driver " 15465 "unable to set obp-path for SAS " 15466 "object %s", component); 15467 ndi_rtn = NDI_FAILURE; 15468 goto phys_create_done; 15469 } 15470 } 15471 /* 15472 * Create the phy-num property for non-raid disk 15473 */ 15474 if (ptgt->m_addr.mta_phymask != 0) { 15475 if (ndi_prop_update_int(DDI_DEV_T_NONE, 15476 *lun_dip, "phy-num", ptgt->m_phynum) != 15477 DDI_PROP_SUCCESS) { 15478 mptsas_log(mpt, CE_WARN, "mptsas driver " 15479 "failed to create phy-num property for " 15480 "target %d", target); 15481 ndi_rtn = NDI_FAILURE; 15482 goto phys_create_done; 15483 } 15484 } 15485 phys_create_done: 15486 /* 15487 * If props were setup ok, online the lun 15488 */ 15489 if (ndi_rtn == NDI_SUCCESS) { 15490 /* 15491 * Try to online the new node 15492 */ 15493 ndi_rtn = ndi_devi_online(*lun_dip, NDI_ONLINE_ATTACH); 15494 } 15495 if (ndi_rtn == NDI_SUCCESS) { 15496 mutex_enter(&mpt->m_mutex); 15497 ptgt->m_led_status = 0; 15498 (void) mptsas_flush_led_status(mpt, ptgt); 15499 mutex_exit(&mpt->m_mutex); 15500 } 15501 15502 /* 15503 * If success set rtn flag, else unwire alloc'd lun 15504 */ 15505 if (ndi_rtn != NDI_SUCCESS) { 15506 NDBG12(("mptsas driver unable to online " 15507 "target %d lun %d", target, lun)); 15508 ndi_prop_remove_all(*lun_dip); 15509 (void) ndi_devi_free(*lun_dip); 15510 *lun_dip = NULL; 15511 } 15512 } 15513 15514 scsi_hba_nodename_compatible_free(nodename, compatible); 15515 15516 if (wwn_str != NULL) { 15517 kmem_free(wwn_str, MPTSAS_WWN_STRLEN); 15518 } 15519 if (component != NULL) { 15520 kmem_free(component, MAXPATHLEN); 15521 } 15522 15523 15524 return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 15525 } 15526 15527 static int 15528 mptsas_probe_smp(dev_info_t *pdip, uint64_t wwn) 15529 { 15530 mptsas_t *mpt = DIP2MPT(pdip); 15531 struct smp_device smp_sd; 15532 15533 /* XXX An HBA driver should not be allocating an smp_device. */ 15534 bzero(&smp_sd, sizeof (struct smp_device)); 15535 smp_sd.smp_sd_address.smp_a_hba_tran = mpt->m_smptran; 15536 bcopy(&wwn, smp_sd.smp_sd_address.smp_a_wwn, SAS_WWN_BYTE_SIZE); 15537 15538 if (smp_probe(&smp_sd) != DDI_PROBE_SUCCESS) 15539 return (NDI_FAILURE); 15540 return (NDI_SUCCESS); 15541 } 15542 15543 static int 15544 mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, dev_info_t **smp_dip) 15545 { 15546 mptsas_t *mpt = DIP2MPT(pdip); 15547 mptsas_smp_t *psmp = NULL; 15548 int rval; 15549 int phymask; 15550 15551 /* 15552 * Get the physical port associated to the iport 15553 * PHYMASK TODO 15554 */ 15555 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 15556 "phymask", 0); 15557 /* 15558 * Find the smp node in hash table with specified sas address and 15559 * physical port 15560 */ 15561 psmp = mptsas_wwid_to_psmp(mpt, phymask, sas_wwn); 15562 if (psmp == NULL) { 15563 return (DDI_FAILURE); 15564 } 15565 15566 rval = mptsas_online_smp(pdip, psmp, smp_dip); 15567 15568 return (rval); 15569 } 15570 15571 static int 15572 mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 15573 dev_info_t **smp_dip) 15574 { 15575 char wwn_str[MPTSAS_WWN_STRLEN]; 15576 char attached_wwn_str[MPTSAS_WWN_STRLEN]; 15577 int ndi_rtn = NDI_FAILURE; 15578 int rval = 0; 15579 mptsas_smp_t dev_info; 15580 uint32_t page_address; 15581 mptsas_t *mpt = DIP2MPT(pdip); 15582 uint16_t dev_hdl; 15583 uint64_t sas_wwn; 15584 uint64_t smp_sas_wwn; 15585 uint8_t physport; 15586 uint8_t phy_id; 15587 uint16_t pdev_hdl; 15588 uint8_t numphys = 0; 15589 uint16_t i = 0; 15590 char phymask[MPTSAS_MAX_PHYS]; 15591 char *iport = NULL; 15592 mptsas_phymask_t phy_mask = 0; 15593 uint16_t attached_devhdl; 15594 uint16_t bay_num, enclosure, io_flags; 15595 15596 (void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn); 15597 15598 /* 15599 * Probe smp device, prevent the node of removed device from being 15600 * configured succesfully 15601 */ 15602 if (mptsas_probe_smp(pdip, smp_node->m_addr.mta_wwn) != NDI_SUCCESS) { 15603 return (DDI_FAILURE); 15604 } 15605 15606 if ((*smp_dip = mptsas_find_smp_child(pdip, wwn_str)) != NULL) { 15607 return (DDI_SUCCESS); 15608 } 15609 15610 ndi_rtn = ndi_devi_alloc(pdip, "smp", DEVI_SID_NODEID, smp_dip); 15611 15612 /* 15613 * if lun alloc success, set props 15614 */ 15615 if (ndi_rtn == NDI_SUCCESS) { 15616 /* 15617 * Set the flavor of the child to be SMP flavored 15618 */ 15619 ndi_flavor_set(*smp_dip, SCSA_FLAVOR_SMP); 15620 15621 if (ndi_prop_update_string(DDI_DEV_T_NONE, 15622 *smp_dip, SMP_WWN, wwn_str) != 15623 DDI_PROP_SUCCESS) { 15624 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15625 "property for smp device %s (sas_wwn)", 15626 wwn_str); 15627 ndi_rtn = NDI_FAILURE; 15628 goto smp_create_done; 15629 } 15630 (void) sprintf(wwn_str, "w%"PRIx64, smp_node->m_addr.mta_wwn); 15631 if (ndi_prop_update_string(DDI_DEV_T_NONE, 15632 *smp_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != 15633 DDI_PROP_SUCCESS) { 15634 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15635 "property for iport target-port %s (sas_wwn)", 15636 wwn_str); 15637 ndi_rtn = NDI_FAILURE; 15638 goto smp_create_done; 15639 } 15640 15641 mutex_enter(&mpt->m_mutex); 15642 15643 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL & 15644 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | smp_node->m_devhdl; 15645 rval = mptsas_get_sas_expander_page0(mpt, page_address, 15646 &dev_info); 15647 if (rval != DDI_SUCCESS) { 15648 mutex_exit(&mpt->m_mutex); 15649 mptsas_log(mpt, CE_WARN, 15650 "mptsas unable to get expander " 15651 "parent device info for %x", page_address); 15652 ndi_rtn = NDI_FAILURE; 15653 goto smp_create_done; 15654 } 15655 15656 smp_node->m_pdevhdl = dev_info.m_pdevhdl; 15657 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15658 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15659 (uint32_t)dev_info.m_pdevhdl; 15660 rval = mptsas_get_sas_device_page0(mpt, page_address, 15661 &dev_hdl, &sas_wwn, &smp_node->m_pdevinfo, &physport, 15662 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15663 if (rval != DDI_SUCCESS) { 15664 mutex_exit(&mpt->m_mutex); 15665 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 15666 "device info for %x", page_address); 15667 ndi_rtn = NDI_FAILURE; 15668 goto smp_create_done; 15669 } 15670 15671 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15672 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15673 (uint32_t)dev_info.m_devhdl; 15674 rval = mptsas_get_sas_device_page0(mpt, page_address, 15675 &dev_hdl, &smp_sas_wwn, &smp_node->m_deviceinfo, 15676 &physport, &phy_id, &pdev_hdl, &bay_num, &enclosure, 15677 &io_flags); 15678 if (rval != DDI_SUCCESS) { 15679 mutex_exit(&mpt->m_mutex); 15680 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 15681 "device info for %x", page_address); 15682 ndi_rtn = NDI_FAILURE; 15683 goto smp_create_done; 15684 } 15685 mutex_exit(&mpt->m_mutex); 15686 15687 /* 15688 * If this smp direct attached to the controller 15689 * set the attached-port to the base wwid 15690 */ 15691 if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 15692 != DEVINFO_DIRECT_ATTACHED) { 15693 (void) sprintf(attached_wwn_str, "w%016"PRIx64, 15694 sas_wwn); 15695 } else { 15696 (void) sprintf(attached_wwn_str, "w%016"PRIx64, 15697 mpt->un.m_base_wwid); 15698 } 15699 15700 if (ndi_prop_update_string(DDI_DEV_T_NONE, 15701 *smp_dip, SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwn_str) != 15702 DDI_PROP_SUCCESS) { 15703 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 15704 "property for smp attached-port %s (sas_wwn)", 15705 attached_wwn_str); 15706 ndi_rtn = NDI_FAILURE; 15707 goto smp_create_done; 15708 } 15709 15710 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 15711 *smp_dip, SMP_PROP) != DDI_PROP_SUCCESS) { 15712 mptsas_log(mpt, CE_WARN, "mptsas unable to " 15713 "create property for SMP %s (SMP_PROP) ", 15714 wwn_str); 15715 ndi_rtn = NDI_FAILURE; 15716 goto smp_create_done; 15717 } 15718 15719 /* 15720 * check the smp to see whether it direct 15721 * attached to the controller 15722 */ 15723 if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 15724 != DEVINFO_DIRECT_ATTACHED) { 15725 goto smp_create_done; 15726 } 15727 numphys = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 15728 DDI_PROP_DONTPASS, MPTSAS_NUM_PHYS, -1); 15729 if (numphys > 0) { 15730 goto smp_create_done; 15731 } 15732 /* 15733 * this iport is an old iport, we need to 15734 * reconfig the props for it. 15735 */ 15736 if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip, 15737 MPTSAS_VIRTUAL_PORT, 0) != 15738 DDI_PROP_SUCCESS) { 15739 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 15740 MPTSAS_VIRTUAL_PORT); 15741 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 15742 "prop update failed"); 15743 goto smp_create_done; 15744 } 15745 15746 mutex_enter(&mpt->m_mutex); 15747 numphys = 0; 15748 iport = ddi_get_name_addr(pdip); 15749 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 15750 bzero(phymask, sizeof (phymask)); 15751 (void) sprintf(phymask, 15752 "%x", mpt->m_phy_info[i].phy_mask); 15753 if (strcmp(phymask, iport) == 0) { 15754 phy_mask = mpt->m_phy_info[i].phy_mask; 15755 break; 15756 } 15757 } 15758 15759 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 15760 if ((phy_mask >> i) & 0x01) { 15761 numphys++; 15762 } 15763 } 15764 /* 15765 * Update PHY info for smhba 15766 */ 15767 if (mptsas_smhba_phy_init(mpt)) { 15768 mutex_exit(&mpt->m_mutex); 15769 mptsas_log(mpt, CE_WARN, "mptsas phy update " 15770 "failed"); 15771 goto smp_create_done; 15772 } 15773 mutex_exit(&mpt->m_mutex); 15774 15775 mptsas_smhba_set_all_phy_props(mpt, pdip, numphys, phy_mask, 15776 &attached_devhdl); 15777 15778 if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip, 15779 MPTSAS_NUM_PHYS, numphys) != 15780 DDI_PROP_SUCCESS) { 15781 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 15782 MPTSAS_NUM_PHYS); 15783 mptsas_log(mpt, CE_WARN, "mptsas update " 15784 "num phys props failed"); 15785 goto smp_create_done; 15786 } 15787 /* 15788 * Add parent's props for SMHBA support 15789 */ 15790 if (ddi_prop_update_string(DDI_DEV_T_NONE, pdip, 15791 SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 15792 DDI_PROP_SUCCESS) { 15793 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 15794 SCSI_ADDR_PROP_ATTACHED_PORT); 15795 mptsas_log(mpt, CE_WARN, "mptsas update iport" 15796 "attached-port failed"); 15797 goto smp_create_done; 15798 } 15799 15800 smp_create_done: 15801 /* 15802 * If props were setup ok, online the lun 15803 */ 15804 if (ndi_rtn == NDI_SUCCESS) { 15805 /* 15806 * Try to online the new node 15807 */ 15808 ndi_rtn = ndi_devi_online(*smp_dip, NDI_ONLINE_ATTACH); 15809 } 15810 15811 /* 15812 * If success set rtn flag, else unwire alloc'd lun 15813 */ 15814 if (ndi_rtn != NDI_SUCCESS) { 15815 NDBG12(("mptsas unable to online " 15816 "SMP target %s", wwn_str)); 15817 ndi_prop_remove_all(*smp_dip); 15818 (void) ndi_devi_free(*smp_dip); 15819 } 15820 } 15821 15822 return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 15823 } 15824 15825 /* smp transport routine */ 15826 static int mptsas_smp_start(struct smp_pkt *smp_pkt) 15827 { 15828 uint64_t wwn; 15829 Mpi2SmpPassthroughRequest_t req; 15830 Mpi2SmpPassthroughReply_t rep; 15831 uint32_t direction = 0; 15832 mptsas_t *mpt; 15833 int ret; 15834 uint64_t tmp64; 15835 15836 mpt = (mptsas_t *)smp_pkt->smp_pkt_address-> 15837 smp_a_hba_tran->smp_tran_hba_private; 15838 15839 bcopy(smp_pkt->smp_pkt_address->smp_a_wwn, &wwn, SAS_WWN_BYTE_SIZE); 15840 /* 15841 * Need to compose a SMP request message 15842 * and call mptsas_do_passthru() function 15843 */ 15844 bzero(&req, sizeof (req)); 15845 bzero(&rep, sizeof (rep)); 15846 req.PassthroughFlags = 0; 15847 req.PhysicalPort = 0xff; 15848 req.ChainOffset = 0; 15849 req.Function = MPI2_FUNCTION_SMP_PASSTHROUGH; 15850 15851 if ((smp_pkt->smp_pkt_reqsize & 0xffff0000ul) != 0) { 15852 smp_pkt->smp_pkt_reason = ERANGE; 15853 return (DDI_FAILURE); 15854 } 15855 req.RequestDataLength = LE_16((uint16_t)(smp_pkt->smp_pkt_reqsize - 4)); 15856 15857 req.MsgFlags = 0; 15858 tmp64 = LE_64(wwn); 15859 bcopy(&tmp64, &req.SASAddress, SAS_WWN_BYTE_SIZE); 15860 if (smp_pkt->smp_pkt_rspsize > 0) { 15861 direction |= MPTSAS_PASS_THRU_DIRECTION_READ; 15862 } 15863 if (smp_pkt->smp_pkt_reqsize > 0) { 15864 direction |= MPTSAS_PASS_THRU_DIRECTION_WRITE; 15865 } 15866 15867 mutex_enter(&mpt->m_mutex); 15868 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, 15869 (uint8_t *)smp_pkt->smp_pkt_rsp, 15870 offsetof(Mpi2SmpPassthroughRequest_t, SGL), sizeof (rep), 15871 smp_pkt->smp_pkt_rspsize - 4, direction, 15872 (uint8_t *)smp_pkt->smp_pkt_req, smp_pkt->smp_pkt_reqsize - 4, 15873 smp_pkt->smp_pkt_timeout, FKIOCTL); 15874 mutex_exit(&mpt->m_mutex); 15875 if (ret != 0) { 15876 cmn_err(CE_WARN, "smp_start do passthru error %d", ret); 15877 smp_pkt->smp_pkt_reason = (uchar_t)(ret); 15878 return (DDI_FAILURE); 15879 } 15880 /* do passthrough success, check the smp status */ 15881 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 15882 switch (LE_16(rep.IOCStatus)) { 15883 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 15884 smp_pkt->smp_pkt_reason = ENODEV; 15885 break; 15886 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 15887 smp_pkt->smp_pkt_reason = EOVERFLOW; 15888 break; 15889 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 15890 smp_pkt->smp_pkt_reason = EIO; 15891 break; 15892 default: 15893 mptsas_log(mpt, CE_NOTE, "smp_start: get unknown ioc" 15894 "status:%x", LE_16(rep.IOCStatus)); 15895 smp_pkt->smp_pkt_reason = EIO; 15896 break; 15897 } 15898 return (DDI_FAILURE); 15899 } 15900 if (rep.SASStatus != MPI2_SASSTATUS_SUCCESS) { 15901 mptsas_log(mpt, CE_NOTE, "smp_start: get error SAS status:%x", 15902 rep.SASStatus); 15903 smp_pkt->smp_pkt_reason = EIO; 15904 return (DDI_FAILURE); 15905 } 15906 15907 return (DDI_SUCCESS); 15908 } 15909 15910 /* 15911 * If we didn't get a match, we need to get sas page0 for each device, and 15912 * untill we get a match. If failed, return NULL 15913 */ 15914 static mptsas_target_t * 15915 mptsas_phy_to_tgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint8_t phy) 15916 { 15917 int i, j = 0; 15918 int rval = 0; 15919 uint16_t cur_handle; 15920 uint32_t page_address; 15921 mptsas_target_t *ptgt = NULL; 15922 15923 /* 15924 * PHY named device must be direct attached and attaches to 15925 * narrow port, if the iport is not parent of the device which 15926 * we are looking for. 15927 */ 15928 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 15929 if ((1 << i) & phymask) 15930 j++; 15931 } 15932 15933 if (j > 1) 15934 return (NULL); 15935 15936 /* 15937 * Must be a narrow port and single device attached to the narrow port 15938 * So the physical port num of device which is equal to the iport's 15939 * port num is the device what we are looking for. 15940 */ 15941 15942 if (mpt->m_phy_info[phy].phy_mask != phymask) 15943 return (NULL); 15944 15945 mutex_enter(&mpt->m_mutex); 15946 15947 ptgt = refhash_linear_search(mpt->m_targets, mptsas_target_eval_nowwn, 15948 &phy); 15949 if (ptgt != NULL) { 15950 mutex_exit(&mpt->m_mutex); 15951 return (ptgt); 15952 } 15953 15954 if (mpt->m_done_traverse_dev) { 15955 mutex_exit(&mpt->m_mutex); 15956 return (NULL); 15957 } 15958 15959 /* If didn't get a match, come here */ 15960 cur_handle = mpt->m_dev_handle; 15961 for (; ; ) { 15962 ptgt = NULL; 15963 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 15964 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)cur_handle; 15965 rval = mptsas_get_target_device_info(mpt, page_address, 15966 &cur_handle, &ptgt); 15967 if ((rval == DEV_INFO_FAIL_PAGE0) || 15968 (rval == DEV_INFO_FAIL_ALLOC)) { 15969 break; 15970 } 15971 if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) || 15972 (rval == DEV_INFO_PHYS_DISK)) { 15973 continue; 15974 } 15975 mpt->m_dev_handle = cur_handle; 15976 15977 if ((ptgt->m_addr.mta_wwn == 0) && (ptgt->m_phynum == phy)) { 15978 break; 15979 } 15980 } 15981 15982 mutex_exit(&mpt->m_mutex); 15983 return (ptgt); 15984 } 15985 15986 /* 15987 * The ptgt->m_addr.mta_wwn contains the wwid for each disk. 15988 * For Raid volumes, we need to check m_raidvol[x].m_raidwwid 15989 * If we didn't get a match, we need to get sas page0 for each device, and 15990 * untill we get a match 15991 * If failed, return NULL 15992 */ 15993 static mptsas_target_t * 15994 mptsas_wwid_to_ptgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid) 15995 { 15996 int rval = 0; 15997 uint16_t cur_handle; 15998 uint32_t page_address; 15999 mptsas_target_t *tmp_tgt = NULL; 16000 mptsas_target_addr_t addr; 16001 16002 addr.mta_wwn = wwid; 16003 addr.mta_phymask = phymask; 16004 mutex_enter(&mpt->m_mutex); 16005 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16006 if (tmp_tgt != NULL) { 16007 mutex_exit(&mpt->m_mutex); 16008 return (tmp_tgt); 16009 } 16010 16011 if (phymask == 0) { 16012 /* 16013 * It's IR volume 16014 */ 16015 rval = mptsas_get_raid_info(mpt); 16016 if (rval) { 16017 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16018 } 16019 mutex_exit(&mpt->m_mutex); 16020 return (tmp_tgt); 16021 } 16022 16023 if (mpt->m_done_traverse_dev) { 16024 mutex_exit(&mpt->m_mutex); 16025 return (NULL); 16026 } 16027 16028 /* If didn't get a match, come here */ 16029 cur_handle = mpt->m_dev_handle; 16030 for (;;) { 16031 tmp_tgt = NULL; 16032 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 16033 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | cur_handle; 16034 rval = mptsas_get_target_device_info(mpt, page_address, 16035 &cur_handle, &tmp_tgt); 16036 if ((rval == DEV_INFO_FAIL_PAGE0) || 16037 (rval == DEV_INFO_FAIL_ALLOC)) { 16038 tmp_tgt = NULL; 16039 break; 16040 } 16041 if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) || 16042 (rval == DEV_INFO_PHYS_DISK)) { 16043 continue; 16044 } 16045 mpt->m_dev_handle = cur_handle; 16046 if ((tmp_tgt->m_addr.mta_wwn) && 16047 (tmp_tgt->m_addr.mta_wwn == wwid) && 16048 (tmp_tgt->m_addr.mta_phymask == phymask)) { 16049 break; 16050 } 16051 } 16052 16053 mutex_exit(&mpt->m_mutex); 16054 return (tmp_tgt); 16055 } 16056 16057 static mptsas_smp_t * 16058 mptsas_wwid_to_psmp(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid) 16059 { 16060 int rval = 0; 16061 uint16_t cur_handle; 16062 uint32_t page_address; 16063 mptsas_smp_t smp_node, *psmp = NULL; 16064 mptsas_target_addr_t addr; 16065 16066 addr.mta_wwn = wwid; 16067 addr.mta_phymask = phymask; 16068 mutex_enter(&mpt->m_mutex); 16069 psmp = refhash_lookup(mpt->m_smp_targets, &addr); 16070 if (psmp != NULL) { 16071 mutex_exit(&mpt->m_mutex); 16072 return (psmp); 16073 } 16074 16075 if (mpt->m_done_traverse_smp) { 16076 mutex_exit(&mpt->m_mutex); 16077 return (NULL); 16078 } 16079 16080 /* If didn't get a match, come here */ 16081 cur_handle = mpt->m_smp_devhdl; 16082 for (;;) { 16083 psmp = NULL; 16084 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL & 16085 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)cur_handle; 16086 rval = mptsas_get_sas_expander_page0(mpt, page_address, 16087 &smp_node); 16088 if (rval != DDI_SUCCESS) { 16089 break; 16090 } 16091 mpt->m_smp_devhdl = cur_handle = smp_node.m_devhdl; 16092 psmp = mptsas_smp_alloc(mpt, &smp_node); 16093 ASSERT(psmp); 16094 if ((psmp->m_addr.mta_wwn) && (psmp->m_addr.mta_wwn == wwid) && 16095 (psmp->m_addr.mta_phymask == phymask)) { 16096 break; 16097 } 16098 } 16099 16100 mutex_exit(&mpt->m_mutex); 16101 return (psmp); 16102 } 16103 16104 mptsas_target_t * 16105 mptsas_tgt_alloc(mptsas_t *mpt, uint16_t devhdl, uint64_t wwid, 16106 uint32_t devinfo, mptsas_phymask_t phymask, uint8_t phynum) 16107 { 16108 mptsas_target_t *tmp_tgt = NULL; 16109 mptsas_target_addr_t addr; 16110 16111 addr.mta_wwn = wwid; 16112 addr.mta_phymask = phymask; 16113 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16114 if (tmp_tgt != NULL) { 16115 NDBG20(("Hash item already exist")); 16116 tmp_tgt->m_deviceinfo = devinfo; 16117 tmp_tgt->m_devhdl = devhdl; /* XXX - duplicate? */ 16118 return (tmp_tgt); 16119 } 16120 tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), KM_SLEEP); 16121 if (tmp_tgt == NULL) { 16122 cmn_err(CE_WARN, "Fatal, allocated tgt failed"); 16123 return (NULL); 16124 } 16125 tmp_tgt->m_devhdl = devhdl; 16126 tmp_tgt->m_addr.mta_wwn = wwid; 16127 tmp_tgt->m_deviceinfo = devinfo; 16128 tmp_tgt->m_addr.mta_phymask = phymask; 16129 tmp_tgt->m_phynum = phynum; 16130 /* Initialized the tgt structure */ 16131 tmp_tgt->m_qfull_retries = QFULL_RETRIES; 16132 tmp_tgt->m_qfull_retry_interval = 16133 drv_usectohz(QFULL_RETRY_INTERVAL * 1000); 16134 tmp_tgt->m_t_throttle = MAX_THROTTLE; 16135 TAILQ_INIT(&tmp_tgt->m_active_cmdq); 16136 16137 refhash_insert(mpt->m_targets, tmp_tgt); 16138 16139 return (tmp_tgt); 16140 } 16141 16142 static void 16143 mptsas_smp_target_copy(mptsas_smp_t *src, mptsas_smp_t *dst) 16144 { 16145 dst->m_devhdl = src->m_devhdl; 16146 dst->m_deviceinfo = src->m_deviceinfo; 16147 dst->m_pdevhdl = src->m_pdevhdl; 16148 dst->m_pdevinfo = src->m_pdevinfo; 16149 } 16150 16151 static mptsas_smp_t * 16152 mptsas_smp_alloc(mptsas_t *mpt, mptsas_smp_t *data) 16153 { 16154 mptsas_target_addr_t addr; 16155 mptsas_smp_t *ret_data; 16156 16157 addr.mta_wwn = data->m_addr.mta_wwn; 16158 addr.mta_phymask = data->m_addr.mta_phymask; 16159 ret_data = refhash_lookup(mpt->m_smp_targets, &addr); 16160 /* 16161 * If there's already a matching SMP target, update its fields 16162 * in place. Since the address is not changing, it's safe to do 16163 * this. We cannot just bcopy() here because the structure we've 16164 * been given has invalid hash links. 16165 */ 16166 if (ret_data != NULL) { 16167 mptsas_smp_target_copy(data, ret_data); 16168 return (ret_data); 16169 } 16170 16171 ret_data = kmem_alloc(sizeof (mptsas_smp_t), KM_SLEEP); 16172 bcopy(data, ret_data, sizeof (mptsas_smp_t)); 16173 refhash_insert(mpt->m_smp_targets, ret_data); 16174 return (ret_data); 16175 } 16176 16177 /* 16178 * Functions for SGPIO LED support 16179 */ 16180 static dev_info_t * 16181 mptsas_get_dip_from_dev(dev_t dev, mptsas_phymask_t *phymask) 16182 { 16183 dev_info_t *dip; 16184 int prop; 16185 dip = e_ddi_hold_devi_by_dev(dev, 0); 16186 if (dip == NULL) 16187 return (dip); 16188 prop = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, 16189 "phymask", 0); 16190 *phymask = (mptsas_phymask_t)prop; 16191 ddi_release_devi(dip); 16192 return (dip); 16193 } 16194 static mptsas_target_t * 16195 mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, mptsas_phymask_t phymask) 16196 { 16197 uint8_t phynum; 16198 uint64_t wwn; 16199 int lun; 16200 mptsas_target_t *ptgt = NULL; 16201 16202 if (mptsas_parse_address(addr, &wwn, &phynum, &lun) != DDI_SUCCESS) { 16203 return (NULL); 16204 } 16205 if (addr[0] == 'w') { 16206 ptgt = mptsas_wwid_to_ptgt(mpt, (int)phymask, wwn); 16207 } else { 16208 ptgt = mptsas_phy_to_tgt(mpt, (int)phymask, phynum); 16209 } 16210 return (ptgt); 16211 } 16212 16213 static int 16214 mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt) 16215 { 16216 uint32_t slotstatus = 0; 16217 16218 /* Build an MPI2 Slot Status based on our view of the world */ 16219 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_IDENT - 1))) 16220 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_IDENTIFY_REQUEST; 16221 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_FAIL - 1))) 16222 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_PREDICTED_FAULT; 16223 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1))) 16224 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_REQUEST_REMOVE; 16225 16226 /* Write it to the controller */ 16227 NDBG14(("mptsas_ioctl: set LED status %x for slot %x", 16228 slotstatus, ptgt->m_slot_num)); 16229 return (mptsas_send_sep(mpt, ptgt, &slotstatus, 16230 MPI2_SEP_REQ_ACTION_WRITE_STATUS)); 16231 } 16232 16233 /* 16234 * send sep request, use enclosure/slot addressing 16235 */ 16236 static int 16237 mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt, 16238 uint32_t *status, uint8_t act) 16239 { 16240 Mpi2SepRequest_t req; 16241 Mpi2SepReply_t rep; 16242 int ret; 16243 16244 ASSERT(mutex_owned(&mpt->m_mutex)); 16245 16246 /* 16247 * We only support SEP control of directly-attached targets, in which 16248 * case the "SEP" we're talking to is a virtual one contained within 16249 * the HBA itself. This is necessary because DA targets typically have 16250 * no other mechanism for LED control. Targets for which a separate 16251 * enclosure service processor exists should be controlled via ses(7d) 16252 * or sgen(7d). Furthermore, since such requests can time out, they 16253 * should be made in user context rather than in response to 16254 * asynchronous fabric changes. 16255 * 16256 * In addition, we do not support this operation for RAID volumes, 16257 * since there is no slot associated with them. 16258 */ 16259 if (!(ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) || 16260 ptgt->m_addr.mta_phymask == 0) { 16261 return (ENOTTY); 16262 } 16263 16264 bzero(&req, sizeof (req)); 16265 bzero(&rep, sizeof (rep)); 16266 16267 req.Function = MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR; 16268 req.Action = act; 16269 req.Flags = MPI2_SEP_REQ_FLAGS_ENCLOSURE_SLOT_ADDRESS; 16270 req.EnclosureHandle = LE_16(ptgt->m_enclosure); 16271 req.Slot = LE_16(ptgt->m_slot_num); 16272 if (act == MPI2_SEP_REQ_ACTION_WRITE_STATUS) { 16273 req.SlotStatus = LE_32(*status); 16274 } 16275 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL, 16276 sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL); 16277 if (ret != 0) { 16278 mptsas_log(mpt, CE_NOTE, "mptsas_send_sep: passthru SEP " 16279 "Processor Request message error %d", ret); 16280 return (ret); 16281 } 16282 /* do passthrough success, check the ioc status */ 16283 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 16284 mptsas_log(mpt, CE_NOTE, "send_sep act %x: ioc " 16285 "status:%x loginfo %x", act, LE_16(rep.IOCStatus), 16286 LE_32(rep.IOCLogInfo)); 16287 switch (LE_16(rep.IOCStatus) & MPI2_IOCSTATUS_MASK) { 16288 case MPI2_IOCSTATUS_INVALID_FUNCTION: 16289 case MPI2_IOCSTATUS_INVALID_VPID: 16290 case MPI2_IOCSTATUS_INVALID_FIELD: 16291 case MPI2_IOCSTATUS_INVALID_STATE: 16292 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 16293 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 16294 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 16295 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 16296 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 16297 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 16298 return (EINVAL); 16299 case MPI2_IOCSTATUS_BUSY: 16300 return (EBUSY); 16301 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 16302 return (EAGAIN); 16303 case MPI2_IOCSTATUS_INVALID_SGL: 16304 case MPI2_IOCSTATUS_INTERNAL_ERROR: 16305 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 16306 default: 16307 return (EIO); 16308 } 16309 } 16310 if (act != MPI2_SEP_REQ_ACTION_WRITE_STATUS) { 16311 *status = LE_32(rep.SlotStatus); 16312 } 16313 16314 return (0); 16315 } 16316 16317 int 16318 mptsas_dma_addr_create(mptsas_t *mpt, ddi_dma_attr_t dma_attr, 16319 ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp, caddr_t *dma_memp, 16320 uint32_t alloc_size, ddi_dma_cookie_t *cookiep) 16321 { 16322 ddi_dma_cookie_t new_cookie; 16323 size_t alloc_len; 16324 uint_t ncookie; 16325 16326 if (cookiep == NULL) 16327 cookiep = &new_cookie; 16328 16329 if (ddi_dma_alloc_handle(mpt->m_dip, &dma_attr, DDI_DMA_SLEEP, 16330 NULL, dma_hdp) != DDI_SUCCESS) { 16331 return (FALSE); 16332 } 16333 16334 if (ddi_dma_mem_alloc(*dma_hdp, alloc_size, &mpt->m_dev_acc_attr, 16335 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, dma_memp, &alloc_len, 16336 acc_hdp) != DDI_SUCCESS) { 16337 ddi_dma_free_handle(dma_hdp); 16338 return (FALSE); 16339 } 16340 16341 if (ddi_dma_addr_bind_handle(*dma_hdp, NULL, *dma_memp, alloc_len, 16342 (DDI_DMA_RDWR | DDI_DMA_CONSISTENT), DDI_DMA_SLEEP, NULL, 16343 cookiep, &ncookie) != DDI_DMA_MAPPED) { 16344 (void) ddi_dma_mem_free(acc_hdp); 16345 ddi_dma_free_handle(dma_hdp); 16346 return (FALSE); 16347 } 16348 16349 return (TRUE); 16350 } 16351 16352 void 16353 mptsas_dma_addr_destroy(ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp) 16354 { 16355 if (*dma_hdp == NULL) 16356 return; 16357 16358 (void) ddi_dma_unbind_handle(*dma_hdp); 16359 (void) ddi_dma_mem_free(acc_hdp); 16360 ddi_dma_free_handle(dma_hdp); 16361 }