1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 #include <stdlib.h> 32 #include <strings.h> 33 #include <errno.h> 34 #include <unistd.h> 35 #include <limits.h> 36 #include <assert.h> 37 #include <ctype.h> 38 #include <alloca.h> 39 #include <dt_impl.h> 40 #include <dt_pq.h> 41 42 #define DT_MASK_LO 0x00000000FFFFFFFFULL 43 44 /* 45 * We declare this here because (1) we need it and (2) we want to avoid a 46 * dependency on libm in libdtrace. 47 */ 48 static long double 49 dt_fabsl(long double x) 50 { 51 if (x < 0) 52 return (-x); 53 54 return (x); 55 } 56 57 static int 58 dt_ndigits(long long val) 59 { 60 int rval = 1; 61 long long cmp = 10; 62 63 if (val < 0) { 64 val = val == INT64_MIN ? INT64_MAX : -val; 65 rval++; 66 } 67 68 while (val > cmp && cmp > 0) { 69 rval++; 70 cmp *= 10; 71 } 72 73 return (rval < 4 ? 4 : rval); 74 } 75 76 /* 77 * 128-bit arithmetic functions needed to support the stddev() aggregating 78 * action. 79 */ 80 static int 81 dt_gt_128(uint64_t *a, uint64_t *b) 82 { 83 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0])); 84 } 85 86 static int 87 dt_ge_128(uint64_t *a, uint64_t *b) 88 { 89 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0])); 90 } 91 92 static int 93 dt_le_128(uint64_t *a, uint64_t *b) 94 { 95 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0])); 96 } 97 98 /* 99 * Shift the 128-bit value in a by b. If b is positive, shift left. 100 * If b is negative, shift right. 101 */ 102 static void 103 dt_shift_128(uint64_t *a, int b) 104 { 105 uint64_t mask; 106 107 if (b == 0) 108 return; 109 110 if (b < 0) { 111 b = -b; 112 if (b >= 64) { 113 a[0] = a[1] >> (b - 64); 114 a[1] = 0; 115 } else { 116 a[0] >>= b; 117 mask = 1LL << (64 - b); 118 mask -= 1; 119 a[0] |= ((a[1] & mask) << (64 - b)); 120 a[1] >>= b; 121 } 122 } else { 123 if (b >= 64) { 124 a[1] = a[0] << (b - 64); 125 a[0] = 0; 126 } else { 127 a[1] <<= b; 128 mask = a[0] >> (64 - b); 129 a[1] |= mask; 130 a[0] <<= b; 131 } 132 } 133 } 134 135 static int 136 dt_nbits_128(uint64_t *a) 137 { 138 int nbits = 0; 139 uint64_t tmp[2]; 140 uint64_t zero[2] = { 0, 0 }; 141 142 tmp[0] = a[0]; 143 tmp[1] = a[1]; 144 145 dt_shift_128(tmp, -1); 146 while (dt_gt_128(tmp, zero)) { 147 dt_shift_128(tmp, -1); 148 nbits++; 149 } 150 151 return (nbits); 152 } 153 154 static void 155 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference) 156 { 157 uint64_t result[2]; 158 159 result[0] = minuend[0] - subtrahend[0]; 160 result[1] = minuend[1] - subtrahend[1] - 161 (minuend[0] < subtrahend[0] ? 1 : 0); 162 163 difference[0] = result[0]; 164 difference[1] = result[1]; 165 } 166 167 static void 168 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 169 { 170 uint64_t result[2]; 171 172 result[0] = addend1[0] + addend2[0]; 173 result[1] = addend1[1] + addend2[1] + 174 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 175 176 sum[0] = result[0]; 177 sum[1] = result[1]; 178 } 179 180 /* 181 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 182 * use native multiplication on those, and then re-combine into the 183 * resulting 128-bit value. 184 * 185 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 186 * hi1 * hi2 << 64 + 187 * hi1 * lo2 << 32 + 188 * hi2 * lo1 << 32 + 189 * lo1 * lo2 190 */ 191 static void 192 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 193 { 194 uint64_t hi1, hi2, lo1, lo2; 195 uint64_t tmp[2]; 196 197 hi1 = factor1 >> 32; 198 hi2 = factor2 >> 32; 199 200 lo1 = factor1 & DT_MASK_LO; 201 lo2 = factor2 & DT_MASK_LO; 202 203 product[0] = lo1 * lo2; 204 product[1] = hi1 * hi2; 205 206 tmp[0] = hi1 * lo2; 207 tmp[1] = 0; 208 dt_shift_128(tmp, 32); 209 dt_add_128(product, tmp, product); 210 211 tmp[0] = hi2 * lo1; 212 tmp[1] = 0; 213 dt_shift_128(tmp, 32); 214 dt_add_128(product, tmp, product); 215 } 216 217 /* 218 * This is long-hand division. 219 * 220 * We initialize subtrahend by shifting divisor left as far as possible. We 221 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we 222 * subtract and set the appropriate bit in the result. We then shift 223 * subtrahend right by one bit for the next comparison. 224 */ 225 static void 226 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient) 227 { 228 uint64_t result[2] = { 0, 0 }; 229 uint64_t remainder[2]; 230 uint64_t subtrahend[2]; 231 uint64_t divisor_128[2]; 232 uint64_t mask[2] = { 1, 0 }; 233 int log = 0; 234 235 assert(divisor != 0); 236 237 divisor_128[0] = divisor; 238 divisor_128[1] = 0; 239 240 remainder[0] = dividend[0]; 241 remainder[1] = dividend[1]; 242 243 subtrahend[0] = divisor; 244 subtrahend[1] = 0; 245 246 while (divisor > 0) { 247 log++; 248 divisor >>= 1; 249 } 250 251 dt_shift_128(subtrahend, 128 - log); 252 dt_shift_128(mask, 128 - log); 253 254 while (dt_ge_128(remainder, divisor_128)) { 255 if (dt_ge_128(remainder, subtrahend)) { 256 dt_subtract_128(remainder, subtrahend, remainder); 257 result[0] |= mask[0]; 258 result[1] |= mask[1]; 259 } 260 261 dt_shift_128(subtrahend, -1); 262 dt_shift_128(mask, -1); 263 } 264 265 quotient[0] = result[0]; 266 quotient[1] = result[1]; 267 } 268 269 /* 270 * This is the long-hand method of calculating a square root. 271 * The algorithm is as follows: 272 * 273 * 1. Group the digits by 2 from the right. 274 * 2. Over the leftmost group, find the largest single-digit number 275 * whose square is less than that group. 276 * 3. Subtract the result of the previous step (2 or 4, depending) and 277 * bring down the next two-digit group. 278 * 4. For the result R we have so far, find the largest single-digit number 279 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3. 280 * (Note that this is doubling R and performing a decimal left-shift by 1 281 * and searching for the appropriate decimal to fill the one's place.) 282 * The value x is the next digit in the square root. 283 * Repeat steps 3 and 4 until the desired precision is reached. (We're 284 * dealing with integers, so the above is sufficient.) 285 * 286 * In decimal, the square root of 582,734 would be calculated as so: 287 * 288 * __7__6__3 289 * | 58 27 34 290 * -49 (7^2 == 49 => 7 is the first digit in the square root) 291 * -- 292 * 9 27 (Subtract and bring down the next group.) 293 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in 294 * ----- the square root) 295 * 51 34 (Subtract and bring down the next group.) 296 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in 297 * ----- the square root) 298 * 5 65 (remainder) 299 * 300 * The above algorithm applies similarly in binary, but note that the 301 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a 302 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the 303 * preceding difference? 304 * 305 * In binary, the square root of 11011011 would be calculated as so: 306 * 307 * __1__1__1__0 308 * | 11 01 10 11 309 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1) 310 * -- 311 * 10 01 10 11 312 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1) 313 * ----- 314 * 1 00 10 11 315 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1) 316 * ------- 317 * 1 01 11 318 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0) 319 * 320 */ 321 static uint64_t 322 dt_sqrt_128(uint64_t *square) 323 { 324 uint64_t result[2] = { 0, 0 }; 325 uint64_t diff[2] = { 0, 0 }; 326 uint64_t one[2] = { 1, 0 }; 327 uint64_t next_pair[2]; 328 uint64_t next_try[2]; 329 uint64_t bit_pairs, pair_shift; 330 int i; 331 332 bit_pairs = dt_nbits_128(square) / 2; 333 pair_shift = bit_pairs * 2; 334 335 for (i = 0; i <= bit_pairs; i++) { 336 /* 337 * Bring down the next pair of bits. 338 */ 339 next_pair[0] = square[0]; 340 next_pair[1] = square[1]; 341 dt_shift_128(next_pair, -pair_shift); 342 next_pair[0] &= 0x3; 343 next_pair[1] = 0; 344 345 dt_shift_128(diff, 2); 346 dt_add_128(diff, next_pair, diff); 347 348 /* 349 * next_try = R << 2 + 1 350 */ 351 next_try[0] = result[0]; 352 next_try[1] = result[1]; 353 dt_shift_128(next_try, 2); 354 dt_add_128(next_try, one, next_try); 355 356 if (dt_le_128(next_try, diff)) { 357 dt_subtract_128(diff, next_try, diff); 358 dt_shift_128(result, 1); 359 dt_add_128(result, one, result); 360 } else { 361 dt_shift_128(result, 1); 362 } 363 364 pair_shift -= 2; 365 } 366 367 assert(result[1] == 0); 368 369 return (result[0]); 370 } 371 372 uint64_t 373 dt_stddev(uint64_t *data, uint64_t normal) 374 { 375 uint64_t avg_of_squares[2]; 376 uint64_t square_of_avg[2]; 377 int64_t norm_avg; 378 uint64_t diff[2]; 379 380 /* 381 * The standard approximation for standard deviation is 382 * sqrt(average(x**2) - average(x)**2), i.e. the square root 383 * of the average of the squares minus the square of the average. 384 */ 385 dt_divide_128(data + 2, normal, avg_of_squares); 386 dt_divide_128(avg_of_squares, data[0], avg_of_squares); 387 388 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0]; 389 390 if (norm_avg < 0) 391 norm_avg = -norm_avg; 392 393 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg); 394 395 dt_subtract_128(avg_of_squares, square_of_avg, diff); 396 397 return (dt_sqrt_128(diff)); 398 } 399 400 static int 401 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last, 402 dtrace_bufdesc_t *buf, size_t offs) 403 { 404 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd; 405 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd; 406 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub; 407 dtrace_flowkind_t flow = DTRACEFLOW_NONE; 408 const char *str = NULL; 409 static const char *e_str[2] = { " -> ", " => " }; 410 static const char *r_str[2] = { " <- ", " <= " }; 411 static const char *ent = "entry", *ret = "return"; 412 static int entlen = 0, retlen = 0; 413 dtrace_epid_t next, id = epd->dtepd_epid; 414 int rval; 415 416 if (entlen == 0) { 417 assert(retlen == 0); 418 entlen = strlen(ent); 419 retlen = strlen(ret); 420 } 421 422 /* 423 * If the name of the probe is "entry" or ends with "-entry", we 424 * treat it as an entry; if it is "return" or ends with "-return", 425 * we treat it as a return. (This allows application-provided probes 426 * like "method-entry" or "function-entry" to participate in flow 427 * indentation -- without accidentally misinterpreting popular probe 428 * names like "carpentry", "gentry" or "Coventry".) 429 */ 430 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' && 431 (sub == n || sub[-1] == '-')) { 432 flow = DTRACEFLOW_ENTRY; 433 str = e_str[strcmp(p, "syscall") == 0]; 434 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' && 435 (sub == n || sub[-1] == '-')) { 436 flow = DTRACEFLOW_RETURN; 437 str = r_str[strcmp(p, "syscall") == 0]; 438 } 439 440 /* 441 * If we're going to indent this, we need to check the ID of our last 442 * call. If we're looking at the same probe ID but a different EPID, 443 * we _don't_ want to indent. (Yes, there are some minor holes in 444 * this scheme -- it's a heuristic.) 445 */ 446 if (flow == DTRACEFLOW_ENTRY) { 447 if ((last != DTRACE_EPIDNONE && id != last && 448 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id)) 449 flow = DTRACEFLOW_NONE; 450 } 451 452 /* 453 * If we're going to unindent this, it's more difficult to see if 454 * we don't actually want to unindent it -- we need to look at the 455 * _next_ EPID. 456 */ 457 if (flow == DTRACEFLOW_RETURN) { 458 offs += epd->dtepd_size; 459 460 do { 461 if (offs >= buf->dtbd_size) 462 goto out; 463 464 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 465 466 if (next == DTRACE_EPIDNONE) 467 offs += sizeof (id); 468 } while (next == DTRACE_EPIDNONE); 469 470 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0) 471 return (rval); 472 473 if (next != id && npd->dtpd_id == pd->dtpd_id) 474 flow = DTRACEFLOW_NONE; 475 } 476 477 out: 478 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) { 479 data->dtpda_prefix = str; 480 } else { 481 data->dtpda_prefix = "| "; 482 } 483 484 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0) 485 data->dtpda_indent -= 2; 486 487 data->dtpda_flow = flow; 488 489 return (0); 490 } 491 492 static int 493 dt_nullprobe() 494 { 495 return (DTRACE_CONSUME_THIS); 496 } 497 498 static int 499 dt_nullrec() 500 { 501 return (DTRACE_CONSUME_NEXT); 502 } 503 504 static void 505 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total) 506 { 507 long double val = dt_fabsl((long double)datum); 508 509 if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) { 510 *total += val; 511 return; 512 } 513 514 /* 515 * If we're zooming in on an aggregation, we want the height of the 516 * highest value to be approximately 95% of total bar height -- so we 517 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to 518 * our highest value. 519 */ 520 val *= 1 / DTRACE_AGGZOOM_MAX; 521 522 if (*total < val) 523 *total = val; 524 } 525 526 static int 527 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width) 528 { 529 return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n", 530 width ? width : 16, width ? "key" : "value", 531 "------------- Distribution -------------", "count")); 532 } 533 534 static int 535 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width, 536 const dtrace_aggdata_t *aggdata, dtrace_actkind_t action) 537 { 538 int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin; 539 int minwidth, maxwidth, i; 540 541 assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE); 542 543 if (action == DTRACEAGG_QUANTIZE) { 544 if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET) 545 min--; 546 547 if (max < DTRACE_QUANTIZE_NBUCKETS - 1) 548 max++; 549 550 minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min)); 551 maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max)); 552 } else { 553 maxwidth = 8; 554 minwidth = maxwidth - 1; 555 max++; 556 } 557 558 if (dt_printf(dtp, fp, "\n%*s %*s .", 559 width, width > 0 ? "key" : "", minwidth, "min") < 0) 560 return (-1); 561 562 for (i = min; i <= max; i++) { 563 if (dt_printf(dtp, fp, "-") < 0) 564 return (-1); 565 } 566 567 return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max")); 568 } 569 570 /* 571 * We use a subset of the Unicode Block Elements (U+2588 through U+258F, 572 * inclusive) to represent aggregations via UTF-8 -- which are expressed via 573 * 3-byte UTF-8 sequences. 574 */ 575 #define DTRACE_AGGUTF8_FULL 0x2588 576 #define DTRACE_AGGUTF8_BASE 0x258f 577 #define DTRACE_AGGUTF8_LEVELS 8 578 579 #define DTRACE_AGGUTF8_BYTE0(val) (0xe0 | ((val) >> 12)) 580 #define DTRACE_AGGUTF8_BYTE1(val) (0x80 | (((val) >> 6) & 0x3f)) 581 #define DTRACE_AGGUTF8_BYTE2(val) (0x80 | ((val) & 0x3f)) 582 583 static int 584 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val, 585 uint64_t normal, long double total) 586 { 587 uint_t len = 40, i, whole, partial; 588 long double f = (dt_fabsl((long double)val) * len) / total; 589 const char *spaces = " "; 590 591 whole = (uint_t)f; 592 partial = (uint_t)((f - (long double)(uint_t)f) * 593 (long double)DTRACE_AGGUTF8_LEVELS); 594 595 if (dt_printf(dtp, fp, "|") < 0) 596 return (-1); 597 598 for (i = 0; i < whole; i++) { 599 if (dt_printf(dtp, fp, "%c%c%c", 600 DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL), 601 DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL), 602 DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0) 603 return (-1); 604 } 605 606 if (partial != 0) { 607 partial = DTRACE_AGGUTF8_BASE - (partial - 1); 608 609 if (dt_printf(dtp, fp, "%c%c%c", 610 DTRACE_AGGUTF8_BYTE0(partial), 611 DTRACE_AGGUTF8_BYTE1(partial), 612 DTRACE_AGGUTF8_BYTE2(partial)) < 0) 613 return (-1); 614 615 i++; 616 } 617 618 return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i, 619 (long long)val / normal)); 620 } 621 622 static int 623 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val, 624 uint64_t normal, long double total, char positives, char negatives) 625 { 626 long double f; 627 uint_t depth, len = 40; 628 629 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"; 630 const char *spaces = " "; 631 632 assert(strlen(ats) == len && strlen(spaces) == len); 633 assert(!(total == 0 && (positives || negatives))); 634 assert(!(val < 0 && !negatives)); 635 assert(!(val > 0 && !positives)); 636 assert(!(val != 0 && total == 0)); 637 638 if (!negatives) { 639 if (positives) { 640 if (dtp->dt_encoding == DT_ENCODING_UTF8) { 641 return (dt_print_quantline_utf8(dtp, fp, val, 642 normal, total)); 643 } 644 645 f = (dt_fabsl((long double)val) * len) / total; 646 depth = (uint_t)(f + 0.5); 647 } else { 648 depth = 0; 649 } 650 651 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth, 652 spaces + depth, (long long)val / normal)); 653 } 654 655 if (!positives) { 656 f = (dt_fabsl((long double)val) * len) / total; 657 depth = (uint_t)(f + 0.5); 658 659 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth, 660 ats + len - depth, (long long)val / normal)); 661 } 662 663 /* 664 * If we're here, we have both positive and negative bucket values. 665 * To express this graphically, we're going to generate both positive 666 * and negative bars separated by a centerline. These bars are half 667 * the size of normal quantize()/lquantize() bars, so we divide the 668 * length in half before calculating the bar length. 669 */ 670 len /= 2; 671 ats = &ats[len]; 672 spaces = &spaces[len]; 673 674 f = (dt_fabsl((long double)val) * len) / total; 675 depth = (uint_t)(f + 0.5); 676 677 if (val <= 0) { 678 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth, 679 ats + len - depth, len, "", (long long)val / normal)); 680 } else { 681 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "", 682 ats + len - depth, spaces + depth, 683 (long long)val / normal)); 684 } 685 } 686 687 /* 688 * As with UTF-8 printing of aggregations, we use a subset of the Unicode 689 * Block Elements (U+2581 through U+2588, inclusive) to represent our packed 690 * aggregation. 691 */ 692 #define DTRACE_AGGPACK_BASE 0x2581 693 #define DTRACE_AGGPACK_LEVELS 8 694 695 static int 696 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp, 697 long double datum, long double total) 698 { 699 static boolean_t utf8_checked = B_FALSE; 700 static boolean_t utf8; 701 char *ascii = "__xxxxXX"; 702 char *neg = "vvvvVV"; 703 unsigned int len; 704 long double val; 705 706 if (!utf8_checked) { 707 char *term; 708 709 /* 710 * We want to determine if we can reasonably emit UTF-8 for our 711 * packed aggregation. To do this, we will check for terminals 712 * that are known to be primitive to emit UTF-8 on these. 713 */ 714 utf8_checked = B_TRUE; 715 716 if (dtp->dt_encoding == DT_ENCODING_ASCII) 717 utf8 = B_FALSE; 718 else if (dtp->dt_encoding == DT_ENCODING_UTF8) 719 utf8 = B_TRUE; 720 else if ((term = getenv("TERM")) != NULL && 721 (strcmp(term, "sun") == 0 || 722 strcmp(term, "sun-color") == 0) || 723 strcmp(term, "dumb") == 0) 724 utf8 = B_FALSE; 725 else 726 utf8 = B_TRUE; 727 } 728 729 if (datum == 0) 730 return (dt_printf(dtp, fp, " ")); 731 732 if (datum < 0) { 733 len = strlen(neg); 734 val = dt_fabsl(datum * (len - 1)) / total; 735 return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)])); 736 } 737 738 if (utf8) { 739 int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum * 740 (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5); 741 742 return (dt_printf(dtp, fp, "%c%c%c", 743 DTRACE_AGGUTF8_BYTE0(block), 744 DTRACE_AGGUTF8_BYTE1(block), 745 DTRACE_AGGUTF8_BYTE2(block))); 746 } 747 748 len = strlen(ascii); 749 val = (datum * (len - 1)) / total; 750 return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)])); 751 } 752 753 int 754 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 755 size_t size, uint64_t normal) 756 { 757 const int64_t *data = addr; 758 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1; 759 long double total = 0; 760 char positives = 0, negatives = 0; 761 762 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 763 return (dt_set_errno(dtp, EDT_DMISMATCH)); 764 765 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0) 766 first_bin++; 767 768 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) { 769 /* 770 * There isn't any data. This is possible if the aggregation 771 * has been clear()'d or if negative increment values have been 772 * used. Regardless, we'll print the buckets around 0. 773 */ 774 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1; 775 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1; 776 } else { 777 if (first_bin > 0) 778 first_bin--; 779 780 while (last_bin > 0 && data[last_bin] == 0) 781 last_bin--; 782 783 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1) 784 last_bin++; 785 } 786 787 for (i = first_bin; i <= last_bin; i++) { 788 positives |= (data[i] > 0); 789 negatives |= (data[i] < 0); 790 dt_quantize_total(dtp, data[i], &total); 791 } 792 793 if (dt_print_quanthdr(dtp, fp, 0) < 0) 794 return (-1); 795 796 for (i = first_bin; i <= last_bin; i++) { 797 if (dt_printf(dtp, fp, "%16lld ", 798 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0) 799 return (-1); 800 801 if (dt_print_quantline(dtp, fp, data[i], normal, total, 802 positives, negatives) < 0) 803 return (-1); 804 } 805 806 return (0); 807 } 808 809 int 810 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 811 size_t size, const dtrace_aggdata_t *aggdata) 812 { 813 const int64_t *data = addr; 814 long double total = 0, count = 0; 815 int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i; 816 int64_t minval, maxval; 817 818 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 819 return (dt_set_errno(dtp, EDT_DMISMATCH)); 820 821 if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET) 822 min--; 823 824 if (max < DTRACE_QUANTIZE_NBUCKETS - 1) 825 max++; 826 827 minval = DTRACE_QUANTIZE_BUCKETVAL(min); 828 maxval = DTRACE_QUANTIZE_BUCKETVAL(max); 829 830 if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval), 831 (long long)minval) < 0) 832 return (-1); 833 834 for (i = min; i <= max; i++) { 835 dt_quantize_total(dtp, data[i], &total); 836 count += data[i]; 837 } 838 839 for (i = min; i <= max; i++) { 840 if (dt_print_packed(dtp, fp, data[i], total) < 0) 841 return (-1); 842 } 843 844 if (dt_printf(dtp, fp, ": %*lld | %lld\n", 845 -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0) 846 return (-1); 847 848 return (0); 849 } 850 851 int 852 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 853 size_t size, uint64_t normal) 854 { 855 const int64_t *data = addr; 856 int i, first_bin, last_bin, base; 857 uint64_t arg; 858 long double total = 0; 859 uint16_t step, levels; 860 char positives = 0, negatives = 0; 861 862 if (size < sizeof (uint64_t)) 863 return (dt_set_errno(dtp, EDT_DMISMATCH)); 864 865 arg = *data++; 866 size -= sizeof (uint64_t); 867 868 base = DTRACE_LQUANTIZE_BASE(arg); 869 step = DTRACE_LQUANTIZE_STEP(arg); 870 levels = DTRACE_LQUANTIZE_LEVELS(arg); 871 872 first_bin = 0; 873 last_bin = levels + 1; 874 875 if (size != sizeof (uint64_t) * (levels + 2)) 876 return (dt_set_errno(dtp, EDT_DMISMATCH)); 877 878 while (first_bin <= levels + 1 && data[first_bin] == 0) 879 first_bin++; 880 881 if (first_bin > levels + 1) { 882 first_bin = 0; 883 last_bin = 2; 884 } else { 885 if (first_bin > 0) 886 first_bin--; 887 888 while (last_bin > 0 && data[last_bin] == 0) 889 last_bin--; 890 891 if (last_bin < levels + 1) 892 last_bin++; 893 } 894 895 for (i = first_bin; i <= last_bin; i++) { 896 positives |= (data[i] > 0); 897 negatives |= (data[i] < 0); 898 dt_quantize_total(dtp, data[i], &total); 899 } 900 901 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 902 "------------- Distribution -------------", "count") < 0) 903 return (-1); 904 905 for (i = first_bin; i <= last_bin; i++) { 906 char c[32]; 907 int err; 908 909 if (i == 0) { 910 (void) snprintf(c, sizeof (c), "< %d", base); 911 err = dt_printf(dtp, fp, "%16s ", c); 912 } else if (i == levels + 1) { 913 (void) snprintf(c, sizeof (c), ">= %d", 914 base + (levels * step)); 915 err = dt_printf(dtp, fp, "%16s ", c); 916 } else { 917 err = dt_printf(dtp, fp, "%16d ", 918 base + (i - 1) * step); 919 } 920 921 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal, 922 total, positives, negatives) < 0) 923 return (-1); 924 } 925 926 return (0); 927 } 928 929 /*ARGSUSED*/ 930 int 931 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 932 size_t size, const dtrace_aggdata_t *aggdata) 933 { 934 const int64_t *data = addr; 935 long double total = 0, count = 0; 936 int min, max, base, err; 937 uint64_t arg; 938 uint16_t step, levels; 939 char c[32]; 940 unsigned int i; 941 942 if (size < sizeof (uint64_t)) 943 return (dt_set_errno(dtp, EDT_DMISMATCH)); 944 945 arg = *data++; 946 size -= sizeof (uint64_t); 947 948 base = DTRACE_LQUANTIZE_BASE(arg); 949 step = DTRACE_LQUANTIZE_STEP(arg); 950 levels = DTRACE_LQUANTIZE_LEVELS(arg); 951 952 if (size != sizeof (uint64_t) * (levels + 2)) 953 return (dt_set_errno(dtp, EDT_DMISMATCH)); 954 955 min = 0; 956 max = levels + 1; 957 958 if (min == 0) { 959 (void) snprintf(c, sizeof (c), "< %d", base); 960 err = dt_printf(dtp, fp, "%8s :", c); 961 } else { 962 err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step); 963 } 964 965 if (err < 0) 966 return (-1); 967 968 for (i = min; i <= max; i++) { 969 dt_quantize_total(dtp, data[i], &total); 970 count += data[i]; 971 } 972 973 for (i = min; i <= max; i++) { 974 if (dt_print_packed(dtp, fp, data[i], total) < 0) 975 return (-1); 976 } 977 978 (void) snprintf(c, sizeof (c), ">= %d", base + (levels * step)); 979 return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count)); 980 } 981 982 int 983 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 984 size_t size, uint64_t normal) 985 { 986 int i, first_bin, last_bin, bin = 1, order, levels; 987 uint16_t factor, low, high, nsteps; 988 const int64_t *data = addr; 989 int64_t value = 1, next, step; 990 char positives = 0, negatives = 0; 991 long double total = 0; 992 uint64_t arg; 993 char c[32]; 994 995 if (size < sizeof (uint64_t)) 996 return (dt_set_errno(dtp, EDT_DMISMATCH)); 997 998 arg = *data++; 999 size -= sizeof (uint64_t); 1000 1001 factor = DTRACE_LLQUANTIZE_FACTOR(arg); 1002 low = DTRACE_LLQUANTIZE_LOW(arg); 1003 high = DTRACE_LLQUANTIZE_HIGH(arg); 1004 nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 1005 1006 /* 1007 * We don't expect to be handed invalid llquantize() parameters here, 1008 * but sanity check them (to a degree) nonetheless. 1009 */ 1010 if (size > INT32_MAX || factor < 2 || low >= high || 1011 nsteps == 0 || factor > nsteps) 1012 return (dt_set_errno(dtp, EDT_DMISMATCH)); 1013 1014 levels = (int)size / sizeof (uint64_t); 1015 1016 first_bin = 0; 1017 last_bin = levels - 1; 1018 1019 while (first_bin < levels && data[first_bin] == 0) 1020 first_bin++; 1021 1022 if (first_bin == levels) { 1023 first_bin = 0; 1024 last_bin = 1; 1025 } else { 1026 if (first_bin > 0) 1027 first_bin--; 1028 1029 while (last_bin > 0 && data[last_bin] == 0) 1030 last_bin--; 1031 1032 if (last_bin < levels - 1) 1033 last_bin++; 1034 } 1035 1036 for (i = first_bin; i <= last_bin; i++) { 1037 positives |= (data[i] > 0); 1038 negatives |= (data[i] < 0); 1039 dt_quantize_total(dtp, data[i], &total); 1040 } 1041 1042 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 1043 "------------- Distribution -------------", "count") < 0) 1044 return (-1); 1045 1046 for (order = 0; order < low; order++) 1047 value *= factor; 1048 1049 next = value * factor; 1050 step = next > nsteps ? next / nsteps : 1; 1051 1052 if (first_bin == 0) { 1053 (void) snprintf(c, sizeof (c), "< %lld", value); 1054 1055 if (dt_printf(dtp, fp, "%16s ", c) < 0) 1056 return (-1); 1057 1058 if (dt_print_quantline(dtp, fp, data[0], normal, 1059 total, positives, negatives) < 0) 1060 return (-1); 1061 } 1062 1063 while (order <= high) { 1064 if (bin >= first_bin && bin <= last_bin) { 1065 if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0) 1066 return (-1); 1067 1068 if (dt_print_quantline(dtp, fp, data[bin], 1069 normal, total, positives, negatives) < 0) 1070 return (-1); 1071 } 1072 1073 assert(value < next); 1074 bin++; 1075 1076 if ((value += step) != next) 1077 continue; 1078 1079 next = value * factor; 1080 step = next > nsteps ? next / nsteps : 1; 1081 order++; 1082 } 1083 1084 if (last_bin < bin) 1085 return (0); 1086 1087 assert(last_bin == bin); 1088 (void) snprintf(c, sizeof (c), ">= %lld", value); 1089 1090 if (dt_printf(dtp, fp, "%16s ", c) < 0) 1091 return (-1); 1092 1093 return (dt_print_quantline(dtp, fp, data[bin], normal, 1094 total, positives, negatives)); 1095 } 1096 1097 /*ARGSUSED*/ 1098 static int 1099 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 1100 size_t size, uint64_t normal) 1101 { 1102 /* LINTED - alignment */ 1103 int64_t *data = (int64_t *)addr; 1104 1105 return (dt_printf(dtp, fp, " %16lld", data[0] ? 1106 (long long)(data[1] / (int64_t)normal / data[0]) : 0)); 1107 } 1108 1109 /*ARGSUSED*/ 1110 static int 1111 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 1112 size_t size, uint64_t normal) 1113 { 1114 /* LINTED - alignment */ 1115 uint64_t *data = (uint64_t *)addr; 1116 1117 return (dt_printf(dtp, fp, " %16llu", data[0] ? 1118 (unsigned long long) dt_stddev(data, normal) : 0)); 1119 } 1120 1121 /*ARGSUSED*/ 1122 static int 1123 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 1124 size_t nbytes, int width, int quiet, int forceraw) 1125 { 1126 /* 1127 * If the byte stream is a series of printable characters, followed by 1128 * a terminating byte, we print it out as a string. Otherwise, we 1129 * assume that it's something else and just print the bytes. 1130 */ 1131 int i, j, margin = 5; 1132 char *c = (char *)addr; 1133 1134 if (nbytes == 0) 1135 return (0); 1136 1137 if (forceraw) 1138 goto raw; 1139 1140 if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET) 1141 goto raw; 1142 1143 for (i = 0; i < nbytes; i++) { 1144 /* 1145 * We define a "printable character" to be one for which 1146 * isprint(3C) returns non-zero, isspace(3C) returns non-zero, 1147 * or a character which is either backspace or the bell. 1148 * Backspace and the bell are regrettably special because 1149 * they fail the first two tests -- and yet they are entirely 1150 * printable. These are the only two control characters that 1151 * have meaning for the terminal and for which isprint(3C) and 1152 * isspace(3C) return 0. 1153 */ 1154 if (isprint(c[i]) || isspace(c[i]) || 1155 c[i] == '\b' || c[i] == '\a') 1156 continue; 1157 1158 if (c[i] == '\0' && i > 0) { 1159 /* 1160 * This looks like it might be a string. Before we 1161 * assume that it is indeed a string, check the 1162 * remainder of the byte range; if it contains 1163 * additional non-nul characters, we'll assume that 1164 * it's a binary stream that just happens to look like 1165 * a string, and we'll print out the individual bytes. 1166 */ 1167 for (j = i + 1; j < nbytes; j++) { 1168 if (c[j] != '\0') 1169 break; 1170 } 1171 1172 if (j != nbytes) 1173 break; 1174 1175 if (quiet) { 1176 return (dt_printf(dtp, fp, "%s", c)); 1177 } else { 1178 return (dt_printf(dtp, fp, " %s%*s", 1179 width < 0 ? " " : "", width, c)); 1180 } 1181 } 1182 1183 break; 1184 } 1185 1186 if (i == nbytes) { 1187 /* 1188 * The byte range is all printable characters, but there is 1189 * no trailing nul byte. We'll assume that it's a string and 1190 * print it as such. 1191 */ 1192 char *s = alloca(nbytes + 1); 1193 bcopy(c, s, nbytes); 1194 s[nbytes] = '\0'; 1195 return (dt_printf(dtp, fp, " %-*s", width, s)); 1196 } 1197 1198 raw: 1199 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0) 1200 return (-1); 1201 1202 for (i = 0; i < 16; i++) 1203 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0) 1204 return (-1); 1205 1206 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0) 1207 return (-1); 1208 1209 1210 for (i = 0; i < nbytes; i += 16) { 1211 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0) 1212 return (-1); 1213 1214 for (j = i; j < i + 16 && j < nbytes; j++) { 1215 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0) 1216 return (-1); 1217 } 1218 1219 while (j++ % 16) { 1220 if (dt_printf(dtp, fp, " ") < 0) 1221 return (-1); 1222 } 1223 1224 if (dt_printf(dtp, fp, " ") < 0) 1225 return (-1); 1226 1227 for (j = i; j < i + 16 && j < nbytes; j++) { 1228 if (dt_printf(dtp, fp, "%c", 1229 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0) 1230 return (-1); 1231 } 1232 1233 if (dt_printf(dtp, fp, "\n") < 0) 1234 return (-1); 1235 } 1236 1237 return (0); 1238 } 1239 1240 int 1241 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 1242 caddr_t addr, int depth, int size) 1243 { 1244 dtrace_syminfo_t dts; 1245 GElf_Sym sym; 1246 int i, indent; 1247 char c[PATH_MAX * 2]; 1248 uint64_t pc; 1249 1250 if (dt_printf(dtp, fp, "\n") < 0) 1251 return (-1); 1252 1253 if (format == NULL) 1254 format = "%s"; 1255 1256 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 1257 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 1258 else 1259 indent = _dtrace_stkindent; 1260 1261 for (i = 0; i < depth; i++) { 1262 switch (size) { 1263 case sizeof (uint32_t): 1264 /* LINTED - alignment */ 1265 pc = *((uint32_t *)addr); 1266 break; 1267 1268 case sizeof (uint64_t): 1269 /* LINTED - alignment */ 1270 pc = *((uint64_t *)addr); 1271 break; 1272 1273 default: 1274 return (dt_set_errno(dtp, EDT_BADSTACKPC)); 1275 } 1276 1277 if (pc == NULL) 1278 break; 1279 1280 addr += size; 1281 1282 if (dt_printf(dtp, fp, "%*s", indent, "") < 0) 1283 return (-1); 1284 1285 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 1286 if (pc > sym.st_value) { 1287 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", 1288 dts.dts_object, dts.dts_name, 1289 pc - sym.st_value); 1290 } else { 1291 (void) snprintf(c, sizeof (c), "%s`%s", 1292 dts.dts_object, dts.dts_name); 1293 } 1294 } else { 1295 /* 1296 * We'll repeat the lookup, but this time we'll specify 1297 * a NULL GElf_Sym -- indicating that we're only 1298 * interested in the containing module. 1299 */ 1300 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1301 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1302 dts.dts_object, pc); 1303 } else { 1304 (void) snprintf(c, sizeof (c), "0x%llx", pc); 1305 } 1306 } 1307 1308 if (dt_printf(dtp, fp, format, c) < 0) 1309 return (-1); 1310 1311 if (dt_printf(dtp, fp, "\n") < 0) 1312 return (-1); 1313 } 1314 1315 return (0); 1316 } 1317 1318 int 1319 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 1320 caddr_t addr, uint64_t arg) 1321 { 1322 /* LINTED - alignment */ 1323 uint64_t *pc = (uint64_t *)addr; 1324 uint32_t depth = DTRACE_USTACK_NFRAMES(arg); 1325 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg); 1326 const char *strbase = addr + (depth + 1) * sizeof (uint64_t); 1327 const char *str = strsize ? strbase : NULL; 1328 int err = 0; 1329 1330 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; 1331 struct ps_prochandle *P; 1332 GElf_Sym sym; 1333 int i, indent; 1334 pid_t pid; 1335 1336 if (depth == 0) 1337 return (0); 1338 1339 pid = (pid_t)*pc++; 1340 1341 if (dt_printf(dtp, fp, "\n") < 0) 1342 return (-1); 1343 1344 if (format == NULL) 1345 format = "%s"; 1346 1347 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 1348 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 1349 else 1350 indent = _dtrace_stkindent; 1351 1352 /* 1353 * Ultimately, we need to add an entry point in the library vector for 1354 * determining <symbol, offset> from <pid, address>. For now, if 1355 * this is a vector open, we just print the raw address or string. 1356 */ 1357 if (dtp->dt_vector == NULL) 1358 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1359 else 1360 P = NULL; 1361 1362 if (P != NULL) 1363 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1364 1365 for (i = 0; i < depth && pc[i] != NULL; i++) { 1366 const prmap_t *map; 1367 1368 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1369 break; 1370 1371 if (P != NULL && Plookup_by_addr(P, pc[i], 1372 name, sizeof (name), &sym) == 0) { 1373 (void) Pobjname(P, pc[i], objname, sizeof (objname)); 1374 1375 if (pc[i] > sym.st_value) { 1376 (void) snprintf(c, sizeof (c), 1377 "%s`%s+0x%llx", dt_basename(objname), name, 1378 (u_longlong_t)(pc[i] - sym.st_value)); 1379 } else { 1380 (void) snprintf(c, sizeof (c), 1381 "%s`%s", dt_basename(objname), name); 1382 } 1383 } else if (str != NULL && str[0] != '\0' && str[0] != '@' && 1384 (P == NULL || (map = Paddr_to_map(P, pc[i])) == NULL || 1385 map->pr_mflags & MA_WRITE)) { 1386 /* 1387 * If the current string pointer in the string table 1388 * does not point to an empty string _and_ the program 1389 * counter falls in a writable region, we'll use the 1390 * string from the string table instead of the raw 1391 * address. This last condition is necessary because 1392 * some (broken) ustack helpers will return a string 1393 * even for a program counter that they can't 1394 * identify. If we have a string for a program 1395 * counter that falls in a segment that isn't 1396 * writable, we assume that we have fallen into this 1397 * case and we refuse to use the string. Finally, 1398 * note that if we could not grab the process (e.g., 1399 * because it exited), the information from the helper 1400 * is better than nothing. 1401 */ 1402 (void) snprintf(c, sizeof (c), "%s", str); 1403 } else { 1404 if (P != NULL && Pobjname(P, pc[i], objname, 1405 sizeof (objname)) != NULL) { 1406 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1407 dt_basename(objname), (u_longlong_t)pc[i]); 1408 } else { 1409 (void) snprintf(c, sizeof (c), "0x%llx", 1410 (u_longlong_t)pc[i]); 1411 } 1412 } 1413 1414 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1415 break; 1416 1417 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1418 break; 1419 1420 if (str != NULL && str[0] == '@') { 1421 /* 1422 * If the first character of the string is an "at" sign, 1423 * then the string is inferred to be an annotation -- 1424 * and it is printed out beneath the frame and offset 1425 * with brackets. 1426 */ 1427 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1428 break; 1429 1430 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]); 1431 1432 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1433 break; 1434 1435 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1436 break; 1437 } 1438 1439 if (str != NULL) { 1440 str += strlen(str) + 1; 1441 if (str - strbase >= strsize) 1442 str = NULL; 1443 } 1444 } 1445 1446 if (P != NULL) { 1447 dt_proc_unlock(dtp, P); 1448 dt_proc_release(dtp, P); 1449 } 1450 1451 return (err); 1452 } 1453 1454 static int 1455 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act) 1456 { 1457 /* LINTED - alignment */ 1458 uint64_t pid = ((uint64_t *)addr)[0]; 1459 /* LINTED - alignment */ 1460 uint64_t pc = ((uint64_t *)addr)[1]; 1461 const char *format = " %-50s"; 1462 char *s; 1463 int n, len = 256; 1464 1465 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) { 1466 struct ps_prochandle *P; 1467 1468 if ((P = dt_proc_grab(dtp, pid, 1469 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) { 1470 GElf_Sym sym; 1471 1472 dt_proc_lock(dtp, P); 1473 1474 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0) 1475 pc = sym.st_value; 1476 1477 dt_proc_unlock(dtp, P); 1478 dt_proc_release(dtp, P); 1479 } 1480 } 1481 1482 do { 1483 n = len; 1484 s = alloca(n); 1485 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n); 1486 1487 return (dt_printf(dtp, fp, format, s)); 1488 } 1489 1490 int 1491 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1492 { 1493 /* LINTED - alignment */ 1494 uint64_t pid = ((uint64_t *)addr)[0]; 1495 /* LINTED - alignment */ 1496 uint64_t pc = ((uint64_t *)addr)[1]; 1497 int err = 0; 1498 1499 char objname[PATH_MAX], c[PATH_MAX * 2]; 1500 struct ps_prochandle *P; 1501 1502 if (format == NULL) 1503 format = " %-50s"; 1504 1505 /* 1506 * See the comment in dt_print_ustack() for the rationale for 1507 * printing raw addresses in the vectored case. 1508 */ 1509 if (dtp->dt_vector == NULL) 1510 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1511 else 1512 P = NULL; 1513 1514 if (P != NULL) 1515 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1516 1517 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) { 1518 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname)); 1519 } else { 1520 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1521 } 1522 1523 err = dt_printf(dtp, fp, format, c); 1524 1525 if (P != NULL) { 1526 dt_proc_unlock(dtp, P); 1527 dt_proc_release(dtp, P); 1528 } 1529 1530 return (err); 1531 } 1532 1533 static int 1534 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1535 { 1536 /* LINTED - alignment */ 1537 uint64_t pc = *((uint64_t *)addr); 1538 dtrace_syminfo_t dts; 1539 GElf_Sym sym; 1540 char c[PATH_MAX * 2]; 1541 1542 if (format == NULL) 1543 format = " %-50s"; 1544 1545 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 1546 (void) snprintf(c, sizeof (c), "%s`%s", 1547 dts.dts_object, dts.dts_name); 1548 } else { 1549 /* 1550 * We'll repeat the lookup, but this time we'll specify a 1551 * NULL GElf_Sym -- indicating that we're only interested in 1552 * the containing module. 1553 */ 1554 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1555 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1556 dts.dts_object, (u_longlong_t)pc); 1557 } else { 1558 (void) snprintf(c, sizeof (c), "0x%llx", 1559 (u_longlong_t)pc); 1560 } 1561 } 1562 1563 if (dt_printf(dtp, fp, format, c) < 0) 1564 return (-1); 1565 1566 return (0); 1567 } 1568 1569 int 1570 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1571 { 1572 /* LINTED - alignment */ 1573 uint64_t pc = *((uint64_t *)addr); 1574 dtrace_syminfo_t dts; 1575 char c[PATH_MAX * 2]; 1576 1577 if (format == NULL) 1578 format = " %-50s"; 1579 1580 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1581 (void) snprintf(c, sizeof (c), "%s", dts.dts_object); 1582 } else { 1583 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1584 } 1585 1586 if (dt_printf(dtp, fp, format, c) < 0) 1587 return (-1); 1588 1589 return (0); 1590 } 1591 1592 typedef struct dt_normal { 1593 dtrace_aggvarid_t dtnd_id; 1594 uint64_t dtnd_normal; 1595 } dt_normal_t; 1596 1597 static int 1598 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1599 { 1600 dt_normal_t *normal = arg; 1601 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1602 dtrace_aggvarid_t id = normal->dtnd_id; 1603 1604 if (agg->dtagd_nrecs == 0) 1605 return (DTRACE_AGGWALK_NEXT); 1606 1607 if (agg->dtagd_varid != id) 1608 return (DTRACE_AGGWALK_NEXT); 1609 1610 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal; 1611 return (DTRACE_AGGWALK_NORMALIZE); 1612 } 1613 1614 static int 1615 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1616 { 1617 dt_normal_t normal; 1618 caddr_t addr; 1619 1620 /* 1621 * We (should) have two records: the aggregation ID followed by the 1622 * normalization value. 1623 */ 1624 addr = base + rec->dtrd_offset; 1625 1626 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1627 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1628 1629 /* LINTED - alignment */ 1630 normal.dtnd_id = *((dtrace_aggvarid_t *)addr); 1631 rec++; 1632 1633 if (rec->dtrd_action != DTRACEACT_LIBACT) 1634 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1635 1636 if (rec->dtrd_arg != DT_ACT_NORMALIZE) 1637 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1638 1639 addr = base + rec->dtrd_offset; 1640 1641 switch (rec->dtrd_size) { 1642 case sizeof (uint64_t): 1643 /* LINTED - alignment */ 1644 normal.dtnd_normal = *((uint64_t *)addr); 1645 break; 1646 case sizeof (uint32_t): 1647 /* LINTED - alignment */ 1648 normal.dtnd_normal = *((uint32_t *)addr); 1649 break; 1650 case sizeof (uint16_t): 1651 /* LINTED - alignment */ 1652 normal.dtnd_normal = *((uint16_t *)addr); 1653 break; 1654 case sizeof (uint8_t): 1655 normal.dtnd_normal = *((uint8_t *)addr); 1656 break; 1657 default: 1658 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1659 } 1660 1661 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal); 1662 1663 return (0); 1664 } 1665 1666 static int 1667 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1668 { 1669 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1670 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1671 1672 if (agg->dtagd_nrecs == 0) 1673 return (DTRACE_AGGWALK_NEXT); 1674 1675 if (agg->dtagd_varid != id) 1676 return (DTRACE_AGGWALK_NEXT); 1677 1678 return (DTRACE_AGGWALK_DENORMALIZE); 1679 } 1680 1681 static int 1682 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg) 1683 { 1684 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1685 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1686 1687 if (agg->dtagd_nrecs == 0) 1688 return (DTRACE_AGGWALK_NEXT); 1689 1690 if (agg->dtagd_varid != id) 1691 return (DTRACE_AGGWALK_NEXT); 1692 1693 return (DTRACE_AGGWALK_CLEAR); 1694 } 1695 1696 typedef struct dt_trunc { 1697 dtrace_aggvarid_t dttd_id; 1698 uint64_t dttd_remaining; 1699 } dt_trunc_t; 1700 1701 static int 1702 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg) 1703 { 1704 dt_trunc_t *trunc = arg; 1705 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1706 dtrace_aggvarid_t id = trunc->dttd_id; 1707 1708 if (agg->dtagd_nrecs == 0) 1709 return (DTRACE_AGGWALK_NEXT); 1710 1711 if (agg->dtagd_varid != id) 1712 return (DTRACE_AGGWALK_NEXT); 1713 1714 if (trunc->dttd_remaining == 0) 1715 return (DTRACE_AGGWALK_REMOVE); 1716 1717 trunc->dttd_remaining--; 1718 return (DTRACE_AGGWALK_NEXT); 1719 } 1720 1721 static int 1722 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1723 { 1724 dt_trunc_t trunc; 1725 caddr_t addr; 1726 int64_t remaining; 1727 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *); 1728 1729 /* 1730 * We (should) have two records: the aggregation ID followed by the 1731 * number of aggregation entries after which the aggregation is to be 1732 * truncated. 1733 */ 1734 addr = base + rec->dtrd_offset; 1735 1736 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1737 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1738 1739 /* LINTED - alignment */ 1740 trunc.dttd_id = *((dtrace_aggvarid_t *)addr); 1741 rec++; 1742 1743 if (rec->dtrd_action != DTRACEACT_LIBACT) 1744 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1745 1746 if (rec->dtrd_arg != DT_ACT_TRUNC) 1747 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1748 1749 addr = base + rec->dtrd_offset; 1750 1751 switch (rec->dtrd_size) { 1752 case sizeof (uint64_t): 1753 /* LINTED - alignment */ 1754 remaining = *((int64_t *)addr); 1755 break; 1756 case sizeof (uint32_t): 1757 /* LINTED - alignment */ 1758 remaining = *((int32_t *)addr); 1759 break; 1760 case sizeof (uint16_t): 1761 /* LINTED - alignment */ 1762 remaining = *((int16_t *)addr); 1763 break; 1764 case sizeof (uint8_t): 1765 remaining = *((int8_t *)addr); 1766 break; 1767 default: 1768 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1769 } 1770 1771 if (remaining < 0) { 1772 func = dtrace_aggregate_walk_valsorted; 1773 remaining = -remaining; 1774 } else { 1775 func = dtrace_aggregate_walk_valrevsorted; 1776 } 1777 1778 assert(remaining >= 0); 1779 trunc.dttd_remaining = remaining; 1780 1781 (void) func(dtp, dt_trunc_agg, &trunc); 1782 1783 return (0); 1784 } 1785 1786 static int 1787 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec, 1788 caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata, 1789 uint64_t normal, dt_print_aggdata_t *pd) 1790 { 1791 int err, width; 1792 dtrace_actkind_t act = rec->dtrd_action; 1793 boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack; 1794 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1795 1796 static struct { 1797 size_t size; 1798 int width; 1799 int packedwidth; 1800 } *fmt, fmttab[] = { 1801 { sizeof (uint8_t), 3, 3 }, 1802 { sizeof (uint16_t), 5, 5 }, 1803 { sizeof (uint32_t), 8, 8 }, 1804 { sizeof (uint64_t), 16, 16 }, 1805 { 0, -50, 16 } 1806 }; 1807 1808 if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) { 1809 dtrace_recdesc_t *r; 1810 1811 width = 0; 1812 1813 /* 1814 * To print our quantization header for either an agghist or 1815 * aggpack aggregation, we need to iterate through all of our 1816 * of our records to determine their width. 1817 */ 1818 for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) { 1819 for (fmt = fmttab; fmt->size && 1820 fmt->size != r->dtrd_size; fmt++) 1821 continue; 1822 1823 width += fmt->packedwidth + 1; 1824 } 1825 1826 if (pd->dtpa_agghist) { 1827 if (dt_print_quanthdr(dtp, fp, width) < 0) 1828 return (-1); 1829 } else { 1830 if (dt_print_quanthdr_packed(dtp, fp, 1831 width, aggdata, r->dtrd_action) < 0) 1832 return (-1); 1833 } 1834 1835 pd->dtpa_agghisthdr = agg->dtagd_varid; 1836 } 1837 1838 if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) { 1839 char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES; 1840 char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES; 1841 int64_t val; 1842 1843 assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT); 1844 val = (long long)*((uint64_t *)addr); 1845 1846 if (dt_printf(dtp, fp, " ") < 0) 1847 return (-1); 1848 1849 return (dt_print_quantline(dtp, fp, val, normal, 1850 aggdata->dtada_total, positives, negatives)); 1851 } 1852 1853 if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) { 1854 switch (act) { 1855 case DTRACEAGG_QUANTIZE: 1856 return (dt_print_quantize_packed(dtp, 1857 fp, addr, size, aggdata)); 1858 case DTRACEAGG_LQUANTIZE: 1859 return (dt_print_lquantize_packed(dtp, 1860 fp, addr, size, aggdata)); 1861 default: 1862 break; 1863 } 1864 } 1865 1866 switch (act) { 1867 case DTRACEACT_STACK: 1868 return (dt_print_stack(dtp, fp, NULL, addr, 1869 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg)); 1870 1871 case DTRACEACT_USTACK: 1872 case DTRACEACT_JSTACK: 1873 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg)); 1874 1875 case DTRACEACT_USYM: 1876 case DTRACEACT_UADDR: 1877 return (dt_print_usym(dtp, fp, addr, act)); 1878 1879 case DTRACEACT_UMOD: 1880 return (dt_print_umod(dtp, fp, NULL, addr)); 1881 1882 case DTRACEACT_SYM: 1883 return (dt_print_sym(dtp, fp, NULL, addr)); 1884 1885 case DTRACEACT_MOD: 1886 return (dt_print_mod(dtp, fp, NULL, addr)); 1887 1888 case DTRACEAGG_QUANTIZE: 1889 return (dt_print_quantize(dtp, fp, addr, size, normal)); 1890 1891 case DTRACEAGG_LQUANTIZE: 1892 return (dt_print_lquantize(dtp, fp, addr, size, normal)); 1893 1894 case DTRACEAGG_LLQUANTIZE: 1895 return (dt_print_llquantize(dtp, fp, addr, size, normal)); 1896 1897 case DTRACEAGG_AVG: 1898 return (dt_print_average(dtp, fp, addr, size, normal)); 1899 1900 case DTRACEAGG_STDDEV: 1901 return (dt_print_stddev(dtp, fp, addr, size, normal)); 1902 1903 default: 1904 break; 1905 } 1906 1907 for (fmt = fmttab; fmt->size && fmt->size != size; fmt++) 1908 continue; 1909 1910 width = packed ? fmt->packedwidth : fmt->width; 1911 1912 switch (size) { 1913 case sizeof (uint64_t): 1914 err = dt_printf(dtp, fp, " %*lld", width, 1915 /* LINTED - alignment */ 1916 (long long)*((uint64_t *)addr) / normal); 1917 break; 1918 case sizeof (uint32_t): 1919 /* LINTED - alignment */ 1920 err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) / 1921 (uint32_t)normal); 1922 break; 1923 case sizeof (uint16_t): 1924 /* LINTED - alignment */ 1925 err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) / 1926 (uint32_t)normal); 1927 break; 1928 case sizeof (uint8_t): 1929 err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) / 1930 (uint32_t)normal); 1931 break; 1932 default: 1933 err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0); 1934 break; 1935 } 1936 1937 return (err); 1938 } 1939 1940 int 1941 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg) 1942 { 1943 int i, aggact = 0; 1944 dt_print_aggdata_t *pd = arg; 1945 const dtrace_aggdata_t *aggdata = aggsdata[0]; 1946 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1947 FILE *fp = pd->dtpa_fp; 1948 dtrace_hdl_t *dtp = pd->dtpa_dtp; 1949 dtrace_recdesc_t *rec; 1950 dtrace_actkind_t act; 1951 caddr_t addr; 1952 size_t size; 1953 1954 pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL); 1955 pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN); 1956 1957 /* 1958 * Iterate over each record description in the key, printing the traced 1959 * data, skipping the first datum (the tuple member created by the 1960 * compiler). 1961 */ 1962 for (i = 1; i < agg->dtagd_nrecs; i++) { 1963 rec = &agg->dtagd_rec[i]; 1964 act = rec->dtrd_action; 1965 addr = aggdata->dtada_data + rec->dtrd_offset; 1966 size = rec->dtrd_size; 1967 1968 if (DTRACEACT_ISAGG(act)) { 1969 aggact = i; 1970 break; 1971 } 1972 1973 if (dt_print_datum(dtp, fp, rec, addr, 1974 size, aggdata, 1, pd) < 0) 1975 return (-1); 1976 1977 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 1978 DTRACE_BUFDATA_AGGKEY) < 0) 1979 return (-1); 1980 } 1981 1982 assert(aggact != 0); 1983 1984 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) { 1985 uint64_t normal; 1986 1987 aggdata = aggsdata[i]; 1988 agg = aggdata->dtada_desc; 1989 rec = &agg->dtagd_rec[aggact]; 1990 act = rec->dtrd_action; 1991 addr = aggdata->dtada_data + rec->dtrd_offset; 1992 size = rec->dtrd_size; 1993 1994 assert(DTRACEACT_ISAGG(act)); 1995 normal = aggdata->dtada_normal; 1996 1997 if (dt_print_datum(dtp, fp, rec, addr, 1998 size, aggdata, normal, pd) < 0) 1999 return (-1); 2000 2001 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 2002 DTRACE_BUFDATA_AGGVAL) < 0) 2003 return (-1); 2004 2005 if (!pd->dtpa_allunprint) 2006 agg->dtagd_flags |= DTRACE_AGD_PRINTED; 2007 } 2008 2009 if (!pd->dtpa_agghist && !pd->dtpa_aggpack) { 2010 if (dt_printf(dtp, fp, "\n") < 0) 2011 return (-1); 2012 } 2013 2014 if (dt_buffered_flush(dtp, NULL, NULL, aggdata, 2015 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0) 2016 return (-1); 2017 2018 return (0); 2019 } 2020 2021 int 2022 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg) 2023 { 2024 dt_print_aggdata_t *pd = arg; 2025 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 2026 dtrace_aggvarid_t aggvarid = pd->dtpa_id; 2027 2028 if (pd->dtpa_allunprint) { 2029 if (agg->dtagd_flags & DTRACE_AGD_PRINTED) 2030 return (0); 2031 } else { 2032 /* 2033 * If we're not printing all unprinted aggregations, then the 2034 * aggregation variable ID denotes a specific aggregation 2035 * variable that we should print -- skip any other aggregations 2036 * that we encounter. 2037 */ 2038 if (agg->dtagd_nrecs == 0) 2039 return (0); 2040 2041 if (aggvarid != agg->dtagd_varid) 2042 return (0); 2043 } 2044 2045 return (dt_print_aggs(&aggdata, 1, arg)); 2046 } 2047 2048 int 2049 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data, 2050 const char *option, const char *value) 2051 { 2052 int len, rval; 2053 char *msg; 2054 const char *errstr; 2055 dtrace_setoptdata_t optdata; 2056 2057 bzero(&optdata, sizeof (optdata)); 2058 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval); 2059 2060 if (dtrace_setopt(dtp, option, value) == 0) { 2061 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval); 2062 optdata.dtsda_probe = data; 2063 optdata.dtsda_option = option; 2064 optdata.dtsda_handle = dtp; 2065 2066 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0) 2067 return (rval); 2068 2069 return (0); 2070 } 2071 2072 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp)); 2073 len = strlen(option) + strlen(value) + strlen(errstr) + 80; 2074 msg = alloca(len); 2075 2076 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n", 2077 option, value, errstr); 2078 2079 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0) 2080 return (0); 2081 2082 return (rval); 2083 } 2084 2085 static int 2086 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, 2087 dtrace_bufdesc_t *buf, boolean_t just_one, 2088 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg) 2089 { 2090 dtrace_epid_t id; 2091 size_t offs; 2092 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET); 2093 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); 2094 int rval, i, n; 2095 uint64_t tracememsize = 0; 2096 dtrace_probedata_t data; 2097 uint64_t drops; 2098 2099 bzero(&data, sizeof (data)); 2100 data.dtpda_handle = dtp; 2101 data.dtpda_cpu = cpu; 2102 data.dtpda_flow = dtp->dt_flow; 2103 data.dtpda_indent = dtp->dt_indent; 2104 data.dtpda_prefix = dtp->dt_prefix; 2105 2106 for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) { 2107 dtrace_eprobedesc_t *epd; 2108 2109 /* 2110 * We're guaranteed to have an ID. 2111 */ 2112 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 2113 2114 if (id == DTRACE_EPIDNONE) { 2115 /* 2116 * This is filler to assure proper alignment of the 2117 * next record; we simply ignore it. 2118 */ 2119 offs += sizeof (id); 2120 continue; 2121 } 2122 2123 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc, 2124 &data.dtpda_pdesc)) != 0) 2125 return (rval); 2126 2127 epd = data.dtpda_edesc; 2128 data.dtpda_data = buf->dtbd_data + offs; 2129 2130 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) { 2131 rval = dt_handle(dtp, &data); 2132 2133 if (rval == DTRACE_CONSUME_NEXT) 2134 goto nextepid; 2135 2136 if (rval == DTRACE_CONSUME_ERROR) 2137 return (-1); 2138 } 2139 2140 if (flow) 2141 (void) dt_flowindent(dtp, &data, dtp->dt_last_epid, 2142 buf, offs); 2143 2144 rval = (*efunc)(&data, arg); 2145 2146 if (flow) { 2147 if (data.dtpda_flow == DTRACEFLOW_ENTRY) 2148 data.dtpda_indent += 2; 2149 } 2150 2151 if (rval == DTRACE_CONSUME_NEXT) 2152 goto nextepid; 2153 2154 if (rval == DTRACE_CONSUME_ABORT) 2155 return (dt_set_errno(dtp, EDT_DIRABORT)); 2156 2157 if (rval != DTRACE_CONSUME_THIS) 2158 return (dt_set_errno(dtp, EDT_BADRVAL)); 2159 2160 for (i = 0; i < epd->dtepd_nrecs; i++) { 2161 caddr_t addr; 2162 dtrace_recdesc_t *rec = &epd->dtepd_rec[i]; 2163 dtrace_actkind_t act = rec->dtrd_action; 2164 2165 data.dtpda_data = buf->dtbd_data + offs + 2166 rec->dtrd_offset; 2167 addr = data.dtpda_data; 2168 2169 if (act == DTRACEACT_LIBACT) { 2170 uint64_t arg = rec->dtrd_arg; 2171 dtrace_aggvarid_t id; 2172 2173 switch (arg) { 2174 case DT_ACT_CLEAR: 2175 /* LINTED - alignment */ 2176 id = *((dtrace_aggvarid_t *)addr); 2177 (void) dtrace_aggregate_walk(dtp, 2178 dt_clear_agg, &id); 2179 continue; 2180 2181 case DT_ACT_DENORMALIZE: 2182 /* LINTED - alignment */ 2183 id = *((dtrace_aggvarid_t *)addr); 2184 (void) dtrace_aggregate_walk(dtp, 2185 dt_denormalize_agg, &id); 2186 continue; 2187 2188 case DT_ACT_FTRUNCATE: 2189 if (fp == NULL) 2190 continue; 2191 2192 (void) fflush(fp); 2193 (void) ftruncate(fileno(fp), 0); 2194 (void) fseeko(fp, 0, SEEK_SET); 2195 continue; 2196 2197 case DT_ACT_NORMALIZE: 2198 if (i == epd->dtepd_nrecs - 1) 2199 return (dt_set_errno(dtp, 2200 EDT_BADNORMAL)); 2201 2202 if (dt_normalize(dtp, 2203 buf->dtbd_data + offs, rec) != 0) 2204 return (-1); 2205 2206 i++; 2207 continue; 2208 2209 case DT_ACT_SETOPT: { 2210 uint64_t *opts = dtp->dt_options; 2211 dtrace_recdesc_t *valrec; 2212 uint32_t valsize; 2213 caddr_t val; 2214 int rv; 2215 2216 if (i == epd->dtepd_nrecs - 1) { 2217 return (dt_set_errno(dtp, 2218 EDT_BADSETOPT)); 2219 } 2220 2221 valrec = &epd->dtepd_rec[++i]; 2222 valsize = valrec->dtrd_size; 2223 2224 if (valrec->dtrd_action != act || 2225 valrec->dtrd_arg != arg) { 2226 return (dt_set_errno(dtp, 2227 EDT_BADSETOPT)); 2228 } 2229 2230 if (valsize > sizeof (uint64_t)) { 2231 val = buf->dtbd_data + offs + 2232 valrec->dtrd_offset; 2233 } else { 2234 val = "1"; 2235 } 2236 2237 rv = dt_setopt(dtp, &data, addr, val); 2238 2239 if (rv != 0) 2240 return (-1); 2241 2242 flow = (opts[DTRACEOPT_FLOWINDENT] != 2243 DTRACEOPT_UNSET); 2244 quiet = (opts[DTRACEOPT_QUIET] != 2245 DTRACEOPT_UNSET); 2246 2247 continue; 2248 } 2249 2250 case DT_ACT_TRUNC: 2251 if (i == epd->dtepd_nrecs - 1) 2252 return (dt_set_errno(dtp, 2253 EDT_BADTRUNC)); 2254 2255 if (dt_trunc(dtp, 2256 buf->dtbd_data + offs, rec) != 0) 2257 return (-1); 2258 2259 i++; 2260 continue; 2261 2262 default: 2263 continue; 2264 } 2265 } 2266 2267 if (act == DTRACEACT_TRACEMEM_DYNSIZE && 2268 rec->dtrd_size == sizeof (uint64_t)) { 2269 /* LINTED - alignment */ 2270 tracememsize = *((unsigned long long *)addr); 2271 continue; 2272 } 2273 2274 rval = (*rfunc)(&data, rec, arg); 2275 2276 if (rval == DTRACE_CONSUME_NEXT) 2277 continue; 2278 2279 if (rval == DTRACE_CONSUME_ABORT) 2280 return (dt_set_errno(dtp, EDT_DIRABORT)); 2281 2282 if (rval != DTRACE_CONSUME_THIS) 2283 return (dt_set_errno(dtp, EDT_BADRVAL)); 2284 2285 if (act == DTRACEACT_STACK) { 2286 int depth = rec->dtrd_arg; 2287 2288 if (dt_print_stack(dtp, fp, NULL, addr, depth, 2289 rec->dtrd_size / depth) < 0) 2290 return (-1); 2291 goto nextrec; 2292 } 2293 2294 if (act == DTRACEACT_USTACK || 2295 act == DTRACEACT_JSTACK) { 2296 if (dt_print_ustack(dtp, fp, NULL, 2297 addr, rec->dtrd_arg) < 0) 2298 return (-1); 2299 goto nextrec; 2300 } 2301 2302 if (act == DTRACEACT_SYM) { 2303 if (dt_print_sym(dtp, fp, NULL, addr) < 0) 2304 return (-1); 2305 goto nextrec; 2306 } 2307 2308 if (act == DTRACEACT_MOD) { 2309 if (dt_print_mod(dtp, fp, NULL, addr) < 0) 2310 return (-1); 2311 goto nextrec; 2312 } 2313 2314 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) { 2315 if (dt_print_usym(dtp, fp, addr, act) < 0) 2316 return (-1); 2317 goto nextrec; 2318 } 2319 2320 if (act == DTRACEACT_UMOD) { 2321 if (dt_print_umod(dtp, fp, NULL, addr) < 0) 2322 return (-1); 2323 goto nextrec; 2324 } 2325 2326 if (DTRACEACT_ISPRINTFLIKE(act)) { 2327 void *fmtdata; 2328 int (*func)(dtrace_hdl_t *, FILE *, void *, 2329 const dtrace_probedata_t *, 2330 const dtrace_recdesc_t *, uint_t, 2331 const void *buf, size_t); 2332 2333 if ((fmtdata = dt_format_lookup(dtp, 2334 rec->dtrd_format)) == NULL) 2335 goto nofmt; 2336 2337 switch (act) { 2338 case DTRACEACT_PRINTF: 2339 func = dtrace_fprintf; 2340 break; 2341 case DTRACEACT_PRINTA: 2342 func = dtrace_fprinta; 2343 break; 2344 case DTRACEACT_SYSTEM: 2345 func = dtrace_system; 2346 break; 2347 case DTRACEACT_FREOPEN: 2348 func = dtrace_freopen; 2349 break; 2350 } 2351 2352 n = (*func)(dtp, fp, fmtdata, &data, 2353 rec, epd->dtepd_nrecs - i, 2354 (uchar_t *)buf->dtbd_data + offs, 2355 buf->dtbd_size - offs); 2356 2357 if (n < 0) 2358 return (-1); /* errno is set for us */ 2359 2360 if (n > 0) 2361 i += n - 1; 2362 goto nextrec; 2363 } 2364 2365 /* 2366 * If this is a DIF expression, and the record has a 2367 * format set, this indicates we have a CTF type name 2368 * associated with the data and we should try to print 2369 * it out by type. 2370 */ 2371 if (act == DTRACEACT_DIFEXPR) { 2372 const char *strdata = dt_strdata_lookup(dtp, 2373 rec->dtrd_format); 2374 if (strdata != NULL) { 2375 n = dtrace_print(dtp, fp, strdata, 2376 addr, rec->dtrd_size); 2377 2378 /* 2379 * dtrace_print() will return -1 on 2380 * error, or return the number of bytes 2381 * consumed. It will return 0 if the 2382 * type couldn't be determined, and we 2383 * should fall through to the normal 2384 * trace method. 2385 */ 2386 if (n < 0) 2387 return (-1); 2388 2389 if (n > 0) 2390 goto nextrec; 2391 } 2392 } 2393 2394 nofmt: 2395 if (act == DTRACEACT_PRINTA) { 2396 dt_print_aggdata_t pd; 2397 dtrace_aggvarid_t *aggvars; 2398 int j, naggvars = 0; 2399 size_t size = ((epd->dtepd_nrecs - i) * 2400 sizeof (dtrace_aggvarid_t)); 2401 2402 if ((aggvars = dt_alloc(dtp, size)) == NULL) 2403 return (-1); 2404 2405 /* 2406 * This might be a printa() with multiple 2407 * aggregation variables. We need to scan 2408 * forward through the records until we find 2409 * a record from a different statement. 2410 */ 2411 for (j = i; j < epd->dtepd_nrecs; j++) { 2412 dtrace_recdesc_t *nrec; 2413 caddr_t naddr; 2414 2415 nrec = &epd->dtepd_rec[j]; 2416 2417 if (nrec->dtrd_uarg != rec->dtrd_uarg) 2418 break; 2419 2420 if (nrec->dtrd_action != act) { 2421 return (dt_set_errno(dtp, 2422 EDT_BADAGG)); 2423 } 2424 2425 naddr = buf->dtbd_data + offs + 2426 nrec->dtrd_offset; 2427 2428 aggvars[naggvars++] = 2429 /* LINTED - alignment */ 2430 *((dtrace_aggvarid_t *)naddr); 2431 } 2432 2433 i = j - 1; 2434 bzero(&pd, sizeof (pd)); 2435 pd.dtpa_dtp = dtp; 2436 pd.dtpa_fp = fp; 2437 2438 assert(naggvars >= 1); 2439 2440 if (naggvars == 1) { 2441 pd.dtpa_id = aggvars[0]; 2442 dt_free(dtp, aggvars); 2443 2444 if (dt_printf(dtp, fp, "\n") < 0 || 2445 dtrace_aggregate_walk_sorted(dtp, 2446 dt_print_agg, &pd) < 0) 2447 return (-1); 2448 goto nextrec; 2449 } 2450 2451 if (dt_printf(dtp, fp, "\n") < 0 || 2452 dtrace_aggregate_walk_joined(dtp, aggvars, 2453 naggvars, dt_print_aggs, &pd) < 0) { 2454 dt_free(dtp, aggvars); 2455 return (-1); 2456 } 2457 2458 dt_free(dtp, aggvars); 2459 goto nextrec; 2460 } 2461 2462 if (act == DTRACEACT_TRACEMEM) { 2463 if (tracememsize == 0 || 2464 tracememsize > rec->dtrd_size) { 2465 tracememsize = rec->dtrd_size; 2466 } 2467 2468 n = dt_print_bytes(dtp, fp, addr, 2469 tracememsize, -33, quiet, 1); 2470 2471 tracememsize = 0; 2472 2473 if (n < 0) 2474 return (-1); 2475 2476 goto nextrec; 2477 } 2478 2479 switch (rec->dtrd_size) { 2480 case sizeof (uint64_t): 2481 n = dt_printf(dtp, fp, 2482 quiet ? "%lld" : " %16lld", 2483 /* LINTED - alignment */ 2484 *((unsigned long long *)addr)); 2485 break; 2486 case sizeof (uint32_t): 2487 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d", 2488 /* LINTED - alignment */ 2489 *((uint32_t *)addr)); 2490 break; 2491 case sizeof (uint16_t): 2492 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d", 2493 /* LINTED - alignment */ 2494 *((uint16_t *)addr)); 2495 break; 2496 case sizeof (uint8_t): 2497 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d", 2498 *((uint8_t *)addr)); 2499 break; 2500 default: 2501 n = dt_print_bytes(dtp, fp, addr, 2502 rec->dtrd_size, -33, quiet, 0); 2503 break; 2504 } 2505 2506 if (n < 0) 2507 return (-1); /* errno is set for us */ 2508 2509 nextrec: 2510 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0) 2511 return (-1); /* errno is set for us */ 2512 } 2513 2514 /* 2515 * Call the record callback with a NULL record to indicate 2516 * that we're done processing this EPID. 2517 */ 2518 rval = (*rfunc)(&data, NULL, arg); 2519 nextepid: 2520 offs += epd->dtepd_size; 2521 dtp->dt_last_epid = id; 2522 if (just_one) { 2523 buf->dtbd_oldest = offs; 2524 break; 2525 } 2526 } 2527 2528 dtp->dt_flow = data.dtpda_flow; 2529 dtp->dt_indent = data.dtpda_indent; 2530 dtp->dt_prefix = data.dtpda_prefix; 2531 2532 if ((drops = buf->dtbd_drops) == 0) 2533 return (0); 2534 2535 /* 2536 * Explicitly zero the drops to prevent us from processing them again. 2537 */ 2538 buf->dtbd_drops = 0; 2539 2540 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops)); 2541 } 2542 2543 /* 2544 * Reduce memory usage by shrinking the buffer if it's no more than half full. 2545 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is 2546 * only 4-byte aligned. 2547 */ 2548 static void 2549 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize) 2550 { 2551 uint64_t used = buf->dtbd_size - buf->dtbd_oldest; 2552 if (used < cursize / 2) { 2553 int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1); 2554 char *newdata = dt_alloc(dtp, used + misalign); 2555 if (newdata == NULL) 2556 return; 2557 bzero(newdata, misalign); 2558 bcopy(buf->dtbd_data + buf->dtbd_oldest, 2559 newdata + misalign, used); 2560 dt_free(dtp, buf->dtbd_data); 2561 buf->dtbd_oldest = misalign; 2562 buf->dtbd_size = used + misalign; 2563 buf->dtbd_data = newdata; 2564 } 2565 } 2566 2567 /* 2568 * If the ring buffer has wrapped, the data is not in order. Rearrange it 2569 * so that it is. Note, we need to preserve the alignment of the data at 2570 * dtbd_oldest, which is only 4-byte aligned. 2571 */ 2572 static int 2573 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf) 2574 { 2575 int misalign; 2576 char *newdata, *ndp; 2577 2578 if (buf->dtbd_oldest == 0) 2579 return (0); 2580 2581 misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1); 2582 newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign); 2583 2584 if (newdata == NULL) 2585 return (-1); 2586 2587 assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1))); 2588 2589 bzero(ndp, misalign); 2590 ndp += misalign; 2591 2592 bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp, 2593 buf->dtbd_size - buf->dtbd_oldest); 2594 ndp += buf->dtbd_size - buf->dtbd_oldest; 2595 2596 bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest); 2597 2598 dt_free(dtp, buf->dtbd_data); 2599 buf->dtbd_oldest = 0; 2600 buf->dtbd_data = newdata; 2601 buf->dtbd_size += misalign; 2602 2603 return (0); 2604 } 2605 2606 static void 2607 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf) 2608 { 2609 dt_free(dtp, buf->dtbd_data); 2610 dt_free(dtp, buf); 2611 } 2612 2613 /* 2614 * Returns 0 on success, in which case *cbp will be filled in if we retrieved 2615 * data, or NULL if there is no data for this CPU. 2616 * Returns -1 on failure and sets dt_errno. 2617 */ 2618 static int 2619 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp) 2620 { 2621 dtrace_optval_t size; 2622 dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf)); 2623 int error; 2624 2625 if (buf == NULL) 2626 return (-1); 2627 2628 (void) dtrace_getopt(dtp, "bufsize", &size); 2629 buf->dtbd_data = dt_alloc(dtp, size); 2630 if (buf->dtbd_data == NULL) { 2631 dt_free(dtp, buf); 2632 return (-1); 2633 } 2634 buf->dtbd_size = size; 2635 buf->dtbd_cpu = cpu; 2636 2637 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { 2638 dt_put_buf(dtp, buf); 2639 /* 2640 * If we failed with ENOENT, it may be because the 2641 * CPU was unconfigured -- this is okay. Any other 2642 * error, however, is unexpected. 2643 */ 2644 if (errno == ENOENT) { 2645 *bufp = NULL; 2646 return (0); 2647 } 2648 2649 return (dt_set_errno(dtp, errno)); 2650 } 2651 2652 error = dt_unring_buf(dtp, buf); 2653 if (error != 0) { 2654 dt_put_buf(dtp, buf); 2655 return (error); 2656 } 2657 dt_realloc_buf(dtp, buf, size); 2658 2659 *bufp = buf; 2660 return (0); 2661 } 2662 2663 typedef struct dt_begin { 2664 dtrace_consume_probe_f *dtbgn_probefunc; 2665 dtrace_consume_rec_f *dtbgn_recfunc; 2666 void *dtbgn_arg; 2667 dtrace_handle_err_f *dtbgn_errhdlr; 2668 void *dtbgn_errarg; 2669 int dtbgn_beginonly; 2670 } dt_begin_t; 2671 2672 static int 2673 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg) 2674 { 2675 dt_begin_t *begin = arg; 2676 dtrace_probedesc_t *pd = data->dtpda_pdesc; 2677 2678 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2679 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2680 2681 if (begin->dtbgn_beginonly) { 2682 if (!(r1 && r2)) 2683 return (DTRACE_CONSUME_NEXT); 2684 } else { 2685 if (r1 && r2) 2686 return (DTRACE_CONSUME_NEXT); 2687 } 2688 2689 /* 2690 * We have a record that we're interested in. Now call the underlying 2691 * probe function... 2692 */ 2693 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg)); 2694 } 2695 2696 static int 2697 dt_consume_begin_record(const dtrace_probedata_t *data, 2698 const dtrace_recdesc_t *rec, void *arg) 2699 { 2700 dt_begin_t *begin = arg; 2701 2702 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg)); 2703 } 2704 2705 static int 2706 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg) 2707 { 2708 dt_begin_t *begin = (dt_begin_t *)arg; 2709 dtrace_probedesc_t *pd = data->dteda_pdesc; 2710 2711 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2712 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2713 2714 if (begin->dtbgn_beginonly) { 2715 if (!(r1 && r2)) 2716 return (DTRACE_HANDLE_OK); 2717 } else { 2718 if (r1 && r2) 2719 return (DTRACE_HANDLE_OK); 2720 } 2721 2722 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg)); 2723 } 2724 2725 static int 2726 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, 2727 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2728 { 2729 /* 2730 * There's this idea that the BEGIN probe should be processed before 2731 * everything else, and that the END probe should be processed after 2732 * anything else. In the common case, this is pretty easy to deal 2733 * with. However, a situation may arise where the BEGIN enabling and 2734 * END enabling are on the same CPU, and some enabling in the middle 2735 * occurred on a different CPU. To deal with this (blech!) we need to 2736 * consume the BEGIN buffer up until the end of the BEGIN probe, and 2737 * then set it aside. We will then process every other CPU, and then 2738 * we'll return to the BEGIN CPU and process the rest of the data 2739 * (which will inevitably include the END probe, if any). Making this 2740 * even more complicated (!) is the library's ERROR enabling. Because 2741 * this enabling is processed before we even get into the consume call 2742 * back, any ERROR firing would result in the library's ERROR enabling 2743 * being processed twice -- once in our first pass (for BEGIN probes), 2744 * and again in our second pass (for everything but BEGIN probes). To 2745 * deal with this, we interpose on the ERROR handler to assure that we 2746 * only process ERROR enablings induced by BEGIN enablings in the 2747 * first pass, and that we only process ERROR enablings _not_ induced 2748 * by BEGIN enablings in the second pass. 2749 */ 2750 2751 dt_begin_t begin; 2752 processorid_t cpu = dtp->dt_beganon; 2753 int rval, i; 2754 static int max_ncpus; 2755 dtrace_bufdesc_t *buf; 2756 2757 dtp->dt_beganon = -1; 2758 2759 if (dt_get_buf(dtp, cpu, &buf) != 0) 2760 return (-1); 2761 if (buf == NULL) 2762 return (0); 2763 2764 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) { 2765 /* 2766 * This is the simple case. We're either not stopped, or if 2767 * we are, we actually processed any END probes on another 2768 * CPU. We can simply consume this buffer and return. 2769 */ 2770 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2771 pf, rf, arg); 2772 dt_put_buf(dtp, buf); 2773 return (rval); 2774 } 2775 2776 begin.dtbgn_probefunc = pf; 2777 begin.dtbgn_recfunc = rf; 2778 begin.dtbgn_arg = arg; 2779 begin.dtbgn_beginonly = 1; 2780 2781 /* 2782 * We need to interpose on the ERROR handler to be sure that we 2783 * only process ERRORs induced by BEGIN. 2784 */ 2785 begin.dtbgn_errhdlr = dtp->dt_errhdlr; 2786 begin.dtbgn_errarg = dtp->dt_errarg; 2787 dtp->dt_errhdlr = dt_consume_begin_error; 2788 dtp->dt_errarg = &begin; 2789 2790 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2791 dt_consume_begin_probe, dt_consume_begin_record, &begin); 2792 2793 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2794 dtp->dt_errarg = begin.dtbgn_errarg; 2795 2796 if (rval != 0) { 2797 dt_put_buf(dtp, buf); 2798 return (rval); 2799 } 2800 2801 if (max_ncpus == 0) 2802 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2803 2804 for (i = 0; i < max_ncpus; i++) { 2805 dtrace_bufdesc_t *nbuf; 2806 if (i == cpu) 2807 continue; 2808 2809 if (dt_get_buf(dtp, i, &nbuf) != 0) { 2810 dt_put_buf(dtp, buf); 2811 return (-1); 2812 } 2813 if (nbuf == NULL) 2814 continue; 2815 2816 rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE, 2817 pf, rf, arg); 2818 dt_put_buf(dtp, nbuf); 2819 if (rval != 0) { 2820 dt_put_buf(dtp, buf); 2821 return (rval); 2822 } 2823 } 2824 2825 /* 2826 * Okay -- we're done with the other buffers. Now we want to 2827 * reconsume the first buffer -- but this time we're looking for 2828 * everything _but_ BEGIN. And of course, in order to only consume 2829 * those ERRORs _not_ associated with BEGIN, we need to reinstall our 2830 * ERROR interposition function... 2831 */ 2832 begin.dtbgn_beginonly = 0; 2833 2834 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr); 2835 assert(begin.dtbgn_errarg == dtp->dt_errarg); 2836 dtp->dt_errhdlr = dt_consume_begin_error; 2837 dtp->dt_errarg = &begin; 2838 2839 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2840 dt_consume_begin_probe, dt_consume_begin_record, &begin); 2841 2842 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2843 dtp->dt_errarg = begin.dtbgn_errarg; 2844 2845 return (rval); 2846 } 2847 2848 /* ARGSUSED */ 2849 static uint64_t 2850 dt_buf_oldest(void *elem, void *arg) 2851 { 2852 dtrace_bufdesc_t *buf = elem; 2853 size_t offs = buf->dtbd_oldest; 2854 2855 while (offs < buf->dtbd_size) { 2856 dtrace_rechdr_t *dtrh = 2857 /* LINTED - alignment */ 2858 (dtrace_rechdr_t *)(buf->dtbd_data + offs); 2859 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2860 offs += sizeof (dtrace_epid_t); 2861 } else { 2862 return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)); 2863 } 2864 } 2865 2866 /* There are no records left; use the time the buffer was retrieved. */ 2867 return (buf->dtbd_timestamp); 2868 } 2869 2870 int 2871 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp, 2872 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2873 { 2874 dtrace_optval_t size; 2875 static int max_ncpus; 2876 int i, rval; 2877 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE]; 2878 hrtime_t now = gethrtime(); 2879 2880 if (dtp->dt_lastswitch != 0) { 2881 if (now - dtp->dt_lastswitch < interval) 2882 return (0); 2883 2884 dtp->dt_lastswitch += interval; 2885 } else { 2886 dtp->dt_lastswitch = now; 2887 } 2888 2889 if (!dtp->dt_active) 2890 return (dt_set_errno(dtp, EINVAL)); 2891 2892 if (max_ncpus == 0) 2893 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2894 2895 if (pf == NULL) 2896 pf = (dtrace_consume_probe_f *)dt_nullprobe; 2897 2898 if (rf == NULL) 2899 rf = (dtrace_consume_rec_f *)dt_nullrec; 2900 2901 if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) { 2902 /* 2903 * The output will not be in the order it was traced. Rather, 2904 * we will consume all of the data from each CPU's buffer in 2905 * turn. We apply special handling for the records from BEGIN 2906 * and END probes so that they are consumed first and last, 2907 * respectively. 2908 * 2909 * If we have just begun, we want to first process the CPU that 2910 * executed the BEGIN probe (if any). 2911 */ 2912 if (dtp->dt_active && dtp->dt_beganon != -1 && 2913 (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0) 2914 return (rval); 2915 2916 for (i = 0; i < max_ncpus; i++) { 2917 dtrace_bufdesc_t *buf; 2918 2919 /* 2920 * If we have stopped, we want to process the CPU on 2921 * which the END probe was processed only _after_ we 2922 * have processed everything else. 2923 */ 2924 if (dtp->dt_stopped && (i == dtp->dt_endedon)) 2925 continue; 2926 2927 if (dt_get_buf(dtp, i, &buf) != 0) 2928 return (-1); 2929 if (buf == NULL) 2930 continue; 2931 2932 dtp->dt_flow = 0; 2933 dtp->dt_indent = 0; 2934 dtp->dt_prefix = NULL; 2935 rval = dt_consume_cpu(dtp, fp, i, 2936 buf, B_FALSE, pf, rf, arg); 2937 dt_put_buf(dtp, buf); 2938 if (rval != 0) 2939 return (rval); 2940 } 2941 if (dtp->dt_stopped) { 2942 dtrace_bufdesc_t *buf; 2943 2944 if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0) 2945 return (-1); 2946 if (buf == NULL) 2947 return (0); 2948 2949 rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon, 2950 buf, B_FALSE, pf, rf, arg); 2951 dt_put_buf(dtp, buf); 2952 return (rval); 2953 } 2954 } else { 2955 /* 2956 * The output will be in the order it was traced (or for 2957 * speculations, when it was committed). We retrieve a buffer 2958 * from each CPU and put it into a priority queue, which sorts 2959 * based on the first entry in the buffer. This is sufficient 2960 * because entries within a buffer are already sorted. 2961 * 2962 * We then consume records one at a time, always consuming the 2963 * oldest record, as determined by the priority queue. When 2964 * we reach the end of the time covered by these buffers, 2965 * we need to stop and retrieve more records on the next pass. 2966 * The kernel tells us the time covered by each buffer, in 2967 * dtbd_timestamp. The first buffer's timestamp tells us the 2968 * time covered by all buffers, as subsequently retrieved 2969 * buffers will cover to a more recent time. 2970 */ 2971 2972 uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t)); 2973 uint64_t first_timestamp = 0; 2974 uint_t cookie = 0; 2975 dtrace_bufdesc_t *buf; 2976 2977 bzero(drops, max_ncpus * sizeof (uint64_t)); 2978 2979 if (dtp->dt_bufq == NULL) { 2980 dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2, 2981 dt_buf_oldest, NULL); 2982 if (dtp->dt_bufq == NULL) /* ENOMEM */ 2983 return (-1); 2984 } 2985 2986 /* Retrieve data from each CPU. */ 2987 (void) dtrace_getopt(dtp, "bufsize", &size); 2988 for (i = 0; i < max_ncpus; i++) { 2989 dtrace_bufdesc_t *buf; 2990 2991 if (dt_get_buf(dtp, i, &buf) != 0) 2992 return (-1); 2993 if (buf != NULL) { 2994 if (first_timestamp == 0) 2995 first_timestamp = buf->dtbd_timestamp; 2996 assert(buf->dtbd_timestamp >= first_timestamp); 2997 2998 dt_pq_insert(dtp->dt_bufq, buf); 2999 drops[i] = buf->dtbd_drops; 3000 buf->dtbd_drops = 0; 3001 } 3002 } 3003 3004 /* Consume records. */ 3005 for (;;) { 3006 dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq); 3007 uint64_t timestamp; 3008 3009 if (buf == NULL) 3010 break; 3011 3012 timestamp = dt_buf_oldest(buf, dtp); 3013 assert(timestamp >= dtp->dt_last_timestamp); 3014 dtp->dt_last_timestamp = timestamp; 3015 3016 if (timestamp == buf->dtbd_timestamp) { 3017 /* 3018 * We've reached the end of the time covered 3019 * by this buffer. If this is the oldest 3020 * buffer, we must do another pass 3021 * to retrieve more data. 3022 */ 3023 dt_put_buf(dtp, buf); 3024 if (timestamp == first_timestamp && 3025 !dtp->dt_stopped) 3026 break; 3027 continue; 3028 } 3029 3030 if ((rval = dt_consume_cpu(dtp, fp, 3031 buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0) 3032 return (rval); 3033 dt_pq_insert(dtp->dt_bufq, buf); 3034 } 3035 3036 /* Consume drops. */ 3037 for (i = 0; i < max_ncpus; i++) { 3038 if (drops[i] != 0) { 3039 int error = dt_handle_cpudrop(dtp, i, 3040 DTRACEDROP_PRINCIPAL, drops[i]); 3041 if (error != 0) 3042 return (error); 3043 } 3044 } 3045 3046 /* 3047 * Reduce memory usage by re-allocating smaller buffers 3048 * for the "remnants". 3049 */ 3050 while (buf = dt_pq_walk(dtp->dt_bufq, &cookie)) 3051 dt_realloc_buf(dtp, buf, buf->dtbd_size); 3052 } 3053 3054 return (0); 3055 }