1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
  25  * Copyright (c) 2012 by Delphix. All rights reserved.
  26  */
  27 
  28 /*
  29  * DTrace - Dynamic Tracing for Solaris
  30  *
  31  * This is the implementation of the Solaris Dynamic Tracing framework
  32  * (DTrace).  The user-visible interface to DTrace is described at length in
  33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
  34  * library, the in-kernel DTrace framework, and the DTrace providers are
  35  * described in the block comments in the <sys/dtrace.h> header file.  The
  36  * internal architecture of DTrace is described in the block comments in the
  37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
  38  * implementation very much assume mastery of all of these sources; if one has
  39  * an unanswered question about the implementation, one should consult them
  40  * first.
  41  *
  42  * The functions here are ordered roughly as follows:
  43  *
  44  *   - Probe context functions
  45  *   - Probe hashing functions
  46  *   - Non-probe context utility functions
  47  *   - Matching functions
  48  *   - Provider-to-Framework API functions
  49  *   - Probe management functions
  50  *   - DIF object functions
  51  *   - Format functions
  52  *   - Predicate functions
  53  *   - ECB functions
  54  *   - Buffer functions
  55  *   - Enabling functions
  56  *   - DOF functions
  57  *   - Anonymous enabling functions
  58  *   - Consumer state functions
  59  *   - Helper functions
  60  *   - Hook functions
  61  *   - Driver cookbook functions
  62  *
  63  * Each group of functions begins with a block comment labelled the "DTrace
  64  * [Group] Functions", allowing one to find each block by searching forward
  65  * on capital-f functions.
  66  */
  67 #include <sys/errno.h>
  68 #include <sys/stat.h>
  69 #include <sys/modctl.h>
  70 #include <sys/conf.h>
  71 #include <sys/systm.h>
  72 #include <sys/ddi.h>
  73 #include <sys/sunddi.h>
  74 #include <sys/cpuvar.h>
  75 #include <sys/kmem.h>
  76 #include <sys/strsubr.h>
  77 #include <sys/sysmacros.h>
  78 #include <sys/dtrace_impl.h>
  79 #include <sys/atomic.h>
  80 #include <sys/cmn_err.h>
  81 #include <sys/mutex_impl.h>
  82 #include <sys/rwlock_impl.h>
  83 #include <sys/ctf_api.h>
  84 #include <sys/panic.h>
  85 #include <sys/priv_impl.h>
  86 #include <sys/policy.h>
  87 #include <sys/cred_impl.h>
  88 #include <sys/procfs_isa.h>
  89 #include <sys/taskq.h>
  90 #include <sys/mkdev.h>
  91 #include <sys/kdi.h>
  92 #include <sys/zone.h>
  93 #include <sys/socket.h>
  94 #include <netinet/in.h>
  95 #include "strtolctype.h"
  96 
  97 /*
  98  * DTrace Tunable Variables
  99  *
 100  * The following variables may be tuned by adding a line to /etc/system that
 101  * includes both the name of the DTrace module ("dtrace") and the name of the
 102  * variable.  For example:
 103  *
 104  *   set dtrace:dtrace_destructive_disallow = 1
 105  *
 106  * In general, the only variables that one should be tuning this way are those
 107  * that affect system-wide DTrace behavior, and for which the default behavior
 108  * is undesirable.  Most of these variables are tunable on a per-consumer
 109  * basis using DTrace options, and need not be tuned on a system-wide basis.
 110  * When tuning these variables, avoid pathological values; while some attempt
 111  * is made to verify the integrity of these variables, they are not considered
 112  * part of the supported interface to DTrace, and they are therefore not
 113  * checked comprehensively.  Further, these variables should not be tuned
 114  * dynamically via "mdb -kw" or other means; they should only be tuned via
 115  * /etc/system.
 116  */
 117 int             dtrace_destructive_disallow = 0;
 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 119 size_t          dtrace_difo_maxsize = (256 * 1024);
 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
 121 size_t          dtrace_global_maxsize = (16 * 1024);
 122 size_t          dtrace_actions_max = (16 * 1024);
 123 size_t          dtrace_retain_max = 1024;
 124 dtrace_optval_t dtrace_helper_actions_max = 1024;
 125 dtrace_optval_t dtrace_helper_providers_max = 32;
 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
 127 size_t          dtrace_strsize_default = 256;
 128 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
 129 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 135 dtrace_optval_t dtrace_nspec_default = 1;
 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
 137 dtrace_optval_t dtrace_stackframes_default = 20;
 138 dtrace_optval_t dtrace_ustackframes_default = 20;
 139 dtrace_optval_t dtrace_jstackframes_default = 50;
 140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
 141 int             dtrace_msgdsize_max = 128;
 142 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
 143 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 144 int             dtrace_devdepth_max = 32;
 145 int             dtrace_err_verbose;
 146 hrtime_t        dtrace_deadman_interval = NANOSEC;
 147 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 148 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 149 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 150 
 151 /*
 152  * DTrace External Variables
 153  *
 154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
 156  * dtrace_zero, is made deliberately so:  it is provided as a source of
 157  * well-known, zero-filled memory.  While this variable is not documented,
 158  * it is used by some translators as an implementation detail.
 159  */
 160 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
 161 
 162 /*
 163  * DTrace Internal Variables
 164  */
 165 static dev_info_t       *dtrace_devi;           /* device info */
 166 static vmem_t           *dtrace_arena;          /* probe ID arena */
 167 static vmem_t           *dtrace_minor;          /* minor number arena */
 168 static taskq_t          *dtrace_taskq;          /* task queue */
 169 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
 170 static int              dtrace_nprobes;         /* number of probes */
 171 static dtrace_provider_t *dtrace_provider;      /* provider list */
 172 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
 173 static int              dtrace_opens;           /* number of opens */
 174 static int              dtrace_helpers;         /* number of helpers */
 175 static int              dtrace_getf;            /* number of unpriv getf()s */
 176 static void             *dtrace_softstate;      /* softstate pointer */
 177 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
 178 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
 179 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
 180 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
 181 static int              dtrace_toxranges;       /* number of toxic ranges */
 182 static int              dtrace_toxranges_max;   /* size of toxic range array */
 183 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
 184 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
 185 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
 186 static kthread_t        *dtrace_panicked;       /* panicking thread */
 187 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
 188 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
 189 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
 190 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
 191 static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
 192 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
 193 static int              dtrace_dynvar_failclean; /* dynvars failed to clean */
 194 
 195 /*
 196  * DTrace Locking
 197  * DTrace is protected by three (relatively coarse-grained) locks:
 198  *
 199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 200  *     including enabling state, probes, ECBs, consumer state, helper state,
 201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 202  *     probe context is lock-free -- synchronization is handled via the
 203  *     dtrace_sync() cross call mechanism.
 204  *
 205  * (2) dtrace_provider_lock is required when manipulating provider state, or
 206  *     when provider state must be held constant.
 207  *
 208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 209  *     when meta provider state must be held constant.
 210  *
 211  * The lock ordering between these three locks is dtrace_meta_lock before
 212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 213  * several places where dtrace_provider_lock is held by the framework as it
 214  * calls into the providers -- which then call back into the framework,
 215  * grabbing dtrace_lock.)
 216  *
 217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 219  * role as a coarse-grained lock; it is acquired before both of these locks.
 220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
 224  */
 225 static kmutex_t         dtrace_lock;            /* probe state lock */
 226 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
 227 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
 228 
 229 /*
 230  * DTrace Provider Variables
 231  *
 232  * These are the variables relating to DTrace as a provider (that is, the
 233  * provider of the BEGIN, END, and ERROR probes).
 234  */
 235 static dtrace_pattr_t   dtrace_provider_attr = {
 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 241 };
 242 
 243 static void
 244 dtrace_nullop(void)
 245 {}
 246 
 247 static int
 248 dtrace_enable_nullop(void)
 249 {
 250         return (0);
 251 }
 252 
 253 static dtrace_pops_t    dtrace_provider_ops = {
 254         (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
 255         (void (*)(void *, struct modctl *))dtrace_nullop,
 256         (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
 257         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 258         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 259         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 260         NULL,
 261         NULL,
 262         NULL,
 263         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 264 };
 265 
 266 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
 267 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
 268 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
 269 
 270 /*
 271  * DTrace Helper Tracing Variables
 272  *
 273  * These variables should be set dynamically to enable helper tracing.  The
 274  * only variables that should be set are dtrace_helptrace_enable (which should
 275  * be set to a non-zero value to allocate helper tracing buffers on the next
 276  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
 277  * non-zero value to deallocate helper tracing buffers on the next close of
 278  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
 279  * buffer size may also be set via dtrace_helptrace_bufsize.
 280  */
 281 int                     dtrace_helptrace_enable = 0;
 282 int                     dtrace_helptrace_disable = 0;
 283 int                     dtrace_helptrace_bufsize = 16 * 1024 * 1024;
 284 uint32_t                dtrace_helptrace_nlocals;
 285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
 286 static uint32_t         dtrace_helptrace_next = 0;
 287 static int              dtrace_helptrace_wrapped = 0;
 288 
 289 /*
 290  * DTrace Error Hashing
 291  *
 292  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 293  * table.  This is very useful for checking coverage of tests that are
 294  * expected to induce DIF or DOF processing errors, and may be useful for
 295  * debugging problems in the DIF code generator or in DOF generation .  The
 296  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 297  */
 298 #ifdef DEBUG
 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
 300 static const char *dtrace_errlast;
 301 static kthread_t *dtrace_errthread;
 302 static kmutex_t dtrace_errlock;
 303 #endif
 304 
 305 /*
 306  * DTrace Macros and Constants
 307  *
 308  * These are various macros that are useful in various spots in the
 309  * implementation, along with a few random constants that have no meaning
 310  * outside of the implementation.  There is no real structure to this cpp
 311  * mishmash -- but is there ever?
 312  */
 313 #define DTRACE_HASHSTR(hash, probe)     \
 314         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 315 
 316 #define DTRACE_HASHNEXT(hash, probe)    \
 317         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 318 
 319 #define DTRACE_HASHPREV(hash, probe)    \
 320         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 321 
 322 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
 323         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 324             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 325 
 326 #define DTRACE_AGGHASHSIZE_SLEW         17
 327 
 328 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 329 
 330 /*
 331  * The key for a thread-local variable consists of the lower 61 bits of the
 332  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 333  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 334  * equal to a variable identifier.  This is necessary (but not sufficient) to
 335  * assure that global associative arrays never collide with thread-local
 336  * variables.  To guarantee that they cannot collide, we must also define the
 337  * order for keying dynamic variables.  That order is:
 338  *
 339  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 340  *
 341  * Because the variable-key and the tls-key are in orthogonal spaces, there is
 342  * no way for a global variable key signature to match a thread-local key
 343  * signature.
 344  */
 345 #define DTRACE_TLS_THRKEY(where) { \
 346         uint_t intr = 0; \
 347         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 348         for (; actv; actv >>= 1) \
 349                 intr++; \
 350         ASSERT(intr < (1 << 3)); \
 351         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 352             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 353 }
 354 
 355 #define DT_BSWAP_8(x)   ((x) & 0xff)
 356 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 357 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 358 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 359 
 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL
 361 
 362 #define DTRACE_STORE(type, tomax, offset, what) \
 363         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 364 
 365 #ifndef __x86
 366 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
 367         if (addr & (size - 1)) {                                    \
 368                 *flags |= CPU_DTRACE_BADALIGN;                          \
 369                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 370                 return (0);                                             \
 371         }
 372 #else
 373 #define DTRACE_ALIGNCHECK(addr, size, flags)
 374 #endif
 375 
 376 /*
 377  * Test whether a range of memory starting at testaddr of size testsz falls
 378  * within the range of memory described by addr, sz.  We take care to avoid
 379  * problems with overflow and underflow of the unsigned quantities, and
 380  * disallow all negative sizes.  Ranges of size 0 are allowed.
 381  */
 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 383         ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
 384         (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
 385         (testaddr) + (testsz) >= (testaddr))
 386 
 387 /*
 388  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 389  * alloc_sz on the righthand side of the comparison in order to avoid overflow
 390  * or underflow in the comparison with it.  This is simpler than the INRANGE
 391  * check above, because we know that the dtms_scratch_ptr is valid in the
 392  * range.  Allocations of size zero are allowed.
 393  */
 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
 395         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 396         (mstate)->dtms_scratch_ptr >= (alloc_sz))
 397 
 398 #define DTRACE_LOADFUNC(bits)                                           \
 399 /*CSTYLED*/                                                             \
 400 uint##bits##_t                                                          \
 401 dtrace_load##bits(uintptr_t addr)                                       \
 402 {                                                                       \
 403         size_t size = bits / NBBY;                                      \
 404         /*CSTYLED*/                                                     \
 405         uint##bits##_t rval;                                            \
 406         int i;                                                          \
 407         volatile uint16_t *flags = (volatile uint16_t *)                \
 408             &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;                    \
 409                                                                         \
 410         DTRACE_ALIGNCHECK(addr, size, flags);                           \
 411                                                                         \
 412         for (i = 0; i < dtrace_toxranges; i++) {                     \
 413                 if (addr >= dtrace_toxrange[i].dtt_limit)            \
 414                         continue;                                       \
 415                                                                         \
 416                 if (addr + size <= dtrace_toxrange[i].dtt_base)              \
 417                         continue;                                       \
 418                                                                         \
 419                 /*                                                      \
 420                  * This address falls within a toxic region; return 0.  \
 421                  */                                                     \
 422                 *flags |= CPU_DTRACE_BADADDR;                           \
 423                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 424                 return (0);                                             \
 425         }                                                               \
 426                                                                         \
 427         *flags |= CPU_DTRACE_NOFAULT;                                   \
 428         /*CSTYLED*/                                                     \
 429         rval = *((volatile uint##bits##_t *)addr);                      \
 430         *flags &= ~CPU_DTRACE_NOFAULT;                                      \
 431                                                                         \
 432         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);           \
 433 }
 434 
 435 #ifdef _LP64
 436 #define dtrace_loadptr  dtrace_load64
 437 #else
 438 #define dtrace_loadptr  dtrace_load32
 439 #endif
 440 
 441 #define DTRACE_DYNHASH_FREE     0
 442 #define DTRACE_DYNHASH_SINK     1
 443 #define DTRACE_DYNHASH_VALID    2
 444 
 445 #define DTRACE_MATCH_FAIL       -1
 446 #define DTRACE_MATCH_NEXT       0
 447 #define DTRACE_MATCH_DONE       1
 448 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 449 #define DTRACE_STATE_ALIGN      64
 450 
 451 #define DTRACE_FLAGS2FLT(flags)                                         \
 452         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :               \
 453         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :            \
 454         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :                \
 455         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :            \
 456         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :            \
 457         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :             \
 458         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :             \
 459         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :   \
 460         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :             \
 461         DTRACEFLT_UNKNOWN)
 462 
 463 #define DTRACEACT_ISSTRING(act)                                         \
 464         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                     \
 465         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 466 
 467 static size_t dtrace_strlen(const char *, size_t);
 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 469 static void dtrace_enabling_provide(dtrace_provider_t *);
 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 471 static void dtrace_enabling_matchall(void);
 472 static void dtrace_enabling_reap(void);
 473 static dtrace_state_t *dtrace_anon_grab(void);
 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 475     dtrace_state_t *, uint64_t, uint64_t);
 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 477 static void dtrace_buffer_drop(dtrace_buffer_t *);
 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 480     dtrace_state_t *, dtrace_mstate_t *);
 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 482     dtrace_optval_t);
 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
 486 static void dtrace_getf_barrier(void);
 487 
 488 /*
 489  * DTrace Probe Context Functions
 490  *
 491  * These functions are called from probe context.  Because probe context is
 492  * any context in which C may be called, arbitrarily locks may be held,
 493  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 494  * As a result, functions called from probe context may only call other DTrace
 495  * support functions -- they may not interact at all with the system at large.
 496  * (Note that the ASSERT macro is made probe-context safe by redefining it in
 497  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 498  * loads are to be performed from probe context, they _must_ be in terms of
 499  * the safe dtrace_load*() variants.
 500  *
 501  * Some functions in this block are not actually called from probe context;
 502  * for these functions, there will be a comment above the function reading
 503  * "Note:  not called from probe context."
 504  */
 505 void
 506 dtrace_panic(const char *format, ...)
 507 {
 508         va_list alist;
 509 
 510         va_start(alist, format);
 511         dtrace_vpanic(format, alist);
 512         va_end(alist);
 513 }
 514 
 515 int
 516 dtrace_assfail(const char *a, const char *f, int l)
 517 {
 518         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 519 
 520         /*
 521          * We just need something here that even the most clever compiler
 522          * cannot optimize away.
 523          */
 524         return (a[(uintptr_t)f]);
 525 }
 526 
 527 /*
 528  * Atomically increment a specified error counter from probe context.
 529  */
 530 static void
 531 dtrace_error(uint32_t *counter)
 532 {
 533         /*
 534          * Most counters stored to in probe context are per-CPU counters.
 535          * However, there are some error conditions that are sufficiently
 536          * arcane that they don't merit per-CPU storage.  If these counters
 537          * are incremented concurrently on different CPUs, scalability will be
 538          * adversely affected -- but we don't expect them to be white-hot in a
 539          * correctly constructed enabling...
 540          */
 541         uint32_t oval, nval;
 542 
 543         do {
 544                 oval = *counter;
 545 
 546                 if ((nval = oval + 1) == 0) {
 547                         /*
 548                          * If the counter would wrap, set it to 1 -- assuring
 549                          * that the counter is never zero when we have seen
 550                          * errors.  (The counter must be 32-bits because we
 551                          * aren't guaranteed a 64-bit compare&swap operation.)
 552                          * To save this code both the infamy of being fingered
 553                          * by a priggish news story and the indignity of being
 554                          * the target of a neo-puritan witch trial, we're
 555                          * carefully avoiding any colorful description of the
 556                          * likelihood of this condition -- but suffice it to
 557                          * say that it is only slightly more likely than the
 558                          * overflow of predicate cache IDs, as discussed in
 559                          * dtrace_predicate_create().
 560                          */
 561                         nval = 1;
 562                 }
 563         } while (dtrace_cas32(counter, oval, nval) != oval);
 564 }
 565 
 566 /*
 567  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 568  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 569  */
 570 DTRACE_LOADFUNC(8)
 571 DTRACE_LOADFUNC(16)
 572 DTRACE_LOADFUNC(32)
 573 DTRACE_LOADFUNC(64)
 574 
 575 static int
 576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 577 {
 578         if (dest < mstate->dtms_scratch_base)
 579                 return (0);
 580 
 581         if (dest + size < dest)
 582                 return (0);
 583 
 584         if (dest + size > mstate->dtms_scratch_ptr)
 585                 return (0);
 586 
 587         return (1);
 588 }
 589 
 590 static int
 591 dtrace_canstore_statvar(uint64_t addr, size_t sz,
 592     dtrace_statvar_t **svars, int nsvars)
 593 {
 594         int i;
 595 
 596         for (i = 0; i < nsvars; i++) {
 597                 dtrace_statvar_t *svar = svars[i];
 598 
 599                 if (svar == NULL || svar->dtsv_size == 0)
 600                         continue;
 601 
 602                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
 603                         return (1);
 604         }
 605 
 606         return (0);
 607 }
 608 
 609 /*
 610  * Check to see if the address is within a memory region to which a store may
 611  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 612  * region.  The caller of dtrace_canstore() is responsible for performing any
 613  * alignment checks that are needed before stores are actually executed.
 614  */
 615 static int
 616 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 617     dtrace_vstate_t *vstate)
 618 {
 619         /*
 620          * First, check to see if the address is in scratch space...
 621          */
 622         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 623             mstate->dtms_scratch_size))
 624                 return (1);
 625 
 626         /*
 627          * Now check to see if it's a dynamic variable.  This check will pick
 628          * up both thread-local variables and any global dynamically-allocated
 629          * variables.
 630          */
 631         if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
 632             vstate->dtvs_dynvars.dtds_size)) {
 633                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 634                 uintptr_t base = (uintptr_t)dstate->dtds_base +
 635                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 636                 uintptr_t chunkoffs;
 637 
 638                 /*
 639                  * Before we assume that we can store here, we need to make
 640                  * sure that it isn't in our metadata -- storing to our
 641                  * dynamic variable metadata would corrupt our state.  For
 642                  * the range to not include any dynamic variable metadata,
 643                  * it must:
 644                  *
 645                  *      (1) Start above the hash table that is at the base of
 646                  *      the dynamic variable space
 647                  *
 648                  *      (2) Have a starting chunk offset that is beyond the
 649                  *      dtrace_dynvar_t that is at the base of every chunk
 650                  *
 651                  *      (3) Not span a chunk boundary
 652                  *
 653                  */
 654                 if (addr < base)
 655                         return (0);
 656 
 657                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
 658 
 659                 if (chunkoffs < sizeof (dtrace_dynvar_t))
 660                         return (0);
 661 
 662                 if (chunkoffs + sz > dstate->dtds_chunksize)
 663                         return (0);
 664 
 665                 return (1);
 666         }
 667 
 668         /*
 669          * Finally, check the static local and global variables.  These checks
 670          * take the longest, so we perform them last.
 671          */
 672         if (dtrace_canstore_statvar(addr, sz,
 673             vstate->dtvs_locals, vstate->dtvs_nlocals))
 674                 return (1);
 675 
 676         if (dtrace_canstore_statvar(addr, sz,
 677             vstate->dtvs_globals, vstate->dtvs_nglobals))
 678                 return (1);
 679 
 680         return (0);
 681 }
 682 
 683 
 684 /*
 685  * Convenience routine to check to see if the address is within a memory
 686  * region in which a load may be issued given the user's privilege level;
 687  * if not, it sets the appropriate error flags and loads 'addr' into the
 688  * illegal value slot.
 689  *
 690  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 691  * appropriate memory access protection.
 692  */
 693 static int
 694 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 695     dtrace_vstate_t *vstate)
 696 {
 697         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
 698         file_t *fp;
 699 
 700         /*
 701          * If we hold the privilege to read from kernel memory, then
 702          * everything is readable.
 703          */
 704         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 705                 return (1);
 706 
 707         /*
 708          * You can obviously read that which you can store.
 709          */
 710         if (dtrace_canstore(addr, sz, mstate, vstate))
 711                 return (1);
 712 
 713         /*
 714          * We're allowed to read from our own string table.
 715          */
 716         if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
 717             mstate->dtms_difo->dtdo_strlen))
 718                 return (1);
 719 
 720         if (vstate->dtvs_state != NULL &&
 721             dtrace_priv_proc(vstate->dtvs_state, mstate)) {
 722                 proc_t *p;
 723 
 724                 /*
 725                  * When we have privileges to the current process, there are
 726                  * several context-related kernel structures that are safe to
 727                  * read, even absent the privilege to read from kernel memory.
 728                  * These reads are safe because these structures contain only
 729                  * state that (1) we're permitted to read, (2) is harmless or
 730                  * (3) contains pointers to additional kernel state that we're
 731                  * not permitted to read (and as such, do not present an
 732                  * opportunity for privilege escalation).  Finally (and
 733                  * critically), because of the nature of their relation with
 734                  * the current thread context, the memory associated with these
 735                  * structures cannot change over the duration of probe context,
 736                  * and it is therefore impossible for this memory to be
 737                  * deallocated and reallocated as something else while it's
 738                  * being operated upon.
 739                  */
 740                 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
 741                         return (1);
 742 
 743                 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
 744                     sz, curthread->t_procp, sizeof (proc_t))) {
 745                         return (1);
 746                 }
 747 
 748                 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
 749                     curthread->t_cred, sizeof (cred_t))) {
 750                         return (1);
 751                 }
 752 
 753                 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
 754                     &(p->p_pidp->pid_id), sizeof (pid_t))) {
 755                         return (1);
 756                 }
 757 
 758                 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
 759                     curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
 760                         return (1);
 761                 }
 762         }
 763 
 764         if ((fp = mstate->dtms_getf) != NULL) {
 765                 uintptr_t psz = sizeof (void *);
 766                 vnode_t *vp;
 767                 vnodeops_t *op;
 768 
 769                 /*
 770                  * When getf() returns a file_t, the enabling is implicitly
 771                  * granted the (transient) right to read the returned file_t
 772                  * as well as the v_path and v_op->vnop_name of the underlying
 773                  * vnode.  These accesses are allowed after a successful
 774                  * getf() because the members that they refer to cannot change
 775                  * once set -- and the barrier logic in the kernel's closef()
 776                  * path assures that the file_t and its referenced vode_t
 777                  * cannot themselves be stale (that is, it impossible for
 778                  * either dtms_getf itself or its f_vnode member to reference
 779                  * freed memory).
 780                  */
 781                 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
 782                         return (1);
 783 
 784                 if ((vp = fp->f_vnode) != NULL) {
 785                         if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
 786                                 return (1);
 787 
 788                         if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
 789                             vp->v_path, strlen(vp->v_path) + 1)) {
 790                                 return (1);
 791                         }
 792 
 793                         if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
 794                                 return (1);
 795 
 796                         if ((op = vp->v_op) != NULL &&
 797                             DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
 798                                 return (1);
 799                         }
 800 
 801                         if (op != NULL && op->vnop_name != NULL &&
 802                             DTRACE_INRANGE(addr, sz, op->vnop_name,
 803                             strlen(op->vnop_name) + 1)) {
 804                                 return (1);
 805                         }
 806                 }
 807         }
 808 
 809         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 810         *illval = addr;
 811         return (0);
 812 }
 813 
 814 /*
 815  * Convenience routine to check to see if a given string is within a memory
 816  * region in which a load may be issued given the user's privilege level;
 817  * this exists so that we don't need to issue unnecessary dtrace_strlen()
 818  * calls in the event that the user has all privileges.
 819  */
 820 static int
 821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 822     dtrace_vstate_t *vstate)
 823 {
 824         size_t strsz;
 825 
 826         /*
 827          * If we hold the privilege to read from kernel memory, then
 828          * everything is readable.
 829          */
 830         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 831                 return (1);
 832 
 833         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
 834         if (dtrace_canload(addr, strsz, mstate, vstate))
 835                 return (1);
 836 
 837         return (0);
 838 }
 839 
 840 /*
 841  * Convenience routine to check to see if a given variable is within a memory
 842  * region in which a load may be issued given the user's privilege level.
 843  */
 844 static int
 845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
 846     dtrace_vstate_t *vstate)
 847 {
 848         size_t sz;
 849         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 850 
 851         /*
 852          * If we hold the privilege to read from kernel memory, then
 853          * everything is readable.
 854          */
 855         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 856                 return (1);
 857 
 858         if (type->dtdt_kind == DIF_TYPE_STRING)
 859                 sz = dtrace_strlen(src,
 860                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
 861         else
 862                 sz = type->dtdt_size;
 863 
 864         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
 865 }
 866 
 867 /*
 868  * Convert a string to a signed integer using safe loads.
 869  *
 870  * NOTE: This function uses various macros from strtolctype.h to manipulate
 871  * digit values, etc -- these have all been checked to ensure they make
 872  * no additional function calls.
 873  */
 874 static int64_t
 875 dtrace_strtoll(char *input, int base, size_t limit)
 876 {
 877         uintptr_t pos = (uintptr_t)input;
 878         int64_t val = 0;
 879         int x;
 880         boolean_t neg = B_FALSE;
 881         char c, cc, ccc;
 882         uintptr_t end = pos + limit;
 883 
 884         /*
 885          * Consume any whitespace preceding digits.
 886          */
 887         while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
 888                 pos++;
 889 
 890         /*
 891          * Handle an explicit sign if one is present.
 892          */
 893         if (c == '-' || c == '+') {
 894                 if (c == '-')
 895                         neg = B_TRUE;
 896                 c = dtrace_load8(++pos);
 897         }
 898 
 899         /*
 900          * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
 901          * if present.
 902          */
 903         if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
 904             cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
 905                 pos += 2;
 906                 c = ccc;
 907         }
 908 
 909         /*
 910          * Read in contiguous digits until the first non-digit character.
 911          */
 912         for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
 913             c = dtrace_load8(++pos))
 914                 val = val * base + x;
 915 
 916         return (neg ? -val : val);
 917 }
 918 
 919 /*
 920  * Compare two strings using safe loads.
 921  */
 922 static int
 923 dtrace_strncmp(char *s1, char *s2, size_t limit)
 924 {
 925         uint8_t c1, c2;
 926         volatile uint16_t *flags;
 927 
 928         if (s1 == s2 || limit == 0)
 929                 return (0);
 930 
 931         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
 932 
 933         do {
 934                 if (s1 == NULL) {
 935                         c1 = '\0';
 936                 } else {
 937                         c1 = dtrace_load8((uintptr_t)s1++);
 938                 }
 939 
 940                 if (s2 == NULL) {
 941                         c2 = '\0';
 942                 } else {
 943                         c2 = dtrace_load8((uintptr_t)s2++);
 944                 }
 945 
 946                 if (c1 != c2)
 947                         return (c1 - c2);
 948         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
 949 
 950         return (0);
 951 }
 952 
 953 /*
 954  * Compute strlen(s) for a string using safe memory accesses.  The additional
 955  * len parameter is used to specify a maximum length to ensure completion.
 956  */
 957 static size_t
 958 dtrace_strlen(const char *s, size_t lim)
 959 {
 960         uint_t len;
 961 
 962         for (len = 0; len != lim; len++) {
 963                 if (dtrace_load8((uintptr_t)s++) == '\0')
 964                         break;
 965         }
 966 
 967         return (len);
 968 }
 969 
 970 /*
 971  * Check if an address falls within a toxic region.
 972  */
 973 static int
 974 dtrace_istoxic(uintptr_t kaddr, size_t size)
 975 {
 976         uintptr_t taddr, tsize;
 977         int i;
 978 
 979         for (i = 0; i < dtrace_toxranges; i++) {
 980                 taddr = dtrace_toxrange[i].dtt_base;
 981                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
 982 
 983                 if (kaddr - taddr < tsize) {
 984                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 985                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
 986                         return (1);
 987                 }
 988 
 989                 if (taddr - kaddr < size) {
 990                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 991                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
 992                         return (1);
 993                 }
 994         }
 995 
 996         return (0);
 997 }
 998 
 999 /*
1000  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1001  * memory specified by the DIF program.  The dst is assumed to be safe memory
1002  * that we can store to directly because it is managed by DTrace.  As with
1003  * standard bcopy, overlapping copies are handled properly.
1004  */
1005 static void
1006 dtrace_bcopy(const void *src, void *dst, size_t len)
1007 {
1008         if (len != 0) {
1009                 uint8_t *s1 = dst;
1010                 const uint8_t *s2 = src;
1011 
1012                 if (s1 <= s2) {
1013                         do {
1014                                 *s1++ = dtrace_load8((uintptr_t)s2++);
1015                         } while (--len != 0);
1016                 } else {
1017                         s2 += len;
1018                         s1 += len;
1019 
1020                         do {
1021                                 *--s1 = dtrace_load8((uintptr_t)--s2);
1022                         } while (--len != 0);
1023                 }
1024         }
1025 }
1026 
1027 /*
1028  * Copy src to dst using safe memory accesses, up to either the specified
1029  * length, or the point that a nul byte is encountered.  The src is assumed to
1030  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1031  * safe memory that we can store to directly because it is managed by DTrace.
1032  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1033  */
1034 static void
1035 dtrace_strcpy(const void *src, void *dst, size_t len)
1036 {
1037         if (len != 0) {
1038                 uint8_t *s1 = dst, c;
1039                 const uint8_t *s2 = src;
1040 
1041                 do {
1042                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
1043                 } while (--len != 0 && c != '\0');
1044         }
1045 }
1046 
1047 /*
1048  * Copy src to dst, deriving the size and type from the specified (BYREF)
1049  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1050  * program.  The dst is assumed to be DTrace variable memory that is of the
1051  * specified type; we assume that we can store to directly.
1052  */
1053 static void
1054 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1055 {
1056         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1057 
1058         if (type->dtdt_kind == DIF_TYPE_STRING) {
1059                 dtrace_strcpy(src, dst, type->dtdt_size);
1060         } else {
1061                 dtrace_bcopy(src, dst, type->dtdt_size);
1062         }
1063 }
1064 
1065 /*
1066  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1067  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1068  * safe memory that we can access directly because it is managed by DTrace.
1069  */
1070 static int
1071 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1072 {
1073         volatile uint16_t *flags;
1074 
1075         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1076 
1077         if (s1 == s2)
1078                 return (0);
1079 
1080         if (s1 == NULL || s2 == NULL)
1081                 return (1);
1082 
1083         if (s1 != s2 && len != 0) {
1084                 const uint8_t *ps1 = s1;
1085                 const uint8_t *ps2 = s2;
1086 
1087                 do {
1088                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1089                                 return (1);
1090                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1091         }
1092         return (0);
1093 }
1094 
1095 /*
1096  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1097  * is for safe DTrace-managed memory only.
1098  */
1099 static void
1100 dtrace_bzero(void *dst, size_t len)
1101 {
1102         uchar_t *cp;
1103 
1104         for (cp = dst; len != 0; len--)
1105                 *cp++ = 0;
1106 }
1107 
1108 static void
1109 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1110 {
1111         uint64_t result[2];
1112 
1113         result[0] = addend1[0] + addend2[0];
1114         result[1] = addend1[1] + addend2[1] +
1115             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1116 
1117         sum[0] = result[0];
1118         sum[1] = result[1];
1119 }
1120 
1121 /*
1122  * Shift the 128-bit value in a by b. If b is positive, shift left.
1123  * If b is negative, shift right.
1124  */
1125 static void
1126 dtrace_shift_128(uint64_t *a, int b)
1127 {
1128         uint64_t mask;
1129 
1130         if (b == 0)
1131                 return;
1132 
1133         if (b < 0) {
1134                 b = -b;
1135                 if (b >= 64) {
1136                         a[0] = a[1] >> (b - 64);
1137                         a[1] = 0;
1138                 } else {
1139                         a[0] >>= b;
1140                         mask = 1LL << (64 - b);
1141                         mask -= 1;
1142                         a[0] |= ((a[1] & mask) << (64 - b));
1143                         a[1] >>= b;
1144                 }
1145         } else {
1146                 if (b >= 64) {
1147                         a[1] = a[0] << (b - 64);
1148                         a[0] = 0;
1149                 } else {
1150                         a[1] <<= b;
1151                         mask = a[0] >> (64 - b);
1152                         a[1] |= mask;
1153                         a[0] <<= b;
1154                 }
1155         }
1156 }
1157 
1158 /*
1159  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1160  * use native multiplication on those, and then re-combine into the
1161  * resulting 128-bit value.
1162  *
1163  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1164  *     hi1 * hi2 << 64 +
1165  *     hi1 * lo2 << 32 +
1166  *     hi2 * lo1 << 32 +
1167  *     lo1 * lo2
1168  */
1169 static void
1170 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1171 {
1172         uint64_t hi1, hi2, lo1, lo2;
1173         uint64_t tmp[2];
1174 
1175         hi1 = factor1 >> 32;
1176         hi2 = factor2 >> 32;
1177 
1178         lo1 = factor1 & DT_MASK_LO;
1179         lo2 = factor2 & DT_MASK_LO;
1180 
1181         product[0] = lo1 * lo2;
1182         product[1] = hi1 * hi2;
1183 
1184         tmp[0] = hi1 * lo2;
1185         tmp[1] = 0;
1186         dtrace_shift_128(tmp, 32);
1187         dtrace_add_128(product, tmp, product);
1188 
1189         tmp[0] = hi2 * lo1;
1190         tmp[1] = 0;
1191         dtrace_shift_128(tmp, 32);
1192         dtrace_add_128(product, tmp, product);
1193 }
1194 
1195 /*
1196  * This privilege check should be used by actions and subroutines to
1197  * verify that the user credentials of the process that enabled the
1198  * invoking ECB match the target credentials
1199  */
1200 static int
1201 dtrace_priv_proc_common_user(dtrace_state_t *state)
1202 {
1203         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1204 
1205         /*
1206          * We should always have a non-NULL state cred here, since if cred
1207          * is null (anonymous tracing), we fast-path bypass this routine.
1208          */
1209         ASSERT(s_cr != NULL);
1210 
1211         if ((cr = CRED()) != NULL &&
1212             s_cr->cr_uid == cr->cr_uid &&
1213             s_cr->cr_uid == cr->cr_ruid &&
1214             s_cr->cr_uid == cr->cr_suid &&
1215             s_cr->cr_gid == cr->cr_gid &&
1216             s_cr->cr_gid == cr->cr_rgid &&
1217             s_cr->cr_gid == cr->cr_sgid)
1218                 return (1);
1219 
1220         return (0);
1221 }
1222 
1223 /*
1224  * This privilege check should be used by actions and subroutines to
1225  * verify that the zone of the process that enabled the invoking ECB
1226  * matches the target credentials
1227  */
1228 static int
1229 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1230 {
1231         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1232 
1233         /*
1234          * We should always have a non-NULL state cred here, since if cred
1235          * is null (anonymous tracing), we fast-path bypass this routine.
1236          */
1237         ASSERT(s_cr != NULL);
1238 
1239         if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1240                 return (1);
1241 
1242         return (0);
1243 }
1244 
1245 /*
1246  * This privilege check should be used by actions and subroutines to
1247  * verify that the process has not setuid or changed credentials.
1248  */
1249 static int
1250 dtrace_priv_proc_common_nocd()
1251 {
1252         proc_t *proc;
1253 
1254         if ((proc = ttoproc(curthread)) != NULL &&
1255             !(proc->p_flag & SNOCD))
1256                 return (1);
1257 
1258         return (0);
1259 }
1260 
1261 static int
1262 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1263 {
1264         int action = state->dts_cred.dcr_action;
1265 
1266         if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1267                 goto bad;
1268 
1269         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1270             dtrace_priv_proc_common_zone(state) == 0)
1271                 goto bad;
1272 
1273         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1274             dtrace_priv_proc_common_user(state) == 0)
1275                 goto bad;
1276 
1277         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1278             dtrace_priv_proc_common_nocd() == 0)
1279                 goto bad;
1280 
1281         return (1);
1282 
1283 bad:
1284         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1285 
1286         return (0);
1287 }
1288 
1289 static int
1290 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1291 {
1292         if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1293                 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1294                         return (1);
1295 
1296                 if (dtrace_priv_proc_common_zone(state) &&
1297                     dtrace_priv_proc_common_user(state) &&
1298                     dtrace_priv_proc_common_nocd())
1299                         return (1);
1300         }
1301 
1302         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1303 
1304         return (0);
1305 }
1306 
1307 static int
1308 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1309 {
1310         if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1311             (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1312                 return (1);
1313 
1314         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1315 
1316         return (0);
1317 }
1318 
1319 static int
1320 dtrace_priv_kernel(dtrace_state_t *state)
1321 {
1322         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1323                 return (1);
1324 
1325         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1326 
1327         return (0);
1328 }
1329 
1330 static int
1331 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1332 {
1333         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1334                 return (1);
1335 
1336         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1337 
1338         return (0);
1339 }
1340 
1341 /*
1342  * Determine if the dte_cond of the specified ECB allows for processing of
1343  * the current probe to continue.  Note that this routine may allow continued
1344  * processing, but with access(es) stripped from the mstate's dtms_access
1345  * field.
1346  */
1347 static int
1348 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1349     dtrace_ecb_t *ecb)
1350 {
1351         dtrace_probe_t *probe = ecb->dte_probe;
1352         dtrace_provider_t *prov = probe->dtpr_provider;
1353         dtrace_pops_t *pops = &prov->dtpv_pops;
1354         int mode = DTRACE_MODE_NOPRIV_DROP;
1355 
1356         ASSERT(ecb->dte_cond);
1357 
1358         if (pops->dtps_mode != NULL) {
1359                 mode = pops->dtps_mode(prov->dtpv_arg,
1360                     probe->dtpr_id, probe->dtpr_arg);
1361 
1362                 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1363                 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1364                     DTRACE_MODE_NOPRIV_DROP));
1365         }
1366 
1367         /*
1368          * If the dte_cond bits indicate that this consumer is only allowed to
1369          * see user-mode firings of this probe, check that the probe was fired
1370          * while in a user context.  If that's not the case, use the policy
1371          * specified by the provider to determine if we drop the probe or
1372          * merely restrict operation.
1373          */
1374         if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1375                 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1376 
1377                 if (!(mode & DTRACE_MODE_USER)) {
1378                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1379                                 return (0);
1380 
1381                         mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1382                 }
1383         }
1384 
1385         /*
1386          * This is more subtle than it looks. We have to be absolutely certain
1387          * that CRED() isn't going to change out from under us so it's only
1388          * legit to examine that structure if we're in constrained situations.
1389          * Currently, the only times we'll this check is if a non-super-user
1390          * has enabled the profile or syscall providers -- providers that
1391          * allow visibility of all processes. For the profile case, the check
1392          * above will ensure that we're examining a user context.
1393          */
1394         if (ecb->dte_cond & DTRACE_COND_OWNER) {
1395                 cred_t *cr;
1396                 cred_t *s_cr = state->dts_cred.dcr_cred;
1397                 proc_t *proc;
1398 
1399                 ASSERT(s_cr != NULL);
1400 
1401                 if ((cr = CRED()) == NULL ||
1402                     s_cr->cr_uid != cr->cr_uid ||
1403                     s_cr->cr_uid != cr->cr_ruid ||
1404                     s_cr->cr_uid != cr->cr_suid ||
1405                     s_cr->cr_gid != cr->cr_gid ||
1406                     s_cr->cr_gid != cr->cr_rgid ||
1407                     s_cr->cr_gid != cr->cr_sgid ||
1408                     (proc = ttoproc(curthread)) == NULL ||
1409                     (proc->p_flag & SNOCD)) {
1410                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1411                                 return (0);
1412 
1413                         mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1414                 }
1415         }
1416 
1417         /*
1418          * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1419          * in our zone, check to see if our mode policy is to restrict rather
1420          * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1421          * and DTRACE_ACCESS_ARGS
1422          */
1423         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1424                 cred_t *cr;
1425                 cred_t *s_cr = state->dts_cred.dcr_cred;
1426 
1427                 ASSERT(s_cr != NULL);
1428 
1429                 if ((cr = CRED()) == NULL ||
1430                     s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1431                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1432                                 return (0);
1433 
1434                         mstate->dtms_access &=
1435                             ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1436                 }
1437         }
1438 
1439         /*
1440          * By merits of being in this code path at all, we have limited
1441          * privileges.  If the provider has indicated that limited privileges
1442          * are to denote restricted operation, strip off the ability to access
1443          * arguments.
1444          */
1445         if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1446                 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1447 
1448         return (1);
1449 }
1450 
1451 /*
1452  * Note:  not called from probe context.  This function is called
1453  * asynchronously (and at a regular interval) from outside of probe context to
1454  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1455  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1456  */
1457 void
1458 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1459 {
1460         dtrace_dynvar_t *dirty;
1461         dtrace_dstate_percpu_t *dcpu;
1462         dtrace_dynvar_t **rinsep;
1463         int i, j, work = 0;
1464 
1465         for (i = 0; i < NCPU; i++) {
1466                 dcpu = &dstate->dtds_percpu[i];
1467                 rinsep = &dcpu->dtdsc_rinsing;
1468 
1469                 /*
1470                  * If the dirty list is NULL, there is no dirty work to do.
1471                  */
1472                 if (dcpu->dtdsc_dirty == NULL)
1473                         continue;
1474 
1475                 if (dcpu->dtdsc_rinsing != NULL) {
1476                         /*
1477                          * If the rinsing list is non-NULL, then it is because
1478                          * this CPU was selected to accept another CPU's
1479                          * dirty list -- and since that time, dirty buffers
1480                          * have accumulated.  This is a highly unlikely
1481                          * condition, but we choose to ignore the dirty
1482                          * buffers -- they'll be picked up a future cleanse.
1483                          */
1484                         continue;
1485                 }
1486 
1487                 if (dcpu->dtdsc_clean != NULL) {
1488                         /*
1489                          * If the clean list is non-NULL, then we're in a
1490                          * situation where a CPU has done deallocations (we
1491                          * have a non-NULL dirty list) but no allocations (we
1492                          * also have a non-NULL clean list).  We can't simply
1493                          * move the dirty list into the clean list on this
1494                          * CPU, yet we also don't want to allow this condition
1495                          * to persist, lest a short clean list prevent a
1496                          * massive dirty list from being cleaned (which in
1497                          * turn could lead to otherwise avoidable dynamic
1498                          * drops).  To deal with this, we look for some CPU
1499                          * with a NULL clean list, NULL dirty list, and NULL
1500                          * rinsing list -- and then we borrow this CPU to
1501                          * rinse our dirty list.
1502                          */
1503                         for (j = 0; j < NCPU; j++) {
1504                                 dtrace_dstate_percpu_t *rinser;
1505 
1506                                 rinser = &dstate->dtds_percpu[j];
1507 
1508                                 if (rinser->dtdsc_rinsing != NULL)
1509                                         continue;
1510 
1511                                 if (rinser->dtdsc_dirty != NULL)
1512                                         continue;
1513 
1514                                 if (rinser->dtdsc_clean != NULL)
1515                                         continue;
1516 
1517                                 rinsep = &rinser->dtdsc_rinsing;
1518                                 break;
1519                         }
1520 
1521                         if (j == NCPU) {
1522                                 /*
1523                                  * We were unable to find another CPU that
1524                                  * could accept this dirty list -- we are
1525                                  * therefore unable to clean it now.
1526                                  */
1527                                 dtrace_dynvar_failclean++;
1528                                 continue;
1529                         }
1530                 }
1531 
1532                 work = 1;
1533 
1534                 /*
1535                  * Atomically move the dirty list aside.
1536                  */
1537                 do {
1538                         dirty = dcpu->dtdsc_dirty;
1539 
1540                         /*
1541                          * Before we zap the dirty list, set the rinsing list.
1542                          * (This allows for a potential assertion in
1543                          * dtrace_dynvar():  if a free dynamic variable appears
1544                          * on a hash chain, either the dirty list or the
1545                          * rinsing list for some CPU must be non-NULL.)
1546                          */
1547                         *rinsep = dirty;
1548                         dtrace_membar_producer();
1549                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1550                     dirty, NULL) != dirty);
1551         }
1552 
1553         if (!work) {
1554                 /*
1555                  * We have no work to do; we can simply return.
1556                  */
1557                 return;
1558         }
1559 
1560         dtrace_sync();
1561 
1562         for (i = 0; i < NCPU; i++) {
1563                 dcpu = &dstate->dtds_percpu[i];
1564 
1565                 if (dcpu->dtdsc_rinsing == NULL)
1566                         continue;
1567 
1568                 /*
1569                  * We are now guaranteed that no hash chain contains a pointer
1570                  * into this dirty list; we can make it clean.
1571                  */
1572                 ASSERT(dcpu->dtdsc_clean == NULL);
1573                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1574                 dcpu->dtdsc_rinsing = NULL;
1575         }
1576 
1577         /*
1578          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1579          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1580          * This prevents a race whereby a CPU incorrectly decides that
1581          * the state should be something other than DTRACE_DSTATE_CLEAN
1582          * after dtrace_dynvar_clean() has completed.
1583          */
1584         dtrace_sync();
1585 
1586         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1587 }
1588 
1589 /*
1590  * Depending on the value of the op parameter, this function looks-up,
1591  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1592  * allocation is requested, this function will return a pointer to a
1593  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1594  * variable can be allocated.  If NULL is returned, the appropriate counter
1595  * will be incremented.
1596  */
1597 dtrace_dynvar_t *
1598 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1599     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1600     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1601 {
1602         uint64_t hashval = DTRACE_DYNHASH_VALID;
1603         dtrace_dynhash_t *hash = dstate->dtds_hash;
1604         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1605         processorid_t me = CPU->cpu_id, cpu = me;
1606         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1607         size_t bucket, ksize;
1608         size_t chunksize = dstate->dtds_chunksize;
1609         uintptr_t kdata, lock, nstate;
1610         uint_t i;
1611 
1612         ASSERT(nkeys != 0);
1613 
1614         /*
1615          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1616          * algorithm.  For the by-value portions, we perform the algorithm in
1617          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1618          * bit, and seems to have only a minute effect on distribution.  For
1619          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1620          * over each referenced byte.  It's painful to do this, but it's much
1621          * better than pathological hash distribution.  The efficacy of the
1622          * hashing algorithm (and a comparison with other algorithms) may be
1623          * found by running the ::dtrace_dynstat MDB dcmd.
1624          */
1625         for (i = 0; i < nkeys; i++) {
1626                 if (key[i].dttk_size == 0) {
1627                         uint64_t val = key[i].dttk_value;
1628 
1629                         hashval += (val >> 48) & 0xffff;
1630                         hashval += (hashval << 10);
1631                         hashval ^= (hashval >> 6);
1632 
1633                         hashval += (val >> 32) & 0xffff;
1634                         hashval += (hashval << 10);
1635                         hashval ^= (hashval >> 6);
1636 
1637                         hashval += (val >> 16) & 0xffff;
1638                         hashval += (hashval << 10);
1639                         hashval ^= (hashval >> 6);
1640 
1641                         hashval += val & 0xffff;
1642                         hashval += (hashval << 10);
1643                         hashval ^= (hashval >> 6);
1644                 } else {
1645                         /*
1646                          * This is incredibly painful, but it beats the hell
1647                          * out of the alternative.
1648                          */
1649                         uint64_t j, size = key[i].dttk_size;
1650                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1651 
1652                         if (!dtrace_canload(base, size, mstate, vstate))
1653                                 break;
1654 
1655                         for (j = 0; j < size; j++) {
1656                                 hashval += dtrace_load8(base + j);
1657                                 hashval += (hashval << 10);
1658                                 hashval ^= (hashval >> 6);
1659                         }
1660                 }
1661         }
1662 
1663         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1664                 return (NULL);
1665 
1666         hashval += (hashval << 3);
1667         hashval ^= (hashval >> 11);
1668         hashval += (hashval << 15);
1669 
1670         /*
1671          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1672          * comes out to be one of our two sentinel hash values.  If this
1673          * actually happens, we set the hashval to be a value known to be a
1674          * non-sentinel value.
1675          */
1676         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1677                 hashval = DTRACE_DYNHASH_VALID;
1678 
1679         /*
1680          * Yes, it's painful to do a divide here.  If the cycle count becomes
1681          * important here, tricks can be pulled to reduce it.  (However, it's
1682          * critical that hash collisions be kept to an absolute minimum;
1683          * they're much more painful than a divide.)  It's better to have a
1684          * solution that generates few collisions and still keeps things
1685          * relatively simple.
1686          */
1687         bucket = hashval % dstate->dtds_hashsize;
1688 
1689         if (op == DTRACE_DYNVAR_DEALLOC) {
1690                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1691 
1692                 for (;;) {
1693                         while ((lock = *lockp) & 1)
1694                                 continue;
1695 
1696                         if (dtrace_casptr((void *)lockp,
1697                             (void *)lock, (void *)(lock + 1)) == (void *)lock)
1698                                 break;
1699                 }
1700 
1701                 dtrace_membar_producer();
1702         }
1703 
1704 top:
1705         prev = NULL;
1706         lock = hash[bucket].dtdh_lock;
1707 
1708         dtrace_membar_consumer();
1709 
1710         start = hash[bucket].dtdh_chain;
1711         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1712             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1713             op != DTRACE_DYNVAR_DEALLOC));
1714 
1715         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1716                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1717                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1718 
1719                 if (dvar->dtdv_hashval != hashval) {
1720                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1721                                 /*
1722                                  * We've reached the sink, and therefore the
1723                                  * end of the hash chain; we can kick out of
1724                                  * the loop knowing that we have seen a valid
1725                                  * snapshot of state.
1726                                  */
1727                                 ASSERT(dvar->dtdv_next == NULL);
1728                                 ASSERT(dvar == &dtrace_dynhash_sink);
1729                                 break;
1730                         }
1731 
1732                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1733                                 /*
1734                                  * We've gone off the rails:  somewhere along
1735                                  * the line, one of the members of this hash
1736                                  * chain was deleted.  Note that we could also
1737                                  * detect this by simply letting this loop run
1738                                  * to completion, as we would eventually hit
1739                                  * the end of the dirty list.  However, we
1740                                  * want to avoid running the length of the
1741                                  * dirty list unnecessarily (it might be quite
1742                                  * long), so we catch this as early as
1743                                  * possible by detecting the hash marker.  In
1744                                  * this case, we simply set dvar to NULL and
1745                                  * break; the conditional after the loop will
1746                                  * send us back to top.
1747                                  */
1748                                 dvar = NULL;
1749                                 break;
1750                         }
1751 
1752                         goto next;
1753                 }
1754 
1755                 if (dtuple->dtt_nkeys != nkeys)
1756                         goto next;
1757 
1758                 for (i = 0; i < nkeys; i++, dkey++) {
1759                         if (dkey->dttk_size != key[i].dttk_size)
1760                                 goto next; /* size or type mismatch */
1761 
1762                         if (dkey->dttk_size != 0) {
1763                                 if (dtrace_bcmp(
1764                                     (void *)(uintptr_t)key[i].dttk_value,
1765                                     (void *)(uintptr_t)dkey->dttk_value,
1766                                     dkey->dttk_size))
1767                                         goto next;
1768                         } else {
1769                                 if (dkey->dttk_value != key[i].dttk_value)
1770                                         goto next;
1771                         }
1772                 }
1773 
1774                 if (op != DTRACE_DYNVAR_DEALLOC)
1775                         return (dvar);
1776 
1777                 ASSERT(dvar->dtdv_next == NULL ||
1778                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1779 
1780                 if (prev != NULL) {
1781                         ASSERT(hash[bucket].dtdh_chain != dvar);
1782                         ASSERT(start != dvar);
1783                         ASSERT(prev->dtdv_next == dvar);
1784                         prev->dtdv_next = dvar->dtdv_next;
1785                 } else {
1786                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1787                             start, dvar->dtdv_next) != start) {
1788                                 /*
1789                                  * We have failed to atomically swing the
1790                                  * hash table head pointer, presumably because
1791                                  * of a conflicting allocation on another CPU.
1792                                  * We need to reread the hash chain and try
1793                                  * again.
1794                                  */
1795                                 goto top;
1796                         }
1797                 }
1798 
1799                 dtrace_membar_producer();
1800 
1801                 /*
1802                  * Now set the hash value to indicate that it's free.
1803                  */
1804                 ASSERT(hash[bucket].dtdh_chain != dvar);
1805                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1806 
1807                 dtrace_membar_producer();
1808 
1809                 /*
1810                  * Set the next pointer to point at the dirty list, and
1811                  * atomically swing the dirty pointer to the newly freed dvar.
1812                  */
1813                 do {
1814                         next = dcpu->dtdsc_dirty;
1815                         dvar->dtdv_next = next;
1816                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1817 
1818                 /*
1819                  * Finally, unlock this hash bucket.
1820                  */
1821                 ASSERT(hash[bucket].dtdh_lock == lock);
1822                 ASSERT(lock & 1);
1823                 hash[bucket].dtdh_lock++;
1824 
1825                 return (NULL);
1826 next:
1827                 prev = dvar;
1828                 continue;
1829         }
1830 
1831         if (dvar == NULL) {
1832                 /*
1833                  * If dvar is NULL, it is because we went off the rails:
1834                  * one of the elements that we traversed in the hash chain
1835                  * was deleted while we were traversing it.  In this case,
1836                  * we assert that we aren't doing a dealloc (deallocs lock
1837                  * the hash bucket to prevent themselves from racing with
1838                  * one another), and retry the hash chain traversal.
1839                  */
1840                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1841                 goto top;
1842         }
1843 
1844         if (op != DTRACE_DYNVAR_ALLOC) {
1845                 /*
1846                  * If we are not to allocate a new variable, we want to
1847                  * return NULL now.  Before we return, check that the value
1848                  * of the lock word hasn't changed.  If it has, we may have
1849                  * seen an inconsistent snapshot.
1850                  */
1851                 if (op == DTRACE_DYNVAR_NOALLOC) {
1852                         if (hash[bucket].dtdh_lock != lock)
1853                                 goto top;
1854                 } else {
1855                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1856                         ASSERT(hash[bucket].dtdh_lock == lock);
1857                         ASSERT(lock & 1);
1858                         hash[bucket].dtdh_lock++;
1859                 }
1860 
1861                 return (NULL);
1862         }
1863 
1864         /*
1865          * We need to allocate a new dynamic variable.  The size we need is the
1866          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1867          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1868          * the size of any referred-to data (dsize).  We then round the final
1869          * size up to the chunksize for allocation.
1870          */
1871         for (ksize = 0, i = 0; i < nkeys; i++)
1872                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1873 
1874         /*
1875          * This should be pretty much impossible, but could happen if, say,
1876          * strange DIF specified the tuple.  Ideally, this should be an
1877          * assertion and not an error condition -- but that requires that the
1878          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1879          * bullet-proof.  (That is, it must not be able to be fooled by
1880          * malicious DIF.)  Given the lack of backwards branches in DIF,
1881          * solving this would presumably not amount to solving the Halting
1882          * Problem -- but it still seems awfully hard.
1883          */
1884         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1885             ksize + dsize > chunksize) {
1886                 dcpu->dtdsc_drops++;
1887                 return (NULL);
1888         }
1889 
1890         nstate = DTRACE_DSTATE_EMPTY;
1891 
1892         do {
1893 retry:
1894                 free = dcpu->dtdsc_free;
1895 
1896                 if (free == NULL) {
1897                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1898                         void *rval;
1899 
1900                         if (clean == NULL) {
1901                                 /*
1902                                  * We're out of dynamic variable space on
1903                                  * this CPU.  Unless we have tried all CPUs,
1904                                  * we'll try to allocate from a different
1905                                  * CPU.
1906                                  */
1907                                 switch (dstate->dtds_state) {
1908                                 case DTRACE_DSTATE_CLEAN: {
1909                                         void *sp = &dstate->dtds_state;
1910 
1911                                         if (++cpu >= NCPU)
1912                                                 cpu = 0;
1913 
1914                                         if (dcpu->dtdsc_dirty != NULL &&
1915                                             nstate == DTRACE_DSTATE_EMPTY)
1916                                                 nstate = DTRACE_DSTATE_DIRTY;
1917 
1918                                         if (dcpu->dtdsc_rinsing != NULL)
1919                                                 nstate = DTRACE_DSTATE_RINSING;
1920 
1921                                         dcpu = &dstate->dtds_percpu[cpu];
1922 
1923                                         if (cpu != me)
1924                                                 goto retry;
1925 
1926                                         (void) dtrace_cas32(sp,
1927                                             DTRACE_DSTATE_CLEAN, nstate);
1928 
1929                                         /*
1930                                          * To increment the correct bean
1931                                          * counter, take another lap.
1932                                          */
1933                                         goto retry;
1934                                 }
1935 
1936                                 case DTRACE_DSTATE_DIRTY:
1937                                         dcpu->dtdsc_dirty_drops++;
1938                                         break;
1939 
1940                                 case DTRACE_DSTATE_RINSING:
1941                                         dcpu->dtdsc_rinsing_drops++;
1942                                         break;
1943 
1944                                 case DTRACE_DSTATE_EMPTY:
1945                                         dcpu->dtdsc_drops++;
1946                                         break;
1947                                 }
1948 
1949                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1950                                 return (NULL);
1951                         }
1952 
1953                         /*
1954                          * The clean list appears to be non-empty.  We want to
1955                          * move the clean list to the free list; we start by
1956                          * moving the clean pointer aside.
1957                          */
1958                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1959                             clean, NULL) != clean) {
1960                                 /*
1961                                  * We are in one of two situations:
1962                                  *
1963                                  *  (a) The clean list was switched to the
1964                                  *      free list by another CPU.
1965                                  *
1966                                  *  (b) The clean list was added to by the
1967                                  *      cleansing cyclic.
1968                                  *
1969                                  * In either of these situations, we can
1970                                  * just reattempt the free list allocation.
1971                                  */
1972                                 goto retry;
1973                         }
1974 
1975                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1976 
1977                         /*
1978                          * Now we'll move the clean list to our free list.
1979                          * It's impossible for this to fail:  the only way
1980                          * the free list can be updated is through this
1981                          * code path, and only one CPU can own the clean list.
1982                          * Thus, it would only be possible for this to fail if
1983                          * this code were racing with dtrace_dynvar_clean().
1984                          * (That is, if dtrace_dynvar_clean() updated the clean
1985                          * list, and we ended up racing to update the free
1986                          * list.)  This race is prevented by the dtrace_sync()
1987                          * in dtrace_dynvar_clean() -- which flushes the
1988                          * owners of the clean lists out before resetting
1989                          * the clean lists.
1990                          */
1991                         dcpu = &dstate->dtds_percpu[me];
1992                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1993                         ASSERT(rval == NULL);
1994                         goto retry;
1995                 }
1996 
1997                 dvar = free;
1998                 new_free = dvar->dtdv_next;
1999         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2000 
2001         /*
2002          * We have now allocated a new chunk.  We copy the tuple keys into the
2003          * tuple array and copy any referenced key data into the data space
2004          * following the tuple array.  As we do this, we relocate dttk_value
2005          * in the final tuple to point to the key data address in the chunk.
2006          */
2007         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2008         dvar->dtdv_data = (void *)(kdata + ksize);
2009         dvar->dtdv_tuple.dtt_nkeys = nkeys;
2010 
2011         for (i = 0; i < nkeys; i++) {
2012                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2013                 size_t kesize = key[i].dttk_size;
2014 
2015                 if (kesize != 0) {
2016                         dtrace_bcopy(
2017                             (const void *)(uintptr_t)key[i].dttk_value,
2018                             (void *)kdata, kesize);
2019                         dkey->dttk_value = kdata;
2020                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2021                 } else {
2022                         dkey->dttk_value = key[i].dttk_value;
2023                 }
2024 
2025                 dkey->dttk_size = kesize;
2026         }
2027 
2028         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2029         dvar->dtdv_hashval = hashval;
2030         dvar->dtdv_next = start;
2031 
2032         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2033                 return (dvar);
2034 
2035         /*
2036          * The cas has failed.  Either another CPU is adding an element to
2037          * this hash chain, or another CPU is deleting an element from this
2038          * hash chain.  The simplest way to deal with both of these cases
2039          * (though not necessarily the most efficient) is to free our
2040          * allocated block and tail-call ourselves.  Note that the free is
2041          * to the dirty list and _not_ to the free list.  This is to prevent
2042          * races with allocators, above.
2043          */
2044         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2045 
2046         dtrace_membar_producer();
2047 
2048         do {
2049                 free = dcpu->dtdsc_dirty;
2050                 dvar->dtdv_next = free;
2051         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2052 
2053         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2054 }
2055 
2056 /*ARGSUSED*/
2057 static void
2058 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2059 {
2060         if ((int64_t)nval < (int64_t)*oval)
2061                 *oval = nval;
2062 }
2063 
2064 /*ARGSUSED*/
2065 static void
2066 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2067 {
2068         if ((int64_t)nval > (int64_t)*oval)
2069                 *oval = nval;
2070 }
2071 
2072 static void
2073 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2074 {
2075         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2076         int64_t val = (int64_t)nval;
2077 
2078         if (val < 0) {
2079                 for (i = 0; i < zero; i++) {
2080                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2081                                 quanta[i] += incr;
2082                                 return;
2083                         }
2084                 }
2085         } else {
2086                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2087                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2088                                 quanta[i - 1] += incr;
2089                                 return;
2090                         }
2091                 }
2092 
2093                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2094                 return;
2095         }
2096 
2097         ASSERT(0);
2098 }
2099 
2100 static void
2101 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2102 {
2103         uint64_t arg = *lquanta++;
2104         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2105         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2106         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2107         int32_t val = (int32_t)nval, level;
2108 
2109         ASSERT(step != 0);
2110         ASSERT(levels != 0);
2111 
2112         if (val < base) {
2113                 /*
2114                  * This is an underflow.
2115                  */
2116                 lquanta[0] += incr;
2117                 return;
2118         }
2119 
2120         level = (val - base) / step;
2121 
2122         if (level < levels) {
2123                 lquanta[level + 1] += incr;
2124                 return;
2125         }
2126 
2127         /*
2128          * This is an overflow.
2129          */
2130         lquanta[levels + 1] += incr;
2131 }
2132 
2133 static int
2134 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2135     uint16_t high, uint16_t nsteps, int64_t value)
2136 {
2137         int64_t this = 1, last, next;
2138         int base = 1, order;
2139 
2140         ASSERT(factor <= nsteps);
2141         ASSERT(nsteps % factor == 0);
2142 
2143         for (order = 0; order < low; order++)
2144                 this *= factor;
2145 
2146         /*
2147          * If our value is less than our factor taken to the power of the
2148          * low order of magnitude, it goes into the zeroth bucket.
2149          */
2150         if (value < (last = this))
2151                 return (0);
2152 
2153         for (this *= factor; order <= high; order++) {
2154                 int nbuckets = this > nsteps ? nsteps : this;
2155 
2156                 if ((next = this * factor) < this) {
2157                         /*
2158                          * We should not generally get log/linear quantizations
2159                          * with a high magnitude that allows 64-bits to
2160                          * overflow, but we nonetheless protect against this
2161                          * by explicitly checking for overflow, and clamping
2162                          * our value accordingly.
2163                          */
2164                         value = this - 1;
2165                 }
2166 
2167                 if (value < this) {
2168                         /*
2169                          * If our value lies within this order of magnitude,
2170                          * determine its position by taking the offset within
2171                          * the order of magnitude, dividing by the bucket
2172                          * width, and adding to our (accumulated) base.
2173                          */
2174                         return (base + (value - last) / (this / nbuckets));
2175                 }
2176 
2177                 base += nbuckets - (nbuckets / factor);
2178                 last = this;
2179                 this = next;
2180         }
2181 
2182         /*
2183          * Our value is greater than or equal to our factor taken to the
2184          * power of one plus the high magnitude -- return the top bucket.
2185          */
2186         return (base);
2187 }
2188 
2189 static void
2190 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2191 {
2192         uint64_t arg = *llquanta++;
2193         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2194         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2195         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2196         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2197 
2198         llquanta[dtrace_aggregate_llquantize_bucket(factor,
2199             low, high, nsteps, nval)] += incr;
2200 }
2201 
2202 /*ARGSUSED*/
2203 static void
2204 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2205 {
2206         data[0]++;
2207         data[1] += nval;
2208 }
2209 
2210 /*ARGSUSED*/
2211 static void
2212 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2213 {
2214         int64_t snval = (int64_t)nval;
2215         uint64_t tmp[2];
2216 
2217         data[0]++;
2218         data[1] += nval;
2219 
2220         /*
2221          * What we want to say here is:
2222          *
2223          * data[2] += nval * nval;
2224          *
2225          * But given that nval is 64-bit, we could easily overflow, so
2226          * we do this as 128-bit arithmetic.
2227          */
2228         if (snval < 0)
2229                 snval = -snval;
2230 
2231         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2232         dtrace_add_128(data + 2, tmp, data + 2);
2233 }
2234 
2235 /*ARGSUSED*/
2236 static void
2237 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2238 {
2239         *oval = *oval + 1;
2240 }
2241 
2242 /*ARGSUSED*/
2243 static void
2244 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2245 {
2246         *oval += nval;
2247 }
2248 
2249 /*
2250  * Aggregate given the tuple in the principal data buffer, and the aggregating
2251  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2252  * buffer is specified as the buf parameter.  This routine does not return
2253  * failure; if there is no space in the aggregation buffer, the data will be
2254  * dropped, and a corresponding counter incremented.
2255  */
2256 static void
2257 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2258     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2259 {
2260         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2261         uint32_t i, ndx, size, fsize;
2262         uint32_t align = sizeof (uint64_t) - 1;
2263         dtrace_aggbuffer_t *agb;
2264         dtrace_aggkey_t *key;
2265         uint32_t hashval = 0, limit, isstr;
2266         caddr_t tomax, data, kdata;
2267         dtrace_actkind_t action;
2268         dtrace_action_t *act;
2269         uintptr_t offs;
2270 
2271         if (buf == NULL)
2272                 return;
2273 
2274         if (!agg->dtag_hasarg) {
2275                 /*
2276                  * Currently, only quantize() and lquantize() take additional
2277                  * arguments, and they have the same semantics:  an increment
2278                  * value that defaults to 1 when not present.  If additional
2279                  * aggregating actions take arguments, the setting of the
2280                  * default argument value will presumably have to become more
2281                  * sophisticated...
2282                  */
2283                 arg = 1;
2284         }
2285 
2286         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2287         size = rec->dtrd_offset - agg->dtag_base;
2288         fsize = size + rec->dtrd_size;
2289 
2290         ASSERT(dbuf->dtb_tomax != NULL);
2291         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2292 
2293         if ((tomax = buf->dtb_tomax) == NULL) {
2294                 dtrace_buffer_drop(buf);
2295                 return;
2296         }
2297 
2298         /*
2299          * The metastructure is always at the bottom of the buffer.
2300          */
2301         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2302             sizeof (dtrace_aggbuffer_t));
2303 
2304         if (buf->dtb_offset == 0) {
2305                 /*
2306                  * We just kludge up approximately 1/8th of the size to be
2307                  * buckets.  If this guess ends up being routinely
2308                  * off-the-mark, we may need to dynamically readjust this
2309                  * based on past performance.
2310                  */
2311                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2312 
2313                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2314                     (uintptr_t)tomax || hashsize == 0) {
2315                         /*
2316                          * We've been given a ludicrously small buffer;
2317                          * increment our drop count and leave.
2318                          */
2319                         dtrace_buffer_drop(buf);
2320                         return;
2321                 }
2322 
2323                 /*
2324                  * And now, a pathetic attempt to try to get a an odd (or
2325                  * perchance, a prime) hash size for better hash distribution.
2326                  */
2327                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2328                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2329 
2330                 agb->dtagb_hashsize = hashsize;
2331                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2332                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2333                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2334 
2335                 for (i = 0; i < agb->dtagb_hashsize; i++)
2336                         agb->dtagb_hash[i] = NULL;
2337         }
2338 
2339         ASSERT(agg->dtag_first != NULL);
2340         ASSERT(agg->dtag_first->dta_intuple);
2341 
2342         /*
2343          * Calculate the hash value based on the key.  Note that we _don't_
2344          * include the aggid in the hashing (but we will store it as part of
2345          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2346          * algorithm: a simple, quick algorithm that has no known funnels, and
2347          * gets good distribution in practice.  The efficacy of the hashing
2348          * algorithm (and a comparison with other algorithms) may be found by
2349          * running the ::dtrace_aggstat MDB dcmd.
2350          */
2351         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2352                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2353                 limit = i + act->dta_rec.dtrd_size;
2354                 ASSERT(limit <= size);
2355                 isstr = DTRACEACT_ISSTRING(act);
2356 
2357                 for (; i < limit; i++) {
2358                         hashval += data[i];
2359                         hashval += (hashval << 10);
2360                         hashval ^= (hashval >> 6);
2361 
2362                         if (isstr && data[i] == '\0')
2363                                 break;
2364                 }
2365         }
2366 
2367         hashval += (hashval << 3);
2368         hashval ^= (hashval >> 11);
2369         hashval += (hashval << 15);
2370 
2371         /*
2372          * Yes, the divide here is expensive -- but it's generally the least
2373          * of the performance issues given the amount of data that we iterate
2374          * over to compute hash values, compare data, etc.
2375          */
2376         ndx = hashval % agb->dtagb_hashsize;
2377 
2378         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2379                 ASSERT((caddr_t)key >= tomax);
2380                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2381 
2382                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2383                         continue;
2384 
2385                 kdata = key->dtak_data;
2386                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2387 
2388                 for (act = agg->dtag_first; act->dta_intuple;
2389                     act = act->dta_next) {
2390                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2391                         limit = i + act->dta_rec.dtrd_size;
2392                         ASSERT(limit <= size);
2393                         isstr = DTRACEACT_ISSTRING(act);
2394 
2395                         for (; i < limit; i++) {
2396                                 if (kdata[i] != data[i])
2397                                         goto next;
2398 
2399                                 if (isstr && data[i] == '\0')
2400                                         break;
2401                         }
2402                 }
2403 
2404                 if (action != key->dtak_action) {
2405                         /*
2406                          * We are aggregating on the same value in the same
2407                          * aggregation with two different aggregating actions.
2408                          * (This should have been picked up in the compiler,
2409                          * so we may be dealing with errant or devious DIF.)
2410                          * This is an error condition; we indicate as much,
2411                          * and return.
2412                          */
2413                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2414                         return;
2415                 }
2416 
2417                 /*
2418                  * This is a hit:  we need to apply the aggregator to
2419                  * the value at this key.
2420                  */
2421                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2422                 return;
2423 next:
2424                 continue;
2425         }
2426 
2427         /*
2428          * We didn't find it.  We need to allocate some zero-filled space,
2429          * link it into the hash table appropriately, and apply the aggregator
2430          * to the (zero-filled) value.
2431          */
2432         offs = buf->dtb_offset;
2433         while (offs & (align - 1))
2434                 offs += sizeof (uint32_t);
2435 
2436         /*
2437          * If we don't have enough room to both allocate a new key _and_
2438          * its associated data, increment the drop count and return.
2439          */
2440         if ((uintptr_t)tomax + offs + fsize >
2441             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2442                 dtrace_buffer_drop(buf);
2443                 return;
2444         }
2445 
2446         /*CONSTCOND*/
2447         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2448         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2449         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2450 
2451         key->dtak_data = kdata = tomax + offs;
2452         buf->dtb_offset = offs + fsize;
2453 
2454         /*
2455          * Now copy the data across.
2456          */
2457         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2458 
2459         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2460                 kdata[i] = data[i];
2461 
2462         /*
2463          * Because strings are not zeroed out by default, we need to iterate
2464          * looking for actions that store strings, and we need to explicitly
2465          * pad these strings out with zeroes.
2466          */
2467         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2468                 int nul;
2469 
2470                 if (!DTRACEACT_ISSTRING(act))
2471                         continue;
2472 
2473                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2474                 limit = i + act->dta_rec.dtrd_size;
2475                 ASSERT(limit <= size);
2476 
2477                 for (nul = 0; i < limit; i++) {
2478                         if (nul) {
2479                                 kdata[i] = '\0';
2480                                 continue;
2481                         }
2482 
2483                         if (data[i] != '\0')
2484                                 continue;
2485 
2486                         nul = 1;
2487                 }
2488         }
2489 
2490         for (i = size; i < fsize; i++)
2491                 kdata[i] = 0;
2492 
2493         key->dtak_hashval = hashval;
2494         key->dtak_size = size;
2495         key->dtak_action = action;
2496         key->dtak_next = agb->dtagb_hash[ndx];
2497         agb->dtagb_hash[ndx] = key;
2498 
2499         /*
2500          * Finally, apply the aggregator.
2501          */
2502         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2503         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2504 }
2505 
2506 /*
2507  * Given consumer state, this routine finds a speculation in the INACTIVE
2508  * state and transitions it into the ACTIVE state.  If there is no speculation
2509  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2510  * incremented -- it is up to the caller to take appropriate action.
2511  */
2512 static int
2513 dtrace_speculation(dtrace_state_t *state)
2514 {
2515         int i = 0;
2516         dtrace_speculation_state_t current;
2517         uint32_t *stat = &state->dts_speculations_unavail, count;
2518 
2519         while (i < state->dts_nspeculations) {
2520                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2521 
2522                 current = spec->dtsp_state;
2523 
2524                 if (current != DTRACESPEC_INACTIVE) {
2525                         if (current == DTRACESPEC_COMMITTINGMANY ||
2526                             current == DTRACESPEC_COMMITTING ||
2527                             current == DTRACESPEC_DISCARDING)
2528                                 stat = &state->dts_speculations_busy;
2529                         i++;
2530                         continue;
2531                 }
2532 
2533                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2534                     current, DTRACESPEC_ACTIVE) == current)
2535                         return (i + 1);
2536         }
2537 
2538         /*
2539          * We couldn't find a speculation.  If we found as much as a single
2540          * busy speculation buffer, we'll attribute this failure as "busy"
2541          * instead of "unavail".
2542          */
2543         do {
2544                 count = *stat;
2545         } while (dtrace_cas32(stat, count, count + 1) != count);
2546 
2547         return (0);
2548 }
2549 
2550 /*
2551  * This routine commits an active speculation.  If the specified speculation
2552  * is not in a valid state to perform a commit(), this routine will silently do
2553  * nothing.  The state of the specified speculation is transitioned according
2554  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2555  */
2556 static void
2557 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2558     dtrace_specid_t which)
2559 {
2560         dtrace_speculation_t *spec;
2561         dtrace_buffer_t *src, *dest;
2562         uintptr_t daddr, saddr, dlimit, slimit;
2563         dtrace_speculation_state_t current, new;
2564         intptr_t offs;
2565         uint64_t timestamp;
2566 
2567         if (which == 0)
2568                 return;
2569 
2570         if (which > state->dts_nspeculations) {
2571                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2572                 return;
2573         }
2574 
2575         spec = &state->dts_speculations[which - 1];
2576         src = &spec->dtsp_buffer[cpu];
2577         dest = &state->dts_buffer[cpu];
2578 
2579         do {
2580                 current = spec->dtsp_state;
2581 
2582                 if (current == DTRACESPEC_COMMITTINGMANY)
2583                         break;
2584 
2585                 switch (current) {
2586                 case DTRACESPEC_INACTIVE:
2587                 case DTRACESPEC_DISCARDING:
2588                         return;
2589 
2590                 case DTRACESPEC_COMMITTING:
2591                         /*
2592                          * This is only possible if we are (a) commit()'ing
2593                          * without having done a prior speculate() on this CPU
2594                          * and (b) racing with another commit() on a different
2595                          * CPU.  There's nothing to do -- we just assert that
2596                          * our offset is 0.
2597                          */
2598                         ASSERT(src->dtb_offset == 0);
2599                         return;
2600 
2601                 case DTRACESPEC_ACTIVE:
2602                         new = DTRACESPEC_COMMITTING;
2603                         break;
2604 
2605                 case DTRACESPEC_ACTIVEONE:
2606                         /*
2607                          * This speculation is active on one CPU.  If our
2608                          * buffer offset is non-zero, we know that the one CPU
2609                          * must be us.  Otherwise, we are committing on a
2610                          * different CPU from the speculate(), and we must
2611                          * rely on being asynchronously cleaned.
2612                          */
2613                         if (src->dtb_offset != 0) {
2614                                 new = DTRACESPEC_COMMITTING;
2615                                 break;
2616                         }
2617                         /*FALLTHROUGH*/
2618 
2619                 case DTRACESPEC_ACTIVEMANY:
2620                         new = DTRACESPEC_COMMITTINGMANY;
2621                         break;
2622 
2623                 default:
2624                         ASSERT(0);
2625                 }
2626         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2627             current, new) != current);
2628 
2629         /*
2630          * We have set the state to indicate that we are committing this
2631          * speculation.  Now reserve the necessary space in the destination
2632          * buffer.
2633          */
2634         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2635             sizeof (uint64_t), state, NULL)) < 0) {
2636                 dtrace_buffer_drop(dest);
2637                 goto out;
2638         }
2639 
2640         /*
2641          * We have sufficient space to copy the speculative buffer into the
2642          * primary buffer.  First, modify the speculative buffer, filling
2643          * in the timestamp of all entries with the current time.  The data
2644          * must have the commit() time rather than the time it was traced,
2645          * so that all entries in the primary buffer are in timestamp order.
2646          */
2647         timestamp = dtrace_gethrtime();
2648         saddr = (uintptr_t)src->dtb_tomax;
2649         slimit = saddr + src->dtb_offset;
2650         while (saddr < slimit) {
2651                 size_t size;
2652                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2653 
2654                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2655                         saddr += sizeof (dtrace_epid_t);
2656                         continue;
2657                 }
2658                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2659                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2660 
2661                 ASSERT3U(saddr + size, <=, slimit);
2662                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2663                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2664 
2665                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2666 
2667                 saddr += size;
2668         }
2669 
2670         /*
2671          * Copy the buffer across.  (Note that this is a
2672          * highly subobtimal bcopy(); in the unlikely event that this becomes
2673          * a serious performance issue, a high-performance DTrace-specific
2674          * bcopy() should obviously be invented.)
2675          */
2676         daddr = (uintptr_t)dest->dtb_tomax + offs;
2677         dlimit = daddr + src->dtb_offset;
2678         saddr = (uintptr_t)src->dtb_tomax;
2679 
2680         /*
2681          * First, the aligned portion.
2682          */
2683         while (dlimit - daddr >= sizeof (uint64_t)) {
2684                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2685 
2686                 daddr += sizeof (uint64_t);
2687                 saddr += sizeof (uint64_t);
2688         }
2689 
2690         /*
2691          * Now any left-over bit...
2692          */
2693         while (dlimit - daddr)
2694                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2695 
2696         /*
2697          * Finally, commit the reserved space in the destination buffer.
2698          */
2699         dest->dtb_offset = offs + src->dtb_offset;
2700 
2701 out:
2702         /*
2703          * If we're lucky enough to be the only active CPU on this speculation
2704          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2705          */
2706         if (current == DTRACESPEC_ACTIVE ||
2707             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2708                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2709                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2710 
2711                 ASSERT(rval == DTRACESPEC_COMMITTING);
2712         }
2713 
2714         src->dtb_offset = 0;
2715         src->dtb_xamot_drops += src->dtb_drops;
2716         src->dtb_drops = 0;
2717 }
2718 
2719 /*
2720  * This routine discards an active speculation.  If the specified speculation
2721  * is not in a valid state to perform a discard(), this routine will silently
2722  * do nothing.  The state of the specified speculation is transitioned
2723  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2724  */
2725 static void
2726 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2727     dtrace_specid_t which)
2728 {
2729         dtrace_speculation_t *spec;
2730         dtrace_speculation_state_t current, new;
2731         dtrace_buffer_t *buf;
2732 
2733         if (which == 0)
2734                 return;
2735 
2736         if (which > state->dts_nspeculations) {
2737                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2738                 return;
2739         }
2740 
2741         spec = &state->dts_speculations[which - 1];
2742         buf = &spec->dtsp_buffer[cpu];
2743 
2744         do {
2745                 current = spec->dtsp_state;
2746 
2747                 switch (current) {
2748                 case DTRACESPEC_INACTIVE:
2749                 case DTRACESPEC_COMMITTINGMANY:
2750                 case DTRACESPEC_COMMITTING:
2751                 case DTRACESPEC_DISCARDING:
2752                         return;
2753 
2754                 case DTRACESPEC_ACTIVE:
2755                 case DTRACESPEC_ACTIVEMANY:
2756                         new = DTRACESPEC_DISCARDING;
2757                         break;
2758 
2759                 case DTRACESPEC_ACTIVEONE:
2760                         if (buf->dtb_offset != 0) {
2761                                 new = DTRACESPEC_INACTIVE;
2762                         } else {
2763                                 new = DTRACESPEC_DISCARDING;
2764                         }
2765                         break;
2766 
2767                 default:
2768                         ASSERT(0);
2769                 }
2770         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2771             current, new) != current);
2772 
2773         buf->dtb_offset = 0;
2774         buf->dtb_drops = 0;
2775 }
2776 
2777 /*
2778  * Note:  not called from probe context.  This function is called
2779  * asynchronously from cross call context to clean any speculations that are
2780  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2781  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2782  * speculation.
2783  */
2784 static void
2785 dtrace_speculation_clean_here(dtrace_state_t *state)
2786 {
2787         dtrace_icookie_t cookie;
2788         processorid_t cpu = CPU->cpu_id;
2789         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2790         dtrace_specid_t i;
2791 
2792         cookie = dtrace_interrupt_disable();
2793 
2794         if (dest->dtb_tomax == NULL) {
2795                 dtrace_interrupt_enable(cookie);
2796                 return;
2797         }
2798 
2799         for (i = 0; i < state->dts_nspeculations; i++) {
2800                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2801                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2802 
2803                 if (src->dtb_tomax == NULL)
2804                         continue;
2805 
2806                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2807                         src->dtb_offset = 0;
2808                         continue;
2809                 }
2810 
2811                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2812                         continue;
2813 
2814                 if (src->dtb_offset == 0)
2815                         continue;
2816 
2817                 dtrace_speculation_commit(state, cpu, i + 1);
2818         }
2819 
2820         dtrace_interrupt_enable(cookie);
2821 }
2822 
2823 /*
2824  * Note:  not called from probe context.  This function is called
2825  * asynchronously (and at a regular interval) to clean any speculations that
2826  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2827  * is work to be done, it cross calls all CPUs to perform that work;
2828  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2829  * INACTIVE state until they have been cleaned by all CPUs.
2830  */
2831 static void
2832 dtrace_speculation_clean(dtrace_state_t *state)
2833 {
2834         int work = 0, rv;
2835         dtrace_specid_t i;
2836 
2837         for (i = 0; i < state->dts_nspeculations; i++) {
2838                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2839 
2840                 ASSERT(!spec->dtsp_cleaning);
2841 
2842                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2843                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2844                         continue;
2845 
2846                 work++;
2847                 spec->dtsp_cleaning = 1;
2848         }
2849 
2850         if (!work)
2851                 return;
2852 
2853         dtrace_xcall(DTRACE_CPUALL,
2854             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2855 
2856         /*
2857          * We now know that all CPUs have committed or discarded their
2858          * speculation buffers, as appropriate.  We can now set the state
2859          * to inactive.
2860          */
2861         for (i = 0; i < state->dts_nspeculations; i++) {
2862                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2863                 dtrace_speculation_state_t current, new;
2864 
2865                 if (!spec->dtsp_cleaning)
2866                         continue;
2867 
2868                 current = spec->dtsp_state;
2869                 ASSERT(current == DTRACESPEC_DISCARDING ||
2870                     current == DTRACESPEC_COMMITTINGMANY);
2871 
2872                 new = DTRACESPEC_INACTIVE;
2873 
2874                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2875                 ASSERT(rv == current);
2876                 spec->dtsp_cleaning = 0;
2877         }
2878 }
2879 
2880 /*
2881  * Called as part of a speculate() to get the speculative buffer associated
2882  * with a given speculation.  Returns NULL if the specified speculation is not
2883  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2884  * the active CPU is not the specified CPU -- the speculation will be
2885  * atomically transitioned into the ACTIVEMANY state.
2886  */
2887 static dtrace_buffer_t *
2888 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2889     dtrace_specid_t which)
2890 {
2891         dtrace_speculation_t *spec;
2892         dtrace_speculation_state_t current, new;
2893         dtrace_buffer_t *buf;
2894 
2895         if (which == 0)
2896                 return (NULL);
2897 
2898         if (which > state->dts_nspeculations) {
2899                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2900                 return (NULL);
2901         }
2902 
2903         spec = &state->dts_speculations[which - 1];
2904         buf = &spec->dtsp_buffer[cpuid];
2905 
2906         do {
2907                 current = spec->dtsp_state;
2908 
2909                 switch (current) {
2910                 case DTRACESPEC_INACTIVE:
2911                 case DTRACESPEC_COMMITTINGMANY:
2912                 case DTRACESPEC_DISCARDING:
2913                         return (NULL);
2914 
2915                 case DTRACESPEC_COMMITTING:
2916                         ASSERT(buf->dtb_offset == 0);
2917                         return (NULL);
2918 
2919                 case DTRACESPEC_ACTIVEONE:
2920                         /*
2921                          * This speculation is currently active on one CPU.
2922                          * Check the offset in the buffer; if it's non-zero,
2923                          * that CPU must be us (and we leave the state alone).
2924                          * If it's zero, assume that we're starting on a new
2925                          * CPU -- and change the state to indicate that the
2926                          * speculation is active on more than one CPU.
2927                          */
2928                         if (buf->dtb_offset != 0)
2929                                 return (buf);
2930 
2931                         new = DTRACESPEC_ACTIVEMANY;
2932                         break;
2933 
2934                 case DTRACESPEC_ACTIVEMANY:
2935                         return (buf);
2936 
2937                 case DTRACESPEC_ACTIVE:
2938                         new = DTRACESPEC_ACTIVEONE;
2939                         break;
2940 
2941                 default:
2942                         ASSERT(0);
2943                 }
2944         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2945             current, new) != current);
2946 
2947         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2948         return (buf);
2949 }
2950 
2951 /*
2952  * Return a string.  In the event that the user lacks the privilege to access
2953  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2954  * don't fail access checking.
2955  *
2956  * dtrace_dif_variable() uses this routine as a helper for various
2957  * builtin values such as 'execname' and 'probefunc.'
2958  */
2959 uintptr_t
2960 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2961     dtrace_mstate_t *mstate)
2962 {
2963         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2964         uintptr_t ret;
2965         size_t strsz;
2966 
2967         /*
2968          * The easy case: this probe is allowed to read all of memory, so
2969          * we can just return this as a vanilla pointer.
2970          */
2971         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2972                 return (addr);
2973 
2974         /*
2975          * This is the tougher case: we copy the string in question from
2976          * kernel memory into scratch memory and return it that way: this
2977          * ensures that we won't trip up when access checking tests the
2978          * BYREF return value.
2979          */
2980         strsz = dtrace_strlen((char *)addr, size) + 1;
2981 
2982         if (mstate->dtms_scratch_ptr + strsz >
2983             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2984                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2985                 return (NULL);
2986         }
2987 
2988         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2989             strsz);
2990         ret = mstate->dtms_scratch_ptr;
2991         mstate->dtms_scratch_ptr += strsz;
2992         return (ret);
2993 }
2994 
2995 /*
2996  * This function implements the DIF emulator's variable lookups.  The emulator
2997  * passes a reserved variable identifier and optional built-in array index.
2998  */
2999 static uint64_t
3000 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3001     uint64_t ndx)
3002 {
3003         /*
3004          * If we're accessing one of the uncached arguments, we'll turn this
3005          * into a reference in the args array.
3006          */
3007         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3008                 ndx = v - DIF_VAR_ARG0;
3009                 v = DIF_VAR_ARGS;
3010         }
3011 
3012         switch (v) {
3013         case DIF_VAR_ARGS:
3014                 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3015                         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3016                             CPU_DTRACE_KPRIV;
3017                         return (0);
3018                 }
3019 
3020                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3021                 if (ndx >= sizeof (mstate->dtms_arg) /
3022                     sizeof (mstate->dtms_arg[0])) {
3023                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3024                         dtrace_provider_t *pv;
3025                         uint64_t val;
3026 
3027                         pv = mstate->dtms_probe->dtpr_provider;
3028                         if (pv->dtpv_pops.dtps_getargval != NULL)
3029                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3030                                     mstate->dtms_probe->dtpr_id,
3031                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
3032                         else
3033                                 val = dtrace_getarg(ndx, aframes);
3034 
3035                         /*
3036                          * This is regrettably required to keep the compiler
3037                          * from tail-optimizing the call to dtrace_getarg().
3038                          * The condition always evaluates to true, but the
3039                          * compiler has no way of figuring that out a priori.
3040                          * (None of this would be necessary if the compiler
3041                          * could be relied upon to _always_ tail-optimize
3042                          * the call to dtrace_getarg() -- but it can't.)
3043                          */
3044                         if (mstate->dtms_probe != NULL)
3045                                 return (val);
3046 
3047                         ASSERT(0);
3048                 }
3049 
3050                 return (mstate->dtms_arg[ndx]);
3051 
3052         case DIF_VAR_UREGS: {
3053                 klwp_t *lwp;
3054 
3055                 if (!dtrace_priv_proc(state, mstate))
3056                         return (0);
3057 
3058                 if ((lwp = curthread->t_lwp) == NULL) {
3059                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3060                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3061                         return (0);
3062                 }
3063 
3064                 return (dtrace_getreg(lwp->lwp_regs, ndx));
3065         }
3066 
3067         case DIF_VAR_VMREGS: {
3068                 uint64_t rval;
3069 
3070                 if (!dtrace_priv_kernel(state))
3071                         return (0);
3072 
3073                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3074 
3075                 rval = dtrace_getvmreg(ndx,
3076                     &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3077 
3078                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3079 
3080                 return (rval);
3081         }
3082 
3083         case DIF_VAR_CURTHREAD:
3084                 if (!dtrace_priv_proc(state, mstate))
3085                         return (0);
3086                 return ((uint64_t)(uintptr_t)curthread);
3087 
3088         case DIF_VAR_TIMESTAMP:
3089                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3090                         mstate->dtms_timestamp = dtrace_gethrtime();
3091                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3092                 }
3093                 return (mstate->dtms_timestamp);
3094 
3095         case DIF_VAR_VTIMESTAMP:
3096                 ASSERT(dtrace_vtime_references != 0);
3097                 return (curthread->t_dtrace_vtime);
3098 
3099         case DIF_VAR_WALLTIMESTAMP:
3100                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3101                         mstate->dtms_walltimestamp = dtrace_gethrestime();
3102                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3103                 }
3104                 return (mstate->dtms_walltimestamp);
3105 
3106         case DIF_VAR_IPL:
3107                 if (!dtrace_priv_kernel(state))
3108                         return (0);
3109                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3110                         mstate->dtms_ipl = dtrace_getipl();
3111                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
3112                 }
3113                 return (mstate->dtms_ipl);
3114 
3115         case DIF_VAR_EPID:
3116                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3117                 return (mstate->dtms_epid);
3118 
3119         case DIF_VAR_ID:
3120                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3121                 return (mstate->dtms_probe->dtpr_id);
3122 
3123         case DIF_VAR_STACKDEPTH:
3124                 if (!dtrace_priv_kernel(state))
3125                         return (0);
3126                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3127                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3128 
3129                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3130                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3131                 }
3132                 return (mstate->dtms_stackdepth);
3133 
3134         case DIF_VAR_USTACKDEPTH:
3135                 if (!dtrace_priv_proc(state, mstate))
3136                         return (0);
3137                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3138                         /*
3139                          * See comment in DIF_VAR_PID.
3140                          */
3141                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3142                             CPU_ON_INTR(CPU)) {
3143                                 mstate->dtms_ustackdepth = 0;
3144                         } else {
3145                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3146                                 mstate->dtms_ustackdepth =
3147                                     dtrace_getustackdepth();
3148                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3149                         }
3150                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3151                 }
3152                 return (mstate->dtms_ustackdepth);
3153 
3154         case DIF_VAR_CALLER:
3155                 if (!dtrace_priv_kernel(state))
3156                         return (0);
3157                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3158                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3159 
3160                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3161                                 /*
3162                                  * If this is an unanchored probe, we are
3163                                  * required to go through the slow path:
3164                                  * dtrace_caller() only guarantees correct
3165                                  * results for anchored probes.
3166                                  */
3167                                 pc_t caller[2];
3168 
3169                                 dtrace_getpcstack(caller, 2, aframes,
3170                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3171                                 mstate->dtms_caller = caller[1];
3172                         } else if ((mstate->dtms_caller =
3173                             dtrace_caller(aframes)) == -1) {
3174                                 /*
3175                                  * We have failed to do this the quick way;
3176                                  * we must resort to the slower approach of
3177                                  * calling dtrace_getpcstack().
3178                                  */
3179                                 pc_t caller;
3180 
3181                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3182                                 mstate->dtms_caller = caller;
3183                         }
3184 
3185                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3186                 }
3187                 return (mstate->dtms_caller);
3188 
3189         case DIF_VAR_UCALLER:
3190                 if (!dtrace_priv_proc(state, mstate))
3191                         return (0);
3192 
3193                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3194                         uint64_t ustack[3];
3195 
3196                         /*
3197                          * dtrace_getupcstack() fills in the first uint64_t
3198                          * with the current PID.  The second uint64_t will
3199                          * be the program counter at user-level.  The third
3200                          * uint64_t will contain the caller, which is what
3201                          * we're after.
3202                          */
3203                         ustack[2] = NULL;
3204                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3205                         dtrace_getupcstack(ustack, 3);
3206                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3207                         mstate->dtms_ucaller = ustack[2];
3208                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3209                 }
3210 
3211                 return (mstate->dtms_ucaller);
3212 
3213         case DIF_VAR_PROBEPROV:
3214                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3215                 return (dtrace_dif_varstr(
3216                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3217                     state, mstate));
3218 
3219         case DIF_VAR_PROBEMOD:
3220                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3221                 return (dtrace_dif_varstr(
3222                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3223                     state, mstate));
3224 
3225         case DIF_VAR_PROBEFUNC:
3226                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3227                 return (dtrace_dif_varstr(
3228                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3229                     state, mstate));
3230 
3231         case DIF_VAR_PROBENAME:
3232                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3233                 return (dtrace_dif_varstr(
3234                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3235                     state, mstate));
3236 
3237         case DIF_VAR_PID:
3238                 if (!dtrace_priv_proc(state, mstate))
3239                         return (0);
3240 
3241                 /*
3242                  * Note that we are assuming that an unanchored probe is
3243                  * always due to a high-level interrupt.  (And we're assuming
3244                  * that there is only a single high level interrupt.)
3245                  */
3246                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3247                         return (pid0.pid_id);
3248 
3249                 /*
3250                  * It is always safe to dereference one's own t_procp pointer:
3251                  * it always points to a valid, allocated proc structure.
3252                  * Further, it is always safe to dereference the p_pidp member
3253                  * of one's own proc structure.  (These are truisms becuase
3254                  * threads and processes don't clean up their own state --
3255                  * they leave that task to whomever reaps them.)
3256                  */
3257                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3258 
3259         case DIF_VAR_PPID:
3260                 if (!dtrace_priv_proc(state, mstate))
3261                         return (0);
3262 
3263                 /*
3264                  * See comment in DIF_VAR_PID.
3265                  */
3266                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3267                         return (pid0.pid_id);
3268 
3269                 /*
3270                  * It is always safe to dereference one's own t_procp pointer:
3271                  * it always points to a valid, allocated proc structure.
3272                  * (This is true because threads don't clean up their own
3273                  * state -- they leave that task to whomever reaps them.)
3274                  */
3275                 return ((uint64_t)curthread->t_procp->p_ppid);
3276 
3277         case DIF_VAR_TID:
3278                 /*
3279                  * See comment in DIF_VAR_PID.
3280                  */
3281                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3282                         return (0);
3283 
3284                 return ((uint64_t)curthread->t_tid);
3285 
3286         case DIF_VAR_EXECNAME:
3287                 if (!dtrace_priv_proc(state, mstate))
3288                         return (0);
3289 
3290                 /*
3291                  * See comment in DIF_VAR_PID.
3292                  */
3293                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3294                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3295 
3296                 /*
3297                  * It is always safe to dereference one's own t_procp pointer:
3298                  * it always points to a valid, allocated proc structure.
3299                  * (This is true because threads don't clean up their own
3300                  * state -- they leave that task to whomever reaps them.)
3301                  */
3302                 return (dtrace_dif_varstr(
3303                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3304                     state, mstate));
3305 
3306         case DIF_VAR_ZONENAME:
3307                 if (!dtrace_priv_proc(state, mstate))
3308                         return (0);
3309 
3310                 /*
3311                  * See comment in DIF_VAR_PID.
3312                  */
3313                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3314                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3315 
3316                 /*
3317                  * It is always safe to dereference one's own t_procp pointer:
3318                  * it always points to a valid, allocated proc structure.
3319                  * (This is true because threads don't clean up their own
3320                  * state -- they leave that task to whomever reaps them.)
3321                  */
3322                 return (dtrace_dif_varstr(
3323                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3324                     state, mstate));
3325 
3326         case DIF_VAR_UID:
3327                 if (!dtrace_priv_proc(state, mstate))
3328                         return (0);
3329 
3330                 /*
3331                  * See comment in DIF_VAR_PID.
3332                  */
3333                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3334                         return ((uint64_t)p0.p_cred->cr_uid);
3335 
3336                 /*
3337                  * It is always safe to dereference one's own t_procp pointer:
3338                  * it always points to a valid, allocated proc structure.
3339                  * (This is true because threads don't clean up their own
3340                  * state -- they leave that task to whomever reaps them.)
3341                  *
3342                  * Additionally, it is safe to dereference one's own process
3343                  * credential, since this is never NULL after process birth.
3344                  */
3345                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3346 
3347         case DIF_VAR_GID:
3348                 if (!dtrace_priv_proc(state, mstate))
3349                         return (0);
3350 
3351                 /*
3352                  * See comment in DIF_VAR_PID.
3353                  */
3354                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3355                         return ((uint64_t)p0.p_cred->cr_gid);
3356 
3357                 /*
3358                  * It is always safe to dereference one's own t_procp pointer:
3359                  * it always points to a valid, allocated proc structure.
3360                  * (This is true because threads don't clean up their own
3361                  * state -- they leave that task to whomever reaps them.)
3362                  *
3363                  * Additionally, it is safe to dereference one's own process
3364                  * credential, since this is never NULL after process birth.
3365                  */
3366                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3367 
3368         case DIF_VAR_ERRNO: {
3369                 klwp_t *lwp;
3370                 if (!dtrace_priv_proc(state, mstate))
3371                         return (0);
3372 
3373                 /*
3374                  * See comment in DIF_VAR_PID.
3375                  */
3376                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3377                         return (0);
3378 
3379                 /*
3380                  * It is always safe to dereference one's own t_lwp pointer in
3381                  * the event that this pointer is non-NULL.  (This is true
3382                  * because threads and lwps don't clean up their own state --
3383                  * they leave that task to whomever reaps them.)
3384                  */
3385                 if ((lwp = curthread->t_lwp) == NULL)
3386                         return (0);
3387 
3388                 return ((uint64_t)lwp->lwp_errno);
3389         }
3390         default:
3391                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3392                 return (0);
3393         }
3394 }
3395 
3396 
3397 typedef enum dtrace_json_state {
3398         DTRACE_JSON_REST = 1,
3399         DTRACE_JSON_OBJECT,
3400         DTRACE_JSON_STRING,
3401         DTRACE_JSON_STRING_ESCAPE,
3402         DTRACE_JSON_STRING_ESCAPE_UNICODE,
3403         DTRACE_JSON_COLON,
3404         DTRACE_JSON_COMMA,
3405         DTRACE_JSON_VALUE,
3406         DTRACE_JSON_IDENTIFIER,
3407         DTRACE_JSON_NUMBER,
3408         DTRACE_JSON_NUMBER_FRAC,
3409         DTRACE_JSON_NUMBER_EXP,
3410         DTRACE_JSON_COLLECT_OBJECT
3411 } dtrace_json_state_t;
3412 
3413 /*
3414  * This function possesses just enough knowledge about JSON to extract a single
3415  * value from a JSON string and store it in the scratch buffer.  It is able
3416  * to extract nested object values, and members of arrays by index.
3417  *
3418  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3419  * be looked up as we descend into the object tree.  e.g.
3420  *
3421  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3422  *       with nelems = 5.
3423  *
3424  * The run time of this function must be bounded above by strsize to limit the
3425  * amount of work done in probe context.  As such, it is implemented as a
3426  * simple state machine, reading one character at a time using safe loads
3427  * until we find the requested element, hit a parsing error or run off the
3428  * end of the object or string.
3429  *
3430  * As there is no way for a subroutine to return an error without interrupting
3431  * clause execution, we simply return NULL in the event of a missing key or any
3432  * other error condition.  Each NULL return in this function is commented with
3433  * the error condition it represents -- parsing or otherwise.
3434  *
3435  * The set of states for the state machine closely matches the JSON
3436  * specification (http://json.org/).  Briefly:
3437  *
3438  *   DTRACE_JSON_REST:
3439  *     Skip whitespace until we find either a top-level Object, moving
3440  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3441  *
3442  *   DTRACE_JSON_OBJECT:
3443  *     Locate the next key String in an Object.  Sets a flag to denote
3444  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3445  *
3446  *   DTRACE_JSON_COLON:
3447  *     Skip whitespace until we find the colon that separates key Strings
3448  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3449  *
3450  *   DTRACE_JSON_VALUE:
3451  *     Detects the type of the next value (String, Number, Identifier, Object
3452  *     or Array) and routes to the states that process that type.  Here we also
3453  *     deal with the element selector list if we are requested to traverse down
3454  *     into the object tree.
3455  *
3456  *   DTRACE_JSON_COMMA:
3457  *     Skip whitespace until we find the comma that separates key-value pairs
3458  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3459  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3460  *     states return to this state at the end of their value, unless otherwise
3461  *     noted.
3462  *
3463  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3464  *     Processes a Number literal from the JSON, including any exponent
3465  *     component that may be present.  Numbers are returned as strings, which
3466  *     may be passed to strtoll() if an integer is required.
3467  *
3468  *   DTRACE_JSON_IDENTIFIER:
3469  *     Processes a "true", "false" or "null" literal in the JSON.
3470  *
3471  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3472  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3473  *     Processes a String literal from the JSON, whether the String denotes
3474  *     a key, a value or part of a larger Object.  Handles all escape sequences
3475  *     present in the specification, including four-digit unicode characters,
3476  *     but merely includes the escape sequence without converting it to the
3477  *     actual escaped character.  If the String is flagged as a key, we
3478  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3479  *
3480  *   DTRACE_JSON_COLLECT_OBJECT:
3481  *     This state collects an entire Object (or Array), correctly handling
3482  *     embedded strings.  If the full element selector list matches this nested
3483  *     object, we return the Object in full as a string.  If not, we use this
3484  *     state to skip to the next value at this level and continue processing.
3485  *
3486  * NOTE: This function uses various macros from strtolctype.h to manipulate
3487  * digit values, etc -- these have all been checked to ensure they make
3488  * no additional function calls.
3489  */
3490 static char *
3491 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3492     char *dest)
3493 {
3494         dtrace_json_state_t state = DTRACE_JSON_REST;
3495         int64_t array_elem = INT64_MIN;
3496         int64_t array_pos = 0;
3497         uint8_t escape_unicount = 0;
3498         boolean_t string_is_key = B_FALSE;
3499         boolean_t collect_object = B_FALSE;
3500         boolean_t found_key = B_FALSE;
3501         boolean_t in_array = B_FALSE;
3502         uint32_t braces = 0, brackets = 0;
3503         char *elem = elemlist;
3504         char *dd = dest;
3505         uintptr_t cur;
3506 
3507         for (cur = json; cur < json + size; cur++) {
3508                 char cc = dtrace_load8(cur);
3509                 if (cc == '\0')
3510                         return (NULL);
3511 
3512                 switch (state) {
3513                 case DTRACE_JSON_REST:
3514                         if (isspace(cc))
3515                                 break;
3516 
3517                         if (cc == '{') {
3518                                 state = DTRACE_JSON_OBJECT;
3519                                 break;
3520                         }
3521 
3522                         if (cc == '[') {
3523                                 in_array = B_TRUE;
3524                                 array_pos = 0;
3525                                 array_elem = dtrace_strtoll(elem, 10, size);
3526                                 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3527                                 state = DTRACE_JSON_VALUE;
3528                                 break;
3529                         }
3530 
3531                         /*
3532                          * ERROR: expected to find a top-level object or array.
3533                          */
3534                         return (NULL);
3535                 case DTRACE_JSON_OBJECT:
3536                         if (isspace(cc))
3537                                 break;
3538 
3539                         if (cc == '"') {
3540                                 state = DTRACE_JSON_STRING;
3541                                 string_is_key = B_TRUE;
3542                                 break;
3543                         }
3544 
3545                         /*
3546                          * ERROR: either the object did not start with a key
3547                          * string, or we've run off the end of the object
3548                          * without finding the requested key.
3549                          */
3550                         return (NULL);
3551                 case DTRACE_JSON_STRING:
3552                         if (cc == '\\') {
3553                                 *dd++ = '\\';
3554                                 state = DTRACE_JSON_STRING_ESCAPE;
3555                                 break;
3556                         }
3557 
3558                         if (cc == '"') {
3559                                 if (collect_object) {
3560                                         /*
3561                                          * We don't reset the dest here, as
3562                                          * the string is part of a larger
3563                                          * object being collected.
3564                                          */
3565                                         *dd++ = cc;
3566                                         collect_object = B_FALSE;
3567                                         state = DTRACE_JSON_COLLECT_OBJECT;
3568                                         break;
3569                                 }
3570                                 *dd = '\0';
3571                                 dd = dest; /* reset string buffer */
3572                                 if (string_is_key) {
3573                                         if (dtrace_strncmp(dest, elem,
3574                                             size) == 0)
3575                                                 found_key = B_TRUE;
3576                                 } else if (found_key) {
3577                                         if (nelems > 1) {
3578                                                 /*
3579                                                  * We expected an object, not
3580                                                  * this string.
3581                                                  */
3582                                                 return (NULL);
3583                                         }
3584                                         return (dest);
3585                                 }
3586                                 state = string_is_key ? DTRACE_JSON_COLON :
3587                                     DTRACE_JSON_COMMA;
3588                                 string_is_key = B_FALSE;
3589                                 break;
3590                         }
3591 
3592                         *dd++ = cc;
3593                         break;
3594                 case DTRACE_JSON_STRING_ESCAPE:
3595                         *dd++ = cc;
3596                         if (cc == 'u') {
3597                                 escape_unicount = 0;
3598                                 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3599                         } else {
3600                                 state = DTRACE_JSON_STRING;
3601                         }
3602                         break;
3603                 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3604                         if (!isxdigit(cc)) {
3605                                 /*
3606                                  * ERROR: invalid unicode escape, expected
3607                                  * four valid hexidecimal digits.
3608                                  */
3609                                 return (NULL);
3610                         }
3611 
3612                         *dd++ = cc;
3613                         if (++escape_unicount == 4)
3614                                 state = DTRACE_JSON_STRING;
3615                         break;
3616                 case DTRACE_JSON_COLON:
3617                         if (isspace(cc))
3618                                 break;
3619 
3620                         if (cc == ':') {
3621                                 state = DTRACE_JSON_VALUE;
3622                                 break;
3623                         }
3624 
3625                         /*
3626                          * ERROR: expected a colon.
3627                          */
3628                         return (NULL);
3629                 case DTRACE_JSON_COMMA:
3630                         if (isspace(cc))
3631                                 break;
3632 
3633                         if (cc == ',') {
3634                                 if (in_array) {
3635                                         state = DTRACE_JSON_VALUE;
3636                                         if (++array_pos == array_elem)
3637                                                 found_key = B_TRUE;
3638                                 } else {
3639                                         state = DTRACE_JSON_OBJECT;
3640                                 }
3641                                 break;
3642                         }
3643 
3644                         /*
3645                          * ERROR: either we hit an unexpected character, or
3646                          * we reached the end of the object or array without
3647                          * finding the requested key.
3648                          */
3649                         return (NULL);
3650                 case DTRACE_JSON_IDENTIFIER:
3651                         if (islower(cc)) {
3652                                 *dd++ = cc;
3653                                 break;
3654                         }
3655 
3656                         *dd = '\0';
3657                         dd = dest; /* reset string buffer */
3658 
3659                         if (dtrace_strncmp(dest, "true", 5) == 0 ||
3660                             dtrace_strncmp(dest, "false", 6) == 0 ||
3661                             dtrace_strncmp(dest, "null", 5) == 0) {
3662                                 if (found_key) {
3663                                         if (nelems > 1) {
3664                                                 /*
3665                                                  * ERROR: We expected an object,
3666                                                  * not this identifier.
3667                                                  */
3668                                                 return (NULL);
3669                                         }
3670                                         return (dest);
3671                                 } else {
3672                                         cur--;
3673                                         state = DTRACE_JSON_COMMA;
3674                                         break;
3675                                 }
3676                         }
3677 
3678                         /*
3679                          * ERROR: we did not recognise the identifier as one
3680                          * of those in the JSON specification.
3681                          */
3682                         return (NULL);
3683                 case DTRACE_JSON_NUMBER:
3684                         if (cc == '.') {
3685                                 *dd++ = cc;
3686                                 state = DTRACE_JSON_NUMBER_FRAC;
3687                                 break;
3688                         }
3689 
3690                         if (cc == 'x' || cc == 'X') {
3691                                 /*
3692                                  * ERROR: specification explicitly excludes
3693                                  * hexidecimal or octal numbers.
3694                                  */
3695                                 return (NULL);
3696                         }
3697 
3698                         /* FALLTHRU */
3699                 case DTRACE_JSON_NUMBER_FRAC:
3700                         if (cc == 'e' || cc == 'E') {
3701                                 *dd++ = cc;
3702                                 state = DTRACE_JSON_NUMBER_EXP;
3703                                 break;
3704                         }
3705 
3706                         if (cc == '+' || cc == '-') {
3707                                 /*
3708                                  * ERROR: expect sign as part of exponent only.
3709                                  */
3710                                 return (NULL);
3711                         }
3712                         /* FALLTHRU */
3713                 case DTRACE_JSON_NUMBER_EXP:
3714                         if (isdigit(cc) || cc == '+' || cc == '-') {
3715                                 *dd++ = cc;
3716                                 break;
3717                         }
3718 
3719                         *dd = '\0';
3720                         dd = dest; /* reset string buffer */
3721                         if (found_key) {
3722                                 if (nelems > 1) {
3723                                         /*
3724                                          * ERROR: We expected an object, not
3725                                          * this number.
3726                                          */
3727                                         return (NULL);
3728                                 }
3729                                 return (dest);
3730                         }
3731 
3732                         cur--;
3733                         state = DTRACE_JSON_COMMA;
3734                         break;
3735                 case DTRACE_JSON_VALUE:
3736                         if (isspace(cc))
3737                                 break;
3738 
3739                         if (cc == '{' || cc == '[') {
3740                                 if (nelems > 1 && found_key) {
3741                                         in_array = cc == '[' ? B_TRUE : B_FALSE;
3742                                         /*
3743                                          * If our element selector directs us
3744                                          * to descend into this nested object,
3745                                          * then move to the next selector
3746                                          * element in the list and restart the
3747                                          * state machine.
3748                                          */
3749                                         while (*elem != '\0')
3750                                                 elem++;
3751                                         elem++; /* skip the inter-element NUL */
3752                                         nelems--;
3753                                         dd = dest;
3754                                         if (in_array) {
3755                                                 state = DTRACE_JSON_VALUE;
3756                                                 array_pos = 0;
3757                                                 array_elem = dtrace_strtoll(
3758                                                     elem, 10, size);
3759                                                 found_key = array_elem == 0 ?
3760                                                     B_TRUE : B_FALSE;
3761                                         } else {
3762                                                 found_key = B_FALSE;
3763                                                 state = DTRACE_JSON_OBJECT;
3764                                         }
3765                                         break;
3766                                 }
3767 
3768                                 /*
3769                                  * Otherwise, we wish to either skip this
3770                                  * nested object or return it in full.
3771                                  */
3772                                 if (cc == '[')
3773                                         brackets = 1;
3774                                 else
3775                                         braces = 1;
3776                                 *dd++ = cc;
3777                                 state = DTRACE_JSON_COLLECT_OBJECT;
3778                                 break;
3779                         }
3780 
3781                         if (cc == '"') {
3782                                 state = DTRACE_JSON_STRING;
3783                                 break;
3784                         }
3785 
3786                         if (islower(cc)) {
3787                                 /*
3788                                  * Here we deal with true, false and null.
3789                                  */
3790                                 *dd++ = cc;
3791                                 state = DTRACE_JSON_IDENTIFIER;
3792                                 break;
3793                         }
3794 
3795                         if (cc == '-' || isdigit(cc)) {
3796                                 *dd++ = cc;
3797                                 state = DTRACE_JSON_NUMBER;
3798                                 break;
3799                         }
3800 
3801                         /*
3802                          * ERROR: unexpected character at start of value.
3803                          */
3804                         return (NULL);
3805                 case DTRACE_JSON_COLLECT_OBJECT:
3806                         if (cc == '\0')
3807                                 /*
3808                                  * ERROR: unexpected end of input.
3809                                  */
3810                                 return (NULL);
3811 
3812                         *dd++ = cc;
3813                         if (cc == '"') {
3814                                 collect_object = B_TRUE;
3815                                 state = DTRACE_JSON_STRING;
3816                                 break;
3817                         }
3818 
3819                         if (cc == ']') {
3820                                 if (brackets-- == 0) {
3821                                         /*
3822                                          * ERROR: unbalanced brackets.
3823                                          */
3824                                         return (NULL);
3825                                 }
3826                         } else if (cc == '}') {
3827                                 if (braces-- == 0) {
3828                                         /*
3829                                          * ERROR: unbalanced braces.
3830                                          */
3831                                         return (NULL);
3832                                 }
3833                         } else if (cc == '{') {
3834                                 braces++;
3835                         } else if (cc == '[') {
3836                                 brackets++;
3837                         }
3838 
3839                         if (brackets == 0 && braces == 0) {
3840                                 if (found_key) {
3841                                         *dd = '\0';
3842                                         return (dest);
3843                                 }
3844                                 dd = dest; /* reset string buffer */
3845                                 state = DTRACE_JSON_COMMA;
3846                         }
3847                         break;
3848                 }
3849         }
3850         return (NULL);
3851 }
3852 
3853 /*
3854  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3855  * Notice that we don't bother validating the proper number of arguments or
3856  * their types in the tuple stack.  This isn't needed because all argument
3857  * interpretation is safe because of our load safety -- the worst that can
3858  * happen is that a bogus program can obtain bogus results.
3859  */
3860 static void
3861 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3862     dtrace_key_t *tupregs, int nargs,
3863     dtrace_mstate_t *mstate, dtrace_state_t *state)
3864 {
3865         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3866         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3867         dtrace_vstate_t *vstate = &state->dts_vstate;
3868 
3869         union {
3870                 mutex_impl_t mi;
3871                 uint64_t mx;
3872         } m;
3873 
3874         union {
3875                 krwlock_t ri;
3876                 uintptr_t rw;
3877         } r;
3878 
3879         switch (subr) {
3880         case DIF_SUBR_RAND:
3881                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3882                 break;
3883 
3884         case DIF_SUBR_MUTEX_OWNED:
3885                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3886                     mstate, vstate)) {
3887                         regs[rd] = NULL;
3888                         break;
3889                 }
3890 
3891                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3892                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3893                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3894                 else
3895                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3896                 break;
3897 
3898         case DIF_SUBR_MUTEX_OWNER:
3899                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3900                     mstate, vstate)) {
3901                         regs[rd] = NULL;
3902                         break;
3903                 }
3904 
3905                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3906                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3907                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3908                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3909                 else
3910                         regs[rd] = 0;
3911                 break;
3912 
3913         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3914                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3915                     mstate, vstate)) {
3916                         regs[rd] = NULL;
3917                         break;
3918                 }
3919 
3920                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3921                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3922                 break;
3923 
3924         case DIF_SUBR_MUTEX_TYPE_SPIN:
3925                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3926                     mstate, vstate)) {
3927                         regs[rd] = NULL;
3928                         break;
3929                 }
3930 
3931                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3932                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3933                 break;
3934 
3935         case DIF_SUBR_RW_READ_HELD: {
3936                 uintptr_t tmp;
3937 
3938                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3939                     mstate, vstate)) {
3940                         regs[rd] = NULL;
3941                         break;
3942                 }
3943 
3944                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3945                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3946                 break;
3947         }
3948 
3949         case DIF_SUBR_RW_WRITE_HELD:
3950                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3951                     mstate, vstate)) {
3952                         regs[rd] = NULL;
3953                         break;
3954                 }
3955 
3956                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3957                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3958                 break;
3959 
3960         case DIF_SUBR_RW_ISWRITER:
3961                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3962                     mstate, vstate)) {
3963                         regs[rd] = NULL;
3964                         break;
3965                 }
3966 
3967                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3968                 regs[rd] = _RW_ISWRITER(&r.ri);
3969                 break;
3970 
3971         case DIF_SUBR_BCOPY: {
3972                 /*
3973                  * We need to be sure that the destination is in the scratch
3974                  * region -- no other region is allowed.
3975                  */
3976                 uintptr_t src = tupregs[0].dttk_value;
3977                 uintptr_t dest = tupregs[1].dttk_value;
3978                 size_t size = tupregs[2].dttk_value;
3979 
3980                 if (!dtrace_inscratch(dest, size, mstate)) {
3981                         *flags |= CPU_DTRACE_BADADDR;
3982                         *illval = regs[rd];
3983                         break;
3984                 }
3985 
3986                 if (!dtrace_canload(src, size, mstate, vstate)) {
3987                         regs[rd] = NULL;
3988                         break;
3989                 }
3990 
3991                 dtrace_bcopy((void *)src, (void *)dest, size);
3992                 break;
3993         }
3994 
3995         case DIF_SUBR_ALLOCA:
3996         case DIF_SUBR_COPYIN: {
3997                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3998                 uint64_t size =
3999                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4000                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4001 
4002                 /*
4003                  * This action doesn't require any credential checks since
4004                  * probes will not activate in user contexts to which the
4005                  * enabling user does not have permissions.
4006                  */
4007 
4008                 /*
4009                  * Rounding up the user allocation size could have overflowed
4010                  * a large, bogus allocation (like -1ULL) to 0.
4011                  */
4012                 if (scratch_size < size ||
4013                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
4014                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4015                         regs[rd] = NULL;
4016                         break;
4017                 }
4018 
4019                 if (subr == DIF_SUBR_COPYIN) {
4020                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4021                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4022                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4023                 }
4024 
4025                 mstate->dtms_scratch_ptr += scratch_size;
4026                 regs[rd] = dest;
4027                 break;
4028         }
4029 
4030         case DIF_SUBR_COPYINTO: {
4031                 uint64_t size = tupregs[1].dttk_value;
4032                 uintptr_t dest = tupregs[2].dttk_value;
4033 
4034                 /*
4035                  * This action doesn't require any credential checks since
4036                  * probes will not activate in user contexts to which the
4037                  * enabling user does not have permissions.
4038                  */
4039                 if (!dtrace_inscratch(dest, size, mstate)) {
4040                         *flags |= CPU_DTRACE_BADADDR;
4041                         *illval = regs[rd];
4042                         break;
4043                 }
4044 
4045                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4046                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4047                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4048                 break;
4049         }
4050 
4051         case DIF_SUBR_COPYINSTR: {
4052                 uintptr_t dest = mstate->dtms_scratch_ptr;
4053                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4054 
4055                 if (nargs > 1 && tupregs[1].dttk_value < size)
4056                         size = tupregs[1].dttk_value + 1;
4057 
4058                 /*
4059                  * This action doesn't require any credential checks since
4060                  * probes will not activate in user contexts to which the
4061                  * enabling user does not have permissions.
4062                  */
4063                 if (!DTRACE_INSCRATCH(mstate, size)) {
4064                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4065                         regs[rd] = NULL;
4066                         break;
4067                 }
4068 
4069                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4070                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4071                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4072 
4073                 ((char *)dest)[size - 1] = '\0';
4074                 mstate->dtms_scratch_ptr += size;
4075                 regs[rd] = dest;
4076                 break;
4077         }
4078 
4079         case DIF_SUBR_MSGSIZE:
4080         case DIF_SUBR_MSGDSIZE: {
4081                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4082                 uintptr_t wptr, rptr;
4083                 size_t count = 0;
4084                 int cont = 0;
4085 
4086                 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4087 
4088                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4089                             vstate)) {
4090                                 regs[rd] = NULL;
4091                                 break;
4092                         }
4093 
4094                         wptr = dtrace_loadptr(baddr +
4095                             offsetof(mblk_t, b_wptr));
4096 
4097                         rptr = dtrace_loadptr(baddr +
4098                             offsetof(mblk_t, b_rptr));
4099 
4100                         if (wptr < rptr) {
4101                                 *flags |= CPU_DTRACE_BADADDR;
4102                                 *illval = tupregs[0].dttk_value;
4103                                 break;
4104                         }
4105 
4106                         daddr = dtrace_loadptr(baddr +
4107                             offsetof(mblk_t, b_datap));
4108 
4109                         baddr = dtrace_loadptr(baddr +
4110                             offsetof(mblk_t, b_cont));
4111 
4112                         /*
4113                          * We want to prevent against denial-of-service here,
4114                          * so we're only going to search the list for
4115                          * dtrace_msgdsize_max mblks.
4116                          */
4117                         if (cont++ > dtrace_msgdsize_max) {
4118                                 *flags |= CPU_DTRACE_ILLOP;
4119                                 break;
4120                         }
4121 
4122                         if (subr == DIF_SUBR_MSGDSIZE) {
4123                                 if (dtrace_load8(daddr +
4124                                     offsetof(dblk_t, db_type)) != M_DATA)
4125                                         continue;
4126                         }
4127 
4128                         count += wptr - rptr;
4129                 }
4130 
4131                 if (!(*flags & CPU_DTRACE_FAULT))
4132                         regs[rd] = count;
4133 
4134                 break;
4135         }
4136 
4137         case DIF_SUBR_PROGENYOF: {
4138                 pid_t pid = tupregs[0].dttk_value;
4139                 proc_t *p;
4140                 int rval = 0;
4141 
4142                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4143 
4144                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4145                         if (p->p_pidp->pid_id == pid) {
4146                                 rval = 1;
4147                                 break;
4148                         }
4149                 }
4150 
4151                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4152 
4153                 regs[rd] = rval;
4154                 break;
4155         }
4156 
4157         case DIF_SUBR_SPECULATION:
4158                 regs[rd] = dtrace_speculation(state);
4159                 break;
4160 
4161         case DIF_SUBR_COPYOUT: {
4162                 uintptr_t kaddr = tupregs[0].dttk_value;
4163                 uintptr_t uaddr = tupregs[1].dttk_value;
4164                 uint64_t size = tupregs[2].dttk_value;
4165 
4166                 if (!dtrace_destructive_disallow &&
4167                     dtrace_priv_proc_control(state, mstate) &&
4168                     !dtrace_istoxic(kaddr, size)) {
4169                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4170                         dtrace_copyout(kaddr, uaddr, size, flags);
4171                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4172                 }
4173                 break;
4174         }
4175 
4176         case DIF_SUBR_COPYOUTSTR: {
4177                 uintptr_t kaddr = tupregs[0].dttk_value;
4178                 uintptr_t uaddr = tupregs[1].dttk_value;
4179                 uint64_t size = tupregs[2].dttk_value;
4180 
4181                 if (!dtrace_destructive_disallow &&
4182                     dtrace_priv_proc_control(state, mstate) &&
4183                     !dtrace_istoxic(kaddr, size)) {
4184                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4185                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
4186                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4187                 }
4188                 break;
4189         }
4190 
4191         case DIF_SUBR_STRLEN: {
4192                 size_t sz;
4193                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4194                 sz = dtrace_strlen((char *)addr,
4195                     state->dts_options[DTRACEOPT_STRSIZE]);
4196 
4197                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4198                         regs[rd] = NULL;
4199                         break;
4200                 }
4201 
4202                 regs[rd] = sz;
4203 
4204                 break;
4205         }
4206 
4207         case DIF_SUBR_STRCHR:
4208         case DIF_SUBR_STRRCHR: {
4209                 /*
4210                  * We're going to iterate over the string looking for the
4211                  * specified character.  We will iterate until we have reached
4212                  * the string length or we have found the character.  If this
4213                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4214                  * of the specified character instead of the first.
4215                  */
4216                 uintptr_t saddr = tupregs[0].dttk_value;
4217                 uintptr_t addr = tupregs[0].dttk_value;
4218                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4219                 char c, target = (char)tupregs[1].dttk_value;
4220 
4221                 for (regs[rd] = NULL; addr < limit; addr++) {
4222                         if ((c = dtrace_load8(addr)) == target) {
4223                                 regs[rd] = addr;
4224 
4225                                 if (subr == DIF_SUBR_STRCHR)
4226                                         break;
4227                         }
4228 
4229                         if (c == '\0')
4230                                 break;
4231                 }
4232 
4233                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4234                         regs[rd] = NULL;
4235                         break;
4236                 }
4237 
4238                 break;
4239         }
4240 
4241         case DIF_SUBR_STRSTR:
4242         case DIF_SUBR_INDEX:
4243         case DIF_SUBR_RINDEX: {
4244                 /*
4245                  * We're going to iterate over the string looking for the
4246                  * specified string.  We will iterate until we have reached
4247                  * the string length or we have found the string.  (Yes, this
4248                  * is done in the most naive way possible -- but considering
4249                  * that the string we're searching for is likely to be
4250                  * relatively short, the complexity of Rabin-Karp or similar
4251                  * hardly seems merited.)
4252                  */
4253                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4254                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4255                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4256                 size_t len = dtrace_strlen(addr, size);
4257                 size_t sublen = dtrace_strlen(substr, size);
4258                 char *limit = addr + len, *orig = addr;
4259                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4260                 int inc = 1;
4261 
4262                 regs[rd] = notfound;
4263 
4264                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4265                         regs[rd] = NULL;
4266                         break;
4267                 }
4268 
4269                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4270                     vstate)) {
4271                         regs[rd] = NULL;
4272                         break;
4273                 }
4274 
4275                 /*
4276                  * strstr() and index()/rindex() have similar semantics if
4277                  * both strings are the empty string: strstr() returns a
4278                  * pointer to the (empty) string, and index() and rindex()
4279                  * both return index 0 (regardless of any position argument).
4280                  */
4281                 if (sublen == 0 && len == 0) {
4282                         if (subr == DIF_SUBR_STRSTR)
4283                                 regs[rd] = (uintptr_t)addr;
4284                         else
4285                                 regs[rd] = 0;
4286                         break;
4287                 }
4288 
4289                 if (subr != DIF_SUBR_STRSTR) {
4290                         if (subr == DIF_SUBR_RINDEX) {
4291                                 limit = orig - 1;
4292                                 addr += len;
4293                                 inc = -1;
4294                         }
4295 
4296                         /*
4297                          * Both index() and rindex() take an optional position
4298                          * argument that denotes the starting position.
4299                          */
4300                         if (nargs == 3) {
4301                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
4302 
4303                                 /*
4304                                  * If the position argument to index() is
4305                                  * negative, Perl implicitly clamps it at
4306                                  * zero.  This semantic is a little surprising
4307                                  * given the special meaning of negative
4308                                  * positions to similar Perl functions like
4309                                  * substr(), but it appears to reflect a
4310                                  * notion that index() can start from a
4311                                  * negative index and increment its way up to
4312                                  * the string.  Given this notion, Perl's
4313                                  * rindex() is at least self-consistent in
4314                                  * that it implicitly clamps positions greater
4315                                  * than the string length to be the string
4316                                  * length.  Where Perl completely loses
4317                                  * coherence, however, is when the specified
4318                                  * substring is the empty string ("").  In
4319                                  * this case, even if the position is
4320                                  * negative, rindex() returns 0 -- and even if
4321                                  * the position is greater than the length,
4322                                  * index() returns the string length.  These
4323                                  * semantics violate the notion that index()
4324                                  * should never return a value less than the
4325                                  * specified position and that rindex() should
4326                                  * never return a value greater than the
4327                                  * specified position.  (One assumes that
4328                                  * these semantics are artifacts of Perl's
4329                                  * implementation and not the results of
4330                                  * deliberate design -- it beggars belief that
4331                                  * even Larry Wall could desire such oddness.)
4332                                  * While in the abstract one would wish for
4333                                  * consistent position semantics across
4334                                  * substr(), index() and rindex() -- or at the
4335                                  * very least self-consistent position
4336                                  * semantics for index() and rindex() -- we
4337                                  * instead opt to keep with the extant Perl
4338                                  * semantics, in all their broken glory.  (Do
4339                                  * we have more desire to maintain Perl's
4340                                  * semantics than Perl does?  Probably.)
4341                                  */
4342                                 if (subr == DIF_SUBR_RINDEX) {
4343                                         if (pos < 0) {
4344                                                 if (sublen == 0)
4345                                                         regs[rd] = 0;
4346                                                 break;
4347                                         }
4348 
4349                                         if (pos > len)
4350                                                 pos = len;
4351                                 } else {
4352                                         if (pos < 0)
4353                                                 pos = 0;
4354 
4355                                         if (pos >= len) {
4356                                                 if (sublen == 0)
4357                                                         regs[rd] = len;
4358                                                 break;
4359                                         }
4360                                 }
4361 
4362                                 addr = orig + pos;
4363                         }
4364                 }
4365 
4366                 for (regs[rd] = notfound; addr != limit; addr += inc) {
4367                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
4368                                 if (subr != DIF_SUBR_STRSTR) {
4369                                         /*
4370                                          * As D index() and rindex() are
4371                                          * modeled on Perl (and not on awk),
4372                                          * we return a zero-based (and not a
4373                                          * one-based) index.  (For you Perl
4374                                          * weenies: no, we're not going to add
4375                                          * $[ -- and shouldn't you be at a con
4376                                          * or something?)
4377                                          */
4378                                         regs[rd] = (uintptr_t)(addr - orig);
4379                                         break;
4380                                 }
4381 
4382                                 ASSERT(subr == DIF_SUBR_STRSTR);
4383                                 regs[rd] = (uintptr_t)addr;
4384                                 break;
4385                         }
4386                 }
4387 
4388                 break;
4389         }
4390 
4391         case DIF_SUBR_STRTOK: {
4392                 uintptr_t addr = tupregs[0].dttk_value;
4393                 uintptr_t tokaddr = tupregs[1].dttk_value;
4394                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4395                 uintptr_t limit, toklimit = tokaddr + size;
4396                 uint8_t c, tokmap[32];   /* 256 / 8 */
4397                 char *dest = (char *)mstate->dtms_scratch_ptr;
4398                 int i;
4399 
4400                 /*
4401                  * Check both the token buffer and (later) the input buffer,
4402                  * since both could be non-scratch addresses.
4403                  */
4404                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4405                         regs[rd] = NULL;
4406                         break;
4407                 }
4408 
4409                 if (!DTRACE_INSCRATCH(mstate, size)) {
4410                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4411                         regs[rd] = NULL;
4412                         break;
4413                 }
4414 
4415                 if (addr == NULL) {
4416                         /*
4417                          * If the address specified is NULL, we use our saved
4418                          * strtok pointer from the mstate.  Note that this
4419                          * means that the saved strtok pointer is _only_
4420                          * valid within multiple enablings of the same probe --
4421                          * it behaves like an implicit clause-local variable.
4422                          */
4423                         addr = mstate->dtms_strtok;
4424                 } else {
4425                         /*
4426                          * If the user-specified address is non-NULL we must
4427                          * access check it.  This is the only time we have
4428                          * a chance to do so, since this address may reside
4429                          * in the string table of this clause-- future calls
4430                          * (when we fetch addr from mstate->dtms_strtok)
4431                          * would fail this access check.
4432                          */
4433                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4434                                 regs[rd] = NULL;
4435                                 break;
4436                         }
4437                 }
4438 
4439                 /*
4440                  * First, zero the token map, and then process the token
4441                  * string -- setting a bit in the map for every character
4442                  * found in the token string.
4443                  */
4444                 for (i = 0; i < sizeof (tokmap); i++)
4445                         tokmap[i] = 0;
4446 
4447                 for (; tokaddr < toklimit; tokaddr++) {
4448                         if ((c = dtrace_load8(tokaddr)) == '\0')
4449                                 break;
4450 
4451                         ASSERT((c >> 3) < sizeof (tokmap));
4452                         tokmap[c >> 3] |= (1 << (c & 0x7));
4453                 }
4454 
4455                 for (limit = addr + size; addr < limit; addr++) {
4456                         /*
4457                          * We're looking for a character that is _not_ contained
4458                          * in the token string.
4459                          */
4460                         if ((c = dtrace_load8(addr)) == '\0')
4461                                 break;
4462 
4463                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4464                                 break;
4465                 }
4466 
4467                 if (c == '\0') {
4468                         /*
4469                          * We reached the end of the string without finding
4470                          * any character that was not in the token string.
4471                          * We return NULL in this case, and we set the saved
4472                          * address to NULL as well.
4473                          */
4474                         regs[rd] = NULL;
4475                         mstate->dtms_strtok = NULL;
4476                         break;
4477                 }
4478 
4479                 /*
4480                  * From here on, we're copying into the destination string.
4481                  */
4482                 for (i = 0; addr < limit && i < size - 1; addr++) {
4483                         if ((c = dtrace_load8(addr)) == '\0')
4484                                 break;
4485 
4486                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
4487                                 break;
4488 
4489                         ASSERT(i < size);
4490                         dest[i++] = c;
4491                 }
4492 
4493                 ASSERT(i < size);
4494                 dest[i] = '\0';
4495                 regs[rd] = (uintptr_t)dest;
4496                 mstate->dtms_scratch_ptr += size;
4497                 mstate->dtms_strtok = addr;
4498                 break;
4499         }
4500 
4501         case DIF_SUBR_SUBSTR: {
4502                 uintptr_t s = tupregs[0].dttk_value;
4503                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4504                 char *d = (char *)mstate->dtms_scratch_ptr;
4505                 int64_t index = (int64_t)tupregs[1].dttk_value;
4506                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4507                 size_t len = dtrace_strlen((char *)s, size);
4508                 int64_t i;
4509 
4510                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4511                         regs[rd] = NULL;
4512                         break;
4513                 }
4514 
4515                 if (!DTRACE_INSCRATCH(mstate, size)) {
4516                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4517                         regs[rd] = NULL;
4518                         break;
4519                 }
4520 
4521                 if (nargs <= 2)
4522                         remaining = (int64_t)size;
4523 
4524                 if (index < 0) {
4525                         index += len;
4526 
4527                         if (index < 0 && index + remaining > 0) {
4528                                 remaining += index;
4529                                 index = 0;
4530                         }
4531                 }
4532 
4533                 if (index >= len || index < 0) {
4534                         remaining = 0;
4535                 } else if (remaining < 0) {
4536                         remaining += len - index;
4537                 } else if (index + remaining > size) {
4538                         remaining = size - index;
4539                 }
4540 
4541                 for (i = 0; i < remaining; i++) {
4542                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4543                                 break;
4544                 }
4545 
4546                 d[i] = '\0';
4547 
4548                 mstate->dtms_scratch_ptr += size;
4549                 regs[rd] = (uintptr_t)d;
4550                 break;
4551         }
4552 
4553         case DIF_SUBR_JSON: {
4554                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4555                 uintptr_t json = tupregs[0].dttk_value;
4556                 size_t jsonlen = dtrace_strlen((char *)json, size);
4557                 uintptr_t elem = tupregs[1].dttk_value;
4558                 size_t elemlen = dtrace_strlen((char *)elem, size);
4559 
4560                 char *dest = (char *)mstate->dtms_scratch_ptr;
4561                 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4562                 char *ee = elemlist;
4563                 int nelems = 1;
4564                 uintptr_t cur;
4565 
4566                 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4567                     !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4568                         regs[rd] = NULL;
4569                         break;
4570                 }
4571 
4572                 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4573                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4574                         regs[rd] = NULL;
4575                         break;
4576                 }
4577 
4578                 /*
4579                  * Read the element selector and split it up into a packed list
4580                  * of strings.
4581                  */
4582                 for (cur = elem; cur < elem + elemlen; cur++) {
4583                         char cc = dtrace_load8(cur);
4584 
4585                         if (cur == elem && cc == '[') {
4586                                 /*
4587                                  * If the first element selector key is
4588                                  * actually an array index then ignore the
4589                                  * bracket.
4590                                  */
4591                                 continue;
4592                         }
4593 
4594                         if (cc == ']')
4595                                 continue;
4596 
4597                         if (cc == '.' || cc == '[') {
4598                                 nelems++;
4599                                 cc = '\0';
4600                         }
4601 
4602                         *ee++ = cc;
4603                 }
4604                 *ee++ = '\0';
4605 
4606                 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4607                     nelems, dest)) != NULL)
4608                         mstate->dtms_scratch_ptr += jsonlen + 1;
4609                 break;
4610         }
4611 
4612         case DIF_SUBR_TOUPPER:
4613         case DIF_SUBR_TOLOWER: {
4614                 uintptr_t s = tupregs[0].dttk_value;
4615                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4616                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4617                 size_t len = dtrace_strlen((char *)s, size);
4618                 char lower, upper, convert;
4619                 int64_t i;
4620 
4621                 if (subr == DIF_SUBR_TOUPPER) {
4622                         lower = 'a';
4623                         upper = 'z';
4624                         convert = 'A';
4625                 } else {
4626                         lower = 'A';
4627                         upper = 'Z';
4628                         convert = 'a';
4629                 }
4630 
4631                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4632                         regs[rd] = NULL;
4633                         break;
4634                 }
4635 
4636                 if (!DTRACE_INSCRATCH(mstate, size)) {
4637                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4638                         regs[rd] = NULL;
4639                         break;
4640                 }
4641 
4642                 for (i = 0; i < size - 1; i++) {
4643                         if ((c = dtrace_load8(s + i)) == '\0')
4644                                 break;
4645 
4646                         if (c >= lower && c <= upper)
4647                                 c = convert + (c - lower);
4648 
4649                         dest[i] = c;
4650                 }
4651 
4652                 ASSERT(i < size);
4653                 dest[i] = '\0';
4654                 regs[rd] = (uintptr_t)dest;
4655                 mstate->dtms_scratch_ptr += size;
4656                 break;
4657         }
4658 
4659 case DIF_SUBR_GETMAJOR:
4660 #ifdef _LP64
4661                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4662 #else
4663                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4664 #endif
4665                 break;
4666 
4667         case DIF_SUBR_GETMINOR:
4668 #ifdef _LP64
4669                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4670 #else
4671                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4672 #endif
4673                 break;
4674 
4675         case DIF_SUBR_DDI_PATHNAME: {
4676                 /*
4677                  * This one is a galactic mess.  We are going to roughly
4678                  * emulate ddi_pathname(), but it's made more complicated
4679                  * by the fact that we (a) want to include the minor name and
4680                  * (b) must proceed iteratively instead of recursively.
4681                  */
4682                 uintptr_t dest = mstate->dtms_scratch_ptr;
4683                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4684                 char *start = (char *)dest, *end = start + size - 1;
4685                 uintptr_t daddr = tupregs[0].dttk_value;
4686                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4687                 char *s;
4688                 int i, len, depth = 0;
4689 
4690                 /*
4691                  * Due to all the pointer jumping we do and context we must
4692                  * rely upon, we just mandate that the user must have kernel
4693                  * read privileges to use this routine.
4694                  */
4695                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4696                         *flags |= CPU_DTRACE_KPRIV;
4697                         *illval = daddr;
4698                         regs[rd] = NULL;
4699                 }
4700 
4701                 if (!DTRACE_INSCRATCH(mstate, size)) {
4702                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4703                         regs[rd] = NULL;
4704                         break;
4705                 }
4706 
4707                 *end = '\0';
4708 
4709                 /*
4710                  * We want to have a name for the minor.  In order to do this,
4711                  * we need to walk the minor list from the devinfo.  We want
4712                  * to be sure that we don't infinitely walk a circular list,
4713                  * so we check for circularity by sending a scout pointer
4714                  * ahead two elements for every element that we iterate over;
4715                  * if the list is circular, these will ultimately point to the
4716                  * same element.  You may recognize this little trick as the
4717                  * answer to a stupid interview question -- one that always
4718                  * seems to be asked by those who had to have it laboriously
4719                  * explained to them, and who can't even concisely describe
4720                  * the conditions under which one would be forced to resort to
4721                  * this technique.  Needless to say, those conditions are
4722                  * found here -- and probably only here.  Is this the only use
4723                  * of this infamous trick in shipping, production code?  If it
4724                  * isn't, it probably should be...
4725                  */
4726                 if (minor != -1) {
4727                         uintptr_t maddr = dtrace_loadptr(daddr +
4728                             offsetof(struct dev_info, devi_minor));
4729 
4730                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4731                         uintptr_t name = offsetof(struct ddi_minor_data,
4732                             d_minor) + offsetof(struct ddi_minor, name);
4733                         uintptr_t dev = offsetof(struct ddi_minor_data,
4734                             d_minor) + offsetof(struct ddi_minor, dev);
4735                         uintptr_t scout;
4736 
4737                         if (maddr != NULL)
4738                                 scout = dtrace_loadptr(maddr + next);
4739 
4740                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4741                                 uint64_t m;
4742 #ifdef _LP64
4743                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4744 #else
4745                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4746 #endif
4747                                 if (m != minor) {
4748                                         maddr = dtrace_loadptr(maddr + next);
4749 
4750                                         if (scout == NULL)
4751                                                 continue;
4752 
4753                                         scout = dtrace_loadptr(scout + next);
4754 
4755                                         if (scout == NULL)
4756                                                 continue;
4757 
4758                                         scout = dtrace_loadptr(scout + next);
4759 
4760                                         if (scout == NULL)
4761                                                 continue;
4762 
4763                                         if (scout == maddr) {
4764                                                 *flags |= CPU_DTRACE_ILLOP;
4765                                                 break;
4766                                         }
4767 
4768                                         continue;
4769                                 }
4770 
4771                                 /*
4772                                  * We have the minor data.  Now we need to
4773                                  * copy the minor's name into the end of the
4774                                  * pathname.
4775                                  */
4776                                 s = (char *)dtrace_loadptr(maddr + name);
4777                                 len = dtrace_strlen(s, size);
4778 
4779                                 if (*flags & CPU_DTRACE_FAULT)
4780                                         break;
4781 
4782                                 if (len != 0) {
4783                                         if ((end -= (len + 1)) < start)
4784                                                 break;
4785 
4786                                         *end = ':';
4787                                 }
4788 
4789                                 for (i = 1; i <= len; i++)
4790                                         end[i] = dtrace_load8((uintptr_t)s++);
4791                                 break;
4792                         }
4793                 }
4794 
4795                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4796                         ddi_node_state_t devi_state;
4797 
4798                         devi_state = dtrace_load32(daddr +
4799                             offsetof(struct dev_info, devi_node_state));
4800 
4801                         if (*flags & CPU_DTRACE_FAULT)
4802                                 break;
4803 
4804                         if (devi_state >= DS_INITIALIZED) {
4805                                 s = (char *)dtrace_loadptr(daddr +
4806                                     offsetof(struct dev_info, devi_addr));
4807                                 len = dtrace_strlen(s, size);
4808 
4809                                 if (*flags & CPU_DTRACE_FAULT)
4810                                         break;
4811 
4812                                 if (len != 0) {
4813                                         if ((end -= (len + 1)) < start)
4814                                                 break;
4815 
4816                                         *end = '@';
4817                                 }
4818 
4819                                 for (i = 1; i <= len; i++)
4820                                         end[i] = dtrace_load8((uintptr_t)s++);
4821                         }
4822 
4823                         /*
4824                          * Now for the node name...
4825                          */
4826                         s = (char *)dtrace_loadptr(daddr +
4827                             offsetof(struct dev_info, devi_node_name));
4828 
4829                         daddr = dtrace_loadptr(daddr +
4830                             offsetof(struct dev_info, devi_parent));
4831 
4832                         /*
4833                          * If our parent is NULL (that is, if we're the root
4834                          * node), we're going to use the special path
4835                          * "devices".
4836                          */
4837                         if (daddr == NULL)
4838                                 s = "devices";
4839 
4840                         len = dtrace_strlen(s, size);
4841                         if (*flags & CPU_DTRACE_FAULT)
4842                                 break;
4843 
4844                         if ((end -= (len + 1)) < start)
4845                                 break;
4846 
4847                         for (i = 1; i <= len; i++)
4848                                 end[i] = dtrace_load8((uintptr_t)s++);
4849                         *end = '/';
4850 
4851                         if (depth++ > dtrace_devdepth_max) {
4852                                 *flags |= CPU_DTRACE_ILLOP;
4853                                 break;
4854                         }
4855                 }
4856 
4857                 if (end < start)
4858                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4859 
4860                 if (daddr == NULL) {
4861                         regs[rd] = (uintptr_t)end;
4862                         mstate->dtms_scratch_ptr += size;
4863                 }
4864 
4865                 break;
4866         }
4867 
4868         case DIF_SUBR_STRJOIN: {
4869                 char *d = (char *)mstate->dtms_scratch_ptr;
4870                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4871                 uintptr_t s1 = tupregs[0].dttk_value;
4872                 uintptr_t s2 = tupregs[1].dttk_value;
4873                 int i = 0;
4874 
4875                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4876                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4877                         regs[rd] = NULL;
4878                         break;
4879                 }
4880 
4881                 if (!DTRACE_INSCRATCH(mstate, size)) {
4882                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4883                         regs[rd] = NULL;
4884                         break;
4885                 }
4886 
4887                 for (;;) {
4888                         if (i >= size) {
4889                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4890                                 regs[rd] = NULL;
4891                                 break;
4892                         }
4893 
4894                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4895                                 i--;
4896                                 break;
4897                         }
4898                 }
4899 
4900                 for (;;) {
4901                         if (i >= size) {
4902                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4903                                 regs[rd] = NULL;
4904                                 break;
4905                         }
4906 
4907                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4908                                 break;
4909                 }
4910 
4911                 if (i < size) {
4912                         mstate->dtms_scratch_ptr += i;
4913                         regs[rd] = (uintptr_t)d;
4914                 }
4915 
4916                 break;
4917         }
4918 
4919         case DIF_SUBR_STRTOLL: {
4920                 uintptr_t s = tupregs[0].dttk_value;
4921                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4922                 int base = 10;
4923 
4924                 if (nargs > 1) {
4925                         if ((base = tupregs[1].dttk_value) <= 1 ||
4926                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4927                                 *flags |= CPU_DTRACE_ILLOP;
4928                                 break;
4929                         }
4930                 }
4931 
4932                 if (!dtrace_strcanload(s, size, mstate, vstate)) {
4933                         regs[rd] = INT64_MIN;
4934                         break;
4935                 }
4936 
4937                 regs[rd] = dtrace_strtoll((char *)s, base, size);
4938                 break;
4939         }
4940 
4941         case DIF_SUBR_LLTOSTR: {
4942                 int64_t i = (int64_t)tupregs[0].dttk_value;
4943                 uint64_t val, digit;
4944                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4945                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4946                 int base = 10;
4947 
4948                 if (nargs > 1) {
4949                         if ((base = tupregs[1].dttk_value) <= 1 ||
4950                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4951                                 *flags |= CPU_DTRACE_ILLOP;
4952                                 break;
4953                         }
4954                 }
4955 
4956                 val = (base == 10 && i < 0) ? i * -1 : i;
4957 
4958                 if (!DTRACE_INSCRATCH(mstate, size)) {
4959                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4960                         regs[rd] = NULL;
4961                         break;
4962                 }
4963 
4964                 for (*end-- = '\0'; val; val /= base) {
4965                         if ((digit = val % base) <= '9' - '0') {
4966                                 *end-- = '0' + digit;
4967                         } else {
4968                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4969                         }
4970                 }
4971 
4972                 if (i == 0 && base == 16)
4973                         *end-- = '0';
4974 
4975                 if (base == 16)
4976                         *end-- = 'x';
4977 
4978                 if (i == 0 || base == 8 || base == 16)
4979                         *end-- = '0';
4980 
4981                 if (i < 0 && base == 10)
4982                         *end-- = '-';
4983 
4984                 regs[rd] = (uintptr_t)end + 1;
4985                 mstate->dtms_scratch_ptr += size;
4986                 break;
4987         }
4988 
4989         case DIF_SUBR_HTONS:
4990         case DIF_SUBR_NTOHS:
4991 #ifdef _BIG_ENDIAN
4992                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4993 #else
4994                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4995 #endif
4996                 break;
4997 
4998 
4999         case DIF_SUBR_HTONL:
5000         case DIF_SUBR_NTOHL:
5001 #ifdef _BIG_ENDIAN
5002                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5003 #else
5004                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5005 #endif
5006                 break;
5007 
5008 
5009         case DIF_SUBR_HTONLL:
5010         case DIF_SUBR_NTOHLL:
5011 #ifdef _BIG_ENDIAN
5012                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5013 #else
5014                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5015 #endif
5016                 break;
5017 
5018 
5019         case DIF_SUBR_DIRNAME:
5020         case DIF_SUBR_BASENAME: {
5021                 char *dest = (char *)mstate->dtms_scratch_ptr;
5022                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5023                 uintptr_t src = tupregs[0].dttk_value;
5024                 int i, j, len = dtrace_strlen((char *)src, size);
5025                 int lastbase = -1, firstbase = -1, lastdir = -1;
5026                 int start, end;
5027 
5028                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5029                         regs[rd] = NULL;
5030                         break;
5031                 }
5032 
5033                 if (!DTRACE_INSCRATCH(mstate, size)) {
5034                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5035                         regs[rd] = NULL;
5036                         break;
5037                 }
5038 
5039                 /*
5040                  * The basename and dirname for a zero-length string is
5041                  * defined to be "."
5042                  */
5043                 if (len == 0) {
5044                         len = 1;
5045                         src = (uintptr_t)".";
5046                 }
5047 
5048                 /*
5049                  * Start from the back of the string, moving back toward the
5050                  * front until we see a character that isn't a slash.  That
5051                  * character is the last character in the basename.
5052                  */
5053                 for (i = len - 1; i >= 0; i--) {
5054                         if (dtrace_load8(src + i) != '/')
5055                                 break;
5056                 }
5057 
5058                 if (i >= 0)
5059                         lastbase = i;
5060 
5061                 /*
5062                  * Starting from the last character in the basename, move
5063                  * towards the front until we find a slash.  The character
5064                  * that we processed immediately before that is the first
5065                  * character in the basename.
5066                  */
5067                 for (; i >= 0; i--) {
5068                         if (dtrace_load8(src + i) == '/')
5069                                 break;
5070                 }
5071 
5072                 if (i >= 0)
5073                         firstbase = i + 1;
5074 
5075                 /*
5076                  * Now keep going until we find a non-slash character.  That
5077                  * character is the last character in the dirname.
5078                  */
5079                 for (; i >= 0; i--) {
5080                         if (dtrace_load8(src + i) != '/')
5081                                 break;
5082                 }
5083 
5084                 if (i >= 0)
5085                         lastdir = i;
5086 
5087                 ASSERT(!(lastbase == -1 && firstbase != -1));
5088                 ASSERT(!(firstbase == -1 && lastdir != -1));
5089 
5090                 if (lastbase == -1) {
5091                         /*
5092                          * We didn't find a non-slash character.  We know that
5093                          * the length is non-zero, so the whole string must be
5094                          * slashes.  In either the dirname or the basename
5095                          * case, we return '/'.
5096                          */
5097                         ASSERT(firstbase == -1);
5098                         firstbase = lastbase = lastdir = 0;
5099                 }
5100 
5101                 if (firstbase == -1) {
5102                         /*
5103                          * The entire string consists only of a basename
5104                          * component.  If we're looking for dirname, we need
5105                          * to change our string to be just "."; if we're
5106                          * looking for a basename, we'll just set the first
5107                          * character of the basename to be 0.
5108                          */
5109                         if (subr == DIF_SUBR_DIRNAME) {
5110                                 ASSERT(lastdir == -1);
5111                                 src = (uintptr_t)".";
5112                                 lastdir = 0;
5113                         } else {
5114                                 firstbase = 0;
5115                         }
5116                 }
5117 
5118                 if (subr == DIF_SUBR_DIRNAME) {
5119                         if (lastdir == -1) {
5120                                 /*
5121                                  * We know that we have a slash in the name --
5122                                  * or lastdir would be set to 0, above.  And
5123                                  * because lastdir is -1, we know that this
5124                                  * slash must be the first character.  (That
5125                                  * is, the full string must be of the form
5126                                  * "/basename".)  In this case, the last
5127                                  * character of the directory name is 0.
5128                                  */
5129                                 lastdir = 0;
5130                         }
5131 
5132                         start = 0;
5133                         end = lastdir;
5134                 } else {
5135                         ASSERT(subr == DIF_SUBR_BASENAME);
5136                         ASSERT(firstbase != -1 && lastbase != -1);
5137                         start = firstbase;
5138                         end = lastbase;
5139                 }
5140 
5141                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5142                         dest[j] = dtrace_load8(src + i);
5143 
5144                 dest[j] = '\0';
5145                 regs[rd] = (uintptr_t)dest;
5146                 mstate->dtms_scratch_ptr += size;
5147                 break;
5148         }
5149 
5150         case DIF_SUBR_GETF: {
5151                 uintptr_t fd = tupregs[0].dttk_value;
5152                 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5153                 file_t *fp;
5154 
5155                 if (!dtrace_priv_proc(state, mstate)) {
5156                         regs[rd] = NULL;
5157                         break;
5158                 }
5159 
5160                 /*
5161                  * This is safe because fi_nfiles only increases, and the
5162                  * fi_list array is not freed when the array size doubles.
5163                  * (See the comment in flist_grow() for details on the
5164                  * management of the u_finfo structure.)
5165                  */
5166                 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5167 
5168                 mstate->dtms_getf = fp;
5169                 regs[rd] = (uintptr_t)fp;
5170                 break;
5171         }
5172 
5173         case DIF_SUBR_CLEANPATH: {
5174                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5175                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5176                 uintptr_t src = tupregs[0].dttk_value;
5177                 int i = 0, j = 0;
5178                 zone_t *z;
5179 
5180                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
5181                         regs[rd] = NULL;
5182                         break;
5183                 }
5184 
5185                 if (!DTRACE_INSCRATCH(mstate, size)) {
5186                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5187                         regs[rd] = NULL;
5188                         break;
5189                 }
5190 
5191                 /*
5192                  * Move forward, loading each character.
5193                  */
5194                 do {
5195                         c = dtrace_load8(src + i++);
5196 next:
5197                         if (j + 5 >= size)   /* 5 = strlen("/..c\0") */
5198                                 break;
5199 
5200                         if (c != '/') {
5201                                 dest[j++] = c;
5202                                 continue;
5203                         }
5204 
5205                         c = dtrace_load8(src + i++);
5206 
5207                         if (c == '/') {
5208                                 /*
5209                                  * We have two slashes -- we can just advance
5210                                  * to the next character.
5211                                  */
5212                                 goto next;
5213                         }
5214 
5215                         if (c != '.') {
5216                                 /*
5217                                  * This is not "." and it's not ".." -- we can
5218                                  * just store the "/" and this character and
5219                                  * drive on.
5220                                  */
5221                                 dest[j++] = '/';
5222                                 dest[j++] = c;
5223                                 continue;
5224                         }
5225 
5226                         c = dtrace_load8(src + i++);
5227 
5228                         if (c == '/') {
5229                                 /*
5230                                  * This is a "/./" component.  We're not going
5231                                  * to store anything in the destination buffer;
5232                                  * we're just going to go to the next component.
5233                                  */
5234                                 goto next;
5235                         }
5236 
5237                         if (c != '.') {
5238                                 /*
5239                                  * This is not ".." -- we can just store the
5240                                  * "/." and this character and continue
5241                                  * processing.
5242                                  */
5243                                 dest[j++] = '/';
5244                                 dest[j++] = '.';
5245                                 dest[j++] = c;
5246                                 continue;
5247                         }
5248 
5249                         c = dtrace_load8(src + i++);
5250 
5251                         if (c != '/' && c != '\0') {
5252                                 /*
5253                                  * This is not ".." -- it's "..[mumble]".
5254                                  * We'll store the "/.." and this character
5255                                  * and continue processing.
5256                                  */
5257                                 dest[j++] = '/';
5258                                 dest[j++] = '.';
5259                                 dest[j++] = '.';
5260                                 dest[j++] = c;
5261                                 continue;
5262                         }
5263 
5264                         /*
5265                          * This is "/../" or "/..\0".  We need to back up
5266                          * our destination pointer until we find a "/".
5267                          */
5268                         i--;
5269                         while (j != 0 && dest[--j] != '/')
5270                                 continue;
5271 
5272                         if (c == '\0')
5273                                 dest[++j] = '/';
5274                 } while (c != '\0');
5275 
5276                 dest[j] = '\0';
5277 
5278                 if (mstate->dtms_getf != NULL &&
5279                     !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5280                     (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5281                         /*
5282                          * If we've done a getf() as a part of this ECB and we
5283                          * don't have kernel access (and we're not in the global
5284                          * zone), check if the path we cleaned up begins with
5285                          * the zone's root path, and trim it off if so.  Note
5286                          * that this is an output cleanliness issue, not a
5287                          * security issue: knowing one's zone root path does
5288                          * not enable privilege escalation.
5289                          */
5290                         if (strstr(dest, z->zone_rootpath) == dest)
5291                                 dest += strlen(z->zone_rootpath) - 1;
5292                 }
5293 
5294                 regs[rd] = (uintptr_t)dest;
5295                 mstate->dtms_scratch_ptr += size;
5296                 break;
5297         }
5298 
5299         case DIF_SUBR_INET_NTOA:
5300         case DIF_SUBR_INET_NTOA6:
5301         case DIF_SUBR_INET_NTOP: {
5302                 size_t size;
5303                 int af, argi, i;
5304                 char *base, *end;
5305 
5306                 if (subr == DIF_SUBR_INET_NTOP) {
5307                         af = (int)tupregs[0].dttk_value;
5308                         argi = 1;
5309                 } else {
5310                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5311                         argi = 0;
5312                 }
5313 
5314                 if (af == AF_INET) {
5315                         ipaddr_t ip4;
5316                         uint8_t *ptr8, val;
5317 
5318                         /*
5319                          * Safely load the IPv4 address.
5320                          */
5321                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
5322 
5323                         /*
5324                          * Check an IPv4 string will fit in scratch.
5325                          */
5326                         size = INET_ADDRSTRLEN;
5327                         if (!DTRACE_INSCRATCH(mstate, size)) {
5328                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5329                                 regs[rd] = NULL;
5330                                 break;
5331                         }
5332                         base = (char *)mstate->dtms_scratch_ptr;
5333                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
5334 
5335                         /*
5336                          * Stringify as a dotted decimal quad.
5337                          */
5338                         *end-- = '\0';
5339                         ptr8 = (uint8_t *)&ip4;
5340                         for (i = 3; i >= 0; i--) {
5341                                 val = ptr8[i];
5342 
5343                                 if (val == 0) {
5344                                         *end-- = '0';
5345                                 } else {
5346                                         for (; val; val /= 10) {
5347                                                 *end-- = '0' + (val % 10);
5348                                         }
5349                                 }
5350 
5351                                 if (i > 0)
5352                                         *end-- = '.';
5353                         }
5354                         ASSERT(end + 1 >= base);
5355 
5356                 } else if (af == AF_INET6) {
5357                         struct in6_addr ip6;
5358                         int firstzero, tryzero, numzero, v6end;
5359                         uint16_t val;
5360                         const char digits[] = "0123456789abcdef";
5361 
5362                         /*
5363                          * Stringify using RFC 1884 convention 2 - 16 bit
5364                          * hexadecimal values with a zero-run compression.
5365                          * Lower case hexadecimal digits are used.
5366                          *      eg, fe80::214:4fff:fe0b:76c8.
5367                          * The IPv4 embedded form is returned for inet_ntop,
5368                          * just the IPv4 string is returned for inet_ntoa6.
5369                          */
5370 
5371                         /*
5372                          * Safely load the IPv6 address.
5373                          */
5374                         dtrace_bcopy(
5375                             (void *)(uintptr_t)tupregs[argi].dttk_value,
5376                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5377 
5378                         /*
5379                          * Check an IPv6 string will fit in scratch.
5380                          */
5381                         size = INET6_ADDRSTRLEN;
5382                         if (!DTRACE_INSCRATCH(mstate, size)) {
5383                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5384                                 regs[rd] = NULL;
5385                                 break;
5386                         }
5387                         base = (char *)mstate->dtms_scratch_ptr;
5388                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
5389                         *end-- = '\0';
5390 
5391                         /*
5392                          * Find the longest run of 16 bit zero values
5393                          * for the single allowed zero compression - "::".
5394                          */
5395                         firstzero = -1;
5396                         tryzero = -1;
5397                         numzero = 1;
5398                         for (i = 0; i < sizeof (struct in6_addr); i++) {
5399                                 if (ip6._S6_un._S6_u8[i] == 0 &&
5400                                     tryzero == -1 && i % 2 == 0) {
5401                                         tryzero = i;
5402                                         continue;
5403                                 }
5404 
5405                                 if (tryzero != -1 &&
5406                                     (ip6._S6_un._S6_u8[i] != 0 ||
5407                                     i == sizeof (struct in6_addr) - 1)) {
5408 
5409                                         if (i - tryzero <= numzero) {
5410                                                 tryzero = -1;
5411                                                 continue;
5412                                         }
5413 
5414                                         firstzero = tryzero;
5415                                         numzero = i - i % 2 - tryzero;
5416                                         tryzero = -1;
5417 
5418                                         if (ip6._S6_un._S6_u8[i] == 0 &&
5419                                             i == sizeof (struct in6_addr) - 1)
5420                                                 numzero += 2;
5421                                 }
5422                         }
5423                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5424 
5425                         /*
5426                          * Check for an IPv4 embedded address.
5427                          */
5428                         v6end = sizeof (struct in6_addr) - 2;
5429                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5430                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
5431                                 for (i = sizeof (struct in6_addr) - 1;
5432                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
5433                                         ASSERT(end >= base);
5434 
5435                                         val = ip6._S6_un._S6_u8[i];
5436 
5437                                         if (val == 0) {
5438                                                 *end-- = '0';
5439                                         } else {
5440                                                 for (; val; val /= 10) {
5441                                                         *end-- = '0' + val % 10;
5442                                                 }
5443                                         }
5444 
5445                                         if (i > DTRACE_V4MAPPED_OFFSET)
5446                                                 *end-- = '.';
5447                                 }
5448 
5449                                 if (subr == DIF_SUBR_INET_NTOA6)
5450                                         goto inetout;
5451 
5452                                 /*
5453                                  * Set v6end to skip the IPv4 address that
5454                                  * we have already stringified.
5455                                  */
5456                                 v6end = 10;
5457                         }
5458 
5459                         /*
5460                          * Build the IPv6 string by working through the
5461                          * address in reverse.
5462                          */
5463                         for (i = v6end; i >= 0; i -= 2) {
5464                                 ASSERT(end >= base);
5465 
5466                                 if (i == firstzero + numzero - 2) {
5467                                         *end-- = ':';
5468                                         *end-- = ':';
5469                                         i -= numzero - 2;
5470                                         continue;
5471                                 }
5472 
5473                                 if (i < 14 && i != firstzero - 2)
5474                                         *end-- = ':';
5475 
5476                                 val = (ip6._S6_un._S6_u8[i] << 8) +
5477                                     ip6._S6_un._S6_u8[i + 1];
5478 
5479                                 if (val == 0) {
5480                                         *end-- = '0';
5481                                 } else {
5482                                         for (; val; val /= 16) {
5483                                                 *end-- = digits[val % 16];
5484                                         }
5485                                 }
5486                         }
5487                         ASSERT(end + 1 >= base);
5488 
5489                 } else {
5490                         /*
5491                          * The user didn't use AH_INET or AH_INET6.
5492                          */
5493                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5494                         regs[rd] = NULL;
5495                         break;
5496                 }
5497 
5498 inetout:        regs[rd] = (uintptr_t)end + 1;
5499                 mstate->dtms_scratch_ptr += size;
5500                 break;
5501         }
5502 
5503         }
5504 }
5505 
5506 /*
5507  * Emulate the execution of DTrace IR instructions specified by the given
5508  * DIF object.  This function is deliberately void of assertions as all of
5509  * the necessary checks are handled by a call to dtrace_difo_validate().
5510  */
5511 static uint64_t
5512 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5513     dtrace_vstate_t *vstate, dtrace_state_t *state)
5514 {
5515         const dif_instr_t *text = difo->dtdo_buf;
5516         const uint_t textlen = difo->dtdo_len;
5517         const char *strtab = difo->dtdo_strtab;
5518         const uint64_t *inttab = difo->dtdo_inttab;
5519 
5520         uint64_t rval = 0;
5521         dtrace_statvar_t *svar;
5522         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5523         dtrace_difv_t *v;
5524         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5525         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5526 
5527         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5528         uint64_t regs[DIF_DIR_NREGS];
5529         uint64_t *tmp;
5530 
5531         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5532         int64_t cc_r;
5533         uint_t pc = 0, id, opc;
5534         uint8_t ttop = 0;
5535         dif_instr_t instr;
5536         uint_t r1, r2, rd;
5537 
5538         /*
5539          * We stash the current DIF object into the machine state: we need it
5540          * for subsequent access checking.
5541          */
5542         mstate->dtms_difo = difo;
5543 
5544         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
5545 
5546         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5547                 opc = pc;
5548 
5549                 instr = text[pc++];
5550                 r1 = DIF_INSTR_R1(instr);
5551                 r2 = DIF_INSTR_R2(instr);
5552                 rd = DIF_INSTR_RD(instr);
5553 
5554                 switch (DIF_INSTR_OP(instr)) {
5555                 case DIF_OP_OR:
5556                         regs[rd] = regs[r1] | regs[r2];
5557                         break;
5558                 case DIF_OP_XOR:
5559                         regs[rd] = regs[r1] ^ regs[r2];
5560                         break;
5561                 case DIF_OP_AND:
5562                         regs[rd] = regs[r1] & regs[r2];
5563                         break;
5564                 case DIF_OP_SLL:
5565                         regs[rd] = regs[r1] << regs[r2];
5566                         break;
5567                 case DIF_OP_SRL:
5568                         regs[rd] = regs[r1] >> regs[r2];
5569                         break;
5570                 case DIF_OP_SUB:
5571                         regs[rd] = regs[r1] - regs[r2];
5572                         break;
5573                 case DIF_OP_ADD:
5574                         regs[rd] = regs[r1] + regs[r2];
5575                         break;
5576                 case DIF_OP_MUL:
5577                         regs[rd] = regs[r1] * regs[r2];
5578                         break;
5579                 case DIF_OP_SDIV:
5580                         if (regs[r2] == 0) {
5581                                 regs[rd] = 0;
5582                                 *flags |= CPU_DTRACE_DIVZERO;
5583                         } else {
5584                                 regs[rd] = (int64_t)regs[r1] /
5585                                     (int64_t)regs[r2];
5586                         }
5587                         break;
5588 
5589                 case DIF_OP_UDIV:
5590                         if (regs[r2] == 0) {
5591                                 regs[rd] = 0;
5592                                 *flags |= CPU_DTRACE_DIVZERO;
5593                         } else {
5594                                 regs[rd] = regs[r1] / regs[r2];
5595                         }
5596                         break;
5597 
5598                 case DIF_OP_SREM:
5599                         if (regs[r2] == 0) {
5600                                 regs[rd] = 0;
5601                                 *flags |= CPU_DTRACE_DIVZERO;
5602                         } else {
5603                                 regs[rd] = (int64_t)regs[r1] %
5604                                     (int64_t)regs[r2];
5605                         }
5606                         break;
5607 
5608                 case DIF_OP_UREM:
5609                         if (regs[r2] == 0) {
5610                                 regs[rd] = 0;
5611                                 *flags |= CPU_DTRACE_DIVZERO;
5612                         } else {
5613                                 regs[rd] = regs[r1] % regs[r2];
5614                         }
5615                         break;
5616 
5617                 case DIF_OP_NOT:
5618                         regs[rd] = ~regs[r1];
5619                         break;
5620                 case DIF_OP_MOV:
5621                         regs[rd] = regs[r1];
5622                         break;
5623                 case DIF_OP_CMP:
5624                         cc_r = regs[r1] - regs[r2];
5625                         cc_n = cc_r < 0;
5626                         cc_z = cc_r == 0;
5627                         cc_v = 0;
5628                         cc_c = regs[r1] < regs[r2];
5629                         break;
5630                 case DIF_OP_TST:
5631                         cc_n = cc_v = cc_c = 0;
5632                         cc_z = regs[r1] == 0;
5633                         break;
5634                 case DIF_OP_BA:
5635                         pc = DIF_INSTR_LABEL(instr);
5636                         break;
5637                 case DIF_OP_BE:
5638                         if (cc_z)
5639                                 pc = DIF_INSTR_LABEL(instr);
5640                         break;
5641                 case DIF_OP_BNE:
5642                         if (cc_z == 0)
5643                                 pc = DIF_INSTR_LABEL(instr);
5644                         break;
5645                 case DIF_OP_BG:
5646                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5647                                 pc = DIF_INSTR_LABEL(instr);
5648                         break;
5649                 case DIF_OP_BGU:
5650                         if ((cc_c | cc_z) == 0)
5651                                 pc = DIF_INSTR_LABEL(instr);
5652                         break;
5653                 case DIF_OP_BGE:
5654                         if ((cc_n ^ cc_v) == 0)
5655                                 pc = DIF_INSTR_LABEL(instr);
5656                         break;
5657                 case DIF_OP_BGEU:
5658                         if (cc_c == 0)
5659                                 pc = DIF_INSTR_LABEL(instr);
5660                         break;
5661                 case DIF_OP_BL:
5662                         if (cc_n ^ cc_v)
5663                                 pc = DIF_INSTR_LABEL(instr);
5664                         break;
5665                 case DIF_OP_BLU:
5666                         if (cc_c)
5667                                 pc = DIF_INSTR_LABEL(instr);
5668                         break;
5669                 case DIF_OP_BLE:
5670                         if (cc_z | (cc_n ^ cc_v))
5671                                 pc = DIF_INSTR_LABEL(instr);
5672                         break;
5673                 case DIF_OP_BLEU:
5674                         if (cc_c | cc_z)
5675                                 pc = DIF_INSTR_LABEL(instr);
5676                         break;
5677                 case DIF_OP_RLDSB:
5678                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5679                                 break;
5680                         /*FALLTHROUGH*/
5681                 case DIF_OP_LDSB:
5682                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5683                         break;
5684                 case DIF_OP_RLDSH:
5685                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5686                                 break;
5687                         /*FALLTHROUGH*/
5688                 case DIF_OP_LDSH:
5689                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5690                         break;
5691                 case DIF_OP_RLDSW:
5692                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5693                                 break;
5694                         /*FALLTHROUGH*/
5695                 case DIF_OP_LDSW:
5696                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5697                         break;
5698                 case DIF_OP_RLDUB:
5699                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5700                                 break;
5701                         /*FALLTHROUGH*/
5702                 case DIF_OP_LDUB:
5703                         regs[rd] = dtrace_load8(regs[r1]);
5704                         break;
5705                 case DIF_OP_RLDUH:
5706                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5707                                 break;
5708                         /*FALLTHROUGH*/
5709                 case DIF_OP_LDUH:
5710                         regs[rd] = dtrace_load16(regs[r1]);
5711                         break;
5712                 case DIF_OP_RLDUW:
5713                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5714                                 break;
5715                         /*FALLTHROUGH*/
5716                 case DIF_OP_LDUW:
5717                         regs[rd] = dtrace_load32(regs[r1]);
5718                         break;
5719                 case DIF_OP_RLDX:
5720                         if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5721                                 break;
5722                         /*FALLTHROUGH*/
5723                 case DIF_OP_LDX:
5724                         regs[rd] = dtrace_load64(regs[r1]);
5725                         break;
5726                 case DIF_OP_ULDSB:
5727                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5728                         regs[rd] = (int8_t)
5729                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5730                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5731                         break;
5732                 case DIF_OP_ULDSH:
5733                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5734                         regs[rd] = (int16_t)
5735                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5736                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5737                         break;
5738                 case DIF_OP_ULDSW:
5739                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5740                         regs[rd] = (int32_t)
5741                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5742                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5743                         break;
5744                 case DIF_OP_ULDUB:
5745                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5746                         regs[rd] =
5747                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5748                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5749                         break;
5750                 case DIF_OP_ULDUH:
5751                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5752                         regs[rd] =
5753                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5754                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5755                         break;
5756                 case DIF_OP_ULDUW:
5757                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5758                         regs[rd] =
5759                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5760                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5761                         break;
5762                 case DIF_OP_ULDX:
5763                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5764                         regs[rd] =
5765                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5766                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5767                         break;
5768                 case DIF_OP_RET:
5769                         rval = regs[rd];
5770                         pc = textlen;
5771                         break;
5772                 case DIF_OP_NOP:
5773                         break;
5774                 case DIF_OP_SETX:
5775                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5776                         break;
5777                 case DIF_OP_SETS:
5778                         regs[rd] = (uint64_t)(uintptr_t)
5779                             (strtab + DIF_INSTR_STRING(instr));
5780                         break;
5781                 case DIF_OP_SCMP: {
5782                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5783                         uintptr_t s1 = regs[r1];
5784                         uintptr_t s2 = regs[r2];
5785 
5786                         if (s1 != NULL &&
5787                             !dtrace_strcanload(s1, sz, mstate, vstate))
5788                                 break;
5789                         if (s2 != NULL &&
5790                             !dtrace_strcanload(s2, sz, mstate, vstate))
5791                                 break;
5792 
5793                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5794 
5795                         cc_n = cc_r < 0;
5796                         cc_z = cc_r == 0;
5797                         cc_v = cc_c = 0;
5798                         break;
5799                 }
5800                 case DIF_OP_LDGA:
5801                         regs[rd] = dtrace_dif_variable(mstate, state,
5802                             r1, regs[r2]);
5803                         break;
5804                 case DIF_OP_LDGS:
5805                         id = DIF_INSTR_VAR(instr);
5806 
5807                         if (id >= DIF_VAR_OTHER_UBASE) {
5808                                 uintptr_t a;
5809 
5810                                 id -= DIF_VAR_OTHER_UBASE;
5811                                 svar = vstate->dtvs_globals[id];
5812                                 ASSERT(svar != NULL);
5813                                 v = &svar->dtsv_var;
5814 
5815                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5816                                         regs[rd] = svar->dtsv_data;
5817                                         break;
5818                                 }
5819 
5820                                 a = (uintptr_t)svar->dtsv_data;
5821 
5822                                 if (*(uint8_t *)a == UINT8_MAX) {
5823                                         /*
5824                                          * If the 0th byte is set to UINT8_MAX
5825                                          * then this is to be treated as a
5826                                          * reference to a NULL variable.
5827                                          */
5828                                         regs[rd] = NULL;
5829                                 } else {
5830                                         regs[rd] = a + sizeof (uint64_t);
5831                                 }
5832 
5833                                 break;
5834                         }
5835 
5836                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5837                         break;
5838 
5839                 case DIF_OP_STGS:
5840                         id = DIF_INSTR_VAR(instr);
5841 
5842                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5843                         id -= DIF_VAR_OTHER_UBASE;
5844 
5845                         svar = vstate->dtvs_globals[id];
5846                         ASSERT(svar != NULL);
5847                         v = &svar->dtsv_var;
5848 
5849                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5850                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5851 
5852                                 ASSERT(a != NULL);
5853                                 ASSERT(svar->dtsv_size != 0);
5854 
5855                                 if (regs[rd] == NULL) {
5856                                         *(uint8_t *)a = UINT8_MAX;
5857                                         break;
5858                                 } else {
5859                                         *(uint8_t *)a = 0;
5860                                         a += sizeof (uint64_t);
5861                                 }
5862                                 if (!dtrace_vcanload(
5863                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5864                                     mstate, vstate))
5865                                         break;
5866 
5867                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5868                                     (void *)a, &v->dtdv_type);
5869                                 break;
5870                         }
5871 
5872                         svar->dtsv_data = regs[rd];
5873                         break;
5874 
5875                 case DIF_OP_LDTA:
5876                         /*
5877                          * There are no DTrace built-in thread-local arrays at
5878                          * present.  This opcode is saved for future work.
5879                          */
5880                         *flags |= CPU_DTRACE_ILLOP;
5881                         regs[rd] = 0;
5882                         break;
5883 
5884                 case DIF_OP_LDLS:
5885                         id = DIF_INSTR_VAR(instr);
5886 
5887                         if (id < DIF_VAR_OTHER_UBASE) {
5888                                 /*
5889                                  * For now, this has no meaning.
5890                                  */
5891                                 regs[rd] = 0;
5892                                 break;
5893                         }
5894 
5895                         id -= DIF_VAR_OTHER_UBASE;
5896 
5897                         ASSERT(id < vstate->dtvs_nlocals);
5898                         ASSERT(vstate->dtvs_locals != NULL);
5899 
5900                         svar = vstate->dtvs_locals[id];
5901                         ASSERT(svar != NULL);
5902                         v = &svar->dtsv_var;
5903 
5904                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5905                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5906                                 size_t sz = v->dtdv_type.dtdt_size;
5907 
5908                                 sz += sizeof (uint64_t);
5909                                 ASSERT(svar->dtsv_size == NCPU * sz);
5910                                 a += CPU->cpu_id * sz;
5911 
5912                                 if (*(uint8_t *)a == UINT8_MAX) {
5913                                         /*
5914                                          * If the 0th byte is set to UINT8_MAX
5915                                          * then this is to be treated as a
5916                                          * reference to a NULL variable.
5917                                          */
5918                                         regs[rd] = NULL;
5919                                 } else {
5920                                         regs[rd] = a + sizeof (uint64_t);
5921                                 }
5922 
5923                                 break;
5924                         }
5925 
5926                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5927                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5928                         regs[rd] = tmp[CPU->cpu_id];
5929                         break;
5930 
5931                 case DIF_OP_STLS:
5932                         id = DIF_INSTR_VAR(instr);
5933 
5934                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5935                         id -= DIF_VAR_OTHER_UBASE;
5936                         ASSERT(id < vstate->dtvs_nlocals);
5937 
5938                         ASSERT(vstate->dtvs_locals != NULL);
5939                         svar = vstate->dtvs_locals[id];
5940                         ASSERT(svar != NULL);
5941                         v = &svar->dtsv_var;
5942 
5943                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5944                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5945                                 size_t sz = v->dtdv_type.dtdt_size;
5946 
5947                                 sz += sizeof (uint64_t);
5948                                 ASSERT(svar->dtsv_size == NCPU * sz);
5949                                 a += CPU->cpu_id * sz;
5950 
5951                                 if (regs[rd] == NULL) {
5952                                         *(uint8_t *)a = UINT8_MAX;
5953                                         break;
5954                                 } else {
5955                                         *(uint8_t *)a = 0;
5956                                         a += sizeof (uint64_t);
5957                                 }
5958 
5959                                 if (!dtrace_vcanload(
5960                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5961                                     mstate, vstate))
5962                                         break;
5963 
5964                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5965                                     (void *)a, &v->dtdv_type);
5966                                 break;
5967                         }
5968 
5969                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5970                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5971                         tmp[CPU->cpu_id] = regs[rd];
5972                         break;
5973 
5974                 case DIF_OP_LDTS: {
5975                         dtrace_dynvar_t *dvar;
5976                         dtrace_key_t *key;
5977 
5978                         id = DIF_INSTR_VAR(instr);
5979                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5980                         id -= DIF_VAR_OTHER_UBASE;
5981                         v = &vstate->dtvs_tlocals[id];
5982 
5983                         key = &tupregs[DIF_DTR_NREGS];
5984                         key[0].dttk_value = (uint64_t)id;
5985                         key[0].dttk_size = 0;
5986                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5987                         key[1].dttk_size = 0;
5988 
5989                         dvar = dtrace_dynvar(dstate, 2, key,
5990                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5991                             mstate, vstate);
5992 
5993                         if (dvar == NULL) {
5994                                 regs[rd] = 0;
5995                                 break;
5996                         }
5997 
5998                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5999                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6000                         } else {
6001                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6002                         }
6003 
6004                         break;
6005                 }
6006 
6007                 case DIF_OP_STTS: {
6008                         dtrace_dynvar_t *dvar;
6009                         dtrace_key_t *key;
6010 
6011                         id = DIF_INSTR_VAR(instr);
6012                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6013                         id -= DIF_VAR_OTHER_UBASE;
6014 
6015                         key = &tupregs[DIF_DTR_NREGS];
6016                         key[0].dttk_value = (uint64_t)id;
6017                         key[0].dttk_size = 0;
6018                         DTRACE_TLS_THRKEY(key[1].dttk_value);
6019                         key[1].dttk_size = 0;
6020                         v = &vstate->dtvs_tlocals[id];
6021 
6022                         dvar = dtrace_dynvar(dstate, 2, key,
6023                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6024                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6025                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
6026                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6027 
6028                         /*
6029                          * Given that we're storing to thread-local data,
6030                          * we need to flush our predicate cache.
6031                          */
6032                         curthread->t_predcache = NULL;
6033 
6034                         if (dvar == NULL)
6035                                 break;
6036 
6037                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6038                                 if (!dtrace_vcanload(
6039                                     (void *)(uintptr_t)regs[rd],
6040                                     &v->dtdv_type, mstate, vstate))
6041                                         break;
6042 
6043                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6044                                     dvar->dtdv_data, &v->dtdv_type);
6045                         } else {
6046                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6047                         }
6048 
6049                         break;
6050                 }
6051 
6052                 case DIF_OP_SRA:
6053                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
6054                         break;
6055 
6056                 case DIF_OP_CALL:
6057                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6058                             regs, tupregs, ttop, mstate, state);
6059                         break;
6060 
6061                 case DIF_OP_PUSHTR:
6062                         if (ttop == DIF_DTR_NREGS) {
6063                                 *flags |= CPU_DTRACE_TUPOFLOW;
6064                                 break;
6065                         }
6066 
6067                         if (r1 == DIF_TYPE_STRING) {
6068                                 /*
6069                                  * If this is a string type and the size is 0,
6070                                  * we'll use the system-wide default string
6071                                  * size.  Note that we are _not_ looking at
6072                                  * the value of the DTRACEOPT_STRSIZE option;
6073                                  * had this been set, we would expect to have
6074                                  * a non-zero size value in the "pushtr".
6075                                  */
6076                                 tupregs[ttop].dttk_size =
6077                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
6078                                     regs[r2] ? regs[r2] :
6079                                     dtrace_strsize_default) + 1;
6080                         } else {
6081                                 tupregs[ttop].dttk_size = regs[r2];
6082                         }
6083 
6084                         tupregs[ttop++].dttk_value = regs[rd];
6085                         break;
6086 
6087                 case DIF_OP_PUSHTV:
6088                         if (ttop == DIF_DTR_NREGS) {
6089                                 *flags |= CPU_DTRACE_TUPOFLOW;
6090                                 break;
6091                         }
6092 
6093                         tupregs[ttop].dttk_value = regs[rd];
6094                         tupregs[ttop++].dttk_size = 0;
6095                         break;
6096 
6097                 case DIF_OP_POPTS:
6098                         if (ttop != 0)
6099                                 ttop--;
6100                         break;
6101 
6102                 case DIF_OP_FLUSHTS:
6103                         ttop = 0;
6104                         break;
6105 
6106                 case DIF_OP_LDGAA:
6107                 case DIF_OP_LDTAA: {
6108                         dtrace_dynvar_t *dvar;
6109                         dtrace_key_t *key = tupregs;
6110                         uint_t nkeys = ttop;
6111 
6112                         id = DIF_INSTR_VAR(instr);
6113                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6114                         id -= DIF_VAR_OTHER_UBASE;
6115 
6116                         key[nkeys].dttk_value = (uint64_t)id;
6117                         key[nkeys++].dttk_size = 0;
6118 
6119                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6120                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6121                                 key[nkeys++].dttk_size = 0;
6122                                 v = &vstate->dtvs_tlocals[id];
6123                         } else {
6124                                 v = &vstate->dtvs_globals[id]->dtsv_var;
6125                         }
6126 
6127                         dvar = dtrace_dynvar(dstate, nkeys, key,
6128                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6129                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6130                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6131 
6132                         if (dvar == NULL) {
6133                                 regs[rd] = 0;
6134                                 break;
6135                         }
6136 
6137                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6138                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6139                         } else {
6140                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6141                         }
6142 
6143                         break;
6144                 }
6145 
6146                 case DIF_OP_STGAA:
6147                 case DIF_OP_STTAA: {
6148                         dtrace_dynvar_t *dvar;
6149                         dtrace_key_t *key = tupregs;
6150                         uint_t nkeys = ttop;
6151 
6152                         id = DIF_INSTR_VAR(instr);
6153                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6154                         id -= DIF_VAR_OTHER_UBASE;
6155 
6156                         key[nkeys].dttk_value = (uint64_t)id;
6157                         key[nkeys++].dttk_size = 0;
6158 
6159                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6160                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6161                                 key[nkeys++].dttk_size = 0;
6162                                 v = &vstate->dtvs_tlocals[id];
6163                         } else {
6164                                 v = &vstate->dtvs_globals[id]->dtsv_var;
6165                         }
6166 
6167                         dvar = dtrace_dynvar(dstate, nkeys, key,
6168                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6169                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6170                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
6171                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6172 
6173                         if (dvar == NULL)
6174                                 break;
6175 
6176                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6177                                 if (!dtrace_vcanload(
6178                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6179                                     mstate, vstate))
6180                                         break;
6181 
6182                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6183                                     dvar->dtdv_data, &v->dtdv_type);
6184                         } else {
6185                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6186                         }
6187 
6188                         break;
6189                 }
6190 
6191                 case DIF_OP_ALLOCS: {
6192                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6193                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6194 
6195                         /*
6196                          * Rounding up the user allocation size could have
6197                          * overflowed large, bogus allocations (like -1ULL) to
6198                          * 0.
6199                          */
6200                         if (size < regs[r1] ||
6201                             !DTRACE_INSCRATCH(mstate, size)) {
6202                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6203                                 regs[rd] = NULL;
6204                                 break;
6205                         }
6206 
6207                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6208                         mstate->dtms_scratch_ptr += size;
6209                         regs[rd] = ptr;
6210                         break;
6211                 }
6212 
6213                 case DIF_OP_COPYS:
6214                         if (!dtrace_canstore(regs[rd], regs[r2],
6215                             mstate, vstate)) {
6216                                 *flags |= CPU_DTRACE_BADADDR;
6217                                 *illval = regs[rd];
6218                                 break;
6219                         }
6220 
6221                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6222                                 break;
6223 
6224                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
6225                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6226                         break;
6227 
6228                 case DIF_OP_STB:
6229                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6230                                 *flags |= CPU_DTRACE_BADADDR;
6231                                 *illval = regs[rd];
6232                                 break;
6233                         }
6234                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6235                         break;
6236 
6237                 case DIF_OP_STH:
6238                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6239                                 *flags |= CPU_DTRACE_BADADDR;
6240                                 *illval = regs[rd];
6241                                 break;
6242                         }
6243                         if (regs[rd] & 1) {
6244                                 *flags |= CPU_DTRACE_BADALIGN;
6245                                 *illval = regs[rd];
6246                                 break;
6247                         }
6248                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6249                         break;
6250 
6251                 case DIF_OP_STW:
6252                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6253                                 *flags |= CPU_DTRACE_BADADDR;
6254                                 *illval = regs[rd];
6255                                 break;
6256                         }
6257                         if (regs[rd] & 3) {
6258                                 *flags |= CPU_DTRACE_BADALIGN;
6259                                 *illval = regs[rd];
6260                                 break;
6261                         }
6262                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6263                         break;
6264 
6265                 case DIF_OP_STX:
6266                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6267                                 *flags |= CPU_DTRACE_BADADDR;
6268                                 *illval = regs[rd];
6269                                 break;
6270                         }
6271                         if (regs[rd] & 7) {
6272                                 *flags |= CPU_DTRACE_BADALIGN;
6273                                 *illval = regs[rd];
6274                                 break;
6275                         }
6276                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6277                         break;
6278                 }
6279         }
6280 
6281         if (!(*flags & CPU_DTRACE_FAULT))
6282                 return (rval);
6283 
6284         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6285         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6286 
6287         return (0);
6288 }
6289 
6290 static void
6291 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6292 {
6293         dtrace_probe_t *probe = ecb->dte_probe;
6294         dtrace_provider_t *prov = probe->dtpr_provider;
6295         char c[DTRACE_FULLNAMELEN + 80], *str;
6296         char *msg = "dtrace: breakpoint action at probe ";
6297         char *ecbmsg = " (ecb ";
6298         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6299         uintptr_t val = (uintptr_t)ecb;
6300         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6301 
6302         if (dtrace_destructive_disallow)
6303                 return;
6304 
6305         /*
6306          * It's impossible to be taking action on the NULL probe.
6307          */
6308         ASSERT(probe != NULL);
6309 
6310         /*
6311          * This is a poor man's (destitute man's?) sprintf():  we want to
6312          * print the provider name, module name, function name and name of
6313          * the probe, along with the hex address of the ECB with the breakpoint
6314          * action -- all of which we must place in the character buffer by
6315          * hand.
6316          */
6317         while (*msg != '\0')
6318                 c[i++] = *msg++;
6319 
6320         for (str = prov->dtpv_name; *str != '\0'; str++)
6321                 c[i++] = *str;
6322         c[i++] = ':';
6323 
6324         for (str = probe->dtpr_mod; *str != '\0'; str++)
6325                 c[i++] = *str;
6326         c[i++] = ':';
6327 
6328         for (str = probe->dtpr_func; *str != '\0'; str++)
6329                 c[i++] = *str;
6330         c[i++] = ':';
6331 
6332         for (str = probe->dtpr_name; *str != '\0'; str++)
6333                 c[i++] = *str;
6334 
6335         while (*ecbmsg != '\0')
6336                 c[i++] = *ecbmsg++;
6337 
6338         while (shift >= 0) {
6339                 mask = (uintptr_t)0xf << shift;
6340 
6341                 if (val >= ((uintptr_t)1 << shift))
6342                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6343                 shift -= 4;
6344         }
6345 
6346         c[i++] = ')';
6347         c[i] = '\0';
6348 
6349         debug_enter(c);
6350 }
6351 
6352 static void
6353 dtrace_action_panic(dtrace_ecb_t *ecb)
6354 {
6355         dtrace_probe_t *probe = ecb->dte_probe;
6356 
6357         /*
6358          * It's impossible to be taking action on the NULL probe.
6359          */
6360         ASSERT(probe != NULL);
6361 
6362         if (dtrace_destructive_disallow)
6363                 return;
6364 
6365         if (dtrace_panicked != NULL)
6366                 return;
6367 
6368         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6369                 return;
6370 
6371         /*
6372          * We won the right to panic.  (We want to be sure that only one
6373          * thread calls panic() from dtrace_probe(), and that panic() is
6374          * called exactly once.)
6375          */
6376         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6377             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6378             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6379 }
6380 
6381 static void
6382 dtrace_action_raise(uint64_t sig)
6383 {
6384         if (dtrace_destructive_disallow)
6385                 return;
6386 
6387         if (sig >= NSIG) {
6388                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6389                 return;
6390         }
6391 
6392         /*
6393          * raise() has a queue depth of 1 -- we ignore all subsequent
6394          * invocations of the raise() action.
6395          */
6396         if (curthread->t_dtrace_sig == 0)
6397                 curthread->t_dtrace_sig = (uint8_t)sig;
6398 
6399         curthread->t_sig_check = 1;
6400         aston(curthread);
6401 }
6402 
6403 static void
6404 dtrace_action_stop(void)
6405 {
6406         if (dtrace_destructive_disallow)
6407                 return;
6408 
6409         if (!curthread->t_dtrace_stop) {
6410                 curthread->t_dtrace_stop = 1;
6411                 curthread->t_sig_check = 1;
6412                 aston(curthread);
6413         }
6414 }
6415 
6416 static void
6417 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6418 {
6419         hrtime_t now;
6420         volatile uint16_t *flags;
6421         cpu_t *cpu = CPU;
6422 
6423         if (dtrace_destructive_disallow)
6424                 return;
6425 
6426         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6427 
6428         now = dtrace_gethrtime();
6429 
6430         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6431                 /*
6432                  * We need to advance the mark to the current time.
6433                  */
6434                 cpu->cpu_dtrace_chillmark = now;
6435                 cpu->cpu_dtrace_chilled = 0;
6436         }
6437 
6438         /*
6439          * Now check to see if the requested chill time would take us over
6440          * the maximum amount of time allowed in the chill interval.  (Or
6441          * worse, if the calculation itself induces overflow.)
6442          */
6443         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6444             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6445                 *flags |= CPU_DTRACE_ILLOP;
6446                 return;
6447         }
6448 
6449         while (dtrace_gethrtime() - now < val)
6450                 continue;
6451 
6452         /*
6453          * Normally, we assure that the value of the variable "timestamp" does
6454          * not change within an ECB.  The presence of chill() represents an
6455          * exception to this rule, however.
6456          */
6457         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6458         cpu->cpu_dtrace_chilled += val;
6459 }
6460 
6461 static void
6462 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6463     uint64_t *buf, uint64_t arg)
6464 {
6465         int nframes = DTRACE_USTACK_NFRAMES(arg);
6466         int strsize = DTRACE_USTACK_STRSIZE(arg);
6467         uint64_t *pcs = &buf[1], *fps;
6468         char *str = (char *)&pcs[nframes];
6469         int size, offs = 0, i, j;
6470         uintptr_t old = mstate->dtms_scratch_ptr, saved;
6471         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6472         char *sym;
6473 
6474         /*
6475          * Should be taking a faster path if string space has not been
6476          * allocated.
6477          */
6478         ASSERT(strsize != 0);
6479 
6480         /*
6481          * We will first allocate some temporary space for the frame pointers.
6482          */
6483         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6484         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6485             (nframes * sizeof (uint64_t));
6486 
6487         if (!DTRACE_INSCRATCH(mstate, size)) {
6488                 /*
6489                  * Not enough room for our frame pointers -- need to indicate
6490                  * that we ran out of scratch space.
6491                  */
6492                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6493                 return;
6494         }
6495 
6496         mstate->dtms_scratch_ptr += size;
6497         saved = mstate->dtms_scratch_ptr;
6498 
6499         /*
6500          * Now get a stack with both program counters and frame pointers.
6501          */
6502         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6503         dtrace_getufpstack(buf, fps, nframes + 1);
6504         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6505 
6506         /*
6507          * If that faulted, we're cooked.
6508          */
6509         if (*flags & CPU_DTRACE_FAULT)
6510                 goto out;
6511 
6512         /*
6513          * Now we want to walk up the stack, calling the USTACK helper.  For
6514          * each iteration, we restore the scratch pointer.
6515          */
6516         for (i = 0; i < nframes; i++) {
6517                 mstate->dtms_scratch_ptr = saved;
6518 
6519                 if (offs >= strsize)
6520                         break;
6521 
6522                 sym = (char *)(uintptr_t)dtrace_helper(
6523                     DTRACE_HELPER_ACTION_USTACK,
6524                     mstate, state, pcs[i], fps[i]);
6525 
6526                 /*
6527                  * If we faulted while running the helper, we're going to
6528                  * clear the fault and null out the corresponding string.
6529                  */
6530                 if (*flags & CPU_DTRACE_FAULT) {
6531                         *flags &= ~CPU_DTRACE_FAULT;
6532                         str[offs++] = '\0';
6533                         continue;
6534                 }
6535 
6536                 if (sym == NULL) {
6537                         str[offs++] = '\0';
6538                         continue;
6539                 }
6540 
6541                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6542 
6543                 /*
6544                  * Now copy in the string that the helper returned to us.
6545                  */
6546                 for (j = 0; offs + j < strsize; j++) {
6547                         if ((str[offs + j] = sym[j]) == '\0')
6548                                 break;
6549                 }
6550 
6551                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6552 
6553                 offs += j + 1;
6554         }
6555 
6556         if (offs >= strsize) {
6557                 /*
6558                  * If we didn't have room for all of the strings, we don't
6559                  * abort processing -- this needn't be a fatal error -- but we
6560                  * still want to increment a counter (dts_stkstroverflows) to
6561                  * allow this condition to be warned about.  (If this is from
6562                  * a jstack() action, it is easily tuned via jstackstrsize.)
6563                  */
6564                 dtrace_error(&state->dts_stkstroverflows);
6565         }
6566 
6567         while (offs < strsize)
6568                 str[offs++] = '\0';
6569 
6570 out:
6571         mstate->dtms_scratch_ptr = old;
6572 }
6573 
6574 static void
6575 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6576     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6577 {
6578         volatile uint16_t *flags;
6579         uint64_t val = *valp;
6580         size_t valoffs = *valoffsp;
6581 
6582         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6583         ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6584 
6585         /*
6586          * If this is a string, we're going to only load until we find the zero
6587          * byte -- after which we'll store zero bytes.
6588          */
6589         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6590                 char c = '\0' + 1;
6591                 size_t s;
6592 
6593                 for (s = 0; s < size; s++) {
6594                         if (c != '\0' && dtkind == DIF_TF_BYREF) {
6595                                 c = dtrace_load8(val++);
6596                         } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6597                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6598                                 c = dtrace_fuword8((void *)(uintptr_t)val++);
6599                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6600                                 if (*flags & CPU_DTRACE_FAULT)
6601                                         break;
6602                         }
6603 
6604                         DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6605 
6606                         if (c == '\0' && intuple)
6607                                 break;
6608                 }
6609         } else {
6610                 uint8_t c;
6611                 while (valoffs < end) {
6612                         if (dtkind == DIF_TF_BYREF) {
6613                                 c = dtrace_load8(val++);
6614                         } else if (dtkind == DIF_TF_BYUREF) {
6615                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6616                                 c = dtrace_fuword8((void *)(uintptr_t)val++);
6617                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6618                                 if (*flags & CPU_DTRACE_FAULT)
6619                                         break;
6620                         }
6621 
6622                         DTRACE_STORE(uint8_t, tomax,
6623                             valoffs++, c);
6624                 }
6625         }
6626 
6627         *valp = val;
6628         *valoffsp = valoffs;
6629 }
6630 
6631 /*
6632  * If you're looking for the epicenter of DTrace, you just found it.  This
6633  * is the function called by the provider to fire a probe -- from which all
6634  * subsequent probe-context DTrace activity emanates.
6635  */
6636 void
6637 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6638     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6639 {
6640         processorid_t cpuid;
6641         dtrace_icookie_t cookie;
6642         dtrace_probe_t *probe;
6643         dtrace_mstate_t mstate;
6644         dtrace_ecb_t *ecb;
6645         dtrace_action_t *act;
6646         intptr_t offs;
6647         size_t size;
6648         int vtime, onintr;
6649         volatile uint16_t *flags;
6650         hrtime_t now, end;
6651 
6652         /*
6653          * Kick out immediately if this CPU is still being born (in which case
6654          * curthread will be set to -1) or the current thread can't allow
6655          * probes in its current context.
6656          */
6657         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6658                 return;
6659 
6660         cookie = dtrace_interrupt_disable();
6661         probe = dtrace_probes[id - 1];
6662         cpuid = CPU->cpu_id;
6663         onintr = CPU_ON_INTR(CPU);
6664 
6665         CPU->cpu_dtrace_probes++;
6666 
6667         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6668             probe->dtpr_predcache == curthread->t_predcache) {
6669                 /*
6670                  * We have hit in the predicate cache; we know that
6671                  * this predicate would evaluate to be false.
6672                  */
6673                 dtrace_interrupt_enable(cookie);
6674                 return;
6675         }
6676 
6677         if (panic_quiesce) {
6678                 /*
6679                  * We don't trace anything if we're panicking.
6680                  */
6681                 dtrace_interrupt_enable(cookie);
6682                 return;
6683         }
6684 
6685         now = dtrace_gethrtime();
6686         vtime = dtrace_vtime_references != 0;
6687 
6688         if (vtime && curthread->t_dtrace_start)
6689                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6690 
6691         mstate.dtms_difo = NULL;
6692         mstate.dtms_probe = probe;
6693         mstate.dtms_strtok = NULL;
6694         mstate.dtms_arg[0] = arg0;
6695         mstate.dtms_arg[1] = arg1;
6696         mstate.dtms_arg[2] = arg2;
6697         mstate.dtms_arg[3] = arg3;
6698         mstate.dtms_arg[4] = arg4;
6699 
6700         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6701 
6702         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6703                 dtrace_predicate_t *pred = ecb->dte_predicate;
6704                 dtrace_state_t *state = ecb->dte_state;
6705                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6706                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6707                 dtrace_vstate_t *vstate = &state->dts_vstate;
6708                 dtrace_provider_t *prov = probe->dtpr_provider;
6709                 uint64_t tracememsize = 0;
6710                 int committed = 0;
6711                 caddr_t tomax;
6712 
6713                 /*
6714                  * A little subtlety with the following (seemingly innocuous)
6715                  * declaration of the automatic 'val':  by looking at the
6716                  * code, you might think that it could be declared in the
6717                  * action processing loop, below.  (That is, it's only used in
6718                  * the action processing loop.)  However, it must be declared
6719                  * out of that scope because in the case of DIF expression
6720                  * arguments to aggregating actions, one iteration of the
6721                  * action loop will use the last iteration's value.
6722                  */
6723 #ifdef lint
6724                 uint64_t val = 0;
6725 #else
6726                 uint64_t val;
6727 #endif
6728 
6729                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6730                 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6731                 mstate.dtms_getf = NULL;
6732 
6733                 *flags &= ~CPU_DTRACE_ERROR;
6734 
6735                 if (prov == dtrace_provider) {
6736                         /*
6737                          * If dtrace itself is the provider of this probe,
6738                          * we're only going to continue processing the ECB if
6739                          * arg0 (the dtrace_state_t) is equal to the ECB's
6740                          * creating state.  (This prevents disjoint consumers
6741                          * from seeing one another's metaprobes.)
6742                          */
6743                         if (arg0 != (uint64_t)(uintptr_t)state)
6744                                 continue;
6745                 }
6746 
6747                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6748                         /*
6749                          * We're not currently active.  If our provider isn't
6750                          * the dtrace pseudo provider, we're not interested.
6751                          */
6752                         if (prov != dtrace_provider)
6753                                 continue;
6754 
6755                         /*
6756                          * Now we must further check if we are in the BEGIN
6757                          * probe.  If we are, we will only continue processing
6758                          * if we're still in WARMUP -- if one BEGIN enabling
6759                          * has invoked the exit() action, we don't want to
6760                          * evaluate subsequent BEGIN enablings.
6761                          */
6762                         if (probe->dtpr_id == dtrace_probeid_begin &&
6763                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6764                                 ASSERT(state->dts_activity ==
6765                                     DTRACE_ACTIVITY_DRAINING);
6766                                 continue;
6767                         }
6768                 }
6769 
6770                 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6771                         continue;
6772 
6773                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6774                         /*
6775                          * We seem to be dead.  Unless we (a) have kernel
6776                          * destructive permissions (b) have explicitly enabled
6777                          * destructive actions and (c) destructive actions have
6778                          * not been disabled, we're going to transition into
6779                          * the KILLED state, from which no further processing
6780                          * on this state will be performed.
6781                          */
6782                         if (!dtrace_priv_kernel_destructive(state) ||
6783                             !state->dts_cred.dcr_destructive ||
6784                             dtrace_destructive_disallow) {
6785                                 void *activity = &state->dts_activity;
6786                                 dtrace_activity_t current;
6787 
6788                                 do {
6789                                         current = state->dts_activity;
6790                                 } while (dtrace_cas32(activity, current,
6791                                     DTRACE_ACTIVITY_KILLED) != current);
6792 
6793                                 continue;
6794                         }
6795                 }
6796 
6797                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6798                     ecb->dte_alignment, state, &mstate)) < 0)
6799                         continue;
6800 
6801                 tomax = buf->dtb_tomax;
6802                 ASSERT(tomax != NULL);
6803 
6804                 if (ecb->dte_size != 0) {
6805                         dtrace_rechdr_t dtrh;
6806                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6807                                 mstate.dtms_timestamp = dtrace_gethrtime();
6808                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6809                         }
6810                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6811                         dtrh.dtrh_epid = ecb->dte_epid;
6812                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6813                             mstate.dtms_timestamp);
6814                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6815                 }
6816 
6817                 mstate.dtms_epid = ecb->dte_epid;
6818                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6819 
6820                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6821                         mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6822 
6823                 if (pred != NULL) {
6824                         dtrace_difo_t *dp = pred->dtp_difo;
6825                         int rval;
6826 
6827                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6828 
6829                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6830                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6831 
6832                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6833                                         /*
6834                                          * Update the predicate cache...
6835                                          */
6836                                         ASSERT(cid == pred->dtp_cacheid);
6837                                         curthread->t_predcache = cid;
6838                                 }
6839 
6840                                 continue;
6841                         }
6842                 }
6843 
6844                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6845                     act != NULL; act = act->dta_next) {
6846                         size_t valoffs;
6847                         dtrace_difo_t *dp;
6848                         dtrace_recdesc_t *rec = &act->dta_rec;
6849 
6850                         size = rec->dtrd_size;
6851                         valoffs = offs + rec->dtrd_offset;
6852 
6853                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6854                                 uint64_t v = 0xbad;
6855                                 dtrace_aggregation_t *agg;
6856 
6857                                 agg = (dtrace_aggregation_t *)act;
6858 
6859                                 if ((dp = act->dta_difo) != NULL)
6860                                         v = dtrace_dif_emulate(dp,
6861                                             &mstate, vstate, state);
6862 
6863                                 if (*flags & CPU_DTRACE_ERROR)
6864                                         continue;
6865 
6866                                 /*
6867                                  * Note that we always pass the expression
6868                                  * value from the previous iteration of the
6869                                  * action loop.  This value will only be used
6870                                  * if there is an expression argument to the
6871                                  * aggregating action, denoted by the
6872                                  * dtag_hasarg field.
6873                                  */
6874                                 dtrace_aggregate(agg, buf,
6875                                     offs, aggbuf, v, val);
6876                                 continue;
6877                         }
6878 
6879                         switch (act->dta_kind) {
6880                         case DTRACEACT_STOP:
6881                                 if (dtrace_priv_proc_destructive(state,
6882                                     &mstate))
6883                                         dtrace_action_stop();
6884                                 continue;
6885 
6886                         case DTRACEACT_BREAKPOINT:
6887                                 if (dtrace_priv_kernel_destructive(state))
6888                                         dtrace_action_breakpoint(ecb);
6889                                 continue;
6890 
6891                         case DTRACEACT_PANIC:
6892                                 if (dtrace_priv_kernel_destructive(state))
6893                                         dtrace_action_panic(ecb);
6894                                 continue;
6895 
6896                         case DTRACEACT_STACK:
6897                                 if (!dtrace_priv_kernel(state))
6898                                         continue;
6899 
6900                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6901                                     size / sizeof (pc_t), probe->dtpr_aframes,
6902                                     DTRACE_ANCHORED(probe) ? NULL :
6903                                     (uint32_t *)arg0);
6904 
6905                                 continue;
6906 
6907                         case DTRACEACT_JSTACK:
6908                         case DTRACEACT_USTACK:
6909                                 if (!dtrace_priv_proc(state, &mstate))
6910                                         continue;
6911 
6912                                 /*
6913                                  * See comment in DIF_VAR_PID.
6914                                  */
6915                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6916                                     CPU_ON_INTR(CPU)) {
6917                                         int depth = DTRACE_USTACK_NFRAMES(
6918                                             rec->dtrd_arg) + 1;
6919 
6920                                         dtrace_bzero((void *)(tomax + valoffs),
6921                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6922                                             + depth * sizeof (uint64_t));
6923 
6924                                         continue;
6925                                 }
6926 
6927                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6928                                     curproc->p_dtrace_helpers != NULL) {
6929                                         /*
6930                                          * This is the slow path -- we have
6931                                          * allocated string space, and we're
6932                                          * getting the stack of a process that
6933                                          * has helpers.  Call into a separate
6934                                          * routine to perform this processing.
6935                                          */
6936                                         dtrace_action_ustack(&mstate, state,
6937                                             (uint64_t *)(tomax + valoffs),
6938                                             rec->dtrd_arg);
6939                                         continue;
6940                                 }
6941 
6942                                 /*
6943                                  * Clear the string space, since there's no
6944                                  * helper to do it for us.
6945                                  */
6946                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6947                                         int depth = DTRACE_USTACK_NFRAMES(
6948                                             rec->dtrd_arg);
6949                                         size_t strsize = DTRACE_USTACK_STRSIZE(
6950                                             rec->dtrd_arg);
6951                                         uint64_t *buf = (uint64_t *)(tomax +
6952                                             valoffs);
6953                                         void *strspace = &buf[depth + 1];
6954 
6955                                         dtrace_bzero(strspace,
6956                                             MIN(depth, strsize));
6957                                 }
6958 
6959                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6960                                 dtrace_getupcstack((uint64_t *)
6961                                     (tomax + valoffs),
6962                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6963                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6964                                 continue;
6965 
6966                         default:
6967                                 break;
6968                         }
6969 
6970                         dp = act->dta_difo;
6971                         ASSERT(dp != NULL);
6972 
6973                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6974 
6975                         if (*flags & CPU_DTRACE_ERROR)
6976                                 continue;
6977 
6978                         switch (act->dta_kind) {
6979                         case DTRACEACT_SPECULATE: {
6980                                 dtrace_rechdr_t *dtrh;
6981 
6982                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6983                                 buf = dtrace_speculation_buffer(state,
6984                                     cpuid, val);
6985 
6986                                 if (buf == NULL) {
6987                                         *flags |= CPU_DTRACE_DROP;
6988                                         continue;
6989                                 }
6990 
6991                                 offs = dtrace_buffer_reserve(buf,
6992                                     ecb->dte_needed, ecb->dte_alignment,
6993                                     state, NULL);
6994 
6995                                 if (offs < 0) {
6996                                         *flags |= CPU_DTRACE_DROP;
6997                                         continue;
6998                                 }
6999 
7000                                 tomax = buf->dtb_tomax;
7001                                 ASSERT(tomax != NULL);
7002 
7003                                 if (ecb->dte_size == 0)
7004                                         continue;
7005 
7006                                 ASSERT3U(ecb->dte_size, >=,
7007                                     sizeof (dtrace_rechdr_t));
7008                                 dtrh = ((void *)(tomax + offs));
7009                                 dtrh->dtrh_epid = ecb->dte_epid;
7010                                 /*
7011                                  * When the speculation is committed, all of
7012                                  * the records in the speculative buffer will
7013                                  * have their timestamps set to the commit
7014                                  * time.  Until then, it is set to a sentinel
7015                                  * value, for debugability.
7016                                  */
7017                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7018                                 continue;
7019                         }
7020 
7021                         case DTRACEACT_CHILL:
7022                                 if (dtrace_priv_kernel_destructive(state))
7023                                         dtrace_action_chill(&mstate, val);
7024                                 continue;
7025 
7026                         case DTRACEACT_RAISE:
7027                                 if (dtrace_priv_proc_destructive(state,
7028                                     &mstate))
7029                                         dtrace_action_raise(val);
7030                                 continue;
7031 
7032                         case DTRACEACT_COMMIT:
7033                                 ASSERT(!committed);
7034 
7035                                 /*
7036                                  * We need to commit our buffer state.
7037                                  */
7038                                 if (ecb->dte_size)
7039                                         buf->dtb_offset = offs + ecb->dte_size;
7040                                 buf = &state->dts_buffer[cpuid];
7041                                 dtrace_speculation_commit(state, cpuid, val);
7042                                 committed = 1;
7043                                 continue;
7044 
7045                         case DTRACEACT_DISCARD:
7046                                 dtrace_speculation_discard(state, cpuid, val);
7047                                 continue;
7048 
7049                         case DTRACEACT_DIFEXPR:
7050                         case DTRACEACT_LIBACT:
7051                         case DTRACEACT_PRINTF:
7052                         case DTRACEACT_PRINTA:
7053                         case DTRACEACT_SYSTEM:
7054                         case DTRACEACT_FREOPEN:
7055                         case DTRACEACT_TRACEMEM:
7056                                 break;
7057 
7058                         case DTRACEACT_TRACEMEM_DYNSIZE:
7059                                 tracememsize = val;
7060                                 break;
7061 
7062                         case DTRACEACT_SYM:
7063                         case DTRACEACT_MOD:
7064                                 if (!dtrace_priv_kernel(state))
7065                                         continue;
7066                                 break;
7067 
7068                         case DTRACEACT_USYM:
7069                         case DTRACEACT_UMOD:
7070                         case DTRACEACT_UADDR: {
7071                                 struct pid *pid = curthread->t_procp->p_pidp;
7072 
7073                                 if (!dtrace_priv_proc(state, &mstate))
7074                                         continue;
7075 
7076                                 DTRACE_STORE(uint64_t, tomax,
7077                                     valoffs, (uint64_t)pid->pid_id);
7078                                 DTRACE_STORE(uint64_t, tomax,
7079                                     valoffs + sizeof (uint64_t), val);
7080 
7081                                 continue;
7082                         }
7083 
7084                         case DTRACEACT_EXIT: {
7085                                 /*
7086                                  * For the exit action, we are going to attempt
7087                                  * to atomically set our activity to be
7088                                  * draining.  If this fails (either because
7089                                  * another CPU has beat us to the exit action,
7090                                  * or because our current activity is something
7091                                  * other than ACTIVE or WARMUP), we will
7092                                  * continue.  This assures that the exit action
7093                                  * can be successfully recorded at most once
7094                                  * when we're in the ACTIVE state.  If we're
7095                                  * encountering the exit() action while in
7096                                  * COOLDOWN, however, we want to honor the new
7097                                  * status code.  (We know that we're the only
7098                                  * thread in COOLDOWN, so there is no race.)
7099                                  */
7100                                 void *activity = &state->dts_activity;
7101                                 dtrace_activity_t current = state->dts_activity;
7102 
7103                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
7104                                         break;
7105 
7106                                 if (current != DTRACE_ACTIVITY_WARMUP)
7107                                         current = DTRACE_ACTIVITY_ACTIVE;
7108 
7109                                 if (dtrace_cas32(activity, current,
7110                                     DTRACE_ACTIVITY_DRAINING) != current) {
7111                                         *flags |= CPU_DTRACE_DROP;
7112                                         continue;
7113                                 }
7114 
7115                                 break;
7116                         }
7117 
7118                         default:
7119                                 ASSERT(0);
7120                         }
7121 
7122                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7123                             dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7124                                 uintptr_t end = valoffs + size;
7125 
7126                                 if (tracememsize != 0 &&
7127                                     valoffs + tracememsize < end) {
7128                                         end = valoffs + tracememsize;
7129                                         tracememsize = 0;
7130                                 }
7131 
7132                                 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7133                                     !dtrace_vcanload((void *)(uintptr_t)val,
7134                                     &dp->dtdo_rtype, &mstate, vstate))
7135                                         continue;
7136 
7137                                 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7138                                     &val, end, act->dta_intuple,
7139                                     dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7140                                     DIF_TF_BYREF: DIF_TF_BYUREF);
7141                                 continue;
7142                         }
7143 
7144                         switch (size) {
7145                         case 0:
7146                                 break;
7147 
7148                         case sizeof (uint8_t):
7149                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7150                                 break;
7151                         case sizeof (uint16_t):
7152                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7153                                 break;
7154                         case sizeof (uint32_t):
7155                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7156                                 break;
7157                         case sizeof (uint64_t):
7158                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7159                                 break;
7160                         default:
7161                                 /*
7162                                  * Any other size should have been returned by
7163                                  * reference, not by value.
7164                                  */
7165                                 ASSERT(0);
7166                                 break;
7167                         }
7168                 }
7169 
7170                 if (*flags & CPU_DTRACE_DROP)
7171                         continue;
7172 
7173                 if (*flags & CPU_DTRACE_FAULT) {
7174                         int ndx;
7175                         dtrace_action_t *err;
7176 
7177                         buf->dtb_errors++;
7178 
7179                         if (probe->dtpr_id == dtrace_probeid_error) {
7180                                 /*
7181                                  * There's nothing we can do -- we had an
7182                                  * error on the error probe.  We bump an
7183                                  * error counter to at least indicate that
7184                                  * this condition happened.
7185                                  */
7186                                 dtrace_error(&state->dts_dblerrors);
7187                                 continue;
7188                         }
7189 
7190                         if (vtime) {
7191                                 /*
7192                                  * Before recursing on dtrace_probe(), we
7193                                  * need to explicitly clear out our start
7194                                  * time to prevent it from being accumulated
7195                                  * into t_dtrace_vtime.
7196                                  */
7197                                 curthread->t_dtrace_start = 0;
7198                         }
7199 
7200                         /*
7201                          * Iterate over the actions to figure out which action
7202                          * we were processing when we experienced the error.
7203                          * Note that act points _past_ the faulting action; if
7204                          * act is ecb->dte_action, the fault was in the
7205                          * predicate, if it's ecb->dte_action->dta_next it's
7206                          * in action #1, and so on.
7207                          */
7208                         for (err = ecb->dte_action, ndx = 0;
7209                             err != act; err = err->dta_next, ndx++)
7210                                 continue;
7211 
7212                         dtrace_probe_error(state, ecb->dte_epid, ndx,
7213                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7214                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7215                             cpu_core[cpuid].cpuc_dtrace_illval);
7216 
7217                         continue;
7218                 }
7219 
7220                 if (!committed)
7221                         buf->dtb_offset = offs + ecb->dte_size;
7222         }
7223 
7224         end = dtrace_gethrtime();
7225         if (vtime)
7226                 curthread->t_dtrace_start = end;
7227 
7228         CPU->cpu_dtrace_nsec += end - now;
7229 
7230         dtrace_interrupt_enable(cookie);
7231 }
7232 
7233 /*
7234  * DTrace Probe Hashing Functions
7235  *
7236  * The functions in this section (and indeed, the functions in remaining
7237  * sections) are not _called_ from probe context.  (Any exceptions to this are
7238  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7239  * DTrace framework to look-up probes in, add probes to and remove probes from
7240  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7241  * probe tuple -- allowing for fast lookups, regardless of what was
7242  * specified.)
7243  */
7244 static uint_t
7245 dtrace_hash_str(char *p)
7246 {
7247         unsigned int g;
7248         uint_t hval = 0;
7249 
7250         while (*p) {
7251                 hval = (hval << 4) + *p++;
7252                 if ((g = (hval & 0xf0000000)) != 0)
7253                         hval ^= g >> 24;
7254                 hval &= ~g;
7255         }
7256         return (hval);
7257 }
7258 
7259 static dtrace_hash_t *
7260 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7261 {
7262         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7263 
7264         hash->dth_stroffs = stroffs;
7265         hash->dth_nextoffs = nextoffs;
7266         hash->dth_prevoffs = prevoffs;
7267 
7268         hash->dth_size = 1;
7269         hash->dth_mask = hash->dth_size - 1;
7270 
7271         hash->dth_tab = kmem_zalloc(hash->dth_size *
7272             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7273 
7274         return (hash);
7275 }
7276 
7277 static void
7278 dtrace_hash_destroy(dtrace_hash_t *hash)
7279 {
7280 #ifdef DEBUG
7281         int i;
7282 
7283         for (i = 0; i < hash->dth_size; i++)
7284                 ASSERT(hash->dth_tab[i] == NULL);
7285 #endif
7286 
7287         kmem_free(hash->dth_tab,
7288             hash->dth_size * sizeof (dtrace_hashbucket_t *));
7289         kmem_free(hash, sizeof (dtrace_hash_t));
7290 }
7291 
7292 static void
7293 dtrace_hash_resize(dtrace_hash_t *hash)
7294 {
7295         int size = hash->dth_size, i, ndx;
7296         int new_size = hash->dth_size << 1;
7297         int new_mask = new_size - 1;
7298         dtrace_hashbucket_t **new_tab, *bucket, *next;
7299 
7300         ASSERT((new_size & new_mask) == 0);
7301 
7302         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7303 
7304         for (i = 0; i < size; i++) {
7305                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7306                         dtrace_probe_t *probe = bucket->dthb_chain;
7307 
7308                         ASSERT(probe != NULL);
7309                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7310 
7311                         next = bucket->dthb_next;
7312                         bucket->dthb_next = new_tab[ndx];
7313                         new_tab[ndx] = bucket;
7314                 }
7315         }
7316 
7317         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7318         hash->dth_tab = new_tab;
7319         hash->dth_size = new_size;
7320         hash->dth_mask = new_mask;
7321 }
7322 
7323 static void
7324 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7325 {
7326         int hashval = DTRACE_HASHSTR(hash, new);
7327         int ndx = hashval & hash->dth_mask;
7328         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7329         dtrace_probe_t **nextp, **prevp;
7330 
7331         for (; bucket != NULL; bucket = bucket->dthb_next) {
7332                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7333                         goto add;
7334         }
7335 
7336         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7337                 dtrace_hash_resize(hash);
7338                 dtrace_hash_add(hash, new);
7339                 return;
7340         }
7341 
7342         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7343         bucket->dthb_next = hash->dth_tab[ndx];
7344         hash->dth_tab[ndx] = bucket;
7345         hash->dth_nbuckets++;
7346 
7347 add:
7348         nextp = DTRACE_HASHNEXT(hash, new);
7349         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7350         *nextp = bucket->dthb_chain;
7351 
7352         if (bucket->dthb_chain != NULL) {
7353                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7354                 ASSERT(*prevp == NULL);
7355                 *prevp = new;
7356         }
7357 
7358         bucket->dthb_chain = new;
7359         bucket->dthb_len++;
7360 }
7361 
7362 static dtrace_probe_t *
7363 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7364 {
7365         int hashval = DTRACE_HASHSTR(hash, template);
7366         int ndx = hashval & hash->dth_mask;
7367         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7368 
7369         for (; bucket != NULL; bucket = bucket->dthb_next) {
7370                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7371                         return (bucket->dthb_chain);
7372         }
7373 
7374         return (NULL);
7375 }
7376 
7377 static int
7378 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7379 {
7380         int hashval = DTRACE_HASHSTR(hash, template);
7381         int ndx = hashval & hash->dth_mask;
7382         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7383 
7384         for (; bucket != NULL; bucket = bucket->dthb_next) {
7385                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7386                         return (bucket->dthb_len);
7387         }
7388 
7389         return (NULL);
7390 }
7391 
7392 static void
7393 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7394 {
7395         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7396         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7397 
7398         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7399         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7400 
7401         /*
7402          * Find the bucket that we're removing this probe from.
7403          */
7404         for (; bucket != NULL; bucket = bucket->dthb_next) {
7405                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7406                         break;
7407         }
7408 
7409         ASSERT(bucket != NULL);
7410 
7411         if (*prevp == NULL) {
7412                 if (*nextp == NULL) {
7413                         /*
7414                          * The removed probe was the only probe on this
7415                          * bucket; we need to remove the bucket.
7416                          */
7417                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7418 
7419                         ASSERT(bucket->dthb_chain == probe);
7420                         ASSERT(b != NULL);
7421 
7422                         if (b == bucket) {
7423                                 hash->dth_tab[ndx] = bucket->dthb_next;
7424                         } else {
7425                                 while (b->dthb_next != bucket)
7426                                         b = b->dthb_next;
7427                                 b->dthb_next = bucket->dthb_next;
7428                         }
7429 
7430                         ASSERT(hash->dth_nbuckets > 0);
7431                         hash->dth_nbuckets--;
7432                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7433                         return;
7434                 }
7435 
7436                 bucket->dthb_chain = *nextp;
7437         } else {
7438                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7439         }
7440 
7441         if (*nextp != NULL)
7442                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7443 }
7444 
7445 /*
7446  * DTrace Utility Functions
7447  *
7448  * These are random utility functions that are _not_ called from probe context.
7449  */
7450 static int
7451 dtrace_badattr(const dtrace_attribute_t *a)
7452 {
7453         return (a->dtat_name > DTRACE_STABILITY_MAX ||
7454             a->dtat_data > DTRACE_STABILITY_MAX ||
7455             a->dtat_class > DTRACE_CLASS_MAX);
7456 }
7457 
7458 /*
7459  * Return a duplicate copy of a string.  If the specified string is NULL,
7460  * this function returns a zero-length string.
7461  */
7462 static char *
7463 dtrace_strdup(const char *str)
7464 {
7465         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7466 
7467         if (str != NULL)
7468                 (void) strcpy(new, str);
7469 
7470         return (new);
7471 }
7472 
7473 #define DTRACE_ISALPHA(c)       \
7474         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7475 
7476 static int
7477 dtrace_badname(const char *s)
7478 {
7479         char c;
7480 
7481         if (s == NULL || (c = *s++) == '\0')
7482                 return (0);
7483 
7484         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7485                 return (1);
7486 
7487         while ((c = *s++) != '\0') {
7488                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7489                     c != '-' && c != '_' && c != '.' && c != '`')
7490                         return (1);
7491         }
7492 
7493         return (0);
7494 }
7495 
7496 static void
7497 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7498 {
7499         uint32_t priv;
7500 
7501         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7502                 /*
7503                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7504                  */
7505                 priv = DTRACE_PRIV_ALL;
7506         } else {
7507                 *uidp = crgetuid(cr);
7508                 *zoneidp = crgetzoneid(cr);
7509 
7510                 priv = 0;
7511                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7512                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7513                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7514                         priv |= DTRACE_PRIV_USER;
7515                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7516                         priv |= DTRACE_PRIV_PROC;
7517                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7518                         priv |= DTRACE_PRIV_OWNER;
7519                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7520                         priv |= DTRACE_PRIV_ZONEOWNER;
7521         }
7522 
7523         *privp = priv;
7524 }
7525 
7526 #ifdef DTRACE_ERRDEBUG
7527 static void
7528 dtrace_errdebug(const char *str)
7529 {
7530         int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7531         int occupied = 0;
7532 
7533         mutex_enter(&dtrace_errlock);
7534         dtrace_errlast = str;
7535         dtrace_errthread = curthread;
7536 
7537         while (occupied++ < DTRACE_ERRHASHSZ) {
7538                 if (dtrace_errhash[hval].dter_msg == str) {
7539                         dtrace_errhash[hval].dter_count++;
7540                         goto out;
7541                 }
7542 
7543                 if (dtrace_errhash[hval].dter_msg != NULL) {
7544                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7545                         continue;
7546                 }
7547 
7548                 dtrace_errhash[hval].dter_msg = str;
7549                 dtrace_errhash[hval].dter_count = 1;
7550                 goto out;
7551         }
7552 
7553         panic("dtrace: undersized error hash");
7554 out:
7555         mutex_exit(&dtrace_errlock);
7556 }
7557 #endif
7558 
7559 /*
7560  * DTrace Matching Functions
7561  *
7562  * These functions are used to match groups of probes, given some elements of
7563  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7564  */
7565 static int
7566 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7567     zoneid_t zoneid)
7568 {
7569         if (priv != DTRACE_PRIV_ALL) {
7570                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7571                 uint32_t match = priv & ppriv;
7572 
7573                 /*
7574                  * No PRIV_DTRACE_* privileges...
7575                  */
7576                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7577                     DTRACE_PRIV_KERNEL)) == 0)
7578                         return (0);
7579 
7580                 /*
7581                  * No matching bits, but there were bits to match...
7582                  */
7583                 if (match == 0 && ppriv != 0)
7584                         return (0);
7585 
7586                 /*
7587                  * Need to have permissions to the process, but don't...
7588                  */
7589                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7590                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7591                         return (0);
7592                 }
7593 
7594                 /*
7595                  * Need to be in the same zone unless we possess the
7596                  * privilege to examine all zones.
7597                  */
7598                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7599                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7600                         return (0);
7601                 }
7602         }
7603 
7604         return (1);
7605 }
7606 
7607 /*
7608  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7609  * consists of input pattern strings and an ops-vector to evaluate them.
7610  * This function returns >0 for match, 0 for no match, and <0 for error.
7611  */
7612 static int
7613 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7614     uint32_t priv, uid_t uid, zoneid_t zoneid)
7615 {
7616         dtrace_provider_t *pvp = prp->dtpr_provider;
7617         int rv;
7618 
7619         if (pvp->dtpv_defunct)
7620                 return (0);
7621 
7622         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7623                 return (rv);
7624 
7625         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7626                 return (rv);
7627 
7628         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7629                 return (rv);
7630 
7631         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7632                 return (rv);
7633 
7634         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7635                 return (0);
7636 
7637         return (rv);
7638 }
7639 
7640 /*
7641  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7642  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7643  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7644  * In addition, all of the recursion cases except for '*' matching have been
7645  * unwound.  For '*', we still implement recursive evaluation, but a depth
7646  * counter is maintained and matching is aborted if we recurse too deep.
7647  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7648  */
7649 static int
7650 dtrace_match_glob(const char *s, const char *p, int depth)
7651 {
7652         const char *olds;
7653         char s1, c;
7654         int gs;
7655 
7656         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7657                 return (-1);
7658 
7659         if (s == NULL)
7660                 s = ""; /* treat NULL as empty string */
7661 
7662 top:
7663         olds = s;
7664         s1 = *s++;
7665 
7666         if (p == NULL)
7667                 return (0);
7668 
7669         if ((c = *p++) == '\0')
7670                 return (s1 == '\0');
7671 
7672         switch (c) {
7673         case '[': {
7674                 int ok = 0, notflag = 0;
7675                 char lc = '\0';
7676 
7677                 if (s1 == '\0')
7678                         return (0);
7679 
7680                 if (*p == '!') {
7681                         notflag = 1;
7682                         p++;
7683                 }
7684 
7685                 if ((c = *p++) == '\0')
7686                         return (0);
7687 
7688                 do {
7689                         if (c == '-' && lc != '\0' && *p != ']') {
7690                                 if ((c = *p++) == '\0')
7691                                         return (0);
7692                                 if (c == '\\' && (c = *p++) == '\0')
7693                                         return (0);
7694 
7695                                 if (notflag) {
7696                                         if (s1 < lc || s1 > c)
7697                                                 ok++;
7698                                         else
7699                                                 return (0);
7700                                 } else if (lc <= s1 && s1 <= c)
7701                                         ok++;
7702 
7703                         } else if (c == '\\' && (c = *p++) == '\0')
7704                                 return (0);
7705 
7706                         lc = c; /* save left-hand 'c' for next iteration */
7707 
7708                         if (notflag) {
7709                                 if (s1 != c)
7710                                         ok++;
7711                                 else
7712                                         return (0);
7713                         } else if (s1 == c)
7714                                 ok++;
7715 
7716                         if ((c = *p++) == '\0')
7717                                 return (0);
7718 
7719                 } while (c != ']');
7720 
7721                 if (ok)
7722                         goto top;
7723 
7724                 return (0);
7725         }
7726 
7727         case '\\':
7728                 if ((c = *p++) == '\0')
7729                         return (0);
7730                 /*FALLTHRU*/
7731 
7732         default:
7733                 if (c != s1)
7734                         return (0);
7735                 /*FALLTHRU*/
7736 
7737         case '?':
7738                 if (s1 != '\0')
7739                         goto top;
7740                 return (0);
7741 
7742         case '*':
7743                 while (*p == '*')
7744                         p++; /* consecutive *'s are identical to a single one */
7745 
7746                 if (*p == '\0')
7747                         return (1);
7748 
7749                 for (s = olds; *s != '\0'; s++) {
7750                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7751                                 return (gs);
7752                 }
7753 
7754                 return (0);
7755         }
7756 }
7757 
7758 /*ARGSUSED*/
7759 static int
7760 dtrace_match_string(const char *s, const char *p, int depth)
7761 {
7762         return (s != NULL && strcmp(s, p) == 0);
7763 }
7764 
7765 /*ARGSUSED*/
7766 static int
7767 dtrace_match_nul(const char *s, const char *p, int depth)
7768 {
7769         return (1); /* always match the empty pattern */
7770 }
7771 
7772 /*ARGSUSED*/
7773 static int
7774 dtrace_match_nonzero(const char *s, const char *p, int depth)
7775 {
7776         return (s != NULL && s[0] != '\0');
7777 }
7778 
7779 static int
7780 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7781     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7782 {
7783         dtrace_probe_t template, *probe;
7784         dtrace_hash_t *hash = NULL;
7785         int len, rc, best = INT_MAX, nmatched = 0;
7786         dtrace_id_t i;
7787 
7788         ASSERT(MUTEX_HELD(&dtrace_lock));
7789 
7790         /*
7791          * If the probe ID is specified in the key, just lookup by ID and
7792          * invoke the match callback once if a matching probe is found.
7793          */
7794         if (pkp->dtpk_id != DTRACE_IDNONE) {
7795                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7796                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7797                         if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7798                                 return (DTRACE_MATCH_FAIL);
7799                         nmatched++;
7800                 }
7801                 return (nmatched);
7802         }
7803 
7804         template.dtpr_mod = (char *)pkp->dtpk_mod;
7805         template.dtpr_func = (char *)pkp->dtpk_func;
7806         template.dtpr_name = (char *)pkp->dtpk_name;
7807 
7808         /*
7809          * We want to find the most distinct of the module name, function
7810          * name, and name.  So for each one that is not a glob pattern or
7811          * empty string, we perform a lookup in the corresponding hash and
7812          * use the hash table with the fewest collisions to do our search.
7813          */
7814         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7815             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7816                 best = len;
7817                 hash = dtrace_bymod;
7818         }
7819 
7820         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7821             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7822                 best = len;
7823                 hash = dtrace_byfunc;
7824         }
7825 
7826         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7827             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7828                 best = len;
7829                 hash = dtrace_byname;
7830         }
7831 
7832         /*
7833          * If we did not select a hash table, iterate over every probe and
7834          * invoke our callback for each one that matches our input probe key.
7835          */
7836         if (hash == NULL) {
7837                 for (i = 0; i < dtrace_nprobes; i++) {
7838                         if ((probe = dtrace_probes[i]) == NULL ||
7839                             dtrace_match_probe(probe, pkp, priv, uid,
7840                             zoneid) <= 0)
7841                                 continue;
7842 
7843                         nmatched++;
7844 
7845                         if ((rc = (*matched)(probe, arg)) !=
7846                             DTRACE_MATCH_NEXT) {
7847                                 if (rc == DTRACE_MATCH_FAIL)
7848                                         return (DTRACE_MATCH_FAIL);
7849                                 break;
7850                         }
7851                 }
7852 
7853                 return (nmatched);
7854         }
7855 
7856         /*
7857          * If we selected a hash table, iterate over each probe of the same key
7858          * name and invoke the callback for every probe that matches the other
7859          * attributes of our input probe key.
7860          */
7861         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7862             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7863 
7864                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7865                         continue;
7866 
7867                 nmatched++;
7868 
7869                 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7870                         if (rc == DTRACE_MATCH_FAIL)
7871                                 return (DTRACE_MATCH_FAIL);
7872                         break;
7873                 }
7874         }
7875 
7876         return (nmatched);
7877 }
7878 
7879 /*
7880  * Return the function pointer dtrace_probecmp() should use to compare the
7881  * specified pattern with a string.  For NULL or empty patterns, we select
7882  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7883  * For non-empty non-glob strings, we use dtrace_match_string().
7884  */
7885 static dtrace_probekey_f *
7886 dtrace_probekey_func(const char *p)
7887 {
7888         char c;
7889 
7890         if (p == NULL || *p == '\0')
7891                 return (&dtrace_match_nul);
7892 
7893         while ((c = *p++) != '\0') {
7894                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7895                         return (&dtrace_match_glob);
7896         }
7897 
7898         return (&dtrace_match_string);
7899 }
7900 
7901 /*
7902  * Build a probe comparison key for use with dtrace_match_probe() from the
7903  * given probe description.  By convention, a null key only matches anchored
7904  * probes: if each field is the empty string, reset dtpk_fmatch to
7905  * dtrace_match_nonzero().
7906  */
7907 static void
7908 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7909 {
7910         pkp->dtpk_prov = pdp->dtpd_provider;
7911         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7912 
7913         pkp->dtpk_mod = pdp->dtpd_mod;
7914         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7915 
7916         pkp->dtpk_func = pdp->dtpd_func;
7917         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7918 
7919         pkp->dtpk_name = pdp->dtpd_name;
7920         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7921 
7922         pkp->dtpk_id = pdp->dtpd_id;
7923 
7924         if (pkp->dtpk_id == DTRACE_IDNONE &&
7925             pkp->dtpk_pmatch == &dtrace_match_nul &&
7926             pkp->dtpk_mmatch == &dtrace_match_nul &&
7927             pkp->dtpk_fmatch == &dtrace_match_nul &&
7928             pkp->dtpk_nmatch == &dtrace_match_nul)
7929                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7930 }
7931 
7932 /*
7933  * DTrace Provider-to-Framework API Functions
7934  *
7935  * These functions implement much of the Provider-to-Framework API, as
7936  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7937  * the functions in the API for probe management (found below), and
7938  * dtrace_probe() itself (found above).
7939  */
7940 
7941 /*
7942  * Register the calling provider with the DTrace framework.  This should
7943  * generally be called by DTrace providers in their attach(9E) entry point.
7944  */
7945 int
7946 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7947     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7948 {
7949         dtrace_provider_t *provider;
7950 
7951         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7952                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7953                     "arguments", name ? name : "<NULL>");
7954                 return (EINVAL);
7955         }
7956 
7957         if (name[0] == '\0' || dtrace_badname(name)) {
7958                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7959                     "provider name", name);
7960                 return (EINVAL);
7961         }
7962 
7963         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7964             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7965             pops->dtps_destroy == NULL ||
7966             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7967                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7968                     "provider ops", name);
7969                 return (EINVAL);
7970         }
7971 
7972         if (dtrace_badattr(&pap->dtpa_provider) ||
7973             dtrace_badattr(&pap->dtpa_mod) ||
7974             dtrace_badattr(&pap->dtpa_func) ||
7975             dtrace_badattr(&pap->dtpa_name) ||
7976             dtrace_badattr(&pap->dtpa_args)) {
7977                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7978                     "provider attributes", name);
7979                 return (EINVAL);
7980         }
7981 
7982         if (priv & ~DTRACE_PRIV_ALL) {
7983                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7984                     "privilege attributes", name);
7985                 return (EINVAL);
7986         }
7987 
7988         if ((priv & DTRACE_PRIV_KERNEL) &&
7989             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7990             pops->dtps_mode == NULL) {
7991                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7992                     "dtps_mode() op for given privilege attributes", name);
7993                 return (EINVAL);
7994         }
7995 
7996         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7997         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7998         (void) strcpy(provider->dtpv_name, name);
7999 
8000         provider->dtpv_attr = *pap;
8001         provider->dtpv_priv.dtpp_flags = priv;
8002         if (cr != NULL) {
8003                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8004                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8005         }
8006         provider->dtpv_pops = *pops;
8007 
8008         if (pops->dtps_provide == NULL) {
8009                 ASSERT(pops->dtps_provide_module != NULL);
8010                 provider->dtpv_pops.dtps_provide =
8011                     (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8012         }
8013 
8014         if (pops->dtps_provide_module == NULL) {
8015                 ASSERT(pops->dtps_provide != NULL);
8016                 provider->dtpv_pops.dtps_provide_module =
8017                     (void (*)(void *, struct modctl *))dtrace_nullop;
8018         }
8019 
8020         if (pops->dtps_suspend == NULL) {
8021                 ASSERT(pops->dtps_resume == NULL);
8022                 provider->dtpv_pops.dtps_suspend =
8023                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8024                 provider->dtpv_pops.dtps_resume =
8025                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8026         }
8027 
8028         provider->dtpv_arg = arg;
8029         *idp = (dtrace_provider_id_t)provider;
8030 
8031         if (pops == &dtrace_provider_ops) {
8032                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8033                 ASSERT(MUTEX_HELD(&dtrace_lock));
8034                 ASSERT(dtrace_anon.dta_enabling == NULL);
8035 
8036                 /*
8037                  * We make sure that the DTrace provider is at the head of
8038                  * the provider chain.
8039                  */
8040                 provider->dtpv_next = dtrace_provider;
8041                 dtrace_provider = provider;
8042                 return (0);
8043         }
8044 
8045         mutex_enter(&dtrace_provider_lock);
8046         mutex_enter(&dtrace_lock);
8047 
8048         /*
8049          * If there is at least one provider registered, we'll add this
8050          * provider after the first provider.
8051          */
8052         if (dtrace_provider != NULL) {
8053                 provider->dtpv_next = dtrace_provider->dtpv_next;
8054                 dtrace_provider->dtpv_next = provider;
8055         } else {
8056                 dtrace_provider = provider;
8057         }
8058 
8059         if (dtrace_retained != NULL) {
8060                 dtrace_enabling_provide(provider);
8061 
8062                 /*
8063                  * Now we need to call dtrace_enabling_matchall() -- which
8064                  * will acquire cpu_lock and dtrace_lock.  We therefore need
8065                  * to drop all of our locks before calling into it...
8066                  */
8067                 mutex_exit(&dtrace_lock);
8068                 mutex_exit(&dtrace_provider_lock);
8069                 dtrace_enabling_matchall();
8070 
8071                 return (0);
8072         }
8073 
8074         mutex_exit(&dtrace_lock);
8075         mutex_exit(&dtrace_provider_lock);
8076 
8077         return (0);
8078 }
8079 
8080 /*
8081  * Unregister the specified provider from the DTrace framework.  This should
8082  * generally be called by DTrace providers in their detach(9E) entry point.
8083  */
8084 int
8085 dtrace_unregister(dtrace_provider_id_t id)
8086 {
8087         dtrace_provider_t *old = (dtrace_provider_t *)id;
8088         dtrace_provider_t *prev = NULL;
8089         int i, self = 0, noreap = 0;
8090         dtrace_probe_t *probe, *first = NULL;
8091 
8092         if (old->dtpv_pops.dtps_enable ==
8093             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8094                 /*
8095                  * If DTrace itself is the provider, we're called with locks
8096                  * already held.
8097                  */
8098                 ASSERT(old == dtrace_provider);
8099                 ASSERT(dtrace_devi != NULL);
8100                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8101                 ASSERT(MUTEX_HELD(&dtrace_lock));
8102                 self = 1;
8103 
8104                 if (dtrace_provider->dtpv_next != NULL) {
8105                         /*
8106                          * There's another provider here; return failure.
8107                          */
8108                         return (EBUSY);
8109                 }
8110         } else {
8111                 mutex_enter(&dtrace_provider_lock);
8112                 mutex_enter(&mod_lock);
8113                 mutex_enter(&dtrace_lock);
8114         }
8115 
8116         /*
8117          * If anyone has /dev/dtrace open, or if there are anonymous enabled
8118          * probes, we refuse to let providers slither away, unless this
8119          * provider has already been explicitly invalidated.
8120          */
8121         if (!old->dtpv_defunct &&
8122             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8123             dtrace_anon.dta_state->dts_necbs > 0))) {
8124                 if (!self) {
8125                         mutex_exit(&dtrace_lock);
8126                         mutex_exit(&mod_lock);
8127                         mutex_exit(&dtrace_provider_lock);
8128                 }
8129                 return (EBUSY);
8130         }
8131 
8132         /*
8133          * Attempt to destroy the probes associated with this provider.
8134          */
8135         for (i = 0; i < dtrace_nprobes; i++) {
8136                 if ((probe = dtrace_probes[i]) == NULL)
8137                         continue;
8138 
8139                 if (probe->dtpr_provider != old)
8140                         continue;
8141 
8142                 if (probe->dtpr_ecb == NULL)
8143                         continue;
8144 
8145                 /*
8146                  * If we are trying to unregister a defunct provider, and the
8147                  * provider was made defunct within the interval dictated by
8148                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
8149                  * attempt to reap our enablings.  To denote that the provider
8150                  * should reattempt to unregister itself at some point in the
8151                  * future, we will return a differentiable error code (EAGAIN
8152                  * instead of EBUSY) in this case.
8153                  */
8154                 if (dtrace_gethrtime() - old->dtpv_defunct >
8155                     dtrace_unregister_defunct_reap)
8156                         noreap = 1;
8157 
8158                 if (!self) {
8159                         mutex_exit(&dtrace_lock);
8160                         mutex_exit(&mod_lock);
8161                         mutex_exit(&dtrace_provider_lock);
8162                 }
8163 
8164                 if (noreap)
8165                         return (EBUSY);
8166 
8167                 (void) taskq_dispatch(dtrace_taskq,
8168                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8169 
8170                 return (EAGAIN);
8171         }
8172 
8173         /*
8174          * All of the probes for this provider are disabled; we can safely
8175          * remove all of them from their hash chains and from the probe array.
8176          */
8177         for (i = 0; i < dtrace_nprobes; i++) {
8178                 if ((probe = dtrace_probes[i]) == NULL)
8179                         continue;
8180 
8181                 if (probe->dtpr_provider != old)
8182                         continue;
8183 
8184                 dtrace_probes[i] = NULL;
8185 
8186                 dtrace_hash_remove(dtrace_bymod, probe);
8187                 dtrace_hash_remove(dtrace_byfunc, probe);
8188                 dtrace_hash_remove(dtrace_byname, probe);
8189 
8190                 if (first == NULL) {
8191                         first = probe;
8192                         probe->dtpr_nextmod = NULL;
8193                 } else {
8194                         probe->dtpr_nextmod = first;
8195                         first = probe;
8196                 }
8197         }
8198 
8199         /*
8200          * The provider's probes have been removed from the hash chains and
8201          * from the probe array.  Now issue a dtrace_sync() to be sure that
8202          * everyone has cleared out from any probe array processing.
8203          */
8204         dtrace_sync();
8205 
8206         for (probe = first; probe != NULL; probe = first) {
8207                 first = probe->dtpr_nextmod;
8208 
8209                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8210                     probe->dtpr_arg);
8211                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8212                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8213                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8214                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8215                 kmem_free(probe, sizeof (dtrace_probe_t));
8216         }
8217 
8218         if ((prev = dtrace_provider) == old) {
8219                 ASSERT(self || dtrace_devi == NULL);
8220                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8221                 dtrace_provider = old->dtpv_next;
8222         } else {
8223                 while (prev != NULL && prev->dtpv_next != old)
8224                         prev = prev->dtpv_next;
8225 
8226                 if (prev == NULL) {
8227                         panic("attempt to unregister non-existent "
8228                             "dtrace provider %p\n", (void *)id);
8229                 }
8230 
8231                 prev->dtpv_next = old->dtpv_next;
8232         }
8233 
8234         if (!self) {
8235                 mutex_exit(&dtrace_lock);
8236                 mutex_exit(&mod_lock);
8237                 mutex_exit(&dtrace_provider_lock);
8238         }
8239 
8240         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8241         kmem_free(old, sizeof (dtrace_provider_t));
8242 
8243         return (0);
8244 }
8245 
8246 /*
8247  * Invalidate the specified provider.  All subsequent probe lookups for the
8248  * specified provider will fail, but its probes will not be removed.
8249  */
8250 void
8251 dtrace_invalidate(dtrace_provider_id_t id)
8252 {
8253         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8254 
8255         ASSERT(pvp->dtpv_pops.dtps_enable !=
8256             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8257 
8258         mutex_enter(&dtrace_provider_lock);
8259         mutex_enter(&dtrace_lock);
8260 
8261         pvp->dtpv_defunct = dtrace_gethrtime();
8262 
8263         mutex_exit(&dtrace_lock);
8264         mutex_exit(&dtrace_provider_lock);
8265 }
8266 
8267 /*
8268  * Indicate whether or not DTrace has attached.
8269  */
8270 int
8271 dtrace_attached(void)
8272 {
8273         /*
8274          * dtrace_provider will be non-NULL iff the DTrace driver has
8275          * attached.  (It's non-NULL because DTrace is always itself a
8276          * provider.)
8277          */
8278         return (dtrace_provider != NULL);
8279 }
8280 
8281 /*
8282  * Remove all the unenabled probes for the given provider.  This function is
8283  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8284  * -- just as many of its associated probes as it can.
8285  */
8286 int
8287 dtrace_condense(dtrace_provider_id_t id)
8288 {
8289         dtrace_provider_t *prov = (dtrace_provider_t *)id;
8290         int i;
8291         dtrace_probe_t *probe;
8292 
8293         /*
8294          * Make sure this isn't the dtrace provider itself.
8295          */
8296         ASSERT(prov->dtpv_pops.dtps_enable !=
8297             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8298 
8299         mutex_enter(&dtrace_provider_lock);
8300         mutex_enter(&dtrace_lock);
8301 
8302         /*
8303          * Attempt to destroy the probes associated with this provider.
8304          */
8305         for (i = 0; i < dtrace_nprobes; i++) {
8306                 if ((probe = dtrace_probes[i]) == NULL)
8307                         continue;
8308 
8309                 if (probe->dtpr_provider != prov)
8310                         continue;
8311 
8312                 if (probe->dtpr_ecb != NULL)
8313                         continue;
8314 
8315                 dtrace_probes[i] = NULL;
8316 
8317                 dtrace_hash_remove(dtrace_bymod, probe);
8318                 dtrace_hash_remove(dtrace_byfunc, probe);
8319                 dtrace_hash_remove(dtrace_byname, probe);
8320 
8321                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8322                     probe->dtpr_arg);
8323                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8324                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8325                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8326                 kmem_free(probe, sizeof (dtrace_probe_t));
8327                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8328         }
8329 
8330         mutex_exit(&dtrace_lock);
8331         mutex_exit(&dtrace_provider_lock);
8332 
8333         return (0);
8334 }
8335 
8336 /*
8337  * DTrace Probe Management Functions
8338  *
8339  * The functions in this section perform the DTrace probe management,
8340  * including functions to create probes, look-up probes, and call into the
8341  * providers to request that probes be provided.  Some of these functions are
8342  * in the Provider-to-Framework API; these functions can be identified by the
8343  * fact that they are not declared "static".
8344  */
8345 
8346 /*
8347  * Create a probe with the specified module name, function name, and name.
8348  */
8349 dtrace_id_t
8350 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8351     const char *func, const char *name, int aframes, void *arg)
8352 {
8353         dtrace_probe_t *probe, **probes;
8354         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8355         dtrace_id_t id;
8356 
8357         if (provider == dtrace_provider) {
8358                 ASSERT(MUTEX_HELD(&dtrace_lock));
8359         } else {
8360                 mutex_enter(&dtrace_lock);
8361         }
8362 
8363         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8364             VM_BESTFIT | VM_SLEEP);
8365         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8366 
8367         probe->dtpr_id = id;
8368         probe->dtpr_gen = dtrace_probegen++;
8369         probe->dtpr_mod = dtrace_strdup(mod);
8370         probe->dtpr_func = dtrace_strdup(func);
8371         probe->dtpr_name = dtrace_strdup(name);
8372         probe->dtpr_arg = arg;
8373         probe->dtpr_aframes = aframes;
8374         probe->dtpr_provider = provider;
8375 
8376         dtrace_hash_add(dtrace_bymod, probe);
8377         dtrace_hash_add(dtrace_byfunc, probe);
8378         dtrace_hash_add(dtrace_byname, probe);
8379 
8380         if (id - 1 >= dtrace_nprobes) {
8381                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8382                 size_t nsize = osize << 1;
8383 
8384                 if (nsize == 0) {
8385                         ASSERT(osize == 0);
8386                         ASSERT(dtrace_probes == NULL);
8387                         nsize = sizeof (dtrace_probe_t *);
8388                 }
8389 
8390                 probes = kmem_zalloc(nsize, KM_SLEEP);
8391 
8392                 if (dtrace_probes == NULL) {
8393                         ASSERT(osize == 0);
8394                         dtrace_probes = probes;
8395                         dtrace_nprobes = 1;
8396                 } else {
8397                         dtrace_probe_t **oprobes = dtrace_probes;
8398 
8399                         bcopy(oprobes, probes, osize);
8400                         dtrace_membar_producer();
8401                         dtrace_probes = probes;
8402 
8403                         dtrace_sync();
8404 
8405                         /*
8406                          * All CPUs are now seeing the new probes array; we can
8407                          * safely free the old array.
8408                          */
8409                         kmem_free(oprobes, osize);
8410                         dtrace_nprobes <<= 1;
8411                 }
8412 
8413                 ASSERT(id - 1 < dtrace_nprobes);
8414         }
8415 
8416         ASSERT(dtrace_probes[id - 1] == NULL);
8417         dtrace_probes[id - 1] = probe;
8418 
8419         if (provider != dtrace_provider)
8420                 mutex_exit(&dtrace_lock);
8421 
8422         return (id);
8423 }
8424 
8425 static dtrace_probe_t *
8426 dtrace_probe_lookup_id(dtrace_id_t id)
8427 {
8428         ASSERT(MUTEX_HELD(&dtrace_lock));
8429 
8430         if (id == 0 || id > dtrace_nprobes)
8431                 return (NULL);
8432 
8433         return (dtrace_probes[id - 1]);
8434 }
8435 
8436 static int
8437 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8438 {
8439         *((dtrace_id_t *)arg) = probe->dtpr_id;
8440 
8441         return (DTRACE_MATCH_DONE);
8442 }
8443 
8444 /*
8445  * Look up a probe based on provider and one or more of module name, function
8446  * name and probe name.
8447  */
8448 dtrace_id_t
8449 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8450     const char *func, const char *name)
8451 {
8452         dtrace_probekey_t pkey;
8453         dtrace_id_t id;
8454         int match;
8455 
8456         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8457         pkey.dtpk_pmatch = &dtrace_match_string;
8458         pkey.dtpk_mod = mod;
8459         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8460         pkey.dtpk_func = func;
8461         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8462         pkey.dtpk_name = name;
8463         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8464         pkey.dtpk_id = DTRACE_IDNONE;
8465 
8466         mutex_enter(&dtrace_lock);
8467         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8468             dtrace_probe_lookup_match, &id);
8469         mutex_exit(&dtrace_lock);
8470 
8471         ASSERT(match == 1 || match == 0);
8472         return (match ? id : 0);
8473 }
8474 
8475 /*
8476  * Returns the probe argument associated with the specified probe.
8477  */
8478 void *
8479 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8480 {
8481         dtrace_probe_t *probe;
8482         void *rval = NULL;
8483 
8484         mutex_enter(&dtrace_lock);
8485 
8486         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8487             probe->dtpr_provider == (dtrace_provider_t *)id)
8488                 rval = probe->dtpr_arg;
8489 
8490         mutex_exit(&dtrace_lock);
8491 
8492         return (rval);
8493 }
8494 
8495 /*
8496  * Copy a probe into a probe description.
8497  */
8498 static void
8499 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8500 {
8501         bzero(pdp, sizeof (dtrace_probedesc_t));
8502         pdp->dtpd_id = prp->dtpr_id;
8503 
8504         (void) strncpy(pdp->dtpd_provider,
8505             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8506 
8507         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8508         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8509         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8510 }
8511 
8512 /*
8513  * Called to indicate that a probe -- or probes -- should be provided by a
8514  * specfied provider.  If the specified description is NULL, the provider will
8515  * be told to provide all of its probes.  (This is done whenever a new
8516  * consumer comes along, or whenever a retained enabling is to be matched.) If
8517  * the specified description is non-NULL, the provider is given the
8518  * opportunity to dynamically provide the specified probe, allowing providers
8519  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8520  * probes.)  If the provider is NULL, the operations will be applied to all
8521  * providers; if the provider is non-NULL the operations will only be applied
8522  * to the specified provider.  The dtrace_provider_lock must be held, and the
8523  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8524  * will need to grab the dtrace_lock when it reenters the framework through
8525  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8526  */
8527 static void
8528 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8529 {
8530         struct modctl *ctl;
8531         int all = 0;
8532 
8533         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8534 
8535         if (prv == NULL) {
8536                 all = 1;
8537                 prv = dtrace_provider;
8538         }
8539 
8540         do {
8541                 /*
8542                  * First, call the blanket provide operation.
8543                  */
8544                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8545 
8546                 /*
8547                  * Now call the per-module provide operation.  We will grab
8548                  * mod_lock to prevent the list from being modified.  Note
8549                  * that this also prevents the mod_busy bits from changing.
8550                  * (mod_busy can only be changed with mod_lock held.)
8551                  */
8552                 mutex_enter(&mod_lock);
8553 
8554                 ctl = &modules;
8555                 do {
8556                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8557                                 continue;
8558 
8559                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8560 
8561                 } while ((ctl = ctl->mod_next) != &modules);
8562 
8563                 mutex_exit(&mod_lock);
8564         } while (all && (prv = prv->dtpv_next) != NULL);
8565 }
8566 
8567 /*
8568  * Iterate over each probe, and call the Framework-to-Provider API function
8569  * denoted by offs.
8570  */
8571 static void
8572 dtrace_probe_foreach(uintptr_t offs)
8573 {
8574         dtrace_provider_t *prov;
8575         void (*func)(void *, dtrace_id_t, void *);
8576         dtrace_probe_t *probe;
8577         dtrace_icookie_t cookie;
8578         int i;
8579 
8580         /*
8581          * We disable interrupts to walk through the probe array.  This is
8582          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8583          * won't see stale data.
8584          */
8585         cookie = dtrace_interrupt_disable();
8586 
8587         for (i = 0; i < dtrace_nprobes; i++) {
8588                 if ((probe = dtrace_probes[i]) == NULL)
8589                         continue;
8590 
8591                 if (probe->dtpr_ecb == NULL) {
8592                         /*
8593                          * This probe isn't enabled -- don't call the function.
8594                          */
8595                         continue;
8596                 }
8597 
8598                 prov = probe->dtpr_provider;
8599                 func = *((void(**)(void *, dtrace_id_t, void *))
8600                     ((uintptr_t)&prov->dtpv_pops + offs));
8601 
8602                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8603         }
8604 
8605         dtrace_interrupt_enable(cookie);
8606 }
8607 
8608 static int
8609 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8610 {
8611         dtrace_probekey_t pkey;
8612         uint32_t priv;
8613         uid_t uid;
8614         zoneid_t zoneid;
8615 
8616         ASSERT(MUTEX_HELD(&dtrace_lock));
8617         dtrace_ecb_create_cache = NULL;
8618 
8619         if (desc == NULL) {
8620                 /*
8621                  * If we're passed a NULL description, we're being asked to
8622                  * create an ECB with a NULL probe.
8623                  */
8624                 (void) dtrace_ecb_create_enable(NULL, enab);
8625                 return (0);
8626         }
8627 
8628         dtrace_probekey(desc, &pkey);
8629         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8630             &priv, &uid, &zoneid);
8631 
8632         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8633             enab));
8634 }
8635 
8636 /*
8637  * DTrace Helper Provider Functions
8638  */
8639 static void
8640 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8641 {
8642         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8643         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8644         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8645 }
8646 
8647 static void
8648 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8649     const dof_provider_t *dofprov, char *strtab)
8650 {
8651         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8652         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8653             dofprov->dofpv_provattr);
8654         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8655             dofprov->dofpv_modattr);
8656         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8657             dofprov->dofpv_funcattr);
8658         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8659             dofprov->dofpv_nameattr);
8660         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8661             dofprov->dofpv_argsattr);
8662 }
8663 
8664 static void
8665 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8666 {
8667         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8668         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8669         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8670         dof_provider_t *provider;
8671         dof_probe_t *probe;
8672         uint32_t *off, *enoff;
8673         uint8_t *arg;
8674         char *strtab;
8675         uint_t i, nprobes;
8676         dtrace_helper_provdesc_t dhpv;
8677         dtrace_helper_probedesc_t dhpb;
8678         dtrace_meta_t *meta = dtrace_meta_pid;
8679         dtrace_mops_t *mops = &meta->dtm_mops;
8680         void *parg;
8681 
8682         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8683         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8684             provider->dofpv_strtab * dof->dofh_secsize);
8685         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8686             provider->dofpv_probes * dof->dofh_secsize);
8687         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8688             provider->dofpv_prargs * dof->dofh_secsize);
8689         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8690             provider->dofpv_proffs * dof->dofh_secsize);
8691 
8692         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8693         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8694         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8695         enoff = NULL;
8696 
8697         /*
8698          * See dtrace_helper_provider_validate().
8699          */
8700         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8701             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8702                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8703                     provider->dofpv_prenoffs * dof->dofh_secsize);
8704                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8705         }
8706 
8707         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8708 
8709         /*
8710          * Create the provider.
8711          */
8712         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8713 
8714         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8715                 return;
8716 
8717         meta->dtm_count++;
8718 
8719         /*
8720          * Create the probes.
8721          */
8722         for (i = 0; i < nprobes; i++) {
8723                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8724                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8725 
8726                 dhpb.dthpb_mod = dhp->dofhp_mod;
8727                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8728                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8729                 dhpb.dthpb_base = probe->dofpr_addr;
8730                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8731                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8732                 if (enoff != NULL) {
8733                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8734                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8735                 } else {
8736                         dhpb.dthpb_enoffs = NULL;
8737                         dhpb.dthpb_nenoffs = 0;
8738                 }
8739                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8740                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8741                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8742                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8743                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8744 
8745                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8746         }
8747 }
8748 
8749 static void
8750 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8751 {
8752         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8753         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8754         int i;
8755 
8756         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8757 
8758         for (i = 0; i < dof->dofh_secnum; i++) {
8759                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8760                     dof->dofh_secoff + i * dof->dofh_secsize);
8761 
8762                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8763                         continue;
8764 
8765                 dtrace_helper_provide_one(dhp, sec, pid);
8766         }
8767 
8768         /*
8769          * We may have just created probes, so we must now rematch against
8770          * any retained enablings.  Note that this call will acquire both
8771          * cpu_lock and dtrace_lock; the fact that we are holding
8772          * dtrace_meta_lock now is what defines the ordering with respect to
8773          * these three locks.
8774          */
8775         dtrace_enabling_matchall();
8776 }
8777 
8778 static void
8779 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8780 {
8781         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8782         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8783         dof_sec_t *str_sec;
8784         dof_provider_t *provider;
8785         char *strtab;
8786         dtrace_helper_provdesc_t dhpv;
8787         dtrace_meta_t *meta = dtrace_meta_pid;
8788         dtrace_mops_t *mops = &meta->dtm_mops;
8789 
8790         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8791         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8792             provider->dofpv_strtab * dof->dofh_secsize);
8793 
8794         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8795 
8796         /*
8797          * Create the provider.
8798          */
8799         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8800 
8801         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8802 
8803         meta->dtm_count--;
8804 }
8805 
8806 static void
8807 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8808 {
8809         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8810         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8811         int i;
8812 
8813         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8814 
8815         for (i = 0; i < dof->dofh_secnum; i++) {
8816                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8817                     dof->dofh_secoff + i * dof->dofh_secsize);
8818 
8819                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8820                         continue;
8821 
8822                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8823         }
8824 }
8825 
8826 /*
8827  * DTrace Meta Provider-to-Framework API Functions
8828  *
8829  * These functions implement the Meta Provider-to-Framework API, as described
8830  * in <sys/dtrace.h>.
8831  */
8832 int
8833 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8834     dtrace_meta_provider_id_t *idp)
8835 {
8836         dtrace_meta_t *meta;
8837         dtrace_helpers_t *help, *next;
8838         int i;
8839 
8840         *idp = DTRACE_METAPROVNONE;
8841 
8842         /*
8843          * We strictly don't need the name, but we hold onto it for
8844          * debuggability. All hail error queues!
8845          */
8846         if (name == NULL) {
8847                 cmn_err(CE_WARN, "failed to register meta-provider: "
8848                     "invalid name");
8849                 return (EINVAL);
8850         }
8851 
8852         if (mops == NULL ||
8853             mops->dtms_create_probe == NULL ||
8854             mops->dtms_provide_pid == NULL ||
8855             mops->dtms_remove_pid == NULL) {
8856                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8857                     "invalid ops", name);
8858                 return (EINVAL);
8859         }
8860 
8861         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8862         meta->dtm_mops = *mops;
8863         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8864         (void) strcpy(meta->dtm_name, name);
8865         meta->dtm_arg = arg;
8866 
8867         mutex_enter(&dtrace_meta_lock);
8868         mutex_enter(&dtrace_lock);
8869 
8870         if (dtrace_meta_pid != NULL) {
8871                 mutex_exit(&dtrace_lock);
8872                 mutex_exit(&dtrace_meta_lock);
8873                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8874                     "user-land meta-provider exists", name);
8875                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8876                 kmem_free(meta, sizeof (dtrace_meta_t));
8877                 return (EINVAL);
8878         }
8879 
8880         dtrace_meta_pid = meta;
8881         *idp = (dtrace_meta_provider_id_t)meta;
8882 
8883         /*
8884          * If there are providers and probes ready to go, pass them
8885          * off to the new meta provider now.
8886          */
8887 
8888         help = dtrace_deferred_pid;
8889         dtrace_deferred_pid = NULL;
8890 
8891         mutex_exit(&dtrace_lock);
8892 
8893         while (help != NULL) {
8894                 for (i = 0; i < help->dthps_nprovs; i++) {
8895                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8896                             help->dthps_pid);
8897                 }
8898 
8899                 next = help->dthps_next;
8900                 help->dthps_next = NULL;
8901                 help->dthps_prev = NULL;
8902                 help->dthps_deferred = 0;
8903                 help = next;
8904         }
8905 
8906         mutex_exit(&dtrace_meta_lock);
8907 
8908         return (0);
8909 }
8910 
8911 int
8912 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8913 {
8914         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8915 
8916         mutex_enter(&dtrace_meta_lock);
8917         mutex_enter(&dtrace_lock);
8918 
8919         if (old == dtrace_meta_pid) {
8920                 pp = &dtrace_meta_pid;
8921         } else {
8922                 panic("attempt to unregister non-existent "
8923                     "dtrace meta-provider %p\n", (void *)old);
8924         }
8925 
8926         if (old->dtm_count != 0) {
8927                 mutex_exit(&dtrace_lock);
8928                 mutex_exit(&dtrace_meta_lock);
8929                 return (EBUSY);
8930         }
8931 
8932         *pp = NULL;
8933 
8934         mutex_exit(&dtrace_lock);
8935         mutex_exit(&dtrace_meta_lock);
8936 
8937         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8938         kmem_free(old, sizeof (dtrace_meta_t));
8939 
8940         return (0);
8941 }
8942 
8943 
8944 /*
8945  * DTrace DIF Object Functions
8946  */
8947 static int
8948 dtrace_difo_err(uint_t pc, const char *format, ...)
8949 {
8950         if (dtrace_err_verbose) {
8951                 va_list alist;
8952 
8953                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8954                 va_start(alist, format);
8955                 (void) vuprintf(format, alist);
8956                 va_end(alist);
8957         }
8958 
8959 #ifdef DTRACE_ERRDEBUG
8960         dtrace_errdebug(format);
8961 #endif
8962         return (1);
8963 }
8964 
8965 /*
8966  * Validate a DTrace DIF object by checking the IR instructions.  The following
8967  * rules are currently enforced by dtrace_difo_validate():
8968  *
8969  * 1. Each instruction must have a valid opcode
8970  * 2. Each register, string, variable, or subroutine reference must be valid
8971  * 3. No instruction can modify register %r0 (must be zero)
8972  * 4. All instruction reserved bits must be set to zero
8973  * 5. The last instruction must be a "ret" instruction
8974  * 6. All branch targets must reference a valid instruction _after_ the branch
8975  */
8976 static int
8977 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8978     cred_t *cr)
8979 {
8980         int err = 0, i;
8981         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8982         int kcheckload;
8983         uint_t pc;
8984 
8985         kcheckload = cr == NULL ||
8986             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8987 
8988         dp->dtdo_destructive = 0;
8989 
8990         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8991                 dif_instr_t instr = dp->dtdo_buf[pc];
8992 
8993                 uint_t r1 = DIF_INSTR_R1(instr);
8994                 uint_t r2 = DIF_INSTR_R2(instr);
8995                 uint_t rd = DIF_INSTR_RD(instr);
8996                 uint_t rs = DIF_INSTR_RS(instr);
8997                 uint_t label = DIF_INSTR_LABEL(instr);
8998                 uint_t v = DIF_INSTR_VAR(instr);
8999                 uint_t subr = DIF_INSTR_SUBR(instr);
9000                 uint_t type = DIF_INSTR_TYPE(instr);
9001                 uint_t op = DIF_INSTR_OP(instr);
9002 
9003                 switch (op) {
9004                 case DIF_OP_OR:
9005                 case DIF_OP_XOR:
9006                 case DIF_OP_AND:
9007                 case DIF_OP_SLL:
9008                 case DIF_OP_SRL:
9009                 case DIF_OP_SRA:
9010                 case DIF_OP_SUB:
9011                 case DIF_OP_ADD:
9012                 case DIF_OP_MUL:
9013                 case DIF_OP_SDIV:
9014                 case DIF_OP_UDIV:
9015                 case DIF_OP_SREM:
9016                 case DIF_OP_UREM:
9017                 case DIF_OP_COPYS:
9018                         if (r1 >= nregs)
9019                                 err += efunc(pc, "invalid register %u\n", r1);
9020                         if (r2 >= nregs)
9021                                 err += efunc(pc, "invalid register %u\n", r2);
9022                         if (rd >= nregs)
9023                                 err += efunc(pc, "invalid register %u\n", rd);
9024                         if (rd == 0)
9025                                 err += efunc(pc, "cannot write to %r0\n");
9026                         break;
9027                 case DIF_OP_NOT:
9028                 case DIF_OP_MOV:
9029                 case DIF_OP_ALLOCS:
9030                         if (r1 >= nregs)
9031                                 err += efunc(pc, "invalid register %u\n", r1);
9032                         if (r2 != 0)
9033                                 err += efunc(pc, "non-zero reserved bits\n");
9034                         if (rd >= nregs)
9035                                 err += efunc(pc, "invalid register %u\n", rd);
9036                         if (rd == 0)
9037                                 err += efunc(pc, "cannot write to %r0\n");
9038                         break;
9039                 case DIF_OP_LDSB:
9040                 case DIF_OP_LDSH:
9041                 case DIF_OP_LDSW:
9042                 case DIF_OP_LDUB:
9043                 case DIF_OP_LDUH:
9044                 case DIF_OP_LDUW:
9045                 case DIF_OP_LDX:
9046                         if (r1 >= nregs)
9047                                 err += efunc(pc, "invalid register %u\n", r1);
9048                         if (r2 != 0)
9049                                 err += efunc(pc, "non-zero reserved bits\n");
9050                         if (rd >= nregs)
9051                                 err += efunc(pc, "invalid register %u\n", rd);
9052                         if (rd == 0)
9053                                 err += efunc(pc, "cannot write to %r0\n");
9054                         if (kcheckload)
9055                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9056                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9057                         break;
9058                 case DIF_OP_RLDSB:
9059                 case DIF_OP_RLDSH:
9060                 case DIF_OP_RLDSW:
9061                 case DIF_OP_RLDUB:
9062                 case DIF_OP_RLDUH:
9063                 case DIF_OP_RLDUW:
9064                 case DIF_OP_RLDX:
9065                         if (r1 >= nregs)
9066                                 err += efunc(pc, "invalid register %u\n", r1);
9067                         if (r2 != 0)
9068                                 err += efunc(pc, "non-zero reserved bits\n");
9069                         if (rd >= nregs)
9070                                 err += efunc(pc, "invalid register %u\n", rd);
9071                         if (rd == 0)
9072                                 err += efunc(pc, "cannot write to %r0\n");
9073                         break;
9074                 case DIF_OP_ULDSB:
9075                 case DIF_OP_ULDSH:
9076                 case DIF_OP_ULDSW:
9077                 case DIF_OP_ULDUB:
9078                 case DIF_OP_ULDUH:
9079                 case DIF_OP_ULDUW:
9080                 case DIF_OP_ULDX:
9081                         if (r1 >= nregs)
9082                                 err += efunc(pc, "invalid register %u\n", r1);
9083                         if (r2 != 0)
9084                                 err += efunc(pc, "non-zero reserved bits\n");
9085                         if (rd >= nregs)
9086                                 err += efunc(pc, "invalid register %u\n", rd);
9087                         if (rd == 0)
9088                                 err += efunc(pc, "cannot write to %r0\n");
9089                         break;
9090                 case DIF_OP_STB:
9091                 case DIF_OP_STH:
9092                 case DIF_OP_STW:
9093                 case DIF_OP_STX:
9094                         if (r1 >= nregs)
9095                                 err += efunc(pc, "invalid register %u\n", r1);
9096                         if (r2 != 0)
9097                                 err += efunc(pc, "non-zero reserved bits\n");
9098                         if (rd >= nregs)
9099                                 err += efunc(pc, "invalid register %u\n", rd);
9100                         if (rd == 0)
9101                                 err += efunc(pc, "cannot write to 0 address\n");
9102                         break;
9103                 case DIF_OP_CMP:
9104                 case DIF_OP_SCMP:
9105                         if (r1 >= nregs)
9106                                 err += efunc(pc, "invalid register %u\n", r1);
9107                         if (r2 >= nregs)
9108                                 err += efunc(pc, "invalid register %u\n", r2);
9109                         if (rd != 0)
9110                                 err += efunc(pc, "non-zero reserved bits\n");
9111                         break;
9112                 case DIF_OP_TST:
9113                         if (r1 >= nregs)
9114                                 err += efunc(pc, "invalid register %u\n", r1);
9115                         if (r2 != 0 || rd != 0)
9116                                 err += efunc(pc, "non-zero reserved bits\n");
9117                         break;
9118                 case DIF_OP_BA:
9119                 case DIF_OP_BE:
9120                 case DIF_OP_BNE:
9121                 case DIF_OP_BG:
9122                 case DIF_OP_BGU:
9123                 case DIF_OP_BGE:
9124                 case DIF_OP_BGEU:
9125                 case DIF_OP_BL:
9126                 case DIF_OP_BLU:
9127                 case DIF_OP_BLE:
9128                 case DIF_OP_BLEU:
9129                         if (label >= dp->dtdo_len) {
9130                                 err += efunc(pc, "invalid branch target %u\n",
9131                                     label);
9132                         }
9133                         if (label <= pc) {
9134                                 err += efunc(pc, "backward branch to %u\n",
9135                                     label);
9136                         }
9137                         break;
9138                 case DIF_OP_RET:
9139                         if (r1 != 0 || r2 != 0)
9140                                 err += efunc(pc, "non-zero reserved bits\n");
9141                         if (rd >= nregs)
9142                                 err += efunc(pc, "invalid register %u\n", rd);
9143                         break;
9144                 case DIF_OP_NOP:
9145                 case DIF_OP_POPTS:
9146                 case DIF_OP_FLUSHTS:
9147                         if (r1 != 0 || r2 != 0 || rd != 0)
9148                                 err += efunc(pc, "non-zero reserved bits\n");
9149                         break;
9150                 case DIF_OP_SETX:
9151                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9152                                 err += efunc(pc, "invalid integer ref %u\n",
9153                                     DIF_INSTR_INTEGER(instr));
9154                         }
9155                         if (rd >= nregs)
9156                                 err += efunc(pc, "invalid register %u\n", rd);
9157                         if (rd == 0)
9158                                 err += efunc(pc, "cannot write to %r0\n");
9159                         break;
9160                 case DIF_OP_SETS:
9161                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9162                                 err += efunc(pc, "invalid string ref %u\n",
9163                                     DIF_INSTR_STRING(instr));
9164                         }
9165                         if (rd >= nregs)
9166                                 err += efunc(pc, "invalid register %u\n", rd);
9167                         if (rd == 0)
9168                                 err += efunc(pc, "cannot write to %r0\n");
9169                         break;
9170                 case DIF_OP_LDGA:
9171                 case DIF_OP_LDTA:
9172                         if (r1 > DIF_VAR_ARRAY_MAX)
9173                                 err += efunc(pc, "invalid array %u\n", r1);
9174                         if (r2 >= nregs)
9175                                 err += efunc(pc, "invalid register %u\n", r2);
9176                         if (rd >= nregs)
9177                                 err += efunc(pc, "invalid register %u\n", rd);
9178                         if (rd == 0)
9179                                 err += efunc(pc, "cannot write to %r0\n");
9180                         break;
9181                 case DIF_OP_LDGS:
9182                 case DIF_OP_LDTS:
9183                 case DIF_OP_LDLS:
9184                 case DIF_OP_LDGAA:
9185                 case DIF_OP_LDTAA:
9186                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9187                                 err += efunc(pc, "invalid variable %u\n", v);
9188                         if (rd >= nregs)
9189                                 err += efunc(pc, "invalid register %u\n", rd);
9190                         if (rd == 0)
9191                                 err += efunc(pc, "cannot write to %r0\n");
9192                         break;
9193                 case DIF_OP_STGS:
9194                 case DIF_OP_STTS:
9195                 case DIF_OP_STLS:
9196                 case DIF_OP_STGAA:
9197                 case DIF_OP_STTAA:
9198                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9199                                 err += efunc(pc, "invalid variable %u\n", v);
9200                         if (rs >= nregs)
9201                                 err += efunc(pc, "invalid register %u\n", rd);
9202                         break;
9203                 case DIF_OP_CALL:
9204                         if (subr > DIF_SUBR_MAX)
9205                                 err += efunc(pc, "invalid subr %u\n", subr);
9206                         if (rd >= nregs)
9207                                 err += efunc(pc, "invalid register %u\n", rd);
9208                         if (rd == 0)
9209                                 err += efunc(pc, "cannot write to %r0\n");
9210 
9211                         if (subr == DIF_SUBR_COPYOUT ||
9212                             subr == DIF_SUBR_COPYOUTSTR) {
9213                                 dp->dtdo_destructive = 1;
9214                         }
9215 
9216                         if (subr == DIF_SUBR_GETF) {
9217                                 /*
9218                                  * If we have a getf() we need to record that
9219                                  * in our state.  Note that our state can be
9220                                  * NULL if this is a helper -- but in that
9221                                  * case, the call to getf() is itself illegal,
9222                                  * and will be caught (slightly later) when
9223                                  * the helper is validated.
9224                                  */
9225                                 if (vstate->dtvs_state != NULL)
9226                                         vstate->dtvs_state->dts_getf++;
9227                         }
9228 
9229                         break;
9230                 case DIF_OP_PUSHTR:
9231                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9232                                 err += efunc(pc, "invalid ref type %u\n", type);
9233                         if (r2 >= nregs)
9234                                 err += efunc(pc, "invalid register %u\n", r2);
9235                         if (rs >= nregs)
9236                                 err += efunc(pc, "invalid register %u\n", rs);
9237                         break;
9238                 case DIF_OP_PUSHTV:
9239                         if (type != DIF_TYPE_CTF)
9240                                 err += efunc(pc, "invalid val type %u\n", type);
9241                         if (r2 >= nregs)
9242                                 err += efunc(pc, "invalid register %u\n", r2);
9243                         if (rs >= nregs)
9244                                 err += efunc(pc, "invalid register %u\n", rs);
9245                         break;
9246                 default:
9247                         err += efunc(pc, "invalid opcode %u\n",
9248                             DIF_INSTR_OP(instr));
9249                 }
9250         }
9251 
9252         if (dp->dtdo_len != 0 &&
9253             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9254                 err += efunc(dp->dtdo_len - 1,
9255                     "expected 'ret' as last DIF instruction\n");
9256         }
9257 
9258         if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9259                 /*
9260                  * If we're not returning by reference, the size must be either
9261                  * 0 or the size of one of the base types.
9262                  */
9263                 switch (dp->dtdo_rtype.dtdt_size) {
9264                 case 0:
9265                 case sizeof (uint8_t):
9266                 case sizeof (uint16_t):
9267                 case sizeof (uint32_t):
9268                 case sizeof (uint64_t):
9269                         break;
9270 
9271                 default:
9272                         err += efunc(dp->dtdo_len - 1, "bad return size\n");
9273                 }
9274         }
9275 
9276         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9277                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9278                 dtrace_diftype_t *vt, *et;
9279                 uint_t id, ndx;
9280 
9281                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9282                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
9283                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9284                         err += efunc(i, "unrecognized variable scope %d\n",
9285                             v->dtdv_scope);
9286                         break;
9287                 }
9288 
9289                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9290                     v->dtdv_kind != DIFV_KIND_SCALAR) {
9291                         err += efunc(i, "unrecognized variable type %d\n",
9292                             v->dtdv_kind);
9293                         break;
9294                 }
9295 
9296                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9297                         err += efunc(i, "%d exceeds variable id limit\n", id);
9298                         break;
9299                 }
9300 
9301                 if (id < DIF_VAR_OTHER_UBASE)
9302                         continue;
9303 
9304                 /*
9305                  * For user-defined variables, we need to check that this
9306                  * definition is identical to any previous definition that we
9307                  * encountered.
9308                  */
9309                 ndx = id - DIF_VAR_OTHER_UBASE;
9310 
9311                 switch (v->dtdv_scope) {
9312                 case DIFV_SCOPE_GLOBAL:
9313                         if (ndx < vstate->dtvs_nglobals) {
9314                                 dtrace_statvar_t *svar;
9315 
9316                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9317                                         existing = &svar->dtsv_var;
9318                         }
9319 
9320                         break;
9321 
9322                 case DIFV_SCOPE_THREAD:
9323                         if (ndx < vstate->dtvs_ntlocals)
9324                                 existing = &vstate->dtvs_tlocals[ndx];
9325                         break;
9326 
9327                 case DIFV_SCOPE_LOCAL:
9328                         if (ndx < vstate->dtvs_nlocals) {
9329                                 dtrace_statvar_t *svar;
9330 
9331                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9332                                         existing = &svar->dtsv_var;
9333                         }
9334 
9335                         break;
9336                 }
9337 
9338                 vt = &v->dtdv_type;
9339 
9340                 if (vt->dtdt_flags & DIF_TF_BYREF) {
9341                         if (vt->dtdt_size == 0) {
9342                                 err += efunc(i, "zero-sized variable\n");
9343                                 break;
9344                         }
9345 
9346                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9347                             vt->dtdt_size > dtrace_global_maxsize) {
9348                                 err += efunc(i, "oversized by-ref global\n");
9349                                 break;
9350                         }
9351                 }
9352 
9353                 if (existing == NULL || existing->dtdv_id == 0)
9354                         continue;
9355 
9356                 ASSERT(existing->dtdv_id == v->dtdv_id);
9357                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9358 
9359                 if (existing->dtdv_kind != v->dtdv_kind)
9360                         err += efunc(i, "%d changed variable kind\n", id);
9361 
9362                 et = &existing->dtdv_type;
9363 
9364                 if (vt->dtdt_flags != et->dtdt_flags) {
9365                         err += efunc(i, "%d changed variable type flags\n", id);
9366                         break;
9367                 }
9368 
9369                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9370                         err += efunc(i, "%d changed variable type size\n", id);
9371                         break;
9372                 }
9373         }
9374 
9375         return (err);
9376 }
9377 
9378 /*
9379  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9380  * are much more constrained than normal DIFOs.  Specifically, they may
9381  * not:
9382  *
9383  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9384  *    miscellaneous string routines
9385  * 2. Access DTrace variables other than the args[] array, and the
9386  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9387  * 3. Have thread-local variables.
9388  * 4. Have dynamic variables.
9389  */
9390 static int
9391 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9392 {
9393         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9394         int err = 0;
9395         uint_t pc;
9396 
9397         for (pc = 0; pc < dp->dtdo_len; pc++) {
9398                 dif_instr_t instr = dp->dtdo_buf[pc];
9399 
9400                 uint_t v = DIF_INSTR_VAR(instr);
9401                 uint_t subr = DIF_INSTR_SUBR(instr);
9402                 uint_t op = DIF_INSTR_OP(instr);
9403 
9404                 switch (op) {
9405                 case DIF_OP_OR:
9406                 case DIF_OP_XOR:
9407                 case DIF_OP_AND:
9408                 case DIF_OP_SLL:
9409                 case DIF_OP_SRL:
9410                 case DIF_OP_SRA:
9411                 case DIF_OP_SUB:
9412                 case DIF_OP_ADD:
9413                 case DIF_OP_MUL:
9414                 case DIF_OP_SDIV:
9415                 case DIF_OP_UDIV:
9416                 case DIF_OP_SREM:
9417                 case DIF_OP_UREM:
9418                 case DIF_OP_COPYS:
9419                 case DIF_OP_NOT:
9420                 case DIF_OP_MOV:
9421                 case DIF_OP_RLDSB:
9422                 case DIF_OP_RLDSH:
9423                 case DIF_OP_RLDSW:
9424                 case DIF_OP_RLDUB:
9425                 case DIF_OP_RLDUH:
9426                 case DIF_OP_RLDUW:
9427                 case DIF_OP_RLDX:
9428                 case DIF_OP_ULDSB:
9429                 case DIF_OP_ULDSH:
9430                 case DIF_OP_ULDSW:
9431                 case DIF_OP_ULDUB:
9432                 case DIF_OP_ULDUH:
9433                 case DIF_OP_ULDUW:
9434                 case DIF_OP_ULDX:
9435                 case DIF_OP_STB:
9436                 case DIF_OP_STH:
9437                 case DIF_OP_STW:
9438                 case DIF_OP_STX:
9439                 case DIF_OP_ALLOCS:
9440                 case DIF_OP_CMP:
9441                 case DIF_OP_SCMP:
9442                 case DIF_OP_TST:
9443                 case DIF_OP_BA:
9444                 case DIF_OP_BE:
9445                 case DIF_OP_BNE:
9446                 case DIF_OP_BG:
9447                 case DIF_OP_BGU:
9448                 case DIF_OP_BGE:
9449                 case DIF_OP_BGEU:
9450                 case DIF_OP_BL:
9451                 case DIF_OP_BLU:
9452                 case DIF_OP_BLE:
9453                 case DIF_OP_BLEU:
9454                 case DIF_OP_RET:
9455                 case DIF_OP_NOP:
9456                 case DIF_OP_POPTS:
9457                 case DIF_OP_FLUSHTS:
9458                 case DIF_OP_SETX:
9459                 case DIF_OP_SETS:
9460                 case DIF_OP_LDGA:
9461                 case DIF_OP_LDLS:
9462                 case DIF_OP_STGS:
9463                 case DIF_OP_STLS:
9464                 case DIF_OP_PUSHTR:
9465                 case DIF_OP_PUSHTV:
9466                         break;
9467 
9468                 case DIF_OP_LDGS:
9469                         if (v >= DIF_VAR_OTHER_UBASE)
9470                                 break;
9471 
9472                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9473                                 break;
9474 
9475                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9476                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9477                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9478                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9479                                 break;
9480 
9481                         err += efunc(pc, "illegal variable %u\n", v);
9482                         break;
9483 
9484                 case DIF_OP_LDTA:
9485                 case DIF_OP_LDTS:
9486                 case DIF_OP_LDGAA:
9487                 case DIF_OP_LDTAA:
9488                         err += efunc(pc, "illegal dynamic variable load\n");
9489                         break;
9490 
9491                 case DIF_OP_STTS:
9492                 case DIF_OP_STGAA:
9493                 case DIF_OP_STTAA:
9494                         err += efunc(pc, "illegal dynamic variable store\n");
9495                         break;
9496 
9497                 case DIF_OP_CALL:
9498                         if (subr == DIF_SUBR_ALLOCA ||
9499                             subr == DIF_SUBR_BCOPY ||
9500                             subr == DIF_SUBR_COPYIN ||
9501                             subr == DIF_SUBR_COPYINTO ||
9502                             subr == DIF_SUBR_COPYINSTR ||
9503                             subr == DIF_SUBR_INDEX ||
9504                             subr == DIF_SUBR_INET_NTOA ||
9505                             subr == DIF_SUBR_INET_NTOA6 ||
9506                             subr == DIF_SUBR_INET_NTOP ||
9507                             subr == DIF_SUBR_JSON ||
9508                             subr == DIF_SUBR_LLTOSTR ||
9509                             subr == DIF_SUBR_STRTOLL ||
9510                             subr == DIF_SUBR_RINDEX ||
9511                             subr == DIF_SUBR_STRCHR ||
9512                             subr == DIF_SUBR_STRJOIN ||
9513                             subr == DIF_SUBR_STRRCHR ||
9514                             subr == DIF_SUBR_STRSTR ||
9515                             subr == DIF_SUBR_HTONS ||
9516                             subr == DIF_SUBR_HTONL ||
9517                             subr == DIF_SUBR_HTONLL ||
9518                             subr == DIF_SUBR_NTOHS ||
9519                             subr == DIF_SUBR_NTOHL ||
9520                             subr == DIF_SUBR_NTOHLL)
9521                                 break;
9522 
9523                         err += efunc(pc, "invalid subr %u\n", subr);
9524                         break;
9525 
9526                 default:
9527                         err += efunc(pc, "invalid opcode %u\n",
9528                             DIF_INSTR_OP(instr));
9529                 }
9530         }
9531 
9532         return (err);
9533 }
9534 
9535 /*
9536  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9537  * basis; 0 if not.
9538  */
9539 static int
9540 dtrace_difo_cacheable(dtrace_difo_t *dp)
9541 {
9542         int i;
9543 
9544         if (dp == NULL)
9545                 return (0);
9546 
9547         for (i = 0; i < dp->dtdo_varlen; i++) {
9548                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9549 
9550                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9551                         continue;
9552 
9553                 switch (v->dtdv_id) {
9554                 case DIF_VAR_CURTHREAD:
9555                 case DIF_VAR_PID:
9556                 case DIF_VAR_TID:
9557                 case DIF_VAR_EXECNAME:
9558                 case DIF_VAR_ZONENAME:
9559                         break;
9560 
9561                 default:
9562                         return (0);
9563                 }
9564         }
9565 
9566         /*
9567          * This DIF object may be cacheable.  Now we need to look for any
9568          * array loading instructions, any memory loading instructions, or
9569          * any stores to thread-local variables.
9570          */
9571         for (i = 0; i < dp->dtdo_len; i++) {
9572                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9573 
9574                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9575                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9576                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9577                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9578                         return (0);
9579         }
9580 
9581         return (1);
9582 }
9583 
9584 static void
9585 dtrace_difo_hold(dtrace_difo_t *dp)
9586 {
9587         int i;
9588 
9589         ASSERT(MUTEX_HELD(&dtrace_lock));
9590 
9591         dp->dtdo_refcnt++;
9592         ASSERT(dp->dtdo_refcnt != 0);
9593 
9594         /*
9595          * We need to check this DIF object for references to the variable
9596          * DIF_VAR_VTIMESTAMP.
9597          */
9598         for (i = 0; i < dp->dtdo_varlen; i++) {
9599                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9600 
9601                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9602                         continue;
9603 
9604                 if (dtrace_vtime_references++ == 0)
9605                         dtrace_vtime_enable();
9606         }
9607 }
9608 
9609 /*
9610  * This routine calculates the dynamic variable chunksize for a given DIF
9611  * object.  The calculation is not fool-proof, and can probably be tricked by
9612  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9613  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9614  * if a dynamic variable size exceeds the chunksize.
9615  */
9616 static void
9617 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9618 {
9619         uint64_t sval;
9620         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9621         const dif_instr_t *text = dp->dtdo_buf;
9622         uint_t pc, srd = 0;
9623         uint_t ttop = 0;
9624         size_t size, ksize;
9625         uint_t id, i;
9626 
9627         for (pc = 0; pc < dp->dtdo_len; pc++) {
9628                 dif_instr_t instr = text[pc];
9629                 uint_t op = DIF_INSTR_OP(instr);
9630                 uint_t rd = DIF_INSTR_RD(instr);
9631                 uint_t r1 = DIF_INSTR_R1(instr);
9632                 uint_t nkeys = 0;
9633                 uchar_t scope;
9634 
9635                 dtrace_key_t *key = tupregs;
9636 
9637                 switch (op) {
9638                 case DIF_OP_SETX:
9639                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9640                         srd = rd;
9641                         continue;
9642 
9643                 case DIF_OP_STTS:
9644                         key = &tupregs[DIF_DTR_NREGS];
9645                         key[0].dttk_size = 0;
9646                         key[1].dttk_size = 0;
9647                         nkeys = 2;
9648                         scope = DIFV_SCOPE_THREAD;
9649                         break;
9650 
9651                 case DIF_OP_STGAA:
9652                 case DIF_OP_STTAA:
9653                         nkeys = ttop;
9654 
9655                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9656                                 key[nkeys++].dttk_size = 0;
9657 
9658                         key[nkeys++].dttk_size = 0;
9659 
9660                         if (op == DIF_OP_STTAA) {
9661                                 scope = DIFV_SCOPE_THREAD;
9662                         } else {
9663                                 scope = DIFV_SCOPE_GLOBAL;
9664                         }
9665 
9666                         break;
9667 
9668                 case DIF_OP_PUSHTR:
9669                         if (ttop == DIF_DTR_NREGS)
9670                                 return;
9671 
9672                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9673                                 /*
9674                                  * If the register for the size of the "pushtr"
9675                                  * is %r0 (or the value is 0) and the type is
9676                                  * a string, we'll use the system-wide default
9677                                  * string size.
9678                                  */
9679                                 tupregs[ttop++].dttk_size =
9680                                     dtrace_strsize_default;
9681                         } else {
9682                                 if (srd == 0)
9683                                         return;
9684 
9685                                 tupregs[ttop++].dttk_size = sval;
9686                         }
9687 
9688                         break;
9689 
9690                 case DIF_OP_PUSHTV:
9691                         if (ttop == DIF_DTR_NREGS)
9692                                 return;
9693 
9694                         tupregs[ttop++].dttk_size = 0;
9695                         break;
9696 
9697                 case DIF_OP_FLUSHTS:
9698                         ttop = 0;
9699                         break;
9700 
9701                 case DIF_OP_POPTS:
9702                         if (ttop != 0)
9703                                 ttop--;
9704                         break;
9705                 }
9706 
9707                 sval = 0;
9708                 srd = 0;
9709 
9710                 if (nkeys == 0)
9711                         continue;
9712 
9713                 /*
9714                  * We have a dynamic variable allocation; calculate its size.
9715                  */
9716                 for (ksize = 0, i = 0; i < nkeys; i++)
9717                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9718 
9719                 size = sizeof (dtrace_dynvar_t);
9720                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9721                 size += ksize;
9722 
9723                 /*
9724                  * Now we need to determine the size of the stored data.
9725                  */
9726                 id = DIF_INSTR_VAR(instr);
9727 
9728                 for (i = 0; i < dp->dtdo_varlen; i++) {
9729                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9730 
9731                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9732                                 size += v->dtdv_type.dtdt_size;
9733                                 break;
9734                         }
9735                 }
9736 
9737                 if (i == dp->dtdo_varlen)
9738                         return;
9739 
9740                 /*
9741                  * We have the size.  If this is larger than the chunk size
9742                  * for our dynamic variable state, reset the chunk size.
9743                  */
9744                 size = P2ROUNDUP(size, sizeof (uint64_t));
9745 
9746                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9747                         vstate->dtvs_dynvars.dtds_chunksize = size;
9748         }
9749 }
9750 
9751 static void
9752 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9753 {
9754         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9755         uint_t id;
9756 
9757         ASSERT(MUTEX_HELD(&dtrace_lock));
9758         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9759 
9760         for (i = 0; i < dp->dtdo_varlen; i++) {
9761                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9762                 dtrace_statvar_t *svar, ***svarp;
9763                 size_t dsize = 0;
9764                 uint8_t scope = v->dtdv_scope;
9765                 int *np;
9766 
9767                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9768                         continue;
9769 
9770                 id -= DIF_VAR_OTHER_UBASE;
9771 
9772                 switch (scope) {
9773                 case DIFV_SCOPE_THREAD:
9774                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9775                                 dtrace_difv_t *tlocals;
9776 
9777                                 if ((ntlocals = (otlocals << 1)) == 0)
9778                                         ntlocals = 1;
9779 
9780                                 osz = otlocals * sizeof (dtrace_difv_t);
9781                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9782 
9783                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9784 
9785                                 if (osz != 0) {
9786                                         bcopy(vstate->dtvs_tlocals,
9787                                             tlocals, osz);
9788                                         kmem_free(vstate->dtvs_tlocals, osz);
9789                                 }
9790 
9791                                 vstate->dtvs_tlocals = tlocals;
9792                                 vstate->dtvs_ntlocals = ntlocals;
9793                         }
9794 
9795                         vstate->dtvs_tlocals[id] = *v;
9796                         continue;
9797 
9798                 case DIFV_SCOPE_LOCAL:
9799                         np = &vstate->dtvs_nlocals;
9800                         svarp = &vstate->dtvs_locals;
9801 
9802                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9803                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9804                                     sizeof (uint64_t));
9805                         else
9806                                 dsize = NCPU * sizeof (uint64_t);
9807 
9808                         break;
9809 
9810                 case DIFV_SCOPE_GLOBAL:
9811                         np = &vstate->dtvs_nglobals;
9812                         svarp = &vstate->dtvs_globals;
9813 
9814                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9815                                 dsize = v->dtdv_type.dtdt_size +
9816                                     sizeof (uint64_t);
9817 
9818                         break;
9819 
9820                 default:
9821                         ASSERT(0);
9822                 }
9823 
9824                 while (id >= (oldsvars = *np)) {
9825                         dtrace_statvar_t **statics;
9826                         int newsvars, oldsize, newsize;
9827 
9828                         if ((newsvars = (oldsvars << 1)) == 0)
9829                                 newsvars = 1;
9830 
9831                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9832                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9833 
9834                         statics = kmem_zalloc(newsize, KM_SLEEP);
9835 
9836                         if (oldsize != 0) {
9837                                 bcopy(*svarp, statics, oldsize);
9838                                 kmem_free(*svarp, oldsize);
9839                         }
9840 
9841                         *svarp = statics;
9842                         *np = newsvars;
9843                 }
9844 
9845                 if ((svar = (*svarp)[id]) == NULL) {
9846                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9847                         svar->dtsv_var = *v;
9848 
9849                         if ((svar->dtsv_size = dsize) != 0) {
9850                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9851                                     kmem_zalloc(dsize, KM_SLEEP);
9852                         }
9853 
9854                         (*svarp)[id] = svar;
9855                 }
9856 
9857                 svar->dtsv_refcnt++;
9858         }
9859 
9860         dtrace_difo_chunksize(dp, vstate);
9861         dtrace_difo_hold(dp);
9862 }
9863 
9864 static dtrace_difo_t *
9865 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9866 {
9867         dtrace_difo_t *new;
9868         size_t sz;
9869 
9870         ASSERT(dp->dtdo_buf != NULL);
9871         ASSERT(dp->dtdo_refcnt != 0);
9872 
9873         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9874 
9875         ASSERT(dp->dtdo_buf != NULL);
9876         sz = dp->dtdo_len * sizeof (dif_instr_t);
9877         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9878         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9879         new->dtdo_len = dp->dtdo_len;
9880 
9881         if (dp->dtdo_strtab != NULL) {
9882                 ASSERT(dp->dtdo_strlen != 0);
9883                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9884                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9885                 new->dtdo_strlen = dp->dtdo_strlen;
9886         }
9887 
9888         if (dp->dtdo_inttab != NULL) {
9889                 ASSERT(dp->dtdo_intlen != 0);
9890                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9891                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9892                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9893                 new->dtdo_intlen = dp->dtdo_intlen;
9894         }
9895 
9896         if (dp->dtdo_vartab != NULL) {
9897                 ASSERT(dp->dtdo_varlen != 0);
9898                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9899                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9900                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9901                 new->dtdo_varlen = dp->dtdo_varlen;
9902         }
9903 
9904         dtrace_difo_init(new, vstate);
9905         return (new);
9906 }
9907 
9908 static void
9909 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9910 {
9911         int i;
9912 
9913         ASSERT(dp->dtdo_refcnt == 0);
9914 
9915         for (i = 0; i < dp->dtdo_varlen; i++) {
9916                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9917                 dtrace_statvar_t *svar, **svarp;
9918                 uint_t id;
9919                 uint8_t scope = v->dtdv_scope;
9920                 int *np;
9921 
9922                 switch (scope) {
9923                 case DIFV_SCOPE_THREAD:
9924                         continue;
9925 
9926                 case DIFV_SCOPE_LOCAL:
9927                         np = &vstate->dtvs_nlocals;
9928                         svarp = vstate->dtvs_locals;
9929                         break;
9930 
9931                 case DIFV_SCOPE_GLOBAL:
9932                         np = &vstate->dtvs_nglobals;
9933                         svarp = vstate->dtvs_globals;
9934                         break;
9935 
9936                 default:
9937                         ASSERT(0);
9938                 }
9939 
9940                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9941                         continue;
9942 
9943                 id -= DIF_VAR_OTHER_UBASE;
9944                 ASSERT(id < *np);
9945 
9946                 svar = svarp[id];
9947                 ASSERT(svar != NULL);
9948                 ASSERT(svar->dtsv_refcnt > 0);
9949 
9950                 if (--svar->dtsv_refcnt > 0)
9951                         continue;
9952 
9953                 if (svar->dtsv_size != 0) {
9954                         ASSERT(svar->dtsv_data != NULL);
9955                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9956                             svar->dtsv_size);
9957                 }
9958 
9959                 kmem_free(svar, sizeof (dtrace_statvar_t));
9960                 svarp[id] = NULL;
9961         }
9962 
9963         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9964         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9965         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9966         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9967 
9968         kmem_free(dp, sizeof (dtrace_difo_t));
9969 }
9970 
9971 static void
9972 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9973 {
9974         int i;
9975 
9976         ASSERT(MUTEX_HELD(&dtrace_lock));
9977         ASSERT(dp->dtdo_refcnt != 0);
9978 
9979         for (i = 0; i < dp->dtdo_varlen; i++) {
9980                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9981 
9982                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9983                         continue;
9984 
9985                 ASSERT(dtrace_vtime_references > 0);
9986                 if (--dtrace_vtime_references == 0)
9987                         dtrace_vtime_disable();
9988         }
9989 
9990         if (--dp->dtdo_refcnt == 0)
9991                 dtrace_difo_destroy(dp, vstate);
9992 }
9993 
9994 /*
9995  * DTrace Format Functions
9996  */
9997 static uint16_t
9998 dtrace_format_add(dtrace_state_t *state, char *str)
9999 {
10000         char *fmt, **new;
10001         uint16_t ndx, len = strlen(str) + 1;
10002 
10003         fmt = kmem_zalloc(len, KM_SLEEP);
10004         bcopy(str, fmt, len);
10005 
10006         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10007                 if (state->dts_formats[ndx] == NULL) {
10008                         state->dts_formats[ndx] = fmt;
10009                         return (ndx + 1);
10010                 }
10011         }
10012 
10013         if (state->dts_nformats == USHRT_MAX) {
10014                 /*
10015                  * This is only likely if a denial-of-service attack is being
10016                  * attempted.  As such, it's okay to fail silently here.
10017                  */
10018                 kmem_free(fmt, len);
10019                 return (0);
10020         }
10021 
10022         /*
10023          * For simplicity, we always resize the formats array to be exactly the
10024          * number of formats.
10025          */
10026         ndx = state->dts_nformats++;
10027         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10028 
10029         if (state->dts_formats != NULL) {
10030                 ASSERT(ndx != 0);
10031                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10032                 kmem_free(state->dts_formats, ndx * sizeof (char *));
10033         }
10034 
10035         state->dts_formats = new;
10036         state->dts_formats[ndx] = fmt;
10037 
10038         return (ndx + 1);
10039 }
10040 
10041 static void
10042 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10043 {
10044         char *fmt;
10045 
10046         ASSERT(state->dts_formats != NULL);
10047         ASSERT(format <= state->dts_nformats);
10048         ASSERT(state->dts_formats[format - 1] != NULL);
10049 
10050         fmt = state->dts_formats[format - 1];
10051         kmem_free(fmt, strlen(fmt) + 1);
10052         state->dts_formats[format - 1] = NULL;
10053 }
10054 
10055 static void
10056 dtrace_format_destroy(dtrace_state_t *state)
10057 {
10058         int i;
10059 
10060         if (state->dts_nformats == 0) {
10061                 ASSERT(state->dts_formats == NULL);
10062                 return;
10063         }
10064 
10065         ASSERT(state->dts_formats != NULL);
10066 
10067         for (i = 0; i < state->dts_nformats; i++) {
10068                 char *fmt = state->dts_formats[i];
10069 
10070                 if (fmt == NULL)
10071                         continue;
10072 
10073                 kmem_free(fmt, strlen(fmt) + 1);
10074         }
10075 
10076         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10077         state->dts_nformats = 0;
10078         state->dts_formats = NULL;
10079 }
10080 
10081 /*
10082  * DTrace Predicate Functions
10083  */
10084 static dtrace_predicate_t *
10085 dtrace_predicate_create(dtrace_difo_t *dp)
10086 {
10087         dtrace_predicate_t *pred;
10088 
10089         ASSERT(MUTEX_HELD(&dtrace_lock));
10090         ASSERT(dp->dtdo_refcnt != 0);
10091 
10092         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10093         pred->dtp_difo = dp;
10094         pred->dtp_refcnt = 1;
10095 
10096         if (!dtrace_difo_cacheable(dp))
10097                 return (pred);
10098 
10099         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10100                 /*
10101                  * This is only theoretically possible -- we have had 2^32
10102                  * cacheable predicates on this machine.  We cannot allow any
10103                  * more predicates to become cacheable:  as unlikely as it is,
10104                  * there may be a thread caching a (now stale) predicate cache
10105                  * ID. (N.B.: the temptation is being successfully resisted to
10106                  * have this cmn_err() "Holy shit -- we executed this code!")
10107                  */
10108                 return (pred);
10109         }
10110 
10111         pred->dtp_cacheid = dtrace_predcache_id++;
10112 
10113         return (pred);
10114 }
10115 
10116 static void
10117 dtrace_predicate_hold(dtrace_predicate_t *pred)
10118 {
10119         ASSERT(MUTEX_HELD(&dtrace_lock));
10120         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10121         ASSERT(pred->dtp_refcnt > 0);
10122 
10123         pred->dtp_refcnt++;
10124 }
10125 
10126 static void
10127 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10128 {
10129         dtrace_difo_t *dp = pred->dtp_difo;
10130 
10131         ASSERT(MUTEX_HELD(&dtrace_lock));
10132         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10133         ASSERT(pred->dtp_refcnt > 0);
10134 
10135         if (--pred->dtp_refcnt == 0) {
10136                 dtrace_difo_release(pred->dtp_difo, vstate);
10137                 kmem_free(pred, sizeof (dtrace_predicate_t));
10138         }
10139 }
10140 
10141 /*
10142  * DTrace Action Description Functions
10143  */
10144 static dtrace_actdesc_t *
10145 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10146     uint64_t uarg, uint64_t arg)
10147 {
10148         dtrace_actdesc_t *act;
10149 
10150         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10151             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10152 
10153         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10154         act->dtad_kind = kind;
10155         act->dtad_ntuple = ntuple;
10156         act->dtad_uarg = uarg;
10157         act->dtad_arg = arg;
10158         act->dtad_refcnt = 1;
10159 
10160         return (act);
10161 }
10162 
10163 static void
10164 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10165 {
10166         ASSERT(act->dtad_refcnt >= 1);
10167         act->dtad_refcnt++;
10168 }
10169 
10170 static void
10171 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10172 {
10173         dtrace_actkind_t kind = act->dtad_kind;
10174         dtrace_difo_t *dp;
10175 
10176         ASSERT(act->dtad_refcnt >= 1);
10177 
10178         if (--act->dtad_refcnt != 0)
10179                 return;
10180 
10181         if ((dp = act->dtad_difo) != NULL)
10182                 dtrace_difo_release(dp, vstate);
10183 
10184         if (DTRACEACT_ISPRINTFLIKE(kind)) {
10185                 char *str = (char *)(uintptr_t)act->dtad_arg;
10186 
10187                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10188                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10189 
10190                 if (str != NULL)
10191                         kmem_free(str, strlen(str) + 1);
10192         }
10193 
10194         kmem_free(act, sizeof (dtrace_actdesc_t));
10195 }
10196 
10197 /*
10198  * DTrace ECB Functions
10199  */
10200 static dtrace_ecb_t *
10201 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10202 {
10203         dtrace_ecb_t *ecb;
10204         dtrace_epid_t epid;
10205 
10206         ASSERT(MUTEX_HELD(&dtrace_lock));
10207 
10208         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10209         ecb->dte_predicate = NULL;
10210         ecb->dte_probe = probe;
10211 
10212         /*
10213          * The default size is the size of the default action: recording
10214          * the header.
10215          */
10216         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10217         ecb->dte_alignment = sizeof (dtrace_epid_t);
10218 
10219         epid = state->dts_epid++;
10220 
10221         if (epid - 1 >= state->dts_necbs) {
10222                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10223                 int necbs = state->dts_necbs << 1;
10224 
10225                 ASSERT(epid == state->dts_necbs + 1);
10226 
10227                 if (necbs == 0) {
10228                         ASSERT(oecbs == NULL);
10229                         necbs = 1;
10230                 }
10231 
10232                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10233 
10234                 if (oecbs != NULL)
10235                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10236 
10237                 dtrace_membar_producer();
10238                 state->dts_ecbs = ecbs;
10239 
10240                 if (oecbs != NULL) {
10241                         /*
10242                          * If this state is active, we must dtrace_sync()
10243                          * before we can free the old dts_ecbs array:  we're
10244                          * coming in hot, and there may be active ring
10245                          * buffer processing (which indexes into the dts_ecbs
10246                          * array) on another CPU.
10247                          */
10248                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10249                                 dtrace_sync();
10250 
10251                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10252                 }
10253 
10254                 dtrace_membar_producer();
10255                 state->dts_necbs = necbs;
10256         }
10257 
10258         ecb->dte_state = state;
10259 
10260         ASSERT(state->dts_ecbs[epid - 1] == NULL);
10261         dtrace_membar_producer();
10262         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10263 
10264         return (ecb);
10265 }
10266 
10267 static int
10268 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10269 {
10270         dtrace_probe_t *probe = ecb->dte_probe;
10271 
10272         ASSERT(MUTEX_HELD(&cpu_lock));
10273         ASSERT(MUTEX_HELD(&dtrace_lock));
10274         ASSERT(ecb->dte_next == NULL);
10275 
10276         if (probe == NULL) {
10277                 /*
10278                  * This is the NULL probe -- there's nothing to do.
10279                  */
10280                 return (0);
10281         }
10282 
10283         if (probe->dtpr_ecb == NULL) {
10284                 dtrace_provider_t *prov = probe->dtpr_provider;
10285 
10286                 /*
10287                  * We're the first ECB on this probe.
10288                  */
10289                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10290 
10291                 if (ecb->dte_predicate != NULL)
10292                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10293 
10294                 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10295                     probe->dtpr_id, probe->dtpr_arg));
10296         } else {
10297                 /*
10298                  * This probe is already active.  Swing the last pointer to
10299                  * point to the new ECB, and issue a dtrace_sync() to assure
10300                  * that all CPUs have seen the change.
10301                  */
10302                 ASSERT(probe->dtpr_ecb_last != NULL);
10303                 probe->dtpr_ecb_last->dte_next = ecb;
10304                 probe->dtpr_ecb_last = ecb;
10305                 probe->dtpr_predcache = 0;
10306 
10307                 dtrace_sync();
10308                 return (0);
10309         }
10310 }
10311 
10312 static void
10313 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10314 {
10315         dtrace_action_t *act;
10316         uint32_t curneeded = UINT32_MAX;
10317         uint32_t aggbase = UINT32_MAX;
10318 
10319         /*
10320          * If we record anything, we always record the dtrace_rechdr_t.  (And
10321          * we always record it first.)
10322          */
10323         ecb->dte_size = sizeof (dtrace_rechdr_t);
10324         ecb->dte_alignment = sizeof (dtrace_epid_t);
10325 
10326         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10327                 dtrace_recdesc_t *rec = &act->dta_rec;
10328                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10329 
10330                 ecb->dte_alignment = MAX(ecb->dte_alignment,
10331                     rec->dtrd_alignment);
10332 
10333                 if (DTRACEACT_ISAGG(act->dta_kind)) {
10334                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10335 
10336                         ASSERT(rec->dtrd_size != 0);
10337                         ASSERT(agg->dtag_first != NULL);
10338                         ASSERT(act->dta_prev->dta_intuple);
10339                         ASSERT(aggbase != UINT32_MAX);
10340                         ASSERT(curneeded != UINT32_MAX);
10341 
10342                         agg->dtag_base = aggbase;
10343 
10344                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10345                         rec->dtrd_offset = curneeded;
10346                         curneeded += rec->dtrd_size;
10347                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10348 
10349                         aggbase = UINT32_MAX;
10350                         curneeded = UINT32_MAX;
10351                 } else if (act->dta_intuple) {
10352                         if (curneeded == UINT32_MAX) {
10353                                 /*
10354                                  * This is the first record in a tuple.  Align
10355                                  * curneeded to be at offset 4 in an 8-byte
10356                                  * aligned block.
10357                                  */
10358                                 ASSERT(act->dta_prev == NULL ||
10359                                     !act->dta_prev->dta_intuple);
10360                                 ASSERT3U(aggbase, ==, UINT32_MAX);
10361                                 curneeded = P2PHASEUP(ecb->dte_size,
10362                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
10363 
10364                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
10365                                 ASSERT(IS_P2ALIGNED(aggbase,
10366                                     sizeof (uint64_t)));
10367                         }
10368                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10369                         rec->dtrd_offset = curneeded;
10370                         curneeded += rec->dtrd_size;
10371                 } else {
10372                         /* tuples must be followed by an aggregation */
10373                         ASSERT(act->dta_prev == NULL ||
10374                             !act->dta_prev->dta_intuple);
10375 
10376                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10377                             rec->dtrd_alignment);
10378                         rec->dtrd_offset = ecb->dte_size;
10379                         ecb->dte_size += rec->dtrd_size;
10380                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10381                 }
10382         }
10383 
10384         if ((act = ecb->dte_action) != NULL &&
10385             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10386             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10387                 /*
10388                  * If the size is still sizeof (dtrace_rechdr_t), then all
10389                  * actions store no data; set the size to 0.
10390                  */
10391                 ecb->dte_size = 0;
10392         }
10393 
10394         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10395         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10396         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10397             ecb->dte_needed);
10398 }
10399 
10400 static dtrace_action_t *
10401 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10402 {
10403         dtrace_aggregation_t *agg;
10404         size_t size = sizeof (uint64_t);
10405         int ntuple = desc->dtad_ntuple;
10406         dtrace_action_t *act;
10407         dtrace_recdesc_t *frec;
10408         dtrace_aggid_t aggid;
10409         dtrace_state_t *state = ecb->dte_state;
10410 
10411         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10412         agg->dtag_ecb = ecb;
10413 
10414         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10415 
10416         switch (desc->dtad_kind) {
10417         case DTRACEAGG_MIN:
10418                 agg->dtag_initial = INT64_MAX;
10419                 agg->dtag_aggregate = dtrace_aggregate_min;
10420                 break;
10421 
10422         case DTRACEAGG_MAX:
10423                 agg->dtag_initial = INT64_MIN;
10424                 agg->dtag_aggregate = dtrace_aggregate_max;
10425                 break;
10426 
10427         case DTRACEAGG_COUNT:
10428                 agg->dtag_aggregate = dtrace_aggregate_count;
10429                 break;
10430 
10431         case DTRACEAGG_QUANTIZE:
10432                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10433                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10434                     sizeof (uint64_t);
10435                 break;
10436 
10437         case DTRACEAGG_LQUANTIZE: {
10438                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10439                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10440 
10441                 agg->dtag_initial = desc->dtad_arg;
10442                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10443 
10444                 if (step == 0 || levels == 0)
10445                         goto err;
10446 
10447                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10448                 break;
10449         }
10450 
10451         case DTRACEAGG_LLQUANTIZE: {
10452                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10453                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10454                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10455                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10456                 int64_t v;
10457 
10458                 agg->dtag_initial = desc->dtad_arg;
10459                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10460 
10461                 if (factor < 2 || low >= high || nsteps < factor)
10462                         goto err;
10463 
10464                 /*
10465                  * Now check that the number of steps evenly divides a power
10466                  * of the factor.  (This assures both integer bucket size and
10467                  * linearity within each magnitude.)
10468                  */
10469                 for (v = factor; v < nsteps; v *= factor)
10470                         continue;
10471 
10472                 if ((v % nsteps) || (nsteps % factor))
10473                         goto err;
10474 
10475                 size = (dtrace_aggregate_llquantize_bucket(factor,
10476                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10477                 break;
10478         }
10479 
10480         case DTRACEAGG_AVG:
10481                 agg->dtag_aggregate = dtrace_aggregate_avg;
10482                 size = sizeof (uint64_t) * 2;
10483                 break;
10484 
10485         case DTRACEAGG_STDDEV:
10486                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10487                 size = sizeof (uint64_t) * 4;
10488                 break;
10489 
10490         case DTRACEAGG_SUM:
10491                 agg->dtag_aggregate = dtrace_aggregate_sum;
10492                 break;
10493 
10494         default:
10495                 goto err;
10496         }
10497 
10498         agg->dtag_action.dta_rec.dtrd_size = size;
10499 
10500         if (ntuple == 0)
10501                 goto err;
10502 
10503         /*
10504          * We must make sure that we have enough actions for the n-tuple.
10505          */
10506         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10507                 if (DTRACEACT_ISAGG(act->dta_kind))
10508                         break;
10509 
10510                 if (--ntuple == 0) {
10511                         /*
10512                          * This is the action with which our n-tuple begins.
10513                          */
10514                         agg->dtag_first = act;
10515                         goto success;
10516                 }
10517         }
10518 
10519         /*
10520          * This n-tuple is short by ntuple elements.  Return failure.
10521          */
10522         ASSERT(ntuple != 0);
10523 err:
10524         kmem_free(agg, sizeof (dtrace_aggregation_t));
10525         return (NULL);
10526 
10527 success:
10528         /*
10529          * If the last action in the tuple has a size of zero, it's actually
10530          * an expression argument for the aggregating action.
10531          */
10532         ASSERT(ecb->dte_action_last != NULL);
10533         act = ecb->dte_action_last;
10534 
10535         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10536                 ASSERT(act->dta_difo != NULL);
10537 
10538                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10539                         agg->dtag_hasarg = 1;
10540         }
10541 
10542         /*
10543          * We need to allocate an id for this aggregation.
10544          */
10545         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10546             VM_BESTFIT | VM_SLEEP);
10547 
10548         if (aggid - 1 >= state->dts_naggregations) {
10549                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10550                 dtrace_aggregation_t **aggs;
10551                 int naggs = state->dts_naggregations << 1;
10552                 int onaggs = state->dts_naggregations;
10553 
10554                 ASSERT(aggid == state->dts_naggregations + 1);
10555 
10556                 if (naggs == 0) {
10557                         ASSERT(oaggs == NULL);
10558                         naggs = 1;
10559                 }
10560 
10561                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10562 
10563                 if (oaggs != NULL) {
10564                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10565                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10566                 }
10567 
10568                 state->dts_aggregations = aggs;
10569                 state->dts_naggregations = naggs;
10570         }
10571 
10572         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10573         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10574 
10575         frec = &agg->dtag_first->dta_rec;
10576         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10577                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10578 
10579         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10580                 ASSERT(!act->dta_intuple);
10581                 act->dta_intuple = 1;
10582         }
10583 
10584         return (&agg->dtag_action);
10585 }
10586 
10587 static void
10588 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10589 {
10590         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10591         dtrace_state_t *state = ecb->dte_state;
10592         dtrace_aggid_t aggid = agg->dtag_id;
10593 
10594         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10595         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10596 
10597         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10598         state->dts_aggregations[aggid - 1] = NULL;
10599 
10600         kmem_free(agg, sizeof (dtrace_aggregation_t));
10601 }
10602 
10603 static int
10604 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10605 {
10606         dtrace_action_t *action, *last;
10607         dtrace_difo_t *dp = desc->dtad_difo;
10608         uint32_t size = 0, align = sizeof (uint8_t), mask;
10609         uint16_t format = 0;
10610         dtrace_recdesc_t *rec;
10611         dtrace_state_t *state = ecb->dte_state;
10612         dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10613         uint64_t arg = desc->dtad_arg;
10614 
10615         ASSERT(MUTEX_HELD(&dtrace_lock));
10616         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10617 
10618         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10619                 /*
10620                  * If this is an aggregating action, there must be neither
10621                  * a speculate nor a commit on the action chain.
10622                  */
10623                 dtrace_action_t *act;
10624 
10625                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10626                         if (act->dta_kind == DTRACEACT_COMMIT)
10627                                 return (EINVAL);
10628 
10629                         if (act->dta_kind == DTRACEACT_SPECULATE)
10630                                 return (EINVAL);
10631                 }
10632 
10633                 action = dtrace_ecb_aggregation_create(ecb, desc);
10634 
10635                 if (action == NULL)
10636                         return (EINVAL);
10637         } else {
10638                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10639                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10640                     dp != NULL && dp->dtdo_destructive)) {
10641                         state->dts_destructive = 1;
10642                 }
10643 
10644                 switch (desc->dtad_kind) {
10645                 case DTRACEACT_PRINTF:
10646                 case DTRACEACT_PRINTA:
10647                 case DTRACEACT_SYSTEM:
10648                 case DTRACEACT_FREOPEN:
10649                 case DTRACEACT_DIFEXPR:
10650                         /*
10651                          * We know that our arg is a string -- turn it into a
10652                          * format.
10653                          */
10654                         if (arg == NULL) {
10655                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10656                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10657                                 format = 0;
10658                         } else {
10659                                 ASSERT(arg != NULL);
10660                                 ASSERT(arg > KERNELBASE);
10661                                 format = dtrace_format_add(state,
10662                                     (char *)(uintptr_t)arg);
10663                         }
10664 
10665                         /*FALLTHROUGH*/
10666                 case DTRACEACT_LIBACT:
10667                 case DTRACEACT_TRACEMEM:
10668                 case DTRACEACT_TRACEMEM_DYNSIZE:
10669                         if (dp == NULL)
10670                                 return (EINVAL);
10671 
10672                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10673                                 break;
10674 
10675                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10676                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10677                                         return (EINVAL);
10678 
10679                                 size = opt[DTRACEOPT_STRSIZE];
10680                         }
10681 
10682                         break;
10683 
10684                 case DTRACEACT_STACK:
10685                         if ((nframes = arg) == 0) {
10686                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10687                                 ASSERT(nframes > 0);
10688                                 arg = nframes;
10689                         }
10690 
10691                         size = nframes * sizeof (pc_t);
10692                         break;
10693 
10694                 case DTRACEACT_JSTACK:
10695                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10696                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10697 
10698                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10699                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10700 
10701                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10702 
10703                         /*FALLTHROUGH*/
10704                 case DTRACEACT_USTACK:
10705                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10706                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10707                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10708                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10709                                 ASSERT(nframes > 0);
10710                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10711                         }
10712 
10713                         /*
10714                          * Save a slot for the pid.
10715                          */
10716                         size = (nframes + 1) * sizeof (uint64_t);
10717                         size += DTRACE_USTACK_STRSIZE(arg);
10718                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10719 
10720                         break;
10721 
10722                 case DTRACEACT_SYM:
10723                 case DTRACEACT_MOD:
10724                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10725                             sizeof (uint64_t)) ||
10726                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10727                                 return (EINVAL);
10728                         break;
10729 
10730                 case DTRACEACT_USYM:
10731                 case DTRACEACT_UMOD:
10732                 case DTRACEACT_UADDR:
10733                         if (dp == NULL ||
10734                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10735                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10736                                 return (EINVAL);
10737 
10738                         /*
10739                          * We have a slot for the pid, plus a slot for the
10740                          * argument.  To keep things simple (aligned with
10741                          * bitness-neutral sizing), we store each as a 64-bit
10742                          * quantity.
10743                          */
10744                         size = 2 * sizeof (uint64_t);
10745                         break;
10746 
10747                 case DTRACEACT_STOP:
10748                 case DTRACEACT_BREAKPOINT:
10749                 case DTRACEACT_PANIC:
10750                         break;
10751 
10752                 case DTRACEACT_CHILL:
10753                 case DTRACEACT_DISCARD:
10754                 case DTRACEACT_RAISE:
10755                         if (dp == NULL)
10756                                 return (EINVAL);
10757                         break;
10758 
10759                 case DTRACEACT_EXIT:
10760                         if (dp == NULL ||
10761                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10762                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10763                                 return (EINVAL);
10764                         break;
10765 
10766                 case DTRACEACT_SPECULATE:
10767                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10768                                 return (EINVAL);
10769 
10770                         if (dp == NULL)
10771                                 return (EINVAL);
10772 
10773                         state->dts_speculates = 1;
10774                         break;
10775 
10776                 case DTRACEACT_COMMIT: {
10777                         dtrace_action_t *act = ecb->dte_action;
10778 
10779                         for (; act != NULL; act = act->dta_next) {
10780                                 if (act->dta_kind == DTRACEACT_COMMIT)
10781                                         return (EINVAL);
10782                         }
10783 
10784                         if (dp == NULL)
10785                                 return (EINVAL);
10786                         break;
10787                 }
10788 
10789                 default:
10790                         return (EINVAL);
10791                 }
10792 
10793                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10794                         /*
10795                          * If this is a data-storing action or a speculate,
10796                          * we must be sure that there isn't a commit on the
10797                          * action chain.
10798                          */
10799                         dtrace_action_t *act = ecb->dte_action;
10800 
10801                         for (; act != NULL; act = act->dta_next) {
10802                                 if (act->dta_kind == DTRACEACT_COMMIT)
10803                                         return (EINVAL);
10804                         }
10805                 }
10806 
10807                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10808                 action->dta_rec.dtrd_size = size;
10809         }
10810 
10811         action->dta_refcnt = 1;
10812         rec = &action->dta_rec;
10813         size = rec->dtrd_size;
10814 
10815         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10816                 if (!(size & mask)) {
10817                         align = mask + 1;
10818                         break;
10819                 }
10820         }
10821 
10822         action->dta_kind = desc->dtad_kind;
10823 
10824         if ((action->dta_difo = dp) != NULL)
10825                 dtrace_difo_hold(dp);
10826 
10827         rec->dtrd_action = action->dta_kind;
10828         rec->dtrd_arg = arg;
10829         rec->dtrd_uarg = desc->dtad_uarg;
10830         rec->dtrd_alignment = (uint16_t)align;
10831         rec->dtrd_format = format;
10832 
10833         if ((last = ecb->dte_action_last) != NULL) {
10834                 ASSERT(ecb->dte_action != NULL);
10835                 action->dta_prev = last;
10836                 last->dta_next = action;
10837         } else {
10838                 ASSERT(ecb->dte_action == NULL);
10839                 ecb->dte_action = action;
10840         }
10841 
10842         ecb->dte_action_last = action;
10843 
10844         return (0);
10845 }
10846 
10847 static void
10848 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10849 {
10850         dtrace_action_t *act = ecb->dte_action, *next;
10851         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10852         dtrace_difo_t *dp;
10853         uint16_t format;
10854 
10855         if (act != NULL && act->dta_refcnt > 1) {
10856                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10857                 act->dta_refcnt--;
10858         } else {
10859                 for (; act != NULL; act = next) {
10860                         next = act->dta_next;
10861                         ASSERT(next != NULL || act == ecb->dte_action_last);
10862                         ASSERT(act->dta_refcnt == 1);
10863 
10864                         if ((format = act->dta_rec.dtrd_format) != 0)
10865                                 dtrace_format_remove(ecb->dte_state, format);
10866 
10867                         if ((dp = act->dta_difo) != NULL)
10868                                 dtrace_difo_release(dp, vstate);
10869 
10870                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10871                                 dtrace_ecb_aggregation_destroy(ecb, act);
10872                         } else {
10873                                 kmem_free(act, sizeof (dtrace_action_t));
10874                         }
10875                 }
10876         }
10877 
10878         ecb->dte_action = NULL;
10879         ecb->dte_action_last = NULL;
10880         ecb->dte_size = 0;
10881 }
10882 
10883 static void
10884 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10885 {
10886         /*
10887          * We disable the ECB by removing it from its probe.
10888          */
10889         dtrace_ecb_t *pecb, *prev = NULL;
10890         dtrace_probe_t *probe = ecb->dte_probe;
10891 
10892         ASSERT(MUTEX_HELD(&dtrace_lock));
10893 
10894         if (probe == NULL) {
10895                 /*
10896                  * This is the NULL probe; there is nothing to disable.
10897                  */
10898                 return;
10899         }
10900 
10901         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10902                 if (pecb == ecb)
10903                         break;
10904                 prev = pecb;
10905         }
10906 
10907         ASSERT(pecb != NULL);
10908 
10909         if (prev == NULL) {
10910                 probe->dtpr_ecb = ecb->dte_next;
10911         } else {
10912                 prev->dte_next = ecb->dte_next;
10913         }
10914 
10915         if (ecb == probe->dtpr_ecb_last) {
10916                 ASSERT(ecb->dte_next == NULL);
10917                 probe->dtpr_ecb_last = prev;
10918         }
10919 
10920         /*
10921          * The ECB has been disconnected from the probe; now sync to assure
10922          * that all CPUs have seen the change before returning.
10923          */
10924         dtrace_sync();
10925 
10926         if (probe->dtpr_ecb == NULL) {
10927                 /*
10928                  * That was the last ECB on the probe; clear the predicate
10929                  * cache ID for the probe, disable it and sync one more time
10930                  * to assure that we'll never hit it again.
10931                  */
10932                 dtrace_provider_t *prov = probe->dtpr_provider;
10933 
10934                 ASSERT(ecb->dte_next == NULL);
10935                 ASSERT(probe->dtpr_ecb_last == NULL);
10936                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10937                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10938                     probe->dtpr_id, probe->dtpr_arg);
10939                 dtrace_sync();
10940         } else {
10941                 /*
10942                  * There is at least one ECB remaining on the probe.  If there
10943                  * is _exactly_ one, set the probe's predicate cache ID to be
10944                  * the predicate cache ID of the remaining ECB.
10945                  */
10946                 ASSERT(probe->dtpr_ecb_last != NULL);
10947                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10948 
10949                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10950                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10951 
10952                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10953 
10954                         if (p != NULL)
10955                                 probe->dtpr_predcache = p->dtp_cacheid;
10956                 }
10957 
10958                 ecb->dte_next = NULL;
10959         }
10960 }
10961 
10962 static void
10963 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10964 {
10965         dtrace_state_t *state = ecb->dte_state;
10966         dtrace_vstate_t *vstate = &state->dts_vstate;
10967         dtrace_predicate_t *pred;
10968         dtrace_epid_t epid = ecb->dte_epid;
10969 
10970         ASSERT(MUTEX_HELD(&dtrace_lock));
10971         ASSERT(ecb->dte_next == NULL);
10972         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10973 
10974         if ((pred = ecb->dte_predicate) != NULL)
10975                 dtrace_predicate_release(pred, vstate);
10976 
10977         dtrace_ecb_action_remove(ecb);
10978 
10979         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10980         state->dts_ecbs[epid - 1] = NULL;
10981 
10982         kmem_free(ecb, sizeof (dtrace_ecb_t));
10983 }
10984 
10985 static dtrace_ecb_t *
10986 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10987     dtrace_enabling_t *enab)
10988 {
10989         dtrace_ecb_t *ecb;
10990         dtrace_predicate_t *pred;
10991         dtrace_actdesc_t *act;
10992         dtrace_provider_t *prov;
10993         dtrace_ecbdesc_t *desc = enab->dten_current;
10994 
10995         ASSERT(MUTEX_HELD(&dtrace_lock));
10996         ASSERT(state != NULL);
10997 
10998         ecb = dtrace_ecb_add(state, probe);
10999         ecb->dte_uarg = desc->dted_uarg;
11000 
11001         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11002                 dtrace_predicate_hold(pred);
11003                 ecb->dte_predicate = pred;
11004         }
11005 
11006         if (probe != NULL) {
11007                 /*
11008                  * If the provider shows more leg than the consumer is old
11009                  * enough to see, we need to enable the appropriate implicit
11010                  * predicate bits to prevent the ecb from activating at
11011                  * revealing times.
11012                  *
11013                  * Providers specifying DTRACE_PRIV_USER at register time
11014                  * are stating that they need the /proc-style privilege
11015                  * model to be enforced, and this is what DTRACE_COND_OWNER
11016                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
11017                  */
11018                 prov = probe->dtpr_provider;
11019                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11020                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11021                         ecb->dte_cond |= DTRACE_COND_OWNER;
11022 
11023                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11024                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11025                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11026 
11027                 /*
11028                  * If the provider shows us kernel innards and the user
11029                  * is lacking sufficient privilege, enable the
11030                  * DTRACE_COND_USERMODE implicit predicate.
11031                  */
11032                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11033                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11034                         ecb->dte_cond |= DTRACE_COND_USERMODE;
11035         }
11036 
11037         if (dtrace_ecb_create_cache != NULL) {
11038                 /*
11039                  * If we have a cached ecb, we'll use its action list instead
11040                  * of creating our own (saving both time and space).
11041                  */
11042                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11043                 dtrace_action_t *act = cached->dte_action;
11044 
11045                 if (act != NULL) {
11046                         ASSERT(act->dta_refcnt > 0);
11047                         act->dta_refcnt++;
11048                         ecb->dte_action = act;
11049                         ecb->dte_action_last = cached->dte_action_last;
11050                         ecb->dte_needed = cached->dte_needed;
11051                         ecb->dte_size = cached->dte_size;
11052                         ecb->dte_alignment = cached->dte_alignment;
11053                 }
11054 
11055                 return (ecb);
11056         }
11057 
11058         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11059                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11060                         dtrace_ecb_destroy(ecb);
11061                         return (NULL);
11062                 }
11063         }
11064 
11065         dtrace_ecb_resize(ecb);
11066 
11067         return (dtrace_ecb_create_cache = ecb);
11068 }
11069 
11070 static int
11071 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11072 {
11073         dtrace_ecb_t *ecb;
11074         dtrace_enabling_t *enab = arg;
11075         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11076 
11077         ASSERT(state != NULL);
11078 
11079         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11080                 /*
11081                  * This probe was created in a generation for which this
11082                  * enabling has previously created ECBs; we don't want to
11083                  * enable it again, so just kick out.
11084                  */
11085                 return (DTRACE_MATCH_NEXT);
11086         }
11087 
11088         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11089                 return (DTRACE_MATCH_DONE);
11090 
11091         if (dtrace_ecb_enable(ecb) < 0)
11092                 return (DTRACE_MATCH_FAIL);
11093 
11094         return (DTRACE_MATCH_NEXT);
11095 }
11096 
11097 static dtrace_ecb_t *
11098 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11099 {
11100         dtrace_ecb_t *ecb;
11101 
11102         ASSERT(MUTEX_HELD(&dtrace_lock));
11103 
11104         if (id == 0 || id > state->dts_necbs)
11105                 return (NULL);
11106 
11107         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11108         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11109 
11110         return (state->dts_ecbs[id - 1]);
11111 }
11112 
11113 static dtrace_aggregation_t *
11114 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11115 {
11116         dtrace_aggregation_t *agg;
11117 
11118         ASSERT(MUTEX_HELD(&dtrace_lock));
11119 
11120         if (id == 0 || id > state->dts_naggregations)
11121                 return (NULL);
11122 
11123         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11124         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11125             agg->dtag_id == id);
11126 
11127         return (state->dts_aggregations[id - 1]);
11128 }
11129 
11130 /*
11131  * DTrace Buffer Functions
11132  *
11133  * The following functions manipulate DTrace buffers.  Most of these functions
11134  * are called in the context of establishing or processing consumer state;
11135  * exceptions are explicitly noted.
11136  */
11137 
11138 /*
11139  * Note:  called from cross call context.  This function switches the two
11140  * buffers on a given CPU.  The atomicity of this operation is assured by
11141  * disabling interrupts while the actual switch takes place; the disabling of
11142  * interrupts serializes the execution with any execution of dtrace_probe() on
11143  * the same CPU.
11144  */
11145 static void
11146 dtrace_buffer_switch(dtrace_buffer_t *buf)
11147 {
11148         caddr_t tomax = buf->dtb_tomax;
11149         caddr_t xamot = buf->dtb_xamot;
11150         dtrace_icookie_t cookie;
11151         hrtime_t now;
11152 
11153         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11154         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11155 
11156         cookie = dtrace_interrupt_disable();
11157         now = dtrace_gethrtime();
11158         buf->dtb_tomax = xamot;
11159         buf->dtb_xamot = tomax;
11160         buf->dtb_xamot_drops = buf->dtb_drops;
11161         buf->dtb_xamot_offset = buf->dtb_offset;
11162         buf->dtb_xamot_errors = buf->dtb_errors;
11163         buf->dtb_xamot_flags = buf->dtb_flags;
11164         buf->dtb_offset = 0;
11165         buf->dtb_drops = 0;
11166         buf->dtb_errors = 0;
11167         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11168         buf->dtb_interval = now - buf->dtb_switched;
11169         buf->dtb_switched = now;
11170         dtrace_interrupt_enable(cookie);
11171 }
11172 
11173 /*
11174  * Note:  called from cross call context.  This function activates a buffer
11175  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11176  * is guaranteed by the disabling of interrupts.
11177  */
11178 static void
11179 dtrace_buffer_activate(dtrace_state_t *state)
11180 {
11181         dtrace_buffer_t *buf;
11182         dtrace_icookie_t cookie = dtrace_interrupt_disable();
11183 
11184         buf = &state->dts_buffer[CPU->cpu_id];
11185 
11186         if (buf->dtb_tomax != NULL) {
11187                 /*
11188                  * We might like to assert that the buffer is marked inactive,
11189                  * but this isn't necessarily true:  the buffer for the CPU
11190                  * that processes the BEGIN probe has its buffer activated
11191                  * manually.  In this case, we take the (harmless) action
11192                  * re-clearing the bit INACTIVE bit.
11193                  */
11194                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11195         }
11196 
11197         dtrace_interrupt_enable(cookie);
11198 }
11199 
11200 static int
11201 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11202     processorid_t cpu, int *factor)
11203 {
11204         cpu_t *cp;
11205         dtrace_buffer_t *buf;
11206         int allocated = 0, desired = 0;
11207 
11208         ASSERT(MUTEX_HELD(&cpu_lock));
11209         ASSERT(MUTEX_HELD(&dtrace_lock));
11210 
11211         *factor = 1;
11212 
11213         if (size > dtrace_nonroot_maxsize &&
11214             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11215                 return (EFBIG);
11216 
11217         cp = cpu_list;
11218 
11219         do {
11220                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11221                         continue;
11222 
11223                 buf = &bufs[cp->cpu_id];
11224 
11225                 /*
11226                  * If there is already a buffer allocated for this CPU, it
11227                  * is only possible that this is a DR event.  In this case,
11228                  * the buffer size must match our specified size.
11229                  */
11230                 if (buf->dtb_tomax != NULL) {
11231                         ASSERT(buf->dtb_size == size);
11232                         continue;
11233                 }
11234 
11235                 ASSERT(buf->dtb_xamot == NULL);
11236 
11237                 if ((buf->dtb_tomax = kmem_zalloc(size,
11238                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11239                         goto err;
11240 
11241                 buf->dtb_size = size;
11242                 buf->dtb_flags = flags;
11243                 buf->dtb_offset = 0;
11244                 buf->dtb_drops = 0;
11245 
11246                 if (flags & DTRACEBUF_NOSWITCH)
11247                         continue;
11248 
11249                 if ((buf->dtb_xamot = kmem_zalloc(size,
11250                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11251                         goto err;
11252         } while ((cp = cp->cpu_next) != cpu_list);
11253 
11254         return (0);
11255 
11256 err:
11257         cp = cpu_list;
11258 
11259         do {
11260                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11261                         continue;
11262 
11263                 buf = &bufs[cp->cpu_id];
11264                 desired += 2;
11265 
11266                 if (buf->dtb_xamot != NULL) {
11267                         ASSERT(buf->dtb_tomax != NULL);
11268                         ASSERT(buf->dtb_size == size);
11269                         kmem_free(buf->dtb_xamot, size);
11270                         allocated++;
11271                 }
11272 
11273                 if (buf->dtb_tomax != NULL) {
11274                         ASSERT(buf->dtb_size == size);
11275                         kmem_free(buf->dtb_tomax, size);
11276                         allocated++;
11277                 }
11278 
11279                 buf->dtb_tomax = NULL;
11280                 buf->dtb_xamot = NULL;
11281                 buf->dtb_size = 0;
11282         } while ((cp = cp->cpu_next) != cpu_list);
11283 
11284         *factor = desired / (allocated > 0 ? allocated : 1);
11285 
11286         return (ENOMEM);
11287 }
11288 
11289 /*
11290  * Note:  called from probe context.  This function just increments the drop
11291  * count on a buffer.  It has been made a function to allow for the
11292  * possibility of understanding the source of mysterious drop counts.  (A
11293  * problem for which one may be particularly disappointed that DTrace cannot
11294  * be used to understand DTrace.)
11295  */
11296 static void
11297 dtrace_buffer_drop(dtrace_buffer_t *buf)
11298 {
11299         buf->dtb_drops++;
11300 }
11301 
11302 /*
11303  * Note:  called from probe context.  This function is called to reserve space
11304  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11305  * mstate.  Returns the new offset in the buffer, or a negative value if an
11306  * error has occurred.
11307  */
11308 static intptr_t
11309 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11310     dtrace_state_t *state, dtrace_mstate_t *mstate)
11311 {
11312         intptr_t offs = buf->dtb_offset, soffs;
11313         intptr_t woffs;
11314         caddr_t tomax;
11315         size_t total;
11316 
11317         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11318                 return (-1);
11319 
11320         if ((tomax = buf->dtb_tomax) == NULL) {
11321                 dtrace_buffer_drop(buf);
11322                 return (-1);
11323         }
11324 
11325         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11326                 while (offs & (align - 1)) {
11327                         /*
11328                          * Assert that our alignment is off by a number which
11329                          * is itself sizeof (uint32_t) aligned.
11330                          */
11331                         ASSERT(!((align - (offs & (align - 1))) &
11332                             (sizeof (uint32_t) - 1)));
11333                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11334                         offs += sizeof (uint32_t);
11335                 }
11336 
11337                 if ((soffs = offs + needed) > buf->dtb_size) {
11338                         dtrace_buffer_drop(buf);
11339                         return (-1);
11340                 }
11341 
11342                 if (mstate == NULL)
11343                         return (offs);
11344 
11345                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11346                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11347                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11348 
11349                 return (offs);
11350         }
11351 
11352         if (buf->dtb_flags & DTRACEBUF_FILL) {
11353                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11354                     (buf->dtb_flags & DTRACEBUF_FULL))
11355                         return (-1);
11356                 goto out;
11357         }
11358 
11359         total = needed + (offs & (align - 1));
11360 
11361         /*
11362          * For a ring buffer, life is quite a bit more complicated.  Before
11363          * we can store any padding, we need to adjust our wrapping offset.
11364          * (If we've never before wrapped or we're not about to, no adjustment
11365          * is required.)
11366          */
11367         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11368             offs + total > buf->dtb_size) {
11369                 woffs = buf->dtb_xamot_offset;
11370 
11371                 if (offs + total > buf->dtb_size) {
11372                         /*
11373                          * We can't fit in the end of the buffer.  First, a
11374                          * sanity check that we can fit in the buffer at all.
11375                          */
11376                         if (total > buf->dtb_size) {
11377                                 dtrace_buffer_drop(buf);
11378                                 return (-1);
11379                         }
11380 
11381                         /*
11382                          * We're going to be storing at the top of the buffer,
11383                          * so now we need to deal with the wrapped offset.  We
11384                          * only reset our wrapped offset to 0 if it is
11385                          * currently greater than the current offset.  If it
11386                          * is less than the current offset, it is because a
11387                          * previous allocation induced a wrap -- but the
11388                          * allocation didn't subsequently take the space due
11389                          * to an error or false predicate evaluation.  In this
11390                          * case, we'll just leave the wrapped offset alone: if
11391                          * the wrapped offset hasn't been advanced far enough
11392                          * for this allocation, it will be adjusted in the
11393                          * lower loop.
11394                          */
11395                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11396                                 if (woffs >= offs)
11397                                         woffs = 0;
11398                         } else {
11399                                 woffs = 0;
11400                         }
11401 
11402                         /*
11403                          * Now we know that we're going to be storing to the
11404                          * top of the buffer and that there is room for us
11405                          * there.  We need to clear the buffer from the current
11406                          * offset to the end (there may be old gunk there).
11407                          */
11408                         while (offs < buf->dtb_size)
11409                                 tomax[offs++] = 0;
11410 
11411                         /*
11412                          * We need to set our offset to zero.  And because we
11413                          * are wrapping, we need to set the bit indicating as
11414                          * much.  We can also adjust our needed space back
11415                          * down to the space required by the ECB -- we know
11416                          * that the top of the buffer is aligned.
11417                          */
11418                         offs = 0;
11419                         total = needed;
11420                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11421                 } else {
11422                         /*
11423                          * There is room for us in the buffer, so we simply
11424                          * need to check the wrapped offset.
11425                          */
11426                         if (woffs < offs) {
11427                                 /*
11428                                  * The wrapped offset is less than the offset.
11429                                  * This can happen if we allocated buffer space
11430                                  * that induced a wrap, but then we didn't
11431                                  * subsequently take the space due to an error
11432                                  * or false predicate evaluation.  This is
11433                                  * okay; we know that _this_ allocation isn't
11434                                  * going to induce a wrap.  We still can't
11435                                  * reset the wrapped offset to be zero,
11436                                  * however: the space may have been trashed in
11437                                  * the previous failed probe attempt.  But at
11438                                  * least the wrapped offset doesn't need to
11439                                  * be adjusted at all...
11440                                  */
11441                                 goto out;
11442                         }
11443                 }
11444 
11445                 while (offs + total > woffs) {
11446                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11447                         size_t size;
11448 
11449                         if (epid == DTRACE_EPIDNONE) {
11450                                 size = sizeof (uint32_t);
11451                         } else {
11452                                 ASSERT3U(epid, <=, state->dts_necbs);
11453                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11454 
11455                                 size = state->dts_ecbs[epid - 1]->dte_size;
11456                         }
11457 
11458                         ASSERT(woffs + size <= buf->dtb_size);
11459                         ASSERT(size != 0);
11460 
11461                         if (woffs + size == buf->dtb_size) {
11462                                 /*
11463                                  * We've reached the end of the buffer; we want
11464                                  * to set the wrapped offset to 0 and break
11465                                  * out.  However, if the offs is 0, then we're
11466                                  * in a strange edge-condition:  the amount of
11467                                  * space that we want to reserve plus the size
11468                                  * of the record that we're overwriting is
11469                                  * greater than the size of the buffer.  This
11470                                  * is problematic because if we reserve the
11471                                  * space but subsequently don't consume it (due
11472                                  * to a failed predicate or error) the wrapped
11473                                  * offset will be 0 -- yet the EPID at offset 0
11474                                  * will not be committed.  This situation is
11475                                  * relatively easy to deal with:  if we're in
11476                                  * this case, the buffer is indistinguishable
11477                                  * from one that hasn't wrapped; we need only
11478                                  * finish the job by clearing the wrapped bit,
11479                                  * explicitly setting the offset to be 0, and
11480                                  * zero'ing out the old data in the buffer.
11481                                  */
11482                                 if (offs == 0) {
11483                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11484                                         buf->dtb_offset = 0;
11485                                         woffs = total;
11486 
11487                                         while (woffs < buf->dtb_size)
11488                                                 tomax[woffs++] = 0;
11489                                 }
11490 
11491                                 woffs = 0;
11492                                 break;
11493                         }
11494 
11495                         woffs += size;
11496                 }
11497 
11498                 /*
11499                  * We have a wrapped offset.  It may be that the wrapped offset
11500                  * has become zero -- that's okay.
11501                  */
11502                 buf->dtb_xamot_offset = woffs;
11503         }
11504 
11505 out:
11506         /*
11507          * Now we can plow the buffer with any necessary padding.
11508          */
11509         while (offs & (align - 1)) {
11510                 /*
11511                  * Assert that our alignment is off by a number which
11512                  * is itself sizeof (uint32_t) aligned.
11513                  */
11514                 ASSERT(!((align - (offs & (align - 1))) &
11515                     (sizeof (uint32_t) - 1)));
11516                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11517                 offs += sizeof (uint32_t);
11518         }
11519 
11520         if (buf->dtb_flags & DTRACEBUF_FILL) {
11521                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11522                         buf->dtb_flags |= DTRACEBUF_FULL;
11523                         return (-1);
11524                 }
11525         }
11526 
11527         if (mstate == NULL)
11528                 return (offs);
11529 
11530         /*
11531          * For ring buffers and fill buffers, the scratch space is always
11532          * the inactive buffer.
11533          */
11534         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11535         mstate->dtms_scratch_size = buf->dtb_size;
11536         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11537 
11538         return (offs);
11539 }
11540 
11541 static void
11542 dtrace_buffer_polish(dtrace_buffer_t *buf)
11543 {
11544         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11545         ASSERT(MUTEX_HELD(&dtrace_lock));
11546 
11547         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11548                 return;
11549 
11550         /*
11551          * We need to polish the ring buffer.  There are three cases:
11552          *
11553          * - The first (and presumably most common) is that there is no gap
11554          *   between the buffer offset and the wrapped offset.  In this case,
11555          *   there is nothing in the buffer that isn't valid data; we can
11556          *   mark the buffer as polished and return.
11557          *
11558          * - The second (less common than the first but still more common
11559          *   than the third) is that there is a gap between the buffer offset
11560          *   and the wrapped offset, and the wrapped offset is larger than the
11561          *   buffer offset.  This can happen because of an alignment issue, or
11562          *   can happen because of a call to dtrace_buffer_reserve() that
11563          *   didn't subsequently consume the buffer space.  In this case,
11564          *   we need to zero the data from the buffer offset to the wrapped
11565          *   offset.
11566          *
11567          * - The third (and least common) is that there is a gap between the
11568          *   buffer offset and the wrapped offset, but the wrapped offset is
11569          *   _less_ than the buffer offset.  This can only happen because a
11570          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11571          *   was not subsequently consumed.  In this case, we need to zero the
11572          *   space from the offset to the end of the buffer _and_ from the
11573          *   top of the buffer to the wrapped offset.
11574          */
11575         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11576                 bzero(buf->dtb_tomax + buf->dtb_offset,
11577                     buf->dtb_xamot_offset - buf->dtb_offset);
11578         }
11579 
11580         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11581                 bzero(buf->dtb_tomax + buf->dtb_offset,
11582                     buf->dtb_size - buf->dtb_offset);
11583                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11584         }
11585 }
11586 
11587 /*
11588  * This routine determines if data generated at the specified time has likely
11589  * been entirely consumed at user-level.  This routine is called to determine
11590  * if an ECB on a defunct probe (but for an active enabling) can be safely
11591  * disabled and destroyed.
11592  */
11593 static int
11594 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11595 {
11596         int i;
11597 
11598         for (i = 0; i < NCPU; i++) {
11599                 dtrace_buffer_t *buf = &bufs[i];
11600 
11601                 if (buf->dtb_size == 0)
11602                         continue;
11603 
11604                 if (buf->dtb_flags & DTRACEBUF_RING)
11605                         return (0);
11606 
11607                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11608                         return (0);
11609 
11610                 if (buf->dtb_switched - buf->dtb_interval < when)
11611                         return (0);
11612         }
11613 
11614         return (1);
11615 }
11616 
11617 static void
11618 dtrace_buffer_free(dtrace_buffer_t *bufs)
11619 {
11620         int i;
11621 
11622         for (i = 0; i < NCPU; i++) {
11623                 dtrace_buffer_t *buf = &bufs[i];
11624 
11625                 if (buf->dtb_tomax == NULL) {
11626                         ASSERT(buf->dtb_xamot == NULL);
11627                         ASSERT(buf->dtb_size == 0);
11628                         continue;
11629                 }
11630 
11631                 if (buf->dtb_xamot != NULL) {
11632                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11633                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11634                 }
11635 
11636                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11637                 buf->dtb_size = 0;
11638                 buf->dtb_tomax = NULL;
11639                 buf->dtb_xamot = NULL;
11640         }
11641 }
11642 
11643 /*
11644  * DTrace Enabling Functions
11645  */
11646 static dtrace_enabling_t *
11647 dtrace_enabling_create(dtrace_vstate_t *vstate)
11648 {
11649         dtrace_enabling_t *enab;
11650 
11651         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11652         enab->dten_vstate = vstate;
11653 
11654         return (enab);
11655 }
11656 
11657 static void
11658 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11659 {
11660         dtrace_ecbdesc_t **ndesc;
11661         size_t osize, nsize;
11662 
11663         /*
11664          * We can't add to enablings after we've enabled them, or after we've
11665          * retained them.
11666          */
11667         ASSERT(enab->dten_probegen == 0);
11668         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11669 
11670         if (enab->dten_ndesc < enab->dten_maxdesc) {
11671                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11672                 return;
11673         }
11674 
11675         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11676 
11677         if (enab->dten_maxdesc == 0) {
11678                 enab->dten_maxdesc = 1;
11679         } else {
11680                 enab->dten_maxdesc <<= 1;
11681         }
11682 
11683         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11684 
11685         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11686         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11687         bcopy(enab->dten_desc, ndesc, osize);
11688         kmem_free(enab->dten_desc, osize);
11689 
11690         enab->dten_desc = ndesc;
11691         enab->dten_desc[enab->dten_ndesc++] = ecb;
11692 }
11693 
11694 static void
11695 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11696     dtrace_probedesc_t *pd)
11697 {
11698         dtrace_ecbdesc_t *new;
11699         dtrace_predicate_t *pred;
11700         dtrace_actdesc_t *act;
11701 
11702         /*
11703          * We're going to create a new ECB description that matches the
11704          * specified ECB in every way, but has the specified probe description.
11705          */
11706         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11707 
11708         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11709                 dtrace_predicate_hold(pred);
11710 
11711         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11712                 dtrace_actdesc_hold(act);
11713 
11714         new->dted_action = ecb->dted_action;
11715         new->dted_pred = ecb->dted_pred;
11716         new->dted_probe = *pd;
11717         new->dted_uarg = ecb->dted_uarg;
11718 
11719         dtrace_enabling_add(enab, new);
11720 }
11721 
11722 static void
11723 dtrace_enabling_dump(dtrace_enabling_t *enab)
11724 {
11725         int i;
11726 
11727         for (i = 0; i < enab->dten_ndesc; i++) {
11728                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11729 
11730                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11731                     desc->dtpd_provider, desc->dtpd_mod,
11732                     desc->dtpd_func, desc->dtpd_name);
11733         }
11734 }
11735 
11736 static void
11737 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11738 {
11739         int i;
11740         dtrace_ecbdesc_t *ep;
11741         dtrace_vstate_t *vstate = enab->dten_vstate;
11742 
11743         ASSERT(MUTEX_HELD(&dtrace_lock));
11744 
11745         for (i = 0; i < enab->dten_ndesc; i++) {
11746                 dtrace_actdesc_t *act, *next;
11747                 dtrace_predicate_t *pred;
11748 
11749                 ep = enab->dten_desc[i];
11750 
11751                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11752                         dtrace_predicate_release(pred, vstate);
11753 
11754                 for (act = ep->dted_action; act != NULL; act = next) {
11755                         next = act->dtad_next;
11756                         dtrace_actdesc_release(act, vstate);
11757                 }
11758 
11759                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11760         }
11761 
11762         kmem_free(enab->dten_desc,
11763             enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11764 
11765         /*
11766          * If this was a retained enabling, decrement the dts_nretained count
11767          * and take it off of the dtrace_retained list.
11768          */
11769         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11770             dtrace_retained == enab) {
11771                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11772                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11773                 enab->dten_vstate->dtvs_state->dts_nretained--;
11774                 dtrace_retained_gen++;
11775         }
11776 
11777         if (enab->dten_prev == NULL) {
11778                 if (dtrace_retained == enab) {
11779                         dtrace_retained = enab->dten_next;
11780 
11781                         if (dtrace_retained != NULL)
11782                                 dtrace_retained->dten_prev = NULL;
11783                 }
11784         } else {
11785                 ASSERT(enab != dtrace_retained);
11786                 ASSERT(dtrace_retained != NULL);
11787                 enab->dten_prev->dten_next = enab->dten_next;
11788         }
11789 
11790         if (enab->dten_next != NULL) {
11791                 ASSERT(dtrace_retained != NULL);
11792                 enab->dten_next->dten_prev = enab->dten_prev;
11793         }
11794 
11795         kmem_free(enab, sizeof (dtrace_enabling_t));
11796 }
11797 
11798 static int
11799 dtrace_enabling_retain(dtrace_enabling_t *enab)
11800 {
11801         dtrace_state_t *state;
11802 
11803         ASSERT(MUTEX_HELD(&dtrace_lock));
11804         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11805         ASSERT(enab->dten_vstate != NULL);
11806 
11807         state = enab->dten_vstate->dtvs_state;
11808         ASSERT(state != NULL);
11809 
11810         /*
11811          * We only allow each state to retain dtrace_retain_max enablings.
11812          */
11813         if (state->dts_nretained >= dtrace_retain_max)
11814                 return (ENOSPC);
11815 
11816         state->dts_nretained++;
11817         dtrace_retained_gen++;
11818 
11819         if (dtrace_retained == NULL) {
11820                 dtrace_retained = enab;
11821                 return (0);
11822         }
11823 
11824         enab->dten_next = dtrace_retained;
11825         dtrace_retained->dten_prev = enab;
11826         dtrace_retained = enab;
11827 
11828         return (0);
11829 }
11830 
11831 static int
11832 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11833     dtrace_probedesc_t *create)
11834 {
11835         dtrace_enabling_t *new, *enab;
11836         int found = 0, err = ENOENT;
11837 
11838         ASSERT(MUTEX_HELD(&dtrace_lock));
11839         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11840         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11841         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11842         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11843 
11844         new = dtrace_enabling_create(&state->dts_vstate);
11845 
11846         /*
11847          * Iterate over all retained enablings, looking for enablings that
11848          * match the specified state.
11849          */
11850         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11851                 int i;
11852 
11853                 /*
11854                  * dtvs_state can only be NULL for helper enablings -- and
11855                  * helper enablings can't be retained.
11856                  */
11857                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11858 
11859                 if (enab->dten_vstate->dtvs_state != state)
11860                         continue;
11861 
11862                 /*
11863                  * Now iterate over each probe description; we're looking for
11864                  * an exact match to the specified probe description.
11865                  */
11866                 for (i = 0; i < enab->dten_ndesc; i++) {
11867                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11868                         dtrace_probedesc_t *pd = &ep->dted_probe;
11869 
11870                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11871                                 continue;
11872 
11873                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11874                                 continue;
11875 
11876                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11877                                 continue;
11878 
11879                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11880                                 continue;
11881 
11882                         /*
11883                          * We have a winning probe!  Add it to our growing
11884                          * enabling.
11885                          */
11886                         found = 1;
11887                         dtrace_enabling_addlike(new, ep, create);
11888                 }
11889         }
11890 
11891         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11892                 dtrace_enabling_destroy(new);
11893                 return (err);
11894         }
11895 
11896         return (0);
11897 }
11898 
11899 static void
11900 dtrace_enabling_retract(dtrace_state_t *state)
11901 {
11902         dtrace_enabling_t *enab, *next;
11903 
11904         ASSERT(MUTEX_HELD(&dtrace_lock));
11905 
11906         /*
11907          * Iterate over all retained enablings, destroy the enablings retained
11908          * for the specified state.
11909          */
11910         for (enab = dtrace_retained; enab != NULL; enab = next) {
11911                 next = enab->dten_next;
11912 
11913                 /*
11914                  * dtvs_state can only be NULL for helper enablings -- and
11915                  * helper enablings can't be retained.
11916                  */
11917                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11918 
11919                 if (enab->dten_vstate->dtvs_state == state) {
11920                         ASSERT(state->dts_nretained > 0);
11921                         dtrace_enabling_destroy(enab);
11922                 }
11923         }
11924 
11925         ASSERT(state->dts_nretained == 0);
11926 }
11927 
11928 static int
11929 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11930 {
11931         int i = 0;
11932         int total_matched = 0, matched = 0;
11933 
11934         ASSERT(MUTEX_HELD(&cpu_lock));
11935         ASSERT(MUTEX_HELD(&dtrace_lock));
11936 
11937         for (i = 0; i < enab->dten_ndesc; i++) {
11938                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11939 
11940                 enab->dten_current = ep;
11941                 enab->dten_error = 0;
11942 
11943                 /*
11944                  * If a provider failed to enable a probe then get out and
11945                  * let the consumer know we failed.
11946                  */
11947                 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11948                         return (EBUSY);
11949 
11950                 total_matched += matched;
11951 
11952                 if (enab->dten_error != 0) {
11953                         /*
11954                          * If we get an error half-way through enabling the
11955                          * probes, we kick out -- perhaps with some number of
11956                          * them enabled.  Leaving enabled probes enabled may
11957                          * be slightly confusing for user-level, but we expect
11958                          * that no one will attempt to actually drive on in
11959                          * the face of such errors.  If this is an anonymous
11960                          * enabling (indicated with a NULL nmatched pointer),
11961                          * we cmn_err() a message.  We aren't expecting to
11962                          * get such an error -- such as it can exist at all,
11963                          * it would be a result of corrupted DOF in the driver
11964                          * properties.
11965                          */
11966                         if (nmatched == NULL) {
11967                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11968                                     "error on %p: %d", (void *)ep,
11969                                     enab->dten_error);
11970                         }
11971 
11972                         return (enab->dten_error);
11973                 }
11974         }
11975 
11976         enab->dten_probegen = dtrace_probegen;
11977         if (nmatched != NULL)
11978                 *nmatched = total_matched;
11979 
11980         return (0);
11981 }
11982 
11983 static void
11984 dtrace_enabling_matchall(void)
11985 {
11986         dtrace_enabling_t *enab;
11987 
11988         mutex_enter(&cpu_lock);
11989         mutex_enter(&dtrace_lock);
11990 
11991         /*
11992          * Iterate over all retained enablings to see if any probes match
11993          * against them.  We only perform this operation on enablings for which
11994          * we have sufficient permissions by virtue of being in the global zone
11995          * or in the same zone as the DTrace client.  Because we can be called
11996          * after dtrace_detach() has been called, we cannot assert that there
11997          * are retained enablings.  We can safely load from dtrace_retained,
11998          * however:  the taskq_destroy() at the end of dtrace_detach() will
11999          * block pending our completion.
12000          */
12001         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12002                 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12003                 cred_t *cr = dcr->dcr_cred;
12004                 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12005 
12006                 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12007                     (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12008                         (void) dtrace_enabling_match(enab, NULL);
12009         }
12010 
12011         mutex_exit(&dtrace_lock);
12012         mutex_exit(&cpu_lock);
12013 }
12014 
12015 /*
12016  * If an enabling is to be enabled without having matched probes (that is, if
12017  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12018  * enabling must be _primed_ by creating an ECB for every ECB description.
12019  * This must be done to assure that we know the number of speculations, the
12020  * number of aggregations, the minimum buffer size needed, etc. before we
12021  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12022  * enabling any probes, we create ECBs for every ECB decription, but with a
12023  * NULL probe -- which is exactly what this function does.
12024  */
12025 static void
12026 dtrace_enabling_prime(dtrace_state_t *state)
12027 {
12028         dtrace_enabling_t *enab;
12029         int i;
12030 
12031         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12032                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12033 
12034                 if (enab->dten_vstate->dtvs_state != state)
12035                         continue;
12036 
12037                 /*
12038                  * We don't want to prime an enabling more than once, lest
12039                  * we allow a malicious user to induce resource exhaustion.
12040                  * (The ECBs that result from priming an enabling aren't
12041                  * leaked -- but they also aren't deallocated until the
12042                  * consumer state is destroyed.)
12043                  */
12044                 if (enab->dten_primed)
12045                         continue;
12046 
12047                 for (i = 0; i < enab->dten_ndesc; i++) {
12048                         enab->dten_current = enab->dten_desc[i];
12049                         (void) dtrace_probe_enable(NULL, enab);
12050                 }
12051 
12052                 enab->dten_primed = 1;
12053         }
12054 }
12055 
12056 /*
12057  * Called to indicate that probes should be provided due to retained
12058  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12059  * must take an initial lap through the enabling calling the dtps_provide()
12060  * entry point explicitly to allow for autocreated probes.
12061  */
12062 static void
12063 dtrace_enabling_provide(dtrace_provider_t *prv)
12064 {
12065         int i, all = 0;
12066         dtrace_probedesc_t desc;
12067         dtrace_genid_t gen;
12068 
12069         ASSERT(MUTEX_HELD(&dtrace_lock));
12070         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12071 
12072         if (prv == NULL) {
12073                 all = 1;
12074                 prv = dtrace_provider;
12075         }
12076 
12077         do {
12078                 dtrace_enabling_t *enab;
12079                 void *parg = prv->dtpv_arg;
12080 
12081 retry:
12082                 gen = dtrace_retained_gen;
12083                 for (enab = dtrace_retained; enab != NULL;
12084                     enab = enab->dten_next) {
12085                         for (i = 0; i < enab->dten_ndesc; i++) {
12086                                 desc = enab->dten_desc[i]->dted_probe;
12087                                 mutex_exit(&dtrace_lock);
12088                                 prv->dtpv_pops.dtps_provide(parg, &desc);
12089                                 mutex_enter(&dtrace_lock);
12090                                 /*
12091                                  * Process the retained enablings again if
12092                                  * they have changed while we weren't holding
12093                                  * dtrace_lock.
12094                                  */
12095                                 if (gen != dtrace_retained_gen)
12096                                         goto retry;
12097                         }
12098                 }
12099         } while (all && (prv = prv->dtpv_next) != NULL);
12100 
12101         mutex_exit(&dtrace_lock);
12102         dtrace_probe_provide(NULL, all ? NULL : prv);
12103         mutex_enter(&dtrace_lock);
12104 }
12105 
12106 /*
12107  * Called to reap ECBs that are attached to probes from defunct providers.
12108  */
12109 static void
12110 dtrace_enabling_reap(void)
12111 {
12112         dtrace_provider_t *prov;
12113         dtrace_probe_t *probe;
12114         dtrace_ecb_t *ecb;
12115         hrtime_t when;
12116         int i;
12117 
12118         mutex_enter(&cpu_lock);
12119         mutex_enter(&dtrace_lock);
12120 
12121         for (i = 0; i < dtrace_nprobes; i++) {
12122                 if ((probe = dtrace_probes[i]) == NULL)
12123                         continue;
12124 
12125                 if (probe->dtpr_ecb == NULL)
12126                         continue;
12127 
12128                 prov = probe->dtpr_provider;
12129 
12130                 if ((when = prov->dtpv_defunct) == 0)
12131                         continue;
12132 
12133                 /*
12134                  * We have ECBs on a defunct provider:  we want to reap these
12135                  * ECBs to allow the provider to unregister.  The destruction
12136                  * of these ECBs must be done carefully:  if we destroy the ECB
12137                  * and the consumer later wishes to consume an EPID that
12138                  * corresponds to the destroyed ECB (and if the EPID metadata
12139                  * has not been previously consumed), the consumer will abort
12140                  * processing on the unknown EPID.  To reduce (but not, sadly,
12141                  * eliminate) the possibility of this, we will only destroy an
12142                  * ECB for a defunct provider if, for the state that
12143                  * corresponds to the ECB:
12144                  *
12145                  *  (a) There is no speculative tracing (which can effectively
12146                  *      cache an EPID for an arbitrary amount of time).
12147                  *
12148                  *  (b) The principal buffers have been switched twice since the
12149                  *      provider became defunct.
12150                  *
12151                  *  (c) The aggregation buffers are of zero size or have been
12152                  *      switched twice since the provider became defunct.
12153                  *
12154                  * We use dts_speculates to determine (a) and call a function
12155                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12156                  * that as soon as we've been unable to destroy one of the ECBs
12157                  * associated with the probe, we quit trying -- reaping is only
12158                  * fruitful in as much as we can destroy all ECBs associated
12159                  * with the defunct provider's probes.
12160                  */
12161                 while ((ecb = probe->dtpr_ecb) != NULL) {
12162                         dtrace_state_t *state = ecb->dte_state;
12163                         dtrace_buffer_t *buf = state->dts_buffer;
12164                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12165 
12166                         if (state->dts_speculates)
12167                                 break;
12168 
12169                         if (!dtrace_buffer_consumed(buf, when))
12170                                 break;
12171 
12172                         if (!dtrace_buffer_consumed(aggbuf, when))
12173                                 break;
12174 
12175                         dtrace_ecb_disable(ecb);
12176                         ASSERT(probe->dtpr_ecb != ecb);
12177                         dtrace_ecb_destroy(ecb);
12178                 }
12179         }
12180 
12181         mutex_exit(&dtrace_lock);
12182         mutex_exit(&cpu_lock);
12183 }
12184 
12185 /*
12186  * DTrace DOF Functions
12187  */
12188 /*ARGSUSED*/
12189 static void
12190 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12191 {
12192         if (dtrace_err_verbose)
12193                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12194 
12195 #ifdef DTRACE_ERRDEBUG
12196         dtrace_errdebug(str);
12197 #endif
12198 }
12199 
12200 /*
12201  * Create DOF out of a currently enabled state.  Right now, we only create
12202  * DOF containing the run-time options -- but this could be expanded to create
12203  * complete DOF representing the enabled state.
12204  */
12205 static dof_hdr_t *
12206 dtrace_dof_create(dtrace_state_t *state)
12207 {
12208         dof_hdr_t *dof;
12209         dof_sec_t *sec;
12210         dof_optdesc_t *opt;
12211         int i, len = sizeof (dof_hdr_t) +
12212             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12213             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12214 
12215         ASSERT(MUTEX_HELD(&dtrace_lock));
12216 
12217         dof = kmem_zalloc(len, KM_SLEEP);
12218         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12219         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12220         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12221         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12222 
12223         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12224         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12225         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12226         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12227         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12228         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12229 
12230         dof->dofh_flags = 0;
12231         dof->dofh_hdrsize = sizeof (dof_hdr_t);
12232         dof->dofh_secsize = sizeof (dof_sec_t);
12233         dof->dofh_secnum = 1;        /* only DOF_SECT_OPTDESC */
12234         dof->dofh_secoff = sizeof (dof_hdr_t);
12235         dof->dofh_loadsz = len;
12236         dof->dofh_filesz = len;
12237         dof->dofh_pad = 0;
12238 
12239         /*
12240          * Fill in the option section header...
12241          */
12242         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12243         sec->dofs_type = DOF_SECT_OPTDESC;
12244         sec->dofs_align = sizeof (uint64_t);
12245         sec->dofs_flags = DOF_SECF_LOAD;
12246         sec->dofs_entsize = sizeof (dof_optdesc_t);
12247 
12248         opt = (dof_optdesc_t *)((uintptr_t)sec +
12249             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12250 
12251         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12252         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12253 
12254         for (i = 0; i < DTRACEOPT_MAX; i++) {
12255                 opt[i].dofo_option = i;
12256                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12257                 opt[i].dofo_value = state->dts_options[i];
12258         }
12259 
12260         return (dof);
12261 }
12262 
12263 static dof_hdr_t *
12264 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12265 {
12266         dof_hdr_t hdr, *dof;
12267 
12268         ASSERT(!MUTEX_HELD(&dtrace_lock));
12269 
12270         /*
12271          * First, we're going to copyin() the sizeof (dof_hdr_t).
12272          */
12273         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12274                 dtrace_dof_error(NULL, "failed to copyin DOF header");
12275                 *errp = EFAULT;
12276                 return (NULL);
12277         }
12278 
12279         /*
12280          * Now we'll allocate the entire DOF and copy it in -- provided
12281          * that the length isn't outrageous.
12282          */
12283         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12284                 dtrace_dof_error(&hdr, "load size exceeds maximum");
12285                 *errp = E2BIG;
12286                 return (NULL);
12287         }
12288 
12289         if (hdr.dofh_loadsz < sizeof (hdr)) {
12290                 dtrace_dof_error(&hdr, "invalid load size");
12291                 *errp = EINVAL;
12292                 return (NULL);
12293         }
12294 
12295         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12296 
12297         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12298             dof->dofh_loadsz != hdr.dofh_loadsz) {
12299                 kmem_free(dof, hdr.dofh_loadsz);
12300                 *errp = EFAULT;
12301                 return (NULL);
12302         }
12303 
12304         return (dof);
12305 }
12306 
12307 static dof_hdr_t *
12308 dtrace_dof_property(const char *name)
12309 {
12310         uchar_t *buf;
12311         uint64_t loadsz;
12312         unsigned int len, i;
12313         dof_hdr_t *dof;
12314 
12315         /*
12316          * Unfortunately, array of values in .conf files are always (and
12317          * only) interpreted to be integer arrays.  We must read our DOF
12318          * as an integer array, and then squeeze it into a byte array.
12319          */
12320         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12321             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12322                 return (NULL);
12323 
12324         for (i = 0; i < len; i++)
12325                 buf[i] = (uchar_t)(((int *)buf)[i]);
12326 
12327         if (len < sizeof (dof_hdr_t)) {
12328                 ddi_prop_free(buf);
12329                 dtrace_dof_error(NULL, "truncated header");
12330                 return (NULL);
12331         }
12332 
12333         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12334                 ddi_prop_free(buf);
12335                 dtrace_dof_error(NULL, "truncated DOF");
12336                 return (NULL);
12337         }
12338 
12339         if (loadsz >= dtrace_dof_maxsize) {
12340                 ddi_prop_free(buf);
12341                 dtrace_dof_error(NULL, "oversized DOF");
12342                 return (NULL);
12343         }
12344 
12345         dof = kmem_alloc(loadsz, KM_SLEEP);
12346         bcopy(buf, dof, loadsz);
12347         ddi_prop_free(buf);
12348 
12349         return (dof);
12350 }
12351 
12352 static void
12353 dtrace_dof_destroy(dof_hdr_t *dof)
12354 {
12355         kmem_free(dof, dof->dofh_loadsz);
12356 }
12357 
12358 /*
12359  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12360  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12361  * a type other than DOF_SECT_NONE is specified, the header is checked against
12362  * this type and NULL is returned if the types do not match.
12363  */
12364 static dof_sec_t *
12365 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12366 {
12367         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12368             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12369 
12370         if (i >= dof->dofh_secnum) {
12371                 dtrace_dof_error(dof, "referenced section index is invalid");
12372                 return (NULL);
12373         }
12374 
12375         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12376                 dtrace_dof_error(dof, "referenced section is not loadable");
12377                 return (NULL);
12378         }
12379 
12380         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12381                 dtrace_dof_error(dof, "referenced section is the wrong type");
12382                 return (NULL);
12383         }
12384 
12385         return (sec);
12386 }
12387 
12388 static dtrace_probedesc_t *
12389 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12390 {
12391         dof_probedesc_t *probe;
12392         dof_sec_t *strtab;
12393         uintptr_t daddr = (uintptr_t)dof;
12394         uintptr_t str;
12395         size_t size;
12396 
12397         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12398                 dtrace_dof_error(dof, "invalid probe section");
12399                 return (NULL);
12400         }
12401 
12402         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12403                 dtrace_dof_error(dof, "bad alignment in probe description");
12404                 return (NULL);
12405         }
12406 
12407         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12408                 dtrace_dof_error(dof, "truncated probe description");
12409                 return (NULL);
12410         }
12411 
12412         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12413         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12414 
12415         if (strtab == NULL)
12416                 return (NULL);
12417 
12418         str = daddr + strtab->dofs_offset;
12419         size = strtab->dofs_size;
12420 
12421         if (probe->dofp_provider >= strtab->dofs_size) {
12422                 dtrace_dof_error(dof, "corrupt probe provider");
12423                 return (NULL);
12424         }
12425 
12426         (void) strncpy(desc->dtpd_provider,
12427             (char *)(str + probe->dofp_provider),
12428             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12429 
12430         if (probe->dofp_mod >= strtab->dofs_size) {
12431                 dtrace_dof_error(dof, "corrupt probe module");
12432                 return (NULL);
12433         }
12434 
12435         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12436             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12437 
12438         if (probe->dofp_func >= strtab->dofs_size) {
12439                 dtrace_dof_error(dof, "corrupt probe function");
12440                 return (NULL);
12441         }
12442 
12443         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12444             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12445 
12446         if (probe->dofp_name >= strtab->dofs_size) {
12447                 dtrace_dof_error(dof, "corrupt probe name");
12448                 return (NULL);
12449         }
12450 
12451         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12452             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12453 
12454         return (desc);
12455 }
12456 
12457 static dtrace_difo_t *
12458 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12459     cred_t *cr)
12460 {
12461         dtrace_difo_t *dp;
12462         size_t ttl = 0;
12463         dof_difohdr_t *dofd;
12464         uintptr_t daddr = (uintptr_t)dof;
12465         size_t max = dtrace_difo_maxsize;
12466         int i, l, n;
12467 
12468         static const struct {
12469                 int section;
12470                 int bufoffs;
12471                 int lenoffs;
12472                 int entsize;
12473                 int align;
12474                 const char *msg;
12475         } difo[] = {
12476                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12477                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12478                 sizeof (dif_instr_t), "multiple DIF sections" },
12479 
12480                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12481                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12482                 sizeof (uint64_t), "multiple integer tables" },
12483 
12484                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12485                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12486                 sizeof (char), "multiple string tables" },
12487 
12488                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12489                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12490                 sizeof (uint_t), "multiple variable tables" },
12491 
12492                 { DOF_SECT_NONE, 0, 0, 0, NULL }
12493         };
12494 
12495         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12496                 dtrace_dof_error(dof, "invalid DIFO header section");
12497                 return (NULL);
12498         }
12499 
12500         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12501                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12502                 return (NULL);
12503         }
12504 
12505         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12506             sec->dofs_size % sizeof (dof_secidx_t)) {
12507                 dtrace_dof_error(dof, "bad size in DIFO header");
12508                 return (NULL);
12509         }
12510 
12511         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12512         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12513 
12514         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12515         dp->dtdo_rtype = dofd->dofd_rtype;
12516 
12517         for (l = 0; l < n; l++) {
12518                 dof_sec_t *subsec;
12519                 void **bufp;
12520                 uint32_t *lenp;
12521 
12522                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12523                     dofd->dofd_links[l])) == NULL)
12524                         goto err; /* invalid section link */
12525 
12526                 if (ttl + subsec->dofs_size > max) {
12527                         dtrace_dof_error(dof, "exceeds maximum size");
12528                         goto err;
12529                 }
12530 
12531                 ttl += subsec->dofs_size;
12532 
12533                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12534                         if (subsec->dofs_type != difo[i].section)
12535                                 continue;
12536 
12537                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12538                                 dtrace_dof_error(dof, "section not loaded");
12539                                 goto err;
12540                         }
12541 
12542                         if (subsec->dofs_align != difo[i].align) {
12543                                 dtrace_dof_error(dof, "bad alignment");
12544                                 goto err;
12545                         }
12546 
12547                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12548                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12549 
12550                         if (*bufp != NULL) {
12551                                 dtrace_dof_error(dof, difo[i].msg);
12552                                 goto err;
12553                         }
12554 
12555                         if (difo[i].entsize != subsec->dofs_entsize) {
12556                                 dtrace_dof_error(dof, "entry size mismatch");
12557                                 goto err;
12558                         }
12559 
12560                         if (subsec->dofs_entsize != 0 &&
12561                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12562                                 dtrace_dof_error(dof, "corrupt entry size");
12563                                 goto err;
12564                         }
12565 
12566                         *lenp = subsec->dofs_size;
12567                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12568                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12569                             *bufp, subsec->dofs_size);
12570 
12571                         if (subsec->dofs_entsize != 0)
12572                                 *lenp /= subsec->dofs_entsize;
12573 
12574                         break;
12575                 }
12576 
12577                 /*
12578                  * If we encounter a loadable DIFO sub-section that is not
12579                  * known to us, assume this is a broken program and fail.
12580                  */
12581                 if (difo[i].section == DOF_SECT_NONE &&
12582                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12583                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12584                         goto err;
12585                 }
12586         }
12587 
12588         if (dp->dtdo_buf == NULL) {
12589                 /*
12590                  * We can't have a DIF object without DIF text.
12591                  */
12592                 dtrace_dof_error(dof, "missing DIF text");
12593                 goto err;
12594         }
12595 
12596         /*
12597          * Before we validate the DIF object, run through the variable table
12598          * looking for the strings -- if any of their size are under, we'll set
12599          * their size to be the system-wide default string size.  Note that
12600          * this should _not_ happen if the "strsize" option has been set --
12601          * in this case, the compiler should have set the size to reflect the
12602          * setting of the option.
12603          */
12604         for (i = 0; i < dp->dtdo_varlen; i++) {
12605                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12606                 dtrace_diftype_t *t = &v->dtdv_type;
12607 
12608                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12609                         continue;
12610 
12611                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12612                         t->dtdt_size = dtrace_strsize_default;
12613         }
12614 
12615         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12616                 goto err;
12617 
12618         dtrace_difo_init(dp, vstate);
12619         return (dp);
12620 
12621 err:
12622         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12623         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12624         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12625         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12626 
12627         kmem_free(dp, sizeof (dtrace_difo_t));
12628         return (NULL);
12629 }
12630 
12631 static dtrace_predicate_t *
12632 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12633     cred_t *cr)
12634 {
12635         dtrace_difo_t *dp;
12636 
12637         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12638                 return (NULL);
12639 
12640         return (dtrace_predicate_create(dp));
12641 }
12642 
12643 static dtrace_actdesc_t *
12644 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12645     cred_t *cr)
12646 {
12647         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12648         dof_actdesc_t *desc;
12649         dof_sec_t *difosec;
12650         size_t offs;
12651         uintptr_t daddr = (uintptr_t)dof;
12652         uint64_t arg;
12653         dtrace_actkind_t kind;
12654 
12655         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12656                 dtrace_dof_error(dof, "invalid action section");
12657                 return (NULL);
12658         }
12659 
12660         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12661                 dtrace_dof_error(dof, "truncated action description");
12662                 return (NULL);
12663         }
12664 
12665         if (sec->dofs_align != sizeof (uint64_t)) {
12666                 dtrace_dof_error(dof, "bad alignment in action description");
12667                 return (NULL);
12668         }
12669 
12670         if (sec->dofs_size < sec->dofs_entsize) {
12671                 dtrace_dof_error(dof, "section entry size exceeds total size");
12672                 return (NULL);
12673         }
12674 
12675         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12676                 dtrace_dof_error(dof, "bad entry size in action description");
12677                 return (NULL);
12678         }
12679 
12680         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12681                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12682                 return (NULL);
12683         }
12684 
12685         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12686                 desc = (dof_actdesc_t *)(daddr +
12687                     (uintptr_t)sec->dofs_offset + offs);
12688                 kind = (dtrace_actkind_t)desc->dofa_kind;
12689 
12690                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12691                     (kind != DTRACEACT_PRINTA ||
12692                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12693                     (kind == DTRACEACT_DIFEXPR &&
12694                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12695                         dof_sec_t *strtab;
12696                         char *str, *fmt;
12697                         uint64_t i;
12698 
12699                         /*
12700                          * The argument to these actions is an index into the
12701                          * DOF string table.  For printf()-like actions, this
12702                          * is the format string.  For print(), this is the
12703                          * CTF type of the expression result.
12704                          */
12705                         if ((strtab = dtrace_dof_sect(dof,
12706                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12707                                 goto err;
12708 
12709                         str = (char *)((uintptr_t)dof +
12710                             (uintptr_t)strtab->dofs_offset);
12711 
12712                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12713                                 if (str[i] == '\0')
12714                                         break;
12715                         }
12716 
12717                         if (i >= strtab->dofs_size) {
12718                                 dtrace_dof_error(dof, "bogus format string");
12719                                 goto err;
12720                         }
12721 
12722                         if (i == desc->dofa_arg) {
12723                                 dtrace_dof_error(dof, "empty format string");
12724                                 goto err;
12725                         }
12726 
12727                         i -= desc->dofa_arg;
12728                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12729                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12730                         arg = (uint64_t)(uintptr_t)fmt;
12731                 } else {
12732                         if (kind == DTRACEACT_PRINTA) {
12733                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12734                                 arg = 0;
12735                         } else {
12736                                 arg = desc->dofa_arg;
12737                         }
12738                 }
12739 
12740                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12741                     desc->dofa_uarg, arg);
12742 
12743                 if (last != NULL) {
12744                         last->dtad_next = act;
12745                 } else {
12746                         first = act;
12747                 }
12748 
12749                 last = act;
12750 
12751                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12752                         continue;
12753 
12754                 if ((difosec = dtrace_dof_sect(dof,
12755                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12756                         goto err;
12757 
12758                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12759 
12760                 if (act->dtad_difo == NULL)
12761                         goto err;
12762         }
12763 
12764         ASSERT(first != NULL);
12765         return (first);
12766 
12767 err:
12768         for (act = first; act != NULL; act = next) {
12769                 next = act->dtad_next;
12770                 dtrace_actdesc_release(act, vstate);
12771         }
12772 
12773         return (NULL);
12774 }
12775 
12776 static dtrace_ecbdesc_t *
12777 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12778     cred_t *cr)
12779 {
12780         dtrace_ecbdesc_t *ep;
12781         dof_ecbdesc_t *ecb;
12782         dtrace_probedesc_t *desc;
12783         dtrace_predicate_t *pred = NULL;
12784 
12785         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12786                 dtrace_dof_error(dof, "truncated ECB description");
12787                 return (NULL);
12788         }
12789 
12790         if (sec->dofs_align != sizeof (uint64_t)) {
12791                 dtrace_dof_error(dof, "bad alignment in ECB description");
12792                 return (NULL);
12793         }
12794 
12795         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12796         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12797 
12798         if (sec == NULL)
12799                 return (NULL);
12800 
12801         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12802         ep->dted_uarg = ecb->dofe_uarg;
12803         desc = &ep->dted_probe;
12804 
12805         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12806                 goto err;
12807 
12808         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12809                 if ((sec = dtrace_dof_sect(dof,
12810                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12811                         goto err;
12812 
12813                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12814                         goto err;
12815 
12816                 ep->dted_pred.dtpdd_predicate = pred;
12817         }
12818 
12819         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12820                 if ((sec = dtrace_dof_sect(dof,
12821                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12822                         goto err;
12823 
12824                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12825 
12826                 if (ep->dted_action == NULL)
12827                         goto err;
12828         }
12829 
12830         return (ep);
12831 
12832 err:
12833         if (pred != NULL)
12834                 dtrace_predicate_release(pred, vstate);
12835         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12836         return (NULL);
12837 }
12838 
12839 /*
12840  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12841  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12842  * site of any user SETX relocations to account for load object base address.
12843  * In the future, if we need other relocations, this function can be extended.
12844  */
12845 static int
12846 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12847 {
12848         uintptr_t daddr = (uintptr_t)dof;
12849         dof_relohdr_t *dofr =
12850             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12851         dof_sec_t *ss, *rs, *ts;
12852         dof_relodesc_t *r;
12853         uint_t i, n;
12854 
12855         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12856             sec->dofs_align != sizeof (dof_secidx_t)) {
12857                 dtrace_dof_error(dof, "invalid relocation header");
12858                 return (-1);
12859         }
12860 
12861         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12862         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12863         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12864 
12865         if (ss == NULL || rs == NULL || ts == NULL)
12866                 return (-1); /* dtrace_dof_error() has been called already */
12867 
12868         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12869             rs->dofs_align != sizeof (uint64_t)) {
12870                 dtrace_dof_error(dof, "invalid relocation section");
12871                 return (-1);
12872         }
12873 
12874         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12875         n = rs->dofs_size / rs->dofs_entsize;
12876 
12877         for (i = 0; i < n; i++) {
12878                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12879 
12880                 switch (r->dofr_type) {
12881                 case DOF_RELO_NONE:
12882                         break;
12883                 case DOF_RELO_SETX:
12884                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12885                             sizeof (uint64_t) > ts->dofs_size) {
12886                                 dtrace_dof_error(dof, "bad relocation offset");
12887                                 return (-1);
12888                         }
12889 
12890                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12891                                 dtrace_dof_error(dof, "misaligned setx relo");
12892                                 return (-1);
12893                         }
12894 
12895                         *(uint64_t *)taddr += ubase;
12896                         break;
12897                 default:
12898                         dtrace_dof_error(dof, "invalid relocation type");
12899                         return (-1);
12900                 }
12901 
12902                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12903         }
12904 
12905         return (0);
12906 }
12907 
12908 /*
12909  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12910  * header:  it should be at the front of a memory region that is at least
12911  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12912  * size.  It need not be validated in any other way.
12913  */
12914 static int
12915 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12916     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12917 {
12918         uint64_t len = dof->dofh_loadsz, seclen;
12919         uintptr_t daddr = (uintptr_t)dof;
12920         dtrace_ecbdesc_t *ep;
12921         dtrace_enabling_t *enab;
12922         uint_t i;
12923 
12924         ASSERT(MUTEX_HELD(&dtrace_lock));
12925         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12926 
12927         /*
12928          * Check the DOF header identification bytes.  In addition to checking
12929          * valid settings, we also verify that unused bits/bytes are zeroed so
12930          * we can use them later without fear of regressing existing binaries.
12931          */
12932         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12933             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12934                 dtrace_dof_error(dof, "DOF magic string mismatch");
12935                 return (-1);
12936         }
12937 
12938         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12939             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12940                 dtrace_dof_error(dof, "DOF has invalid data model");
12941                 return (-1);
12942         }
12943 
12944         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12945                 dtrace_dof_error(dof, "DOF encoding mismatch");
12946                 return (-1);
12947         }
12948 
12949         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12950             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12951                 dtrace_dof_error(dof, "DOF version mismatch");
12952                 return (-1);
12953         }
12954 
12955         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12956                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12957                 return (-1);
12958         }
12959 
12960         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12961                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12962                 return (-1);
12963         }
12964 
12965         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12966                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12967                 return (-1);
12968         }
12969 
12970         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12971                 if (dof->dofh_ident[i] != 0) {
12972                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12973                         return (-1);
12974                 }
12975         }
12976 
12977         if (dof->dofh_flags & ~DOF_FL_VALID) {
12978                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12979                 return (-1);
12980         }
12981 
12982         if (dof->dofh_secsize == 0) {
12983                 dtrace_dof_error(dof, "zero section header size");
12984                 return (-1);
12985         }
12986 
12987         /*
12988          * Check that the section headers don't exceed the amount of DOF
12989          * data.  Note that we cast the section size and number of sections
12990          * to uint64_t's to prevent possible overflow in the multiplication.
12991          */
12992         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12993 
12994         if (dof->dofh_secoff > len || seclen > len ||
12995             dof->dofh_secoff + seclen > len) {
12996                 dtrace_dof_error(dof, "truncated section headers");
12997                 return (-1);
12998         }
12999 
13000         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13001                 dtrace_dof_error(dof, "misaligned section headers");
13002                 return (-1);
13003         }
13004 
13005         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13006                 dtrace_dof_error(dof, "misaligned section size");
13007                 return (-1);
13008         }
13009 
13010         /*
13011          * Take an initial pass through the section headers to be sure that
13012          * the headers don't have stray offsets.  If the 'noprobes' flag is
13013          * set, do not permit sections relating to providers, probes, or args.
13014          */
13015         for (i = 0; i < dof->dofh_secnum; i++) {
13016                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13017                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13018 
13019                 if (noprobes) {
13020                         switch (sec->dofs_type) {
13021                         case DOF_SECT_PROVIDER:
13022                         case DOF_SECT_PROBES:
13023                         case DOF_SECT_PRARGS:
13024                         case DOF_SECT_PROFFS:
13025                                 dtrace_dof_error(dof, "illegal sections "
13026                                     "for enabling");
13027                                 return (-1);
13028                         }
13029                 }
13030 
13031                 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13032                     !(sec->dofs_flags & DOF_SECF_LOAD)) {
13033                         dtrace_dof_error(dof, "loadable section with load "
13034                             "flag unset");
13035                         return (-1);
13036                 }
13037 
13038                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13039                         continue; /* just ignore non-loadable sections */
13040 
13041                 if (sec->dofs_align & (sec->dofs_align - 1)) {
13042                         dtrace_dof_error(dof, "bad section alignment");
13043                         return (-1);
13044                 }
13045 
13046                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13047                         dtrace_dof_error(dof, "misaligned section");
13048                         return (-1);
13049                 }
13050 
13051                 if (sec->dofs_offset > len || sec->dofs_size > len ||
13052                     sec->dofs_offset + sec->dofs_size > len) {
13053                         dtrace_dof_error(dof, "corrupt section header");
13054                         return (-1);
13055                 }
13056 
13057                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13058                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13059                         dtrace_dof_error(dof, "non-terminating string table");
13060                         return (-1);
13061                 }
13062         }
13063 
13064         /*
13065          * Take a second pass through the sections and locate and perform any
13066          * relocations that are present.  We do this after the first pass to
13067          * be sure that all sections have had their headers validated.
13068          */
13069         for (i = 0; i < dof->dofh_secnum; i++) {
13070                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13071                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13072 
13073                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13074                         continue; /* skip sections that are not loadable */
13075 
13076                 switch (sec->dofs_type) {
13077                 case DOF_SECT_URELHDR:
13078                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13079                                 return (-1);
13080                         break;
13081                 }
13082         }
13083 
13084         if ((enab = *enabp) == NULL)
13085                 enab = *enabp = dtrace_enabling_create(vstate);
13086 
13087         for (i = 0; i < dof->dofh_secnum; i++) {
13088                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13089                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13090 
13091                 if (sec->dofs_type != DOF_SECT_ECBDESC)
13092                         continue;
13093 
13094                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13095                         dtrace_enabling_destroy(enab);
13096                         *enabp = NULL;
13097                         return (-1);
13098                 }
13099 
13100                 dtrace_enabling_add(enab, ep);
13101         }
13102 
13103         return (0);
13104 }
13105 
13106 /*
13107  * Process DOF for any options.  This routine assumes that the DOF has been
13108  * at least processed by dtrace_dof_slurp().
13109  */
13110 static int
13111 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13112 {
13113         int i, rval;
13114         uint32_t entsize;
13115         size_t offs;
13116         dof_optdesc_t *desc;
13117 
13118         for (i = 0; i < dof->dofh_secnum; i++) {
13119                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13120                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13121 
13122                 if (sec->dofs_type != DOF_SECT_OPTDESC)
13123                         continue;
13124 
13125                 if (sec->dofs_align != sizeof (uint64_t)) {
13126                         dtrace_dof_error(dof, "bad alignment in "
13127                             "option description");
13128                         return (EINVAL);
13129                 }
13130 
13131                 if ((entsize = sec->dofs_entsize) == 0) {
13132                         dtrace_dof_error(dof, "zeroed option entry size");
13133                         return (EINVAL);
13134                 }
13135 
13136                 if (entsize < sizeof (dof_optdesc_t)) {
13137                         dtrace_dof_error(dof, "bad option entry size");
13138                         return (EINVAL);
13139                 }
13140 
13141                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13142                         desc = (dof_optdesc_t *)((uintptr_t)dof +
13143                             (uintptr_t)sec->dofs_offset + offs);
13144 
13145                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13146                                 dtrace_dof_error(dof, "non-zero option string");
13147                                 return (EINVAL);
13148                         }
13149 
13150                         if (desc->dofo_value == DTRACEOPT_UNSET) {
13151                                 dtrace_dof_error(dof, "unset option");
13152                                 return (EINVAL);
13153                         }
13154 
13155                         if ((rval = dtrace_state_option(state,
13156                             desc->dofo_option, desc->dofo_value)) != 0) {
13157                                 dtrace_dof_error(dof, "rejected option");
13158                                 return (rval);
13159                         }
13160                 }
13161         }
13162 
13163         return (0);
13164 }
13165 
13166 /*
13167  * DTrace Consumer State Functions
13168  */
13169 int
13170 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13171 {
13172         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13173         void *base;
13174         uintptr_t limit;
13175         dtrace_dynvar_t *dvar, *next, *start;
13176         int i;
13177 
13178         ASSERT(MUTEX_HELD(&dtrace_lock));
13179         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13180 
13181         bzero(dstate, sizeof (dtrace_dstate_t));
13182 
13183         if ((dstate->dtds_chunksize = chunksize) == 0)
13184                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13185 
13186         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13187                 size = min;
13188 
13189         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13190                 return (ENOMEM);
13191 
13192         dstate->dtds_size = size;
13193         dstate->dtds_base = base;
13194         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13195         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13196 
13197         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13198 
13199         if (hashsize != 1 && (hashsize & 1))
13200                 hashsize--;
13201 
13202         dstate->dtds_hashsize = hashsize;
13203         dstate->dtds_hash = dstate->dtds_base;
13204 
13205         /*
13206          * Set all of our hash buckets to point to the single sink, and (if
13207          * it hasn't already been set), set the sink's hash value to be the
13208          * sink sentinel value.  The sink is needed for dynamic variable
13209          * lookups to know that they have iterated over an entire, valid hash
13210          * chain.
13211          */
13212         for (i = 0; i < hashsize; i++)
13213                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13214 
13215         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13216                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13217 
13218         /*
13219          * Determine number of active CPUs.  Divide free list evenly among
13220          * active CPUs.
13221          */
13222         start = (dtrace_dynvar_t *)
13223             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13224         limit = (uintptr_t)base + size;
13225 
13226         maxper = (limit - (uintptr_t)start) / NCPU;
13227         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13228 
13229         for (i = 0; i < NCPU; i++) {
13230                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13231 
13232                 /*
13233                  * If we don't even have enough chunks to make it once through
13234                  * NCPUs, we're just going to allocate everything to the first
13235                  * CPU.  And if we're on the last CPU, we're going to allocate
13236                  * whatever is left over.  In either case, we set the limit to
13237                  * be the limit of the dynamic variable space.
13238                  */
13239                 if (maxper == 0 || i == NCPU - 1) {
13240                         limit = (uintptr_t)base + size;
13241                         start = NULL;
13242                 } else {
13243                         limit = (uintptr_t)start + maxper;
13244                         start = (dtrace_dynvar_t *)limit;
13245                 }
13246 
13247                 ASSERT(limit <= (uintptr_t)base + size);
13248 
13249                 for (;;) {
13250                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13251                             dstate->dtds_chunksize);
13252 
13253                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13254                                 break;
13255 
13256                         dvar->dtdv_next = next;
13257                         dvar = next;
13258                 }
13259 
13260                 if (maxper == 0)
13261                         break;
13262         }
13263 
13264         return (0);
13265 }
13266 
13267 void
13268 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13269 {
13270         ASSERT(MUTEX_HELD(&cpu_lock));
13271 
13272         if (dstate->dtds_base == NULL)
13273                 return;
13274 
13275         kmem_free(dstate->dtds_base, dstate->dtds_size);
13276         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13277 }
13278 
13279 static void
13280 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13281 {
13282         /*
13283          * Logical XOR, where are you?
13284          */
13285         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13286 
13287         if (vstate->dtvs_nglobals > 0) {
13288                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13289                     sizeof (dtrace_statvar_t *));
13290         }
13291 
13292         if (vstate->dtvs_ntlocals > 0) {
13293                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13294                     sizeof (dtrace_difv_t));
13295         }
13296 
13297         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13298 
13299         if (vstate->dtvs_nlocals > 0) {
13300                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13301                     sizeof (dtrace_statvar_t *));
13302         }
13303 }
13304 
13305 static void
13306 dtrace_state_clean(dtrace_state_t *state)
13307 {
13308         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13309                 return;
13310 
13311         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13312         dtrace_speculation_clean(state);
13313 }
13314 
13315 static void
13316 dtrace_state_deadman(dtrace_state_t *state)
13317 {
13318         hrtime_t now;
13319 
13320         dtrace_sync();
13321 
13322         now = dtrace_gethrtime();
13323 
13324         if (state != dtrace_anon.dta_state &&
13325             now - state->dts_laststatus >= dtrace_deadman_user)
13326                 return;
13327 
13328         /*
13329          * We must be sure that dts_alive never appears to be less than the
13330          * value upon entry to dtrace_state_deadman(), and because we lack a
13331          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13332          * store INT64_MAX to it, followed by a memory barrier, followed by
13333          * the new value.  This assures that dts_alive never appears to be
13334          * less than its true value, regardless of the order in which the
13335          * stores to the underlying storage are issued.
13336          */
13337         state->dts_alive = INT64_MAX;
13338         dtrace_membar_producer();
13339         state->dts_alive = now;
13340 }
13341 
13342 dtrace_state_t *
13343 dtrace_state_create(dev_t *devp, cred_t *cr)
13344 {
13345         minor_t minor;
13346         major_t major;
13347         char c[30];
13348         dtrace_state_t *state;
13349         dtrace_optval_t *opt;
13350         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13351 
13352         ASSERT(MUTEX_HELD(&dtrace_lock));
13353         ASSERT(MUTEX_HELD(&cpu_lock));
13354 
13355         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13356             VM_BESTFIT | VM_SLEEP);
13357 
13358         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13359                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13360                 return (NULL);
13361         }
13362 
13363         state = ddi_get_soft_state(dtrace_softstate, minor);
13364         state->dts_epid = DTRACE_EPIDNONE + 1;
13365 
13366         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13367         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13368             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13369 
13370         if (devp != NULL) {
13371                 major = getemajor(*devp);
13372         } else {
13373                 major = ddi_driver_major(dtrace_devi);
13374         }
13375 
13376         state->dts_dev = makedevice(major, minor);
13377 
13378         if (devp != NULL)
13379                 *devp = state->dts_dev;
13380 
13381         /*
13382          * We allocate NCPU buffers.  On the one hand, this can be quite
13383          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13384          * other hand, it saves an additional memory reference in the probe
13385          * path.
13386          */
13387         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13388         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13389         state->dts_cleaner = CYCLIC_NONE;
13390         state->dts_deadman = CYCLIC_NONE;
13391         state->dts_vstate.dtvs_state = state;
13392 
13393         for (i = 0; i < DTRACEOPT_MAX; i++)
13394                 state->dts_options[i] = DTRACEOPT_UNSET;
13395 
13396         /*
13397          * Set the default options.
13398          */
13399         opt = state->dts_options;
13400         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13401         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13402         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13403         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13404         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13405         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13406         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13407         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13408         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13409         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13410         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13411         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13412         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13413         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13414 
13415         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13416 
13417         /*
13418          * Depending on the user credentials, we set flag bits which alter probe
13419          * visibility or the amount of destructiveness allowed.  In the case of
13420          * actual anonymous tracing, or the possession of all privileges, all of
13421          * the normal checks are bypassed.
13422          */
13423         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13424                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13425                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13426         } else {
13427                 /*
13428                  * Set up the credentials for this instantiation.  We take a
13429                  * hold on the credential to prevent it from disappearing on
13430                  * us; this in turn prevents the zone_t referenced by this
13431                  * credential from disappearing.  This means that we can
13432                  * examine the credential and the zone from probe context.
13433                  */
13434                 crhold(cr);
13435                 state->dts_cred.dcr_cred = cr;
13436 
13437                 /*
13438                  * CRA_PROC means "we have *some* privilege for dtrace" and
13439                  * unlocks the use of variables like pid, zonename, etc.
13440                  */
13441                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13442                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13443                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13444                 }
13445 
13446                 /*
13447                  * dtrace_user allows use of syscall and profile providers.
13448                  * If the user also has proc_owner and/or proc_zone, we
13449                  * extend the scope to include additional visibility and
13450                  * destructive power.
13451                  */
13452                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13453                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13454                                 state->dts_cred.dcr_visible |=
13455                                     DTRACE_CRV_ALLPROC;
13456 
13457                                 state->dts_cred.dcr_action |=
13458                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13459                         }
13460 
13461                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13462                                 state->dts_cred.dcr_visible |=
13463                                     DTRACE_CRV_ALLZONE;
13464 
13465                                 state->dts_cred.dcr_action |=
13466                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13467                         }
13468 
13469                         /*
13470                          * If we have all privs in whatever zone this is,
13471                          * we can do destructive things to processes which
13472                          * have altered credentials.
13473                          */
13474                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13475                             cr->cr_zone->zone_privset)) {
13476                                 state->dts_cred.dcr_action |=
13477                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13478                         }
13479                 }
13480 
13481                 /*
13482                  * Holding the dtrace_kernel privilege also implies that
13483                  * the user has the dtrace_user privilege from a visibility
13484                  * perspective.  But without further privileges, some
13485                  * destructive actions are not available.
13486                  */
13487                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13488                         /*
13489                          * Make all probes in all zones visible.  However,
13490                          * this doesn't mean that all actions become available
13491                          * to all zones.
13492                          */
13493                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13494                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13495 
13496                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13497                             DTRACE_CRA_PROC;
13498                         /*
13499                          * Holding proc_owner means that destructive actions
13500                          * for *this* zone are allowed.
13501                          */
13502                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13503                                 state->dts_cred.dcr_action |=
13504                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13505 
13506                         /*
13507                          * Holding proc_zone means that destructive actions
13508                          * for this user/group ID in all zones is allowed.
13509                          */
13510                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13511                                 state->dts_cred.dcr_action |=
13512                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13513 
13514                         /*
13515                          * If we have all privs in whatever zone this is,
13516                          * we can do destructive things to processes which
13517                          * have altered credentials.
13518                          */
13519                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13520                             cr->cr_zone->zone_privset)) {
13521                                 state->dts_cred.dcr_action |=
13522                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13523                         }
13524                 }
13525 
13526                 /*
13527                  * Holding the dtrace_proc privilege gives control over fasttrap
13528                  * and pid providers.  We need to grant wider destructive
13529                  * privileges in the event that the user has proc_owner and/or
13530                  * proc_zone.
13531                  */
13532                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13533                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13534                                 state->dts_cred.dcr_action |=
13535                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13536 
13537                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13538                                 state->dts_cred.dcr_action |=
13539                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13540                 }
13541         }
13542 
13543         return (state);
13544 }
13545 
13546 static int
13547 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13548 {
13549         dtrace_optval_t *opt = state->dts_options, size;
13550         processorid_t cpu;
13551         int flags = 0, rval, factor, divisor = 1;
13552 
13553         ASSERT(MUTEX_HELD(&dtrace_lock));
13554         ASSERT(MUTEX_HELD(&cpu_lock));
13555         ASSERT(which < DTRACEOPT_MAX);
13556         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13557             (state == dtrace_anon.dta_state &&
13558             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13559 
13560         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13561                 return (0);
13562 
13563         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13564                 cpu = opt[DTRACEOPT_CPU];
13565 
13566         if (which == DTRACEOPT_SPECSIZE)
13567                 flags |= DTRACEBUF_NOSWITCH;
13568 
13569         if (which == DTRACEOPT_BUFSIZE) {
13570                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13571                         flags |= DTRACEBUF_RING;
13572 
13573                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13574                         flags |= DTRACEBUF_FILL;
13575 
13576                 if (state != dtrace_anon.dta_state ||
13577                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13578                         flags |= DTRACEBUF_INACTIVE;
13579         }
13580 
13581         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13582                 /*
13583                  * The size must be 8-byte aligned.  If the size is not 8-byte
13584                  * aligned, drop it down by the difference.
13585                  */
13586                 if (size & (sizeof (uint64_t) - 1))
13587                         size -= size & (sizeof (uint64_t) - 1);
13588 
13589                 if (size < state->dts_reserve) {
13590                         /*
13591                          * Buffers always must be large enough to accommodate
13592                          * their prereserved space.  We return E2BIG instead
13593                          * of ENOMEM in this case to allow for user-level
13594                          * software to differentiate the cases.
13595                          */
13596                         return (E2BIG);
13597                 }
13598 
13599                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13600 
13601                 if (rval != ENOMEM) {
13602                         opt[which] = size;
13603                         return (rval);
13604                 }
13605 
13606                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13607                         return (rval);
13608 
13609                 for (divisor = 2; divisor < factor; divisor <<= 1)
13610                         continue;
13611         }
13612 
13613         return (ENOMEM);
13614 }
13615 
13616 static int
13617 dtrace_state_buffers(dtrace_state_t *state)
13618 {
13619         dtrace_speculation_t *spec = state->dts_speculations;
13620         int rval, i;
13621 
13622         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13623             DTRACEOPT_BUFSIZE)) != 0)
13624                 return (rval);
13625 
13626         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13627             DTRACEOPT_AGGSIZE)) != 0)
13628                 return (rval);
13629 
13630         for (i = 0; i < state->dts_nspeculations; i++) {
13631                 if ((rval = dtrace_state_buffer(state,
13632                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13633                         return (rval);
13634         }
13635 
13636         return (0);
13637 }
13638 
13639 static void
13640 dtrace_state_prereserve(dtrace_state_t *state)
13641 {
13642         dtrace_ecb_t *ecb;
13643         dtrace_probe_t *probe;
13644 
13645         state->dts_reserve = 0;
13646 
13647         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13648                 return;
13649 
13650         /*
13651          * If our buffer policy is a "fill" buffer policy, we need to set the
13652          * prereserved space to be the space required by the END probes.
13653          */
13654         probe = dtrace_probes[dtrace_probeid_end - 1];
13655         ASSERT(probe != NULL);
13656 
13657         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13658                 if (ecb->dte_state != state)
13659                         continue;
13660 
13661                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13662         }
13663 }
13664 
13665 static int
13666 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13667 {
13668         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13669         dtrace_speculation_t *spec;
13670         dtrace_buffer_t *buf;
13671         cyc_handler_t hdlr;
13672         cyc_time_t when;
13673         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13674         dtrace_icookie_t cookie;
13675 
13676         mutex_enter(&cpu_lock);
13677         mutex_enter(&dtrace_lock);
13678 
13679         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13680                 rval = EBUSY;
13681                 goto out;
13682         }
13683 
13684         /*
13685          * Before we can perform any checks, we must prime all of the
13686          * retained enablings that correspond to this state.
13687          */
13688         dtrace_enabling_prime(state);
13689 
13690         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13691                 rval = EACCES;
13692                 goto out;
13693         }
13694 
13695         dtrace_state_prereserve(state);
13696 
13697         /*
13698          * Now we want to do is try to allocate our speculations.
13699          * We do not automatically resize the number of speculations; if
13700          * this fails, we will fail the operation.
13701          */
13702         nspec = opt[DTRACEOPT_NSPEC];
13703         ASSERT(nspec != DTRACEOPT_UNSET);
13704 
13705         if (nspec > INT_MAX) {
13706                 rval = ENOMEM;
13707                 goto out;
13708         }
13709 
13710         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13711             KM_NOSLEEP | KM_NORMALPRI);
13712 
13713         if (spec == NULL) {
13714                 rval = ENOMEM;
13715                 goto out;
13716         }
13717 
13718         state->dts_speculations = spec;
13719         state->dts_nspeculations = (int)nspec;
13720 
13721         for (i = 0; i < nspec; i++) {
13722                 if ((buf = kmem_zalloc(bufsize,
13723                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13724                         rval = ENOMEM;
13725                         goto err;
13726                 }
13727 
13728                 spec[i].dtsp_buffer = buf;
13729         }
13730 
13731         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13732                 if (dtrace_anon.dta_state == NULL) {
13733                         rval = ENOENT;
13734                         goto out;
13735                 }
13736 
13737                 if (state->dts_necbs != 0) {
13738                         rval = EALREADY;
13739                         goto out;
13740                 }
13741 
13742                 state->dts_anon = dtrace_anon_grab();
13743                 ASSERT(state->dts_anon != NULL);
13744                 state = state->dts_anon;
13745 
13746                 /*
13747                  * We want "grabanon" to be set in the grabbed state, so we'll
13748                  * copy that option value from the grabbing state into the
13749                  * grabbed state.
13750                  */
13751                 state->dts_options[DTRACEOPT_GRABANON] =
13752                     opt[DTRACEOPT_GRABANON];
13753 
13754                 *cpu = dtrace_anon.dta_beganon;
13755 
13756                 /*
13757                  * If the anonymous state is active (as it almost certainly
13758                  * is if the anonymous enabling ultimately matched anything),
13759                  * we don't allow any further option processing -- but we
13760                  * don't return failure.
13761                  */
13762                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13763                         goto out;
13764         }
13765 
13766         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13767             opt[DTRACEOPT_AGGSIZE] != 0) {
13768                 if (state->dts_aggregations == NULL) {
13769                         /*
13770                          * We're not going to create an aggregation buffer
13771                          * because we don't have any ECBs that contain
13772                          * aggregations -- set this option to 0.
13773                          */
13774                         opt[DTRACEOPT_AGGSIZE] = 0;
13775                 } else {
13776                         /*
13777                          * If we have an aggregation buffer, we must also have
13778                          * a buffer to use as scratch.
13779                          */
13780                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13781                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13782                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13783                         }
13784                 }
13785         }
13786 
13787         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13788             opt[DTRACEOPT_SPECSIZE] != 0) {
13789                 if (!state->dts_speculates) {
13790                         /*
13791                          * We're not going to create speculation buffers
13792                          * because we don't have any ECBs that actually
13793                          * speculate -- set the speculation size to 0.
13794                          */
13795                         opt[DTRACEOPT_SPECSIZE] = 0;
13796                 }
13797         }
13798 
13799         /*
13800          * The bare minimum size for any buffer that we're actually going to
13801          * do anything to is sizeof (uint64_t).
13802          */
13803         sz = sizeof (uint64_t);
13804 
13805         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13806             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13807             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13808                 /*
13809                  * A buffer size has been explicitly set to 0 (or to a size
13810                  * that will be adjusted to 0) and we need the space -- we
13811                  * need to return failure.  We return ENOSPC to differentiate
13812                  * it from failing to allocate a buffer due to failure to meet
13813                  * the reserve (for which we return E2BIG).
13814                  */
13815                 rval = ENOSPC;
13816                 goto out;
13817         }
13818 
13819         if ((rval = dtrace_state_buffers(state)) != 0)
13820                 goto err;
13821 
13822         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13823                 sz = dtrace_dstate_defsize;
13824 
13825         do {
13826                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13827 
13828                 if (rval == 0)
13829                         break;
13830 
13831                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13832                         goto err;
13833         } while (sz >>= 1);
13834 
13835         opt[DTRACEOPT_DYNVARSIZE] = sz;
13836 
13837         if (rval != 0)
13838                 goto err;
13839 
13840         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13841                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13842 
13843         if (opt[DTRACEOPT_CLEANRATE] == 0)
13844                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13845 
13846         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13847                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13848 
13849         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13850                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13851 
13852         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13853         hdlr.cyh_arg = state;
13854         hdlr.cyh_level = CY_LOW_LEVEL;
13855 
13856         when.cyt_when = 0;
13857         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13858 
13859         state->dts_cleaner = cyclic_add(&hdlr, &when);
13860 
13861         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13862         hdlr.cyh_arg = state;
13863         hdlr.cyh_level = CY_LOW_LEVEL;
13864 
13865         when.cyt_when = 0;
13866         when.cyt_interval = dtrace_deadman_interval;
13867 
13868         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13869         state->dts_deadman = cyclic_add(&hdlr, &when);
13870 
13871         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13872 
13873         if (state->dts_getf != 0 &&
13874             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13875                 /*
13876                  * We don't have kernel privs but we have at least one call
13877                  * to getf(); we need to bump our zone's count, and (if
13878                  * this is the first enabling to have an unprivileged call
13879                  * to getf()) we need to hook into closef().
13880                  */
13881                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13882 
13883                 if (dtrace_getf++ == 0) {
13884                         ASSERT(dtrace_closef == NULL);
13885                         dtrace_closef = dtrace_getf_barrier;
13886                 }
13887         }
13888 
13889         /*
13890          * Now it's time to actually fire the BEGIN probe.  We need to disable
13891          * interrupts here both to record the CPU on which we fired the BEGIN
13892          * probe (the data from this CPU will be processed first at user
13893          * level) and to manually activate the buffer for this CPU.
13894          */
13895         cookie = dtrace_interrupt_disable();
13896         *cpu = CPU->cpu_id;
13897         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13898         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13899 
13900         dtrace_probe(dtrace_probeid_begin,
13901             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13902         dtrace_interrupt_enable(cookie);
13903         /*
13904          * We may have had an exit action from a BEGIN probe; only change our
13905          * state to ACTIVE if we're still in WARMUP.
13906          */
13907         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13908             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13909 
13910         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13911                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13912 
13913         /*
13914          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13915          * want each CPU to transition its principal buffer out of the
13916          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13917          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13918          * atomically transition from processing none of a state's ECBs to
13919          * processing all of them.
13920          */
13921         dtrace_xcall(DTRACE_CPUALL,
13922             (dtrace_xcall_t)dtrace_buffer_activate, state);
13923         goto out;
13924 
13925 err:
13926         dtrace_buffer_free(state->dts_buffer);
13927         dtrace_buffer_free(state->dts_aggbuffer);
13928 
13929         if ((nspec = state->dts_nspeculations) == 0) {
13930                 ASSERT(state->dts_speculations == NULL);
13931                 goto out;
13932         }
13933 
13934         spec = state->dts_speculations;
13935         ASSERT(spec != NULL);
13936 
13937         for (i = 0; i < state->dts_nspeculations; i++) {
13938                 if ((buf = spec[i].dtsp_buffer) == NULL)
13939                         break;
13940 
13941                 dtrace_buffer_free(buf);
13942                 kmem_free(buf, bufsize);
13943         }
13944 
13945         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13946         state->dts_nspeculations = 0;
13947         state->dts_speculations = NULL;
13948 
13949 out:
13950         mutex_exit(&dtrace_lock);
13951         mutex_exit(&cpu_lock);
13952 
13953         return (rval);
13954 }
13955 
13956 static int
13957 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13958 {
13959         dtrace_icookie_t cookie;
13960 
13961         ASSERT(MUTEX_HELD(&dtrace_lock));
13962 
13963         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13964             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13965                 return (EINVAL);
13966 
13967         /*
13968          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13969          * to be sure that every CPU has seen it.  See below for the details
13970          * on why this is done.
13971          */
13972         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13973         dtrace_sync();
13974 
13975         /*
13976          * By this point, it is impossible for any CPU to be still processing
13977          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13978          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13979          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13980          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13981          * iff we're in the END probe.
13982          */
13983         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13984         dtrace_sync();
13985         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13986 
13987         /*
13988          * Finally, we can release the reserve and call the END probe.  We
13989          * disable interrupts across calling the END probe to allow us to
13990          * return the CPU on which we actually called the END probe.  This
13991          * allows user-land to be sure that this CPU's principal buffer is
13992          * processed last.
13993          */
13994         state->dts_reserve = 0;
13995 
13996         cookie = dtrace_interrupt_disable();
13997         *cpu = CPU->cpu_id;
13998         dtrace_probe(dtrace_probeid_end,
13999             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14000         dtrace_interrupt_enable(cookie);
14001 
14002         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14003         dtrace_sync();
14004 
14005         if (state->dts_getf != 0 &&
14006             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14007                 /*
14008                  * We don't have kernel privs but we have at least one call
14009                  * to getf(); we need to lower our zone's count, and (if
14010                  * this is the last enabling to have an unprivileged call
14011                  * to getf()) we need to clear the closef() hook.
14012                  */
14013                 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14014                 ASSERT(dtrace_closef == dtrace_getf_barrier);
14015                 ASSERT(dtrace_getf > 0);
14016 
14017                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14018 
14019                 if (--dtrace_getf == 0)
14020                         dtrace_closef = NULL;
14021         }
14022 
14023         return (0);
14024 }
14025 
14026 static int
14027 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14028     dtrace_optval_t val)
14029 {
14030         ASSERT(MUTEX_HELD(&dtrace_lock));
14031 
14032         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14033                 return (EBUSY);
14034 
14035         if (option >= DTRACEOPT_MAX)
14036                 return (EINVAL);
14037 
14038         if (option != DTRACEOPT_CPU && val < 0)
14039                 return (EINVAL);
14040 
14041         switch (option) {
14042         case DTRACEOPT_DESTRUCTIVE:
14043                 if (dtrace_destructive_disallow)
14044                         return (EACCES);
14045 
14046                 state->dts_cred.dcr_destructive = 1;
14047                 break;
14048 
14049         case DTRACEOPT_BUFSIZE:
14050         case DTRACEOPT_DYNVARSIZE:
14051         case DTRACEOPT_AGGSIZE:
14052         case DTRACEOPT_SPECSIZE:
14053         case DTRACEOPT_STRSIZE:
14054                 if (val < 0)
14055                         return (EINVAL);
14056 
14057                 if (val >= LONG_MAX) {
14058                         /*
14059                          * If this is an otherwise negative value, set it to
14060                          * the highest multiple of 128m less than LONG_MAX.
14061                          * Technically, we're adjusting the size without
14062                          * regard to the buffer resizing policy, but in fact,
14063                          * this has no effect -- if we set the buffer size to
14064                          * ~LONG_MAX and the buffer policy is ultimately set to
14065                          * be "manual", the buffer allocation is guaranteed to
14066                          * fail, if only because the allocation requires two
14067                          * buffers.  (We set the the size to the highest
14068                          * multiple of 128m because it ensures that the size
14069                          * will remain a multiple of a megabyte when
14070                          * repeatedly halved -- all the way down to 15m.)
14071                          */
14072                         val = LONG_MAX - (1 << 27) + 1;
14073                 }
14074         }
14075 
14076         state->dts_options[option] = val;
14077 
14078         return (0);
14079 }
14080 
14081 static void
14082 dtrace_state_destroy(dtrace_state_t *state)
14083 {
14084         dtrace_ecb_t *ecb;
14085         dtrace_vstate_t *vstate = &state->dts_vstate;
14086         minor_t minor = getminor(state->dts_dev);
14087         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14088         dtrace_speculation_t *spec = state->dts_speculations;
14089         int nspec = state->dts_nspeculations;
14090         uint32_t match;
14091 
14092         ASSERT(MUTEX_HELD(&dtrace_lock));
14093         ASSERT(MUTEX_HELD(&cpu_lock));
14094 
14095         /*
14096          * First, retract any retained enablings for this state.
14097          */
14098         dtrace_enabling_retract(state);
14099         ASSERT(state->dts_nretained == 0);
14100 
14101         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14102             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14103                 /*
14104                  * We have managed to come into dtrace_state_destroy() on a
14105                  * hot enabling -- almost certainly because of a disorderly
14106                  * shutdown of a consumer.  (That is, a consumer that is
14107                  * exiting without having called dtrace_stop().) In this case,
14108                  * we're going to set our activity to be KILLED, and then
14109                  * issue a sync to be sure that everyone is out of probe
14110                  * context before we start blowing away ECBs.
14111                  */
14112                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14113                 dtrace_sync();
14114         }
14115 
14116         /*
14117          * Release the credential hold we took in dtrace_state_create().
14118          */
14119         if (state->dts_cred.dcr_cred != NULL)
14120                 crfree(state->dts_cred.dcr_cred);
14121 
14122         /*
14123          * Now we can safely disable and destroy any enabled probes.  Because
14124          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14125          * (especially if they're all enabled), we take two passes through the
14126          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14127          * in the second we disable whatever is left over.
14128          */
14129         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14130                 for (i = 0; i < state->dts_necbs; i++) {
14131                         if ((ecb = state->dts_ecbs[i]) == NULL)
14132                                 continue;
14133 
14134                         if (match && ecb->dte_probe != NULL) {
14135                                 dtrace_probe_t *probe = ecb->dte_probe;
14136                                 dtrace_provider_t *prov = probe->dtpr_provider;
14137 
14138                                 if (!(prov->dtpv_priv.dtpp_flags & match))
14139                                         continue;
14140                         }
14141 
14142                         dtrace_ecb_disable(ecb);
14143                         dtrace_ecb_destroy(ecb);
14144                 }
14145 
14146                 if (!match)
14147                         break;
14148         }
14149 
14150         /*
14151          * Before we free the buffers, perform one more sync to assure that
14152          * every CPU is out of probe context.
14153          */
14154         dtrace_sync();
14155 
14156         dtrace_buffer_free(state->dts_buffer);
14157         dtrace_buffer_free(state->dts_aggbuffer);
14158 
14159         for (i = 0; i < nspec; i++)
14160                 dtrace_buffer_free(spec[i].dtsp_buffer);
14161 
14162         if (state->dts_cleaner != CYCLIC_NONE)
14163                 cyclic_remove(state->dts_cleaner);
14164 
14165         if (state->dts_deadman != CYCLIC_NONE)
14166                 cyclic_remove(state->dts_deadman);
14167 
14168         dtrace_dstate_fini(&vstate->dtvs_dynvars);
14169         dtrace_vstate_fini(vstate);
14170         kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14171 
14172         if (state->dts_aggregations != NULL) {
14173 #ifdef DEBUG
14174                 for (i = 0; i < state->dts_naggregations; i++)
14175                         ASSERT(state->dts_aggregations[i] == NULL);
14176 #endif
14177                 ASSERT(state->dts_naggregations > 0);
14178                 kmem_free(state->dts_aggregations,
14179                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14180         }
14181 
14182         kmem_free(state->dts_buffer, bufsize);
14183         kmem_free(state->dts_aggbuffer, bufsize);
14184 
14185         for (i = 0; i < nspec; i++)
14186                 kmem_free(spec[i].dtsp_buffer, bufsize);
14187 
14188         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14189 
14190         dtrace_format_destroy(state);
14191 
14192         vmem_destroy(state->dts_aggid_arena);
14193         ddi_soft_state_free(dtrace_softstate, minor);
14194         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14195 }
14196 
14197 /*
14198  * DTrace Anonymous Enabling Functions
14199  */
14200 static dtrace_state_t *
14201 dtrace_anon_grab(void)
14202 {
14203         dtrace_state_t *state;
14204 
14205         ASSERT(MUTEX_HELD(&dtrace_lock));
14206 
14207         if ((state = dtrace_anon.dta_state) == NULL) {
14208                 ASSERT(dtrace_anon.dta_enabling == NULL);
14209                 return (NULL);
14210         }
14211 
14212         ASSERT(dtrace_anon.dta_enabling != NULL);
14213         ASSERT(dtrace_retained != NULL);
14214 
14215         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14216         dtrace_anon.dta_enabling = NULL;
14217         dtrace_anon.dta_state = NULL;
14218 
14219         return (state);
14220 }
14221 
14222 static void
14223 dtrace_anon_property(void)
14224 {
14225         int i, rv;
14226         dtrace_state_t *state;
14227         dof_hdr_t *dof;
14228         char c[32];             /* enough for "dof-data-" + digits */
14229 
14230         ASSERT(MUTEX_HELD(&dtrace_lock));
14231         ASSERT(MUTEX_HELD(&cpu_lock));
14232 
14233         for (i = 0; ; i++) {
14234                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14235 
14236                 dtrace_err_verbose = 1;
14237 
14238                 if ((dof = dtrace_dof_property(c)) == NULL) {
14239                         dtrace_err_verbose = 0;
14240                         break;
14241                 }
14242 
14243                 /*
14244                  * We want to create anonymous state, so we need to transition
14245                  * the kernel debugger to indicate that DTrace is active.  If
14246                  * this fails (e.g. because the debugger has modified text in
14247                  * some way), we won't continue with the processing.
14248                  */
14249                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14250                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14251                             "enabling ignored.");
14252                         dtrace_dof_destroy(dof);
14253                         break;
14254                 }
14255 
14256                 /*
14257                  * If we haven't allocated an anonymous state, we'll do so now.
14258                  */
14259                 if ((state = dtrace_anon.dta_state) == NULL) {
14260                         state = dtrace_state_create(NULL, NULL);
14261                         dtrace_anon.dta_state = state;
14262 
14263                         if (state == NULL) {
14264                                 /*
14265                                  * This basically shouldn't happen:  the only
14266                                  * failure mode from dtrace_state_create() is a
14267                                  * failure of ddi_soft_state_zalloc() that
14268                                  * itself should never happen.  Still, the
14269                                  * interface allows for a failure mode, and
14270                                  * we want to fail as gracefully as possible:
14271                                  * we'll emit an error message and cease
14272                                  * processing anonymous state in this case.
14273                                  */
14274                                 cmn_err(CE_WARN, "failed to create "
14275                                     "anonymous state");
14276                                 dtrace_dof_destroy(dof);
14277                                 break;
14278                         }
14279                 }
14280 
14281                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14282                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14283 
14284                 if (rv == 0)
14285                         rv = dtrace_dof_options(dof, state);
14286 
14287                 dtrace_err_verbose = 0;
14288                 dtrace_dof_destroy(dof);
14289 
14290                 if (rv != 0) {
14291                         /*
14292                          * This is malformed DOF; chuck any anonymous state
14293                          * that we created.
14294                          */
14295                         ASSERT(dtrace_anon.dta_enabling == NULL);
14296                         dtrace_state_destroy(state);
14297                         dtrace_anon.dta_state = NULL;
14298                         break;
14299                 }
14300 
14301                 ASSERT(dtrace_anon.dta_enabling != NULL);
14302         }
14303 
14304         if (dtrace_anon.dta_enabling != NULL) {
14305                 int rval;
14306 
14307                 /*
14308                  * dtrace_enabling_retain() can only fail because we are
14309                  * trying to retain more enablings than are allowed -- but
14310                  * we only have one anonymous enabling, and we are guaranteed
14311                  * to be allowed at least one retained enabling; we assert
14312                  * that dtrace_enabling_retain() returns success.
14313                  */
14314                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14315                 ASSERT(rval == 0);
14316 
14317                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14318         }
14319 }
14320 
14321 /*
14322  * DTrace Helper Functions
14323  */
14324 static void
14325 dtrace_helper_trace(dtrace_helper_action_t *helper,
14326     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14327 {
14328         uint32_t size, next, nnext, i;
14329         dtrace_helptrace_t *ent, *buffer;
14330         uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14331 
14332         if ((buffer = dtrace_helptrace_buffer) == NULL)
14333                 return;
14334 
14335         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14336 
14337         /*
14338          * What would a tracing framework be without its own tracing
14339          * framework?  (Well, a hell of a lot simpler, for starters...)
14340          */
14341         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14342             sizeof (uint64_t) - sizeof (uint64_t);
14343 
14344         /*
14345          * Iterate until we can allocate a slot in the trace buffer.
14346          */
14347         do {
14348                 next = dtrace_helptrace_next;
14349 
14350                 if (next + size < dtrace_helptrace_bufsize) {
14351                         nnext = next + size;
14352                 } else {
14353                         nnext = size;
14354                 }
14355         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14356 
14357         /*
14358          * We have our slot; fill it in.
14359          */
14360         if (nnext == size) {
14361                 dtrace_helptrace_wrapped++;
14362                 next = 0;
14363         }
14364 
14365         ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14366         ent->dtht_helper = helper;
14367         ent->dtht_where = where;
14368         ent->dtht_nlocals = vstate->dtvs_nlocals;
14369 
14370         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14371             mstate->dtms_fltoffs : -1;
14372         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14373         ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14374 
14375         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14376                 dtrace_statvar_t *svar;
14377 
14378                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14379                         continue;
14380 
14381                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14382                 ent->dtht_locals[i] =
14383                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14384         }
14385 }
14386 
14387 static uint64_t
14388 dtrace_helper(int which, dtrace_mstate_t *mstate,
14389     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14390 {
14391         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14392         uint64_t sarg0 = mstate->dtms_arg[0];
14393         uint64_t sarg1 = mstate->dtms_arg[1];
14394         uint64_t rval;
14395         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14396         dtrace_helper_action_t *helper;
14397         dtrace_vstate_t *vstate;
14398         dtrace_difo_t *pred;
14399         int i, trace = dtrace_helptrace_buffer != NULL;
14400 
14401         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14402 
14403         if (helpers == NULL)
14404                 return (0);
14405 
14406         if ((helper = helpers->dthps_actions[which]) == NULL)
14407                 return (0);
14408 
14409         vstate = &helpers->dthps_vstate;
14410         mstate->dtms_arg[0] = arg0;
14411         mstate->dtms_arg[1] = arg1;
14412 
14413         /*
14414          * Now iterate over each helper.  If its predicate evaluates to 'true',
14415          * we'll call the corresponding actions.  Note that the below calls
14416          * to dtrace_dif_emulate() may set faults in machine state.  This is
14417          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14418          * the stored DIF offset with its own (which is the desired behavior).
14419          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14420          * from machine state; this is okay, too.
14421          */
14422         for (; helper != NULL; helper = helper->dtha_next) {
14423                 if ((pred = helper->dtha_predicate) != NULL) {
14424                         if (trace)
14425                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14426 
14427                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14428                                 goto next;
14429 
14430                         if (*flags & CPU_DTRACE_FAULT)
14431                                 goto err;
14432                 }
14433 
14434                 for (i = 0; i < helper->dtha_nactions; i++) {
14435                         if (trace)
14436                                 dtrace_helper_trace(helper,
14437                                     mstate, vstate, i + 1);
14438 
14439                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14440                             mstate, vstate, state);
14441 
14442                         if (*flags & CPU_DTRACE_FAULT)
14443                                 goto err;
14444                 }
14445 
14446 next:
14447                 if (trace)
14448                         dtrace_helper_trace(helper, mstate, vstate,
14449                             DTRACE_HELPTRACE_NEXT);
14450         }
14451 
14452         if (trace)
14453                 dtrace_helper_trace(helper, mstate, vstate,
14454                     DTRACE_HELPTRACE_DONE);
14455 
14456         /*
14457          * Restore the arg0 that we saved upon entry.
14458          */
14459         mstate->dtms_arg[0] = sarg0;
14460         mstate->dtms_arg[1] = sarg1;
14461 
14462         return (rval);
14463 
14464 err:
14465         if (trace)
14466                 dtrace_helper_trace(helper, mstate, vstate,
14467                     DTRACE_HELPTRACE_ERR);
14468 
14469         /*
14470          * Restore the arg0 that we saved upon entry.
14471          */
14472         mstate->dtms_arg[0] = sarg0;
14473         mstate->dtms_arg[1] = sarg1;
14474 
14475         return (NULL);
14476 }
14477 
14478 static void
14479 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14480     dtrace_vstate_t *vstate)
14481 {
14482         int i;
14483 
14484         if (helper->dtha_predicate != NULL)
14485                 dtrace_difo_release(helper->dtha_predicate, vstate);
14486 
14487         for (i = 0; i < helper->dtha_nactions; i++) {
14488                 ASSERT(helper->dtha_actions[i] != NULL);
14489                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14490         }
14491 
14492         kmem_free(helper->dtha_actions,
14493             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14494         kmem_free(helper, sizeof (dtrace_helper_action_t));
14495 }
14496 
14497 static int
14498 dtrace_helper_destroygen(int gen)
14499 {
14500         proc_t *p = curproc;
14501         dtrace_helpers_t *help = p->p_dtrace_helpers;
14502         dtrace_vstate_t *vstate;
14503         int i;
14504 
14505         ASSERT(MUTEX_HELD(&dtrace_lock));
14506 
14507         if (help == NULL || gen > help->dthps_generation)
14508                 return (EINVAL);
14509 
14510         vstate = &help->dthps_vstate;
14511 
14512         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14513                 dtrace_helper_action_t *last = NULL, *h, *next;
14514 
14515                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14516                         next = h->dtha_next;
14517 
14518                         if (h->dtha_generation == gen) {
14519                                 if (last != NULL) {
14520                                         last->dtha_next = next;
14521                                 } else {
14522                                         help->dthps_actions[i] = next;
14523                                 }
14524 
14525                                 dtrace_helper_action_destroy(h, vstate);
14526                         } else {
14527                                 last = h;
14528                         }
14529                 }
14530         }
14531 
14532         /*
14533          * Interate until we've cleared out all helper providers with the
14534          * given generation number.
14535          */
14536         for (;;) {
14537                 dtrace_helper_provider_t *prov;
14538 
14539                 /*
14540                  * Look for a helper provider with the right generation. We
14541                  * have to start back at the beginning of the list each time
14542                  * because we drop dtrace_lock. It's unlikely that we'll make
14543                  * more than two passes.
14544                  */
14545                 for (i = 0; i < help->dthps_nprovs; i++) {
14546                         prov = help->dthps_provs[i];
14547 
14548                         if (prov->dthp_generation == gen)
14549                                 break;
14550                 }
14551 
14552                 /*
14553                  * If there were no matches, we're done.
14554                  */
14555                 if (i == help->dthps_nprovs)
14556                         break;
14557 
14558                 /*
14559                  * Move the last helper provider into this slot.
14560                  */
14561                 help->dthps_nprovs--;
14562                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14563                 help->dthps_provs[help->dthps_nprovs] = NULL;
14564 
14565                 mutex_exit(&dtrace_lock);
14566 
14567                 /*
14568                  * If we have a meta provider, remove this helper provider.
14569                  */
14570                 mutex_enter(&dtrace_meta_lock);
14571                 if (dtrace_meta_pid != NULL) {
14572                         ASSERT(dtrace_deferred_pid == NULL);
14573                         dtrace_helper_provider_remove(&prov->dthp_prov,
14574                             p->p_pid);
14575                 }
14576                 mutex_exit(&dtrace_meta_lock);
14577 
14578                 dtrace_helper_provider_destroy(prov);
14579 
14580                 mutex_enter(&dtrace_lock);
14581         }
14582 
14583         return (0);
14584 }
14585 
14586 static int
14587 dtrace_helper_validate(dtrace_helper_action_t *helper)
14588 {
14589         int err = 0, i;
14590         dtrace_difo_t *dp;
14591 
14592         if ((dp = helper->dtha_predicate) != NULL)
14593                 err += dtrace_difo_validate_helper(dp);
14594 
14595         for (i = 0; i < helper->dtha_nactions; i++)
14596                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14597 
14598         return (err == 0);
14599 }
14600 
14601 static int
14602 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14603 {
14604         dtrace_helpers_t *help;
14605         dtrace_helper_action_t *helper, *last;
14606         dtrace_actdesc_t *act;
14607         dtrace_vstate_t *vstate;
14608         dtrace_predicate_t *pred;
14609         int count = 0, nactions = 0, i;
14610 
14611         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14612                 return (EINVAL);
14613 
14614         help = curproc->p_dtrace_helpers;
14615         last = help->dthps_actions[which];
14616         vstate = &help->dthps_vstate;
14617 
14618         for (count = 0; last != NULL; last = last->dtha_next) {
14619                 count++;
14620                 if (last->dtha_next == NULL)
14621                         break;
14622         }
14623 
14624         /*
14625          * If we already have dtrace_helper_actions_max helper actions for this
14626          * helper action type, we'll refuse to add a new one.
14627          */
14628         if (count >= dtrace_helper_actions_max)
14629                 return (ENOSPC);
14630 
14631         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14632         helper->dtha_generation = help->dthps_generation;
14633 
14634         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14635                 ASSERT(pred->dtp_difo != NULL);
14636                 dtrace_difo_hold(pred->dtp_difo);
14637                 helper->dtha_predicate = pred->dtp_difo;
14638         }
14639 
14640         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14641                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14642                         goto err;
14643 
14644                 if (act->dtad_difo == NULL)
14645                         goto err;
14646 
14647                 nactions++;
14648         }
14649 
14650         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14651             (helper->dtha_nactions = nactions), KM_SLEEP);
14652 
14653         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14654                 dtrace_difo_hold(act->dtad_difo);
14655                 helper->dtha_actions[i++] = act->dtad_difo;
14656         }
14657 
14658         if (!dtrace_helper_validate(helper))
14659                 goto err;
14660 
14661         if (last == NULL) {
14662                 help->dthps_actions[which] = helper;
14663         } else {
14664                 last->dtha_next = helper;
14665         }
14666 
14667         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14668                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14669                 dtrace_helptrace_next = 0;
14670         }
14671 
14672         return (0);
14673 err:
14674         dtrace_helper_action_destroy(helper, vstate);
14675         return (EINVAL);
14676 }
14677 
14678 static void
14679 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14680     dof_helper_t *dofhp)
14681 {
14682         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14683 
14684         mutex_enter(&dtrace_meta_lock);
14685         mutex_enter(&dtrace_lock);
14686 
14687         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14688                 /*
14689                  * If the dtrace module is loaded but not attached, or if
14690                  * there aren't isn't a meta provider registered to deal with
14691                  * these provider descriptions, we need to postpone creating
14692                  * the actual providers until later.
14693                  */
14694 
14695                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14696                     dtrace_deferred_pid != help) {
14697                         help->dthps_deferred = 1;
14698                         help->dthps_pid = p->p_pid;
14699                         help->dthps_next = dtrace_deferred_pid;
14700                         help->dthps_prev = NULL;
14701                         if (dtrace_deferred_pid != NULL)
14702                                 dtrace_deferred_pid->dthps_prev = help;
14703                         dtrace_deferred_pid = help;
14704                 }
14705 
14706                 mutex_exit(&dtrace_lock);
14707 
14708         } else if (dofhp != NULL) {
14709                 /*
14710                  * If the dtrace module is loaded and we have a particular
14711                  * helper provider description, pass that off to the
14712                  * meta provider.
14713                  */
14714 
14715                 mutex_exit(&dtrace_lock);
14716 
14717                 dtrace_helper_provide(dofhp, p->p_pid);
14718 
14719         } else {
14720                 /*
14721                  * Otherwise, just pass all the helper provider descriptions
14722                  * off to the meta provider.
14723                  */
14724 
14725                 int i;
14726                 mutex_exit(&dtrace_lock);
14727 
14728                 for (i = 0; i < help->dthps_nprovs; i++) {
14729                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14730                             p->p_pid);
14731                 }
14732         }
14733 
14734         mutex_exit(&dtrace_meta_lock);
14735 }
14736 
14737 static int
14738 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14739 {
14740         dtrace_helpers_t *help;
14741         dtrace_helper_provider_t *hprov, **tmp_provs;
14742         uint_t tmp_maxprovs, i;
14743 
14744         ASSERT(MUTEX_HELD(&dtrace_lock));
14745 
14746         help = curproc->p_dtrace_helpers;
14747         ASSERT(help != NULL);
14748 
14749         /*
14750          * If we already have dtrace_helper_providers_max helper providers,
14751          * we're refuse to add a new one.
14752          */
14753         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14754                 return (ENOSPC);
14755 
14756         /*
14757          * Check to make sure this isn't a duplicate.
14758          */
14759         for (i = 0; i < help->dthps_nprovs; i++) {
14760                 if (dofhp->dofhp_dof ==
14761                     help->dthps_provs[i]->dthp_prov.dofhp_dof)
14762                         return (EALREADY);
14763         }
14764 
14765         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14766         hprov->dthp_prov = *dofhp;
14767         hprov->dthp_ref = 1;
14768         hprov->dthp_generation = gen;
14769 
14770         /*
14771          * Allocate a bigger table for helper providers if it's already full.
14772          */
14773         if (help->dthps_maxprovs == help->dthps_nprovs) {
14774                 tmp_maxprovs = help->dthps_maxprovs;
14775                 tmp_provs = help->dthps_provs;
14776 
14777                 if (help->dthps_maxprovs == 0)
14778                         help->dthps_maxprovs = 2;
14779                 else
14780                         help->dthps_maxprovs *= 2;
14781                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14782                         help->dthps_maxprovs = dtrace_helper_providers_max;
14783 
14784                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14785 
14786                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14787                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14788 
14789                 if (tmp_provs != NULL) {
14790                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14791                             sizeof (dtrace_helper_provider_t *));
14792                         kmem_free(tmp_provs, tmp_maxprovs *
14793                             sizeof (dtrace_helper_provider_t *));
14794                 }
14795         }
14796 
14797         help->dthps_provs[help->dthps_nprovs] = hprov;
14798         help->dthps_nprovs++;
14799 
14800         return (0);
14801 }
14802 
14803 static void
14804 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14805 {
14806         mutex_enter(&dtrace_lock);
14807 
14808         if (--hprov->dthp_ref == 0) {
14809                 dof_hdr_t *dof;
14810                 mutex_exit(&dtrace_lock);
14811                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14812                 dtrace_dof_destroy(dof);
14813                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14814         } else {
14815                 mutex_exit(&dtrace_lock);
14816         }
14817 }
14818 
14819 static int
14820 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14821 {
14822         uintptr_t daddr = (uintptr_t)dof;
14823         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14824         dof_provider_t *provider;
14825         dof_probe_t *probe;
14826         uint8_t *arg;
14827         char *strtab, *typestr;
14828         dof_stridx_t typeidx;
14829         size_t typesz;
14830         uint_t nprobes, j, k;
14831 
14832         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14833 
14834         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14835                 dtrace_dof_error(dof, "misaligned section offset");
14836                 return (-1);
14837         }
14838 
14839         /*
14840          * The section needs to be large enough to contain the DOF provider
14841          * structure appropriate for the given version.
14842          */
14843         if (sec->dofs_size <
14844             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14845             offsetof(dof_provider_t, dofpv_prenoffs) :
14846             sizeof (dof_provider_t))) {
14847                 dtrace_dof_error(dof, "provider section too small");
14848                 return (-1);
14849         }
14850 
14851         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14852         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14853         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14854         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14855         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14856 
14857         if (str_sec == NULL || prb_sec == NULL ||
14858             arg_sec == NULL || off_sec == NULL)
14859                 return (-1);
14860 
14861         enoff_sec = NULL;
14862 
14863         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14864             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14865             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14866             provider->dofpv_prenoffs)) == NULL)
14867                 return (-1);
14868 
14869         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14870 
14871         if (provider->dofpv_name >= str_sec->dofs_size ||
14872             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14873                 dtrace_dof_error(dof, "invalid provider name");
14874                 return (-1);
14875         }
14876 
14877         if (prb_sec->dofs_entsize == 0 ||
14878             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14879                 dtrace_dof_error(dof, "invalid entry size");
14880                 return (-1);
14881         }
14882 
14883         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14884                 dtrace_dof_error(dof, "misaligned entry size");
14885                 return (-1);
14886         }
14887 
14888         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14889                 dtrace_dof_error(dof, "invalid entry size");
14890                 return (-1);
14891         }
14892 
14893         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14894                 dtrace_dof_error(dof, "misaligned section offset");
14895                 return (-1);
14896         }
14897 
14898         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14899                 dtrace_dof_error(dof, "invalid entry size");
14900                 return (-1);
14901         }
14902 
14903         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14904 
14905         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14906 
14907         /*
14908          * Take a pass through the probes to check for errors.
14909          */
14910         for (j = 0; j < nprobes; j++) {
14911                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14912                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14913 
14914                 if (probe->dofpr_func >= str_sec->dofs_size) {
14915                         dtrace_dof_error(dof, "invalid function name");
14916                         return (-1);
14917                 }
14918 
14919                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14920                         dtrace_dof_error(dof, "function name too long");
14921                         return (-1);
14922                 }
14923 
14924                 if (probe->dofpr_name >= str_sec->dofs_size ||
14925                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14926                         dtrace_dof_error(dof, "invalid probe name");
14927                         return (-1);
14928                 }
14929 
14930                 /*
14931                  * The offset count must not wrap the index, and the offsets
14932                  * must also not overflow the section's data.
14933                  */
14934                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14935                     probe->dofpr_offidx ||
14936                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14937                     off_sec->dofs_entsize > off_sec->dofs_size) {
14938                         dtrace_dof_error(dof, "invalid probe offset");
14939                         return (-1);
14940                 }
14941 
14942                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14943                         /*
14944                          * If there's no is-enabled offset section, make sure
14945                          * there aren't any is-enabled offsets. Otherwise
14946                          * perform the same checks as for probe offsets
14947                          * (immediately above).
14948                          */
14949                         if (enoff_sec == NULL) {
14950                                 if (probe->dofpr_enoffidx != 0 ||
14951                                     probe->dofpr_nenoffs != 0) {
14952                                         dtrace_dof_error(dof, "is-enabled "
14953                                             "offsets with null section");
14954                                         return (-1);
14955                                 }
14956                         } else if (probe->dofpr_enoffidx +
14957                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14958                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14959                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14960                                 dtrace_dof_error(dof, "invalid is-enabled "
14961                                     "offset");
14962                                 return (-1);
14963                         }
14964 
14965                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14966                                 dtrace_dof_error(dof, "zero probe and "
14967                                     "is-enabled offsets");
14968                                 return (-1);
14969                         }
14970                 } else if (probe->dofpr_noffs == 0) {
14971                         dtrace_dof_error(dof, "zero probe offsets");
14972                         return (-1);
14973                 }
14974 
14975                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14976                     probe->dofpr_argidx ||
14977                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14978                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14979                         dtrace_dof_error(dof, "invalid args");
14980                         return (-1);
14981                 }
14982 
14983                 typeidx = probe->dofpr_nargv;
14984                 typestr = strtab + probe->dofpr_nargv;
14985                 for (k = 0; k < probe->dofpr_nargc; k++) {
14986                         if (typeidx >= str_sec->dofs_size) {
14987                                 dtrace_dof_error(dof, "bad "
14988                                     "native argument type");
14989                                 return (-1);
14990                         }
14991 
14992                         typesz = strlen(typestr) + 1;
14993                         if (typesz > DTRACE_ARGTYPELEN) {
14994                                 dtrace_dof_error(dof, "native "
14995                                     "argument type too long");
14996                                 return (-1);
14997                         }
14998                         typeidx += typesz;
14999                         typestr += typesz;
15000                 }
15001 
15002                 typeidx = probe->dofpr_xargv;
15003                 typestr = strtab + probe->dofpr_xargv;
15004                 for (k = 0; k < probe->dofpr_xargc; k++) {
15005                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15006                                 dtrace_dof_error(dof, "bad "
15007                                     "native argument index");
15008                                 return (-1);
15009                         }
15010 
15011                         if (typeidx >= str_sec->dofs_size) {
15012                                 dtrace_dof_error(dof, "bad "
15013                                     "translated argument type");
15014                                 return (-1);
15015                         }
15016 
15017                         typesz = strlen(typestr) + 1;
15018                         if (typesz > DTRACE_ARGTYPELEN) {
15019                                 dtrace_dof_error(dof, "translated argument "
15020                                     "type too long");
15021                                 return (-1);
15022                         }
15023 
15024                         typeidx += typesz;
15025                         typestr += typesz;
15026                 }
15027         }
15028 
15029         return (0);
15030 }
15031 
15032 static int
15033 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15034 {
15035         dtrace_helpers_t *help;
15036         dtrace_vstate_t *vstate;
15037         dtrace_enabling_t *enab = NULL;
15038         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15039         uintptr_t daddr = (uintptr_t)dof;
15040 
15041         ASSERT(MUTEX_HELD(&dtrace_lock));
15042 
15043         if ((help = curproc->p_dtrace_helpers) == NULL)
15044                 help = dtrace_helpers_create(curproc);
15045 
15046         vstate = &help->dthps_vstate;
15047 
15048         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15049             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15050                 dtrace_dof_destroy(dof);
15051                 return (rv);
15052         }
15053 
15054         /*
15055          * Look for helper providers and validate their descriptions.
15056          */
15057         if (dhp != NULL) {
15058                 for (i = 0; i < dof->dofh_secnum; i++) {
15059                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15060                             dof->dofh_secoff + i * dof->dofh_secsize);
15061 
15062                         if (sec->dofs_type != DOF_SECT_PROVIDER)
15063                                 continue;
15064 
15065                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
15066                                 dtrace_enabling_destroy(enab);
15067                                 dtrace_dof_destroy(dof);
15068                                 return (-1);
15069                         }
15070 
15071                         nprovs++;
15072                 }
15073         }
15074 
15075         /*
15076          * Now we need to walk through the ECB descriptions in the enabling.
15077          */
15078         for (i = 0; i < enab->dten_ndesc; i++) {
15079                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15080                 dtrace_probedesc_t *desc = &ep->dted_probe;
15081 
15082                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15083                         continue;
15084 
15085                 if (strcmp(desc->dtpd_mod, "helper") != 0)
15086                         continue;
15087 
15088                 if (strcmp(desc->dtpd_func, "ustack") != 0)
15089                         continue;
15090 
15091                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15092                     ep)) != 0) {
15093                         /*
15094                          * Adding this helper action failed -- we are now going
15095                          * to rip out the entire generation and return failure.
15096                          */
15097                         (void) dtrace_helper_destroygen(help->dthps_generation);
15098                         dtrace_enabling_destroy(enab);
15099                         dtrace_dof_destroy(dof);
15100                         return (-1);
15101                 }
15102 
15103                 nhelpers++;
15104         }
15105 
15106         if (nhelpers < enab->dten_ndesc)
15107                 dtrace_dof_error(dof, "unmatched helpers");
15108 
15109         gen = help->dthps_generation++;
15110         dtrace_enabling_destroy(enab);
15111 
15112         if (dhp != NULL && nprovs > 0) {
15113                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15114                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15115                         mutex_exit(&dtrace_lock);
15116                         dtrace_helper_provider_register(curproc, help, dhp);
15117                         mutex_enter(&dtrace_lock);
15118 
15119                         destroy = 0;
15120                 }
15121         }
15122 
15123         if (destroy)
15124                 dtrace_dof_destroy(dof);
15125 
15126         return (gen);
15127 }
15128 
15129 static dtrace_helpers_t *
15130 dtrace_helpers_create(proc_t *p)
15131 {
15132         dtrace_helpers_t *help;
15133 
15134         ASSERT(MUTEX_HELD(&dtrace_lock));
15135         ASSERT(p->p_dtrace_helpers == NULL);
15136 
15137         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15138         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15139             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15140 
15141         p->p_dtrace_helpers = help;
15142         dtrace_helpers++;
15143 
15144         return (help);
15145 }
15146 
15147 static void
15148 dtrace_helpers_destroy(void)
15149 {
15150         dtrace_helpers_t *help;
15151         dtrace_vstate_t *vstate;
15152         proc_t *p = curproc;
15153         int i;
15154 
15155         mutex_enter(&dtrace_lock);
15156 
15157         ASSERT(p->p_dtrace_helpers != NULL);
15158         ASSERT(dtrace_helpers > 0);
15159 
15160         help = p->p_dtrace_helpers;
15161         vstate = &help->dthps_vstate;
15162 
15163         /*
15164          * We're now going to lose the help from this process.
15165          */
15166         p->p_dtrace_helpers = NULL;
15167         dtrace_sync();
15168 
15169         /*
15170          * Destory the helper actions.
15171          */
15172         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15173                 dtrace_helper_action_t *h, *next;
15174 
15175                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15176                         next = h->dtha_next;
15177                         dtrace_helper_action_destroy(h, vstate);
15178                         h = next;
15179                 }
15180         }
15181 
15182         mutex_exit(&dtrace_lock);
15183 
15184         /*
15185          * Destroy the helper providers.
15186          */
15187         if (help->dthps_maxprovs > 0) {
15188                 mutex_enter(&dtrace_meta_lock);
15189                 if (dtrace_meta_pid != NULL) {
15190                         ASSERT(dtrace_deferred_pid == NULL);
15191 
15192                         for (i = 0; i < help->dthps_nprovs; i++) {
15193                                 dtrace_helper_provider_remove(
15194                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
15195                         }
15196                 } else {
15197                         mutex_enter(&dtrace_lock);
15198                         ASSERT(help->dthps_deferred == 0 ||
15199                             help->dthps_next != NULL ||
15200                             help->dthps_prev != NULL ||
15201                             help == dtrace_deferred_pid);
15202 
15203                         /*
15204                          * Remove the helper from the deferred list.
15205                          */
15206                         if (help->dthps_next != NULL)
15207                                 help->dthps_next->dthps_prev = help->dthps_prev;
15208                         if (help->dthps_prev != NULL)
15209                                 help->dthps_prev->dthps_next = help->dthps_next;
15210                         if (dtrace_deferred_pid == help) {
15211                                 dtrace_deferred_pid = help->dthps_next;
15212                                 ASSERT(help->dthps_prev == NULL);
15213                         }
15214 
15215                         mutex_exit(&dtrace_lock);
15216                 }
15217 
15218                 mutex_exit(&dtrace_meta_lock);
15219 
15220                 for (i = 0; i < help->dthps_nprovs; i++) {
15221                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15222                 }
15223 
15224                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15225                     sizeof (dtrace_helper_provider_t *));
15226         }
15227 
15228         mutex_enter(&dtrace_lock);
15229 
15230         dtrace_vstate_fini(&help->dthps_vstate);
15231         kmem_free(help->dthps_actions,
15232             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15233         kmem_free(help, sizeof (dtrace_helpers_t));
15234 
15235         --dtrace_helpers;
15236         mutex_exit(&dtrace_lock);
15237 }
15238 
15239 static void
15240 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15241 {
15242         dtrace_helpers_t *help, *newhelp;
15243         dtrace_helper_action_t *helper, *new, *last;
15244         dtrace_difo_t *dp;
15245         dtrace_vstate_t *vstate;
15246         int i, j, sz, hasprovs = 0;
15247 
15248         mutex_enter(&dtrace_lock);
15249         ASSERT(from->p_dtrace_helpers != NULL);
15250         ASSERT(dtrace_helpers > 0);
15251 
15252         help = from->p_dtrace_helpers;
15253         newhelp = dtrace_helpers_create(to);
15254         ASSERT(to->p_dtrace_helpers != NULL);
15255 
15256         newhelp->dthps_generation = help->dthps_generation;
15257         vstate = &newhelp->dthps_vstate;
15258 
15259         /*
15260          * Duplicate the helper actions.
15261          */
15262         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15263                 if ((helper = help->dthps_actions[i]) == NULL)
15264                         continue;
15265 
15266                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15267                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15268                             KM_SLEEP);
15269                         new->dtha_generation = helper->dtha_generation;
15270 
15271                         if ((dp = helper->dtha_predicate) != NULL) {
15272                                 dp = dtrace_difo_duplicate(dp, vstate);
15273                                 new->dtha_predicate = dp;
15274                         }
15275 
15276                         new->dtha_nactions = helper->dtha_nactions;
15277                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15278                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15279 
15280                         for (j = 0; j < new->dtha_nactions; j++) {
15281                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15282 
15283                                 ASSERT(dp != NULL);
15284                                 dp = dtrace_difo_duplicate(dp, vstate);
15285                                 new->dtha_actions[j] = dp;
15286                         }
15287 
15288                         if (last != NULL) {
15289                                 last->dtha_next = new;
15290                         } else {
15291                                 newhelp->dthps_actions[i] = new;
15292                         }
15293 
15294                         last = new;
15295                 }
15296         }
15297 
15298         /*
15299          * Duplicate the helper providers and register them with the
15300          * DTrace framework.
15301          */
15302         if (help->dthps_nprovs > 0) {
15303                 newhelp->dthps_nprovs = help->dthps_nprovs;
15304                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15305                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15306                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15307                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15308                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15309                         newhelp->dthps_provs[i]->dthp_ref++;
15310                 }
15311 
15312                 hasprovs = 1;
15313         }
15314 
15315         mutex_exit(&dtrace_lock);
15316 
15317         if (hasprovs)
15318                 dtrace_helper_provider_register(to, newhelp, NULL);
15319 }
15320 
15321 /*
15322  * DTrace Hook Functions
15323  */
15324 static void
15325 dtrace_module_loaded(struct modctl *ctl)
15326 {
15327         dtrace_provider_t *prv;
15328 
15329         mutex_enter(&dtrace_provider_lock);
15330         mutex_enter(&mod_lock);
15331 
15332         ASSERT(ctl->mod_busy);
15333 
15334         /*
15335          * We're going to call each providers per-module provide operation
15336          * specifying only this module.
15337          */
15338         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15339                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15340 
15341         mutex_exit(&mod_lock);
15342         mutex_exit(&dtrace_provider_lock);
15343 
15344         /*
15345          * If we have any retained enablings, we need to match against them.
15346          * Enabling probes requires that cpu_lock be held, and we cannot hold
15347          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15348          * module.  (In particular, this happens when loading scheduling
15349          * classes.)  So if we have any retained enablings, we need to dispatch
15350          * our task queue to do the match for us.
15351          */
15352         mutex_enter(&dtrace_lock);
15353 
15354         if (dtrace_retained == NULL) {
15355                 mutex_exit(&dtrace_lock);
15356                 return;
15357         }
15358 
15359         (void) taskq_dispatch(dtrace_taskq,
15360             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15361 
15362         mutex_exit(&dtrace_lock);
15363 
15364         /*
15365          * And now, for a little heuristic sleaze:  in general, we want to
15366          * match modules as soon as they load.  However, we cannot guarantee
15367          * this, because it would lead us to the lock ordering violation
15368          * outlined above.  The common case, of course, is that cpu_lock is
15369          * _not_ held -- so we delay here for a clock tick, hoping that that's
15370          * long enough for the task queue to do its work.  If it's not, it's
15371          * not a serious problem -- it just means that the module that we
15372          * just loaded may not be immediately instrumentable.
15373          */
15374         delay(1);
15375 }
15376 
15377 static void
15378 dtrace_module_unloaded(struct modctl *ctl)
15379 {
15380         dtrace_probe_t template, *probe, *first, *next;
15381         dtrace_provider_t *prov;
15382 
15383         template.dtpr_mod = ctl->mod_modname;
15384 
15385         mutex_enter(&dtrace_provider_lock);
15386         mutex_enter(&mod_lock);
15387         mutex_enter(&dtrace_lock);
15388 
15389         if (dtrace_bymod == NULL) {
15390                 /*
15391                  * The DTrace module is loaded (obviously) but not attached;
15392                  * we don't have any work to do.
15393                  */
15394                 mutex_exit(&dtrace_provider_lock);
15395                 mutex_exit(&mod_lock);
15396                 mutex_exit(&dtrace_lock);
15397                 return;
15398         }
15399 
15400         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15401             probe != NULL; probe = probe->dtpr_nextmod) {
15402                 if (probe->dtpr_ecb != NULL) {
15403                         mutex_exit(&dtrace_provider_lock);
15404                         mutex_exit(&mod_lock);
15405                         mutex_exit(&dtrace_lock);
15406 
15407                         /*
15408                          * This shouldn't _actually_ be possible -- we're
15409                          * unloading a module that has an enabled probe in it.
15410                          * (It's normally up to the provider to make sure that
15411                          * this can't happen.)  However, because dtps_enable()
15412                          * doesn't have a failure mode, there can be an
15413                          * enable/unload race.  Upshot:  we don't want to
15414                          * assert, but we're not going to disable the
15415                          * probe, either.
15416                          */
15417                         if (dtrace_err_verbose) {
15418                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15419                                     "enabled probes", ctl->mod_modname);
15420                         }
15421 
15422                         return;
15423                 }
15424         }
15425 
15426         probe = first;
15427 
15428         for (first = NULL; probe != NULL; probe = next) {
15429                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15430 
15431                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15432 
15433                 next = probe->dtpr_nextmod;
15434                 dtrace_hash_remove(dtrace_bymod, probe);
15435                 dtrace_hash_remove(dtrace_byfunc, probe);
15436                 dtrace_hash_remove(dtrace_byname, probe);
15437 
15438                 if (first == NULL) {
15439                         first = probe;
15440                         probe->dtpr_nextmod = NULL;
15441                 } else {
15442                         probe->dtpr_nextmod = first;
15443                         first = probe;
15444                 }
15445         }
15446 
15447         /*
15448          * We've removed all of the module's probes from the hash chains and
15449          * from the probe array.  Now issue a dtrace_sync() to be sure that
15450          * everyone has cleared out from any probe array processing.
15451          */
15452         dtrace_sync();
15453 
15454         for (probe = first; probe != NULL; probe = first) {
15455                 first = probe->dtpr_nextmod;
15456                 prov = probe->dtpr_provider;
15457                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15458                     probe->dtpr_arg);
15459                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15460                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15461                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15462                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15463                 kmem_free(probe, sizeof (dtrace_probe_t));
15464         }
15465 
15466         mutex_exit(&dtrace_lock);
15467         mutex_exit(&mod_lock);
15468         mutex_exit(&dtrace_provider_lock);
15469 }
15470 
15471 void
15472 dtrace_suspend(void)
15473 {
15474         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15475 }
15476 
15477 void
15478 dtrace_resume(void)
15479 {
15480         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15481 }
15482 
15483 static int
15484 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15485 {
15486         ASSERT(MUTEX_HELD(&cpu_lock));
15487         mutex_enter(&dtrace_lock);
15488 
15489         switch (what) {
15490         case CPU_CONFIG: {
15491                 dtrace_state_t *state;
15492                 dtrace_optval_t *opt, rs, c;
15493 
15494                 /*
15495                  * For now, we only allocate a new buffer for anonymous state.
15496                  */
15497                 if ((state = dtrace_anon.dta_state) == NULL)
15498                         break;
15499 
15500                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15501                         break;
15502 
15503                 opt = state->dts_options;
15504                 c = opt[DTRACEOPT_CPU];
15505 
15506                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15507                         break;
15508 
15509                 /*
15510                  * Regardless of what the actual policy is, we're going to
15511                  * temporarily set our resize policy to be manual.  We're
15512                  * also going to temporarily set our CPU option to denote
15513                  * the newly configured CPU.
15514                  */
15515                 rs = opt[DTRACEOPT_BUFRESIZE];
15516                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15517                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15518 
15519                 (void) dtrace_state_buffers(state);
15520 
15521                 opt[DTRACEOPT_BUFRESIZE] = rs;
15522                 opt[DTRACEOPT_CPU] = c;
15523 
15524                 break;
15525         }
15526 
15527         case CPU_UNCONFIG:
15528                 /*
15529                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15530                  * buffer will be freed when the consumer exits.)
15531                  */
15532                 break;
15533 
15534         default:
15535                 break;
15536         }
15537 
15538         mutex_exit(&dtrace_lock);
15539         return (0);
15540 }
15541 
15542 static void
15543 dtrace_cpu_setup_initial(processorid_t cpu)
15544 {
15545         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15546 }
15547 
15548 static void
15549 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15550 {
15551         if (dtrace_toxranges >= dtrace_toxranges_max) {
15552                 int osize, nsize;
15553                 dtrace_toxrange_t *range;
15554 
15555                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15556 
15557                 if (osize == 0) {
15558                         ASSERT(dtrace_toxrange == NULL);
15559                         ASSERT(dtrace_toxranges_max == 0);
15560                         dtrace_toxranges_max = 1;
15561                 } else {
15562                         dtrace_toxranges_max <<= 1;
15563                 }
15564 
15565                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15566                 range = kmem_zalloc(nsize, KM_SLEEP);
15567 
15568                 if (dtrace_toxrange != NULL) {
15569                         ASSERT(osize != 0);
15570                         bcopy(dtrace_toxrange, range, osize);
15571                         kmem_free(dtrace_toxrange, osize);
15572                 }
15573 
15574                 dtrace_toxrange = range;
15575         }
15576 
15577         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15578         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15579 
15580         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15581         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15582         dtrace_toxranges++;
15583 }
15584 
15585 static void
15586 dtrace_getf_barrier()
15587 {
15588         /*
15589          * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15590          * that contain calls to getf(), this routine will be called on every
15591          * closef() before either the underlying vnode is released or the
15592          * file_t itself is freed.  By the time we are here, it is essential
15593          * that the file_t can no longer be accessed from a call to getf()
15594          * in probe context -- that assures that a dtrace_sync() can be used
15595          * to clear out any enablings referring to the old structures.
15596          */
15597         if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15598             kcred->cr_zone->zone_dtrace_getf != 0)
15599                 dtrace_sync();
15600 }
15601 
15602 /*
15603  * DTrace Driver Cookbook Functions
15604  */
15605 /*ARGSUSED*/
15606 static int
15607 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15608 {
15609         dtrace_provider_id_t id;
15610         dtrace_state_t *state = NULL;
15611         dtrace_enabling_t *enab;
15612 
15613         mutex_enter(&cpu_lock);
15614         mutex_enter(&dtrace_provider_lock);
15615         mutex_enter(&dtrace_lock);
15616 
15617         if (ddi_soft_state_init(&dtrace_softstate,
15618             sizeof (dtrace_state_t), 0) != 0) {
15619                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15620                 mutex_exit(&cpu_lock);
15621                 mutex_exit(&dtrace_provider_lock);
15622                 mutex_exit(&dtrace_lock);
15623                 return (DDI_FAILURE);
15624         }
15625 
15626         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15627             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15628             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15629             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15630                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15631                 ddi_remove_minor_node(devi, NULL);
15632                 ddi_soft_state_fini(&dtrace_softstate);
15633                 mutex_exit(&cpu_lock);
15634                 mutex_exit(&dtrace_provider_lock);
15635                 mutex_exit(&dtrace_lock);
15636                 return (DDI_FAILURE);
15637         }
15638 
15639         ddi_report_dev(devi);
15640         dtrace_devi = devi;
15641 
15642         dtrace_modload = dtrace_module_loaded;
15643         dtrace_modunload = dtrace_module_unloaded;
15644         dtrace_cpu_init = dtrace_cpu_setup_initial;
15645         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15646         dtrace_helpers_fork = dtrace_helpers_duplicate;
15647         dtrace_cpustart_init = dtrace_suspend;
15648         dtrace_cpustart_fini = dtrace_resume;
15649         dtrace_debugger_init = dtrace_suspend;
15650         dtrace_debugger_fini = dtrace_resume;
15651 
15652         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15653 
15654         ASSERT(MUTEX_HELD(&cpu_lock));
15655 
15656         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15657             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15658         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15659             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15660             VM_SLEEP | VMC_IDENTIFIER);
15661         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15662             1, INT_MAX, 0);
15663 
15664         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15665             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15666             NULL, NULL, NULL, NULL, NULL, 0);
15667 
15668         ASSERT(MUTEX_HELD(&cpu_lock));
15669         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15670             offsetof(dtrace_probe_t, dtpr_nextmod),
15671             offsetof(dtrace_probe_t, dtpr_prevmod));
15672 
15673         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15674             offsetof(dtrace_probe_t, dtpr_nextfunc),
15675             offsetof(dtrace_probe_t, dtpr_prevfunc));
15676 
15677         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15678             offsetof(dtrace_probe_t, dtpr_nextname),
15679             offsetof(dtrace_probe_t, dtpr_prevname));
15680 
15681         if (dtrace_retain_max < 1) {
15682                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15683                     "setting to 1", dtrace_retain_max);
15684                 dtrace_retain_max = 1;
15685         }
15686 
15687         /*
15688          * Now discover our toxic ranges.
15689          */
15690         dtrace_toxic_ranges(dtrace_toxrange_add);
15691 
15692         /*
15693          * Before we register ourselves as a provider to our own framework,
15694          * we would like to assert that dtrace_provider is NULL -- but that's
15695          * not true if we were loaded as a dependency of a DTrace provider.
15696          * Once we've registered, we can assert that dtrace_provider is our
15697          * pseudo provider.
15698          */
15699         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15700             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15701 
15702         ASSERT(dtrace_provider != NULL);
15703         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15704 
15705         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15706             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15707         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15708             dtrace_provider, NULL, NULL, "END", 0, NULL);
15709         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15710             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15711 
15712         dtrace_anon_property();
15713         mutex_exit(&cpu_lock);
15714 
15715         /*
15716          * If there are already providers, we must ask them to provide their
15717          * probes, and then match any anonymous enabling against them.  Note
15718          * that there should be no other retained enablings at this time:
15719          * the only retained enablings at this time should be the anonymous
15720          * enabling.
15721          */
15722         if (dtrace_anon.dta_enabling != NULL) {
15723                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15724 
15725                 dtrace_enabling_provide(NULL);
15726                 state = dtrace_anon.dta_state;
15727 
15728                 /*
15729                  * We couldn't hold cpu_lock across the above call to
15730                  * dtrace_enabling_provide(), but we must hold it to actually
15731                  * enable the probes.  We have to drop all of our locks, pick
15732                  * up cpu_lock, and regain our locks before matching the
15733                  * retained anonymous enabling.
15734                  */
15735                 mutex_exit(&dtrace_lock);
15736                 mutex_exit(&dtrace_provider_lock);
15737 
15738                 mutex_enter(&cpu_lock);
15739                 mutex_enter(&dtrace_provider_lock);
15740                 mutex_enter(&dtrace_lock);
15741 
15742                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15743                         (void) dtrace_enabling_match(enab, NULL);
15744 
15745                 mutex_exit(&cpu_lock);
15746         }
15747 
15748         mutex_exit(&dtrace_lock);
15749         mutex_exit(&dtrace_provider_lock);
15750 
15751         if (state != NULL) {
15752                 /*
15753                  * If we created any anonymous state, set it going now.
15754                  */
15755                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15756         }
15757 
15758         return (DDI_SUCCESS);
15759 }
15760 
15761 /*ARGSUSED*/
15762 static int
15763 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15764 {
15765         dtrace_state_t *state;
15766         uint32_t priv;
15767         uid_t uid;
15768         zoneid_t zoneid;
15769 
15770         if (getminor(*devp) == DTRACEMNRN_HELPER)
15771                 return (0);
15772 
15773         /*
15774          * If this wasn't an open with the "helper" minor, then it must be
15775          * the "dtrace" minor.
15776          */
15777         if (getminor(*devp) != DTRACEMNRN_DTRACE)
15778                 return (ENXIO);
15779 
15780         /*
15781          * If no DTRACE_PRIV_* bits are set in the credential, then the
15782          * caller lacks sufficient permission to do anything with DTrace.
15783          */
15784         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15785         if (priv == DTRACE_PRIV_NONE)
15786                 return (EACCES);
15787 
15788         /*
15789          * Ask all providers to provide all their probes.
15790          */
15791         mutex_enter(&dtrace_provider_lock);
15792         dtrace_probe_provide(NULL, NULL);
15793         mutex_exit(&dtrace_provider_lock);
15794 
15795         mutex_enter(&cpu_lock);
15796         mutex_enter(&dtrace_lock);
15797         dtrace_opens++;
15798         dtrace_membar_producer();
15799 
15800         /*
15801          * If the kernel debugger is active (that is, if the kernel debugger
15802          * modified text in some way), we won't allow the open.
15803          */
15804         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15805                 dtrace_opens--;
15806                 mutex_exit(&cpu_lock);
15807                 mutex_exit(&dtrace_lock);
15808                 return (EBUSY);
15809         }
15810 
15811         if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
15812                 /*
15813                  * If DTrace helper tracing is enabled, we need to allocate the
15814                  * trace buffer and initialize the values.
15815                  */
15816                 dtrace_helptrace_buffer =
15817                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15818                 dtrace_helptrace_next = 0;
15819                 dtrace_helptrace_wrapped = 0;
15820                 dtrace_helptrace_enable = 0;
15821         }
15822 
15823         state = dtrace_state_create(devp, cred_p);
15824         mutex_exit(&cpu_lock);
15825 
15826         if (state == NULL) {
15827                 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15828                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15829                 mutex_exit(&dtrace_lock);
15830                 return (EAGAIN);
15831         }
15832 
15833         mutex_exit(&dtrace_lock);
15834 
15835         return (0);
15836 }
15837 
15838 /*ARGSUSED*/
15839 static int
15840 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15841 {
15842         minor_t minor = getminor(dev);
15843         dtrace_state_t *state;
15844         dtrace_helptrace_t *buf = NULL;
15845 
15846         if (minor == DTRACEMNRN_HELPER)
15847                 return (0);
15848 
15849         state = ddi_get_soft_state(dtrace_softstate, minor);
15850 
15851         mutex_enter(&cpu_lock);
15852         mutex_enter(&dtrace_lock);
15853 
15854         if (state->dts_anon) {
15855                 /*
15856                  * There is anonymous state. Destroy that first.
15857                  */
15858                 ASSERT(dtrace_anon.dta_state == NULL);
15859                 dtrace_state_destroy(state->dts_anon);
15860         }
15861 
15862         if (dtrace_helptrace_disable) {
15863                 /*
15864                  * If we have been told to disable helper tracing, set the
15865                  * buffer to NULL before calling into dtrace_state_destroy();
15866                  * we take advantage of its dtrace_sync() to know that no
15867                  * CPU is in probe context with enabled helper tracing
15868                  * after it returns.
15869                  */
15870                 buf = dtrace_helptrace_buffer;
15871                 dtrace_helptrace_buffer = NULL;
15872         }
15873 
15874         dtrace_state_destroy(state);
15875         ASSERT(dtrace_opens > 0);
15876 
15877         /*
15878          * Only relinquish control of the kernel debugger interface when there
15879          * are no consumers and no anonymous enablings.
15880          */
15881         if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15882                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15883 
15884         if (buf != NULL) {
15885                 kmem_free(buf, dtrace_helptrace_bufsize);
15886                 dtrace_helptrace_disable = 0;
15887         }
15888 
15889         mutex_exit(&dtrace_lock);
15890         mutex_exit(&cpu_lock);
15891 
15892         return (0);
15893 }
15894 
15895 /*ARGSUSED*/
15896 static int
15897 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15898 {
15899         int rval;
15900         dof_helper_t help, *dhp = NULL;
15901 
15902         switch (cmd) {
15903         case DTRACEHIOC_ADDDOF:
15904                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15905                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15906                         return (EFAULT);
15907                 }
15908 
15909                 dhp = &help;
15910                 arg = (intptr_t)help.dofhp_dof;
15911                 /*FALLTHROUGH*/
15912 
15913         case DTRACEHIOC_ADD: {
15914                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15915 
15916                 if (dof == NULL)
15917                         return (rval);
15918 
15919                 mutex_enter(&dtrace_lock);
15920 
15921                 /*
15922                  * dtrace_helper_slurp() takes responsibility for the dof --
15923                  * it may free it now or it may save it and free it later.
15924                  */
15925                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15926                         *rv = rval;
15927                         rval = 0;
15928                 } else {
15929                         rval = EINVAL;
15930                 }
15931 
15932                 mutex_exit(&dtrace_lock);
15933                 return (rval);
15934         }
15935 
15936         case DTRACEHIOC_REMOVE: {
15937                 mutex_enter(&dtrace_lock);
15938                 rval = dtrace_helper_destroygen(arg);
15939                 mutex_exit(&dtrace_lock);
15940 
15941                 return (rval);
15942         }
15943 
15944         default:
15945                 break;
15946         }
15947 
15948         return (ENOTTY);
15949 }
15950 
15951 /*ARGSUSED*/
15952 static int
15953 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15954 {
15955         minor_t minor = getminor(dev);
15956         dtrace_state_t *state;
15957         int rval;
15958 
15959         if (minor == DTRACEMNRN_HELPER)
15960                 return (dtrace_ioctl_helper(cmd, arg, rv));
15961 
15962         state = ddi_get_soft_state(dtrace_softstate, minor);
15963 
15964         if (state->dts_anon) {
15965                 ASSERT(dtrace_anon.dta_state == NULL);
15966                 state = state->dts_anon;
15967         }
15968 
15969         switch (cmd) {
15970         case DTRACEIOC_PROVIDER: {
15971                 dtrace_providerdesc_t pvd;
15972                 dtrace_provider_t *pvp;
15973 
15974                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15975                         return (EFAULT);
15976 
15977                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15978                 mutex_enter(&dtrace_provider_lock);
15979 
15980                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15981                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15982                                 break;
15983                 }
15984 
15985                 mutex_exit(&dtrace_provider_lock);
15986 
15987                 if (pvp == NULL)
15988                         return (ESRCH);
15989 
15990                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15991                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15992                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15993                         return (EFAULT);
15994 
15995                 return (0);
15996         }
15997 
15998         case DTRACEIOC_EPROBE: {
15999                 dtrace_eprobedesc_t epdesc;
16000                 dtrace_ecb_t *ecb;
16001                 dtrace_action_t *act;
16002                 void *buf;
16003                 size_t size;
16004                 uintptr_t dest;
16005                 int nrecs;
16006 
16007                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16008                         return (EFAULT);
16009 
16010                 mutex_enter(&dtrace_lock);
16011 
16012                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16013                         mutex_exit(&dtrace_lock);
16014                         return (EINVAL);
16015                 }
16016 
16017                 if (ecb->dte_probe == NULL) {
16018                         mutex_exit(&dtrace_lock);
16019                         return (EINVAL);
16020                 }
16021 
16022                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16023                 epdesc.dtepd_uarg = ecb->dte_uarg;
16024                 epdesc.dtepd_size = ecb->dte_size;
16025 
16026                 nrecs = epdesc.dtepd_nrecs;
16027                 epdesc.dtepd_nrecs = 0;
16028                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16029                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16030                                 continue;
16031 
16032                         epdesc.dtepd_nrecs++;
16033                 }
16034 
16035                 /*
16036                  * Now that we have the size, we need to allocate a temporary
16037                  * buffer in which to store the complete description.  We need
16038                  * the temporary buffer to be able to drop dtrace_lock()
16039                  * across the copyout(), below.
16040                  */
16041                 size = sizeof (dtrace_eprobedesc_t) +
16042                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16043 
16044                 buf = kmem_alloc(size, KM_SLEEP);
16045                 dest = (uintptr_t)buf;
16046 
16047                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16048                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16049 
16050                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16051                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16052                                 continue;
16053 
16054                         if (nrecs-- == 0)
16055                                 break;
16056 
16057                         bcopy(&act->dta_rec, (void *)dest,
16058                             sizeof (dtrace_recdesc_t));
16059                         dest += sizeof (dtrace_recdesc_t);
16060                 }
16061 
16062                 mutex_exit(&dtrace_lock);
16063 
16064                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16065                         kmem_free(buf, size);
16066                         return (EFAULT);
16067                 }
16068 
16069                 kmem_free(buf, size);
16070                 return (0);
16071         }
16072 
16073         case DTRACEIOC_AGGDESC: {
16074                 dtrace_aggdesc_t aggdesc;
16075                 dtrace_action_t *act;
16076                 dtrace_aggregation_t *agg;
16077                 int nrecs;
16078                 uint32_t offs;
16079                 dtrace_recdesc_t *lrec;
16080                 void *buf;
16081                 size_t size;
16082                 uintptr_t dest;
16083 
16084                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16085                         return (EFAULT);
16086 
16087                 mutex_enter(&dtrace_lock);
16088 
16089                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16090                         mutex_exit(&dtrace_lock);
16091                         return (EINVAL);
16092                 }
16093 
16094                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16095 
16096                 nrecs = aggdesc.dtagd_nrecs;
16097                 aggdesc.dtagd_nrecs = 0;
16098 
16099                 offs = agg->dtag_base;
16100                 lrec = &agg->dtag_action.dta_rec;
16101                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16102 
16103                 for (act = agg->dtag_first; ; act = act->dta_next) {
16104                         ASSERT(act->dta_intuple ||
16105                             DTRACEACT_ISAGG(act->dta_kind));
16106 
16107                         /*
16108                          * If this action has a record size of zero, it
16109                          * denotes an argument to the aggregating action.
16110                          * Because the presence of this record doesn't (or
16111                          * shouldn't) affect the way the data is interpreted,
16112                          * we don't copy it out to save user-level the
16113                          * confusion of dealing with a zero-length record.
16114                          */
16115                         if (act->dta_rec.dtrd_size == 0) {
16116                                 ASSERT(agg->dtag_hasarg);
16117                                 continue;
16118                         }
16119 
16120                         aggdesc.dtagd_nrecs++;
16121 
16122                         if (act == &agg->dtag_action)
16123                                 break;
16124                 }
16125 
16126                 /*
16127                  * Now that we have the size, we need to allocate a temporary
16128                  * buffer in which to store the complete description.  We need
16129                  * the temporary buffer to be able to drop dtrace_lock()
16130                  * across the copyout(), below.
16131                  */
16132                 size = sizeof (dtrace_aggdesc_t) +
16133                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16134 
16135                 buf = kmem_alloc(size, KM_SLEEP);
16136                 dest = (uintptr_t)buf;
16137 
16138                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16139                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16140 
16141                 for (act = agg->dtag_first; ; act = act->dta_next) {
16142                         dtrace_recdesc_t rec = act->dta_rec;
16143 
16144                         /*
16145                          * See the comment in the above loop for why we pass
16146                          * over zero-length records.
16147                          */
16148                         if (rec.dtrd_size == 0) {
16149                                 ASSERT(agg->dtag_hasarg);
16150                                 continue;
16151                         }
16152 
16153                         if (nrecs-- == 0)
16154                                 break;
16155 
16156                         rec.dtrd_offset -= offs;
16157                         bcopy(&rec, (void *)dest, sizeof (rec));
16158                         dest += sizeof (dtrace_recdesc_t);
16159 
16160                         if (act == &agg->dtag_action)
16161                                 break;
16162                 }
16163 
16164                 mutex_exit(&dtrace_lock);
16165 
16166                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16167                         kmem_free(buf, size);
16168                         return (EFAULT);
16169                 }
16170 
16171                 kmem_free(buf, size);
16172                 return (0);
16173         }
16174 
16175         case DTRACEIOC_ENABLE: {
16176                 dof_hdr_t *dof;
16177                 dtrace_enabling_t *enab = NULL;
16178                 dtrace_vstate_t *vstate;
16179                 int err = 0;
16180 
16181                 *rv = 0;
16182 
16183                 /*
16184                  * If a NULL argument has been passed, we take this as our
16185                  * cue to reevaluate our enablings.
16186                  */
16187                 if (arg == NULL) {
16188                         dtrace_enabling_matchall();
16189 
16190                         return (0);
16191                 }
16192 
16193                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16194                         return (rval);
16195 
16196                 mutex_enter(&cpu_lock);
16197                 mutex_enter(&dtrace_lock);
16198                 vstate = &state->dts_vstate;
16199 
16200                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16201                         mutex_exit(&dtrace_lock);
16202                         mutex_exit(&cpu_lock);
16203                         dtrace_dof_destroy(dof);
16204                         return (EBUSY);
16205                 }
16206 
16207                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16208                         mutex_exit(&dtrace_lock);
16209                         mutex_exit(&cpu_lock);
16210                         dtrace_dof_destroy(dof);
16211                         return (EINVAL);
16212                 }
16213 
16214                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16215                         dtrace_enabling_destroy(enab);
16216                         mutex_exit(&dtrace_lock);
16217                         mutex_exit(&cpu_lock);
16218                         dtrace_dof_destroy(dof);
16219                         return (rval);
16220                 }
16221 
16222                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16223                         err = dtrace_enabling_retain(enab);
16224                 } else {
16225                         dtrace_enabling_destroy(enab);
16226                 }
16227 
16228                 mutex_exit(&cpu_lock);
16229                 mutex_exit(&dtrace_lock);
16230                 dtrace_dof_destroy(dof);
16231 
16232                 return (err);
16233         }
16234 
16235         case DTRACEIOC_REPLICATE: {
16236                 dtrace_repldesc_t desc;
16237                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16238                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16239                 int err;
16240 
16241                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16242                         return (EFAULT);
16243 
16244                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16245                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16246                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16247                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16248 
16249                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16250                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16251                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16252                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16253 
16254                 mutex_enter(&dtrace_lock);
16255                 err = dtrace_enabling_replicate(state, match, create);
16256                 mutex_exit(&dtrace_lock);
16257 
16258                 return (err);
16259         }
16260 
16261         case DTRACEIOC_PROBEMATCH:
16262         case DTRACEIOC_PROBES: {
16263                 dtrace_probe_t *probe = NULL;
16264                 dtrace_probedesc_t desc;
16265                 dtrace_probekey_t pkey;
16266                 dtrace_id_t i;
16267                 int m = 0;
16268                 uint32_t priv;
16269                 uid_t uid;
16270                 zoneid_t zoneid;
16271 
16272                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16273                         return (EFAULT);
16274 
16275                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16276                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16277                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16278                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16279 
16280                 /*
16281                  * Before we attempt to match this probe, we want to give
16282                  * all providers the opportunity to provide it.
16283                  */
16284                 if (desc.dtpd_id == DTRACE_IDNONE) {
16285                         mutex_enter(&dtrace_provider_lock);
16286                         dtrace_probe_provide(&desc, NULL);
16287                         mutex_exit(&dtrace_provider_lock);
16288                         desc.dtpd_id++;
16289                 }
16290 
16291                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16292                         dtrace_probekey(&desc, &pkey);
16293                         pkey.dtpk_id = DTRACE_IDNONE;
16294                 }
16295 
16296                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16297 
16298                 mutex_enter(&dtrace_lock);
16299 
16300                 if (cmd == DTRACEIOC_PROBEMATCH) {
16301                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16302                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16303                                     (m = dtrace_match_probe(probe, &pkey,
16304                                     priv, uid, zoneid)) != 0)
16305                                         break;
16306                         }
16307 
16308                         if (m < 0) {
16309                                 mutex_exit(&dtrace_lock);
16310                                 return (EINVAL);
16311                         }
16312 
16313                 } else {
16314                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16315                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16316                                     dtrace_match_priv(probe, priv, uid, zoneid))
16317                                         break;
16318                         }
16319                 }
16320 
16321                 if (probe == NULL) {
16322                         mutex_exit(&dtrace_lock);
16323                         return (ESRCH);
16324                 }
16325 
16326                 dtrace_probe_description(probe, &desc);
16327                 mutex_exit(&dtrace_lock);
16328 
16329                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16330                         return (EFAULT);
16331 
16332                 return (0);
16333         }
16334 
16335         case DTRACEIOC_PROBEARG: {
16336                 dtrace_argdesc_t desc;
16337                 dtrace_probe_t *probe;
16338                 dtrace_provider_t *prov;
16339 
16340                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16341                         return (EFAULT);
16342 
16343                 if (desc.dtargd_id == DTRACE_IDNONE)
16344                         return (EINVAL);
16345 
16346                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16347                         return (EINVAL);
16348 
16349                 mutex_enter(&dtrace_provider_lock);
16350                 mutex_enter(&mod_lock);
16351                 mutex_enter(&dtrace_lock);
16352 
16353                 if (desc.dtargd_id > dtrace_nprobes) {
16354                         mutex_exit(&dtrace_lock);
16355                         mutex_exit(&mod_lock);
16356                         mutex_exit(&dtrace_provider_lock);
16357                         return (EINVAL);
16358                 }
16359 
16360                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16361                         mutex_exit(&dtrace_lock);
16362                         mutex_exit(&mod_lock);
16363                         mutex_exit(&dtrace_provider_lock);
16364                         return (EINVAL);
16365                 }
16366 
16367                 mutex_exit(&dtrace_lock);
16368 
16369                 prov = probe->dtpr_provider;
16370 
16371                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16372                         /*
16373                          * There isn't any typed information for this probe.
16374                          * Set the argument number to DTRACE_ARGNONE.
16375                          */
16376                         desc.dtargd_ndx = DTRACE_ARGNONE;
16377                 } else {
16378                         desc.dtargd_native[0] = '\0';
16379                         desc.dtargd_xlate[0] = '\0';
16380                         desc.dtargd_mapping = desc.dtargd_ndx;
16381 
16382                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16383                             probe->dtpr_id, probe->dtpr_arg, &desc);
16384                 }
16385 
16386                 mutex_exit(&mod_lock);
16387                 mutex_exit(&dtrace_provider_lock);
16388 
16389                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16390                         return (EFAULT);
16391 
16392                 return (0);
16393         }
16394 
16395         case DTRACEIOC_GO: {
16396                 processorid_t cpuid;
16397                 rval = dtrace_state_go(state, &cpuid);
16398 
16399                 if (rval != 0)
16400                         return (rval);
16401 
16402                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16403                         return (EFAULT);
16404 
16405                 return (0);
16406         }
16407 
16408         case DTRACEIOC_STOP: {
16409                 processorid_t cpuid;
16410 
16411                 mutex_enter(&dtrace_lock);
16412                 rval = dtrace_state_stop(state, &cpuid);
16413                 mutex_exit(&dtrace_lock);
16414 
16415                 if (rval != 0)
16416                         return (rval);
16417 
16418                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16419                         return (EFAULT);
16420 
16421                 return (0);
16422         }
16423 
16424         case DTRACEIOC_DOFGET: {
16425                 dof_hdr_t hdr, *dof;
16426                 uint64_t len;
16427 
16428                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16429                         return (EFAULT);
16430 
16431                 mutex_enter(&dtrace_lock);
16432                 dof = dtrace_dof_create(state);
16433                 mutex_exit(&dtrace_lock);
16434 
16435                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16436                 rval = copyout(dof, (void *)arg, len);
16437                 dtrace_dof_destroy(dof);
16438 
16439                 return (rval == 0 ? 0 : EFAULT);
16440         }
16441 
16442         case DTRACEIOC_AGGSNAP:
16443         case DTRACEIOC_BUFSNAP: {
16444                 dtrace_bufdesc_t desc;
16445                 caddr_t cached;
16446                 dtrace_buffer_t *buf;
16447 
16448                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16449                         return (EFAULT);
16450 
16451                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16452                         return (EINVAL);
16453 
16454                 mutex_enter(&dtrace_lock);
16455 
16456                 if (cmd == DTRACEIOC_BUFSNAP) {
16457                         buf = &state->dts_buffer[desc.dtbd_cpu];
16458                 } else {
16459                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16460                 }
16461 
16462                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16463                         size_t sz = buf->dtb_offset;
16464 
16465                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16466                                 mutex_exit(&dtrace_lock);
16467                                 return (EBUSY);
16468                         }
16469 
16470                         /*
16471                          * If this buffer has already been consumed, we're
16472                          * going to indicate that there's nothing left here
16473                          * to consume.
16474                          */
16475                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16476                                 mutex_exit(&dtrace_lock);
16477 
16478                                 desc.dtbd_size = 0;
16479                                 desc.dtbd_drops = 0;
16480                                 desc.dtbd_errors = 0;
16481                                 desc.dtbd_oldest = 0;
16482                                 sz = sizeof (desc);
16483 
16484                                 if (copyout(&desc, (void *)arg, sz) != 0)
16485                                         return (EFAULT);
16486 
16487                                 return (0);
16488                         }
16489 
16490                         /*
16491                          * If this is a ring buffer that has wrapped, we want
16492                          * to copy the whole thing out.
16493                          */
16494                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16495                                 dtrace_buffer_polish(buf);
16496                                 sz = buf->dtb_size;
16497                         }
16498 
16499                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16500                                 mutex_exit(&dtrace_lock);
16501                                 return (EFAULT);
16502                         }
16503 
16504                         desc.dtbd_size = sz;
16505                         desc.dtbd_drops = buf->dtb_drops;
16506                         desc.dtbd_errors = buf->dtb_errors;
16507                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16508                         desc.dtbd_timestamp = dtrace_gethrtime();
16509 
16510                         mutex_exit(&dtrace_lock);
16511 
16512                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16513                                 return (EFAULT);
16514 
16515                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16516 
16517                         return (0);
16518                 }
16519 
16520                 if (buf->dtb_tomax == NULL) {
16521                         ASSERT(buf->dtb_xamot == NULL);
16522                         mutex_exit(&dtrace_lock);
16523                         return (ENOENT);
16524                 }
16525 
16526                 cached = buf->dtb_tomax;
16527                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16528 
16529                 dtrace_xcall(desc.dtbd_cpu,
16530                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16531 
16532                 state->dts_errors += buf->dtb_xamot_errors;
16533 
16534                 /*
16535                  * If the buffers did not actually switch, then the cross call
16536                  * did not take place -- presumably because the given CPU is
16537                  * not in the ready set.  If this is the case, we'll return
16538                  * ENOENT.
16539                  */
16540                 if (buf->dtb_tomax == cached) {
16541                         ASSERT(buf->dtb_xamot != cached);
16542                         mutex_exit(&dtrace_lock);
16543                         return (ENOENT);
16544                 }
16545 
16546                 ASSERT(cached == buf->dtb_xamot);
16547 
16548                 /*
16549                  * We have our snapshot; now copy it out.
16550                  */
16551                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16552                     buf->dtb_xamot_offset) != 0) {
16553                         mutex_exit(&dtrace_lock);
16554                         return (EFAULT);
16555                 }
16556 
16557                 desc.dtbd_size = buf->dtb_xamot_offset;
16558                 desc.dtbd_drops = buf->dtb_xamot_drops;
16559                 desc.dtbd_errors = buf->dtb_xamot_errors;
16560                 desc.dtbd_oldest = 0;
16561                 desc.dtbd_timestamp = buf->dtb_switched;
16562 
16563                 mutex_exit(&dtrace_lock);
16564 
16565                 /*
16566                  * Finally, copy out the buffer description.
16567                  */
16568                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16569                         return (EFAULT);
16570 
16571                 return (0);
16572         }
16573 
16574         case DTRACEIOC_CONF: {
16575                 dtrace_conf_t conf;
16576 
16577                 bzero(&conf, sizeof (conf));
16578                 conf.dtc_difversion = DIF_VERSION;
16579                 conf.dtc_difintregs = DIF_DIR_NREGS;
16580                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16581                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16582 
16583                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16584                         return (EFAULT);
16585 
16586                 return (0);
16587         }
16588 
16589         case DTRACEIOC_STATUS: {
16590                 dtrace_status_t stat;
16591                 dtrace_dstate_t *dstate;
16592                 int i, j;
16593                 uint64_t nerrs;
16594 
16595                 /*
16596                  * See the comment in dtrace_state_deadman() for the reason
16597                  * for setting dts_laststatus to INT64_MAX before setting
16598                  * it to the correct value.
16599                  */
16600                 state->dts_laststatus = INT64_MAX;
16601                 dtrace_membar_producer();
16602                 state->dts_laststatus = dtrace_gethrtime();
16603 
16604                 bzero(&stat, sizeof (stat));
16605 
16606                 mutex_enter(&dtrace_lock);
16607 
16608                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16609                         mutex_exit(&dtrace_lock);
16610                         return (ENOENT);
16611                 }
16612 
16613                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16614                         stat.dtst_exiting = 1;
16615 
16616                 nerrs = state->dts_errors;
16617                 dstate = &state->dts_vstate.dtvs_dynvars;
16618 
16619                 for (i = 0; i < NCPU; i++) {
16620                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16621 
16622                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16623                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16624                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16625 
16626                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16627                                 stat.dtst_filled++;
16628 
16629                         nerrs += state->dts_buffer[i].dtb_errors;
16630 
16631                         for (j = 0; j < state->dts_nspeculations; j++) {
16632                                 dtrace_speculation_t *spec;
16633                                 dtrace_buffer_t *buf;
16634 
16635                                 spec = &state->dts_speculations[j];
16636                                 buf = &spec->dtsp_buffer[i];
16637                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16638                         }
16639                 }
16640 
16641                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16642                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16643                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16644                 stat.dtst_dblerrors = state->dts_dblerrors;
16645                 stat.dtst_killed =
16646                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16647                 stat.dtst_errors = nerrs;
16648 
16649                 mutex_exit(&dtrace_lock);
16650 
16651                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16652                         return (EFAULT);
16653 
16654                 return (0);
16655         }
16656 
16657         case DTRACEIOC_FORMAT: {
16658                 dtrace_fmtdesc_t fmt;
16659                 char *str;
16660                 int len;
16661 
16662                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16663                         return (EFAULT);
16664 
16665                 mutex_enter(&dtrace_lock);
16666 
16667                 if (fmt.dtfd_format == 0 ||
16668                     fmt.dtfd_format > state->dts_nformats) {
16669                         mutex_exit(&dtrace_lock);
16670                         return (EINVAL);
16671                 }
16672 
16673                 /*
16674                  * Format strings are allocated contiguously and they are
16675                  * never freed; if a format index is less than the number
16676                  * of formats, we can assert that the format map is non-NULL
16677                  * and that the format for the specified index is non-NULL.
16678                  */
16679                 ASSERT(state->dts_formats != NULL);
16680                 str = state->dts_formats[fmt.dtfd_format - 1];
16681                 ASSERT(str != NULL);
16682 
16683                 len = strlen(str) + 1;
16684 
16685                 if (len > fmt.dtfd_length) {
16686                         fmt.dtfd_length = len;
16687 
16688                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16689                                 mutex_exit(&dtrace_lock);
16690                                 return (EINVAL);
16691                         }
16692                 } else {
16693                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16694                                 mutex_exit(&dtrace_lock);
16695                                 return (EINVAL);
16696                         }
16697                 }
16698 
16699                 mutex_exit(&dtrace_lock);
16700                 return (0);
16701         }
16702 
16703         default:
16704                 break;
16705         }
16706 
16707         return (ENOTTY);
16708 }
16709 
16710 /*ARGSUSED*/
16711 static int
16712 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16713 {
16714         dtrace_state_t *state;
16715 
16716         switch (cmd) {
16717         case DDI_DETACH:
16718                 break;
16719 
16720         case DDI_SUSPEND:
16721                 return (DDI_SUCCESS);
16722 
16723         default:
16724                 return (DDI_FAILURE);
16725         }
16726 
16727         mutex_enter(&cpu_lock);
16728         mutex_enter(&dtrace_provider_lock);
16729         mutex_enter(&dtrace_lock);
16730 
16731         ASSERT(dtrace_opens == 0);
16732 
16733         if (dtrace_helpers > 0) {
16734                 mutex_exit(&dtrace_provider_lock);
16735                 mutex_exit(&dtrace_lock);
16736                 mutex_exit(&cpu_lock);
16737                 return (DDI_FAILURE);
16738         }
16739 
16740         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16741                 mutex_exit(&dtrace_provider_lock);
16742                 mutex_exit(&dtrace_lock);
16743                 mutex_exit(&cpu_lock);
16744                 return (DDI_FAILURE);
16745         }
16746 
16747         dtrace_provider = NULL;
16748 
16749         if ((state = dtrace_anon_grab()) != NULL) {
16750                 /*
16751                  * If there were ECBs on this state, the provider should
16752                  * have not been allowed to detach; assert that there is
16753                  * none.
16754                  */
16755                 ASSERT(state->dts_necbs == 0);
16756                 dtrace_state_destroy(state);
16757 
16758                 /*
16759                  * If we're being detached with anonymous state, we need to
16760                  * indicate to the kernel debugger that DTrace is now inactive.
16761                  */
16762                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16763         }
16764 
16765         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16766         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16767         dtrace_cpu_init = NULL;
16768         dtrace_helpers_cleanup = NULL;
16769         dtrace_helpers_fork = NULL;
16770         dtrace_cpustart_init = NULL;
16771         dtrace_cpustart_fini = NULL;
16772         dtrace_debugger_init = NULL;
16773         dtrace_debugger_fini = NULL;
16774         dtrace_modload = NULL;
16775         dtrace_modunload = NULL;
16776 
16777         ASSERT(dtrace_getf == 0);
16778         ASSERT(dtrace_closef == NULL);
16779 
16780         mutex_exit(&cpu_lock);
16781 
16782         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16783         dtrace_probes = NULL;
16784         dtrace_nprobes = 0;
16785 
16786         dtrace_hash_destroy(dtrace_bymod);
16787         dtrace_hash_destroy(dtrace_byfunc);
16788         dtrace_hash_destroy(dtrace_byname);
16789         dtrace_bymod = NULL;
16790         dtrace_byfunc = NULL;
16791         dtrace_byname = NULL;
16792 
16793         kmem_cache_destroy(dtrace_state_cache);
16794         vmem_destroy(dtrace_minor);
16795         vmem_destroy(dtrace_arena);
16796 
16797         if (dtrace_toxrange != NULL) {
16798                 kmem_free(dtrace_toxrange,
16799                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16800                 dtrace_toxrange = NULL;
16801                 dtrace_toxranges = 0;
16802                 dtrace_toxranges_max = 0;
16803         }
16804 
16805         ddi_remove_minor_node(dtrace_devi, NULL);
16806         dtrace_devi = NULL;
16807 
16808         ddi_soft_state_fini(&dtrace_softstate);
16809 
16810         ASSERT(dtrace_vtime_references == 0);
16811         ASSERT(dtrace_opens == 0);
16812         ASSERT(dtrace_retained == NULL);
16813 
16814         mutex_exit(&dtrace_lock);
16815         mutex_exit(&dtrace_provider_lock);
16816 
16817         /*
16818          * We don't destroy the task queue until after we have dropped our
16819          * locks (taskq_destroy() may block on running tasks).  To prevent
16820          * attempting to do work after we have effectively detached but before
16821          * the task queue has been destroyed, all tasks dispatched via the
16822          * task queue must check that DTrace is still attached before
16823          * performing any operation.
16824          */
16825         taskq_destroy(dtrace_taskq);
16826         dtrace_taskq = NULL;
16827 
16828         return (DDI_SUCCESS);
16829 }
16830 
16831 /*ARGSUSED*/
16832 static int
16833 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16834 {
16835         int error;
16836 
16837         switch (infocmd) {
16838         case DDI_INFO_DEVT2DEVINFO:
16839                 *result = (void *)dtrace_devi;
16840                 error = DDI_SUCCESS;
16841                 break;
16842         case DDI_INFO_DEVT2INSTANCE:
16843                 *result = (void *)0;
16844                 error = DDI_SUCCESS;
16845                 break;
16846         default:
16847                 error = DDI_FAILURE;
16848         }
16849         return (error);
16850 }
16851 
16852 static struct cb_ops dtrace_cb_ops = {
16853         dtrace_open,            /* open */
16854         dtrace_close,           /* close */
16855         nulldev,                /* strategy */
16856         nulldev,                /* print */
16857         nodev,                  /* dump */
16858         nodev,                  /* read */
16859         nodev,                  /* write */
16860         dtrace_ioctl,           /* ioctl */
16861         nodev,                  /* devmap */
16862         nodev,                  /* mmap */
16863         nodev,                  /* segmap */
16864         nochpoll,               /* poll */
16865         ddi_prop_op,            /* cb_prop_op */
16866         0,                      /* streamtab  */
16867         D_NEW | D_MP            /* Driver compatibility flag */
16868 };
16869 
16870 static struct dev_ops dtrace_ops = {
16871         DEVO_REV,               /* devo_rev */
16872         0,                      /* refcnt */
16873         dtrace_info,            /* get_dev_info */
16874         nulldev,                /* identify */
16875         nulldev,                /* probe */
16876         dtrace_attach,          /* attach */
16877         dtrace_detach,          /* detach */
16878         nodev,                  /* reset */
16879         &dtrace_cb_ops,             /* driver operations */
16880         NULL,                   /* bus operations */
16881         nodev,                  /* dev power */
16882         ddi_quiesce_not_needed,         /* quiesce */
16883 };
16884 
16885 static struct modldrv modldrv = {
16886         &mod_driverops,             /* module type (this is a pseudo driver) */
16887         "Dynamic Tracing",      /* name of module */
16888         &dtrace_ops,                /* driver ops */
16889 };
16890 
16891 static struct modlinkage modlinkage = {
16892         MODREV_1,
16893         (void *)&modldrv,
16894         NULL
16895 };
16896 
16897 int
16898 _init(void)
16899 {
16900         return (mod_install(&modlinkage));
16901 }
16902 
16903 int
16904 _info(struct modinfo *modinfop)
16905 {
16906         return (mod_info(&modlinkage, modinfop));
16907 }
16908 
16909 int
16910 _fini(void)
16911 {
16912         return (mod_remove(&modlinkage));
16913 }