1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2013 by Delphix. All rights reserved.
30 */
31
32 #ifndef _SYS_DTRACE_H
33 #define _SYS_DTRACE_H
34
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38
39 /*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */
49
50 #ifndef _ASM
51
52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>
57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>
59
60 /*
61 * DTrace Universal Constants and Typedefs
62 */
63 #define DTRACE_CPUALL -1 /* all CPUs */
64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 #define DTRACE_ARGNONE -1 /* invalid argument index */
72
73 #define DTRACE_PROVNAMELEN 64
74 #define DTRACE_MODNAMELEN 64
75 #define DTRACE_FUNCNAMELEN 128
76 #define DTRACE_NAMELEN 64
77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define DTRACE_ARGTYPELEN 128
80
81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 typedef int64_t dtrace_optval_t; /* option value */
87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
88
89 typedef enum dtrace_probespec {
90 DTRACE_PROBESPEC_NONE = -1,
91 DTRACE_PROBESPEC_PROVIDER = 0,
92 DTRACE_PROBESPEC_MOD,
93 DTRACE_PROBESPEC_FUNC,
94 DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;
96
97 /*
98 * DTrace Intermediate Format (DIF)
99 *
100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 * a RISC-like instruction set and program encoding used to represent
102 * predicates and actions that can be bound to DTrace probes. The constants
103 * below defining the number of available registers are suggested minimums; the
104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 * registers provided by the current DTrace implementation.
106 */
107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
112
113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 #define DIF_OP_NOT 13 /* not r1, rd */
126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 #define DIF_OP_TST 16 /* tst r1 */
129 #define DIF_OP_BA 17 /* ba label */
130 #define DIF_OP_BE 18 /* be label */
131 #define DIF_OP_BNE 19 /* bne label */
132 #define DIF_OP_BG 20 /* bg label */
133 #define DIF_OP_BGU 21 /* bgu label */
134 #define DIF_OP_BGE 22 /* bge label */
135 #define DIF_OP_BGEU 23 /* bgeu label */
136 #define DIF_OP_BL 24 /* bl label */
137 #define DIF_OP_BLU 25 /* blu label */
138 #define DIF_OP_BLE 26 /* ble label */
139 #define DIF_OP_BLEU 27 /* bleu label */
140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 #define DIF_OP_RET 35 /* ret rd */
148 #define DIF_OP_NOP 36 /* nop */
149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 #define DIF_OP_STTS 45 /* stts var, rs */
158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 #define DIF_OP_CALL 47 /* call subr, rd */
160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 #define DIF_OP_POPTS 50 /* popts */
163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 #define DIF_OP_STLS 57 /* stls var, rs */
170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
192
193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
195 #define DIF_REGISTER_MAX 0xff /* highest register number */
196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
198
199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
202
203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
206
207 #define DIF_VAR_ARGS 0x0000 /* arguments array */
208 #define DIF_VAR_REGS 0x0001 /* registers array */
209 #define DIF_VAR_UREGS 0x0002 /* user registers array */
210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
216 #define DIF_VAR_ID 0x0105 /* probe ID */
217 #define DIF_VAR_ARG0 0x0106 /* first argument */
218 #define DIF_VAR_ARG1 0x0107 /* second argument */
219 #define DIF_VAR_ARG2 0x0108 /* third argument */
220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
221 #define DIF_VAR_ARG4 0x010a /* fifth argument */
222 #define DIF_VAR_ARG5 0x010b /* sixth argument */
223 #define DIF_VAR_ARG6 0x010c /* seventh argument */
224 #define DIF_VAR_ARG7 0x010d /* eighth argument */
225 #define DIF_VAR_ARG8 0x010e /* ninth argument */
226 #define DIF_VAR_ARG9 0x010f /* tenth argument */
227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
228 #define DIF_VAR_CALLER 0x0111 /* caller */
229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
233 #define DIF_VAR_PID 0x0116 /* process ID */
234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
240 #define DIF_VAR_PPID 0x011d /* parent process ID */
241 #define DIF_VAR_UID 0x011e /* process user ID */
242 #define DIF_VAR_GID 0x011f /* process group ID */
243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
244
245 #define DIF_SUBR_RAND 0
246 #define DIF_SUBR_MUTEX_OWNED 1
247 #define DIF_SUBR_MUTEX_OWNER 2
248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
250 #define DIF_SUBR_RW_READ_HELD 5
251 #define DIF_SUBR_RW_WRITE_HELD 6
252 #define DIF_SUBR_RW_ISWRITER 7
253 #define DIF_SUBR_COPYIN 8
254 #define DIF_SUBR_COPYINSTR 9
255 #define DIF_SUBR_SPECULATION 10
256 #define DIF_SUBR_PROGENYOF 11
257 #define DIF_SUBR_STRLEN 12
258 #define DIF_SUBR_COPYOUT 13
259 #define DIF_SUBR_COPYOUTSTR 14
260 #define DIF_SUBR_ALLOCA 15
261 #define DIF_SUBR_BCOPY 16
262 #define DIF_SUBR_COPYINTO 17
263 #define DIF_SUBR_MSGDSIZE 18
264 #define DIF_SUBR_MSGSIZE 19
265 #define DIF_SUBR_GETMAJOR 20
266 #define DIF_SUBR_GETMINOR 21
267 #define DIF_SUBR_DDI_PATHNAME 22
268 #define DIF_SUBR_STRJOIN 23
269 #define DIF_SUBR_LLTOSTR 24
270 #define DIF_SUBR_BASENAME 25
271 #define DIF_SUBR_DIRNAME 26
272 #define DIF_SUBR_CLEANPATH 27
273 #define DIF_SUBR_STRCHR 28
274 #define DIF_SUBR_STRRCHR 29
275 #define DIF_SUBR_STRSTR 30
276 #define DIF_SUBR_STRTOK 31
277 #define DIF_SUBR_SUBSTR 32
278 #define DIF_SUBR_INDEX 33
279 #define DIF_SUBR_RINDEX 34
280 #define DIF_SUBR_HTONS 35
281 #define DIF_SUBR_HTONL 36
282 #define DIF_SUBR_HTONLL 37
283 #define DIF_SUBR_NTOHS 38
284 #define DIF_SUBR_NTOHL 39
285 #define DIF_SUBR_NTOHLL 40
286 #define DIF_SUBR_INET_NTOP 41
287 #define DIF_SUBR_INET_NTOA 42
288 #define DIF_SUBR_INET_NTOA6 43
289 #define DIF_SUBR_TOUPPER 44
290 #define DIF_SUBR_TOLOWER 45
291 #define DIF_SUBR_GETF 46
292 #define DIF_SUBR_JSON 47
293 #define DIF_SUBR_STRTOLL 48
294
295 #define DIF_SUBR_MAX 48 /* max subroutine value */
296
297 typedef uint32_t dif_instr_t;
298
299 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
300 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
301 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
302 #define DIF_INSTR_RD(i) ((i) & 0xff)
303 #define DIF_INSTR_RS(i) ((i) & 0xff)
304 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
305 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
306 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
307 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
308 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
309 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
310 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
311
312 #define DIF_INSTR_FMT(op, r1, r2, d) \
313 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
314
315 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
316 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
317 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
318 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
319 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
320 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
321 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
322 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
323 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
324 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
325 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
326 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
327 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
328 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
329 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
330 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
331 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
332 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
333 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
334 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
335 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
336
337 #define DIF_REG_R0 0 /* %r0 is always set to zero */
338
339 /*
340 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
341 * of variables, function and associative array arguments, and the return type
342 * for each DIF object (shown below). It contains a description of the type,
343 * its size in bytes, and a module identifier.
344 */
345 typedef struct dtrace_diftype {
346 uint8_t dtdt_kind; /* type kind (see below) */
347 uint8_t dtdt_ckind; /* type kind in CTF */
348 uint8_t dtdt_flags; /* type flags (see below) */
349 uint8_t dtdt_pad; /* reserved for future use */
350 uint32_t dtdt_size; /* type size in bytes (unless string) */
351 } dtrace_diftype_t;
352
353 #define DIF_TYPE_CTF 0 /* type is a CTF type */
354 #define DIF_TYPE_STRING 1 /* type is a D string */
355
356 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
357 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
358
359 /*
360 * A DTrace Intermediate Format variable record is used to describe each of the
361 * variables referenced by a given DIF object. It contains an integer variable
362 * identifier along with variable scope and properties, as shown below. The
363 * size of this structure must be sizeof (int) aligned.
364 */
365 typedef struct dtrace_difv {
366 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
367 uint32_t dtdv_id; /* variable reference identifier */
368 uint8_t dtdv_kind; /* variable kind (see below) */
369 uint8_t dtdv_scope; /* variable scope (see below) */
370 uint16_t dtdv_flags; /* variable flags (see below) */
371 dtrace_diftype_t dtdv_type; /* variable type (see above) */
372 } dtrace_difv_t;
373
374 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
375 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
376
377 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
378 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
379 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
380
381 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
382 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
383
384 /*
385 * DTrace Actions
386 *
387 * The upper byte determines the class of the action; the low bytes determines
388 * the specific action within that class. The classes of actions are as
389 * follows:
390 *
391 * [ no class ] <= May record process- or kernel-related data
392 * DTRACEACT_PROC <= Only records process-related data
393 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
394 * DTRACEACT_KERNEL <= Only records kernel-related data
395 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
396 * DTRACEACT_SPECULATIVE <= Speculation-related action
397 * DTRACEACT_AGGREGATION <= Aggregating action
398 */
399 #define DTRACEACT_NONE 0 /* no action */
400 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
401 #define DTRACEACT_EXIT 2 /* exit() action */
402 #define DTRACEACT_PRINTF 3 /* printf() action */
403 #define DTRACEACT_PRINTA 4 /* printa() action */
404 #define DTRACEACT_LIBACT 5 /* library-controlled action */
405 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
406 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
407
408 #define DTRACEACT_PROC 0x0100
409 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
410 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
411 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
412 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
413 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
414
415 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
416 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
417 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
418 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
419 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
420
421 #define DTRACEACT_PROC_CONTROL 0x0300
422
423 #define DTRACEACT_KERNEL 0x0400
424 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
425 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
426 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
427
428 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
429 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
430 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
431 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
432
433 #define DTRACEACT_SPECULATIVE 0x0600
434 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
435 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
436 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
437
438 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
439
440 #define DTRACEACT_ISDESTRUCTIVE(x) \
441 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
442 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
443
444 #define DTRACEACT_ISSPECULATIVE(x) \
445 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
446
447 #define DTRACEACT_ISPRINTFLIKE(x) \
448 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
449 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
450
451 /*
452 * DTrace Aggregating Actions
453 *
454 * These are functions f(x) for which the following is true:
455 *
456 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
457 *
458 * where x_n is a set of arbitrary data. Aggregating actions are in their own
459 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
460 * for easier processing of the aggregation argument and data payload for a few
461 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
462 */
463 #define DTRACEACT_AGGREGATION 0x0700
464 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
465 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
466 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
467 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
468 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
469 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
470 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
471 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
472 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
473
474 #define DTRACEACT_ISAGG(x) \
475 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
476
477 #define DTRACE_QUANTIZE_NBUCKETS \
478 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
479
480 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
481
482 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
483 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
484 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
485 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
486 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
487
488 #define DTRACE_LQUANTIZE_STEPSHIFT 48
489 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
490 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
491 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
492 #define DTRACE_LQUANTIZE_BASESHIFT 0
493 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
494
495 #define DTRACE_LQUANTIZE_STEP(x) \
496 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
497 DTRACE_LQUANTIZE_STEPSHIFT)
498
499 #define DTRACE_LQUANTIZE_LEVELS(x) \
500 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
501 DTRACE_LQUANTIZE_LEVELSHIFT)
502
503 #define DTRACE_LQUANTIZE_BASE(x) \
504 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
505 DTRACE_LQUANTIZE_BASESHIFT)
506
507 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
508 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
509 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
510 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
511 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
512 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
513 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
514 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
515
516 #define DTRACE_LLQUANTIZE_FACTOR(x) \
517 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
518 DTRACE_LLQUANTIZE_FACTORSHIFT)
519
520 #define DTRACE_LLQUANTIZE_LOW(x) \
521 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
522 DTRACE_LLQUANTIZE_LOWSHIFT)
523
524 #define DTRACE_LLQUANTIZE_HIGH(x) \
525 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
526 DTRACE_LLQUANTIZE_HIGHSHIFT)
527
528 #define DTRACE_LLQUANTIZE_NSTEP(x) \
529 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
530 DTRACE_LLQUANTIZE_NSTEPSHIFT)
531
532 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
533 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
534 #define DTRACE_USTACK_ARG(x, y) \
535 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
536
537 #ifndef _LP64
538 #ifndef _LITTLE_ENDIAN
539 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
540 #else
541 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
542 #endif
543 #else
544 #define DTRACE_PTR(type, name) type *name
545 #endif
546
547 /*
548 * DTrace Object Format (DOF)
549 *
550 * DTrace programs can be persistently encoded in the DOF format so that they
551 * may be embedded in other programs (for example, in an ELF file) or in the
552 * dtrace driver configuration file for use in anonymous tracing. The DOF
553 * format is versioned and extensible so that it can be revised and so that
554 * internal data structures can be modified or extended compatibly. All DOF
555 * structures use fixed-size types, so the 32-bit and 64-bit representations
556 * are identical and consumers can use either data model transparently.
557 *
558 * The file layout is structured as follows:
559 *
560 * +---------------+-------------------+----- ... ----+---- ... ------+
561 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
562 * | (file header) | (section headers) | section data | section data |
563 * +---------------+-------------------+----- ... ----+---- ... ------+
564 * |<------------ dof_hdr.dofh_loadsz --------------->| |
565 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
566 *
567 * The file header stores meta-data including a magic number, data model for
568 * the instrumentation, data encoding, and properties of the DIF code within.
569 * The header describes its own size and the size of the section headers. By
570 * convention, an array of section headers follows the file header, and then
571 * the data for all loadable sections and unloadable sections. This permits
572 * consumer code to easily download the headers and all loadable data into the
573 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
574 *
575 * The section headers describe the size, offset, alignment, and section type
576 * for each section. Sections are described using a set of #defines that tell
577 * the consumer what kind of data is expected. Sections can contain links to
578 * other sections by storing a dof_secidx_t, an index into the section header
579 * array, inside of the section data structures. The section header includes
580 * an entry size so that sections with data arrays can grow their structures.
581 *
582 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
583 * are represented themselves as a collection of related DOF sections. This
584 * permits us to change the set of sections associated with a DIFO over time,
585 * and also permits us to encode DIFOs that contain different sets of sections.
586 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
587 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
588 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
589 *
590 * This loose coupling of the file structure (header and sections) to the
591 * structure of the DTrace program itself (ECB descriptions, action
592 * descriptions, and DIFOs) permits activities such as relocation processing
593 * to occur in a single pass without having to understand D program structure.
594 *
595 * Finally, strings are always stored in ELF-style string tables along with a
596 * string table section index and string table offset. Therefore strings in
597 * DOF are always arbitrary-length and not bound to the current implementation.
598 */
599
600 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
601
602 typedef struct dof_hdr {
603 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
604 uint32_t dofh_flags; /* file attribute flags (if any) */
605 uint32_t dofh_hdrsize; /* size of file header in bytes */
606 uint32_t dofh_secsize; /* size of section header in bytes */
607 uint32_t dofh_secnum; /* number of section headers */
608 uint64_t dofh_secoff; /* file offset of section headers */
609 uint64_t dofh_loadsz; /* file size of loadable portion */
610 uint64_t dofh_filesz; /* file size of entire DOF file */
611 uint64_t dofh_pad; /* reserved for future use */
612 } dof_hdr_t;
613
614 #define DOF_ID_MAG0 0 /* first byte of magic number */
615 #define DOF_ID_MAG1 1 /* second byte of magic number */
616 #define DOF_ID_MAG2 2 /* third byte of magic number */
617 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
618 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
619 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
620 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
621 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
622 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
623 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
624 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
625
626 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
627 #define DOF_MAG_MAG1 'D'
628 #define DOF_MAG_MAG2 'O'
629 #define DOF_MAG_MAG3 'F'
630
631 #define DOF_MAG_STRING "\177DOF"
632 #define DOF_MAG_STRLEN 4
633
634 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
635 #define DOF_MODEL_ILP32 1
636 #define DOF_MODEL_LP64 2
637
638 #ifdef _LP64
639 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
640 #else
641 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
642 #endif
643
644 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
645 #define DOF_ENCODE_LSB 1
646 #define DOF_ENCODE_MSB 2
647
648 #ifdef _BIG_ENDIAN
649 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
650 #else
651 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
652 #endif
653
654 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
655 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
656 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
657
658 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
659
660 typedef uint32_t dof_secidx_t; /* section header table index type */
661 typedef uint32_t dof_stridx_t; /* string table index type */
662
663 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
664 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
665
666 typedef struct dof_sec {
667 uint32_t dofs_type; /* section type (see below) */
668 uint32_t dofs_align; /* section data memory alignment */
669 uint32_t dofs_flags; /* section flags (if any) */
670 uint32_t dofs_entsize; /* size of section entry (if table) */
671 uint64_t dofs_offset; /* offset of section data within file */
672 uint64_t dofs_size; /* size of section data in bytes */
673 } dof_sec_t;
674
675 #define DOF_SECT_NONE 0 /* null section */
676 #define DOF_SECT_COMMENTS 1 /* compiler comments */
677 #define DOF_SECT_SOURCE 2 /* D program source code */
678 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
679 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
680 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
681 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
682 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
683 #define DOF_SECT_STRTAB 8 /* string table */
684 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
685 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
686 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
687 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
688 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
689 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
690 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
691 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
692 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
693 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
694 #define DOF_SECT_INTTAB 19 /* uint64_t array */
695 #define DOF_SECT_UTSNAME 20 /* struct utsname */
696 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
697 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
698 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
699 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
700 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
701 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
702
703 #define DOF_SECF_LOAD 1 /* section should be loaded */
704
705 #define DOF_SEC_ISLOADABLE(x) \
706 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
707 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
708 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
709 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
710 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
711 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
712 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
713 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
714 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
715 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
716 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
717 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
718
719 typedef struct dof_ecbdesc {
720 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
721 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
722 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
723 uint32_t dofe_pad; /* reserved for future use */
724 uint64_t dofe_uarg; /* user-supplied library argument */
725 } dof_ecbdesc_t;
726
727 typedef struct dof_probedesc {
728 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
729 dof_stridx_t dofp_provider; /* provider string */
730 dof_stridx_t dofp_mod; /* module string */
731 dof_stridx_t dofp_func; /* function string */
732 dof_stridx_t dofp_name; /* name string */
733 uint32_t dofp_id; /* probe identifier (or zero) */
734 } dof_probedesc_t;
735
736 typedef struct dof_actdesc {
737 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
738 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
739 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
740 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
741 uint64_t dofa_arg; /* kind-specific argument */
742 uint64_t dofa_uarg; /* user-supplied argument */
743 } dof_actdesc_t;
744
745 typedef struct dof_difohdr {
746 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
747 dof_secidx_t dofd_links[1]; /* variable length array of indices */
748 } dof_difohdr_t;
749
750 typedef struct dof_relohdr {
751 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
752 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
753 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
754 } dof_relohdr_t;
755
756 typedef struct dof_relodesc {
757 dof_stridx_t dofr_name; /* string name of relocation symbol */
758 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
759 uint64_t dofr_offset; /* byte offset for relocation */
760 uint64_t dofr_data; /* additional type-specific data */
761 } dof_relodesc_t;
762
763 #define DOF_RELO_NONE 0 /* empty relocation entry */
764 #define DOF_RELO_SETX 1 /* relocate setx value */
765
766 typedef struct dof_optdesc {
767 uint32_t dofo_option; /* option identifier */
768 dof_secidx_t dofo_strtab; /* string table, if string option */
769 uint64_t dofo_value; /* option value or string index */
770 } dof_optdesc_t;
771
772 typedef uint32_t dof_attr_t; /* encoded stability attributes */
773
774 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
775 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
776 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
777 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
778
779 typedef struct dof_provider {
780 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
781 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
782 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
783 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
784 dof_stridx_t dofpv_name; /* provider name string */
785 dof_attr_t dofpv_provattr; /* provider attributes */
786 dof_attr_t dofpv_modattr; /* module attributes */
787 dof_attr_t dofpv_funcattr; /* function attributes */
788 dof_attr_t dofpv_nameattr; /* name attributes */
789 dof_attr_t dofpv_argsattr; /* args attributes */
790 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
791 } dof_provider_t;
792
793 typedef struct dof_probe {
794 uint64_t dofpr_addr; /* probe base address or offset */
795 dof_stridx_t dofpr_func; /* probe function string */
796 dof_stridx_t dofpr_name; /* probe name string */
797 dof_stridx_t dofpr_nargv; /* native argument type strings */
798 dof_stridx_t dofpr_xargv; /* translated argument type strings */
799 uint32_t dofpr_argidx; /* index of first argument mapping */
800 uint32_t dofpr_offidx; /* index of first offset entry */
801 uint8_t dofpr_nargc; /* native argument count */
802 uint8_t dofpr_xargc; /* translated argument count */
803 uint16_t dofpr_noffs; /* number of offset entries for probe */
804 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
805 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
806 uint16_t dofpr_pad1; /* reserved for future use */
807 uint32_t dofpr_pad2; /* reserved for future use */
808 } dof_probe_t;
809
810 typedef struct dof_xlator {
811 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
812 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
813 dof_stridx_t dofxl_argv; /* input parameter type strings */
814 uint32_t dofxl_argc; /* input parameter list length */
815 dof_stridx_t dofxl_type; /* output type string name */
816 dof_attr_t dofxl_attr; /* output stability attributes */
817 } dof_xlator_t;
818
819 typedef struct dof_xlmember {
820 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
821 dof_stridx_t dofxm_name; /* member name */
822 dtrace_diftype_t dofxm_type; /* member type */
823 } dof_xlmember_t;
824
825 typedef struct dof_xlref {
826 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
827 uint32_t dofxr_member; /* index of referenced dof_xlmember */
828 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
829 } dof_xlref_t;
830
831 /*
832 * DTrace Intermediate Format Object (DIFO)
833 *
834 * A DIFO is used to store the compiled DIF for a D expression, its return
835 * type, and its string and variable tables. The string table is a single
836 * buffer of character data into which sets instructions and variable
837 * references can reference strings using a byte offset. The variable table
838 * is an array of dtrace_difv_t structures that describe the name and type of
839 * each variable and the id used in the DIF code. This structure is described
840 * above in the DIF section of this header file. The DIFO is used at both
841 * user-level (in the library) and in the kernel, but the structure is never
842 * passed between the two: the DOF structures form the only interface. As a
843 * result, the definition can change depending on the presence of _KERNEL.
844 */
845 typedef struct dtrace_difo {
846 dif_instr_t *dtdo_buf; /* instruction buffer */
847 uint64_t *dtdo_inttab; /* integer table (optional) */
848 char *dtdo_strtab; /* string table (optional) */
849 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
850 uint_t dtdo_len; /* length of instruction buffer */
851 uint_t dtdo_intlen; /* length of integer table */
852 uint_t dtdo_strlen; /* length of string table */
853 uint_t dtdo_varlen; /* length of variable table */
854 dtrace_diftype_t dtdo_rtype; /* return type */
855 uint_t dtdo_refcnt; /* owner reference count */
856 uint_t dtdo_destructive; /* invokes destructive subroutines */
857 #ifndef _KERNEL
858 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
859 dof_relodesc_t *dtdo_ureltab; /* user relocations */
860 struct dt_node **dtdo_xlmtab; /* translator references */
861 uint_t dtdo_krelen; /* length of krelo table */
862 uint_t dtdo_urelen; /* length of urelo table */
863 uint_t dtdo_xlmlen; /* length of translator table */
864 #endif
865 } dtrace_difo_t;
866
867 /*
868 * DTrace Enabling Description Structures
869 *
870 * When DTrace is tracking the description of a DTrace enabling entity (probe,
871 * predicate, action, ECB, record, etc.), it does so in a description
872 * structure. These structures all end in "desc", and are used at both
873 * user-level and in the kernel -- but (with the exception of
874 * dtrace_probedesc_t) they are never passed between them. Typically,
875 * user-level will use the description structures when assembling an enabling.
876 * It will then distill those description structures into a DOF object (see
877 * above), and send it into the kernel. The kernel will again use the
878 * description structures to create a description of the enabling as it reads
879 * the DOF. When the description is complete, the enabling will be actually
880 * created -- turning it into the structures that represent the enabling
881 * instead of merely describing it. Not surprisingly, the description
882 * structures bear a strong resemblance to the DOF structures that act as their
883 * conduit.
884 */
885 struct dtrace_predicate;
886
887 typedef struct dtrace_probedesc {
888 dtrace_id_t dtpd_id; /* probe identifier */
889 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
890 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
891 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
892 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
893 } dtrace_probedesc_t;
894
895 typedef struct dtrace_repldesc {
896 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
897 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
898 } dtrace_repldesc_t;
899
900 typedef struct dtrace_preddesc {
901 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
902 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
903 } dtrace_preddesc_t;
904
905 typedef struct dtrace_actdesc {
906 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
907 struct dtrace_actdesc *dtad_next; /* next action */
908 dtrace_actkind_t dtad_kind; /* kind of action */
909 uint32_t dtad_ntuple; /* number in tuple */
910 uint64_t dtad_arg; /* action argument */
911 uint64_t dtad_uarg; /* user argument */
912 int dtad_refcnt; /* reference count */
913 } dtrace_actdesc_t;
914
915 typedef struct dtrace_ecbdesc {
916 dtrace_actdesc_t *dted_action; /* action description(s) */
917 dtrace_preddesc_t dted_pred; /* predicate description */
918 dtrace_probedesc_t dted_probe; /* probe description */
919 uint64_t dted_uarg; /* library argument */
920 int dted_refcnt; /* reference count */
921 } dtrace_ecbdesc_t;
922
923 /*
924 * DTrace Metadata Description Structures
925 *
926 * DTrace separates the trace data stream from the metadata stream. The only
927 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
928 * timestamp) or (in the case of aggregations) aggregation identifiers. To
929 * determine the structure of the data, DTrace consumers pass the token to the
930 * kernel, and receive in return a corresponding description of the enabled
931 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
932 * dtrace_aggdesc structure). Both of these structures are expressed in terms
933 * of record descriptions (via the dtrace_recdesc structure) that describe the
934 * exact structure of the data. Some record descriptions may also contain a
935 * format identifier; this additional bit of metadata can be retrieved from the
936 * kernel, for which a format description is returned via the dtrace_fmtdesc
937 * structure. Note that all four of these structures must be bitness-neutral
938 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
939 */
940 typedef struct dtrace_recdesc {
941 dtrace_actkind_t dtrd_action; /* kind of action */
942 uint32_t dtrd_size; /* size of record */
943 uint32_t dtrd_offset; /* offset in ECB's data */
944 uint16_t dtrd_alignment; /* required alignment */
945 uint16_t dtrd_format; /* format, if any */
946 uint64_t dtrd_arg; /* action argument */
947 uint64_t dtrd_uarg; /* user argument */
948 } dtrace_recdesc_t;
949
950 typedef struct dtrace_eprobedesc {
951 dtrace_epid_t dtepd_epid; /* enabled probe ID */
952 dtrace_id_t dtepd_probeid; /* probe ID */
953 uint64_t dtepd_uarg; /* library argument */
954 uint32_t dtepd_size; /* total size */
955 int dtepd_nrecs; /* number of records */
956 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
957 } dtrace_eprobedesc_t;
958
959 typedef struct dtrace_aggdesc {
960 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
961 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
962 int dtagd_flags; /* not filled in by kernel */
963 dtrace_aggid_t dtagd_id; /* aggregation ID */
964 dtrace_epid_t dtagd_epid; /* enabled probe ID */
965 uint32_t dtagd_size; /* size in bytes */
966 int dtagd_nrecs; /* number of records */
967 uint32_t dtagd_pad; /* explicit padding */
968 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
969 } dtrace_aggdesc_t;
970
971 typedef struct dtrace_fmtdesc {
972 DTRACE_PTR(char, dtfd_string); /* format string */
973 int dtfd_length; /* length of format string */
974 uint16_t dtfd_format; /* format identifier */
975 } dtrace_fmtdesc_t;
976
977 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
978 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
979 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
980
981 #define DTRACE_SIZEOF_AGGDESC(desc) \
982 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
983 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
984
985 /*
986 * DTrace Option Interface
987 *
988 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
989 * in a DOF image. The dof_optdesc structure contains an option identifier and
990 * an option value. The valid option identifiers are found below; the mapping
991 * between option identifiers and option identifying strings is maintained at
992 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
993 * following are potentially valid option values: all positive integers, zero
994 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
995 * predefined tokens as their values; these are defined with
996 * DTRACEOPT_{option}_{token}.
997 */
998 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
999 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1000 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1001 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1002 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1003 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1004 #define DTRACEOPT_STRSIZE 6 /* string size */
1005 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1006 #define DTRACEOPT_CPU 8 /* CPU to trace */
1007 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1008 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1009 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1010 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1011 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1012 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1013 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1014 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1015 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1016 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1017 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1018 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1019 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1020 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1021 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1022 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1023 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1024 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1025 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1026 #define DTRACEOPT_MAX 28 /* number of options */
1027
1028 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1029
1030 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1031 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1032 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1033
1034 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1035 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1036
1037 /*
1038 * DTrace Buffer Interface
1039 *
1040 * In order to get a snapshot of the principal or aggregation buffer,
1041 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1042 * structure. This describes which CPU user-level is interested in, and
1043 * where user-level wishes the kernel to snapshot the buffer to (the
1044 * dtbd_data field). The kernel uses the same structure to pass back some
1045 * information regarding the buffer: the size of data actually copied out, the
1046 * number of drops, the number of errors, the offset of the oldest record,
1047 * and the time of the snapshot.
1048 *
1049 * If the buffer policy is a "switch" policy, taking a snapshot of the
1050 * principal buffer has the additional effect of switching the active and
1051 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1052 * the additional effect of switching the active and inactive buffers.
1053 */
1054 typedef struct dtrace_bufdesc {
1055 uint64_t dtbd_size; /* size of buffer */
1056 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1057 uint32_t dtbd_errors; /* number of errors */
1058 uint64_t dtbd_drops; /* number of drops */
1059 DTRACE_PTR(char, dtbd_data); /* data */
1060 uint64_t dtbd_oldest; /* offset of oldest record */
1061 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1062 } dtrace_bufdesc_t;
1063
1064 /*
1065 * Each record in the buffer (dtbd_data) begins with a header that includes
1066 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1067 * so that we do not require 8-byte alignment.
1068 */
1069 typedef struct dtrace_rechdr {
1070 dtrace_epid_t dtrh_epid; /* enabled probe id */
1071 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1072 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1073 } dtrace_rechdr_t;
1074
1075 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1076 ((dtrh)->dtrh_timestamp_lo + \
1077 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1078
1079 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1080 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1081 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1082 }
1083
1084 /*
1085 * DTrace Status
1086 *
1087 * The status of DTrace is relayed via the dtrace_status structure. This
1088 * structure contains members to count drops other than the capacity drops
1089 * available via the buffer interface (see above). This consists of dynamic
1090 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1091 * speculative drops (including capacity speculative drops, drops due to busy
1092 * speculative buffers and drops due to unavailable speculative buffers).
1093 * Additionally, the status structure contains a field to indicate the number
1094 * of "fill"-policy buffers have been filled and a boolean field to indicate
1095 * that exit() has been called. If the dtst_exiting field is non-zero, no
1096 * further data will be generated until tracing is stopped (at which time any
1097 * enablings of the END action will be processed); if user-level sees that
1098 * this field is non-zero, tracing should be stopped as soon as possible.
1099 */
1100 typedef struct dtrace_status {
1101 uint64_t dtst_dyndrops; /* dynamic drops */
1102 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1103 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1104 uint64_t dtst_specdrops; /* speculative drops */
1105 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1106 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1107 uint64_t dtst_errors; /* total errors */
1108 uint64_t dtst_filled; /* number of filled bufs */
1109 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1110 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1111 char dtst_killed; /* non-zero if killed */
1112 char dtst_exiting; /* non-zero if exit() called */
1113 char dtst_pad[6]; /* pad out to 64-bit align */
1114 } dtrace_status_t;
1115
1116 /*
1117 * DTrace Configuration
1118 *
1119 * User-level may need to understand some elements of the kernel DTrace
1120 * configuration in order to generate correct DIF. This information is
1121 * conveyed via the dtrace_conf structure.
1122 */
1123 typedef struct dtrace_conf {
1124 uint_t dtc_difversion; /* supported DIF version */
1125 uint_t dtc_difintregs; /* # of DIF integer registers */
1126 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1127 uint_t dtc_ctfmodel; /* CTF data model */
1128 uint_t dtc_pad[8]; /* reserved for future use */
1129 } dtrace_conf_t;
1130
1131 /*
1132 * DTrace Faults
1133 *
1134 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1135 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1136 * postprocessing at user-level. Probe processing faults induce an ERROR
1137 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1138 * the error condition using thse symbolic labels.
1139 */
1140 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1141 #define DTRACEFLT_BADADDR 1 /* Bad address */
1142 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1143 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1144 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1145 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1146 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1147 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1148 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1149 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1150
1151 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1152
1153 /*
1154 * DTrace Argument Types
1155 *
1156 * Because it would waste both space and time, argument types do not reside
1157 * with the probe. In order to determine argument types for args[X]
1158 * variables, the D compiler queries for argument types on a probe-by-probe
1159 * basis. (This optimizes for the common case that arguments are either not
1160 * used or used in an untyped fashion.) Typed arguments are specified with a
1161 * string of the type name in the dtragd_native member of the argument
1162 * description structure. Typed arguments may be further translated to types
1163 * of greater stability; the provider indicates such a translated argument by
1164 * filling in the dtargd_xlate member with the string of the translated type.
1165 * Finally, the provider may indicate which argument value a given argument
1166 * maps to by setting the dtargd_mapping member -- allowing a single argument
1167 * to map to multiple args[X] variables.
1168 */
1169 typedef struct dtrace_argdesc {
1170 dtrace_id_t dtargd_id; /* probe identifier */
1171 int dtargd_ndx; /* arg number (-1 iff none) */
1172 int dtargd_mapping; /* value mapping */
1173 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1174 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1175 } dtrace_argdesc_t;
1176
1177 /*
1178 * DTrace Stability Attributes
1179 *
1180 * Each DTrace provider advertises the name and data stability of each of its
1181 * probe description components, as well as its architectural dependencies.
1182 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1183 * order to compute the properties of an input program and report them.
1184 */
1185 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1186 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1187
1188 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1189 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1190 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1191 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1192 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1193 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1194 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1195 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1196 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1197
1198 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1199 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1200 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1201 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1202 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1203 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1204 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1205
1206 #define DTRACE_PRIV_NONE 0x0000
1207 #define DTRACE_PRIV_KERNEL 0x0001
1208 #define DTRACE_PRIV_USER 0x0002
1209 #define DTRACE_PRIV_PROC 0x0004
1210 #define DTRACE_PRIV_OWNER 0x0008
1211 #define DTRACE_PRIV_ZONEOWNER 0x0010
1212
1213 #define DTRACE_PRIV_ALL \
1214 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1215 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1216
1217 typedef struct dtrace_ppriv {
1218 uint32_t dtpp_flags; /* privilege flags */
1219 uid_t dtpp_uid; /* user ID */
1220 zoneid_t dtpp_zoneid; /* zone ID */
1221 } dtrace_ppriv_t;
1222
1223 typedef struct dtrace_attribute {
1224 dtrace_stability_t dtat_name; /* entity name stability */
1225 dtrace_stability_t dtat_data; /* entity data stability */
1226 dtrace_class_t dtat_class; /* entity data dependency */
1227 } dtrace_attribute_t;
1228
1229 typedef struct dtrace_pattr {
1230 dtrace_attribute_t dtpa_provider; /* provider attributes */
1231 dtrace_attribute_t dtpa_mod; /* module attributes */
1232 dtrace_attribute_t dtpa_func; /* function attributes */
1233 dtrace_attribute_t dtpa_name; /* name attributes */
1234 dtrace_attribute_t dtpa_args; /* args[] attributes */
1235 } dtrace_pattr_t;
1236
1237 typedef struct dtrace_providerdesc {
1238 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1239 dtrace_pattr_t dtvd_attr; /* stability attributes */
1240 dtrace_ppriv_t dtvd_priv; /* privileges required */
1241 } dtrace_providerdesc_t;
1242
1243 /*
1244 * DTrace Pseudodevice Interface
1245 *
1246 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1247 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1248 * DTrace.
1249 */
1250 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1251 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1252 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1253 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1254 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1255 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1256 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1257 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1258 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1259 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1260 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1261 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1262 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1263 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1264 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1265 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1266 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1267
1268 /*
1269 * DTrace Helpers
1270 *
1271 * In general, DTrace establishes probes in processes and takes actions on
1272 * processes without knowing their specific user-level structures. Instead of
1273 * existing in the framework, process-specific knowledge is contained by the
1274 * enabling D program -- which can apply process-specific knowledge by making
1275 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1276 * operate on user-level data. However, there may exist some specific probes
1277 * of particular semantic relevance that the application developer may wish to
1278 * explicitly export. For example, an application may wish to export a probe
1279 * at the point that it begins and ends certain well-defined transactions. In
1280 * addition to providing probes, programs may wish to offer assistance for
1281 * certain actions. For example, in highly dynamic environments (e.g., Java),
1282 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1283 * names (the translation from instruction addresses to corresponding symbol
1284 * names may only be possible in situ); these environments may wish to define
1285 * a series of actions to be applied in situ to obtain a meaningful stack
1286 * trace.
1287 *
1288 * These two mechanisms -- user-level statically defined tracing and assisting
1289 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1290 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1291 * providers, probes and their arguments. If a helper wishes to provide
1292 * action assistance, probe descriptions and corresponding DIF actions may be
1293 * specified in the helper DOF. For such helper actions, however, the probe
1294 * description describes the specific helper: all DTrace helpers have the
1295 * provider name "dtrace" and the module name "helper", and the name of the
1296 * helper is contained in the function name (for example, the ustack() helper
1297 * is named "ustack"). Any helper-specific name may be contained in the name
1298 * (for example, if a helper were to have a constructor, it might be named
1299 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1300 * action that they are helping is taken. Helper actions may only return DIF
1301 * expressions, and may only call the following subroutines:
1302 *
1303 * alloca() <= Allocates memory out of the consumer's scratch space
1304 * bcopy() <= Copies memory to scratch space
1305 * copyin() <= Copies memory from user-level into consumer's scratch
1306 * copyinto() <= Copies memory into a specific location in scratch
1307 * copyinstr() <= Copies a string into a specific location in scratch
1308 *
1309 * Helper actions may only access the following built-in variables:
1310 *
1311 * curthread <= Current kthread_t pointer
1312 * tid <= Current thread identifier
1313 * pid <= Current process identifier
1314 * ppid <= Parent process identifier
1315 * uid <= Current user ID
1316 * gid <= Current group ID
1317 * execname <= Current executable name
1318 * zonename <= Current zone name
1319 *
1320 * Helper actions may not manipulate or allocate dynamic variables, but they
1321 * may have clause-local and statically-allocated global variables. The
1322 * helper action variable state is specific to the helper action -- variables
1323 * used by the helper action may not be accessed outside of the helper
1324 * action, and the helper action may not access variables that like outside
1325 * of it. Helper actions may not load from kernel memory at-large; they are
1326 * restricting to loading current user state (via copyin() and variants) and
1327 * scratch space. As with probe enablings, helper actions are executed in
1328 * program order. The result of the helper action is the result of the last
1329 * executing helper expression.
1330 *
1331 * Helpers -- composed of either providers/probes or probes/actions (or both)
1332 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1333 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1334 * encapsulates the name and base address of the user-level library or
1335 * executable publishing the helpers and probes as well as the DOF that
1336 * contains the definitions of those helpers and probes.
1337 *
1338 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1339 * helpers and should no longer be used. No other ioctls are valid on the
1340 * helper minor node.
1341 */
1342 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1343 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1344 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1345 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1346
1347 typedef struct dof_helper {
1348 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1349 uint64_t dofhp_addr; /* base address of object */
1350 uint64_t dofhp_dof; /* address of helper DOF */
1351 } dof_helper_t;
1352
1353 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1354 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1355 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1356 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1357 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1358
1359 #ifdef _KERNEL
1360
1361 /*
1362 * DTrace Provider API
1363 *
1364 * The following functions are implemented by the DTrace framework and are
1365 * used to implement separate in-kernel DTrace providers. Common functions
1366 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1367 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1368 *
1369 * The provider API has two halves: the API that the providers consume from
1370 * DTrace, and the API that providers make available to DTrace.
1371 *
1372 * 1 Framework-to-Provider API
1373 *
1374 * 1.1 Overview
1375 *
1376 * The Framework-to-Provider API is represented by the dtrace_pops structure
1377 * that the provider passes to the framework when registering itself. This
1378 * structure consists of the following members:
1379 *
1380 * dtps_provide() <-- Provide all probes, all modules
1381 * dtps_provide_module() <-- Provide all probes in specified module
1382 * dtps_enable() <-- Enable specified probe
1383 * dtps_disable() <-- Disable specified probe
1384 * dtps_suspend() <-- Suspend specified probe
1385 * dtps_resume() <-- Resume specified probe
1386 * dtps_getargdesc() <-- Get the argument description for args[X]
1387 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1388 * dtps_mode() <-- Return the mode of the fired probe
1389 * dtps_destroy() <-- Destroy all state associated with this probe
1390 *
1391 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1392 *
1393 * 1.2.1 Overview
1394 *
1395 * Called to indicate that the provider should provide all probes. If the
1396 * specified description is non-NULL, dtps_provide() is being called because
1397 * no probe matched a specified probe -- if the provider has the ability to
1398 * create custom probes, it may wish to create a probe that matches the
1399 * specified description.
1400 *
1401 * 1.2.2 Arguments and notes
1402 *
1403 * The first argument is the cookie as passed to dtrace_register(). The
1404 * second argument is a pointer to a probe description that the provider may
1405 * wish to consider when creating custom probes. The provider is expected to
1406 * call back into the DTrace framework via dtrace_probe_create() to create
1407 * any necessary probes. dtps_provide() may be called even if the provider
1408 * has made available all probes; the provider should check the return value
1409 * of dtrace_probe_create() to handle this case. Note that the provider need
1410 * not implement both dtps_provide() and dtps_provide_module(); see
1411 * "Arguments and Notes" for dtrace_register(), below.
1412 *
1413 * 1.2.3 Return value
1414 *
1415 * None.
1416 *
1417 * 1.2.4 Caller's context
1418 *
1419 * dtps_provide() is typically called from open() or ioctl() context, but may
1420 * be called from other contexts as well. The DTrace framework is locked in
1421 * such a way that providers may not register or unregister. This means that
1422 * the provider may not call any DTrace API that affects its registration with
1423 * the framework, including dtrace_register(), dtrace_unregister(),
1424 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1425 * that the provider may (and indeed, is expected to) call probe-related
1426 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1427 * and dtrace_probe_arg().
1428 *
1429 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1430 *
1431 * 1.3.1 Overview
1432 *
1433 * Called to indicate that the provider should provide all probes in the
1434 * specified module.
1435 *
1436 * 1.3.2 Arguments and notes
1437 *
1438 * The first argument is the cookie as passed to dtrace_register(). The
1439 * second argument is a pointer to a modctl structure that indicates the
1440 * module for which probes should be created.
1441 *
1442 * 1.3.3 Return value
1443 *
1444 * None.
1445 *
1446 * 1.3.4 Caller's context
1447 *
1448 * dtps_provide_module() may be called from open() or ioctl() context, but
1449 * may also be called from a module loading context. mod_lock is held, and
1450 * the DTrace framework is locked in such a way that providers may not
1451 * register or unregister. This means that the provider may not call any
1452 * DTrace API that affects its registration with the framework, including
1453 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1454 * dtrace_condense(). However, the context is such that the provider may (and
1455 * indeed, is expected to) call probe-related DTrace routines, including
1456 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1457 * that the provider need not implement both dtps_provide() and
1458 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1459 * below.
1460 *
1461 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1462 *
1463 * 1.4.1 Overview
1464 *
1465 * Called to enable the specified probe.
1466 *
1467 * 1.4.2 Arguments and notes
1468 *
1469 * The first argument is the cookie as passed to dtrace_register(). The
1470 * second argument is the identifier of the probe to be enabled. The third
1471 * argument is the probe argument as passed to dtrace_probe_create().
1472 * dtps_enable() will be called when a probe transitions from not being
1473 * enabled at all to having one or more ECB. The number of ECBs associated
1474 * with the probe may change without subsequent calls into the provider.
1475 * When the number of ECBs drops to zero, the provider will be explicitly
1476 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1477 * be called for a probe identifier that hasn't been explicitly enabled via
1478 * dtps_enable().
1479 *
1480 * 1.4.3 Return value
1481 *
1482 * On success, dtps_enable() should return 0. On failure, -1 should be
1483 * returned.
1484 *
1485 * 1.4.4 Caller's context
1486 *
1487 * The DTrace framework is locked in such a way that it may not be called
1488 * back into at all. cpu_lock is held. mod_lock is not held and may not
1489 * be acquired.
1490 *
1491 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1492 *
1493 * 1.5.1 Overview
1494 *
1495 * Called to disable the specified probe.
1496 *
1497 * 1.5.2 Arguments and notes
1498 *
1499 * The first argument is the cookie as passed to dtrace_register(). The
1500 * second argument is the identifier of the probe to be disabled. The third
1501 * argument is the probe argument as passed to dtrace_probe_create().
1502 * dtps_disable() will be called when a probe transitions from being enabled
1503 * to having zero ECBs. dtrace_probe() should never be called for a probe
1504 * identifier that has been explicitly enabled via dtps_disable().
1505 *
1506 * 1.5.3 Return value
1507 *
1508 * None.
1509 *
1510 * 1.5.4 Caller's context
1511 *
1512 * The DTrace framework is locked in such a way that it may not be called
1513 * back into at all. cpu_lock is held. mod_lock is not held and may not
1514 * be acquired.
1515 *
1516 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1517 *
1518 * 1.6.1 Overview
1519 *
1520 * Called to suspend the specified enabled probe. This entry point is for
1521 * providers that may need to suspend some or all of their probes when CPUs
1522 * are being powered on or when the boot monitor is being entered for a
1523 * prolonged period of time.
1524 *
1525 * 1.6.2 Arguments and notes
1526 *
1527 * The first argument is the cookie as passed to dtrace_register(). The
1528 * second argument is the identifier of the probe to be suspended. The
1529 * third argument is the probe argument as passed to dtrace_probe_create().
1530 * dtps_suspend will only be called on an enabled probe. Providers that
1531 * provide a dtps_suspend entry point will want to take roughly the action
1532 * that it takes for dtps_disable.
1533 *
1534 * 1.6.3 Return value
1535 *
1536 * None.
1537 *
1538 * 1.6.4 Caller's context
1539 *
1540 * Interrupts are disabled. The DTrace framework is in a state such that the
1541 * specified probe cannot be disabled or destroyed for the duration of
1542 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1543 * little latitude; the provider is expected to do no more than a store to
1544 * memory.
1545 *
1546 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1547 *
1548 * 1.7.1 Overview
1549 *
1550 * Called to resume the specified enabled probe. This entry point is for
1551 * providers that may need to resume some or all of their probes after the
1552 * completion of an event that induced a call to dtps_suspend().
1553 *
1554 * 1.7.2 Arguments and notes
1555 *
1556 * The first argument is the cookie as passed to dtrace_register(). The
1557 * second argument is the identifier of the probe to be resumed. The
1558 * third argument is the probe argument as passed to dtrace_probe_create().
1559 * dtps_resume will only be called on an enabled probe. Providers that
1560 * provide a dtps_resume entry point will want to take roughly the action
1561 * that it takes for dtps_enable.
1562 *
1563 * 1.7.3 Return value
1564 *
1565 * None.
1566 *
1567 * 1.7.4 Caller's context
1568 *
1569 * Interrupts are disabled. The DTrace framework is in a state such that the
1570 * specified probe cannot be disabled or destroyed for the duration of
1571 * dtps_resume(). As interrupts are disabled, the provider is afforded
1572 * little latitude; the provider is expected to do no more than a store to
1573 * memory.
1574 *
1575 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1576 * dtrace_argdesc_t *desc)
1577 *
1578 * 1.8.1 Overview
1579 *
1580 * Called to retrieve the argument description for an args[X] variable.
1581 *
1582 * 1.8.2 Arguments and notes
1583 *
1584 * The first argument is the cookie as passed to dtrace_register(). The
1585 * second argument is the identifier of the current probe. The third
1586 * argument is the probe argument as passed to dtrace_probe_create(). The
1587 * fourth argument is a pointer to the argument description. This
1588 * description is both an input and output parameter: it contains the
1589 * index of the desired argument in the dtargd_ndx field, and expects
1590 * the other fields to be filled in upon return. If there is no argument
1591 * corresponding to the specified index, the dtargd_ndx field should be set
1592 * to DTRACE_ARGNONE.
1593 *
1594 * 1.8.3 Return value
1595 *
1596 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1597 * members of the dtrace_argdesc_t structure are all output values.
1598 *
1599 * 1.8.4 Caller's context
1600 *
1601 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1602 * the DTrace framework is locked in such a way that providers may not
1603 * register or unregister. This means that the provider may not call any
1604 * DTrace API that affects its registration with the framework, including
1605 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1606 * dtrace_condense().
1607 *
1608 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1609 * int argno, int aframes)
1610 *
1611 * 1.9.1 Overview
1612 *
1613 * Called to retrieve a value for an argX or args[X] variable.
1614 *
1615 * 1.9.2 Arguments and notes
1616 *
1617 * The first argument is the cookie as passed to dtrace_register(). The
1618 * second argument is the identifier of the current probe. The third
1619 * argument is the probe argument as passed to dtrace_probe_create(). The
1620 * fourth argument is the number of the argument (the X in the example in
1621 * 1.9.1). The fifth argument is the number of stack frames that were used
1622 * to get from the actual place in the code that fired the probe to
1623 * dtrace_probe() itself, the so-called artificial frames. This argument may
1624 * be used to descend an appropriate number of frames to find the correct
1625 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1626 * function is used.
1627 *
1628 * 1.9.3 Return value
1629 *
1630 * The value of the argument.
1631 *
1632 * 1.9.4 Caller's context
1633 *
1634 * This is called from within dtrace_probe() meaning that interrupts
1635 * are disabled. No locks should be taken within this entry point.
1636 *
1637 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1638 *
1639 * 1.10.1 Overview
1640 *
1641 * Called to determine the mode of a fired probe.
1642 *
1643 * 1.10.2 Arguments and notes
1644 *
1645 * The first argument is the cookie as passed to dtrace_register(). The
1646 * second argument is the identifier of the current probe. The third
1647 * argument is the probe argument as passed to dtrace_probe_create(). This
1648 * entry point must not be left NULL for providers whose probes allow for
1649 * mixed mode tracing, that is to say those unanchored probes that can fire
1650 * during kernel- or user-mode execution.
1651 *
1652 * 1.10.3 Return value
1653 *
1654 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1655 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1656 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1657 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1658 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1659 * in the probe firing being silently ignored for the enabling; if the
1660 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1661 * prevent probe processing for the enabling, but restrictions will be in
1662 * place that induce a UPRIV fault upon attempt to examine probe arguments
1663 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1664 * is set, similar restrictions will be placed upon operation if the
1665 * privilege is sufficient to process the enabling, but does not otherwise
1666 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1667 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1668 * two policies must be specified), but either may be combined (or not)
1669 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1670 *
1671 * 1.10.4 Caller's context
1672 *
1673 * This is called from within dtrace_probe() meaning that interrupts
1674 * are disabled. No locks should be taken within this entry point.
1675 *
1676 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1677 *
1678 * 1.11.1 Overview
1679 *
1680 * Called to destroy the specified probe.
1681 *
1682 * 1.11.2 Arguments and notes
1683 *
1684 * The first argument is the cookie as passed to dtrace_register(). The
1685 * second argument is the identifier of the probe to be destroyed. The third
1686 * argument is the probe argument as passed to dtrace_probe_create(). The
1687 * provider should free all state associated with the probe. The framework
1688 * guarantees that dtps_destroy() is only called for probes that have either
1689 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1690 * Once dtps_disable() has been called for a probe, no further call will be
1691 * made specifying the probe.
1692 *
1693 * 1.11.3 Return value
1694 *
1695 * None.
1696 *
1697 * 1.11.4 Caller's context
1698 *
1699 * The DTrace framework is locked in such a way that it may not be called
1700 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1701 * acquired.
1702 *
1703 *
1704 * 2 Provider-to-Framework API
1705 *
1706 * 2.1 Overview
1707 *
1708 * The Provider-to-Framework API provides the mechanism for the provider to
1709 * register itself with the DTrace framework, to create probes, to lookup
1710 * probes and (most importantly) to fire probes. The Provider-to-Framework
1711 * consists of:
1712 *
1713 * dtrace_register() <-- Register a provider with the DTrace framework
1714 * dtrace_unregister() <-- Remove a provider's DTrace registration
1715 * dtrace_invalidate() <-- Invalidate the specified provider
1716 * dtrace_condense() <-- Remove a provider's unenabled probes
1717 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1718 * dtrace_probe_create() <-- Create a DTrace probe
1719 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1720 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1721 * dtrace_probe() <-- Fire the specified probe
1722 *
1723 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1724 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1725 * dtrace_provider_id_t *idp)
1726 *
1727 * 2.2.1 Overview
1728 *
1729 * dtrace_register() registers the calling provider with the DTrace
1730 * framework. It should generally be called by DTrace providers in their
1731 * attach(9E) entry point.
1732 *
1733 * 2.2.2 Arguments and Notes
1734 *
1735 * The first argument is the name of the provider. The second argument is a
1736 * pointer to the stability attributes for the provider. The third argument
1737 * is the privilege flags for the provider, and must be some combination of:
1738 *
1739 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1740 *
1741 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1742 * enable probes from this provider
1743 *
1744 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1745 * enable probes from this provider
1746 *
1747 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1748 * may enable probes from this provider
1749 *
1750 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1751 * the privilege requirements above. These probes
1752 * require either (a) a user ID matching the user
1753 * ID of the cred passed in the fourth argument
1754 * or (b) the PRIV_PROC_OWNER privilege.
1755 *
1756 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1757 * the privilege requirements above. These probes
1758 * require either (a) a zone ID matching the zone
1759 * ID of the cred passed in the fourth argument
1760 * or (b) the PRIV_PROC_ZONE privilege.
1761 *
1762 * Note that these flags designate the _visibility_ of the probes, not
1763 * the conditions under which they may or may not fire.
1764 *
1765 * The fourth argument is the credential that is associated with the
1766 * provider. This argument should be NULL if the privilege flags don't
1767 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1768 * framework stashes the uid and zoneid represented by this credential
1769 * for use at probe-time, in implicit predicates. These limit visibility
1770 * of the probes to users and/or zones which have sufficient privilege to
1771 * access them.
1772 *
1773 * The fifth argument is a DTrace provider operations vector, which provides
1774 * the implementation for the Framework-to-Provider API. (See Section 1,
1775 * above.) This must be non-NULL, and each member must be non-NULL. The
1776 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1777 * members (if the provider so desires, _one_ of these members may be left
1778 * NULL -- denoting that the provider only implements the other) and (2)
1779 * the dtps_suspend() and dtps_resume() members, which must either both be
1780 * NULL or both be non-NULL.
1781 *
1782 * The sixth argument is a cookie to be specified as the first argument for
1783 * each function in the Framework-to-Provider API. This argument may have
1784 * any value.
1785 *
1786 * The final argument is a pointer to dtrace_provider_id_t. If
1787 * dtrace_register() successfully completes, the provider identifier will be
1788 * stored in the memory pointed to be this argument. This argument must be
1789 * non-NULL.
1790 *
1791 * 2.2.3 Return value
1792 *
1793 * On success, dtrace_register() returns 0 and stores the new provider's
1794 * identifier into the memory pointed to by the idp argument. On failure,
1795 * dtrace_register() returns an errno:
1796 *
1797 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1798 * This may because a parameter that must be non-NULL was NULL,
1799 * because the name was invalid (either empty or an illegal
1800 * provider name) or because the attributes were invalid.
1801 *
1802 * No other failure code is returned.
1803 *
1804 * 2.2.4 Caller's context
1805 *
1806 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1807 * hold no locks across dtrace_register() that may also be acquired by
1808 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1809 *
1810 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1811 *
1812 * 2.3.1 Overview
1813 *
1814 * Unregisters the specified provider from the DTrace framework. It should
1815 * generally be called by DTrace providers in their detach(9E) entry point.
1816 *
1817 * 2.3.2 Arguments and Notes
1818 *
1819 * The only argument is the provider identifier, as returned from a
1820 * successful call to dtrace_register(). As a result of calling
1821 * dtrace_unregister(), the DTrace framework will call back into the provider
1822 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1823 * completes, however, the DTrace framework will no longer make calls through
1824 * the Framework-to-Provider API.
1825 *
1826 * 2.3.3 Return value
1827 *
1828 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1829 * returns an errno:
1830 *
1831 * EBUSY There are currently processes that have the DTrace pseudodevice
1832 * open, or there exists an anonymous enabling that hasn't yet
1833 * been claimed.
1834 *
1835 * No other failure code is returned.
1836 *
1837 * 2.3.4 Caller's context
1838 *
1839 * Because a call to dtrace_unregister() may induce calls through the
1840 * Framework-to-Provider API, the caller may not hold any lock across
1841 * dtrace_register() that is also acquired in any of the Framework-to-
1842 * Provider API functions. Additionally, mod_lock may not be held.
1843 *
1844 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1845 *
1846 * 2.4.1 Overview
1847 *
1848 * Invalidates the specified provider. All subsequent probe lookups for the
1849 * specified provider will fail, but its probes will not be removed.
1850 *
1851 * 2.4.2 Arguments and note
1852 *
1853 * The only argument is the provider identifier, as returned from a
1854 * successful call to dtrace_register(). In general, a provider's probes
1855 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1856 * an entire provider, regardless of whether or not probes are enabled or
1857 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1858 * probes from firing -- it will merely prevent any new enablings of the
1859 * provider's probes.
1860 *
1861 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1862 *
1863 * 2.5.1 Overview
1864 *
1865 * Removes all the unenabled probes for the given provider. This function is
1866 * not unlike dtrace_unregister(), except that it doesn't remove the
1867 * provider just as many of its associated probes as it can.
1868 *
1869 * 2.5.2 Arguments and Notes
1870 *
1871 * As with dtrace_unregister(), the sole argument is the provider identifier
1872 * as returned from a successful call to dtrace_register(). As a result of
1873 * calling dtrace_condense(), the DTrace framework will call back into the
1874 * given provider's dtps_destroy() entry point for each of the provider's
1875 * unenabled probes.
1876 *
1877 * 2.5.3 Return value
1878 *
1879 * Currently, dtrace_condense() always returns 0. However, consumers of this
1880 * function should check the return value as appropriate; its behavior may
1881 * change in the future.
1882 *
1883 * 2.5.4 Caller's context
1884 *
1885 * As with dtrace_unregister(), the caller may not hold any lock across
1886 * dtrace_condense() that is also acquired in the provider's entry points.
1887 * Also, mod_lock may not be held.
1888 *
1889 * 2.6 int dtrace_attached()
1890 *
1891 * 2.6.1 Overview
1892 *
1893 * Indicates whether or not DTrace has attached.
1894 *
1895 * 2.6.2 Arguments and Notes
1896 *
1897 * For most providers, DTrace makes initial contact beyond registration.
1898 * That is, once a provider has registered with DTrace, it waits to hear
1899 * from DTrace to create probes. However, some providers may wish to
1900 * proactively create probes without first being told by DTrace to do so.
1901 * If providers wish to do this, they must first call dtrace_attached() to
1902 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1903 * the provider must not make any other Provider-to-Framework API call.
1904 *
1905 * 2.6.3 Return value
1906 *
1907 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1908 *
1909 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1910 * const char *func, const char *name, int aframes, void *arg)
1911 *
1912 * 2.7.1 Overview
1913 *
1914 * Creates a probe with specified module name, function name, and name.
1915 *
1916 * 2.7.2 Arguments and Notes
1917 *
1918 * The first argument is the provider identifier, as returned from a
1919 * successful call to dtrace_register(). The second, third, and fourth
1920 * arguments are the module name, function name, and probe name,
1921 * respectively. Of these, module name and function name may both be NULL
1922 * (in which case the probe is considered to be unanchored), or they may both
1923 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1924 * string.
1925 *
1926 * The fifth argument is the number of artificial stack frames that will be
1927 * found on the stack when dtrace_probe() is called for the new probe. These
1928 * artificial frames will be automatically be pruned should the stack() or
1929 * stackdepth() functions be called as part of one of the probe's ECBs. If
1930 * the parameter doesn't add an artificial frame, this parameter should be
1931 * zero.
1932 *
1933 * The final argument is a probe argument that will be passed back to the
1934 * provider when a probe-specific operation is called. (e.g., via
1935 * dtps_enable(), dtps_disable(), etc.)
1936 *
1937 * Note that it is up to the provider to be sure that the probe that it
1938 * creates does not already exist -- if the provider is unsure of the probe's
1939 * existence, it should assure its absence with dtrace_probe_lookup() before
1940 * calling dtrace_probe_create().
1941 *
1942 * 2.7.3 Return value
1943 *
1944 * dtrace_probe_create() always succeeds, and always returns the identifier
1945 * of the newly-created probe.
1946 *
1947 * 2.7.4 Caller's context
1948 *
1949 * While dtrace_probe_create() is generally expected to be called from
1950 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1951 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1952 *
1953 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1954 * const char *func, const char *name)
1955 *
1956 * 2.8.1 Overview
1957 *
1958 * Looks up a probe based on provdider and one or more of module name,
1959 * function name and probe name.
1960 *
1961 * 2.8.2 Arguments and Notes
1962 *
1963 * The first argument is the provider identifier, as returned from a
1964 * successful call to dtrace_register(). The second, third, and fourth
1965 * arguments are the module name, function name, and probe name,
1966 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1967 * the identifier of the first probe that is provided by the specified
1968 * provider and matches all of the non-NULL matching criteria.
1969 * dtrace_probe_lookup() is generally used by a provider to be check the
1970 * existence of a probe before creating it with dtrace_probe_create().
1971 *
1972 * 2.8.3 Return value
1973 *
1974 * If the probe exists, returns its identifier. If the probe does not exist,
1975 * return DTRACE_IDNONE.
1976 *
1977 * 2.8.4 Caller's context
1978 *
1979 * While dtrace_probe_lookup() is generally expected to be called from
1980 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1981 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1982 *
1983 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1984 *
1985 * 2.9.1 Overview
1986 *
1987 * Returns the probe argument associated with the specified probe.
1988 *
1989 * 2.9.2 Arguments and Notes
1990 *
1991 * The first argument is the provider identifier, as returned from a
1992 * successful call to dtrace_register(). The second argument is a probe
1993 * identifier, as returned from dtrace_probe_lookup() or
1994 * dtrace_probe_create(). This is useful if a probe has multiple
1995 * provider-specific components to it: the provider can create the probe
1996 * once with provider-specific state, and then add to the state by looking
1997 * up the probe based on probe identifier.
1998 *
1999 * 2.9.3 Return value
2000 *
2001 * Returns the argument associated with the specified probe. If the
2002 * specified probe does not exist, or if the specified probe is not provided
2003 * by the specified provider, NULL is returned.
2004 *
2005 * 2.9.4 Caller's context
2006 *
2007 * While dtrace_probe_arg() is generally expected to be called from
2008 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2009 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2010 *
2011 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2012 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2013 *
2014 * 2.10.1 Overview
2015 *
2016 * The epicenter of DTrace: fires the specified probes with the specified
2017 * arguments.
2018 *
2019 * 2.10.2 Arguments and Notes
2020 *
2021 * The first argument is a probe identifier as returned by
2022 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2023 * arguments are the values to which the D variables "arg0" through "arg4"
2024 * will be mapped.
2025 *
2026 * dtrace_probe() should be called whenever the specified probe has fired --
2027 * however the provider defines it.
2028 *
2029 * 2.10.3 Return value
2030 *
2031 * None.
2032 *
2033 * 2.10.4 Caller's context
2034 *
2035 * dtrace_probe() may be called in virtually any context: kernel, user,
2036 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2037 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2038 * that must be afforded to DTrace is the ability to make calls within
2039 * itself (and to its in-kernel subroutines) and the ability to access
2040 * arbitrary (but mapped) memory. On some platforms, this constrains
2041 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2042 * from any context in which TL is greater than zero. dtrace_probe() may
2043 * also not be called from any routine which may be called by dtrace_probe()
2044 * -- which includes functions in the DTrace framework and some in-kernel
2045 * DTrace subroutines. All such functions "dtrace_"; providers that
2046 * instrument the kernel arbitrarily should be sure to not instrument these
2047 * routines.
2048 */
2049 typedef struct dtrace_pops {
2050 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2051 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2052 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2053 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2054 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2055 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2056 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2057 dtrace_argdesc_t *desc);
2058 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2059 int argno, int aframes);
2060 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2061 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2062 } dtrace_pops_t;
2063
2064 #define DTRACE_MODE_KERNEL 0x01
2065 #define DTRACE_MODE_USER 0x02
2066 #define DTRACE_MODE_NOPRIV_DROP 0x10
2067 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2068 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2069
2070 typedef uintptr_t dtrace_provider_id_t;
2071
2072 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2073 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2074 extern int dtrace_unregister(dtrace_provider_id_t);
2075 extern int dtrace_condense(dtrace_provider_id_t);
2076 extern void dtrace_invalidate(dtrace_provider_id_t);
2077 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2078 const char *, const char *);
2079 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2080 const char *, const char *, int, void *);
2081 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2082 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2083 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2084
2085 /*
2086 * DTrace Meta Provider API
2087 *
2088 * The following functions are implemented by the DTrace framework and are
2089 * used to implement meta providers. Meta providers plug into the DTrace
2090 * framework and are used to instantiate new providers on the fly. At
2091 * present, there is only one type of meta provider and only one meta
2092 * provider may be registered with the DTrace framework at a time. The
2093 * sole meta provider type provides user-land static tracing facilities
2094 * by taking meta probe descriptions and adding a corresponding provider
2095 * into the DTrace framework.
2096 *
2097 * 1 Framework-to-Provider
2098 *
2099 * 1.1 Overview
2100 *
2101 * The Framework-to-Provider API is represented by the dtrace_mops structure
2102 * that the meta provider passes to the framework when registering itself as
2103 * a meta provider. This structure consists of the following members:
2104 *
2105 * dtms_create_probe() <-- Add a new probe to a created provider
2106 * dtms_provide_pid() <-- Create a new provider for a given process
2107 * dtms_remove_pid() <-- Remove a previously created provider
2108 *
2109 * 1.2 void dtms_create_probe(void *arg, void *parg,
2110 * dtrace_helper_probedesc_t *probedesc);
2111 *
2112 * 1.2.1 Overview
2113 *
2114 * Called by the DTrace framework to create a new probe in a provider
2115 * created by this meta provider.
2116 *
2117 * 1.2.2 Arguments and notes
2118 *
2119 * The first argument is the cookie as passed to dtrace_meta_register().
2120 * The second argument is the provider cookie for the associated provider;
2121 * this is obtained from the return value of dtms_provide_pid(). The third
2122 * argument is the helper probe description.
2123 *
2124 * 1.2.3 Return value
2125 *
2126 * None
2127 *
2128 * 1.2.4 Caller's context
2129 *
2130 * dtms_create_probe() is called from either ioctl() or module load context.
2131 * The DTrace framework is locked in such a way that meta providers may not
2132 * register or unregister. This means that the meta provider cannot call
2133 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2134 * such that the provider may (and is expected to) call provider-related
2135 * DTrace provider APIs including dtrace_probe_create().
2136 *
2137 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2138 * pid_t pid)
2139 *
2140 * 1.3.1 Overview
2141 *
2142 * Called by the DTrace framework to instantiate a new provider given the
2143 * description of the provider and probes in the mprov argument. The
2144 * meta provider should call dtrace_register() to insert the new provider
2145 * into the DTrace framework.
2146 *
2147 * 1.3.2 Arguments and notes
2148 *
2149 * The first argument is the cookie as passed to dtrace_meta_register().
2150 * The second argument is a pointer to a structure describing the new
2151 * helper provider. The third argument is the process identifier for
2152 * process associated with this new provider. Note that the name of the
2153 * provider as passed to dtrace_register() should be the contatenation of
2154 * the dtmpb_provname member of the mprov argument and the processs
2155 * identifier as a string.
2156 *
2157 * 1.3.3 Return value
2158 *
2159 * The cookie for the provider that the meta provider creates. This is
2160 * the same value that it passed to dtrace_register().
2161 *
2162 * 1.3.4 Caller's context
2163 *
2164 * dtms_provide_pid() is called from either ioctl() or module load context.
2165 * The DTrace framework is locked in such a way that meta providers may not
2166 * register or unregister. This means that the meta provider cannot call
2167 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2168 * is such that the provider may -- and is expected to -- call
2169 * provider-related DTrace provider APIs including dtrace_register().
2170 *
2171 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2172 * pid_t pid)
2173 *
2174 * 1.4.1 Overview
2175 *
2176 * Called by the DTrace framework to remove a provider that had previously
2177 * been instantiated via the dtms_provide_pid() entry point. The meta
2178 * provider need not remove the provider immediately, but this entry
2179 * point indicates that the provider should be removed as soon as possible
2180 * using the dtrace_unregister() API.
2181 *
2182 * 1.4.2 Arguments and notes
2183 *
2184 * The first argument is the cookie as passed to dtrace_meta_register().
2185 * The second argument is a pointer to a structure describing the helper
2186 * provider. The third argument is the process identifier for process
2187 * associated with this new provider.
2188 *
2189 * 1.4.3 Return value
2190 *
2191 * None
2192 *
2193 * 1.4.4 Caller's context
2194 *
2195 * dtms_remove_pid() is called from either ioctl() or exit() context.
2196 * The DTrace framework is locked in such a way that meta providers may not
2197 * register or unregister. This means that the meta provider cannot call
2198 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2199 * is such that the provider may -- and is expected to -- call
2200 * provider-related DTrace provider APIs including dtrace_unregister().
2201 */
2202 typedef struct dtrace_helper_probedesc {
2203 char *dthpb_mod; /* probe module */
2204 char *dthpb_func; /* probe function */
2205 char *dthpb_name; /* probe name */
2206 uint64_t dthpb_base; /* base address */
2207 uint32_t *dthpb_offs; /* offsets array */
2208 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2209 uint32_t dthpb_noffs; /* offsets count */
2210 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2211 uint8_t *dthpb_args; /* argument mapping array */
2212 uint8_t dthpb_xargc; /* translated argument count */
2213 uint8_t dthpb_nargc; /* native argument count */
2214 char *dthpb_xtypes; /* translated types strings */
2215 char *dthpb_ntypes; /* native types strings */
2216 } dtrace_helper_probedesc_t;
2217
2218 typedef struct dtrace_helper_provdesc {
2219 char *dthpv_provname; /* provider name */
2220 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2221 } dtrace_helper_provdesc_t;
2222
2223 typedef struct dtrace_mops {
2224 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2225 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2226 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2227 } dtrace_mops_t;
2228
2229 typedef uintptr_t dtrace_meta_provider_id_t;
2230
2231 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2232 dtrace_meta_provider_id_t *);
2233 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2234
2235 /*
2236 * DTrace Kernel Hooks
2237 *
2238 * The following functions are implemented by the base kernel and form a set of
2239 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2240 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2241 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2242 */
2243
2244 typedef enum dtrace_vtime_state {
2245 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2246 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2247 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2248 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2249 } dtrace_vtime_state_t;
2250
2251 extern dtrace_vtime_state_t dtrace_vtime_active;
2252 extern void dtrace_vtime_switch(kthread_t *next);
2253 extern void dtrace_vtime_enable_tnf(void);
2254 extern void dtrace_vtime_disable_tnf(void);
2255 extern void dtrace_vtime_enable(void);
2256 extern void dtrace_vtime_disable(void);
2257
2258 struct regs;
2259
2260 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2261 extern int (*dtrace_return_probe_ptr)(struct regs *);
2262 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2263 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2264 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2265 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2266
2267 typedef uintptr_t dtrace_icookie_t;
2268 typedef void (*dtrace_xcall_t)(void *);
2269
2270 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2271 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2272
2273 extern void dtrace_membar_producer(void);
2274 extern void dtrace_membar_consumer(void);
2275
2276 extern void (*dtrace_cpu_init)(processorid_t);
2277 extern void (*dtrace_modload)(struct modctl *);
2278 extern void (*dtrace_modunload)(struct modctl *);
2279 extern void (*dtrace_helpers_cleanup)();
2280 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2281 extern void (*dtrace_cpustart_init)();
2282 extern void (*dtrace_cpustart_fini)();
2283 extern void (*dtrace_closef)();
2284
2285 extern void (*dtrace_debugger_init)();
2286 extern void (*dtrace_debugger_fini)();
2287 extern dtrace_cacheid_t dtrace_predcache_id;
2288
2289 extern hrtime_t dtrace_gethrtime(void);
2290 extern void dtrace_sync(void);
2291 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2292 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2293 extern void dtrace_vpanic(const char *, __va_list);
2294 extern void dtrace_panic(const char *, ...);
2295
2296 extern int dtrace_safe_defer_signal(void);
2297 extern void dtrace_safe_synchronous_signal(void);
2298
2299 extern int dtrace_mach_aframes(void);
2300
2301 #if defined(__i386) || defined(__amd64)
2302 extern int dtrace_instr_size(uchar_t *instr);
2303 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2304 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2305 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2306 extern void dtrace_invop_callsite(void);
2307 #endif
2308
2309 #ifdef __sparc
2310 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2311 extern void dtrace_getfsr(uint64_t *);
2312 #endif
2313
2314 #define DTRACE_CPUFLAG_ISSET(flag) \
2315 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2316
2317 #define DTRACE_CPUFLAG_SET(flag) \
2318 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2319
2320 #define DTRACE_CPUFLAG_CLEAR(flag) \
2321 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2322
2323 #endif /* _KERNEL */
2324
2325 #endif /* _ASM */
2326
2327 #if defined(__i386) || defined(__amd64)
2328
2329 #define DTRACE_INVOP_PUSHL_EBP 1
2330 #define DTRACE_INVOP_POPL_EBP 2
2331 #define DTRACE_INVOP_LEAVE 3
2332 #define DTRACE_INVOP_NOP 4
2333 #define DTRACE_INVOP_RET 5
2334
2335 #endif
2336
2337 #ifdef __cplusplus
2338 }
2339 #endif
2340
2341 #endif /* _SYS_DTRACE_H */