Print this page
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/sys/dtrace.h
+++ new/usr/src/uts/common/sys/dtrace.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 24 * Use is subject to license terms.
25 25 */
26 26
27 27 /*
28 - * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 - * Copyright (c) 2012 by Delphix. All rights reserved.
28 + * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 + * Copyright (c) 2013 by Delphix. All rights reserved.
30 30 */
31 31
32 32 #ifndef _SYS_DTRACE_H
33 33 #define _SYS_DTRACE_H
34 34
35 35 #ifdef __cplusplus
36 36 extern "C" {
37 37 #endif
38 38
39 39 /*
40 40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 41 *
42 42 * Note: The contents of this file are private to the implementation of the
43 43 * Solaris system and DTrace subsystem and are subject to change at any time
44 44 * without notice. Applications and drivers using these interfaces will fail
45 45 * to run on future releases. These interfaces should not be used for any
46 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 48 */
49 49
50 50 #ifndef _ASM
51 51
52 52 #include <sys/types.h>
53 53 #include <sys/modctl.h>
54 54 #include <sys/processor.h>
55 55 #include <sys/systm.h>
56 56 #include <sys/ctf_api.h>
57 57 #include <sys/cyclic.h>
58 58 #include <sys/int_limits.h>
59 59
60 60 /*
61 61 * DTrace Universal Constants and Typedefs
62 62 */
63 63 #define DTRACE_CPUALL -1 /* all CPUs */
64 64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 71 #define DTRACE_ARGNONE -1 /* invalid argument index */
72 72
73 73 #define DTRACE_PROVNAMELEN 64
74 74 #define DTRACE_MODNAMELEN 64
75 75 #define DTRACE_FUNCNAMELEN 128
76 76 #define DTRACE_NAMELEN 64
77 77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 79 #define DTRACE_ARGTYPELEN 128
80 80
81 81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 86 typedef int64_t dtrace_optval_t; /* option value */
87 87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
88 88
89 89 typedef enum dtrace_probespec {
90 90 DTRACE_PROBESPEC_NONE = -1,
91 91 DTRACE_PROBESPEC_PROVIDER = 0,
92 92 DTRACE_PROBESPEC_MOD,
93 93 DTRACE_PROBESPEC_FUNC,
94 94 DTRACE_PROBESPEC_NAME
95 95 } dtrace_probespec_t;
96 96
97 97 /*
98 98 * DTrace Intermediate Format (DIF)
99 99 *
100 100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 101 * a RISC-like instruction set and program encoding used to represent
102 102 * predicates and actions that can be bound to DTrace probes. The constants
103 103 * below defining the number of available registers are suggested minimums; the
104 104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 105 * registers provided by the current DTrace implementation.
106 106 */
107 107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
112 112
113 113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 125 #define DIF_OP_NOT 13 /* not r1, rd */
126 126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 128 #define DIF_OP_TST 16 /* tst r1 */
129 129 #define DIF_OP_BA 17 /* ba label */
130 130 #define DIF_OP_BE 18 /* be label */
131 131 #define DIF_OP_BNE 19 /* bne label */
132 132 #define DIF_OP_BG 20 /* bg label */
133 133 #define DIF_OP_BGU 21 /* bgu label */
134 134 #define DIF_OP_BGE 22 /* bge label */
135 135 #define DIF_OP_BGEU 23 /* bgeu label */
136 136 #define DIF_OP_BL 24 /* bl label */
137 137 #define DIF_OP_BLU 25 /* blu label */
138 138 #define DIF_OP_BLE 26 /* ble label */
139 139 #define DIF_OP_BLEU 27 /* bleu label */
140 140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 147 #define DIF_OP_RET 35 /* ret rd */
148 148 #define DIF_OP_NOP 36 /* nop */
149 149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 157 #define DIF_OP_STTS 45 /* stts var, rs */
158 158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 159 #define DIF_OP_CALL 47 /* call subr, rd */
160 160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 162 #define DIF_OP_POPTS 50 /* popts */
163 163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 169 #define DIF_OP_STLS 57 /* stls var, rs */
170 170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
192 192
193 193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
194 194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
195 195 #define DIF_REGISTER_MAX 0xff /* highest register number */
196 196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
197 197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
198 198
199 199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
200 200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
201 201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
202 202
203 203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
204 204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
205 205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
206 206
207 207 #define DIF_VAR_ARGS 0x0000 /* arguments array */
208 208 #define DIF_VAR_REGS 0x0001 /* registers array */
209 209 #define DIF_VAR_UREGS 0x0002 /* user registers array */
210 210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
211 211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
212 212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
213 213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
214 214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
215 215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
216 216 #define DIF_VAR_ID 0x0105 /* probe ID */
217 217 #define DIF_VAR_ARG0 0x0106 /* first argument */
218 218 #define DIF_VAR_ARG1 0x0107 /* second argument */
219 219 #define DIF_VAR_ARG2 0x0108 /* third argument */
220 220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
221 221 #define DIF_VAR_ARG4 0x010a /* fifth argument */
222 222 #define DIF_VAR_ARG5 0x010b /* sixth argument */
223 223 #define DIF_VAR_ARG6 0x010c /* seventh argument */
224 224 #define DIF_VAR_ARG7 0x010d /* eighth argument */
225 225 #define DIF_VAR_ARG8 0x010e /* ninth argument */
226 226 #define DIF_VAR_ARG9 0x010f /* tenth argument */
227 227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
228 228 #define DIF_VAR_CALLER 0x0111 /* caller */
229 229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
230 230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
231 231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
232 232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
233 233 #define DIF_VAR_PID 0x0116 /* process ID */
234 234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
235 235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
236 236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
237 237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
238 238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
239 239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
240 240 #define DIF_VAR_PPID 0x011d /* parent process ID */
241 241 #define DIF_VAR_UID 0x011e /* process user ID */
242 242 #define DIF_VAR_GID 0x011f /* process group ID */
243 243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
244 244
245 245 #define DIF_SUBR_RAND 0
246 246 #define DIF_SUBR_MUTEX_OWNED 1
247 247 #define DIF_SUBR_MUTEX_OWNER 2
248 248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
249 249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
250 250 #define DIF_SUBR_RW_READ_HELD 5
251 251 #define DIF_SUBR_RW_WRITE_HELD 6
252 252 #define DIF_SUBR_RW_ISWRITER 7
253 253 #define DIF_SUBR_COPYIN 8
254 254 #define DIF_SUBR_COPYINSTR 9
255 255 #define DIF_SUBR_SPECULATION 10
256 256 #define DIF_SUBR_PROGENYOF 11
257 257 #define DIF_SUBR_STRLEN 12
258 258 #define DIF_SUBR_COPYOUT 13
259 259 #define DIF_SUBR_COPYOUTSTR 14
260 260 #define DIF_SUBR_ALLOCA 15
261 261 #define DIF_SUBR_BCOPY 16
262 262 #define DIF_SUBR_COPYINTO 17
263 263 #define DIF_SUBR_MSGDSIZE 18
264 264 #define DIF_SUBR_MSGSIZE 19
265 265 #define DIF_SUBR_GETMAJOR 20
266 266 #define DIF_SUBR_GETMINOR 21
267 267 #define DIF_SUBR_DDI_PATHNAME 22
268 268 #define DIF_SUBR_STRJOIN 23
269 269 #define DIF_SUBR_LLTOSTR 24
270 270 #define DIF_SUBR_BASENAME 25
271 271 #define DIF_SUBR_DIRNAME 26
272 272 #define DIF_SUBR_CLEANPATH 27
273 273 #define DIF_SUBR_STRCHR 28
274 274 #define DIF_SUBR_STRRCHR 29
275 275 #define DIF_SUBR_STRSTR 30
276 276 #define DIF_SUBR_STRTOK 31
277 277 #define DIF_SUBR_SUBSTR 32
278 278 #define DIF_SUBR_INDEX 33
279 279 #define DIF_SUBR_RINDEX 34
280 280 #define DIF_SUBR_HTONS 35
281 281 #define DIF_SUBR_HTONL 36
282 282 #define DIF_SUBR_HTONLL 37
283 283 #define DIF_SUBR_NTOHS 38
284 284 #define DIF_SUBR_NTOHL 39
285 285 #define DIF_SUBR_NTOHLL 40
286 286 #define DIF_SUBR_INET_NTOP 41
287 287 #define DIF_SUBR_INET_NTOA 42
288 288 #define DIF_SUBR_INET_NTOA6 43
289 289 #define DIF_SUBR_TOUPPER 44
290 290 #define DIF_SUBR_TOLOWER 45
291 291 #define DIF_SUBR_GETF 46
292 292 #define DIF_SUBR_JSON 47
293 293 #define DIF_SUBR_STRTOLL 48
294 294
295 295 #define DIF_SUBR_MAX 48 /* max subroutine value */
296 296
297 297 typedef uint32_t dif_instr_t;
298 298
299 299 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
300 300 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
301 301 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
302 302 #define DIF_INSTR_RD(i) ((i) & 0xff)
303 303 #define DIF_INSTR_RS(i) ((i) & 0xff)
304 304 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
305 305 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
306 306 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
307 307 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
308 308 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
309 309 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
310 310 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
311 311
312 312 #define DIF_INSTR_FMT(op, r1, r2, d) \
313 313 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
314 314
315 315 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
316 316 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
317 317 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
318 318 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
319 319 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
320 320 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
321 321 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
322 322 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
323 323 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
324 324 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
325 325 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
326 326 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
327 327 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
328 328 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
329 329 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
330 330 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
331 331 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
332 332 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
333 333 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
334 334 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
335 335 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
336 336
337 337 #define DIF_REG_R0 0 /* %r0 is always set to zero */
338 338
339 339 /*
340 340 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
341 341 * of variables, function and associative array arguments, and the return type
342 342 * for each DIF object (shown below). It contains a description of the type,
343 343 * its size in bytes, and a module identifier.
344 344 */
345 345 typedef struct dtrace_diftype {
346 346 uint8_t dtdt_kind; /* type kind (see below) */
↓ open down ↓ |
307 lines elided |
↑ open up ↑ |
347 347 uint8_t dtdt_ckind; /* type kind in CTF */
348 348 uint8_t dtdt_flags; /* type flags (see below) */
349 349 uint8_t dtdt_pad; /* reserved for future use */
350 350 uint32_t dtdt_size; /* type size in bytes (unless string) */
351 351 } dtrace_diftype_t;
352 352
353 353 #define DIF_TYPE_CTF 0 /* type is a CTF type */
354 354 #define DIF_TYPE_STRING 1 /* type is a D string */
355 355
356 356 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
357 +#define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
357 358
358 359 /*
359 360 * A DTrace Intermediate Format variable record is used to describe each of the
360 361 * variables referenced by a given DIF object. It contains an integer variable
361 362 * identifier along with variable scope and properties, as shown below. The
362 363 * size of this structure must be sizeof (int) aligned.
363 364 */
364 365 typedef struct dtrace_difv {
365 366 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
366 367 uint32_t dtdv_id; /* variable reference identifier */
367 368 uint8_t dtdv_kind; /* variable kind (see below) */
368 369 uint8_t dtdv_scope; /* variable scope (see below) */
369 370 uint16_t dtdv_flags; /* variable flags (see below) */
370 371 dtrace_diftype_t dtdv_type; /* variable type (see above) */
371 372 } dtrace_difv_t;
372 373
373 374 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
374 375 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
375 376
376 377 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
377 378 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
378 379 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
379 380
380 381 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
381 382 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
382 383
383 384 /*
384 385 * DTrace Actions
385 386 *
386 387 * The upper byte determines the class of the action; the low bytes determines
387 388 * the specific action within that class. The classes of actions are as
388 389 * follows:
389 390 *
390 391 * [ no class ] <= May record process- or kernel-related data
391 392 * DTRACEACT_PROC <= Only records process-related data
392 393 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
393 394 * DTRACEACT_KERNEL <= Only records kernel-related data
394 395 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
395 396 * DTRACEACT_SPECULATIVE <= Speculation-related action
396 397 * DTRACEACT_AGGREGATION <= Aggregating action
397 398 */
398 399 #define DTRACEACT_NONE 0 /* no action */
399 400 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
400 401 #define DTRACEACT_EXIT 2 /* exit() action */
401 402 #define DTRACEACT_PRINTF 3 /* printf() action */
402 403 #define DTRACEACT_PRINTA 4 /* printa() action */
403 404 #define DTRACEACT_LIBACT 5 /* library-controlled action */
404 405 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
405 406 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
406 407
407 408 #define DTRACEACT_PROC 0x0100
408 409 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
409 410 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
410 411 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
411 412 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
412 413 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
413 414
414 415 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
415 416 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
416 417 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
417 418 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
418 419 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
419 420
420 421 #define DTRACEACT_PROC_CONTROL 0x0300
421 422
422 423 #define DTRACEACT_KERNEL 0x0400
423 424 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
424 425 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
425 426 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
426 427
427 428 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
428 429 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
429 430 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
430 431 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
431 432
432 433 #define DTRACEACT_SPECULATIVE 0x0600
433 434 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
434 435 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
435 436 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
436 437
437 438 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
438 439
439 440 #define DTRACEACT_ISDESTRUCTIVE(x) \
440 441 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
441 442 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
442 443
443 444 #define DTRACEACT_ISSPECULATIVE(x) \
444 445 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
445 446
446 447 #define DTRACEACT_ISPRINTFLIKE(x) \
447 448 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
448 449 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
449 450
450 451 /*
451 452 * DTrace Aggregating Actions
452 453 *
453 454 * These are functions f(x) for which the following is true:
454 455 *
455 456 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
456 457 *
457 458 * where x_n is a set of arbitrary data. Aggregating actions are in their own
458 459 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
459 460 * for easier processing of the aggregation argument and data payload for a few
460 461 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
461 462 */
462 463 #define DTRACEACT_AGGREGATION 0x0700
463 464 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
464 465 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
465 466 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
466 467 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
467 468 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
468 469 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
469 470 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
470 471 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
471 472 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
472 473
473 474 #define DTRACEACT_ISAGG(x) \
474 475 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
475 476
476 477 #define DTRACE_QUANTIZE_NBUCKETS \
477 478 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
478 479
479 480 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
480 481
481 482 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
482 483 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
483 484 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
484 485 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
485 486 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
486 487
487 488 #define DTRACE_LQUANTIZE_STEPSHIFT 48
488 489 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
489 490 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
490 491 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
491 492 #define DTRACE_LQUANTIZE_BASESHIFT 0
492 493 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
493 494
494 495 #define DTRACE_LQUANTIZE_STEP(x) \
495 496 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
496 497 DTRACE_LQUANTIZE_STEPSHIFT)
497 498
498 499 #define DTRACE_LQUANTIZE_LEVELS(x) \
499 500 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
500 501 DTRACE_LQUANTIZE_LEVELSHIFT)
501 502
502 503 #define DTRACE_LQUANTIZE_BASE(x) \
503 504 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
504 505 DTRACE_LQUANTIZE_BASESHIFT)
505 506
506 507 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
507 508 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
508 509 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
509 510 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
510 511 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
511 512 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
512 513 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
513 514 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
514 515
515 516 #define DTRACE_LLQUANTIZE_FACTOR(x) \
516 517 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
517 518 DTRACE_LLQUANTIZE_FACTORSHIFT)
518 519
519 520 #define DTRACE_LLQUANTIZE_LOW(x) \
520 521 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
521 522 DTRACE_LLQUANTIZE_LOWSHIFT)
522 523
523 524 #define DTRACE_LLQUANTIZE_HIGH(x) \
524 525 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
525 526 DTRACE_LLQUANTIZE_HIGHSHIFT)
526 527
527 528 #define DTRACE_LLQUANTIZE_NSTEP(x) \
528 529 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
529 530 DTRACE_LLQUANTIZE_NSTEPSHIFT)
530 531
531 532 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
532 533 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
533 534 #define DTRACE_USTACK_ARG(x, y) \
534 535 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
535 536
536 537 #ifndef _LP64
537 538 #ifndef _LITTLE_ENDIAN
538 539 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
539 540 #else
540 541 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
541 542 #endif
542 543 #else
543 544 #define DTRACE_PTR(type, name) type *name
544 545 #endif
545 546
546 547 /*
547 548 * DTrace Object Format (DOF)
548 549 *
549 550 * DTrace programs can be persistently encoded in the DOF format so that they
550 551 * may be embedded in other programs (for example, in an ELF file) or in the
551 552 * dtrace driver configuration file for use in anonymous tracing. The DOF
552 553 * format is versioned and extensible so that it can be revised and so that
553 554 * internal data structures can be modified or extended compatibly. All DOF
554 555 * structures use fixed-size types, so the 32-bit and 64-bit representations
555 556 * are identical and consumers can use either data model transparently.
556 557 *
557 558 * The file layout is structured as follows:
558 559 *
559 560 * +---------------+-------------------+----- ... ----+---- ... ------+
560 561 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
561 562 * | (file header) | (section headers) | section data | section data |
562 563 * +---------------+-------------------+----- ... ----+---- ... ------+
563 564 * |<------------ dof_hdr.dofh_loadsz --------------->| |
564 565 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
565 566 *
566 567 * The file header stores meta-data including a magic number, data model for
567 568 * the instrumentation, data encoding, and properties of the DIF code within.
568 569 * The header describes its own size and the size of the section headers. By
569 570 * convention, an array of section headers follows the file header, and then
570 571 * the data for all loadable sections and unloadable sections. This permits
571 572 * consumer code to easily download the headers and all loadable data into the
572 573 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
573 574 *
574 575 * The section headers describe the size, offset, alignment, and section type
575 576 * for each section. Sections are described using a set of #defines that tell
576 577 * the consumer what kind of data is expected. Sections can contain links to
577 578 * other sections by storing a dof_secidx_t, an index into the section header
578 579 * array, inside of the section data structures. The section header includes
579 580 * an entry size so that sections with data arrays can grow their structures.
580 581 *
581 582 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
582 583 * are represented themselves as a collection of related DOF sections. This
583 584 * permits us to change the set of sections associated with a DIFO over time,
584 585 * and also permits us to encode DIFOs that contain different sets of sections.
585 586 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
586 587 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
587 588 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
588 589 *
589 590 * This loose coupling of the file structure (header and sections) to the
590 591 * structure of the DTrace program itself (ECB descriptions, action
591 592 * descriptions, and DIFOs) permits activities such as relocation processing
592 593 * to occur in a single pass without having to understand D program structure.
593 594 *
594 595 * Finally, strings are always stored in ELF-style string tables along with a
595 596 * string table section index and string table offset. Therefore strings in
596 597 * DOF are always arbitrary-length and not bound to the current implementation.
597 598 */
598 599
599 600 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
600 601
601 602 typedef struct dof_hdr {
602 603 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
603 604 uint32_t dofh_flags; /* file attribute flags (if any) */
604 605 uint32_t dofh_hdrsize; /* size of file header in bytes */
605 606 uint32_t dofh_secsize; /* size of section header in bytes */
606 607 uint32_t dofh_secnum; /* number of section headers */
607 608 uint64_t dofh_secoff; /* file offset of section headers */
608 609 uint64_t dofh_loadsz; /* file size of loadable portion */
609 610 uint64_t dofh_filesz; /* file size of entire DOF file */
610 611 uint64_t dofh_pad; /* reserved for future use */
611 612 } dof_hdr_t;
612 613
613 614 #define DOF_ID_MAG0 0 /* first byte of magic number */
614 615 #define DOF_ID_MAG1 1 /* second byte of magic number */
615 616 #define DOF_ID_MAG2 2 /* third byte of magic number */
616 617 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
617 618 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
618 619 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
619 620 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
620 621 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
621 622 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
622 623 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
623 624 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
624 625
625 626 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
626 627 #define DOF_MAG_MAG1 'D'
627 628 #define DOF_MAG_MAG2 'O'
628 629 #define DOF_MAG_MAG3 'F'
629 630
630 631 #define DOF_MAG_STRING "\177DOF"
631 632 #define DOF_MAG_STRLEN 4
632 633
633 634 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
634 635 #define DOF_MODEL_ILP32 1
635 636 #define DOF_MODEL_LP64 2
636 637
637 638 #ifdef _LP64
638 639 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
639 640 #else
640 641 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
641 642 #endif
642 643
643 644 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
644 645 #define DOF_ENCODE_LSB 1
645 646 #define DOF_ENCODE_MSB 2
646 647
647 648 #ifdef _BIG_ENDIAN
648 649 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
649 650 #else
650 651 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
651 652 #endif
652 653
653 654 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
654 655 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
655 656 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
656 657
657 658 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
658 659
659 660 typedef uint32_t dof_secidx_t; /* section header table index type */
660 661 typedef uint32_t dof_stridx_t; /* string table index type */
661 662
662 663 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
663 664 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
664 665
665 666 typedef struct dof_sec {
666 667 uint32_t dofs_type; /* section type (see below) */
667 668 uint32_t dofs_align; /* section data memory alignment */
668 669 uint32_t dofs_flags; /* section flags (if any) */
669 670 uint32_t dofs_entsize; /* size of section entry (if table) */
670 671 uint64_t dofs_offset; /* offset of section data within file */
671 672 uint64_t dofs_size; /* size of section data in bytes */
672 673 } dof_sec_t;
673 674
674 675 #define DOF_SECT_NONE 0 /* null section */
675 676 #define DOF_SECT_COMMENTS 1 /* compiler comments */
676 677 #define DOF_SECT_SOURCE 2 /* D program source code */
677 678 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
678 679 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
679 680 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
680 681 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
681 682 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
682 683 #define DOF_SECT_STRTAB 8 /* string table */
683 684 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
684 685 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
685 686 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
686 687 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
687 688 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
688 689 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
689 690 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
690 691 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
691 692 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
692 693 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
693 694 #define DOF_SECT_INTTAB 19 /* uint64_t array */
694 695 #define DOF_SECT_UTSNAME 20 /* struct utsname */
695 696 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
696 697 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
697 698 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
698 699 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
699 700 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
700 701 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
701 702
702 703 #define DOF_SECF_LOAD 1 /* section should be loaded */
703 704
704 705 #define DOF_SEC_ISLOADABLE(x) \
705 706 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
706 707 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
707 708 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
708 709 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
709 710 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
710 711 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
711 712 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
712 713 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
713 714 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
714 715 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
715 716 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
716 717 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
717 718
718 719 typedef struct dof_ecbdesc {
719 720 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
720 721 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
721 722 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
722 723 uint32_t dofe_pad; /* reserved for future use */
723 724 uint64_t dofe_uarg; /* user-supplied library argument */
724 725 } dof_ecbdesc_t;
725 726
726 727 typedef struct dof_probedesc {
727 728 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
728 729 dof_stridx_t dofp_provider; /* provider string */
729 730 dof_stridx_t dofp_mod; /* module string */
730 731 dof_stridx_t dofp_func; /* function string */
731 732 dof_stridx_t dofp_name; /* name string */
732 733 uint32_t dofp_id; /* probe identifier (or zero) */
733 734 } dof_probedesc_t;
734 735
735 736 typedef struct dof_actdesc {
736 737 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
737 738 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
738 739 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
739 740 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
740 741 uint64_t dofa_arg; /* kind-specific argument */
741 742 uint64_t dofa_uarg; /* user-supplied argument */
742 743 } dof_actdesc_t;
743 744
744 745 typedef struct dof_difohdr {
745 746 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
746 747 dof_secidx_t dofd_links[1]; /* variable length array of indices */
747 748 } dof_difohdr_t;
748 749
749 750 typedef struct dof_relohdr {
750 751 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
751 752 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
752 753 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
753 754 } dof_relohdr_t;
754 755
755 756 typedef struct dof_relodesc {
756 757 dof_stridx_t dofr_name; /* string name of relocation symbol */
757 758 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
758 759 uint64_t dofr_offset; /* byte offset for relocation */
759 760 uint64_t dofr_data; /* additional type-specific data */
760 761 } dof_relodesc_t;
761 762
762 763 #define DOF_RELO_NONE 0 /* empty relocation entry */
763 764 #define DOF_RELO_SETX 1 /* relocate setx value */
764 765
765 766 typedef struct dof_optdesc {
766 767 uint32_t dofo_option; /* option identifier */
767 768 dof_secidx_t dofo_strtab; /* string table, if string option */
768 769 uint64_t dofo_value; /* option value or string index */
769 770 } dof_optdesc_t;
770 771
771 772 typedef uint32_t dof_attr_t; /* encoded stability attributes */
772 773
773 774 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
774 775 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
775 776 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
776 777 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
777 778
778 779 typedef struct dof_provider {
779 780 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
780 781 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
781 782 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
782 783 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
783 784 dof_stridx_t dofpv_name; /* provider name string */
784 785 dof_attr_t dofpv_provattr; /* provider attributes */
785 786 dof_attr_t dofpv_modattr; /* module attributes */
786 787 dof_attr_t dofpv_funcattr; /* function attributes */
787 788 dof_attr_t dofpv_nameattr; /* name attributes */
788 789 dof_attr_t dofpv_argsattr; /* args attributes */
789 790 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
790 791 } dof_provider_t;
791 792
792 793 typedef struct dof_probe {
793 794 uint64_t dofpr_addr; /* probe base address or offset */
794 795 dof_stridx_t dofpr_func; /* probe function string */
795 796 dof_stridx_t dofpr_name; /* probe name string */
796 797 dof_stridx_t dofpr_nargv; /* native argument type strings */
797 798 dof_stridx_t dofpr_xargv; /* translated argument type strings */
798 799 uint32_t dofpr_argidx; /* index of first argument mapping */
799 800 uint32_t dofpr_offidx; /* index of first offset entry */
800 801 uint8_t dofpr_nargc; /* native argument count */
801 802 uint8_t dofpr_xargc; /* translated argument count */
802 803 uint16_t dofpr_noffs; /* number of offset entries for probe */
803 804 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
804 805 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
805 806 uint16_t dofpr_pad1; /* reserved for future use */
806 807 uint32_t dofpr_pad2; /* reserved for future use */
807 808 } dof_probe_t;
808 809
809 810 typedef struct dof_xlator {
810 811 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
811 812 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
812 813 dof_stridx_t dofxl_argv; /* input parameter type strings */
813 814 uint32_t dofxl_argc; /* input parameter list length */
814 815 dof_stridx_t dofxl_type; /* output type string name */
815 816 dof_attr_t dofxl_attr; /* output stability attributes */
816 817 } dof_xlator_t;
817 818
818 819 typedef struct dof_xlmember {
819 820 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
820 821 dof_stridx_t dofxm_name; /* member name */
821 822 dtrace_diftype_t dofxm_type; /* member type */
822 823 } dof_xlmember_t;
823 824
824 825 typedef struct dof_xlref {
825 826 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
826 827 uint32_t dofxr_member; /* index of referenced dof_xlmember */
827 828 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
828 829 } dof_xlref_t;
829 830
830 831 /*
831 832 * DTrace Intermediate Format Object (DIFO)
832 833 *
833 834 * A DIFO is used to store the compiled DIF for a D expression, its return
834 835 * type, and its string and variable tables. The string table is a single
835 836 * buffer of character data into which sets instructions and variable
836 837 * references can reference strings using a byte offset. The variable table
837 838 * is an array of dtrace_difv_t structures that describe the name and type of
838 839 * each variable and the id used in the DIF code. This structure is described
839 840 * above in the DIF section of this header file. The DIFO is used at both
840 841 * user-level (in the library) and in the kernel, but the structure is never
841 842 * passed between the two: the DOF structures form the only interface. As a
842 843 * result, the definition can change depending on the presence of _KERNEL.
843 844 */
844 845 typedef struct dtrace_difo {
845 846 dif_instr_t *dtdo_buf; /* instruction buffer */
846 847 uint64_t *dtdo_inttab; /* integer table (optional) */
847 848 char *dtdo_strtab; /* string table (optional) */
848 849 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
849 850 uint_t dtdo_len; /* length of instruction buffer */
850 851 uint_t dtdo_intlen; /* length of integer table */
851 852 uint_t dtdo_strlen; /* length of string table */
852 853 uint_t dtdo_varlen; /* length of variable table */
853 854 dtrace_diftype_t dtdo_rtype; /* return type */
854 855 uint_t dtdo_refcnt; /* owner reference count */
855 856 uint_t dtdo_destructive; /* invokes destructive subroutines */
856 857 #ifndef _KERNEL
857 858 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
858 859 dof_relodesc_t *dtdo_ureltab; /* user relocations */
859 860 struct dt_node **dtdo_xlmtab; /* translator references */
860 861 uint_t dtdo_krelen; /* length of krelo table */
861 862 uint_t dtdo_urelen; /* length of urelo table */
862 863 uint_t dtdo_xlmlen; /* length of translator table */
863 864 #endif
864 865 } dtrace_difo_t;
865 866
866 867 /*
867 868 * DTrace Enabling Description Structures
868 869 *
869 870 * When DTrace is tracking the description of a DTrace enabling entity (probe,
870 871 * predicate, action, ECB, record, etc.), it does so in a description
871 872 * structure. These structures all end in "desc", and are used at both
872 873 * user-level and in the kernel -- but (with the exception of
873 874 * dtrace_probedesc_t) they are never passed between them. Typically,
874 875 * user-level will use the description structures when assembling an enabling.
875 876 * It will then distill those description structures into a DOF object (see
876 877 * above), and send it into the kernel. The kernel will again use the
877 878 * description structures to create a description of the enabling as it reads
878 879 * the DOF. When the description is complete, the enabling will be actually
879 880 * created -- turning it into the structures that represent the enabling
880 881 * instead of merely describing it. Not surprisingly, the description
881 882 * structures bear a strong resemblance to the DOF structures that act as their
882 883 * conduit.
883 884 */
884 885 struct dtrace_predicate;
885 886
886 887 typedef struct dtrace_probedesc {
887 888 dtrace_id_t dtpd_id; /* probe identifier */
888 889 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
889 890 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
890 891 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
891 892 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
892 893 } dtrace_probedesc_t;
893 894
894 895 typedef struct dtrace_repldesc {
895 896 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
896 897 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
897 898 } dtrace_repldesc_t;
898 899
899 900 typedef struct dtrace_preddesc {
900 901 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
901 902 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
902 903 } dtrace_preddesc_t;
903 904
904 905 typedef struct dtrace_actdesc {
905 906 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
906 907 struct dtrace_actdesc *dtad_next; /* next action */
907 908 dtrace_actkind_t dtad_kind; /* kind of action */
908 909 uint32_t dtad_ntuple; /* number in tuple */
909 910 uint64_t dtad_arg; /* action argument */
910 911 uint64_t dtad_uarg; /* user argument */
911 912 int dtad_refcnt; /* reference count */
912 913 } dtrace_actdesc_t;
913 914
914 915 typedef struct dtrace_ecbdesc {
915 916 dtrace_actdesc_t *dted_action; /* action description(s) */
916 917 dtrace_preddesc_t dted_pred; /* predicate description */
917 918 dtrace_probedesc_t dted_probe; /* probe description */
918 919 uint64_t dted_uarg; /* library argument */
919 920 int dted_refcnt; /* reference count */
920 921 } dtrace_ecbdesc_t;
921 922
922 923 /*
923 924 * DTrace Metadata Description Structures
924 925 *
925 926 * DTrace separates the trace data stream from the metadata stream. The only
926 927 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
927 928 * timestamp) or (in the case of aggregations) aggregation identifiers. To
928 929 * determine the structure of the data, DTrace consumers pass the token to the
929 930 * kernel, and receive in return a corresponding description of the enabled
930 931 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
931 932 * dtrace_aggdesc structure). Both of these structures are expressed in terms
932 933 * of record descriptions (via the dtrace_recdesc structure) that describe the
933 934 * exact structure of the data. Some record descriptions may also contain a
934 935 * format identifier; this additional bit of metadata can be retrieved from the
935 936 * kernel, for which a format description is returned via the dtrace_fmtdesc
936 937 * structure. Note that all four of these structures must be bitness-neutral
937 938 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
938 939 */
939 940 typedef struct dtrace_recdesc {
940 941 dtrace_actkind_t dtrd_action; /* kind of action */
941 942 uint32_t dtrd_size; /* size of record */
942 943 uint32_t dtrd_offset; /* offset in ECB's data */
943 944 uint16_t dtrd_alignment; /* required alignment */
944 945 uint16_t dtrd_format; /* format, if any */
945 946 uint64_t dtrd_arg; /* action argument */
946 947 uint64_t dtrd_uarg; /* user argument */
947 948 } dtrace_recdesc_t;
948 949
949 950 typedef struct dtrace_eprobedesc {
950 951 dtrace_epid_t dtepd_epid; /* enabled probe ID */
951 952 dtrace_id_t dtepd_probeid; /* probe ID */
952 953 uint64_t dtepd_uarg; /* library argument */
953 954 uint32_t dtepd_size; /* total size */
954 955 int dtepd_nrecs; /* number of records */
955 956 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
956 957 } dtrace_eprobedesc_t;
957 958
958 959 typedef struct dtrace_aggdesc {
959 960 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
960 961 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
961 962 int dtagd_flags; /* not filled in by kernel */
962 963 dtrace_aggid_t dtagd_id; /* aggregation ID */
963 964 dtrace_epid_t dtagd_epid; /* enabled probe ID */
964 965 uint32_t dtagd_size; /* size in bytes */
965 966 int dtagd_nrecs; /* number of records */
966 967 uint32_t dtagd_pad; /* explicit padding */
967 968 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
968 969 } dtrace_aggdesc_t;
969 970
970 971 typedef struct dtrace_fmtdesc {
971 972 DTRACE_PTR(char, dtfd_string); /* format string */
972 973 int dtfd_length; /* length of format string */
973 974 uint16_t dtfd_format; /* format identifier */
974 975 } dtrace_fmtdesc_t;
975 976
976 977 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
977 978 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
978 979 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
979 980
980 981 #define DTRACE_SIZEOF_AGGDESC(desc) \
981 982 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
982 983 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
983 984
984 985 /*
985 986 * DTrace Option Interface
986 987 *
987 988 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
988 989 * in a DOF image. The dof_optdesc structure contains an option identifier and
989 990 * an option value. The valid option identifiers are found below; the mapping
990 991 * between option identifiers and option identifying strings is maintained at
991 992 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
992 993 * following are potentially valid option values: all positive integers, zero
993 994 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
994 995 * predefined tokens as their values; these are defined with
995 996 * DTRACEOPT_{option}_{token}.
996 997 */
997 998 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
998 999 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
999 1000 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1000 1001 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1001 1002 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1002 1003 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1003 1004 #define DTRACEOPT_STRSIZE 6 /* string size */
1004 1005 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1005 1006 #define DTRACEOPT_CPU 8 /* CPU to trace */
1006 1007 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1007 1008 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1008 1009 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1009 1010 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1010 1011 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1011 1012 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1012 1013 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1013 1014 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1014 1015 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1015 1016 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1016 1017 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1017 1018 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1018 1019 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1019 1020 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1020 1021 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1021 1022 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1022 1023 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1023 1024 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1024 1025 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1025 1026 #define DTRACEOPT_MAX 28 /* number of options */
1026 1027
1027 1028 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1028 1029
1029 1030 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1030 1031 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1031 1032 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1032 1033
1033 1034 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1034 1035 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1035 1036
1036 1037 /*
1037 1038 * DTrace Buffer Interface
1038 1039 *
1039 1040 * In order to get a snapshot of the principal or aggregation buffer,
1040 1041 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1041 1042 * structure. This describes which CPU user-level is interested in, and
1042 1043 * where user-level wishes the kernel to snapshot the buffer to (the
1043 1044 * dtbd_data field). The kernel uses the same structure to pass back some
1044 1045 * information regarding the buffer: the size of data actually copied out, the
1045 1046 * number of drops, the number of errors, the offset of the oldest record,
1046 1047 * and the time of the snapshot.
1047 1048 *
1048 1049 * If the buffer policy is a "switch" policy, taking a snapshot of the
1049 1050 * principal buffer has the additional effect of switching the active and
1050 1051 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1051 1052 * the additional effect of switching the active and inactive buffers.
1052 1053 */
1053 1054 typedef struct dtrace_bufdesc {
1054 1055 uint64_t dtbd_size; /* size of buffer */
1055 1056 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1056 1057 uint32_t dtbd_errors; /* number of errors */
1057 1058 uint64_t dtbd_drops; /* number of drops */
1058 1059 DTRACE_PTR(char, dtbd_data); /* data */
1059 1060 uint64_t dtbd_oldest; /* offset of oldest record */
1060 1061 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1061 1062 } dtrace_bufdesc_t;
1062 1063
1063 1064 /*
1064 1065 * Each record in the buffer (dtbd_data) begins with a header that includes
1065 1066 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1066 1067 * so that we do not require 8-byte alignment.
1067 1068 */
1068 1069 typedef struct dtrace_rechdr {
1069 1070 dtrace_epid_t dtrh_epid; /* enabled probe id */
1070 1071 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1071 1072 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1072 1073 } dtrace_rechdr_t;
1073 1074
1074 1075 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1075 1076 ((dtrh)->dtrh_timestamp_lo + \
1076 1077 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1077 1078
1078 1079 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1079 1080 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1080 1081 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1081 1082 }
1082 1083
1083 1084 /*
1084 1085 * DTrace Status
1085 1086 *
1086 1087 * The status of DTrace is relayed via the dtrace_status structure. This
1087 1088 * structure contains members to count drops other than the capacity drops
1088 1089 * available via the buffer interface (see above). This consists of dynamic
1089 1090 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1090 1091 * speculative drops (including capacity speculative drops, drops due to busy
1091 1092 * speculative buffers and drops due to unavailable speculative buffers).
1092 1093 * Additionally, the status structure contains a field to indicate the number
1093 1094 * of "fill"-policy buffers have been filled and a boolean field to indicate
1094 1095 * that exit() has been called. If the dtst_exiting field is non-zero, no
1095 1096 * further data will be generated until tracing is stopped (at which time any
1096 1097 * enablings of the END action will be processed); if user-level sees that
1097 1098 * this field is non-zero, tracing should be stopped as soon as possible.
1098 1099 */
1099 1100 typedef struct dtrace_status {
1100 1101 uint64_t dtst_dyndrops; /* dynamic drops */
1101 1102 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1102 1103 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1103 1104 uint64_t dtst_specdrops; /* speculative drops */
1104 1105 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1105 1106 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1106 1107 uint64_t dtst_errors; /* total errors */
1107 1108 uint64_t dtst_filled; /* number of filled bufs */
1108 1109 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1109 1110 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1110 1111 char dtst_killed; /* non-zero if killed */
1111 1112 char dtst_exiting; /* non-zero if exit() called */
1112 1113 char dtst_pad[6]; /* pad out to 64-bit align */
1113 1114 } dtrace_status_t;
1114 1115
1115 1116 /*
1116 1117 * DTrace Configuration
1117 1118 *
1118 1119 * User-level may need to understand some elements of the kernel DTrace
1119 1120 * configuration in order to generate correct DIF. This information is
1120 1121 * conveyed via the dtrace_conf structure.
1121 1122 */
1122 1123 typedef struct dtrace_conf {
1123 1124 uint_t dtc_difversion; /* supported DIF version */
1124 1125 uint_t dtc_difintregs; /* # of DIF integer registers */
1125 1126 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1126 1127 uint_t dtc_ctfmodel; /* CTF data model */
1127 1128 uint_t dtc_pad[8]; /* reserved for future use */
1128 1129 } dtrace_conf_t;
1129 1130
1130 1131 /*
1131 1132 * DTrace Faults
1132 1133 *
1133 1134 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1134 1135 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1135 1136 * postprocessing at user-level. Probe processing faults induce an ERROR
1136 1137 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1137 1138 * the error condition using thse symbolic labels.
1138 1139 */
1139 1140 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1140 1141 #define DTRACEFLT_BADADDR 1 /* Bad address */
1141 1142 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1142 1143 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1143 1144 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1144 1145 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1145 1146 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1146 1147 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1147 1148 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1148 1149 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1149 1150
1150 1151 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1151 1152
1152 1153 /*
1153 1154 * DTrace Argument Types
1154 1155 *
1155 1156 * Because it would waste both space and time, argument types do not reside
1156 1157 * with the probe. In order to determine argument types for args[X]
1157 1158 * variables, the D compiler queries for argument types on a probe-by-probe
1158 1159 * basis. (This optimizes for the common case that arguments are either not
1159 1160 * used or used in an untyped fashion.) Typed arguments are specified with a
1160 1161 * string of the type name in the dtragd_native member of the argument
1161 1162 * description structure. Typed arguments may be further translated to types
1162 1163 * of greater stability; the provider indicates such a translated argument by
1163 1164 * filling in the dtargd_xlate member with the string of the translated type.
1164 1165 * Finally, the provider may indicate which argument value a given argument
1165 1166 * maps to by setting the dtargd_mapping member -- allowing a single argument
1166 1167 * to map to multiple args[X] variables.
1167 1168 */
1168 1169 typedef struct dtrace_argdesc {
1169 1170 dtrace_id_t dtargd_id; /* probe identifier */
1170 1171 int dtargd_ndx; /* arg number (-1 iff none) */
1171 1172 int dtargd_mapping; /* value mapping */
1172 1173 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1173 1174 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1174 1175 } dtrace_argdesc_t;
1175 1176
1176 1177 /*
1177 1178 * DTrace Stability Attributes
1178 1179 *
1179 1180 * Each DTrace provider advertises the name and data stability of each of its
1180 1181 * probe description components, as well as its architectural dependencies.
1181 1182 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1182 1183 * order to compute the properties of an input program and report them.
1183 1184 */
1184 1185 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1185 1186 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1186 1187
1187 1188 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1188 1189 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1189 1190 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1190 1191 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1191 1192 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1192 1193 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1193 1194 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1194 1195 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1195 1196 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1196 1197
1197 1198 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1198 1199 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1199 1200 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1200 1201 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1201 1202 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1202 1203 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1203 1204 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1204 1205
1205 1206 #define DTRACE_PRIV_NONE 0x0000
1206 1207 #define DTRACE_PRIV_KERNEL 0x0001
1207 1208 #define DTRACE_PRIV_USER 0x0002
1208 1209 #define DTRACE_PRIV_PROC 0x0004
1209 1210 #define DTRACE_PRIV_OWNER 0x0008
1210 1211 #define DTRACE_PRIV_ZONEOWNER 0x0010
1211 1212
1212 1213 #define DTRACE_PRIV_ALL \
1213 1214 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1214 1215 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1215 1216
1216 1217 typedef struct dtrace_ppriv {
1217 1218 uint32_t dtpp_flags; /* privilege flags */
1218 1219 uid_t dtpp_uid; /* user ID */
1219 1220 zoneid_t dtpp_zoneid; /* zone ID */
1220 1221 } dtrace_ppriv_t;
1221 1222
1222 1223 typedef struct dtrace_attribute {
1223 1224 dtrace_stability_t dtat_name; /* entity name stability */
1224 1225 dtrace_stability_t dtat_data; /* entity data stability */
1225 1226 dtrace_class_t dtat_class; /* entity data dependency */
1226 1227 } dtrace_attribute_t;
1227 1228
1228 1229 typedef struct dtrace_pattr {
1229 1230 dtrace_attribute_t dtpa_provider; /* provider attributes */
1230 1231 dtrace_attribute_t dtpa_mod; /* module attributes */
1231 1232 dtrace_attribute_t dtpa_func; /* function attributes */
1232 1233 dtrace_attribute_t dtpa_name; /* name attributes */
1233 1234 dtrace_attribute_t dtpa_args; /* args[] attributes */
1234 1235 } dtrace_pattr_t;
1235 1236
1236 1237 typedef struct dtrace_providerdesc {
1237 1238 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1238 1239 dtrace_pattr_t dtvd_attr; /* stability attributes */
1239 1240 dtrace_ppriv_t dtvd_priv; /* privileges required */
1240 1241 } dtrace_providerdesc_t;
1241 1242
1242 1243 /*
1243 1244 * DTrace Pseudodevice Interface
1244 1245 *
1245 1246 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1246 1247 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1247 1248 * DTrace.
1248 1249 */
1249 1250 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1250 1251 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1251 1252 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1252 1253 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1253 1254 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1254 1255 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1255 1256 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1256 1257 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1257 1258 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1258 1259 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1259 1260 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1260 1261 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1261 1262 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1262 1263 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1263 1264 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1264 1265 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1265 1266 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1266 1267
1267 1268 /*
1268 1269 * DTrace Helpers
1269 1270 *
1270 1271 * In general, DTrace establishes probes in processes and takes actions on
1271 1272 * processes without knowing their specific user-level structures. Instead of
1272 1273 * existing in the framework, process-specific knowledge is contained by the
1273 1274 * enabling D program -- which can apply process-specific knowledge by making
1274 1275 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1275 1276 * operate on user-level data. However, there may exist some specific probes
1276 1277 * of particular semantic relevance that the application developer may wish to
1277 1278 * explicitly export. For example, an application may wish to export a probe
1278 1279 * at the point that it begins and ends certain well-defined transactions. In
1279 1280 * addition to providing probes, programs may wish to offer assistance for
1280 1281 * certain actions. For example, in highly dynamic environments (e.g., Java),
1281 1282 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1282 1283 * names (the translation from instruction addresses to corresponding symbol
1283 1284 * names may only be possible in situ); these environments may wish to define
1284 1285 * a series of actions to be applied in situ to obtain a meaningful stack
1285 1286 * trace.
1286 1287 *
1287 1288 * These two mechanisms -- user-level statically defined tracing and assisting
1288 1289 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1289 1290 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1290 1291 * providers, probes and their arguments. If a helper wishes to provide
1291 1292 * action assistance, probe descriptions and corresponding DIF actions may be
1292 1293 * specified in the helper DOF. For such helper actions, however, the probe
1293 1294 * description describes the specific helper: all DTrace helpers have the
1294 1295 * provider name "dtrace" and the module name "helper", and the name of the
1295 1296 * helper is contained in the function name (for example, the ustack() helper
1296 1297 * is named "ustack"). Any helper-specific name may be contained in the name
1297 1298 * (for example, if a helper were to have a constructor, it might be named
1298 1299 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1299 1300 * action that they are helping is taken. Helper actions may only return DIF
1300 1301 * expressions, and may only call the following subroutines:
1301 1302 *
1302 1303 * alloca() <= Allocates memory out of the consumer's scratch space
1303 1304 * bcopy() <= Copies memory to scratch space
1304 1305 * copyin() <= Copies memory from user-level into consumer's scratch
1305 1306 * copyinto() <= Copies memory into a specific location in scratch
1306 1307 * copyinstr() <= Copies a string into a specific location in scratch
1307 1308 *
1308 1309 * Helper actions may only access the following built-in variables:
1309 1310 *
1310 1311 * curthread <= Current kthread_t pointer
1311 1312 * tid <= Current thread identifier
1312 1313 * pid <= Current process identifier
1313 1314 * ppid <= Parent process identifier
1314 1315 * uid <= Current user ID
1315 1316 * gid <= Current group ID
1316 1317 * execname <= Current executable name
1317 1318 * zonename <= Current zone name
1318 1319 *
1319 1320 * Helper actions may not manipulate or allocate dynamic variables, but they
1320 1321 * may have clause-local and statically-allocated global variables. The
1321 1322 * helper action variable state is specific to the helper action -- variables
1322 1323 * used by the helper action may not be accessed outside of the helper
1323 1324 * action, and the helper action may not access variables that like outside
1324 1325 * of it. Helper actions may not load from kernel memory at-large; they are
1325 1326 * restricting to loading current user state (via copyin() and variants) and
1326 1327 * scratch space. As with probe enablings, helper actions are executed in
1327 1328 * program order. The result of the helper action is the result of the last
1328 1329 * executing helper expression.
1329 1330 *
1330 1331 * Helpers -- composed of either providers/probes or probes/actions (or both)
1331 1332 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1332 1333 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1333 1334 * encapsulates the name and base address of the user-level library or
1334 1335 * executable publishing the helpers and probes as well as the DOF that
1335 1336 * contains the definitions of those helpers and probes.
1336 1337 *
1337 1338 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1338 1339 * helpers and should no longer be used. No other ioctls are valid on the
1339 1340 * helper minor node.
1340 1341 */
1341 1342 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1342 1343 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1343 1344 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1344 1345 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1345 1346
1346 1347 typedef struct dof_helper {
1347 1348 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1348 1349 uint64_t dofhp_addr; /* base address of object */
1349 1350 uint64_t dofhp_dof; /* address of helper DOF */
1350 1351 } dof_helper_t;
1351 1352
1352 1353 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1353 1354 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1354 1355 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1355 1356 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1356 1357 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1357 1358
1358 1359 #ifdef _KERNEL
1359 1360
1360 1361 /*
1361 1362 * DTrace Provider API
1362 1363 *
1363 1364 * The following functions are implemented by the DTrace framework and are
1364 1365 * used to implement separate in-kernel DTrace providers. Common functions
1365 1366 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1366 1367 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1367 1368 *
1368 1369 * The provider API has two halves: the API that the providers consume from
1369 1370 * DTrace, and the API that providers make available to DTrace.
1370 1371 *
1371 1372 * 1 Framework-to-Provider API
1372 1373 *
1373 1374 * 1.1 Overview
1374 1375 *
1375 1376 * The Framework-to-Provider API is represented by the dtrace_pops structure
1376 1377 * that the provider passes to the framework when registering itself. This
1377 1378 * structure consists of the following members:
1378 1379 *
1379 1380 * dtps_provide() <-- Provide all probes, all modules
1380 1381 * dtps_provide_module() <-- Provide all probes in specified module
1381 1382 * dtps_enable() <-- Enable specified probe
1382 1383 * dtps_disable() <-- Disable specified probe
1383 1384 * dtps_suspend() <-- Suspend specified probe
1384 1385 * dtps_resume() <-- Resume specified probe
1385 1386 * dtps_getargdesc() <-- Get the argument description for args[X]
1386 1387 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1387 1388 * dtps_mode() <-- Return the mode of the fired probe
1388 1389 * dtps_destroy() <-- Destroy all state associated with this probe
1389 1390 *
1390 1391 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1391 1392 *
1392 1393 * 1.2.1 Overview
1393 1394 *
1394 1395 * Called to indicate that the provider should provide all probes. If the
1395 1396 * specified description is non-NULL, dtps_provide() is being called because
1396 1397 * no probe matched a specified probe -- if the provider has the ability to
1397 1398 * create custom probes, it may wish to create a probe that matches the
1398 1399 * specified description.
1399 1400 *
1400 1401 * 1.2.2 Arguments and notes
1401 1402 *
1402 1403 * The first argument is the cookie as passed to dtrace_register(). The
1403 1404 * second argument is a pointer to a probe description that the provider may
1404 1405 * wish to consider when creating custom probes. The provider is expected to
1405 1406 * call back into the DTrace framework via dtrace_probe_create() to create
1406 1407 * any necessary probes. dtps_provide() may be called even if the provider
1407 1408 * has made available all probes; the provider should check the return value
1408 1409 * of dtrace_probe_create() to handle this case. Note that the provider need
1409 1410 * not implement both dtps_provide() and dtps_provide_module(); see
1410 1411 * "Arguments and Notes" for dtrace_register(), below.
1411 1412 *
1412 1413 * 1.2.3 Return value
1413 1414 *
1414 1415 * None.
1415 1416 *
1416 1417 * 1.2.4 Caller's context
1417 1418 *
1418 1419 * dtps_provide() is typically called from open() or ioctl() context, but may
1419 1420 * be called from other contexts as well. The DTrace framework is locked in
1420 1421 * such a way that providers may not register or unregister. This means that
1421 1422 * the provider may not call any DTrace API that affects its registration with
1422 1423 * the framework, including dtrace_register(), dtrace_unregister(),
1423 1424 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1424 1425 * that the provider may (and indeed, is expected to) call probe-related
1425 1426 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1426 1427 * and dtrace_probe_arg().
1427 1428 *
1428 1429 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1429 1430 *
1430 1431 * 1.3.1 Overview
1431 1432 *
1432 1433 * Called to indicate that the provider should provide all probes in the
1433 1434 * specified module.
1434 1435 *
1435 1436 * 1.3.2 Arguments and notes
1436 1437 *
1437 1438 * The first argument is the cookie as passed to dtrace_register(). The
1438 1439 * second argument is a pointer to a modctl structure that indicates the
1439 1440 * module for which probes should be created.
1440 1441 *
1441 1442 * 1.3.3 Return value
1442 1443 *
1443 1444 * None.
1444 1445 *
1445 1446 * 1.3.4 Caller's context
1446 1447 *
1447 1448 * dtps_provide_module() may be called from open() or ioctl() context, but
1448 1449 * may also be called from a module loading context. mod_lock is held, and
1449 1450 * the DTrace framework is locked in such a way that providers may not
1450 1451 * register or unregister. This means that the provider may not call any
1451 1452 * DTrace API that affects its registration with the framework, including
1452 1453 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1453 1454 * dtrace_condense(). However, the context is such that the provider may (and
1454 1455 * indeed, is expected to) call probe-related DTrace routines, including
1455 1456 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1456 1457 * that the provider need not implement both dtps_provide() and
1457 1458 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1458 1459 * below.
1459 1460 *
1460 1461 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1461 1462 *
1462 1463 * 1.4.1 Overview
1463 1464 *
1464 1465 * Called to enable the specified probe.
1465 1466 *
1466 1467 * 1.4.2 Arguments and notes
1467 1468 *
1468 1469 * The first argument is the cookie as passed to dtrace_register(). The
1469 1470 * second argument is the identifier of the probe to be enabled. The third
1470 1471 * argument is the probe argument as passed to dtrace_probe_create().
1471 1472 * dtps_enable() will be called when a probe transitions from not being
1472 1473 * enabled at all to having one or more ECB. The number of ECBs associated
1473 1474 * with the probe may change without subsequent calls into the provider.
1474 1475 * When the number of ECBs drops to zero, the provider will be explicitly
1475 1476 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1476 1477 * be called for a probe identifier that hasn't been explicitly enabled via
1477 1478 * dtps_enable().
1478 1479 *
1479 1480 * 1.4.3 Return value
1480 1481 *
1481 1482 * On success, dtps_enable() should return 0. On failure, -1 should be
1482 1483 * returned.
1483 1484 *
1484 1485 * 1.4.4 Caller's context
1485 1486 *
1486 1487 * The DTrace framework is locked in such a way that it may not be called
1487 1488 * back into at all. cpu_lock is held. mod_lock is not held and may not
1488 1489 * be acquired.
1489 1490 *
1490 1491 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1491 1492 *
1492 1493 * 1.5.1 Overview
1493 1494 *
1494 1495 * Called to disable the specified probe.
1495 1496 *
1496 1497 * 1.5.2 Arguments and notes
1497 1498 *
1498 1499 * The first argument is the cookie as passed to dtrace_register(). The
1499 1500 * second argument is the identifier of the probe to be disabled. The third
1500 1501 * argument is the probe argument as passed to dtrace_probe_create().
1501 1502 * dtps_disable() will be called when a probe transitions from being enabled
1502 1503 * to having zero ECBs. dtrace_probe() should never be called for a probe
1503 1504 * identifier that has been explicitly enabled via dtps_disable().
1504 1505 *
1505 1506 * 1.5.3 Return value
1506 1507 *
1507 1508 * None.
1508 1509 *
1509 1510 * 1.5.4 Caller's context
1510 1511 *
1511 1512 * The DTrace framework is locked in such a way that it may not be called
1512 1513 * back into at all. cpu_lock is held. mod_lock is not held and may not
1513 1514 * be acquired.
1514 1515 *
1515 1516 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1516 1517 *
1517 1518 * 1.6.1 Overview
1518 1519 *
1519 1520 * Called to suspend the specified enabled probe. This entry point is for
1520 1521 * providers that may need to suspend some or all of their probes when CPUs
1521 1522 * are being powered on or when the boot monitor is being entered for a
1522 1523 * prolonged period of time.
1523 1524 *
1524 1525 * 1.6.2 Arguments and notes
1525 1526 *
1526 1527 * The first argument is the cookie as passed to dtrace_register(). The
1527 1528 * second argument is the identifier of the probe to be suspended. The
1528 1529 * third argument is the probe argument as passed to dtrace_probe_create().
1529 1530 * dtps_suspend will only be called on an enabled probe. Providers that
1530 1531 * provide a dtps_suspend entry point will want to take roughly the action
1531 1532 * that it takes for dtps_disable.
1532 1533 *
1533 1534 * 1.6.3 Return value
1534 1535 *
1535 1536 * None.
1536 1537 *
1537 1538 * 1.6.4 Caller's context
1538 1539 *
1539 1540 * Interrupts are disabled. The DTrace framework is in a state such that the
1540 1541 * specified probe cannot be disabled or destroyed for the duration of
1541 1542 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1542 1543 * little latitude; the provider is expected to do no more than a store to
1543 1544 * memory.
1544 1545 *
1545 1546 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1546 1547 *
1547 1548 * 1.7.1 Overview
1548 1549 *
1549 1550 * Called to resume the specified enabled probe. This entry point is for
1550 1551 * providers that may need to resume some or all of their probes after the
1551 1552 * completion of an event that induced a call to dtps_suspend().
1552 1553 *
1553 1554 * 1.7.2 Arguments and notes
1554 1555 *
1555 1556 * The first argument is the cookie as passed to dtrace_register(). The
1556 1557 * second argument is the identifier of the probe to be resumed. The
1557 1558 * third argument is the probe argument as passed to dtrace_probe_create().
1558 1559 * dtps_resume will only be called on an enabled probe. Providers that
1559 1560 * provide a dtps_resume entry point will want to take roughly the action
1560 1561 * that it takes for dtps_enable.
1561 1562 *
1562 1563 * 1.7.3 Return value
1563 1564 *
1564 1565 * None.
1565 1566 *
1566 1567 * 1.7.4 Caller's context
1567 1568 *
1568 1569 * Interrupts are disabled. The DTrace framework is in a state such that the
1569 1570 * specified probe cannot be disabled or destroyed for the duration of
1570 1571 * dtps_resume(). As interrupts are disabled, the provider is afforded
1571 1572 * little latitude; the provider is expected to do no more than a store to
1572 1573 * memory.
1573 1574 *
1574 1575 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1575 1576 * dtrace_argdesc_t *desc)
1576 1577 *
1577 1578 * 1.8.1 Overview
1578 1579 *
1579 1580 * Called to retrieve the argument description for an args[X] variable.
1580 1581 *
1581 1582 * 1.8.2 Arguments and notes
1582 1583 *
1583 1584 * The first argument is the cookie as passed to dtrace_register(). The
1584 1585 * second argument is the identifier of the current probe. The third
1585 1586 * argument is the probe argument as passed to dtrace_probe_create(). The
1586 1587 * fourth argument is a pointer to the argument description. This
1587 1588 * description is both an input and output parameter: it contains the
1588 1589 * index of the desired argument in the dtargd_ndx field, and expects
1589 1590 * the other fields to be filled in upon return. If there is no argument
1590 1591 * corresponding to the specified index, the dtargd_ndx field should be set
1591 1592 * to DTRACE_ARGNONE.
1592 1593 *
1593 1594 * 1.8.3 Return value
1594 1595 *
1595 1596 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1596 1597 * members of the dtrace_argdesc_t structure are all output values.
1597 1598 *
1598 1599 * 1.8.4 Caller's context
1599 1600 *
1600 1601 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1601 1602 * the DTrace framework is locked in such a way that providers may not
1602 1603 * register or unregister. This means that the provider may not call any
1603 1604 * DTrace API that affects its registration with the framework, including
1604 1605 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1605 1606 * dtrace_condense().
1606 1607 *
1607 1608 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1608 1609 * int argno, int aframes)
1609 1610 *
1610 1611 * 1.9.1 Overview
1611 1612 *
1612 1613 * Called to retrieve a value for an argX or args[X] variable.
1613 1614 *
1614 1615 * 1.9.2 Arguments and notes
1615 1616 *
1616 1617 * The first argument is the cookie as passed to dtrace_register(). The
1617 1618 * second argument is the identifier of the current probe. The third
1618 1619 * argument is the probe argument as passed to dtrace_probe_create(). The
1619 1620 * fourth argument is the number of the argument (the X in the example in
1620 1621 * 1.9.1). The fifth argument is the number of stack frames that were used
1621 1622 * to get from the actual place in the code that fired the probe to
1622 1623 * dtrace_probe() itself, the so-called artificial frames. This argument may
1623 1624 * be used to descend an appropriate number of frames to find the correct
1624 1625 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1625 1626 * function is used.
1626 1627 *
1627 1628 * 1.9.3 Return value
1628 1629 *
1629 1630 * The value of the argument.
1630 1631 *
1631 1632 * 1.9.4 Caller's context
1632 1633 *
1633 1634 * This is called from within dtrace_probe() meaning that interrupts
1634 1635 * are disabled. No locks should be taken within this entry point.
1635 1636 *
1636 1637 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1637 1638 *
1638 1639 * 1.10.1 Overview
1639 1640 *
1640 1641 * Called to determine the mode of a fired probe.
1641 1642 *
1642 1643 * 1.10.2 Arguments and notes
1643 1644 *
1644 1645 * The first argument is the cookie as passed to dtrace_register(). The
1645 1646 * second argument is the identifier of the current probe. The third
1646 1647 * argument is the probe argument as passed to dtrace_probe_create(). This
1647 1648 * entry point must not be left NULL for providers whose probes allow for
1648 1649 * mixed mode tracing, that is to say those unanchored probes that can fire
1649 1650 * during kernel- or user-mode execution.
1650 1651 *
1651 1652 * 1.10.3 Return value
1652 1653 *
1653 1654 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1654 1655 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1655 1656 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1656 1657 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1657 1658 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1658 1659 * in the probe firing being silently ignored for the enabling; if the
1659 1660 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1660 1661 * prevent probe processing for the enabling, but restrictions will be in
1661 1662 * place that induce a UPRIV fault upon attempt to examine probe arguments
1662 1663 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1663 1664 * is set, similar restrictions will be placed upon operation if the
1664 1665 * privilege is sufficient to process the enabling, but does not otherwise
1665 1666 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1666 1667 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1667 1668 * two policies must be specified), but either may be combined (or not)
1668 1669 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1669 1670 *
1670 1671 * 1.10.4 Caller's context
1671 1672 *
1672 1673 * This is called from within dtrace_probe() meaning that interrupts
1673 1674 * are disabled. No locks should be taken within this entry point.
1674 1675 *
1675 1676 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1676 1677 *
1677 1678 * 1.11.1 Overview
1678 1679 *
1679 1680 * Called to destroy the specified probe.
1680 1681 *
1681 1682 * 1.11.2 Arguments and notes
1682 1683 *
1683 1684 * The first argument is the cookie as passed to dtrace_register(). The
1684 1685 * second argument is the identifier of the probe to be destroyed. The third
1685 1686 * argument is the probe argument as passed to dtrace_probe_create(). The
1686 1687 * provider should free all state associated with the probe. The framework
1687 1688 * guarantees that dtps_destroy() is only called for probes that have either
1688 1689 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1689 1690 * Once dtps_disable() has been called for a probe, no further call will be
1690 1691 * made specifying the probe.
1691 1692 *
1692 1693 * 1.11.3 Return value
1693 1694 *
1694 1695 * None.
1695 1696 *
1696 1697 * 1.11.4 Caller's context
1697 1698 *
1698 1699 * The DTrace framework is locked in such a way that it may not be called
1699 1700 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1700 1701 * acquired.
1701 1702 *
1702 1703 *
1703 1704 * 2 Provider-to-Framework API
1704 1705 *
1705 1706 * 2.1 Overview
1706 1707 *
1707 1708 * The Provider-to-Framework API provides the mechanism for the provider to
1708 1709 * register itself with the DTrace framework, to create probes, to lookup
1709 1710 * probes and (most importantly) to fire probes. The Provider-to-Framework
1710 1711 * consists of:
1711 1712 *
1712 1713 * dtrace_register() <-- Register a provider with the DTrace framework
1713 1714 * dtrace_unregister() <-- Remove a provider's DTrace registration
1714 1715 * dtrace_invalidate() <-- Invalidate the specified provider
1715 1716 * dtrace_condense() <-- Remove a provider's unenabled probes
1716 1717 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1717 1718 * dtrace_probe_create() <-- Create a DTrace probe
1718 1719 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1719 1720 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1720 1721 * dtrace_probe() <-- Fire the specified probe
1721 1722 *
1722 1723 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1723 1724 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1724 1725 * dtrace_provider_id_t *idp)
1725 1726 *
1726 1727 * 2.2.1 Overview
1727 1728 *
1728 1729 * dtrace_register() registers the calling provider with the DTrace
1729 1730 * framework. It should generally be called by DTrace providers in their
1730 1731 * attach(9E) entry point.
1731 1732 *
1732 1733 * 2.2.2 Arguments and Notes
1733 1734 *
1734 1735 * The first argument is the name of the provider. The second argument is a
1735 1736 * pointer to the stability attributes for the provider. The third argument
1736 1737 * is the privilege flags for the provider, and must be some combination of:
1737 1738 *
1738 1739 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1739 1740 *
1740 1741 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1741 1742 * enable probes from this provider
1742 1743 *
1743 1744 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1744 1745 * enable probes from this provider
1745 1746 *
1746 1747 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1747 1748 * may enable probes from this provider
1748 1749 *
1749 1750 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1750 1751 * the privilege requirements above. These probes
1751 1752 * require either (a) a user ID matching the user
1752 1753 * ID of the cred passed in the fourth argument
1753 1754 * or (b) the PRIV_PROC_OWNER privilege.
1754 1755 *
1755 1756 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1756 1757 * the privilege requirements above. These probes
1757 1758 * require either (a) a zone ID matching the zone
1758 1759 * ID of the cred passed in the fourth argument
1759 1760 * or (b) the PRIV_PROC_ZONE privilege.
1760 1761 *
1761 1762 * Note that these flags designate the _visibility_ of the probes, not
1762 1763 * the conditions under which they may or may not fire.
1763 1764 *
1764 1765 * The fourth argument is the credential that is associated with the
1765 1766 * provider. This argument should be NULL if the privilege flags don't
1766 1767 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1767 1768 * framework stashes the uid and zoneid represented by this credential
1768 1769 * for use at probe-time, in implicit predicates. These limit visibility
1769 1770 * of the probes to users and/or zones which have sufficient privilege to
1770 1771 * access them.
1771 1772 *
1772 1773 * The fifth argument is a DTrace provider operations vector, which provides
1773 1774 * the implementation for the Framework-to-Provider API. (See Section 1,
1774 1775 * above.) This must be non-NULL, and each member must be non-NULL. The
1775 1776 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1776 1777 * members (if the provider so desires, _one_ of these members may be left
1777 1778 * NULL -- denoting that the provider only implements the other) and (2)
1778 1779 * the dtps_suspend() and dtps_resume() members, which must either both be
1779 1780 * NULL or both be non-NULL.
1780 1781 *
1781 1782 * The sixth argument is a cookie to be specified as the first argument for
1782 1783 * each function in the Framework-to-Provider API. This argument may have
1783 1784 * any value.
1784 1785 *
1785 1786 * The final argument is a pointer to dtrace_provider_id_t. If
1786 1787 * dtrace_register() successfully completes, the provider identifier will be
1787 1788 * stored in the memory pointed to be this argument. This argument must be
1788 1789 * non-NULL.
1789 1790 *
1790 1791 * 2.2.3 Return value
1791 1792 *
1792 1793 * On success, dtrace_register() returns 0 and stores the new provider's
1793 1794 * identifier into the memory pointed to by the idp argument. On failure,
1794 1795 * dtrace_register() returns an errno:
1795 1796 *
1796 1797 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1797 1798 * This may because a parameter that must be non-NULL was NULL,
1798 1799 * because the name was invalid (either empty or an illegal
1799 1800 * provider name) or because the attributes were invalid.
1800 1801 *
1801 1802 * No other failure code is returned.
1802 1803 *
1803 1804 * 2.2.4 Caller's context
1804 1805 *
1805 1806 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1806 1807 * hold no locks across dtrace_register() that may also be acquired by
1807 1808 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1808 1809 *
1809 1810 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1810 1811 *
1811 1812 * 2.3.1 Overview
1812 1813 *
1813 1814 * Unregisters the specified provider from the DTrace framework. It should
1814 1815 * generally be called by DTrace providers in their detach(9E) entry point.
1815 1816 *
1816 1817 * 2.3.2 Arguments and Notes
1817 1818 *
1818 1819 * The only argument is the provider identifier, as returned from a
1819 1820 * successful call to dtrace_register(). As a result of calling
1820 1821 * dtrace_unregister(), the DTrace framework will call back into the provider
1821 1822 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1822 1823 * completes, however, the DTrace framework will no longer make calls through
1823 1824 * the Framework-to-Provider API.
1824 1825 *
1825 1826 * 2.3.3 Return value
1826 1827 *
1827 1828 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1828 1829 * returns an errno:
1829 1830 *
1830 1831 * EBUSY There are currently processes that have the DTrace pseudodevice
1831 1832 * open, or there exists an anonymous enabling that hasn't yet
1832 1833 * been claimed.
1833 1834 *
1834 1835 * No other failure code is returned.
1835 1836 *
1836 1837 * 2.3.4 Caller's context
1837 1838 *
1838 1839 * Because a call to dtrace_unregister() may induce calls through the
1839 1840 * Framework-to-Provider API, the caller may not hold any lock across
1840 1841 * dtrace_register() that is also acquired in any of the Framework-to-
1841 1842 * Provider API functions. Additionally, mod_lock may not be held.
1842 1843 *
1843 1844 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1844 1845 *
1845 1846 * 2.4.1 Overview
1846 1847 *
1847 1848 * Invalidates the specified provider. All subsequent probe lookups for the
1848 1849 * specified provider will fail, but its probes will not be removed.
1849 1850 *
1850 1851 * 2.4.2 Arguments and note
1851 1852 *
1852 1853 * The only argument is the provider identifier, as returned from a
1853 1854 * successful call to dtrace_register(). In general, a provider's probes
1854 1855 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1855 1856 * an entire provider, regardless of whether or not probes are enabled or
1856 1857 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1857 1858 * probes from firing -- it will merely prevent any new enablings of the
1858 1859 * provider's probes.
1859 1860 *
1860 1861 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1861 1862 *
1862 1863 * 2.5.1 Overview
1863 1864 *
1864 1865 * Removes all the unenabled probes for the given provider. This function is
1865 1866 * not unlike dtrace_unregister(), except that it doesn't remove the
1866 1867 * provider just as many of its associated probes as it can.
1867 1868 *
1868 1869 * 2.5.2 Arguments and Notes
1869 1870 *
1870 1871 * As with dtrace_unregister(), the sole argument is the provider identifier
1871 1872 * as returned from a successful call to dtrace_register(). As a result of
1872 1873 * calling dtrace_condense(), the DTrace framework will call back into the
1873 1874 * given provider's dtps_destroy() entry point for each of the provider's
1874 1875 * unenabled probes.
1875 1876 *
1876 1877 * 2.5.3 Return value
1877 1878 *
1878 1879 * Currently, dtrace_condense() always returns 0. However, consumers of this
1879 1880 * function should check the return value as appropriate; its behavior may
1880 1881 * change in the future.
1881 1882 *
1882 1883 * 2.5.4 Caller's context
1883 1884 *
1884 1885 * As with dtrace_unregister(), the caller may not hold any lock across
1885 1886 * dtrace_condense() that is also acquired in the provider's entry points.
1886 1887 * Also, mod_lock may not be held.
1887 1888 *
1888 1889 * 2.6 int dtrace_attached()
1889 1890 *
1890 1891 * 2.6.1 Overview
1891 1892 *
1892 1893 * Indicates whether or not DTrace has attached.
1893 1894 *
1894 1895 * 2.6.2 Arguments and Notes
1895 1896 *
1896 1897 * For most providers, DTrace makes initial contact beyond registration.
1897 1898 * That is, once a provider has registered with DTrace, it waits to hear
1898 1899 * from DTrace to create probes. However, some providers may wish to
1899 1900 * proactively create probes without first being told by DTrace to do so.
1900 1901 * If providers wish to do this, they must first call dtrace_attached() to
1901 1902 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1902 1903 * the provider must not make any other Provider-to-Framework API call.
1903 1904 *
1904 1905 * 2.6.3 Return value
1905 1906 *
1906 1907 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1907 1908 *
1908 1909 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1909 1910 * const char *func, const char *name, int aframes, void *arg)
1910 1911 *
1911 1912 * 2.7.1 Overview
1912 1913 *
1913 1914 * Creates a probe with specified module name, function name, and name.
1914 1915 *
1915 1916 * 2.7.2 Arguments and Notes
1916 1917 *
1917 1918 * The first argument is the provider identifier, as returned from a
1918 1919 * successful call to dtrace_register(). The second, third, and fourth
1919 1920 * arguments are the module name, function name, and probe name,
1920 1921 * respectively. Of these, module name and function name may both be NULL
1921 1922 * (in which case the probe is considered to be unanchored), or they may both
1922 1923 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1923 1924 * string.
1924 1925 *
1925 1926 * The fifth argument is the number of artificial stack frames that will be
1926 1927 * found on the stack when dtrace_probe() is called for the new probe. These
1927 1928 * artificial frames will be automatically be pruned should the stack() or
1928 1929 * stackdepth() functions be called as part of one of the probe's ECBs. If
1929 1930 * the parameter doesn't add an artificial frame, this parameter should be
1930 1931 * zero.
1931 1932 *
1932 1933 * The final argument is a probe argument that will be passed back to the
1933 1934 * provider when a probe-specific operation is called. (e.g., via
1934 1935 * dtps_enable(), dtps_disable(), etc.)
1935 1936 *
1936 1937 * Note that it is up to the provider to be sure that the probe that it
1937 1938 * creates does not already exist -- if the provider is unsure of the probe's
1938 1939 * existence, it should assure its absence with dtrace_probe_lookup() before
1939 1940 * calling dtrace_probe_create().
1940 1941 *
1941 1942 * 2.7.3 Return value
1942 1943 *
1943 1944 * dtrace_probe_create() always succeeds, and always returns the identifier
1944 1945 * of the newly-created probe.
1945 1946 *
1946 1947 * 2.7.4 Caller's context
1947 1948 *
1948 1949 * While dtrace_probe_create() is generally expected to be called from
1949 1950 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1950 1951 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1951 1952 *
1952 1953 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1953 1954 * const char *func, const char *name)
1954 1955 *
1955 1956 * 2.8.1 Overview
1956 1957 *
1957 1958 * Looks up a probe based on provdider and one or more of module name,
1958 1959 * function name and probe name.
1959 1960 *
1960 1961 * 2.8.2 Arguments and Notes
1961 1962 *
1962 1963 * The first argument is the provider identifier, as returned from a
1963 1964 * successful call to dtrace_register(). The second, third, and fourth
1964 1965 * arguments are the module name, function name, and probe name,
1965 1966 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1966 1967 * the identifier of the first probe that is provided by the specified
1967 1968 * provider and matches all of the non-NULL matching criteria.
1968 1969 * dtrace_probe_lookup() is generally used by a provider to be check the
1969 1970 * existence of a probe before creating it with dtrace_probe_create().
1970 1971 *
1971 1972 * 2.8.3 Return value
1972 1973 *
1973 1974 * If the probe exists, returns its identifier. If the probe does not exist,
1974 1975 * return DTRACE_IDNONE.
1975 1976 *
1976 1977 * 2.8.4 Caller's context
1977 1978 *
1978 1979 * While dtrace_probe_lookup() is generally expected to be called from
1979 1980 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1980 1981 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1981 1982 *
1982 1983 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1983 1984 *
1984 1985 * 2.9.1 Overview
1985 1986 *
1986 1987 * Returns the probe argument associated with the specified probe.
1987 1988 *
1988 1989 * 2.9.2 Arguments and Notes
1989 1990 *
1990 1991 * The first argument is the provider identifier, as returned from a
1991 1992 * successful call to dtrace_register(). The second argument is a probe
1992 1993 * identifier, as returned from dtrace_probe_lookup() or
1993 1994 * dtrace_probe_create(). This is useful if a probe has multiple
1994 1995 * provider-specific components to it: the provider can create the probe
1995 1996 * once with provider-specific state, and then add to the state by looking
1996 1997 * up the probe based on probe identifier.
1997 1998 *
1998 1999 * 2.9.3 Return value
1999 2000 *
2000 2001 * Returns the argument associated with the specified probe. If the
2001 2002 * specified probe does not exist, or if the specified probe is not provided
2002 2003 * by the specified provider, NULL is returned.
2003 2004 *
2004 2005 * 2.9.4 Caller's context
2005 2006 *
2006 2007 * While dtrace_probe_arg() is generally expected to be called from
2007 2008 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2008 2009 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2009 2010 *
2010 2011 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2011 2012 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2012 2013 *
2013 2014 * 2.10.1 Overview
2014 2015 *
2015 2016 * The epicenter of DTrace: fires the specified probes with the specified
2016 2017 * arguments.
2017 2018 *
2018 2019 * 2.10.2 Arguments and Notes
2019 2020 *
2020 2021 * The first argument is a probe identifier as returned by
2021 2022 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2022 2023 * arguments are the values to which the D variables "arg0" through "arg4"
2023 2024 * will be mapped.
2024 2025 *
2025 2026 * dtrace_probe() should be called whenever the specified probe has fired --
2026 2027 * however the provider defines it.
2027 2028 *
2028 2029 * 2.10.3 Return value
2029 2030 *
2030 2031 * None.
2031 2032 *
2032 2033 * 2.10.4 Caller's context
2033 2034 *
2034 2035 * dtrace_probe() may be called in virtually any context: kernel, user,
2035 2036 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2036 2037 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2037 2038 * that must be afforded to DTrace is the ability to make calls within
2038 2039 * itself (and to its in-kernel subroutines) and the ability to access
2039 2040 * arbitrary (but mapped) memory. On some platforms, this constrains
2040 2041 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2041 2042 * from any context in which TL is greater than zero. dtrace_probe() may
2042 2043 * also not be called from any routine which may be called by dtrace_probe()
2043 2044 * -- which includes functions in the DTrace framework and some in-kernel
2044 2045 * DTrace subroutines. All such functions "dtrace_"; providers that
2045 2046 * instrument the kernel arbitrarily should be sure to not instrument these
2046 2047 * routines.
2047 2048 */
2048 2049 typedef struct dtrace_pops {
2049 2050 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2050 2051 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2051 2052 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2052 2053 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2053 2054 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2054 2055 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2055 2056 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2056 2057 dtrace_argdesc_t *desc);
2057 2058 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2058 2059 int argno, int aframes);
2059 2060 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2060 2061 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2061 2062 } dtrace_pops_t;
2062 2063
2063 2064 #define DTRACE_MODE_KERNEL 0x01
2064 2065 #define DTRACE_MODE_USER 0x02
2065 2066 #define DTRACE_MODE_NOPRIV_DROP 0x10
2066 2067 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2067 2068 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2068 2069
2069 2070 typedef uintptr_t dtrace_provider_id_t;
2070 2071
2071 2072 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2072 2073 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2073 2074 extern int dtrace_unregister(dtrace_provider_id_t);
2074 2075 extern int dtrace_condense(dtrace_provider_id_t);
2075 2076 extern void dtrace_invalidate(dtrace_provider_id_t);
2076 2077 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2077 2078 const char *, const char *);
2078 2079 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2079 2080 const char *, const char *, int, void *);
2080 2081 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2081 2082 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2082 2083 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2083 2084
2084 2085 /*
2085 2086 * DTrace Meta Provider API
2086 2087 *
2087 2088 * The following functions are implemented by the DTrace framework and are
2088 2089 * used to implement meta providers. Meta providers plug into the DTrace
2089 2090 * framework and are used to instantiate new providers on the fly. At
2090 2091 * present, there is only one type of meta provider and only one meta
2091 2092 * provider may be registered with the DTrace framework at a time. The
2092 2093 * sole meta provider type provides user-land static tracing facilities
2093 2094 * by taking meta probe descriptions and adding a corresponding provider
2094 2095 * into the DTrace framework.
2095 2096 *
2096 2097 * 1 Framework-to-Provider
2097 2098 *
2098 2099 * 1.1 Overview
2099 2100 *
2100 2101 * The Framework-to-Provider API is represented by the dtrace_mops structure
2101 2102 * that the meta provider passes to the framework when registering itself as
2102 2103 * a meta provider. This structure consists of the following members:
2103 2104 *
2104 2105 * dtms_create_probe() <-- Add a new probe to a created provider
2105 2106 * dtms_provide_pid() <-- Create a new provider for a given process
2106 2107 * dtms_remove_pid() <-- Remove a previously created provider
2107 2108 *
2108 2109 * 1.2 void dtms_create_probe(void *arg, void *parg,
2109 2110 * dtrace_helper_probedesc_t *probedesc);
2110 2111 *
2111 2112 * 1.2.1 Overview
2112 2113 *
2113 2114 * Called by the DTrace framework to create a new probe in a provider
2114 2115 * created by this meta provider.
2115 2116 *
2116 2117 * 1.2.2 Arguments and notes
2117 2118 *
2118 2119 * The first argument is the cookie as passed to dtrace_meta_register().
2119 2120 * The second argument is the provider cookie for the associated provider;
2120 2121 * this is obtained from the return value of dtms_provide_pid(). The third
2121 2122 * argument is the helper probe description.
2122 2123 *
2123 2124 * 1.2.3 Return value
2124 2125 *
2125 2126 * None
2126 2127 *
2127 2128 * 1.2.4 Caller's context
2128 2129 *
2129 2130 * dtms_create_probe() is called from either ioctl() or module load context.
2130 2131 * The DTrace framework is locked in such a way that meta providers may not
2131 2132 * register or unregister. This means that the meta provider cannot call
2132 2133 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2133 2134 * such that the provider may (and is expected to) call provider-related
2134 2135 * DTrace provider APIs including dtrace_probe_create().
2135 2136 *
2136 2137 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2137 2138 * pid_t pid)
2138 2139 *
2139 2140 * 1.3.1 Overview
2140 2141 *
2141 2142 * Called by the DTrace framework to instantiate a new provider given the
2142 2143 * description of the provider and probes in the mprov argument. The
2143 2144 * meta provider should call dtrace_register() to insert the new provider
2144 2145 * into the DTrace framework.
2145 2146 *
2146 2147 * 1.3.2 Arguments and notes
2147 2148 *
2148 2149 * The first argument is the cookie as passed to dtrace_meta_register().
2149 2150 * The second argument is a pointer to a structure describing the new
2150 2151 * helper provider. The third argument is the process identifier for
2151 2152 * process associated with this new provider. Note that the name of the
2152 2153 * provider as passed to dtrace_register() should be the contatenation of
2153 2154 * the dtmpb_provname member of the mprov argument and the processs
2154 2155 * identifier as a string.
2155 2156 *
2156 2157 * 1.3.3 Return value
2157 2158 *
2158 2159 * The cookie for the provider that the meta provider creates. This is
2159 2160 * the same value that it passed to dtrace_register().
2160 2161 *
2161 2162 * 1.3.4 Caller's context
2162 2163 *
2163 2164 * dtms_provide_pid() is called from either ioctl() or module load context.
2164 2165 * The DTrace framework is locked in such a way that meta providers may not
2165 2166 * register or unregister. This means that the meta provider cannot call
2166 2167 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2167 2168 * is such that the provider may -- and is expected to -- call
2168 2169 * provider-related DTrace provider APIs including dtrace_register().
2169 2170 *
2170 2171 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2171 2172 * pid_t pid)
2172 2173 *
2173 2174 * 1.4.1 Overview
2174 2175 *
2175 2176 * Called by the DTrace framework to remove a provider that had previously
2176 2177 * been instantiated via the dtms_provide_pid() entry point. The meta
2177 2178 * provider need not remove the provider immediately, but this entry
2178 2179 * point indicates that the provider should be removed as soon as possible
2179 2180 * using the dtrace_unregister() API.
2180 2181 *
2181 2182 * 1.4.2 Arguments and notes
2182 2183 *
2183 2184 * The first argument is the cookie as passed to dtrace_meta_register().
2184 2185 * The second argument is a pointer to a structure describing the helper
2185 2186 * provider. The third argument is the process identifier for process
2186 2187 * associated with this new provider.
2187 2188 *
2188 2189 * 1.4.3 Return value
2189 2190 *
2190 2191 * None
2191 2192 *
2192 2193 * 1.4.4 Caller's context
2193 2194 *
2194 2195 * dtms_remove_pid() is called from either ioctl() or exit() context.
2195 2196 * The DTrace framework is locked in such a way that meta providers may not
2196 2197 * register or unregister. This means that the meta provider cannot call
2197 2198 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2198 2199 * is such that the provider may -- and is expected to -- call
2199 2200 * provider-related DTrace provider APIs including dtrace_unregister().
2200 2201 */
2201 2202 typedef struct dtrace_helper_probedesc {
2202 2203 char *dthpb_mod; /* probe module */
2203 2204 char *dthpb_func; /* probe function */
2204 2205 char *dthpb_name; /* probe name */
2205 2206 uint64_t dthpb_base; /* base address */
2206 2207 uint32_t *dthpb_offs; /* offsets array */
2207 2208 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2208 2209 uint32_t dthpb_noffs; /* offsets count */
2209 2210 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2210 2211 uint8_t *dthpb_args; /* argument mapping array */
2211 2212 uint8_t dthpb_xargc; /* translated argument count */
2212 2213 uint8_t dthpb_nargc; /* native argument count */
2213 2214 char *dthpb_xtypes; /* translated types strings */
2214 2215 char *dthpb_ntypes; /* native types strings */
2215 2216 } dtrace_helper_probedesc_t;
2216 2217
2217 2218 typedef struct dtrace_helper_provdesc {
2218 2219 char *dthpv_provname; /* provider name */
2219 2220 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2220 2221 } dtrace_helper_provdesc_t;
2221 2222
2222 2223 typedef struct dtrace_mops {
2223 2224 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2224 2225 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2225 2226 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2226 2227 } dtrace_mops_t;
2227 2228
2228 2229 typedef uintptr_t dtrace_meta_provider_id_t;
2229 2230
2230 2231 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2231 2232 dtrace_meta_provider_id_t *);
2232 2233 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2233 2234
2234 2235 /*
2235 2236 * DTrace Kernel Hooks
2236 2237 *
2237 2238 * The following functions are implemented by the base kernel and form a set of
2238 2239 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2239 2240 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2240 2241 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2241 2242 */
2242 2243
2243 2244 typedef enum dtrace_vtime_state {
2244 2245 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2245 2246 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2246 2247 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2247 2248 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2248 2249 } dtrace_vtime_state_t;
2249 2250
2250 2251 extern dtrace_vtime_state_t dtrace_vtime_active;
2251 2252 extern void dtrace_vtime_switch(kthread_t *next);
2252 2253 extern void dtrace_vtime_enable_tnf(void);
2253 2254 extern void dtrace_vtime_disable_tnf(void);
2254 2255 extern void dtrace_vtime_enable(void);
2255 2256 extern void dtrace_vtime_disable(void);
2256 2257
2257 2258 struct regs;
2258 2259
2259 2260 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2260 2261 extern int (*dtrace_return_probe_ptr)(struct regs *);
2261 2262 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2262 2263 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2263 2264 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2264 2265 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2265 2266
2266 2267 typedef uintptr_t dtrace_icookie_t;
2267 2268 typedef void (*dtrace_xcall_t)(void *);
2268 2269
2269 2270 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2270 2271 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2271 2272
2272 2273 extern void dtrace_membar_producer(void);
2273 2274 extern void dtrace_membar_consumer(void);
2274 2275
2275 2276 extern void (*dtrace_cpu_init)(processorid_t);
2276 2277 extern void (*dtrace_modload)(struct modctl *);
2277 2278 extern void (*dtrace_modunload)(struct modctl *);
2278 2279 extern void (*dtrace_helpers_cleanup)();
2279 2280 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2280 2281 extern void (*dtrace_cpustart_init)();
2281 2282 extern void (*dtrace_cpustart_fini)();
2282 2283 extern void (*dtrace_closef)();
2283 2284
2284 2285 extern void (*dtrace_debugger_init)();
2285 2286 extern void (*dtrace_debugger_fini)();
2286 2287 extern dtrace_cacheid_t dtrace_predcache_id;
2287 2288
2288 2289 extern hrtime_t dtrace_gethrtime(void);
2289 2290 extern void dtrace_sync(void);
2290 2291 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2291 2292 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2292 2293 extern void dtrace_vpanic(const char *, __va_list);
2293 2294 extern void dtrace_panic(const char *, ...);
2294 2295
2295 2296 extern int dtrace_safe_defer_signal(void);
2296 2297 extern void dtrace_safe_synchronous_signal(void);
2297 2298
2298 2299 extern int dtrace_mach_aframes(void);
2299 2300
2300 2301 #if defined(__i386) || defined(__amd64)
2301 2302 extern int dtrace_instr_size(uchar_t *instr);
2302 2303 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2303 2304 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2304 2305 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2305 2306 extern void dtrace_invop_callsite(void);
2306 2307 #endif
2307 2308
2308 2309 #ifdef __sparc
2309 2310 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2310 2311 extern void dtrace_getfsr(uint64_t *);
2311 2312 #endif
2312 2313
2313 2314 #define DTRACE_CPUFLAG_ISSET(flag) \
2314 2315 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2315 2316
2316 2317 #define DTRACE_CPUFLAG_SET(flag) \
2317 2318 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2318 2319
2319 2320 #define DTRACE_CPUFLAG_CLEAR(flag) \
2320 2321 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2321 2322
2322 2323 #endif /* _KERNEL */
2323 2324
2324 2325 #endif /* _ASM */
2325 2326
2326 2327 #if defined(__i386) || defined(__amd64)
2327 2328
2328 2329 #define DTRACE_INVOP_PUSHL_EBP 1
2329 2330 #define DTRACE_INVOP_POPL_EBP 2
2330 2331 #define DTRACE_INVOP_LEAVE 3
2331 2332 #define DTRACE_INVOP_NOP 4
2332 2333 #define DTRACE_INVOP_RET 5
2333 2334
2334 2335 #endif
2335 2336
2336 2337 #ifdef __cplusplus
2337 2338 }
2338 2339 #endif
2339 2340
2340 2341 #endif /* _SYS_DTRACE_H */
↓ open down ↓ |
1974 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX