
new/usr/src/cmd/dtrace/test/tst/common/Makefile 1

**
 4180 Tue Jan 14 16:49:30 2014
new/usr/src/cmd/dtrace/test/tst/common/Makefile
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # Copyright (c) 2012 by Delphix. All rights reserved.
29 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
30 #endif /* ! codereview */
31 #

33 include $(SRC)/Makefile.master
34 include ../Makefile.com

36 SNOOPDIR = $(SRC)/cmd/cmd-inet/usr.sbin/snoop
37 SNOOPOBJS = nfs4_xdr.o
38 SNOOPSRCS = ${SNOOPOBJS:%.o=%.c}
39 CLOBBERFILES += nfs/$(SNOOPOBJS)

41 RPCSVCDIR = $(SRC)/head/rpcsvc
42 RPCSVCOBJS = nfs_prot.o
43 RPCSVCSRCS = ${RPCSVCOBJS:%o=%c}
44 CLOBBERFILES += nfs/$(RPCSVCOBJS) $(RPCSVCDIR)/$(RPCSVCSRCS)
45 CLOBBERFILES += usdt/forker.h usdt/lazyprobe.h

47 fasttrap/tst.fasttrap.exe := LDLIBS += -ldtrace
48 fasttrap/tst.stack.exe := LDLIBS += -ldtrace

50 sysevent/tst.post.exe := LDLIBS += -lsysevent
51 sysevent/tst.post_chan.exe := LDLIBS += -lsysevent

53 ustack/tst.bigstack.exe := COPTFLAG += -xO1

55 GCC = $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc

57 nfs/%.o: $(SNOOPDIR)/%.c
58 $(COMPILE.c) -o $@ $< -I$(SNOOPDIR)
59 $(POST_PROCESS_O)
60 nfs/tst.call.exe: nfs/tst.call.o nfs/$(SNOOPOBJS)

new/usr/src/cmd/dtrace/test/tst/common/Makefile 2

61 $(LINK.c) -o $@ nfs/tst.call.o nfs/$(SNOOPOBJS) $(LDLIBS) -lnsl
62 $(POST_PROCESS) ; $(STRIP_STABS)
63 $(RPCSVCDIR)/%.c: $(RPCSVCDIR)/%.x
64 $(RPCGEN) -Cc $< > $@
65 nfs/$(RPCSVCOBJS): $(RPCSVCDIR)/$(RPCSVCSRCS)
66 $(COMPILE.c) -o $@ $(RPCSVCDIR)/$(RPCSVCSRCS)
67 $(POST_PROCESS_O)
68 nfs/tst.call3.exe: nfs/tst.call3.o nfs/$(RPCSVCOBJS)
69 $(LINK.c) -o $@ nfs/tst.call3.o nfs/$(RPCSVCOBJS) \
70 $(LDLIBS) -lnsl -lrpcsvc
71 $(POST_PROCESS) ; $(STRIP_STABS)

73 pid/tst.gcc.exe: pid/tst.gcc.c
74 $(GCC) -o pid/tst.gcc.exe pid/tst.gcc.c $(LDFLAGS)
75 $(POST_PROCESS) ; $(STRIP_STABS)

77 json/tst.usdt.o: json/usdt.h

79 json/usdt.h: json/usdt.d
80 $(DTRACE) -h -s json/usdt.d -o json/usdt.h

82 json/usdt.o: json/usdt.d json/tst.usdt.o
83 $(COMPILE.d) -o json/usdt.o -s json/usdt.d json/tst.usdt.o

85 json/tst.usdt.exe: json/tst.usdt.o json/usdt.o
86 $(LINK.c) -o json/tst.usdt.exe json/tst.usdt.o json/usdt.o $(LDLIBS)
87 $(POST_PROCESS) ; $(STRIP_STABS)

89 #endif /* ! codereview */
90 usdt/tst.args.exe: usdt/tst.args.o usdt/args.o
91 $(LINK.c) -o usdt/tst.args.exe usdt/tst.args.o usdt/args.o $(LDLIBS)
92 $(POST_PROCESS) ; $(STRIP_STABS)

94 usdt/args.o: usdt/args.d usdt/tst.args.o
95 $(COMPILE.d) -o usdt/args.o -s usdt/args.d usdt/tst.args.o

97 usdt/tst.argmap.exe: usdt/tst.argmap.o usdt/argmap.o
98 $(LINK.c) -o usdt/tst.argmap.exe \
99 usdt/tst.argmap.o usdt/argmap.o $(LDLIBS)
100 $(POST_PROCESS) ; $(STRIP_STABS)

102 usdt/argmap.o: usdt/argmap.d usdt/tst.argmap.o
103 $(COMPILE.d) -o usdt/argmap.o -s usdt/argmap.d usdt/tst.argmap.o

105 usdt/tst.forker.exe: usdt/tst.forker.o usdt/forker.o
106 $(LINK.c) -o usdt/tst.forker.exe \
107 usdt/tst.forker.o usdt/forker.o $(LDLIBS)
108 $(POST_PROCESS) ; $(STRIP_STABS)

110 usdt/forker.o: usdt/forker.d usdt/tst.forker.o
111 $(COMPILE.d) -o usdt/forker.o -s usdt/forker.d usdt/tst.forker.o

113 usdt/tst.forker.o: usdt/forker.h

115 usdt/forker.h: usdt/forker.d
116 $(DTRACE) -h -s usdt/forker.d -o usdt/forker.h

118 usdt/tst.lazyprobe.exe: usdt/tst.lazyprobe.o usdt/lazyprobe.o
119 $(LINK.c) -o usdt/tst.lazyprobe.exe \
120 usdt/tst.lazyprobe.o usdt/lazyprobe.o $(LDLIBS)
121 $(POST_PROCESS) ; $(STRIP_STABS)

123 usdt/lazyprobe.o: usdt/lazyprobe.d usdt/tst.lazyprobe.o
124 $(COMPILE.d) -xlazyload -o usdt/lazyprobe.o \
125 -s usdt/lazyprobe.d usdt/tst.lazyprobe.o

new/usr/src/cmd/dtrace/test/tst/common/Makefile 3

127 usdt/tst.lazyprobe.o: usdt/lazyprobe.h

129 usdt/lazyprobe.h: usdt/lazyprobe.d
130 $(DTRACE) -h -s usdt/lazyprobe.d -o usdt/lazyprobe.h

132 SUBDIRS = java_api
133 include ../../Makefile.subdirs

new/usr/src/cmd/dtrace/test/tst/common/aggs/tst.subr.d 1

**
 3096 Tue Jan 14 16:49:31 2014
new/usr/src/cmd/dtrace/test/tst/common/aggs/tst.subr.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 #endif /* ! codereview */
27 */

29 #include <sys/dtrace.h>

31 #define INTFUNC(x) \
32 BEGIN \
33 /*DSTYLED*/ \
34 { \
35 subr++; \
36 @[(long)x] = sum(1); \
37 /*DSTYLED*/ \
38 }

40 #define STRFUNC(x) \
41 BEGIN \
42 /*DSTYLED*/ \
43 { \
44 subr++; \
45 @str[x] = sum(1); \
46 /*DSTYLED*/ \
47 }

49 #define VOIDFUNC(x) \
50 BEGIN \
51 /*DSTYLED*/ \
52 { \
53 subr++; \
54 /*DSTYLED*/ \
55 }

57 INTFUNC(rand())
58 INTFUNC(mutex_owned(&‘cpu_lock))
59 INTFUNC(mutex_owner(&‘cpu_lock))
60 INTFUNC(mutex_type_adaptive(&‘cpu_lock))

new/usr/src/cmd/dtrace/test/tst/common/aggs/tst.subr.d 2

61 INTFUNC(mutex_type_spin(&‘cpu_lock))
62 INTFUNC(rw_read_held(&‘vfssw_lock))
63 INTFUNC(rw_write_held(&‘vfssw_lock))
64 INTFUNC(rw_iswriter(&‘vfssw_lock))
65 INTFUNC(copyin(NULL, 1))
66 STRFUNC(copyinstr(NULL, 1))
67 INTFUNC(speculation())
68 INTFUNC(progenyof($pid))
69 INTFUNC(strlen("fooey"))
70 VOIDFUNC(copyout)
71 VOIDFUNC(copyoutstr)
72 INTFUNC(alloca(10))
73 VOIDFUNC(bcopy)
74 VOIDFUNC(copyinto)
75 INTFUNC(msgdsize(NULL))
76 INTFUNC(msgsize(NULL))
77 INTFUNC(getmajor(0))
78 INTFUNC(getminor(0))
79 STRFUNC(ddi_pathname(NULL, 0))
80 STRFUNC(strjoin("foo", "bar"))
81 STRFUNC(lltostr(12373))
82 STRFUNC(basename("/var/crash/systemtap"))
83 STRFUNC(dirname("/var/crash/systemtap"))
84 STRFUNC(cleanpath("/var/crash/systemtap"))
85 STRFUNC(strchr("The SystemTap, The.", ’t’))
86 STRFUNC(strrchr("The SystemTap, The.", ’t’))
87 STRFUNC(strstr("The SystemTap, The.", "The"))
88 STRFUNC(strtok("The SystemTap, The.", "T"))
89 STRFUNC(substr("The SystemTap, The.", 0))
90 INTFUNC(index("The SystemTap, The.", "The"))
91 INTFUNC(rindex("The SystemTap, The.", "The"))
92 INTFUNC(htons(0x1234))
93 INTFUNC(htonl(0x12345678))
94 INTFUNC(htonll(0x1234567890abcdefL))
95 INTFUNC(ntohs(0x1234))
96 INTFUNC(ntohl(0x12345678))
97 INTFUNC(ntohll(0x1234567890abcdefL))
98 STRFUNC(inet_ntoa((ipaddr_t *)alloca(sizeof (ipaddr_t))))
99 STRFUNC(inet_ntoa6((in6_addr_t *)alloca(sizeof (in6_addr_t))))
100 STRFUNC(inet_ntop(AF_INET, (void *)alloca(sizeof (ipaddr_t))))
101 STRFUNC(toupper("foo"))
102 STRFUNC(tolower("BAR"))
103 INTFUNC(getf(0))
104 INTFUNC(strtoll("0x12EE5D5", 16))
105 STRFUNC(json("{\"systemtap\": false}", "systemtap"))
106 #endif /* ! codereview */

108 BEGIN
109 /subr == DIF_SUBR_MAX + 1/
110 {
111 exit(0);
112 }

114 BEGIN
115 {
116 printf("found %d subroutines, expected %d\n", subr, DIF_SUBR_MAX + 1);
117 exit(1);
118 }

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d 1

**
 3846 Tue Jan 14 16:49:31 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2012, Joyent, Inc. All rights reserved.
14 */

16 /*
17 * General functional tests of JSON parser for json().
18 */

20 #pragma D option quiet
21 #pragma D option strsize=1k

23 #define TST(name) \
24 printf("\ntst |%s|\n", name)
25 #define IN2(vala, valb) \
26 in = strjoin(vala, valb); \
27 printf("in |%s|\n", in)
28 #define IN(val) \
29 in = val; \
30 printf("in |%s|\n", in)
31 #define SEL(ss) \
32 out = json(in, ss); \
33 printf("sel |%s|\nout |%s|\n", ss, \
34 out != NULL ? out : "<NULL>")

36 BEGIN
37 {
38 TST("empty array");
39 IN("[]");
40 SEL("0");

42 TST("one-element array: integer");
43 IN("[1]");
44 SEL("0");
45 SEL("1");
46 SEL("100");
47 SEL("-1");

49 TST("one-element array: hex integer (not in spec, not supported)");
50 IN("[0x1000]");
51 SEL("0");

53 TST("one-element array: float");
54 IN("[1.5001]");
55 SEL("0");

57 TST("one-element array: float + exponent");
58 IN("[16.3e10]");
59 SEL("0");

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d 2

61 TST("one-element array: integer + whitespace");
62 IN("[\t 5\t]");
63 SEL("0");

65 TST("one-element array: integer + exponent + whitespace");
66 IN("[\t \t 16E10 \t]");
67 SEL("0");

69 TST("one-element array: string");
70 IN("[\"alpha\"]");
71 SEL("0");

73 TST("alternative first-element indexing");
74 IN("[1,5,10,15,20]");
75 SEL("[0]");
76 SEL("[3]");
77 SEL("[4]");
78 SEL("[5]");

80 TST("one-element array: object");
81 IN("[{ \"first\": true, \"second\": false }]");
82 SEL("0.first");
83 SEL("0.second");
84 SEL("0.third");

86 TST("many-element array: integers");
87 IN("[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]");
88 SEL("10"); /* F(10) = 55 */
89 SEL("14"); /* F(14) = 377 */
90 SEL("19");

92 TST("many-element array: multiple types");
93 IN2("[\"string\",32,true,{\"a\":9,\"b\":false},100.3e10,false,200.5,",
94 "{\"key\":\"val\"},null]");
95 SEL("0");
96 SEL("0.notobject");
97 SEL("1");
98 SEL("2");
99 SEL("3");
100 SEL("3.a");
101 SEL("3.b");
102 SEL("3.c");
103 SEL("4");
104 SEL("5");
105 SEL("6");
106 SEL("7");
107 SEL("7.key");
108 SEL("7.key.notobject");
109 SEL("7.nonexist");
110 SEL("8");
111 SEL("9");

113 TST("many-element array: multiple types + whitespace");
114 IN2("\n[\t\"string\" ,\t32 , true\t,\t {\"a\": 9,\t\"b\": false},\t\t",
115 "100.3e10, false, 200.5,{\"key\" \t:\n \"val\"},\t\t null]\t\t");
116 SEL("0");
117 SEL("0.notobject");
118 SEL("1");
119 SEL("2");
120 SEL("3");
121 SEL("3.a");
122 SEL("3.b");
123 SEL("3.c");
124 SEL("4");
125 SEL("5");
126 SEL("6");

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d 3

127 SEL("7");
128 SEL("7.key");
129 SEL("7.key.notobject");
130 SEL("7.nonexist");
131 SEL("8");
132 SEL("9");

134 TST("two-element array: various string escape codes");
135 IN2("[\"abcd \\\" \\\\ \\/ \\b \\f \\n \\r \\t \\u0000 \\uf00F \", ",
136 "\"final\"]");
137 SEL("0");
138 SEL("1");

140 TST("three-element array: broken escape code");
141 IN("[\"fine here\", \"dodgey \\u00AZ\", \"wont get here\"]");
142 SEL("0");
143 SEL("1");
144 SEL("2");

146 TST("nested objects");
147 IN2("{ \"top\": { \"mid\" : { \"legs\": \"feet\" }, \"number\": 9, ",
148 "\"array\":[0,1,{\"a\":true,\"bb\":[1,2,false,{\"x\":\"yz\"}]}]}}");
149 SEL("top");
150 SEL("fargo");
151 SEL("top.mid");
152 SEL("top.centre");
153 SEL("top.mid.legs");
154 SEL("top.mid.number");
155 SEL("top.mid.array");
156 SEL("top.number");
157 SEL("top.array");
158 SEL("top.array[0]");
159 SEL("top.array[1]");
160 SEL("top.array[2]");
161 SEL("top.array[2].a");
162 SEL("top.array[2].b");
163 SEL("top.array[2].bb");
164 SEL("top.array[2].bb[0]");
165 SEL("top.array[2].bb[1]");
166 SEL("top.array[2].bb[2]");
167 SEL("top.array[2].bb[3]");
168 SEL("top.array[2].bb[3].x");
169 SEL("top.array[2].bb[3].x.nofurther");
170 SEL("top.array[2].bb[4]");
171 SEL("top.array[3]");

173 exit(0);
174 }

176 ERROR
177 {
178 exit(1);
179 }
180 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d.out 1

**
 3653 Tue Jan 14 16:49:31 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d.out
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

2 tst |empty array|
3 in |[]|
4 sel |0|
5 out |<NULL>|

7 tst |one-element array: integer|
8 in |[1]|
9 sel |0|
10 out |1|
11 sel |1|
12 out |<NULL>|
13 sel |100|
14 out |<NULL>|
15 sel |-1|
16 out |<NULL>|

18 tst |one-element array: hex integer (not in spec, not supported)|
19 in |[0x1000]|
20 sel |0|
21 out |<NULL>|

23 tst |one-element array: float|
24 in |[1.5001]|
25 sel |0|
26 out |1.5001|

28 tst |one-element array: float + exponent|
29 in |[16.3e10]|
30 sel |0|
31 out |16.3e10|

33 tst |one-element array: integer + whitespace|
34 in |[5]|
35 sel |0|
36 out |5|

38 tst |one-element array: integer + exponent + whitespace|
39 in |[16E10]|
40 sel |0|
41 out |16E10|

43 tst |one-element array: string|
44 in |["alpha"]|
45 sel |0|
46 out |alpha|

48 tst |alternative first-element indexing|
49 in |[1,5,10,15,20]|
50 sel |[0]|
51 out |1|
52 sel |[3]|
53 out |15|
54 sel |[4]|
55 out |20|
56 sel |[5]|
57 out |<NULL>|

59 tst |one-element array: object|
60 in |[{ "first": true, "second": false }]|

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d.out 2

61 sel |0.first|
62 out |true|
63 sel |0.second|
64 out |false|
65 sel |0.third|
66 out |<NULL>|

68 tst |many-element array: integers|
69 in |[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]|
70 sel |10|
71 out |55|
72 sel |14|
73 out |377|
74 sel |19|
75 out |<NULL>|

77 tst |many-element array: multiple types|
78 in |["string",32,true,{"a":9,"b":false},100.3e10,false,200.5,{"key":"val"},null
79 sel |0|
80 out |string|
81 sel |0.notobject|
82 out |<NULL>|
83 sel |1|
84 out |32|
85 sel |2|
86 out |true|
87 sel |3|
88 out |{"a":9,"b":false}|
89 sel |3.a|
90 out |9|
91 sel |3.b|
92 out |false|
93 sel |3.c|
94 out |<NULL>|
95 sel |4|
96 out |100.3e10|
97 sel |5|
98 out |false|
99 sel |6|
100 out |200.5|
101 sel |7|
102 out |{"key":"val"}|
103 sel |7.key|
104 out |val|
105 sel |7.key.notobject|
106 out |<NULL>|
107 sel |7.nonexist|
108 out |<NULL>|
109 sel |8|
110 out |null|
111 sel |9|
112 out |<NULL>|

114 tst |many-element array: multiple types + whitespace|
115 in |
116 ["string" , 32 , true , {"a": 9, "b": false},
117 "val"}, null] |
118 sel |0|
119 out |string|
120 sel |0.notobject|
121 out |<NULL>|
122 sel |1|
123 out |32|
124 sel |2|
125 out |true|
126 sel |3|

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d.out 3

127 out |{"a": 9, "b": false}|
128 sel |3.a|
129 out |9|
130 sel |3.b|
131 out |false|
132 sel |3.c|
133 out |<NULL>|
134 sel |4|
135 out |100.3e10|
136 sel |5|
137 out |false|
138 sel |6|
139 out |200.5|
140 sel |7|
141 out |{"key" :
142 "val"}|
143 sel |7.key|
144 out |val|
145 sel |7.key.notobject|
146 out |<NULL>|
147 sel |7.nonexist|
148 out |<NULL>|
149 sel |8|
150 out |null|
151 sel |9|
152 out |<NULL>|

154 tst |two-element array: various string escape codes|
155 in |["abcd \" \\ \/ \b \f \n \r \t \u0000 \uf00F ", "final"]|
156 sel |0|
157 out |abcd \" \\ \/ \b \f \n \r \t \u0000 \uf00F |
158 sel |1|
159 out |final|

161 tst |three-element array: broken escape code|
162 in |["fine here", "dodgey \u00AZ", "wont get here"]|
163 sel |0|
164 out |fine here|
165 sel |1|
166 out |<NULL>|
167 sel |2|
168 out |<NULL>|

170 tst |nested objects|
171 in |{ "top": { "mid" : { "legs": "feet" }, "number": 9, "array":[0,1,{"a":true
172 sel |top|
173 out |{ "mid" : { "legs": "feet" }, "number": 9, "array":[0,1,{"a":true,"bb":[1,
174 sel |fargo|
175 out |<NULL>|
176 sel |top.mid|
177 out |{ "legs": "feet" }|
178 sel |top.centre|
179 out |<NULL>|
180 sel |top.mid.legs|
181 out |feet|
182 sel |top.mid.number|
183 out |<NULL>|
184 sel |top.mid.array|
185 out |<NULL>|
186 sel |top.number|
187 out |9|
188 sel |top.array|
189 out |[0,1,{"a":true,"bb":[1,2,false,{"x":"yz"}]}]|
190 sel |top.array[0]|
191 out |0|
192 sel |top.array[1]|

new/usr/src/cmd/dtrace/test/tst/common/json/tst.general.d.out 4

193 out |1|
194 sel |top.array[2]|
195 out |{"a":true,"bb":[1,2,false,{"x":"yz"}]}|
196 sel |top.array[2].a|
197 out |true|
198 sel |top.array[2].b|
199 out |<NULL>|
200 sel |top.array[2].bb|
201 out |[1,2,false,{"x":"yz"}]|
202 sel |top.array[2].bb[0]|
203 out |1|
204 sel |top.array[2].bb[1]|
205 out |2|
206 sel |top.array[2].bb[2]|
207 out |false|
208 sel |top.array[2].bb[3]|
209 out |{"x":"yz"}|
210 sel |top.array[2].bb[3].x|
211 out |yz|
212 sel |top.array[2].bb[3].x.nofurther|
213 out |<NULL>|
214 sel |top.array[2].bb[4]|
215 out |<NULL>|
216 sel |top.array[3]|
217 out |<NULL>|

219 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/tst.strsize.d 1

**
 1329 Tue Jan 14 16:49:31 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.strsize.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2012, Joyent, Inc. All rights reserved.
14 */

16 /*
17 * ASSERTION:
18 * json() run time must be bounded above by strsize. This test makes strsize
19 * small and deliberately overflows it to prove we bail and return NULL in
20 * the event that we run off the end of the string.
21 *
22 */

24 #pragma D option quiet
25 #pragma D option strsize=18

27 BEGIN
28 {
29 in = "{\"a\": 1024}"; /* length == 19 */
30 out = json(in, "a");
31 printf("|%s|\n%s\n\n", in, out != NULL ? out : "<NULL>");

33 in = "{\"a\": 1024}"; /* length == 11 */
34 out = json(in, "a");
35 printf("|%s|\n%s\n\n", in, out != NULL ? out : "<NULL>");

37 in = "{\"a\":false,\"b\":true}"; /* length == 20 */
38 out = json(in, "b");
39 printf("|%s|\n%s\n\n", in, out != NULL ? out : "<NULL>");

41 in = "{\"a\":false,\"b\":20}"; /* length == 18 */
42 out = json(in, "b");
43 printf("|%s|\n%s\n\n", in, out != NULL ? out : "<NULL>");

45 exit(0);
46 }

48 ERROR
49 {
50 exit(1);
51 }
52 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/tst.strsize.d.out 1

**
 104 Tue Jan 14 16:49:32 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.strsize.d.out
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 |{"a": 1024|
2 <NULL>

4 |{"a": 1024}|
5 1024

7 |{"a":false,"b":tru|
8 <NULL>

10 |{"a":false,"b":20}|
11 20

14 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.c 1

**
 1279 Tue Jan 14 16:49:32 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.c
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2012 (c), Joyent, Inc. All rights reserved.
14 */

16 #include <sys/sdt.h>
17 #include "usdt.h"

19 #define FMT "{" \
20 " \"sizes\": [\"first\", 2, %f]," \
21 " \"index\": %d," \
22 " \"facts\": {" \
23 " \"odd\": \"%s\"," \
24 " \"even\": \"%s\"" \
25 " }," \
26 " \"action\": \"%s\"" \
27 "}\n"

29 int
30 waiting(volatile int *a)
31 {
32 return (*a);
33 }

35 int
36 main(int argc, char **argv)
37 {
38 volatile int a = 0;
39 int idx;
40 double size = 250.5;

42 while (waiting(&a) == 0)
43 continue;

45 for (idx = 0; idx < 10; idx++) {
46 char *odd, *even, *json, *action;

48 size *= 1.78;
49 odd = idx % 2 == 1 ? "true" : "false";
50 even = idx % 2 == 0 ? "true" : "false";
51 action = idx == 7 ? "ignore" : "print";

53 asprintf(&json, FMT, size, idx, odd, even, action);
54 BUNYAN_FAKE_LOG_DEBUG(json);
55 free(json);
56 }

58 BUNYAN_FAKE_LOG_DEBUG("{\"finished\": true}");

60 return (0);

new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.c 2

61 }
62 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.d 1

**
 1529 Tue Jan 14 16:49:32 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
14 */

16 #pragma D option strsize=4k
17 #pragma D option quiet
18 #pragma D option destructive

20 /*
21 * This test reads a JSON string from a USDT probe, roughly simulating the
22 * primary motivating use case for the json() subroutine: filtering
23 * JSON-formatted log messages from a logging subsystem like node-bunyan.
24 */

26 pid$1:a.out:waiting:entry
27 {
28 this->value = (int *)alloca(sizeof (int));
29 *this->value = 1;
30 copyout(this->value, arg0, sizeof (int));
31 }

33 bunyan*$1:::log-*
34 {
35 this->j = copyinstr(arg0);
36 }

38 bunyan*$1:::log-*
39 /json(this->j, "finished") == NULL && json(this->j, "action") != "ignore"/
40 {
41 this->index = strtoll(json(this->j, "index"));
42 this->size = json(this->j, "sizes[2]");
43 this->odd = json(this->j, "facts.odd");
44 this->even = json(this->j, "facts.even");
45 printf("[%d] sz %s odd %s even %s\n", this->index, this->size,
46 this->odd, this->even);
47 }

49 bunyan*$1:::log-*
50 /json(this->j, "finished") != NULL/
51 {
52 printf("FINISHED!\n");
53 exit(0);
54 }

56 tick-10s
57 {
58 printf("ERROR: Timed out before finish message!\n");
59 exit(1);
60 }

new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.d 2

62 ERROR
63 {
64 exit(1);
65 }
66 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.d.out 1

**
 363 Tue Jan 14 16:49:32 2014
new/usr/src/cmd/dtrace/test/tst/common/json/tst.usdt.d.out
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 [0] sz 445.890000 odd false even true
2 [1] sz 793.684200 odd true even false
3 [2] sz 1412.757876 odd false even true
4 [3] sz 2514.709019 odd true even false
5 [4] sz 4476.182054 odd false even true
6 [5] sz 7967.604057 odd true even false
7 [6] sz 14182.335221 odd false even true
8 [8] sz 44935.310914 odd false even true
9 [9] sz 79984.853427 odd true even false
10 FINISHED!

12 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/json/usdt.d 1

**
 753 Tue Jan 14 16:49:32 2014
new/usr/src/cmd/dtrace/test/tst/common/json/usdt.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2012, Joyent, Inc. All rights reserved.
14 */

16 /*
17 * Sets up a fake node-bunyan-like USDT provider for use from C.
18 */

20 provider bunyan_fake {
21 probe log__trace(char *msg);
22 probe log__debug(char *msg);
23 probe log__info(char *msg);
24 probe log__warn(char *msg);
25 probe log__error(char *msg);
26 probe log__fatal(char *msg);
27 };
28 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.func_access.ksh 1

**
 2609 Tue Jan 14 16:49:33 2014
new/usr/src/cmd/dtrace/test/tst/common/privs/tst.func_access.ksh
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 #endif /* ! codereview */
27 #
25 #ident "%Z%%M% %I% %E% SMI"

29 ppriv -s A=basic,dtrace_proc,dtrace_user $$

31 /usr/sbin/dtrace -q -s /dev/stdin <<"EOF"

33 BEGIN {
34 errorcount = 0;
35 expected_errorcount = 27;
33 expected_errorcount = 23;
36 }

38 BEGIN { trace(mutex_owned(&‘pidlock)); }
39 BEGIN { trace(mutex_owner(&‘pidlock)); }
40 BEGIN { trace(mutex_type_adaptive(&‘pidlock)); }
41 BEGIN { trace(mutex_type_spin(&‘pidlock)); }

43 BEGIN { trace(rw_read_held(&‘ksyms_lock)); }
44 BEGIN { trace(rw_write_held(&‘ksyms_lock)); }
45 BEGIN { trace(rw_iswriter(&‘ksyms_lock)); }

47 BEGIN { x = alloca(10); bcopy(‘initname, x, 10); trace(stringof(x)); }
48 /* We have no reliable way to test msgsize */

50 BEGIN { trace(strlen(‘initname)); }
51 BEGIN { trace(strchr(‘initname, 0x69)); }
52 BEGIN { trace(strrchr(‘initname, 0x69)); }
53 BEGIN { trace(strstr("/sbin/init/foo", ‘initname)); }
54 BEGIN { trace(strstr(‘initname, "in")); }
55 BEGIN { trace(strtok(‘initname, "/")); }
56 BEGIN { trace(strtok(NULL, "/")); }
57 BEGIN { trace(strtok("foo/bar", ‘initname)); }
58 BEGIN { trace(strtok(NULL, ‘initname)); }

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.func_access.ksh 2

59 BEGIN { trace(strtoll(‘initname)); }
60 BEGIN { trace(strtoll(‘initname, 10)); }
61 #endif /* ! codereview */
62 BEGIN { trace(substr(‘initname, 2, 3)); }

64 BEGIN { trace(ddi_pathname(‘top_devinfo, 1)); }
65 BEGIN { trace(strjoin(‘initname, "foo")); }
66 BEGIN { trace(strjoin("foo", ‘initname)); }
67 BEGIN { trace(dirname(‘initname)); }
68 BEGIN { trace(cleanpath(‘initname)); }

70 BEGIN { j = "{\"/sbin/init\":\"uh oh\"}"; trace(json(j, ‘initname)); }
71 BEGIN { trace(json(‘initname, "x")); }

73 #endif /* ! codereview */
74 ERROR {
75 errorcount++;
76 }

78 BEGIN /errorcount == expected_errorcount/ {
79 trace("test passed");
80 exit(0);
81 }

83 BEGIN /errorcount != expected_errorcount/ {
84 printf("fail: expected %d. saw %d.", expected_errorcount, errorcount);
85 exit(1);
86 }
87 EOF

90 exit $?

new/usr/src/cmd/dtrace/test/tst/common/strtoll/err.BaseTooLarge.d 1

**
 749 Tue Jan 14 16:49:33 2014
new/usr/src/cmd/dtrace/test/tst/common/strtoll/err.BaseTooLarge.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
14 */

16 /*
17 * ASSERTION:
18 * The largest base we will accept is Base 36 -- i.e. using all of 0-9 and
19 * A-Z as numerals.
20 *
21 * SECTION: Actions and Subroutines/strtoll()
22 */

24 #pragma D option quiet

26 BEGIN
27 {
28 printf("%d\n", strtoll("0", 37));
29 exit(0);
30 }

32 ERROR
33 {
34 exit(1);
35 }
36 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/strtoll/err.BaseTooSmall.d 1

**
 698 Tue Jan 14 16:49:34 2014
new/usr/src/cmd/dtrace/test/tst/common/strtoll/err.BaseTooSmall.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
14 */

16 /*
17 * ASSERTION:
18 * The smallest base we will accept is Base 2.
19 *
20 * SECTION: Actions and Subroutines/strtoll()
21 */

23 #pragma D option quiet

25 BEGIN
26 {
27 printf("%d\n", strtoll("0", 1));
28 exit(0);
29 }

31 ERROR
32 {
33 exit(1);
34 }
35 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/strtoll/tst.strtoll.d 1

**
 1699 Tue Jan 14 16:49:34 2014
new/usr/src/cmd/dtrace/test/tst/common/strtoll/tst.strtoll.d
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
14 */

16 /*
17 * ASSERTION:
18 * Test the strtoll() subroutine.
19 *
20 * SECTION: Actions and Subroutines/strtoll()
21 */

23 #pragma D option quiet

25 BEGIN
26 {

28 /* minimum base (2) and maximum base (36): */
29 printf("%d\n", strtoll("0", 2));
30 printf("%d\n", strtoll("1", 36));

32 /* simple tests: */
33 printf("%d\n", strtoll("0x20", 16));
34 printf("%d\n", strtoll("-32", 10));
35 printf("%d\n", strtoll("010", 8));
36 printf("%d\n", strtoll("101010", 2));

38 /* INT64_MIN and INT64_MAX: */
39 printf("%d\n", strtoll("9223372036854775807"));
40 printf("%d\n", strtoll("-9223372036854775808"));
41 printf("%d\n", strtoll("0777777777777777777777", 8));
42 printf("%d\n", strtoll("-01000000000000000000000", 8));

44 /* wrapping: */
45 printf("%d\n", strtoll("1000000000000000000000", 8));
46 printf("%d\n", strtoll("-1000000000000000000001", 8));

48 /* hex without prefix: */
49 printf("%d\n", strtoll("baddcafe", 16));

51 /* stopping at first out-of-base character: */
52 printf("%d\n", strtoll("12j", 10));
53 printf("%d\n", strtoll("102", 2));

55 /* base 36: */
56 printf("%d\n", strtoll("-0DTrace4EverZ", 36));

58 /* base 10 is assumed: */
59 printf("%d\n", strtoll("1985"));
60 printf("%d\n", strtoll("-2012"));

new/usr/src/cmd/dtrace/test/tst/common/strtoll/tst.strtoll.d 2

62 /* empty string: */
63 printf("%d\n", strtoll(""));

65 exit(0);
66 }
67 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/strtoll/tst.strtoll.d.out 1

**
 190 Tue Jan 14 16:49:34 2014
new/usr/src/cmd/dtrace/test/tst/common/strtoll/tst.strtoll.d.out
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 0
2 1
3 32
4 -32
5 8
6 42
7 9223372036854775807
8 -9223372036854775808
9 9223372036854775807
10 -9223372036854775808
11 -9223372036854775808
12 9223372036854775807
13 3135097598
14 12
15 2
16 -1819882045752187535
17 1985
18 -2012
19 0

21 #endif /* ! codereview */

new/usr/src/common/util/strtolctype.h 1

**
 2529 Tue Jan 14 16:49:34 2014
new/usr/src/common/util/strtolctype.h
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1988 AT&T */
28 /* All Rights Reserved */

30 #ifndef _COMMON_UTIL_CTYPE_H
31 #define _COMMON_UTIL_CTYPE_H

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 /*
38 * This header file contains a collection of macros that the strtou?ll?
39 * functions in common/util use to test characters. What we need is a kernel
40 * version of ctype.h.
41 *
42 * NOTE: These macros are used within several DTrace probe context functions.
43 * They must not be altered to make function calls or perform actions not
44 * safe in probe context.
45 #endif /* ! codereview */
46 */

48 #if defined(_KERNEL) && !defined(_BOOT)

50 #define isalnum(ch) (isalpha(ch) || isdigit(ch))
51 #define isalpha(ch) (isupper(ch) || islower(ch))
52 #define isdigit(ch) ((ch) >= ’0’ && (ch) <= ’9’)
53 #define islower(ch) ((ch) >= ’a’ && (ch) <= ’z’)
54 #define isspace(ch) (((ch) == ’ ’) || ((ch) == ’\r’) || ((ch) == ’\n’) || \
55 ((ch) == ’\t’) || ((ch) == ’\f’))
56 #define isupper(ch) ((ch) >= ’A’ && (ch) <= ’Z’)
57 #define isxdigit(ch) (isdigit(ch) || ((ch) >= ’a’ && (ch) <= ’f’) || \
58 ((ch) >= ’A’ && (ch) <= ’F’))

60 #endif /* _KERNEL && !_BOOT */

new/usr/src/common/util/strtolctype.h 2

62 #define DIGIT(x) \
63 (isdigit(x) ? (x) - ’0’ : islower(x) ? (x) + 10 - ’a’ : (x) + 10 - ’A’)

65 #define MBASE (’z’ - ’a’ + 1 + 10)

67 /*
68 * The following macro is a version of isalnum() that limits alphabetic
69 * characters to the ranges a-z and A-Z; locale dependent characters will not
70 * return 1. The members of a-z and A-Z are assumed to be in ascending order
71 * and contiguous.
72 */
73 #define lisalnum(x) \
74 (isdigit(x) || ((x) >= ’a’ && (x) <= ’z’) || ((x) >= ’A’ && (x) <= ’Z’))

76 #ifdef __cplusplus
77 }
78 #endif

80 #endif /* _COMMON_UTIL_CTYPE_H */

new/usr/src/lib/libdtrace/common/dt_open.c 1

**
 54172 Tue Jan 14 16:49:35 2014
new/usr/src/lib/libdtrace/common/dt_open.c
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**
______unchanged_portion_omitted_

82 /*
83 * The version number should be increased for every customer visible release
84 * of DTrace. The major number should be incremented when a fundamental
85 * change has been made that would affect all consumers, and would reflect
86 * sweeping changes to DTrace or the D language. The minor number should be
87 * incremented when a change is introduced that could break scripts that had
88 * previously worked; for example, adding a new built-in variable could break
89 * a script which was already using that identifier. The micro number should
90 * be changed when introducing functionality changes or major bug fixes that
91 * do not affect backward compatibility -- this is merely to make capabilities
92 * easily determined from the version number. Minor bugs do not require any
93 * modification to the version number.
94 */
95 #define DT_VERS_1_0 DT_VERSION_NUMBER(1, 0, 0)
96 #define DT_VERS_1_1 DT_VERSION_NUMBER(1, 1, 0)
97 #define DT_VERS_1_2 DT_VERSION_NUMBER(1, 2, 0)
98 #define DT_VERS_1_2_1 DT_VERSION_NUMBER(1, 2, 1)
99 #define DT_VERS_1_2_2 DT_VERSION_NUMBER(1, 2, 2)
100 #define DT_VERS_1_3 DT_VERSION_NUMBER(1, 3, 0)
101 #define DT_VERS_1_4 DT_VERSION_NUMBER(1, 4, 0)
102 #define DT_VERS_1_4_1 DT_VERSION_NUMBER(1, 4, 1)
103 #define DT_VERS_1_5 DT_VERSION_NUMBER(1, 5, 0)
104 #define DT_VERS_1_6 DT_VERSION_NUMBER(1, 6, 0)
105 #define DT_VERS_1_6_1 DT_VERSION_NUMBER(1, 6, 1)
106 #define DT_VERS_1_6_2 DT_VERSION_NUMBER(1, 6, 2)
107 #define DT_VERS_1_6_3 DT_VERSION_NUMBER(1, 6, 3)
108 #define DT_VERS_1_7 DT_VERSION_NUMBER(1, 7, 0)
109 #define DT_VERS_1_7_1 DT_VERSION_NUMBER(1, 7, 1)
110 #define DT_VERS_1_8 DT_VERSION_NUMBER(1, 8, 0)
111 #define DT_VERS_1_8_1 DT_VERSION_NUMBER(1, 8, 1)
112 #define DT_VERS_1_9 DT_VERSION_NUMBER(1, 9, 0)
113 #define DT_VERS_1_9_1 DT_VERSION_NUMBER(1, 9, 1)
114 #define DT_VERS_1_10 DT_VERSION_NUMBER(1, 10, 0)
115 #define DT_VERS_1_11 DT_VERSION_NUMBER(1, 11, 0)
116 #define DT_VERS_LATEST DT_VERS_1_11
117 #define DT_VERS_STRING "Sun D 1.11"
115 #define DT_VERS_LATEST DT_VERS_1_10
116 #define DT_VERS_STRING "Sun D 1.10"

119 const dt_version_t _dtrace_versions[] = {
120 DT_VERS_1_0, /* D API 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
121 DT_VERS_1_1, /* D API 1.1.0 Solaris Express 6/05 */
122 DT_VERS_1_2, /* D API 1.2.0 Solaris 10 Update 1 */
123 DT_VERS_1_2_1, /* D API 1.2.1 Solaris Express 4/06 */
124 DT_VERS_1_2_2, /* D API 1.2.2 Solaris Express 6/06 */
125 DT_VERS_1_3, /* D API 1.3 Solaris Express 10/06 */
126 DT_VERS_1_4, /* D API 1.4 Solaris Express 2/07 */
127 DT_VERS_1_4_1, /* D API 1.4.1 Solaris Express 4/07 */
128 DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */
129 DT_VERS_1_6, /* D API 1.6 */
130 DT_VERS_1_6_1, /* D API 1.6.1 */
131 DT_VERS_1_6_2, /* D API 1.6.2 */
132 DT_VERS_1_6_3, /* D API 1.6.3 */
133 DT_VERS_1_7, /* D API 1.7 */
134 DT_VERS_1_7_1, /* D API 1.7.1 */
135 DT_VERS_1_8, /* D API 1.8 */
136 DT_VERS_1_8_1, /* D API 1.8.1 */
137 DT_VERS_1_9, /* D API 1.9 */

new/usr/src/lib/libdtrace/common/dt_open.c 2

138 DT_VERS_1_9_1, /* D API 1.9.1 */
139 DT_VERS_1_10, /* D API 1.10 */
140 DT_VERS_1_11, /* D API 1.11 */
141 #endif /* ! codereview */
142 0
143 };

145 /*
146 * Table of global identifiers. This is used to populate the global identifier
147 * hash when a new dtrace client open occurs. For more info see dt_ident.h.
148 * The global identifiers that represent functions use the dt_idops_func ops
149 * and specify the private data pointer as a prototype string which is parsed
150 * when the identifier is first encountered. These prototypes look like ANSI
151 * C function prototypes except that the special symbol "@" can be used as a
152 * wildcard to represent a single parameter of any type (i.e. any dt_node_t).
153 * The standard "..." notation can also be used to represent varargs. An empty
154 * parameter list is taken to mean void (that is, no arguments are permitted).
155 * A parameter enclosed in square brackets (e.g. "[int]") denotes an optional
156 * argument.
157 */
158 static const dt_ident_t _dtrace_globals[] = {
159 { "alloca", DT_IDENT_FUNC, 0, DIF_SUBR_ALLOCA, DT_ATTR_STABCMN, DT_VERS_1_0,
160 &dt_idops_func, "void *(size_t)" },
161 { "arg0", DT_IDENT_SCALAR, 0, DIF_VAR_ARG0, DT_ATTR_STABCMN, DT_VERS_1_0,
162 &dt_idops_type, "int64_t" },
163 { "arg1", DT_IDENT_SCALAR, 0, DIF_VAR_ARG1, DT_ATTR_STABCMN, DT_VERS_1_0,
164 &dt_idops_type, "int64_t" },
165 { "arg2", DT_IDENT_SCALAR, 0, DIF_VAR_ARG2, DT_ATTR_STABCMN, DT_VERS_1_0,
166 &dt_idops_type, "int64_t" },
167 { "arg3", DT_IDENT_SCALAR, 0, DIF_VAR_ARG3, DT_ATTR_STABCMN, DT_VERS_1_0,
168 &dt_idops_type, "int64_t" },
169 { "arg4", DT_IDENT_SCALAR, 0, DIF_VAR_ARG4, DT_ATTR_STABCMN, DT_VERS_1_0,
170 &dt_idops_type, "int64_t" },
171 { "arg5", DT_IDENT_SCALAR, 0, DIF_VAR_ARG5, DT_ATTR_STABCMN, DT_VERS_1_0,
172 &dt_idops_type, "int64_t" },
173 { "arg6", DT_IDENT_SCALAR, 0, DIF_VAR_ARG6, DT_ATTR_STABCMN, DT_VERS_1_0,
174 &dt_idops_type, "int64_t" },
175 { "arg7", DT_IDENT_SCALAR, 0, DIF_VAR_ARG7, DT_ATTR_STABCMN, DT_VERS_1_0,
176 &dt_idops_type, "int64_t" },
177 { "arg8", DT_IDENT_SCALAR, 0, DIF_VAR_ARG8, DT_ATTR_STABCMN, DT_VERS_1_0,
178 &dt_idops_type, "int64_t" },
179 { "arg9", DT_IDENT_SCALAR, 0, DIF_VAR_ARG9, DT_ATTR_STABCMN, DT_VERS_1_0,
180 &dt_idops_type, "int64_t" },
181 { "args", DT_IDENT_ARRAY, 0, DIF_VAR_ARGS, DT_ATTR_STABCMN, DT_VERS_1_0,
182 &dt_idops_args, NULL },
183 { "avg", DT_IDENT_AGGFUNC, 0, DTRACEAGG_AVG, DT_ATTR_STABCMN, DT_VERS_1_0,
184 &dt_idops_func, "void(@)" },
185 { "basename", DT_IDENT_FUNC, 0, DIF_SUBR_BASENAME, DT_ATTR_STABCMN, DT_VERS_1_0,
186 &dt_idops_func, "string(const char *)" },
187 { "bcopy", DT_IDENT_FUNC, 0, DIF_SUBR_BCOPY, DT_ATTR_STABCMN, DT_VERS_1_0,
188 &dt_idops_func, "void(void *, void *, size_t)" },
189 { "breakpoint", DT_IDENT_ACTFUNC, 0, DT_ACT_BREAKPOINT,
190 DT_ATTR_STABCMN, DT_VERS_1_0,
191 &dt_idops_func, "void()" },
192 { "caller", DT_IDENT_SCALAR, 0, DIF_VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0,
193 &dt_idops_type, "uintptr_t" },
194 { "chill", DT_IDENT_ACTFUNC, 0, DT_ACT_CHILL, DT_ATTR_STABCMN, DT_VERS_1_0,
195 &dt_idops_func, "void(int)" },
196 { "cleanpath", DT_IDENT_FUNC, 0, DIF_SUBR_CLEANPATH, DT_ATTR_STABCMN,
197 DT_VERS_1_0, &dt_idops_func, "string(const char *)" },
198 { "clear", DT_IDENT_ACTFUNC, 0, DT_ACT_CLEAR, DT_ATTR_STABCMN, DT_VERS_1_0,
199 &dt_idops_func, "void(...)" },
200 { "commit", DT_IDENT_ACTFUNC, 0, DT_ACT_COMMIT, DT_ATTR_STABCMN, DT_VERS_1_0,
201 &dt_idops_func, "void(int)" },
202 { "copyin", DT_IDENT_FUNC, 0, DIF_SUBR_COPYIN, DT_ATTR_STABCMN, DT_VERS_1_0,
203 &dt_idops_func, "void *(uintptr_t, size_t)" },

new/usr/src/lib/libdtrace/common/dt_open.c 3

204 { "copyinstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINSTR,
205 DT_ATTR_STABCMN, DT_VERS_1_0,
206 &dt_idops_func, "string(uintptr_t, [size_t])" },
207 { "copyinto", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINTO, DT_ATTR_STABCMN,
208 DT_VERS_1_0, &dt_idops_func, "void(uintptr_t, size_t, void *)" },
209 { "copyout", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUT, DT_ATTR_STABCMN, DT_VERS_1_0,
210 &dt_idops_func, "void(void *, uintptr_t, size_t)" },
211 { "copyoutstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUTSTR,
212 DT_ATTR_STABCMN, DT_VERS_1_0,
213 &dt_idops_func, "void(char *, uintptr_t, size_t)" },
214 { "count", DT_IDENT_AGGFUNC, 0, DTRACEAGG_COUNT, DT_ATTR_STABCMN, DT_VERS_1_0,
215 &dt_idops_func, "void()" },
216 { "curthread", DT_IDENT_SCALAR, 0, DIF_VAR_CURTHREAD,
217 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_PRIVATE,
218 DTRACE_CLASS_COMMON }, DT_VERS_1_0,
219 &dt_idops_type, "genunix‘kthread_t *" },
220 { "ddi_pathname", DT_IDENT_FUNC, 0, DIF_SUBR_DDI_PATHNAME,
221 DT_ATTR_EVOLCMN, DT_VERS_1_0,
222 &dt_idops_func, "string(void *, int64_t)" },
223 { "denormalize", DT_IDENT_ACTFUNC, 0, DT_ACT_DENORMALIZE, DT_ATTR_STABCMN,
224 DT_VERS_1_0, &dt_idops_func, "void(...)" },
225 { "dirname", DT_IDENT_FUNC, 0, DIF_SUBR_DIRNAME, DT_ATTR_STABCMN, DT_VERS_1_0,
226 &dt_idops_func, "string(const char *)" },
227 { "discard", DT_IDENT_ACTFUNC, 0, DT_ACT_DISCARD, DT_ATTR_STABCMN, DT_VERS_1_0,
228 &dt_idops_func, "void(int)" },
229 { "epid", DT_IDENT_SCALAR, 0, DIF_VAR_EPID, DT_ATTR_STABCMN, DT_VERS_1_0,
230 &dt_idops_type, "uint_t" },
231 { "errno", DT_IDENT_SCALAR, 0, DIF_VAR_ERRNO, DT_ATTR_STABCMN, DT_VERS_1_0,
232 &dt_idops_type, "int" },
233 { "execname", DT_IDENT_SCALAR, 0, DIF_VAR_EXECNAME,
234 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
235 { "exit", DT_IDENT_ACTFUNC, 0, DT_ACT_EXIT, DT_ATTR_STABCMN, DT_VERS_1_0,
236 &dt_idops_func, "void(int)" },
237 { "freopen", DT_IDENT_ACTFUNC, 0, DT_ACT_FREOPEN, DT_ATTR_STABCMN,
238 DT_VERS_1_1, &dt_idops_func, "void(@, ...)" },
239 { "ftruncate", DT_IDENT_ACTFUNC, 0, DT_ACT_FTRUNCATE, DT_ATTR_STABCMN,
240 DT_VERS_1_0, &dt_idops_func, "void()" },
241 { "func", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
242 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
243 { "getmajor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMAJOR,
244 DT_ATTR_EVOLCMN, DT_VERS_1_0,
245 &dt_idops_func, "genunix‘major_t(genunix‘dev_t)" },
246 { "getminor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMINOR,
247 DT_ATTR_EVOLCMN, DT_VERS_1_0,
248 &dt_idops_func, "genunix‘minor_t(genunix‘dev_t)" },
249 { "htonl", DT_IDENT_FUNC, 0, DIF_SUBR_HTONL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
250 &dt_idops_func, "uint32_t(uint32_t)" },
251 { "htonll", DT_IDENT_FUNC, 0, DIF_SUBR_HTONLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
252 &dt_idops_func, "uint64_t(uint64_t)" },
253 { "htons", DT_IDENT_FUNC, 0, DIF_SUBR_HTONS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
254 &dt_idops_func, "uint16_t(uint16_t)" },
255 { "getf", DT_IDENT_FUNC, 0, DIF_SUBR_GETF, DT_ATTR_STABCMN, DT_VERS_1_10,
256 &dt_idops_func, "file_t *(int)" },
257 { "gid", DT_IDENT_SCALAR, 0, DIF_VAR_GID, DT_ATTR_STABCMN, DT_VERS_1_0,
258 &dt_idops_type, "gid_t" },
259 { "id", DT_IDENT_SCALAR, 0, DIF_VAR_ID, DT_ATTR_STABCMN, DT_VERS_1_0,
260 &dt_idops_type, "uint_t" },
261 { "index", DT_IDENT_FUNC, 0, DIF_SUBR_INDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
262 &dt_idops_func, "int(const char *, const char *, [int])" },
263 { "inet_ntoa", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA, DT_ATTR_STABCMN,
264 DT_VERS_1_5, &dt_idops_func, "string(ipaddr_t *)" },
265 { "inet_ntoa6", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA6, DT_ATTR_STABCMN,
266 DT_VERS_1_5, &dt_idops_func, "string(in6_addr_t *)" },
267 { "inet_ntop", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOP, DT_ATTR_STABCMN,
268 DT_VERS_1_5, &dt_idops_func, "string(int, void *)" },
269 { "ipl", DT_IDENT_SCALAR, 0, DIF_VAR_IPL, DT_ATTR_STABCMN, DT_VERS_1_0,

new/usr/src/lib/libdtrace/common/dt_open.c 4

270 &dt_idops_type, "uint_t" },
271 { "json", DT_IDENT_FUNC, 0, DIF_SUBR_JSON, DT_ATTR_STABCMN, DT_VERS_1_11,
272 &dt_idops_func, "string(const char *, const char *)" },
273 #endif /* ! codereview */
274 { "jstack", DT_IDENT_ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
275 &dt_idops_func, "stack(...)" },
276 { "lltostr", DT_IDENT_FUNC, 0, DIF_SUBR_LLTOSTR, DT_ATTR_STABCMN, DT_VERS_1_0,
277 &dt_idops_func, "string(int64_t, [int])" },
278 { "llquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LLQUANTIZE, DT_ATTR_STABCMN,
279 DT_VERS_1_7, &dt_idops_func,
280 "void(@, int32_t, int32_t, int32_t, int32_t, ...)" },
281 { "lquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LQUANTIZE,
282 DT_ATTR_STABCMN, DT_VERS_1_0,
283 &dt_idops_func, "void(@, int32_t, int32_t, ...)" },
284 { "max", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MAX, DT_ATTR_STABCMN, DT_VERS_1_0,
285 &dt_idops_func, "void(@)" },
286 { "min", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MIN, DT_ATTR_STABCMN, DT_VERS_1_0,
287 &dt_idops_func, "void(@)" },
288 { "mod", DT_IDENT_ACTFUNC, 0, DT_ACT_MOD, DT_ATTR_STABCMN,
289 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
290 { "msgdsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGDSIZE,
291 DT_ATTR_STABCMN, DT_VERS_1_0,
292 &dt_idops_func, "size_t(mblk_t *)" },
293 { "msgsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGSIZE,
294 DT_ATTR_STABCMN, DT_VERS_1_0,
295 &dt_idops_func, "size_t(mblk_t *)" },
296 { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED,
297 DT_ATTR_EVOLCMN, DT_VERS_1_0,
298 &dt_idops_func, "int(genunix‘kmutex_t *)" },
299 { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER,
300 DT_ATTR_EVOLCMN, DT_VERS_1_0,
301 &dt_idops_func, "genunix‘kthread_t *(genunix‘kmutex_t *)" },
302 { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE,
303 DT_ATTR_EVOLCMN, DT_VERS_1_0,
304 &dt_idops_func, "int(genunix‘kmutex_t *)" },
305 { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN,
306 DT_ATTR_EVOLCMN, DT_VERS_1_0,
307 &dt_idops_func, "int(genunix‘kmutex_t *)" },
308 { "ntohl", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
309 &dt_idops_func, "uint32_t(uint32_t)" },
310 { "ntohll", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
311 &dt_idops_func, "uint64_t(uint64_t)" },
312 { "ntohs", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
313 &dt_idops_func, "uint16_t(uint16_t)" },
314 { "normalize", DT_IDENT_ACTFUNC, 0, DT_ACT_NORMALIZE, DT_ATTR_STABCMN,
315 DT_VERS_1_0, &dt_idops_func, "void(...)" },
316 { "panic", DT_IDENT_ACTFUNC, 0, DT_ACT_PANIC, DT_ATTR_STABCMN, DT_VERS_1_0,
317 &dt_idops_func, "void()" },
318 { "pid", DT_IDENT_SCALAR, 0, DIF_VAR_PID, DT_ATTR_STABCMN, DT_VERS_1_0,
319 &dt_idops_type, "pid_t" },
320 { "ppid", DT_IDENT_SCALAR, 0, DIF_VAR_PPID, DT_ATTR_STABCMN, DT_VERS_1_0,
321 &dt_idops_type, "pid_t" },
322 { "print", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINT, DT_ATTR_STABCMN, DT_VERS_1_9,
323 &dt_idops_func, "void(@)" },
324 { "printa", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTA, DT_ATTR_STABCMN, DT_VERS_1_0,
325 &dt_idops_func, "void(@, ...)" },
326 { "printf", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTF, DT_ATTR_STABCMN, DT_VERS_1_0,
327 &dt_idops_func, "void(@, ...)" },
328 { "probefunc", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEFUNC,
329 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
330 { "probemod", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEMOD,
331 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
332 { "probename", DT_IDENT_SCALAR, 0, DIF_VAR_PROBENAME,
333 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
334 { "probeprov", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEPROV,
335 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },

new/usr/src/lib/libdtrace/common/dt_open.c 5

336 { "progenyof", DT_IDENT_FUNC, 0, DIF_SUBR_PROGENYOF,
337 DT_ATTR_STABCMN, DT_VERS_1_0,
338 &dt_idops_func, "int(pid_t)" },
339 { "quantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_QUANTIZE,
340 DT_ATTR_STABCMN, DT_VERS_1_0,
341 &dt_idops_func, "void(@, ...)" },
342 { "raise", DT_IDENT_ACTFUNC, 0, DT_ACT_RAISE, DT_ATTR_STABCMN, DT_VERS_1_0,
343 &dt_idops_func, "void(int)" },
344 { "rand", DT_IDENT_FUNC, 0, DIF_SUBR_RAND, DT_ATTR_STABCMN, DT_VERS_1_0,
345 &dt_idops_func, "int()" },
346 { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR_RINDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
347 &dt_idops_func, "int(const char *, const char *, [int])" },
348 { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER,
349 DT_ATTR_EVOLCMN, DT_VERS_1_0,
350 &dt_idops_func, "int(genunix‘krwlock_t *)" },
351 { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD,
352 DT_ATTR_EVOLCMN, DT_VERS_1_0,
353 &dt_idops_func, "int(genunix‘krwlock_t *)" },
354 { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD,
355 DT_ATTR_EVOLCMN, DT_VERS_1_0,
356 &dt_idops_func, "int(genunix‘krwlock_t *)" },
357 { "self", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
358 &dt_idops_type, "void" },
359 { "setopt", DT_IDENT_ACTFUNC, 0, DT_ACT_SETOPT, DT_ATTR_STABCMN,
360 DT_VERS_1_2, &dt_idops_func, "void(const char *, [const char *])" },
361 { "speculate", DT_IDENT_ACTFUNC, 0, DT_ACT_SPECULATE,
362 DT_ATTR_STABCMN, DT_VERS_1_0,
363 &dt_idops_func, "void(int)" },
364 { "speculation", DT_IDENT_FUNC, 0, DIF_SUBR_SPECULATION,
365 DT_ATTR_STABCMN, DT_VERS_1_0,
366 &dt_idops_func, "int()" },
367 { "stack", DT_IDENT_ACTFUNC, 0, DT_ACT_STACK, DT_ATTR_STABCMN, DT_VERS_1_0,
368 &dt_idops_func, "stack(...)" },
369 { "stackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_STACKDEPTH,
370 DT_ATTR_STABCMN, DT_VERS_1_0,
371 &dt_idops_type, "uint32_t" },
372 { "stddev", DT_IDENT_AGGFUNC, 0, DTRACEAGG_STDDEV, DT_ATTR_STABCMN,
373 DT_VERS_1_6, &dt_idops_func, "void(@)" },
374 { "stop", DT_IDENT_ACTFUNC, 0, DT_ACT_STOP, DT_ATTR_STABCMN, DT_VERS_1_0,
375 &dt_idops_func, "void()" },
376 { "strchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
377 &dt_idops_func, "string(const char *, char)" },
378 { "strlen", DT_IDENT_FUNC, 0, DIF_SUBR_STRLEN, DT_ATTR_STABCMN, DT_VERS_1_0,
379 &dt_idops_func, "size_t(const char *)" },
380 { "strjoin", DT_IDENT_FUNC, 0, DIF_SUBR_STRJOIN, DT_ATTR_STABCMN, DT_VERS_1_0,
381 &dt_idops_func, "string(const char *, const char *)" },
382 { "strrchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
383 &dt_idops_func, "string(const char *, char)" },
384 { "strstr", DT_IDENT_FUNC, 0, DIF_SUBR_STRSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
385 &dt_idops_func, "string(const char *, const char *)" },
386 { "strtok", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOK, DT_ATTR_STABCMN, DT_VERS_1_1,
387 &dt_idops_func, "string(const char *, const char *)" },
388 { "strtoll", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOLL, DT_ATTR_STABCMN, DT_VERS_1_11,
389 &dt_idops_func, "int64_t(const char *, [int])" },
390 #endif /* ! codereview */
391 { "substr", DT_IDENT_FUNC, 0, DIF_SUBR_SUBSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
392 &dt_idops_func, "string(const char *, int, [int])" },
393 { "sum", DT_IDENT_AGGFUNC, 0, DTRACEAGG_SUM, DT_ATTR_STABCMN, DT_VERS_1_0,
394 &dt_idops_func, "void(@)" },
395 { "sym", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
396 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
397 { "system", DT_IDENT_ACTFUNC, 0, DT_ACT_SYSTEM, DT_ATTR_STABCMN, DT_VERS_1_0,
398 &dt_idops_func, "void(@, ...)" },
399 { "this", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
400 &dt_idops_type, "void" },
401 { "tid", DT_IDENT_SCALAR, 0, DIF_VAR_TID, DT_ATTR_STABCMN, DT_VERS_1_0,

new/usr/src/lib/libdtrace/common/dt_open.c 6

402 &dt_idops_type, "id_t" },
403 { "timestamp", DT_IDENT_SCALAR, 0, DIF_VAR_TIMESTAMP,
404 DT_ATTR_STABCMN, DT_VERS_1_0,
405 &dt_idops_type, "uint64_t" },
406 { "tolower", DT_IDENT_FUNC, 0, DIF_SUBR_TOLOWER, DT_ATTR_STABCMN, DT_VERS_1_8,
407 &dt_idops_func, "string(const char *)" },
408 { "toupper", DT_IDENT_FUNC, 0, DIF_SUBR_TOUPPER, DT_ATTR_STABCMN, DT_VERS_1_8,
409 &dt_idops_func, "string(const char *)" },
410 { "trace", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACE, DT_ATTR_STABCMN, DT_VERS_1_0,
411 &dt_idops_func, "void(@)" },
412 { "tracemem", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACEMEM,
413 DT_ATTR_STABCMN, DT_VERS_1_0,
414 &dt_idops_func, "void(@, size_t, ...)" },
415 { "trunc", DT_IDENT_ACTFUNC, 0, DT_ACT_TRUNC, DT_ATTR_STABCMN,
416 DT_VERS_1_0, &dt_idops_func, "void(...)" },
417 { "uaddr", DT_IDENT_ACTFUNC, 0, DT_ACT_UADDR, DT_ATTR_STABCMN,
418 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
419 { "ucaller", DT_IDENT_SCALAR, 0, DIF_VAR_UCALLER, DT_ATTR_STABCMN,
420 DT_VERS_1_2, &dt_idops_type, "uint64_t" },
421 { "ufunc", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
422 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
423 { "uid", DT_IDENT_SCALAR, 0, DIF_VAR_UID, DT_ATTR_STABCMN, DT_VERS_1_0,
424 &dt_idops_type, "uid_t" },
425 { "umod", DT_IDENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCMN,
426 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
427 { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR_UREGS, DT_ATTR_STABCMN, DT_VERS_1_0,
428 &dt_idops_regs, NULL },
429 { "ustack", DT_IDENT_ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
430 &dt_idops_func, "stack(...)" },
431 { "ustackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_USTACKDEPTH,
432 DT_ATTR_STABCMN, DT_VERS_1_2,
433 &dt_idops_type, "uint32_t" },
434 { "usym", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
435 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
436 { "vmregs", DT_IDENT_ARRAY, 0, DIF_VAR_VMREGS, DT_ATTR_STABCMN, DT_VERS_1_7,
437 &dt_idops_regs, NULL },
438 { "vtimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_VTIMESTAMP,
439 DT_ATTR_STABCMN, DT_VERS_1_0,
440 &dt_idops_type, "uint64_t" },
441 { "walltimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_WALLTIMESTAMP,
442 DT_ATTR_STABCMN, DT_VERS_1_0,
443 &dt_idops_type, "int64_t" },
444 { "zonename", DT_IDENT_SCALAR, 0, DIF_VAR_ZONENAME,
445 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
446 { NULL, 0, 0, 0, { 0, 0, 0 }, 0, NULL, NULL }
447 };

449 /*
450 * Tables of ILP32 intrinsic integer and floating-point type templates to use
451 * to populate the dynamic "C" CTF type container.
452 */
453 static const dt_intrinsic_t _dtrace_intrinsics_32[] = {
454 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
455 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
456 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
457 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
458 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
459 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
460 { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
461 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
462 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
463 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
464 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
465 { "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
466 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
467 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },

new/usr/src/lib/libdtrace/common/dt_open.c 7

468 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
469 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
470 { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
471 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
472 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
473 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
474 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
475 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
476 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
477 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
478 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
479 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
480 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
481 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
482 { NULL, { 0, 0, 0 }, 0 }
483 };

485 /*
486 * Tables of LP64 intrinsic integer and floating-point type templates to use
487 * to populate the dynamic "C" CTF type container.
488 */
489 static const dt_intrinsic_t _dtrace_intrinsics_64[] = {
490 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
491 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
492 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
493 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
494 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
495 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
496 { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
497 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
498 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
499 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
500 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
501 { "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
502 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
503 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
504 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
505 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
506 { "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER },
507 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
508 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
509 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
510 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
511 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
512 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
513 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
514 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
515 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
516 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
517 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
518 { NULL, { 0, 0, 0 }, 0 }
519 };

521 /*
522 * Tables of ILP32 typedefs to use to populate the dynamic "D" CTF container.
523 * These aliases ensure that D definitions can use typical <sys/types.h> names.
524 */
525 static const dt_typedef_t _dtrace_typedefs_32[] = {
526 { "char", "int8_t" },
527 { "short", "int16_t" },
528 { "int", "int32_t" },
529 { "long long", "int64_t" },
530 { "int", "intptr_t" },
531 { "int", "ssize_t" },
532 { "unsigned char", "uint8_t" },
533 { "unsigned short", "uint16_t" },

new/usr/src/lib/libdtrace/common/dt_open.c 8

534 { "unsigned", "uint32_t" },
535 { "unsigned long long", "uint64_t" },
536 { "unsigned char", "uchar_t" },
537 { "unsigned short", "ushort_t" },
538 { "unsigned", "uint_t" },
539 { "unsigned long", "ulong_t" },
540 { "unsigned long long", "u_longlong_t" },
541 { "int", "ptrdiff_t" },
542 { "unsigned", "uintptr_t" },
543 { "unsigned", "size_t" },
544 { "long", "id_t" },
545 { "long", "pid_t" },
546 { NULL, NULL }
547 };

549 /*
550 * Tables of LP64 typedefs to use to populate the dynamic "D" CTF container.
551 * These aliases ensure that D definitions can use typical <sys/types.h> names.
552 */
553 static const dt_typedef_t _dtrace_typedefs_64[] = {
554 { "char", "int8_t" },
555 { "short", "int16_t" },
556 { "int", "int32_t" },
557 { "long", "int64_t" },
558 { "long", "intptr_t" },
559 { "long", "ssize_t" },
560 { "unsigned char", "uint8_t" },
561 { "unsigned short", "uint16_t" },
562 { "unsigned", "uint32_t" },
563 { "unsigned long", "uint64_t" },
564 { "unsigned char", "uchar_t" },
565 { "unsigned short", "ushort_t" },
566 { "unsigned", "uint_t" },
567 { "unsigned long", "ulong_t" },
568 { "unsigned long long", "u_longlong_t" },
569 { "long", "ptrdiff_t" },
570 { "unsigned long", "uintptr_t" },
571 { "unsigned long", "size_t" },
572 { "int", "id_t" },
573 { "int", "pid_t" },
574 { NULL, NULL }
575 };

577 /*
578 * Tables of ILP32 integer type templates used to populate the dtp->dt_ints[]
579 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
580 */
581 static const dt_intdesc_t _dtrace_ints_32[] = {
582 { "int", NULL, CTF_ERR, 0x7fffffffULL },
583 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
584 { "long", NULL, CTF_ERR, 0x7fffffffULL },
585 { "unsigned long", NULL, CTF_ERR, 0xffffffffULL },
586 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
587 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
588 };

590 /*
591 * Tables of LP64 integer type templates used to populate the dtp->dt_ints[]
592 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
593 */
594 static const dt_intdesc_t _dtrace_ints_64[] = {
595 { "int", NULL, CTF_ERR, 0x7fffffffULL },
596 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
597 { "long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
598 { "unsigned long", NULL, CTF_ERR, 0xffffffffffffffffULL },
599 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },

new/usr/src/lib/libdtrace/common/dt_open.c 9

600 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
601 };

603 /*
604 * Table of macro variable templates used to populate the macro identifier hash
605 * when a new dtrace client open occurs. Values are set by dtrace_update().
606 */
607 static const dt_ident_t _dtrace_macros[] = {
608 { "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
609 { "euid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
610 { "gid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
611 { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
612 { "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
613 { "ppid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
614 { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
615 { "sid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
616 { "taskid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
617 { "target", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
618 { "uid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
619 { NULL, 0, 0, 0, { 0, 0, 0 }, 0 }
620 };

622 /*
623 * Hard-wired definition string to be compiled and cached every time a new
624 * DTrace library handle is initialized. This string should only be used to
625 * contain definitions that should be present regardless of DTRACE_O_NOLIBS.
626 */
627 static const char _dtrace_hardwire[] = "\
628 inline long NULL = 0; \n\
629 #pragma D binding \"1.0\" NULL\n\
630 ";

632 /*
633 * Default DTrace configuration to use when opening libdtrace DTRACE_O_NODEV.
634 * If DTRACE_O_NODEV is not set, we load the configuration from the kernel.
635 * The use of CTF_MODEL_NATIVE is more subtle than it might appear: we are
636 * relying on the fact that when running dtrace(1M), isaexec will invoke the
637 * binary with the same bitness as the kernel, which is what we want by default
638 * when generating our DIF. The user can override the choice using oflags.
639 */
640 static const dtrace_conf_t _dtrace_conf = {
641 DIF_VERSION, /* dtc_difversion */
642 DIF_DIR_NREGS, /* dtc_difintregs */
643 DIF_DTR_NREGS, /* dtc_diftupregs */
644 CTF_MODEL_NATIVE /* dtc_ctfmodel */
645 };

647 const dtrace_attribute_t _dtrace_maxattr = {
648 DTRACE_STABILITY_MAX,
649 DTRACE_STABILITY_MAX,
650 DTRACE_CLASS_MAX
651 };

653 const dtrace_attribute_t _dtrace_defattr = {
654 DTRACE_STABILITY_STABLE,
655 DTRACE_STABILITY_STABLE,
656 DTRACE_CLASS_COMMON
657 };

659 const dtrace_attribute_t _dtrace_symattr = {
660 DTRACE_STABILITY_PRIVATE,
661 DTRACE_STABILITY_PRIVATE,
662 DTRACE_CLASS_UNKNOWN
663 };

665 const dtrace_attribute_t _dtrace_typattr = {

new/usr/src/lib/libdtrace/common/dt_open.c 10

666 DTRACE_STABILITY_PRIVATE,
667 DTRACE_STABILITY_PRIVATE,
668 DTRACE_CLASS_UNKNOWN
669 };

671 const dtrace_attribute_t _dtrace_prvattr = {
672 DTRACE_STABILITY_PRIVATE,
673 DTRACE_STABILITY_PRIVATE,
674 DTRACE_CLASS_UNKNOWN
675 };

677 const dtrace_pattr_t _dtrace_prvdesc = {
678 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
679 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
680 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
681 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
682 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
683 };

685 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1) to invoke */
686 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default ld(1) to invoke */

688 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
689 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */

691 int _dtrace_strbuckets = 211; /* default number of hash buckets (prime) */
692 int _dtrace_intbuckets = 256; /* default number of integer buckets (Pof2) */
693 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
694 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
695 uint_t _dtrace_pidbuckets = 64; /* default number of pid hash buckets */
696 uint_t _dtrace_pidlrulim = 8; /* default number of pid handles to cache */
697 size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */
698 int _dtrace_argmax = 32; /* default maximum number of probe arguments */

700 int _dtrace_debug = 0; /* debug messages enabled (off) */
701 const char *const _dtrace_version = DT_VERS_STRING; /* API version string */
702 int _dtrace_rdvers = RD_VERSION; /* rtld_db feature version */

704 typedef struct dt_fdlist {
705 int *df_fds; /* array of provider driver file descriptors */
706 uint_t df_ents; /* number of valid elements in df_fds[] */
707 uint_t df_size; /* size of df_fds[] */
708 } dt_fdlist_t;

710 #pragma init(_dtrace_init)
711 void
712 _dtrace_init(void)
713 {
714 _dtrace_debug = getenv("DTRACE_DEBUG") != NULL;

716 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {
717 if (rd_init(_dtrace_rdvers) == RD_OK)
718 break;
719 }
720 }

722 static dtrace_hdl_t *
723 set_open_errno(dtrace_hdl_t *dtp, int *errp, int err)
724 {
725 if (dtp != NULL)
726 dtrace_close(dtp);
727 if (errp != NULL)
728 *errp = err;
729 return (NULL);
730 }

new/usr/src/lib/libdtrace/common/dt_open.c 11

732 static void
733 dt_provmod_open(dt_provmod_t **provmod, dt_fdlist_t *dfp)
734 {
735 dt_provmod_t *prov;
736 char path[PATH_MAX];
737 struct dirent *dp, *ep;
738 DIR *dirp;
739 int fd;

741 if ((dirp = opendir(_dtrace_provdir)) == NULL)
742 return; /* failed to open directory; just skip it */

744 ep = alloca(sizeof (struct dirent) + PATH_MAX + 1);
745 bzero(ep, sizeof (struct dirent) + PATH_MAX + 1);

747 while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) {
748 if (dp->d_name[0] == ’.’)
749 continue; /* skip "." and ".." */

751 if (dfp->df_ents == dfp->df_size) {
752 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16;
753 int *fds = realloc(dfp->df_fds, size * sizeof (int));

755 if (fds == NULL)
756 break; /* skip the rest of this directory */

758 dfp->df_fds = fds;
759 dfp->df_size = size;
760 }

762 (void) snprintf(path, sizeof (path), "%s/%s",
763 _dtrace_provdir, dp->d_name);

765 if ((fd = open(path, O_RDONLY)) == -1)
766 continue; /* failed to open driver; just skip it */

768 if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) ||
769 (prov->dp_name = malloc(strlen(dp->d_name) + 1)) == NULL) {
770 free(prov);
771 (void) close(fd);
772 break;
773 }

775 (void) strcpy(prov->dp_name, dp->d_name);
776 prov->dp_next = *provmod;
777 *provmod = prov;

779 dt_dprintf("opened provider %s\n", dp->d_name);
780 dfp->df_fds[dfp->df_ents++] = fd;
781 }

783 (void) closedir(dirp);
784 }

786 static void
787 dt_provmod_destroy(dt_provmod_t **provmod)
788 {
789 dt_provmod_t *next, *current;

791 for (current = *provmod; current != NULL; current = next) {
792 next = current->dp_next;
793 free(current->dp_name);
794 free(current);
795 }

797 *provmod = NULL;

new/usr/src/lib/libdtrace/common/dt_open.c 12

798 }

800 static const char *
801 dt_get_sysinfo(int cmd, char *buf, size_t len)
802 {
803 ssize_t rv = sysinfo(cmd, buf, len);
804 char *p = buf;

806 if (rv < 0 || rv > len)
807 (void) snprintf(buf, len, "%s", "Unknown");

809 while ((p = strchr(p, ’.’)) != NULL)
810 *p++ = ’_’;

812 return (buf);
813 }

815 static dtrace_hdl_t *
816 dt_vopen(int version, int flags, int *errp,
817 const dtrace_vector_t *vector, void *arg)
818 {
819 dtrace_hdl_t *dtp = NULL;
820 int dtfd = -1, ftfd = -1, fterr = 0;
821 dtrace_prog_t *pgp;
822 dt_module_t *dmp;
823 dt_provmod_t *provmod = NULL;
824 int i, err;
825 struct rlimit rl;

827 const dt_intrinsic_t *dinp;
828 const dt_typedef_t *dtyp;
829 const dt_ident_t *idp;

831 dtrace_typeinfo_t dtt;
832 ctf_funcinfo_t ctc;
833 ctf_arinfo_t ctr;

835 dt_fdlist_t df = { NULL, 0, 0 };

837 char isadef[32], utsdef[32];
838 char s1[64], s2[64];

840 if (version <= 0)
841 return (set_open_errno(dtp, errp, EINVAL));

843 if (version > DTRACE_VERSION)
844 return (set_open_errno(dtp, errp, EDT_VERSION));

846 if (version < DTRACE_VERSION) {
847 /*
848 * Currently, increasing the library version number is used to
849 * denote a binary incompatible change. That is, a consumer
850 * of the library cannot run on a version of the library with
851 * a higher DTRACE_VERSION number than the consumer compiled
852 * against. Once the library API has been committed to,
853 * backwards binary compatibility will be required; at that
854 * time, this check should change to return EDT_OVERSION only
855 * if the specified version number is less than the version
856 * number at the time of interface commitment.
857 */
858 return (set_open_errno(dtp, errp, EDT_OVERSION));
859 }

861 if (flags & ~DTRACE_O_MASK)
862 return (set_open_errno(dtp, errp, EINVAL));

new/usr/src/lib/libdtrace/common/dt_open.c 13

864 if ((flags & DTRACE_O_LP64) && (flags & DTRACE_O_ILP32))
865 return (set_open_errno(dtp, errp, EINVAL));

867 if (vector == NULL && arg != NULL)
868 return (set_open_errno(dtp, errp, EINVAL));

870 if (elf_version(EV_CURRENT) == EV_NONE)
871 return (set_open_errno(dtp, errp, EDT_ELFVERSION));

873 if (vector != NULL || (flags & DTRACE_O_NODEV))
874 goto alloc; /* do not attempt to open dtrace device */

876 /*
877 * Before we get going, crank our limit on file descriptors up to the
878 * hard limit. This is to allow for the fact that libproc keeps file
879 * descriptors to objects open for the lifetime of the proc handle;
880 * without raising our hard limit, we would have an acceptably small
881 * bound on the number of processes that we could concurrently
882 * instrument with the pid provider.
883 */
884 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
885 rl.rlim_cur = rl.rlim_max;
886 (void) setrlimit(RLIMIT_NOFILE, &rl);
887 }

889 /*
890 * Get the device path of each of the providers. We hold them open
891 * in the df.df_fds list until we open the DTrace driver itself,
892 * allowing us to see all of the probes provided on this system. Once
893 * we have the DTrace driver open, we can safely close all the providers
894 * now that they have registered with the framework.
895 */
896 dt_provmod_open(&provmod, &df);

898 dtfd = open("/dev/dtrace/dtrace", O_RDWR);
899 err = errno; /* save errno from opening dtfd */

901 ftfd = open("/dev/dtrace/provider/fasttrap", O_RDWR);
902 fterr = ftfd == -1 ? errno : 0; /* save errno from open ftfd */

904 while (df.df_ents-- != 0)
905 (void) close(df.df_fds[df.df_ents]);

907 free(df.df_fds);

909 /*
910 * If we failed to open the dtrace device, fail dtrace_open().
911 * We convert some kernel errnos to custom libdtrace errnos to
912 * improve the resulting message from the usual strerror().
913 */
914 if (dtfd == -1) {
915 dt_provmod_destroy(&provmod);
916 switch (err) {
917 case ENOENT:
918 err = EDT_NOENT;
919 break;
920 case EBUSY:
921 err = EDT_BUSY;
922 break;
923 case EACCES:
924 err = EDT_ACCESS;
925 break;
926 }
927 return (set_open_errno(dtp, errp, err));
928 }

new/usr/src/lib/libdtrace/common/dt_open.c 14

930 (void) fcntl(dtfd, F_SETFD, FD_CLOEXEC);
931 (void) fcntl(ftfd, F_SETFD, FD_CLOEXEC);

933 alloc:
934 if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL)
935 return (set_open_errno(dtp, errp, EDT_NOMEM));

937 bzero(dtp, sizeof (dtrace_hdl_t));
938 dtp->dt_oflags = flags;
939 dtp->dt_prcmode = DT_PROC_STOP_PREINIT;
940 dtp->dt_linkmode = DT_LINK_KERNEL;
941 dtp->dt_linktype = DT_LTYP_ELF;
942 dtp->dt_xlatemode = DT_XL_STATIC;
943 dtp->dt_stdcmode = DT_STDC_XA;
944 dtp->dt_version = version;
945 dtp->dt_fd = dtfd;
946 dtp->dt_ftfd = ftfd;
947 dtp->dt_fterr = fterr;
948 dtp->dt_cdefs_fd = -1;
949 dtp->dt_ddefs_fd = -1;
950 dtp->dt_stdout_fd = -1;
951 dtp->dt_modbuckets = _dtrace_strbuckets;
952 dtp->dt_mods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *));
953 dtp->dt_provbuckets = _dtrace_strbuckets;
954 dtp->dt_provs = calloc(dtp->dt_provbuckets, sizeof (dt_provider_t *));
955 dt_proc_init(dtp);
956 dtp->dt_vmax = DT_VERS_LATEST;
957 dtp->dt_cpp_path = strdup(_dtrace_defcpp);
958 dtp->dt_cpp_argv = malloc(sizeof (char *));
959 dtp->dt_cpp_argc = 1;
960 dtp->dt_cpp_args = 1;
961 dtp->dt_ld_path = strdup(_dtrace_defld);
962 dtp->dt_provmod = provmod;
963 dtp->dt_vector = vector;
964 dtp->dt_varg = arg;
965 dt_dof_init(dtp);
966 (void) uname(&dtp->dt_uts);

968 if (dtp->dt_mods == NULL || dtp->dt_provs == NULL ||
969 dtp->dt_procs == NULL || dtp->dt_proc_env == NULL ||
970 dtp->dt_ld_path == NULL || dtp->dt_cpp_path == NULL ||
971 dtp->dt_cpp_argv == NULL)
972 return (set_open_errno(dtp, errp, EDT_NOMEM));

974 for (i = 0; i < DTRACEOPT_MAX; i++)
975 dtp->dt_options[i] = DTRACEOPT_UNSET;

977 dtp->dt_cpp_argv[0] = (char *)strbasename(dtp->dt_cpp_path);

979 (void) snprintf(isadef, sizeof (isadef), "-D__SUNW_D_%u",
980 (uint_t)(sizeof (void *) * NBBY));

982 (void) snprintf(utsdef, sizeof (utsdef), "-D__%s_%s",
983 dt_get_sysinfo(SI_SYSNAME, s1, sizeof (s1)),
984 dt_get_sysinfo(SI_RELEASE, s2, sizeof (s2)));

986 if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
987 dt_cpp_add_arg(dtp, "-D__unix") == NULL ||
988 dt_cpp_add_arg(dtp, "-D__SVR4") == NULL ||
989 dt_cpp_add_arg(dtp, "-D__SUNW_D=1") == NULL ||
990 dt_cpp_add_arg(dtp, isadef) == NULL ||
991 dt_cpp_add_arg(dtp, utsdef) == NULL)
992 return (set_open_errno(dtp, errp, EDT_NOMEM));

994 if (flags & DTRACE_O_NODEV)
995 bcopy(&_dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));

new/usr/src/lib/libdtrace/common/dt_open.c 15

996 else if (dt_ioctl(dtp, DTRACEIOC_CONF, &dtp->dt_conf) != 0)
997 return (set_open_errno(dtp, errp, errno));

999 if (flags & DTRACE_O_LP64)
1000 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_LP64;
1001 else if (flags & DTRACE_O_ILP32)
1002 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_ILP32;

1004 #ifdef __sparc
1005 /*
1006 * On SPARC systems, __sparc is always defined for <sys/isa_defs.h>
1007 * and __sparcv9 is defined if we are doing a 64-bit compile.
1008 */
1009 if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)
1010 return (set_open_errno(dtp, errp, EDT_NOMEM));

1012 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64 &&
1013 dt_cpp_add_arg(dtp, "-D__sparcv9") == NULL)
1014 return (set_open_errno(dtp, errp, EDT_NOMEM));
1015 #endif

1017 #ifdef __x86
1018 /*
1019 * On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
1020 * compiles and __amd64 is defined for 64-bit compiles. Unlike SPARC,
1021 * they are defined exclusive of one another (see PSARC 2004/619).
1022 */
1023 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) {
1024 if (dt_cpp_add_arg(dtp, "-D__amd64") == NULL)
1025 return (set_open_errno(dtp, errp, EDT_NOMEM));
1026 } else {
1027 if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
1028 return (set_open_errno(dtp, errp, EDT_NOMEM));
1029 }
1030 #endif

1032 if (dtp->dt_conf.dtc_difversion < DIF_VERSION)
1033 return (set_open_errno(dtp, errp, EDT_DIFVERS));

1035 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32)
1036 bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
1037 else
1038 bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

1040 dtp->dt_macros = dt_idhash_create("macro", NULL, 0, UINT_MAX);
1041 dtp->dt_aggs = dt_idhash_create("aggregation", NULL,
1042 DTRACE_AGGVARIDNONE + 1, UINT_MAX);

1044 dtp->dt_globals = dt_idhash_create("global", _dtrace_globals,
1045 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1047 dtp->dt_tls = dt_idhash_create("thread local", NULL,
1048 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1050 if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
1051 dtp->dt_globals == NULL || dtp->dt_tls == NULL)
1052 return (set_open_errno(dtp, errp, EDT_NOMEM));

1054 /*
1055 * Populate the dt_macros identifier hash table by hand: we can’t use
1056 * the dt_idhash_populate() mechanism because we’re not yet compiling
1057 * and dtrace_update() needs to immediately reference these idents.
1058 */
1059 for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {
1060 if (dt_idhash_insert(dtp->dt_macros, idp->di_name,
1061 idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr,

new/usr/src/lib/libdtrace/common/dt_open.c 16

1062 idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw,
1063 idp->di_iarg, 0) == NULL)
1064 return (set_open_errno(dtp, errp, EDT_NOMEM));
1065 }

1067 /*
1068 * Update the module list using /system/object and load the values for
1069 * the macro variable definitions according to the current process.
1070 */
1071 dtrace_update(dtp);

1073 /*
1074 * Select the intrinsics and typedefs we want based on the data model.
1075 * The intrinsics are under "C". The typedefs are added under "D".
1076 */
1077 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) {
1078 dinp = _dtrace_intrinsics_32;
1079 dtyp = _dtrace_typedefs_32;
1080 } else {
1081 dinp = _dtrace_intrinsics_64;
1082 dtyp = _dtrace_typedefs_64;
1083 }

1085 /*
1086 * Create a dynamic CTF container under the "C" scope for intrinsic
1087 * types and types defined in ANSI-C header files that are included.
1088 */
1089 if ((dmp = dtp->dt_cdefs = dt_module_create(dtp, "C")) == NULL)
1090 return (set_open_errno(dtp, errp, EDT_NOMEM));

1092 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1093 return (set_open_errno(dtp, errp, EDT_CTF));

1095 dt_dprintf("created CTF container for %s (%p)\n",
1096 dmp->dm_name, (void *)dmp->dm_ctfp);

1098 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1099 ctf_setspecific(dmp->dm_ctfp, dmp);

1101 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1102 dmp->dm_modid = -1; /* no module ID */

1104 /*
1105 * Fill the dynamic "C" CTF container with all of the intrinsic
1106 * integer and floating-point types appropriate for this data model.
1107 */
1108 for (; dinp->din_name != NULL; dinp++) {
1109 if (dinp->din_kind == CTF_K_INTEGER) {
1110 err = ctf_add_integer(dmp->dm_ctfp, CTF_ADD_ROOT,
1111 dinp->din_name, &dinp->din_data);
1112 } else {
1113 err = ctf_add_float(dmp->dm_ctfp, CTF_ADD_ROOT,
1114 dinp->din_name, &dinp->din_data);
1115 }

1117 if (err == CTF_ERR) {
1118 dt_dprintf("failed to add %s to C container: %s\n",
1119 dinp->din_name, ctf_errmsg(
1120 ctf_errno(dmp->dm_ctfp)));
1121 return (set_open_errno(dtp, errp, EDT_CTF));
1122 }
1123 }

1125 if (ctf_update(dmp->dm_ctfp) != 0) {
1126 dt_dprintf("failed to update C container: %s\n",
1127 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));

new/usr/src/lib/libdtrace/common/dt_open.c 17

1128 return (set_open_errno(dtp, errp, EDT_CTF));
1129 }

1131 /*
1132 * Add intrinsic pointer types that are needed to initialize printf
1133 * format dictionary types (see table in dt_printf.c).
1134 */
1135 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1136 ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1138 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1139 ctf_lookup_by_name(dmp->dm_ctfp, "char"));

1141 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1142 ctf_lookup_by_name(dmp->dm_ctfp, "int"));

1144 if (ctf_update(dmp->dm_ctfp) != 0) {
1145 dt_dprintf("failed to update C container: %s\n",
1146 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1147 return (set_open_errno(dtp, errp, EDT_CTF));
1148 }

1150 /*
1151 * Create a dynamic CTF container under the "D" scope for types that
1152 * are defined by the D program itself or on-the-fly by the D compiler.
1153 * The "D" CTF container is a child of the "C" CTF container.
1154 */
1155 if ((dmp = dtp->dt_ddefs = dt_module_create(dtp, "D")) == NULL)
1156 return (set_open_errno(dtp, errp, EDT_NOMEM));

1158 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1159 return (set_open_errno(dtp, errp, EDT_CTF));

1161 dt_dprintf("created CTF container for %s (%p)\n",
1162 dmp->dm_name, (void *)dmp->dm_ctfp);

1164 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1165 ctf_setspecific(dmp->dm_ctfp, dmp);

1167 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1168 dmp->dm_modid = -1; /* no module ID */

1170 if (ctf_import(dmp->dm_ctfp, dtp->dt_cdefs->dm_ctfp) == CTF_ERR) {
1171 dt_dprintf("failed to import D parent container: %s\n",
1172 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1173 return (set_open_errno(dtp, errp, EDT_CTF));
1174 }

1176 /*
1177 * Fill the dynamic "D" CTF container with all of the built-in typedefs
1178 * that we need to use for our D variable and function definitions.
1179 * This ensures that basic inttypes.h names are always available to us.
1180 */
1181 for (; dtyp->dty_src != NULL; dtyp++) {
1182 if (ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1183 dtyp->dty_dst, ctf_lookup_by_name(dmp->dm_ctfp,
1184 dtyp->dty_src)) == CTF_ERR) {
1185 dt_dprintf("failed to add typedef %s %s to D "
1186 "container: %s", dtyp->dty_src, dtyp->dty_dst,
1187 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1188 return (set_open_errno(dtp, errp, EDT_CTF));
1189 }
1190 }

1192 /*
1193 * Insert a CTF ID corresponding to a pointer to a type of kind

new/usr/src/lib/libdtrace/common/dt_open.c 18

1194 * CTF_K_FUNCTION we can use in the compiler for function pointers.
1195 * CTF treats all function pointers as "int (*)()" so we only need one.
1196 */
1197 ctc.ctc_return = ctf_lookup_by_name(dmp->dm_ctfp, "int");
1198 ctc.ctc_argc = 0;
1199 ctc.ctc_flags = 0;

1201 dtp->dt_type_func = ctf_add_function(dmp->dm_ctfp,
1202 CTF_ADD_ROOT, &ctc, NULL);

1204 dtp->dt_type_fptr = ctf_add_pointer(dmp->dm_ctfp,
1205 CTF_ADD_ROOT, dtp->dt_type_func);

1207 /*
1208 * We also insert CTF definitions for the special D intrinsic types
1209 * string and <DYN> into the D container. The string type is added
1210 * as a typedef of char[n]. The <DYN> type is an alias for void.
1211 * We compare types to these special CTF ids throughout the compiler.
1212 */
1213 ctr.ctr_contents = ctf_lookup_by_name(dmp->dm_ctfp, "char");
1214 ctr.ctr_index = ctf_lookup_by_name(dmp->dm_ctfp, "long");
1215 ctr.ctr_nelems = _dtrace_strsize;

1217 dtp->dt_type_str = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1218 "string", ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &ctr));

1220 dtp->dt_type_dyn = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1221 "<DYN>", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1223 dtp->dt_type_stack = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1224 "stack", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1226 dtp->dt_type_symaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1227 "_symaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1229 dtp->dt_type_usymaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1230 "_usymaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1232 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1233 dtp->dt_type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR ||
1234 dtp->dt_type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR ||
1235 dtp->dt_type_usymaddr == CTF_ERR) {
1236 dt_dprintf("failed to add intrinsic to D container: %s\n",
1237 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1238 return (set_open_errno(dtp, errp, EDT_CTF));
1239 }

1241 if (ctf_update(dmp->dm_ctfp) != 0) {
1242 dt_dprintf("failed update D container: %s\n",
1243 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1244 return (set_open_errno(dtp, errp, EDT_CTF));
1245 }

1247 /*
1248 * Initialize the integer description table used to convert integer
1249 * constants to the appropriate types. Refer to the comments above
1250 * dt_node_int() for a complete description of how this table is used.
1251 */
1252 for (i = 0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1253 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY,
1254 dtp->dt_ints[i].did_name, &dtt) != 0) {
1255 dt_dprintf("failed to lookup integer type %s: %s\n",
1256 dtp->dt_ints[i].did_name,
1257 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1258 return (set_open_errno(dtp, errp, dtp->dt_errno));
1259 }

new/usr/src/lib/libdtrace/common/dt_open.c 19

1260 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;
1261 dtp->dt_ints[i].did_type = dtt.dtt_type;
1262 }

1264 /*
1265 * Now that we’ve created the "C" and "D" containers, move them to the
1266 * start of the module list so that these types and symbols are found
1267 * first (for stability) when iterating through the module list.
1268 */
1269 dt_list_delete(&dtp->dt_modlist, dtp->dt_ddefs);
1270 dt_list_prepend(&dtp->dt_modlist, dtp->dt_ddefs);

1272 dt_list_delete(&dtp->dt_modlist, dtp->dt_cdefs);
1273 dt_list_prepend(&dtp->dt_modlist, dtp->dt_cdefs);

1275 if (dt_pfdict_create(dtp) == -1)
1276 return (set_open_errno(dtp, errp, dtp->dt_errno));

1278 /*
1279 * If we are opening libdtrace DTRACE_O_NODEV enable C_ZDEFS by default
1280 * because without /dev/dtrace open, we will not be able to load the
1281 * names and attributes of any providers or probes from the kernel.
1282 */
1283 if (flags & DTRACE_O_NODEV)
1284 dtp->dt_cflags |= DTRACE_C_ZDEFS;

1286 /*
1287 * Load hard-wired inlines into the definition cache by calling the
1288 * compiler on the raw definition string defined above.
1289 */
1290 if ((pgp = dtrace_program_strcompile(dtp, _dtrace_hardwire,
1291 DTRACE_PROBESPEC_NONE, DTRACE_C_EMPTY, 0, NULL)) == NULL) {
1292 dt_dprintf("failed to load hard-wired definitions: %s\n",
1293 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1294 return (set_open_errno(dtp, errp, EDT_HARDWIRE));
1295 }

1297 dt_program_destroy(dtp, pgp);

1299 /*
1300 * Set up the default DTrace library path. Once set, the next call to
1301 * dt_compile() will compile all the libraries. We intentionally defer
1302 * library processing to improve overhead for clients that don’t ever
1303 * compile, and to provide better error reporting (because the full
1304 * reporting of compiler errors requires dtrace_open() to succeed).
1305 */
1306 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1307 return (set_open_errno(dtp, errp, dtp->dt_errno));

1309 return (dtp);
1310 }

1312 dtrace_hdl_t *
1313 dtrace_open(int version, int flags, int *errp)
1314 {
1315 return (dt_vopen(version, flags, errp, NULL, NULL));
1316 }

1318 dtrace_hdl_t *
1319 dtrace_vopen(int version, int flags, int *errp,
1320 const dtrace_vector_t *vector, void *arg)
1321 {
1322 return (dt_vopen(version, flags, errp, vector, arg));
1323 }

1325 void

new/usr/src/lib/libdtrace/common/dt_open.c 20

1326 dtrace_close(dtrace_hdl_t *dtp)
1327 {
1328 dt_ident_t *idp, *ndp;
1329 dt_module_t *dmp;
1330 dt_provider_t *pvp;
1331 dtrace_prog_t *pgp;
1332 dt_xlator_t *dxp;
1333 dt_dirpath_t *dirp;
1334 int i;

1336 if (dtp->dt_procs != NULL)
1337 dt_proc_fini(dtp);

1339 while ((pgp = dt_list_next(&dtp->dt_programs)) != NULL)
1340 dt_program_destroy(dtp, pgp);

1342 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1343 dt_xlator_destroy(dtp, dxp);

1345 dt_free(dtp, dtp->dt_xlatormap);

1347 for (idp = dtp->dt_externs; idp != NULL; idp = ndp) {
1348 ndp = idp->di_next;
1349 dt_ident_destroy(idp);
1350 }

1352 if (dtp->dt_macros != NULL)
1353 dt_idhash_destroy(dtp->dt_macros);
1354 if (dtp->dt_aggs != NULL)
1355 dt_idhash_destroy(dtp->dt_aggs);
1356 if (dtp->dt_globals != NULL)
1357 dt_idhash_destroy(dtp->dt_globals);
1358 if (dtp->dt_tls != NULL)
1359 dt_idhash_destroy(dtp->dt_tls);

1361 while ((dmp = dt_list_next(&dtp->dt_modlist)) != NULL)
1362 dt_module_destroy(dtp, dmp);

1364 while ((pvp = dt_list_next(&dtp->dt_provlist)) != NULL)
1365 dt_provider_destroy(dtp, pvp);

1367 if (dtp->dt_fd != -1)
1368 (void) close(dtp->dt_fd);
1369 if (dtp->dt_ftfd != -1)
1370 (void) close(dtp->dt_ftfd);
1371 if (dtp->dt_cdefs_fd != -1)
1372 (void) close(dtp->dt_cdefs_fd);
1373 if (dtp->dt_ddefs_fd != -1)
1374 (void) close(dtp->dt_ddefs_fd);
1375 if (dtp->dt_stdout_fd != -1)
1376 (void) close(dtp->dt_stdout_fd);

1378 dt_epid_destroy(dtp);
1379 dt_aggid_destroy(dtp);
1380 dt_format_destroy(dtp);
1381 dt_strdata_destroy(dtp);
1382 dt_buffered_destroy(dtp);
1383 dt_aggregate_destroy(dtp);
1384 dt_pfdict_destroy(dtp);
1385 dt_provmod_destroy(&dtp->dt_provmod);
1386 dt_dof_fini(dtp);

1388 for (i = 1; i < dtp->dt_cpp_argc; i++)
1389 free(dtp->dt_cpp_argv[i]);

1391 while ((dirp = dt_list_next(&dtp->dt_lib_path)) != NULL) {

new/usr/src/lib/libdtrace/common/dt_open.c 21

1392 dt_list_delete(&dtp->dt_lib_path, dirp);
1393 free(dirp->dir_path);
1394 free(dirp);
1395 }

1397 free(dtp->dt_cpp_argv);
1398 free(dtp->dt_cpp_path);
1399 free(dtp->dt_ld_path);

1401 free(dtp->dt_mods);
1402 free(dtp->dt_provs);
1403 free(dtp);
1404 }

1406 int
1407 dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int nmods)
1408 {
1409 dt_provmod_t *prov;
1410 int i = 0;

1412 for (prov = dtp->dt_provmod; prov != NULL; prov = prov->dp_next, i++) {
1413 if (i < nmods)
1414 mods[i] = prov->dp_name;
1415 }

1417 return (i);
1418 }

1420 int
1421 dtrace_ctlfd(dtrace_hdl_t *dtp)
1422 {
1423 return (dtp->dt_fd);
1424 }

new/usr/src/pkg/manifests/system-dtrace-tests.mf 1

**
 120669 Tue Jan 14 16:49:35 2014
new/usr/src/pkg/manifests/system-dtrace-tests.mf
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 #

27 set name=pkg.fmri value=pkg:/system/dtrace/tests@$(PKGVERS)
28 set name=pkg.description value="DTrace Test Suite Internal Distribution"
29 set name=pkg.summary value="DTrace Test Suite"
30 set name=info.classification \
31 value=org.opensolaris.category.2008:Development/System
32 set name=variant.arch value=$(ARCH)
33 dir path=opt/SUNWdtrt group=sys
34 dir path=opt/SUNWdtrt/bin
35 dir path=opt/SUNWdtrt/bin/$(ARCH32)
36 dir path=opt/SUNWdtrt/bin/$(ARCH64)
37 dir path=opt/SUNWdtrt/lib
38 dir path=opt/SUNWdtrt/lib/java
39 dir path=opt/SUNWdtrt/tst
40 dir path=opt/SUNWdtrt/tst/$(ARCH)
41 dir path=opt/SUNWdtrt/tst/$(ARCH)/arrays
42 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/$(ARCH)/funcs
43 dir path=opt/SUNWdtrt/tst/$(ARCH)/pid
44 $(sparc_ONLY)dir path=opt/SUNWdtrt/tst/$(ARCH)/usdt
45 dir path=opt/SUNWdtrt/tst/$(ARCH)/ustack
46 dir path=opt/SUNWdtrt/tst/common
47 dir path=opt/SUNWdtrt/tst/common/aggs
48 dir path=opt/SUNWdtrt/tst/common/arithmetic
49 dir path=opt/SUNWdtrt/tst/common/arrays
50 dir path=opt/SUNWdtrt/tst/common/assocs
51 dir path=opt/SUNWdtrt/tst/common/begin
52 dir path=opt/SUNWdtrt/tst/common/bitfields
53 dir path=opt/SUNWdtrt/tst/common/buffering
54 dir path=opt/SUNWdtrt/tst/common/builtinvar
55 dir path=opt/SUNWdtrt/tst/common/cg
56 dir path=opt/SUNWdtrt/tst/common/clauses
57 dir path=opt/SUNWdtrt/tst/common/cpc
58 dir path=opt/SUNWdtrt/tst/common/decls
59 dir path=opt/SUNWdtrt/tst/common/drops
60 dir path=opt/SUNWdtrt/tst/common/dtraceUtil

new/usr/src/pkg/manifests/system-dtrace-tests.mf 2

61 dir path=opt/SUNWdtrt/tst/common/end
62 dir path=opt/SUNWdtrt/tst/common/enum
63 dir path=opt/SUNWdtrt/tst/common/env
64 dir path=opt/SUNWdtrt/tst/common/error
65 dir path=opt/SUNWdtrt/tst/common/exit
66 dir path=opt/SUNWdtrt/tst/common/fbtprovider
67 dir path=opt/SUNWdtrt/tst/common/funcs
68 dir path=opt/SUNWdtrt/tst/common/grammar
69 dir path=opt/SUNWdtrt/tst/common/include
70 dir path=opt/SUNWdtrt/tst/common/inline
71 dir path=opt/SUNWdtrt/tst/common/io
72 dir path=opt/SUNWdtrt/tst/common/ip
73 dir path=opt/SUNWdtrt/tst/common/java_api
74 dir path=opt/SUNWdtrt/tst/common/json
75 #endif /* ! codereview */
76 dir path=opt/SUNWdtrt/tst/common/lexer
77 dir path=opt/SUNWdtrt/tst/common/llquantize
78 dir path=opt/SUNWdtrt/tst/common/mdb
79 dir path=opt/SUNWdtrt/tst/common/mib
80 dir path=opt/SUNWdtrt/tst/common/misc
81 dir path=opt/SUNWdtrt/tst/common/multiaggs
82 dir path=opt/SUNWdtrt/tst/common/nfs
83 dir path=opt/SUNWdtrt/tst/common/offsetof
84 dir path=opt/SUNWdtrt/tst/common/operators
85 dir path=opt/SUNWdtrt/tst/common/pid
86 dir path=opt/SUNWdtrt/tst/common/plockstat
87 dir path=opt/SUNWdtrt/tst/common/pointers
88 dir path=opt/SUNWdtrt/tst/common/pragma
89 dir path=opt/SUNWdtrt/tst/common/predicates
90 dir path=opt/SUNWdtrt/tst/common/preprocessor
91 dir path=opt/SUNWdtrt/tst/common/print
92 dir path=opt/SUNWdtrt/tst/common/printa
93 dir path=opt/SUNWdtrt/tst/common/printf
94 dir path=opt/SUNWdtrt/tst/common/privs
95 dir path=opt/SUNWdtrt/tst/common/probes
96 dir path=opt/SUNWdtrt/tst/common/proc
97 dir path=opt/SUNWdtrt/tst/common/profile-n
98 dir path=opt/SUNWdtrt/tst/common/providers
99 dir path=opt/SUNWdtrt/tst/common/raise
100 dir path=opt/SUNWdtrt/tst/common/rates
101 dir path=opt/SUNWdtrt/tst/common/safety
102 dir path=opt/SUNWdtrt/tst/common/scalars
103 dir path=opt/SUNWdtrt/tst/common/sched
104 dir path=opt/SUNWdtrt/tst/common/scripting
105 dir path=opt/SUNWdtrt/tst/common/sdt
106 dir path=opt/SUNWdtrt/tst/common/sizeof
107 dir path=opt/SUNWdtrt/tst/common/speculation
108 dir path=opt/SUNWdtrt/tst/common/stability
109 dir path=opt/SUNWdtrt/tst/common/stack
110 dir path=opt/SUNWdtrt/tst/common/stackdepth
111 dir path=opt/SUNWdtrt/tst/common/stop
112 dir path=opt/SUNWdtrt/tst/common/strlen
113 dir path=opt/SUNWdtrt/tst/common/strtoll
114 #endif /* ! codereview */
115 dir path=opt/SUNWdtrt/tst/common/struct
116 dir path=opt/SUNWdtrt/tst/common/syscall
117 dir path=opt/SUNWdtrt/tst/common/sysevent
118 dir path=opt/SUNWdtrt/tst/common/tick-n
119 dir path=opt/SUNWdtrt/tst/common/trace
120 dir path=opt/SUNWdtrt/tst/common/tracemem
121 dir path=opt/SUNWdtrt/tst/common/translators
122 dir path=opt/SUNWdtrt/tst/common/typedef
123 dir path=opt/SUNWdtrt/tst/common/types
124 dir path=opt/SUNWdtrt/tst/common/union
125 dir path=opt/SUNWdtrt/tst/common/usdt
126 dir path=opt/SUNWdtrt/tst/common/ustack

new/usr/src/pkg/manifests/system-dtrace-tests.mf 3

127 dir path=opt/SUNWdtrt/tst/common/vars
128 dir path=opt/SUNWdtrt/tst/common/version
129 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv
130 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv/xdt
131 file path=opt/SUNWdtrt/README mode=0444
132 file path=opt/SUNWdtrt/bin/$(ARCH32)/chkargs mode=0555
133 file path=opt/SUNWdtrt/bin/$(ARCH64)/chkargs mode=0555
134 file path=opt/SUNWdtrt/bin/baddof mode=0555
135 file path=opt/SUNWdtrt/bin/badioctl mode=0555
136 file path=opt/SUNWdtrt/bin/chkargs mode=0555
137 file path=opt/SUNWdtrt/bin/dstyle mode=0555
138 file path=opt/SUNWdtrt/bin/dtest mode=0555
139 file path=opt/SUNWdtrt/bin/dtfailures mode=0555
140 file path=opt/SUNWdtrt/bin/exception.lst mode=0444
141 file path=opt/SUNWdtrt/bin/jdtrace mode=0555
142 file path=opt/SUNWdtrt/lib/java/jdtrace.jar
143 file path=opt/SUNWdtrt/tst/$(ARCH)/arrays/tst.uregsarray.d mode=0444
144 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyin.d mode=0444
145 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyinstr.d \
146 mode=0444
147 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyout.d \
148 mode=0444
149 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyoutstr.d \
150 mode=0444
151 $(sparc_ONLY)file \
152 path=opt/SUNWdtrt/tst/$(ARCH)/pid/err.D_PROC_ALIGN.misaligned.d mode=0444
153 $(sparc_ONLY)file \
154 path=opt/SUNWdtrt/tst/$(ARCH)/pid/err.D_PROC_ALIGN.misaligned.exe \
155 mode=0555
156 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.badinstr.d mode=0444
157 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.badinstr.exe mode=0555
158 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.d mode=0444
159 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.d.out mode=0444
160 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.exe mode=0555
161 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.branch.d mode=0444
162 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.branch.exe mode=0555
163 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.embedded.d mode=0444
164 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.embedded.exe mode=0555
165 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.ret.d mode=0444
166 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.ret.exe mode=0555
167 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.retlist.exe mode=0555
168 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.retlist.ksh mode=0444
169 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/usdt/tst.tailcall.ksh \
170 mode=0444
171 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.d mode=0444
172 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.d.out mode=0444
173 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.exe mode=0555
174 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.circstack.d mode=0444
175 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.circstack.exe mode=0555
176 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.d mode=0444
177 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.d.out mode=0444
178 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.exe mode=0555
179 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.trapstat.ksh \
180 mode=0444
181 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_FUNC.bad.d mode=0444
182 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_MDIM.bad.d mode=0444
183 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_NULL.bad.d mode=0444
184 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_REDEF.redef.d mode=0444
185 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.avgtoofew.d mode=0444
186 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.maxnoarg.d mode=0444
187 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.mintoofew.d mode=0444
188 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.quantizetoofew.d \
189 mode=0444
190 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.stddevtoofew.d \
191 mode=0444
192 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.sumtoofew.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 4

193 file path=opt/SUNWdtrt/tst/common/aggs/err.D_CLEAR_AGGARG.bad.d mode=0444
194 file path=opt/SUNWdtrt/tst/common/aggs/err.D_CLEAR_PROTO.bad.d mode=0444
195 file path=opt/SUNWdtrt/tst/common/aggs/err.D_FUNC_IDENT.bad.d mode=0444
196 file path=opt/SUNWdtrt/tst/common/aggs/err.D_FUNC_UNDEF.badaggfunc.d mode=0444
197 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.badexpr.d mode=0444
198 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.badkey3.d mode=0444
199 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.noeffect.d mode=0444
200 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey1.d mode=0444
201 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey2.d mode=0444
202 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey4.d mode=0444
203 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASETYPE.lqbad1.d \
204 mode=0444
205 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASETYPE.lqshort.d \
206 mode=0444
207 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASEVAL.bad.d mode=0444
208 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_LIMTYPE.lqbad1.d mode=0444
209 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_LIMVAL.bad.d mode=0444
210 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHBASE.d mode=0444
211 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHBASE.order.d \
212 mode=0444
213 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHLIM.d mode=0444
214 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHLIM.order.d mode=0444
215 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHSTEP.d mode=0444
216 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MISMATCH.lqbadarg.d \
217 mode=0444
218 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPLARGE.lqtoofew.d \
219 mode=0444
220 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPSMALL.bad.d mode=0444
221 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPTYPE.lqbadinc.d \
222 mode=0444
223 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPVAL.bad.d mode=0444
224 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_AGGARG.bad.d mode=0444
225 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_PROTO.bad.d mode=0444
226 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_SCALAR.bad.d mode=0444
227 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_ARG.lquantizetoofew.d \
228 mode=0444
229 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.avgnoarg.d mode=0444
230 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.avgtoomany.d mode=0444
231 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.counttoomany.d \
232 mode=0444
233 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.lquantizenoarg.d \
234 mode=0444
235 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.lquantizetoomany.d \
236 mode=0444
237 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.maxnoarg.d mode=0444
238 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.maxtoomany.d mode=0444
239 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.minnoarg.d mode=0444
240 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.mintoomany.d mode=0444
241 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.quantizenoarg.d \
242 mode=0444
243 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.quantizetoomany.d \
244 mode=0444
245 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.stddevnoarg.d mode=0444
246 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.stddevtoomany.d \
247 mode=0444
248 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.sumnoarg.d mode=0444
249 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.sumtoomany.d mode=0444
250 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_AGGARG.bad.d mode=0444
251 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_PROTO.badmany.d mode=0444
252 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_PROTO.badnone.d mode=0444
253 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_SCALAR.bad.d mode=0444
254 file path=opt/SUNWdtrt/tst/common/aggs/tst.allquant.d mode=0444
255 file path=opt/SUNWdtrt/tst/common/aggs/tst.allquant.d.out mode=0444
256 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg.d mode=0444
257 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg.d.out mode=0444
258 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg_neg.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 5

259 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg_neg.d.out mode=0444
260 file path=opt/SUNWdtrt/tst/common/aggs/tst.clear.d mode=0444
261 file path=opt/SUNWdtrt/tst/common/aggs/tst.clear.d.out mode=0444
262 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg.d mode=0444
263 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg.d.out mode=0444
264 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg2.d mode=0444
265 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg2.d.out mode=0444
266 file path=opt/SUNWdtrt/tst/common/aggs/tst.cleardenormalize.d mode=0444
267 file path=opt/SUNWdtrt/tst/common/aggs/tst.cleardenormalize.d.out mode=0444
268 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearlquantize.d mode=0444
269 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearlquantize.d.out mode=0444
270 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearnormalize.d mode=0444
271 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearnormalize.d.out mode=0444
272 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearstddev.d mode=0444
273 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearstddev.d.out mode=0444
274 file path=opt/SUNWdtrt/tst/common/aggs/tst.count.d mode=0444
275 file path=opt/SUNWdtrt/tst/common/aggs/tst.count.d.out mode=0444
276 file path=opt/SUNWdtrt/tst/common/aggs/tst.count2.d mode=0444
277 file path=opt/SUNWdtrt/tst/common/aggs/tst.count2.d.out mode=0444
278 file path=opt/SUNWdtrt/tst/common/aggs/tst.count3.d mode=0444
279 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalize.d mode=0444
280 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalize.d.out mode=0444
281 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalizeonly.d mode=0444
282 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalizeonly.d.out mode=0444
283 file path=opt/SUNWdtrt/tst/common/aggs/tst.fmtnormalize.d mode=0444
284 file path=opt/SUNWdtrt/tst/common/aggs/tst.fmtnormalize.d.out mode=0444
285 file path=opt/SUNWdtrt/tst/common/aggs/tst.forms.d mode=0444
286 file path=opt/SUNWdtrt/tst/common/aggs/tst.forms.d.out mode=0444
287 file path=opt/SUNWdtrt/tst/common/aggs/tst.goodkey.d mode=0444
288 file path=opt/SUNWdtrt/tst/common/aggs/tst.keysort.d mode=0444
289 file path=opt/SUNWdtrt/tst/common/aggs/tst.keysort.d.out mode=0444
290 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantize.d mode=0444
291 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantize.d.out mode=0444
292 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantnormal.d mode=0444
293 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantnormal.d.out mode=0444
294 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantrange.d mode=0444
295 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantrange.d.out mode=0444
296 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantround.d mode=0444
297 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantround.d.out mode=0444
298 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantzero.d mode=0444
299 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantzero.d.out mode=0444
300 file path=opt/SUNWdtrt/tst/common/aggs/tst.max.d mode=0444
301 file path=opt/SUNWdtrt/tst/common/aggs/tst.max.d.out mode=0444
302 file path=opt/SUNWdtrt/tst/common/aggs/tst.max_neg.d mode=0444
303 file path=opt/SUNWdtrt/tst/common/aggs/tst.max_neg.d.out mode=0444
304 file path=opt/SUNWdtrt/tst/common/aggs/tst.min.d mode=0444
305 file path=opt/SUNWdtrt/tst/common/aggs/tst.min.d.out mode=0444
306 file path=opt/SUNWdtrt/tst/common/aggs/tst.min_neg.d mode=0444
307 file path=opt/SUNWdtrt/tst/common/aggs/tst.min_neg.d.out mode=0444
308 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs1.d mode=0444
309 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs2.d mode=0444
310 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs2.d.out mode=0444
311 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs3.d mode=0444
312 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs3.d.out mode=0444
313 file path=opt/SUNWdtrt/tst/common/aggs/tst.multinormalize.d mode=0444
314 file path=opt/SUNWdtrt/tst/common/aggs/tst.multinormalize.d.out mode=0444
315 file path=opt/SUNWdtrt/tst/common/aggs/tst.neglquant.d mode=0444
316 file path=opt/SUNWdtrt/tst/common/aggs/tst.neglquant.d.out mode=0444
317 file path=opt/SUNWdtrt/tst/common/aggs/tst.negorder.d mode=0444
318 file path=opt/SUNWdtrt/tst/common/aggs/tst.negorder.d.out mode=0444
319 file path=opt/SUNWdtrt/tst/common/aggs/tst.negquant.d mode=0444
320 file path=opt/SUNWdtrt/tst/common/aggs/tst.negquant.d.out mode=0444
321 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtrunc.d mode=0444
322 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtrunc.d.out mode=0444
323 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtruncquant.d mode=0444
324 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtruncquant.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 6

325 file path=opt/SUNWdtrt/tst/common/aggs/tst.normalize.d mode=0444
326 file path=opt/SUNWdtrt/tst/common/aggs/tst.normalize.d.out mode=0444
327 file path=opt/SUNWdtrt/tst/common/aggs/tst.order.d mode=0444
328 file path=opt/SUNWdtrt/tst/common/aggs/tst.order.d.out mode=0444
329 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantize.d mode=0444
330 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantize.d.out mode=0444
331 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantmany.d mode=0444
332 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantmany.d.out mode=0444
333 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantround.d mode=0444
334 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantround.d.out mode=0444
335 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantzero.d mode=0444
336 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantzero.d.out mode=0444
337 file path=opt/SUNWdtrt/tst/common/aggs/tst.signature.d mode=0444
338 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeys.d mode=0444
339 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeys.d.out mode=0444
340 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeyspos.d mode=0444
341 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeyspos.d.out mode=0444
342 file path=opt/SUNWdtrt/tst/common/aggs/tst.sizedkeys.d mode=0444
343 file path=opt/SUNWdtrt/tst/common/aggs/tst.sizedkeys.d.out mode=0444
344 file path=opt/SUNWdtrt/tst/common/aggs/tst.stddev.d mode=0444
345 file path=opt/SUNWdtrt/tst/common/aggs/tst.stddev.d.out mode=0444
346 file path=opt/SUNWdtrt/tst/common/aggs/tst.subr.d mode=0444
347 file path=opt/SUNWdtrt/tst/common/aggs/tst.sum.d mode=0444
348 file path=opt/SUNWdtrt/tst/common/aggs/tst.sum.d.out mode=0444
349 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc.d mode=0444
350 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc.d.out mode=0444
351 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc0.d mode=0444
352 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc0.d.out mode=0444
353 file path=opt/SUNWdtrt/tst/common/aggs/tst.truncquant.d mode=0444
354 file path=opt/SUNWdtrt/tst/common/aggs/tst.truncquant.d.out mode=0444
355 file path=opt/SUNWdtrt/tst/common/aggs/tst.valsortkeypos.d mode=0444
356 file path=opt/SUNWdtrt/tst/common/aggs/tst.valsortkeypos.d.out mode=0444
357 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0.d mode=0444
358 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0_1.d \
359 mode=0444
360 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0_2.d \
361 mode=0444
362 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.modby0.d mode=0444
363 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.addmin.d mode=0444
364 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.divmin.d mode=0444
365 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.muladd.d mode=0444
366 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.muldiv.d mode=0444
367 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.basics.d mode=0444
368 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.basics.d.out mode=0444
369 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compcast.d mode=0444
370 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compcast.d.out mode=0444
371 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compnarrowassign.d mode=0444
372 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compnarrowassign.d.out \
373 mode=0444
374 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.execcast.d mode=0444
375 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.execcast.d.out mode=0444
376 file path=opt/SUNWdtrt/tst/common/arrays/err.D_ARR_BADREF.bad.d mode=0444
377 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRBIG.toobig.d mode=0444
378 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRNULL.bad.d mode=0444
379 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRSUB.bad.d mode=0444
380 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_PROTO_TYPE.badtuple.d \
381 mode=0444
382 file path=opt/SUNWdtrt/tst/common/arrays/err.D_IDENT_UNDEF.badureg.d mode=0444
383 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic1.d mode=0444
384 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic2.d mode=0444
385 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic3.d mode=0444
386 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic4.d mode=0444
387 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic5.d mode=0444
388 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic6.d mode=0444
389 file path=opt/SUNWdtrt/tst/common/arrays/tst.uregsarray.d mode=0444
390 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.dupgtype.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 7

391 mode=0444
392 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.dupttype.d \
393 mode=0444
394 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.this.d mode=0444
395 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_ARG.badsig.d mode=0444
396 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_LEN.toofew.d mode=0444
397 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_LEN.toomany.d mode=0444
398 file path=opt/SUNWdtrt/tst/common/assocs/err.D_SYNTAX.errassign.d mode=0444
399 file path=opt/SUNWdtrt/tst/common/assocs/err.tupoflow.d mode=0444
400 file path=opt/SUNWdtrt/tst/common/assocs/tst.cpyarray.d mode=0444
401 file path=opt/SUNWdtrt/tst/common/assocs/tst.diffprofile.d mode=0444
402 file path=opt/SUNWdtrt/tst/common/assocs/tst.initialize.d mode=0444
403 file path=opt/SUNWdtrt/tst/common/assocs/tst.invalidref.d mode=0444
404 file path=opt/SUNWdtrt/tst/common/assocs/tst.misc.d mode=0444
405 file path=opt/SUNWdtrt/tst/common/assocs/tst.orthogonality.d mode=0444
406 file path=opt/SUNWdtrt/tst/common/assocs/tst.this.d mode=0444
407 file path=opt/SUNWdtrt/tst/common/assocs/tst.valassign.d.out mode=0444
408 file path=opt/SUNWdtrt/tst/common/begin/err.D_PDESC_ZERO.begin.d mode=0444
409 file path=opt/SUNWdtrt/tst/common/begin/err.D_PDESC_ZERO.tick.d mode=0444
410 file path=opt/SUNWdtrt/tst/common/begin/tst.begin.d mode=0444
411 file path=opt/SUNWdtrt/tst/common/begin/tst.begin.d.out mode=0444
412 file path=opt/SUNWdtrt/tst/common/begin/tst.multibegin.d mode=0444
413 file path=opt/SUNWdtrt/tst/common/begin/tst.multibegin.d.out mode=0444
414 file \
415 path=opt/SUNWdtrt/tst/common/bitfields/err.D_ADDROF_BITFIELD.BitfieldAddress
416 mode=0444
417 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFCONST.NegBitField.d \
418 mode=0444
419 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFCONST.ZeroBitField.d \
420 mode=0444
421 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFSIZE.ExceedBaseType.d \
422 mode=0444
423 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFSIZE.GreaterThan64.d \
424 mode=0444
425 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFTYPE.badtype.d \
426 mode=0444
427 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_OFFSETOF_BITFIELD.d \
428 mode=0444
429 file \
430 path=opt/SUNWdtrt/tst/common/bitfields/err.D_SIZEOF_BITFIELD.SizeofBitfield.
431 mode=0444
432 file path=opt/SUNWdtrt/tst/common/bitfields/tst.BitFieldPromotion.d mode=0444
433 file path=opt/SUNWdtrt/tst/common/bitfields/tst.SizeofBitField.d mode=0444
434 file path=opt/SUNWdtrt/tst/common/buffering/err.end.d mode=0444
435 file path=opt/SUNWdtrt/tst/common/buffering/err.resize1.d mode=0444
436 file path=opt/SUNWdtrt/tst/common/buffering/err.resize2.d mode=0444
437 file path=opt/SUNWdtrt/tst/common/buffering/err.resize3.d mode=0444
438 file path=opt/SUNWdtrt/tst/common/buffering/err.zerobuf.d mode=0444
439 file path=opt/SUNWdtrt/tst/common/buffering/tst.alignring.d mode=0444
440 file path=opt/SUNWdtrt/tst/common/buffering/tst.cputime.ksh mode=0444
441 file path=opt/SUNWdtrt/tst/common/buffering/tst.dynvarsize.d mode=0444
442 file path=opt/SUNWdtrt/tst/common/buffering/tst.fill1.d mode=0444
443 file path=opt/SUNWdtrt/tst/common/buffering/tst.fill1.d.out mode=0444
444 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize1.d mode=0444
445 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize2.d mode=0444
446 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize3.d mode=0444
447 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring1.d mode=0444
448 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring2.d mode=0444
449 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring2.d.out mode=0444
450 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring3.d mode=0444
451 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring3.d.out mode=0444
452 file path=opt/SUNWdtrt/tst/common/buffering/tst.smallring.d mode=0444
453 file path=opt/SUNWdtrt/tst/common/buffering/tst.switch1.d mode=0444
454 file path=opt/SUNWdtrt/tst/common/buffering/tst.switch1.d.out mode=0444
455 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.cpuusage.d \
456 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 8

457 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.nice.d \
458 mode=0444
459 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.priority.d \
460 mode=0444
461 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.prsize.d \
462 mode=0444
463 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.rssize.d \
464 mode=0444
465 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg0.d mode=0444
466 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg0clause.d mode=0444
467 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1.d mode=0444
468 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1to8.d mode=0444
469 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1to8clause.d mode=0444
470 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.caller.d mode=0444
471 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.caller1.d mode=0444
472 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.epid.d mode=0444
473 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.epid1.d mode=0444
474 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.errno.d mode=0444
475 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.errno1.d mode=0444
476 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.execname.d mode=0444
477 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.hpriority.d mode=0444
478 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.id.d mode=0444
479 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.id1.d mode=0444
480 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.ipl.d mode=0444
481 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.ipl1.d mode=0444
482 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.lwpsinfo.d mode=0444
483 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.lwpsinfo1.d mode=0444
484 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.pid.d mode=0444
485 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.pid1.d mode=0444
486 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.psinfo.d mode=0444
487 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.psinfo1.d mode=0444
488 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.tid.d mode=0444
489 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.tid1.d mode=0444
490 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.timestamp.d mode=0444
491 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.vtimestamp.d mode=0444
492 file path=opt/SUNWdtrt/tst/common/cg/err.D_NOREG.noreg.d mode=0444
493 file path=opt/SUNWdtrt/tst/common/cg/err.baddif.d mode=0444
494 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.aggfun.d mode=0444
495 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.aggtup.d mode=0444
496 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.arrtup.d mode=0444
497 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.body.d mode=0444
498 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.both.d mode=0444
499 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.pred.d mode=0444
500 file path=opt/SUNWdtrt/tst/common/clauses/tst.nopred.d mode=0444
501 file path=opt/SUNWdtrt/tst/common/clauses/tst.pred.d mode=0444
502 file path=opt/SUNWdtrt/tst/common/clauses/tst.predfirst.d mode=0444
503 file path=opt/SUNWdtrt/tst/common/clauses/tst.predlast.d mode=0444
504 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.lowfrequency.d \
505 mode=0444
506 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.malformedoverflow.d \
507 mode=0444
508 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.nonexistentevent.d \
509 mode=0444
510 file path=opt/SUNWdtrt/tst/common/cpc/err.cpcvscpustatpart1.ksh mode=0444
511 file path=opt/SUNWdtrt/tst/common/cpc/err.cpcvscpustatpart2.ksh mode=0444
512 file path=opt/SUNWdtrt/tst/common/cpc/err.cputrackfailtostart.ksh mode=0444
513 file path=opt/SUNWdtrt/tst/common/cpc/err.cputrackterminates.ksh mode=0444
514 file path=opt/SUNWdtrt/tst/common/cpc/err.toomanyenablings.d mode=0444
515 file path=opt/SUNWdtrt/tst/common/cpc/tst.allcpus.ksh mode=0444
516 file path=opt/SUNWdtrt/tst/common/cpc/tst.genericevent.d mode=0444
517 file path=opt/SUNWdtrt/tst/common/cpc/tst.platformevent.ksh mode=0444
518 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_LOCASSC.NonLocalAssoc.d \
519 mode=0444
520 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_LONGINT.LongStruct.d \
521 mode=0444
522 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PARMCLASS.BadStorageClass.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 9

523 mode=0444
524 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_NAME.VoidName.d \
525 mode=0444
526 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_TYPE.Dyn.d mode=0444
527 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_VARARGS.VarLenArgs.d \
528 mode=0444
529 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_VOID.NonSoleVoid.d \
530 mode=0444
531 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_SIGNINT.UnsignedStruct.d \
532 mode=0444
533 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_VOIDATTR.ShortVoidDecl.d \
534 mode=0444
535 file path=opt/SUNWdtrt/tst/common/decls/tst.arrays.d mode=0444
536 file path=opt/SUNWdtrt/tst/common/decls/tst.basics.d mode=0444
537 file path=opt/SUNWdtrt/tst/common/decls/tst.funcs.d mode=0444
538 file path=opt/SUNWdtrt/tst/common/decls/tst.pointers.d mode=0444
539 file path=opt/SUNWdtrt/tst/common/decls/tst.varargsfuncs.d mode=0444
540 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_AGGREGATION.d mode=0444
541 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_DBLERROR.d mode=0444
542 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_DYNAMIC.d mode=0444
543 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_PRINCIPAL.d mode=0444
544 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_PRINCIPAL.end.d \
545 mode=0444
546 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_SPEC.d mode=0444
547 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_SPECUNAVAIL.d mode=0444
548 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_STKSTROVERFLOW.d \
549 mode=0444
550 file \
551 path=opt/SUNWdtrt/tst/common/dtraceUtil/err.D_PDESC_ZERO.InvalidDescription1
552 mode=0444
553 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.AddSearchPath.d.ksh mode=0444
554 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeGiga.d.ksh mode=0444
555 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeKilo.d.ksh mode=0444
556 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeMega.d.ksh mode=0444
557 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeTera.d.ksh mode=0444
558 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DataModel32.d.ksh mode=0444
559 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DataModel64.d.ksh mode=0444
560 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DefineNameWithCPP.d.ksh \
561 mode=0444
562 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DefineNameWithCPP.d.ksh.out \
563 mode=0444
564 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithFunction.d.ksh \
565 mode=0444
566 file \
567 path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithFunction.d.ksh.out \
568 mode=0444
569 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithID.d.ksh \
570 mode=0444
571 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithID.d.ksh.out \
572 mode=0444
573 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithModule.d.ksh \
574 mode=0444
575 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithModule.d.ksh.out \
576 mode=0444
577 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithName.d.ksh \
578 mode=0444
579 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithName.d.ksh.out \
580 mode=0444
581 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithProvider.d.ksh \
582 mode=0444
583 file \
584 path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithProvider.d.ksh.out \
585 mode=0444
586 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithoutW.d.ksh \
587 mode=0444
588 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ELFGenerationOut.d.ksh \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 10

589 mode=0444
590 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ELFGenerationWithO.d.ksh \
591 mode=0444
592 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExitStatus1.d.ksh mode=0444
593 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExitStatus2.d.ksh mode=0444
594 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExtraneousProbeIds.d.ksh \
595 mode=0444
596 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidFuncName1.d.ksh \
597 mode=0444
598 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidFuncName2.d.ksh \
599 mode=0444
600 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId1.d.ksh mode=0444
601 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId2.d.ksh mode=0444
602 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId3.d.ksh mode=0444
603 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule1.d.ksh \
604 mode=0444
605 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule2.d.ksh \
606 mode=0444
607 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule3.d.ksh \
608 mode=0444
609 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule4.d.ksh \
610 mode=0444
611 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProbeIdentifier.d.ksh \
612 mode=0444
613 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider1.d.ksh \
614 mode=0444
615 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider2.d.ksh \
616 mode=0444
617 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider3.d.ksh \
618 mode=0444
619 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider4.d.ksh \
620 mode=0444
621 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc1.d.ksh \
622 mode=0444
623 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc2.d.ksh \
624 mode=0444
625 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc3.d.ksh \
626 mode=0444
627 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc4.d.ksh \
628 mode=0444
629 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc5.d.ksh \
630 mode=0444
631 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc6.d.ksh \
632 mode=0444
633 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc7.d.ksh \
634 mode=0444
635 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc8.d.ksh \
636 mode=0444
637 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc9.d.ksh \
638 mode=0444
639 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID1.d.ksh \
640 mode=0444
641 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID2.d.ksh \
642 mode=0444
643 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID3.d.ksh \
644 mode=0444
645 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID4.d.ksh \
646 mode=0444
647 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID5.d.ksh \
648 mode=0444
649 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID6.d.ksh \
650 mode=0444
651 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID7.d.ksh \
652 mode=0444
653 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule1.d.ksh \
654 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 11

655 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule2.d.ksh \
656 mode=0444
657 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule3.d.ksh \
658 mode=0444
659 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule4.d.ksh \
660 mode=0444
661 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule5.d.ksh \
662 mode=0444
663 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule6.d.ksh \
664 mode=0444
665 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule7.d.ksh \
666 mode=0444
667 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule8.d.ksh \
668 mode=0444
669 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName1.d.ksh \
670 mode=0444
671 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName2.d.ksh \
672 mode=0444
673 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName3.d.ksh \
674 mode=0444
675 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName4.d.ksh \
676 mode=0444
677 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName5.d.ksh \
678 mode=0444
679 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName6.d.ksh \
680 mode=0444
681 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName7.d.ksh \
682 mode=0444
683 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName8.d.ksh \
684 mode=0444
685 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName9.d.ksh \
686 mode=0444
687 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider1.d.ksh \
688 mode=0444
689 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider2.d.ksh \
690 mode=0444
691 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider3.d.ksh \
692 mode=0444
693 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider4.d.ksh \
694 mode=0444
695 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider5.d.ksh \
696 mode=0444
697 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.MultipleInvalidProbeId.d.ksh \
698 mode=0444
699 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.PreprocessorStatement.d.ksh \
700 mode=0444
701 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.QuietMode.d.ksh mode=0444
702 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.QuietMode.d.ksh.out mode=0444
703 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.TestCompile.d.ksh mode=0444
704 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.TestCompile.d.ksh.out \
705 mode=0444
706 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.UnDefineNameWithCPP.d.ksh \
707 mode=0444
708 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes.d.ksh \
709 mode=0444
710 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes.d.ksh.out \
711 mode=0444
712 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroModuleProbes.d.ksh \
713 mode=0444
714 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroModuleProbes.d.ksh.out \
715 mode=0444
716 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroNameProbes.d.ksh \
717 mode=0444
718 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroNameProbes.d.ksh.out \
719 mode=0444
720 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProbeIdentfier.d.ksh \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 12

721 mode=0444
722 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProbesWithoutZ.d.ksh \
723 mode=0444
724 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProviderProbes.d.ksh \
725 mode=0444
726 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProviderProbes.d.ksh.out \
727 mode=0444
728 file path=opt/SUNWdtrt/tst/common/end/err.D_IDENT_UNDEF.timespent.d mode=0444
729 file path=opt/SUNWdtrt/tst/common/end/tst.end.d mode=0444
730 file path=opt/SUNWdtrt/tst/common/end/tst.endwithoutbegin.d mode=0444
731 file path=opt/SUNWdtrt/tst/common/end/tst.multibeginend.d mode=0444
732 file path=opt/SUNWdtrt/tst/common/end/tst.multiend.d mode=0444
733 file path=opt/SUNWdtrt/tst/common/enum/err.D_DECL_IDRED.EnumSameName.d \
734 mode=0444
735 file path=opt/SUNWdtrt/tst/common/enum/err.D_UNKNOWN.RepeatIdentifiers.d \
736 mode=0444
737 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumEquality.d mode=0444
738 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumSameValue.d mode=0444
739 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumValAssign.d mode=0444
740 file path=opt/SUNWdtrt/tst/common/env/err.D_PRAGMA_OPTSET.setfromscript.d \
741 mode=0444
742 file path=opt/SUNWdtrt/tst/common/env/err.D_PRAGMA_OPTSET.unsetfromscript.d \
743 mode=0444
744 file path=opt/SUNWdtrt/tst/common/env/tst.ld_nolazyload.ksh mode=0444
745 file path=opt/SUNWdtrt/tst/common/env/tst.ld_nolazyload.ksh.out mode=0444
746 file path=opt/SUNWdtrt/tst/common/env/tst.setenv1.ksh mode=0444
747 file path=opt/SUNWdtrt/tst/common/env/tst.setenv1.ksh.out mode=0444
748 file path=opt/SUNWdtrt/tst/common/env/tst.setenv2.ksh mode=0444
749 file path=opt/SUNWdtrt/tst/common/env/tst.setenv2.ksh.out mode=0444
750 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv1.ksh mode=0444
751 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv1.ksh.out mode=0444
752 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv2.ksh mode=0444
753 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv2.ksh.out mode=0444
754 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_BADADDR.d mode=0444
755 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_DIVZERO.d mode=0444
756 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_UNKNOWN.d mode=0444
757 file path=opt/SUNWdtrt/tst/common/error/tst.error.d mode=0444
758 file path=opt/SUNWdtrt/tst/common/error/tst.errorend.d mode=0444
759 file path=opt/SUNWdtrt/tst/common/exit/err.D_PROTO_LEN.noarg.d mode=0444
760 file path=opt/SUNWdtrt/tst/common/exit/err.exitarg1.d mode=0444
761 file path=opt/SUNWdtrt/tst/common/exit/tst.basic1.d mode=0444
762 file path=opt/SUNWdtrt/tst/common/fbtprovider/err.D_PDESC_ZERO.notreturn.d \
763 mode=0444
764 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.basic.d mode=0444
765 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.functionentry.d mode=0444
766 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.functionreturnvalue.d \
767 mode=0444
768 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.ioctlargs.d mode=0444
769 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.offset.d mode=0444
770 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.offsetzero.d mode=0444
771 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.return.d mode=0444
772 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.return0.d mode=0444
773 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.tailcall.d mode=0444
774 file path=opt/SUNWdtrt/tst/common/funcs/err.D_FUNC_UNDEF.progenyofbad1.d \
775 mode=0444
776 file path=opt/SUNWdtrt/tst/common/funcs/err.D_OP_VFPTR.badop.d mode=0444
777 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.chillbadarg.d \
778 mode=0444
779 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.copyoutbadarg.d \
780 mode=0444
781 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.mobadarg.d mode=0444
782 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.raisebadarg.d \
783 mode=0444
784 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.tolower.d mode=0444
785 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.toupper.d mode=0444
786 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.allocanoarg.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 13

787 mode=0444
788 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.badbreakpoint.d \
789 mode=0444
790 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.chilltoofew.d \
791 mode=0444
792 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.chilltoomany.d \
793 mode=0444
794 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyoutstrbadarg.d \
795 mode=0444
796 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyoutstrtoofew.d \
797 mode=0444
798 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyouttoofew.d \
799 mode=0444
800 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyouttoomany.d \
801 mode=0444
802 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.motoofew.d mode=0444
803 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.motoomany.d mode=0444
804 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtabadarg.d mode=0444
805 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtatoofew.d mode=0444
806 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtatoomany.d mode=0444
807 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.panicbadarg.d \
808 mode=0444
809 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.progenyofbad2.d \
810 mode=0444
811 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.stopbadarg.d mode=0444
812 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.tolower.d mode=0444
813 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.tolowertoomany.d \
814 mode=0444
815 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.toupper.d mode=0444
816 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.touppertoomany.d \
817 mode=0444
818 file path=opt/SUNWdtrt/tst/common/funcs/err.D_STRINGOF_TYPE.badstringof.d \
819 mode=0444
820 file path=opt/SUNWdtrt/tst/common/funcs/err.D_VAR_UNDEF.badvar.d mode=0444
821 file path=opt/SUNWdtrt/tst/common/funcs/err.badalloca.d mode=0444
822 file path=opt/SUNWdtrt/tst/common/funcs/err.badalloca2.d mode=0444
823 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy.d mode=0444
824 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy1.d mode=0444
825 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy2.d mode=0444
826 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy3.d mode=0444
827 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy4.d mode=0444
828 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy5.d mode=0444
829 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy6.d mode=0444
830 file path=opt/SUNWdtrt/tst/common/funcs/err.badchill.d mode=0444
831 file path=opt/SUNWdtrt/tst/common/funcs/err.chillbadarg.ksh mode=0444
832 file path=opt/SUNWdtrt/tst/common/funcs/err.copyout.d mode=0444
833 file path=opt/SUNWdtrt/tst/common/funcs/err.copyoutbadaddr.ksh mode=0444
834 file path=opt/SUNWdtrt/tst/common/funcs/err.copyoutstrbadaddr.ksh mode=0444
835 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntoa6badaddr.d mode=0444
836 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntoabadaddr.d mode=0444
837 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntopbadaddr.d mode=0444
838 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntopbadarg.d mode=0444
839 file path=opt/SUNWdtrt/tst/common/funcs/tst.badfreopen.ksh mode=0444
840 file path=opt/SUNWdtrt/tst/common/funcs/tst.basename.d mode=0444
841 file path=opt/SUNWdtrt/tst/common/funcs/tst.basename.d.out mode=0444
842 file path=opt/SUNWdtrt/tst/common/funcs/tst.bcopy.d mode=0444
843 file path=opt/SUNWdtrt/tst/common/funcs/tst.chill.ksh mode=0444
844 file path=opt/SUNWdtrt/tst/common/funcs/tst.cleanpath.d mode=0444
845 file path=opt/SUNWdtrt/tst/common/funcs/tst.cleanpath.d.out mode=0444
846 file path=opt/SUNWdtrt/tst/common/funcs/tst.copyin.d mode=0444
847 file path=opt/SUNWdtrt/tst/common/funcs/tst.copyinto.d mode=0444
848 file path=opt/SUNWdtrt/tst/common/funcs/tst.ddi_pathname.d mode=0444
849 file path=opt/SUNWdtrt/tst/common/funcs/tst.default.d mode=0444
850 file path=opt/SUNWdtrt/tst/common/funcs/tst.freopen.ksh mode=0444
851 file path=opt/SUNWdtrt/tst/common/funcs/tst.ftruncate.ksh mode=0444
852 file path=opt/SUNWdtrt/tst/common/funcs/tst.ftruncate.ksh.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 14

853 file path=opt/SUNWdtrt/tst/common/funcs/tst.hton.d mode=0444
854 file path=opt/SUNWdtrt/tst/common/funcs/tst.index.d mode=0444
855 file path=opt/SUNWdtrt/tst/common/funcs/tst.index.d.out mode=0444
856 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa.d mode=0444
857 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa.d.out mode=0444
858 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa6.d mode=0444
859 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa6.d.out mode=0444
860 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntop.d mode=0444
861 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntop.d.out mode=0444
862 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostr.d mode=0444
863 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostr.d.out mode=0444
864 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostrbase.d mode=0444
865 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostrbase.d.out mode=0444
866 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_owned.d mode=0444
867 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_owner.d mode=0444
868 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_type_adaptive.d mode=0444
869 file path=opt/SUNWdtrt/tst/common/funcs/tst.progenyof.d mode=0444
870 file path=opt/SUNWdtrt/tst/common/funcs/tst.rand.d mode=0444
871 file path=opt/SUNWdtrt/tst/common/funcs/tst.strchr.d mode=0444
872 file path=opt/SUNWdtrt/tst/common/funcs/tst.strchr.d.out mode=0444
873 file path=opt/SUNWdtrt/tst/common/funcs/tst.strjoin.d mode=0444
874 file path=opt/SUNWdtrt/tst/common/funcs/tst.strjoin.d.out mode=0444
875 file path=opt/SUNWdtrt/tst/common/funcs/tst.strstr.d mode=0444
876 file path=opt/SUNWdtrt/tst/common/funcs/tst.strstr.d.out mode=0444
877 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok.d mode=0444
878 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok.d.out mode=0444
879 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok_null.d mode=0444
880 file path=opt/SUNWdtrt/tst/common/funcs/tst.substr.d mode=0444
881 file path=opt/SUNWdtrt/tst/common/funcs/tst.substr.d.out mode=0444
882 file path=opt/SUNWdtrt/tst/common/funcs/tst.substrminate.d mode=0444
883 file path=opt/SUNWdtrt/tst/common/funcs/tst.substrminate.d.out mode=0444
884 file path=opt/SUNWdtrt/tst/common/funcs/tst.system.d mode=0444
885 file path=opt/SUNWdtrt/tst/common/funcs/tst.system.d.out mode=0444
886 file path=opt/SUNWdtrt/tst/common/funcs/tst.tolower.d mode=0444
887 file path=opt/SUNWdtrt/tst/common/funcs/tst.toupper.d mode=0444
888 file path=opt/SUNWdtrt/tst/common/grammar/err.D_ADDROF_LVAL.d mode=0444
889 file path=opt/SUNWdtrt/tst/common/grammar/err.D_EMPTY.empty.d mode=0444
890 file path=opt/SUNWdtrt/tst/common/grammar/tst.clauses.d mode=0444
891 file path=opt/SUNWdtrt/tst/common/grammar/tst.stmts.d mode=0444
892 file path=opt/SUNWdtrt/tst/common/include/tst.includefirst.ksh mode=0444
893 file path=opt/SUNWdtrt/tst/common/inline/err.D_DECL_IDRED.redef1.d mode=0444
894 file path=opt/SUNWdtrt/tst/common/inline/err.D_DECL_IDRED.redef2.d mode=0444
895 file path=opt/SUNWdtrt/tst/common/inline/err.D_IDENT_UNDEF.recur.d mode=0444
896 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.baddef1.d mode=0444
897 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.baddef2.d mode=0444
898 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.badxlate.d \
899 mode=0444
900 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineDataAssign.d mode=0444
901 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineExpression.d mode=0444
902 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineKinds.d mode=0444
903 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineKinds.d.out mode=0444
904 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineTypedef.d mode=0444
905 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineWritableAssign.d mode=0444
906 file path=opt/SUNWdtrt/tst/common/io/tst.fds.d mode=0444
907 file path=opt/SUNWdtrt/tst/common/io/tst.fds.d.out mode=0444
908 file path=opt/SUNWdtrt/tst/common/io/tst.fds.exe mode=0555
909 file path=opt/SUNWdtrt/tst/common/ip/get.ipv4remote.pl mode=0555
910 file path=opt/SUNWdtrt/tst/common/ip/get.ipv6remote.pl mode=0555
911 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localicmp.ksh mode=0444
912 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localicmp.ksh.out mode=0444
913 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localtcp.ksh mode=0444
914 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localtcp.ksh.out mode=0444
915 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localudp.ksh mode=0444
916 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localudp.ksh.out mode=0444
917 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteicmp.ksh mode=0444
918 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteicmp.ksh.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 15

919 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remotetcp.ksh mode=0444
920 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remotetcp.ksh.out mode=0444
921 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteudp.ksh mode=0444
922 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteudp.ksh.out mode=0444
923 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6localicmp.ksh mode=0444
924 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6localicmp.ksh.out mode=0444
925 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6remoteicmp.ksh mode=0444
926 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6remoteicmp.ksh.out mode=0444
927 file path=opt/SUNWdtrt/tst/common/ip/tst.localtcpstate.ksh mode=0444
928 file path=opt/SUNWdtrt/tst/common/ip/tst.localtcpstate.ksh.out mode=0444
929 file path=opt/SUNWdtrt/tst/common/ip/tst.remotetcpstate.ksh mode=0444
930 file path=opt/SUNWdtrt/tst/common/ip/tst.remotetcpstate.ksh.out mode=0444
931 file path=opt/SUNWdtrt/tst/common/java_api/test.jar
932 file path=opt/SUNWdtrt/tst/common/java_api/tst.Abort.ksh mode=0444
933 file path=opt/SUNWdtrt/tst/common/java_api/tst.Abort.ksh.out mode=0444
934 file path=opt/SUNWdtrt/tst/common/java_api/tst.Bean.ksh mode=0444
935 file path=opt/SUNWdtrt/tst/common/java_api/tst.Bean.ksh.out mode=0444
936 file path=opt/SUNWdtrt/tst/common/java_api/tst.Close.ksh mode=0444
937 file path=opt/SUNWdtrt/tst/common/java_api/tst.Close.ksh.out mode=0444
938 file path=opt/SUNWdtrt/tst/common/java_api/tst.Drop.ksh mode=0444
939 file path=opt/SUNWdtrt/tst/common/java_api/tst.Drop.ksh.out mode=0444
940 file path=opt/SUNWdtrt/tst/common/java_api/tst.Enable.ksh mode=0444
941 file path=opt/SUNWdtrt/tst/common/java_api/tst.Enable.ksh.out mode=0444
942 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.exe mode=0555
943 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.ksh mode=0444
944 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.ksh.out \
945 mode=0444
946 file path=opt/SUNWdtrt/tst/common/java_api/tst.GetAggregate.ksh mode=0444
947 file path=opt/SUNWdtrt/tst/common/java_api/tst.MaxConsumers.ksh mode=0444
948 file path=opt/SUNWdtrt/tst/common/java_api/tst.MaxConsumers.ksh.out mode=0444
949 file path=opt/SUNWdtrt/tst/common/java_api/tst.MultiAggPrinta.ksh mode=0444
950 file path=opt/SUNWdtrt/tst/common/java_api/tst.MultiAggPrinta.ksh.out \
951 mode=0444
952 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.exe mode=0555
953 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.ksh mode=0444
954 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.ksh.out mode=0444
955 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeDescription.ksh mode=0444
956 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeDescription.ksh.out \
957 mode=0444
958 file path=opt/SUNWdtrt/tst/common/java_api/tst.StateMachine.ksh mode=0444
959 file path=opt/SUNWdtrt/tst/common/java_api/tst.StateMachine.ksh.out mode=0444
960 file path=opt/SUNWdtrt/tst/common/java_api/tst.StopLock.ksh mode=0444
961 file path=opt/SUNWdtrt/tst/common/java_api/tst.StopLock.ksh.out mode=0444
962 file path=opt/SUNWdtrt/tst/common/java_api/tst.printa.d mode=0444
963 file path=opt/SUNWdtrt/tst/common/java_api/tst.printa.d.out mode=0444
964 file path=opt/SUNWdtrt/tst/common/json/tst.general.d mode=0444
965 file path=opt/SUNWdtrt/tst/common/json/tst.general.d.out mode=0444
966 file path=opt/SUNWdtrt/tst/common/json/tst.strsize.d mode=0444
967 file path=opt/SUNWdtrt/tst/common/json/tst.strsize.d.out mode=0444
968 file path=opt/SUNWdtrt/tst/common/json/tst.usdt.d mode=0444
969 file path=opt/SUNWdtrt/tst/common/json/tst.usdt.d.out mode=0444
970 file path=opt/SUNWdtrt/tst/common/json/tst.usdt.exe mode=0555
971 #endif /* ! codereview */
972 file path=opt/SUNWdtrt/tst/common/lexer/err.D_CHR_NL.char.d mode=0444
973 file path=opt/SUNWdtrt/tst/common/lexer/err.D_CHR_NULL.char.d mode=0444
974 file path=opt/SUNWdtrt/tst/common/lexer/err.D_INT_DIGIT.InvalidDigit.d \
975 mode=0444
976 file path=opt/SUNWdtrt/tst/common/lexer/err.D_INT_OFLOW.BigInt.d mode=0444
977 file path=opt/SUNWdtrt/tst/common/lexer/err.D_STR_NL.string.d mode=0444
978 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brace1.d mode=0444
979 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brace2.d mode=0444
980 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack1.d mode=0444
981 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack2.d mode=0444
982 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack3.d mode=0444
983 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren1.d mode=0444
984 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren2.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 16

985 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren3.d mode=0444
986 file path=opt/SUNWdtrt/tst/common/lexer/tst.D_MACRO_OFLOW.ParIntOvflow.d.ksh \
987 mode=0444
988 file \
989 path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTOREVEN.nodivide.d
990 mode=0444
991 file \
992 path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTOREVEN.notfactor.d
993 mode=0444
994 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORMATCH.d \
995 mode=0444
996 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORNSTEPS.d \
997 mode=0444
998 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORSMALL.d \
999 mode=0444

1000 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORTYPE.d \
1001 mode=0444
1002 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORVAL.d \
1003 mode=0444
1004 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHMATCH.d \
1005 mode=0444
1006 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHTYPE.d \
1007 mode=0444
1008 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHVAL.d mode=0444
1009 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWMATCH.d \
1010 mode=0444
1011 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWTYPE.d mode=0444
1012 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWVAL.d mode=0444
1013 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_MAGRANGE.d \
1014 mode=0444
1015 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_MAGTOOBIG.d \
1016 mode=0444
1017 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPMATCH.d \
1018 mode=0444
1019 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPTYPE.d \
1020 mode=0444
1021 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPVAL.d \
1022 mode=0444
1023 file path=opt/SUNWdtrt/tst/common/llquantize/tst.bases.d mode=0444
1024 file path=opt/SUNWdtrt/tst/common/llquantize/tst.bases.d.out mode=0444
1025 file path=opt/SUNWdtrt/tst/common/llquantize/tst.basic.d mode=0444
1026 file path=opt/SUNWdtrt/tst/common/llquantize/tst.basic.d.out mode=0444
1027 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negorder.d mode=0444
1028 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negorder.d.out mode=0444
1029 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negvalue.d mode=0444
1030 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negvalue.d.out mode=0444
1031 file path=opt/SUNWdtrt/tst/common/llquantize/tst.normal.d mode=0444
1032 file path=opt/SUNWdtrt/tst/common/llquantize/tst.normal.d.out mode=0444
1033 file path=opt/SUNWdtrt/tst/common/llquantize/tst.range.d mode=0444
1034 file path=opt/SUNWdtrt/tst/common/llquantize/tst.range.d.out mode=0444
1035 file path=opt/SUNWdtrt/tst/common/llquantize/tst.steps.d mode=0444
1036 file path=opt/SUNWdtrt/tst/common/llquantize/tst.steps.d.out mode=0444
1037 file path=opt/SUNWdtrt/tst/common/llquantize/tst.trunc.d mode=0444
1038 file path=opt/SUNWdtrt/tst/common/llquantize/tst.trunc.d.out mode=0444
1039 file path=opt/SUNWdtrt/tst/common/mdb/tst.dtracedcmd.ksh mode=0444
1040 file path=opt/SUNWdtrt/tst/common/mib/tst.icmp.ksh mode=0444
1041 file path=opt/SUNWdtrt/tst/common/mib/tst.tcp.ksh mode=0444
1042 file path=opt/SUNWdtrt/tst/common/mib/tst.udp.ksh mode=0444
1043 file path=opt/SUNWdtrt/tst/common/misc/err.D_PRAGMA_OPTSET.d mode=0444
1044 file path=opt/SUNWdtrt/tst/common/misc/tst.badopt.d mode=0444
1045 file path=opt/SUNWdtrt/tst/common/misc/tst.boolopt.d mode=0444
1046 file path=opt/SUNWdtrt/tst/common/misc/tst.boolopt.d.out mode=0444
1047 file path=opt/SUNWdtrt/tst/common/misc/tst.dynopt.d mode=0444
1048 file path=opt/SUNWdtrt/tst/common/misc/tst.dynopt.d.out mode=0444
1049 file path=opt/SUNWdtrt/tst/common/misc/tst.enablerace.ksh mode=0444
1050 file path=opt/SUNWdtrt/tst/common/misc/tst.haslam.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 17

1051 file path=opt/SUNWdtrt/tst/common/misc/tst.include.ksh mode=0444
1052 file path=opt/SUNWdtrt/tst/common/misc/tst.macroglob.ksh mode=0444
1053 file path=opt/SUNWdtrt/tst/common/misc/tst.macroglob.ksh.out mode=0444
1054 file path=opt/SUNWdtrt/tst/common/misc/tst.roch.d mode=0444
1055 file path=opt/SUNWdtrt/tst/common/misc/tst.schrock.ksh mode=0444
1056 file path=opt/SUNWdtrt/tst/common/multiaggs/err.D_PRINTA_AGGKEY.d mode=0444
1057 file path=opt/SUNWdtrt/tst/common/multiaggs/err.D_PRINTA_AGGPROTO.d mode=0444
1058 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.many.d mode=0444
1059 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.many.d.out mode=0444
1060 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.same.d mode=0444
1061 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.same.d.out mode=0444
1062 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sort.d mode=0444
1063 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sort.d.out mode=0444
1064 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sortpos.d mode=0444
1065 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sortpos.d.out mode=0444
1066 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.tuplecompat.d mode=0444
1067 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.tuplecompat.d.out mode=0444
1068 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero.d mode=0444
1069 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero.d.out mode=0444
1070 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero2.d mode=0444
1071 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero2.d.out mode=0444
1072 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero3.d mode=0444
1073 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero3.d.out mode=0444
1074 file path=opt/SUNWdtrt/tst/common/nfs/tst.call.d mode=0444
1075 file path=opt/SUNWdtrt/tst/common/nfs/tst.call.exe mode=0555
1076 file path=opt/SUNWdtrt/tst/common/nfs/tst.call3.d mode=0444
1077 file path=opt/SUNWdtrt/tst/common/nfs/tst.call3.exe mode=0555
1078 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_BITFIELD.bitfield.d \
1079 mode=0444
1080 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_TYPE.badtype.d \
1081 mode=0444
1082 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_TYPE.notsou.d \
1083 mode=0444
1084 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_UNKNOWN.OffsetofNULL.d \
1085 mode=0444
1086 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_UNKNOWN.badmemb.d mode=0444
1087 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofAlias.d mode=0444
1088 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofArith.d mode=0444
1089 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofUnion.d mode=0444
1090 file path=opt/SUNWdtrt/tst/common/offsetof/tst.struct.d mode=0444
1091 file path=opt/SUNWdtrt/tst/common/offsetof/tst.struct.d.out mode=0444
1092 file path=opt/SUNWdtrt/tst/common/offsetof/tst.union.d mode=0444
1093 file path=opt/SUNWdtrt/tst/common/offsetof/tst.union.d.out mode=0444
1094 file path=opt/SUNWdtrt/tst/common/operators/tst.ternary.d mode=0444
1095 file path=opt/SUNWdtrt/tst/common/operators/tst.ternary.d.out mode=0444
1096 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badlib.d mode=0444
1097 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badlib.exe mode=0555
1098 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badproc1.d mode=0444
1099 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_BADPID.badproc2.d mode=0444
1100 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_CREATEFAIL.many.d mode=0444
1101 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_CREATEFAIL.many.exe mode=0555
1102 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_FUNC.badfunc.d mode=0444
1103 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_FUNC.badfunc.exe mode=0555
1104 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_LIB.libdash.d mode=0444
1105 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_LIB.libdash.exe mode=0555
1106 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.alldash.d mode=0444
1107 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.alldash.exe mode=0555
1108 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.badname.d mode=0444
1109 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.badname.exe mode=0555
1110 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.globdash.d mode=0444
1111 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.globdash.exe mode=0555
1112 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_OFF.toobig.d mode=0444
1113 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_OFF.toobig.exe mode=0555
1114 file path=opt/SUNWdtrt/tst/common/pid/tst.addprobes.ksh mode=0444
1115 file path=opt/SUNWdtrt/tst/common/pid/tst.args1.d mode=0444
1116 file path=opt/SUNWdtrt/tst/common/pid/tst.args1.exe mode=0555

new/usr/src/pkg/manifests/system-dtrace-tests.mf 18

1117 file path=opt/SUNWdtrt/tst/common/pid/tst.coverage.d mode=0444
1118 file path=opt/SUNWdtrt/tst/common/pid/tst.coverage.exe mode=0555
1119 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.d mode=0444
1120 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.d.out mode=0444
1121 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.exe mode=0555
1122 file path=opt/SUNWdtrt/tst/common/pid/tst.float.d mode=0444
1123 file path=opt/SUNWdtrt/tst/common/pid/tst.float.exe mode=0555
1124 file path=opt/SUNWdtrt/tst/common/pid/tst.fork.d mode=0444
1125 file path=opt/SUNWdtrt/tst/common/pid/tst.fork.exe mode=0555
1126 file path=opt/SUNWdtrt/tst/common/pid/tst.gcc.d mode=0444
1127 file path=opt/SUNWdtrt/tst/common/pid/tst.gcc.exe mode=0555
1128 file path=opt/SUNWdtrt/tst/common/pid/tst.killonerror.ksh mode=0444
1129 file path=opt/SUNWdtrt/tst/common/pid/tst.main.ksh mode=0444
1130 file path=opt/SUNWdtrt/tst/common/pid/tst.manypids.ksh mode=0444
1131 file path=opt/SUNWdtrt/tst/common/pid/tst.newprobes.ksh mode=0444
1132 file path=opt/SUNWdtrt/tst/common/pid/tst.newprobes.ksh.out mode=0444
1133 file path=opt/SUNWdtrt/tst/common/pid/tst.probemod.ksh mode=0444
1134 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex1.ksh mode=0444
1135 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex2.ksh mode=0444
1136 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex2.ksh.out mode=0444
1137 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex3.ksh mode=0444
1138 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex3.ksh.out mode=0444
1139 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex4.ksh mode=0444
1140 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex4.ksh.out mode=0444
1141 file path=opt/SUNWdtrt/tst/common/pid/tst.ret1.d mode=0444
1142 file path=opt/SUNWdtrt/tst/common/pid/tst.ret1.exe mode=0555
1143 file path=opt/SUNWdtrt/tst/common/pid/tst.ret2.d mode=0444
1144 file path=opt/SUNWdtrt/tst/common/pid/tst.ret2.exe mode=0555
1145 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probefunc.ksh mode=0444
1146 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probefunc.ksh.out mode=0444
1147 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probemod.ksh mode=0444
1148 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probemod.ksh.out mode=0444
1149 file path=opt/SUNWdtrt/tst/common/pid/tst.vfork.d mode=0444
1150 file path=opt/SUNWdtrt/tst/common/pid/tst.vfork.exe mode=0555
1151 file path=opt/SUNWdtrt/tst/common/pid/tst.weak1.d mode=0444
1152 file path=opt/SUNWdtrt/tst/common/pid/tst.weak1.exe mode=0555
1153 file path=opt/SUNWdtrt/tst/common/pid/tst.weak2.d mode=0444
1154 file path=opt/SUNWdtrt/tst/common/pid/tst.weak2.exe mode=0555
1155 file path=opt/SUNWdtrt/tst/common/plockstat/tst.available.d mode=0444
1156 file path=opt/SUNWdtrt/tst/common/plockstat/tst.available.exe mode=0555
1157 file path=opt/SUNWdtrt/tst/common/plockstat/tst.libmap.d mode=0444
1158 file path=opt/SUNWdtrt/tst/common/plockstat/tst.libmap.exe mode=0555
1159 file path=opt/SUNWdtrt/tst/common/pointers/err.BadAlign.d mode=0444
1160 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.ArrayVar.d \
1161 mode=0444
1162 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.DynamicVar.d \
1163 mode=0444
1164 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.agg.d mode=0444
1165 file path=opt/SUNWdtrt/tst/common/pointers/err.D_DEREF_NONPTR.noptr.d \
1166 mode=0444
1167 file path=opt/SUNWdtrt/tst/common/pointers/err.D_DEREF_VOID.VoidPointerDeref.d \
1168 mode=0444
1169 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_ARRFUN.ArrayAssignment.d \
1170 mode=0444
1171 file \
1172 path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_INCOMPAT.VoidPointerArith.d \
1173 mode=0444
1174 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_LVAL.AddressChange.d \
1175 mode=0444
1176 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_PTR.NonPointerAccess.d \
1177 mode=0444
1178 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_PTR.badpointer.d mode=0444
1179 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_SOU.BadPointerAccess.d \
1180 mode=0444
1181 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_SOU.badpointer.d mode=0444
1182 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress1.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 19

1183 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress2.d mode=0444
1184 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress3.d mode=0444
1185 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress4.d mode=0444
1186 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress5.d mode=0444
1187 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer1.d mode=0444
1188 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer2.d mode=0444
1189 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer3.d mode=0444
1190 file path=opt/SUNWdtrt/tst/common/pointers/tst.GlobalVar.d mode=0444
1191 file path=opt/SUNWdtrt/tst/common/pointers/tst.IntegerArithmetic1.d mode=0444
1192 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic1.d mode=0444
1193 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic2.d mode=0444
1194 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic3.d mode=0444
1195 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerAssignment.d mode=0444
1196 file path=opt/SUNWdtrt/tst/common/pointers/tst.ValidPointer1.d mode=0444
1197 file path=opt/SUNWdtrt/tst/common/pointers/tst.ValidPointer2.d mode=0444
1198 file path=opt/SUNWdtrt/tst/common/pointers/tst.VoidCast.d mode=0444
1199 file path=opt/SUNWdtrt/tst/common/pointers/tst.assigncast1.d mode=0444
1200 file path=opt/SUNWdtrt/tst/common/pointers/tst.assigncast2.d mode=0444
1201 file path=opt/SUNWdtrt/tst/common/pointers/tst.basic1.d mode=0444
1202 file path=opt/SUNWdtrt/tst/common/pointers/tst.basic2.d mode=0444
1203 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGERR.d mode=0444
1204 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_DEPEND.main.d mode=0444
1205 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_INVAL.d mode=0444
1206 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_MALFORM.d mode=0444
1207 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_UNUSED.UnusedPragma.d \
1208 mode=0444
1209 file path=opt/SUNWdtrt/tst/common/pragma/err.circlibdep.ksh mode=0444
1210 file path=opt/SUNWdtrt/tst/common/pragma/err.invalidlibdep.ksh mode=0444
1211 file path=opt/SUNWdtrt/tst/common/pragma/tst.libchain.ksh mode=0444
1212 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdep.ksh mode=0444
1213 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdepfullyconnected.ksh \
1214 mode=0444
1215 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdepsepdir.ksh mode=0444
1216 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal.ksh mode=0444
1217 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal2.ksh mode=0444
1218 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal3.d mode=0444
1219 file path=opt/SUNWdtrt/tst/common/predicates/err.D_PRED_SCALAR.NonScalarPred.d \
1220 mode=0444
1221 file path=opt/SUNWdtrt/tst/common/predicates/err.D_SYNTAX.invalid.d mode=0444
1222 file path=opt/SUNWdtrt/tst/common/predicates/err.D_SYNTAX.operr.d mode=0444
1223 file path=opt/SUNWdtrt/tst/common/predicates/tst.argsnotcached.d mode=0444
1224 file path=opt/SUNWdtrt/tst/common/predicates/tst.basics.d mode=0444
1225 file path=opt/SUNWdtrt/tst/common/predicates/tst.basics.d.out mode=0444
1226 file path=opt/SUNWdtrt/tst/common/predicates/tst.complex.d mode=0444
1227 file path=opt/SUNWdtrt/tst/common/predicates/tst.complex.d.out mode=0444
1228 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_IDENT_UNDEF.afterprobe.d \
1229 mode=0444
1230 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_PRAGCTL_INVAL.tabdefine.d \
1231 mode=0444
1232 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_SYNTAX.withoutpound.d \
1233 mode=0444
1234 file path=opt/SUNWdtrt/tst/common/preprocessor/err.defincomp.d mode=0444
1235 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefelsenotendif.d \
1236 mode=0444
1237 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefincomp.d mode=0444
1238 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefnotendif.d mode=0444
1239 file path=opt/SUNWdtrt/tst/common/preprocessor/err.incompelse.d mode=0444
1240 file path=opt/SUNWdtrt/tst/common/preprocessor/err.mulelse.d mode=0444
1241 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifdef.d mode=0444
1242 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifdef.d.out mode=0444
1243 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifndef.d mode=0444
1244 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifndef.d.out mode=0444
1245 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifnotdef.d mode=0444
1246 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifnotdef.d.out mode=0444
1247 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicaland.d mode=0444
1248 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicaland.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 20

1249 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalandor.d mode=0444
1250 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalandor.d.out \
1251 mode=0444
1252 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalor.d mode=0444
1253 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalor.d.out mode=0444
1254 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.muland.d mode=0444
1255 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.muland.d.out mode=0444
1256 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.mulor.d mode=0444
1257 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.mulor.d.out mode=0444
1258 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.precondi.d mode=0444
1259 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.precondi.d.out mode=0444
1260 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.predicatedeclare.d \
1261 mode=0444
1262 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexp.d mode=0444
1263 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexp.d.out mode=0444
1264 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpelse.d mode=0444
1265 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpelse.d.out mode=0444
1266 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpif.d mode=0444
1267 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpif.d.out mode=0444
1268 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpifelse.d mode=0444
1269 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpifelse.d.out \
1270 mode=0444
1271 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.withinprobe.d mode=0444
1272 file path=opt/SUNWdtrt/tst/common/print/err.D_PRINT_AGG.bad.d mode=0444
1273 file path=opt/SUNWdtrt/tst/common/print/err.D_PRINT_VOID.bad.d mode=0444
1274 file path=opt/SUNWdtrt/tst/common/print/err.D_PROTO_LEN.bad.d mode=0444
1275 file path=opt/SUNWdtrt/tst/common/print/tst.array.d mode=0444
1276 file path=opt/SUNWdtrt/tst/common/print/tst.array.d.out mode=0444
1277 file path=opt/SUNWdtrt/tst/common/print/tst.bitfield.d mode=0444
1278 file path=opt/SUNWdtrt/tst/common/print/tst.bitfield.d.out mode=0444
1279 file path=opt/SUNWdtrt/tst/common/print/tst.dyn.d mode=0444
1280 file path=opt/SUNWdtrt/tst/common/print/tst.enum.d mode=0444
1281 file path=opt/SUNWdtrt/tst/common/print/tst.enum.d.out mode=0444
1282 file path=opt/SUNWdtrt/tst/common/print/tst.primitive.d mode=0444
1283 file path=opt/SUNWdtrt/tst/common/print/tst.primitive.d.out mode=0444
1284 file path=opt/SUNWdtrt/tst/common/print/tst.struct.d mode=0444
1285 file path=opt/SUNWdtrt/tst/common/print/tst.struct.d.out mode=0444
1286 file path=opt/SUNWdtrt/tst/common/print/tst.xlate.d mode=0444
1287 file path=opt/SUNWdtrt/tst/common/print/tst.xlate.d.out mode=0444
1288 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badagg.d \
1289 mode=0444
1290 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badfmt.d \
1291 mode=0444
1292 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badval.d \
1293 mode=0444
1294 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_PROTO.bad.d mode=0444
1295 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.jstack.d \
1296 mode=0444
1297 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.stack.d \
1298 mode=0444
1299 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.ustack.d \
1300 mode=0444
1301 file path=opt/SUNWdtrt/tst/common/printa/tst.basics.d mode=0444
1302 file path=opt/SUNWdtrt/tst/common/printa/tst.basics.d.out mode=0444
1303 file path=opt/SUNWdtrt/tst/common/printa/tst.def.d mode=0444
1304 file path=opt/SUNWdtrt/tst/common/printa/tst.def.d.out mode=0444
1305 file path=opt/SUNWdtrt/tst/common/printa/tst.dynwidth.d mode=0444
1306 file path=opt/SUNWdtrt/tst/common/printa/tst.dynwidth.d.out mode=0444
1307 file path=opt/SUNWdtrt/tst/common/printa/tst.fmt.d mode=0444
1308 file path=opt/SUNWdtrt/tst/common/printa/tst.fmt.d.out mode=0444
1309 file path=opt/SUNWdtrt/tst/common/printa/tst.largeusersym.ksh mode=0444
1310 file path=opt/SUNWdtrt/tst/common/printa/tst.many.d mode=0444
1311 file path=opt/SUNWdtrt/tst/common/printa/tst.manyval.d mode=0444
1312 file path=opt/SUNWdtrt/tst/common/printa/tst.manyval.d.out mode=0444
1313 file path=opt/SUNWdtrt/tst/common/printa/tst.stack.d mode=0444
1314 file path=opt/SUNWdtrt/tst/common/printa/tst.tuple.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 21

1315 file path=opt/SUNWdtrt/tst/common/printa/tst.tuple.d.out mode=0444
1316 file path=opt/SUNWdtrt/tst/common/printa/tst.walltimestamp.ksh mode=0444
1317 file path=opt/SUNWdtrt/tst/common/printa/tst.walltimestamp.ksh.out mode=0444
1318 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_AGG_CONV.aggfmt.d \
1319 mode=0444
1320 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_EXTRA.toomany.d \
1321 mode=0444
1322 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_EXTRA.widths.d \
1323 mode=0444
1324 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_FMT.badfmt.d \
1325 mode=0444
1326 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_PROTO.novalue.d \
1327 mode=0444
1328 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_TYPE.aggarg.d \
1329 mode=0444
1330 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_TYPE.recursive.d \
1331 mode=0444
1332 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_PROTO.noprec.d \
1333 mode=0444
1334 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_PROTO.nowidth.d \
1335 mode=0444
1336 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_TYPE.badprec.d \
1337 mode=0444
1338 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_TYPE.badwidth.d \
1339 mode=0444
1340 file path=opt/SUNWdtrt/tst/common/printf/err.D_PROTO_LEN.toofew.d mode=0444
1341 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv1.d mode=0444
1342 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv2.d mode=0444
1343 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv3.d mode=0444
1344 file path=opt/SUNWdtrt/tst/common/printf/tst.basics.d mode=0444
1345 file path=opt/SUNWdtrt/tst/common/printf/tst.basics.d.out mode=0444
1346 file path=opt/SUNWdtrt/tst/common/printf/tst.flags.d mode=0444
1347 file path=opt/SUNWdtrt/tst/common/printf/tst.flags.d.out mode=0444
1348 file path=opt/SUNWdtrt/tst/common/printf/tst.hello.d mode=0444
1349 file path=opt/SUNWdtrt/tst/common/printf/tst.hello.d.out mode=0444
1350 file path=opt/SUNWdtrt/tst/common/printf/tst.ints.d mode=0444
1351 file path=opt/SUNWdtrt/tst/common/printf/tst.ints.d.out mode=0444
1352 file path=opt/SUNWdtrt/tst/common/printf/tst.precs.d mode=0444
1353 file path=opt/SUNWdtrt/tst/common/printf/tst.precs.d.out mode=0444
1354 file path=opt/SUNWdtrt/tst/common/printf/tst.print-f.d mode=0444
1355 file path=opt/SUNWdtrt/tst/common/printf/tst.print-f.d.out mode=0444
1356 file path=opt/SUNWdtrt/tst/common/printf/tst.printT.ksh mode=0444
1357 file path=opt/SUNWdtrt/tst/common/printf/tst.printT.ksh.out mode=0444
1358 file path=opt/SUNWdtrt/tst/common/printf/tst.printY.ksh mode=0444
1359 file path=opt/SUNWdtrt/tst/common/printf/tst.printY.ksh.out mode=0444
1360 file path=opt/SUNWdtrt/tst/common/printf/tst.printcont.d mode=0444
1361 file path=opt/SUNWdtrt/tst/common/printf/tst.printcont.d.out mode=0444
1362 file path=opt/SUNWdtrt/tst/common/printf/tst.printeE.d mode=0444
1363 file path=opt/SUNWdtrt/tst/common/printf/tst.printeE.d.out mode=0444
1364 file path=opt/SUNWdtrt/tst/common/printf/tst.printgG.d mode=0444
1365 file path=opt/SUNWdtrt/tst/common/printf/tst.printgG.d.out mode=0444
1366 file path=opt/SUNWdtrt/tst/common/printf/tst.rawfmt.d mode=0444
1367 file path=opt/SUNWdtrt/tst/common/printf/tst.rawfmt.d.out mode=0444
1368 file path=opt/SUNWdtrt/tst/common/printf/tst.signs.d mode=0444
1369 file path=opt/SUNWdtrt/tst/common/printf/tst.signs.d.out mode=0444
1370 file path=opt/SUNWdtrt/tst/common/printf/tst.str.d mode=0444
1371 file path=opt/SUNWdtrt/tst/common/printf/tst.str.d.out mode=0444
1372 file path=opt/SUNWdtrt/tst/common/printf/tst.sym.d mode=0444
1373 file path=opt/SUNWdtrt/tst/common/printf/tst.sym.d.out mode=0444
1374 file path=opt/SUNWdtrt/tst/common/printf/tst.uints.d mode=0444
1375 file path=opt/SUNWdtrt/tst/common/printf/tst.uints.d.out mode=0444
1376 file path=opt/SUNWdtrt/tst/common/printf/tst.widths.d mode=0444
1377 file path=opt/SUNWdtrt/tst/common/printf/tst.widths.d.out mode=0444
1378 file path=opt/SUNWdtrt/tst/common/printf/tst.widths1.d mode=0444
1379 file path=opt/SUNWdtrt/tst/common/printf/tst.wp.d mode=0444
1380 file path=opt/SUNWdtrt/tst/common/printf/tst.wp.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 22

1381 file path=opt/SUNWdtrt/tst/common/privs/tst.fds.ksh mode=0444
1382 file path=opt/SUNWdtrt/tst/common/privs/tst.func_access.ksh mode=0444
1383 file path=opt/SUNWdtrt/tst/common/privs/tst.getf.ksh mode=0444
1384 file path=opt/SUNWdtrt/tst/common/privs/tst.noprivdrop.ksh mode=0444
1385 file path=opt/SUNWdtrt/tst/common/privs/tst.noprivrestrict.ksh mode=0444
1386 file path=opt/SUNWdtrt/tst/common/privs/tst.op_access.ksh mode=0444
1387 file path=opt/SUNWdtrt/tst/common/privs/tst.procpriv.ksh mode=0444
1388 file path=opt/SUNWdtrt/tst/common/privs/tst.providers.ksh mode=0444
1389 file path=opt/SUNWdtrt/tst/common/privs/tst.tick.ksh mode=0444
1390 file path=opt/SUNWdtrt/tst/common/privs/tst.unpriv_funcs.ksh mode=0444
1391 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.probeqtn.d mode=0444
1392 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.probestar.d \
1393 mode=0444
1394 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.tickstar.d mode=0444
1395 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.assign.d mode=0444
1396 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.declare.d mode=0444
1397 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.declarein.d mode=0444
1398 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.lbraces.d mode=0444
1399 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.probespec.d mode=0444
1400 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.rbraces.d mode=0444
1401 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.recdec.d mode=0444
1402 file path=opt/SUNWdtrt/tst/common/probes/tst.basic1.d mode=0444
1403 file path=opt/SUNWdtrt/tst/common/probes/tst.check.d mode=0444
1404 file path=opt/SUNWdtrt/tst/common/probes/tst.declare.d mode=0444
1405 file path=opt/SUNWdtrt/tst/common/probes/tst.declareafter.d mode=0444
1406 file path=opt/SUNWdtrt/tst/common/probes/tst.emptyprobe.d mode=0444
1407 file path=opt/SUNWdtrt/tst/common/probes/tst.pragma.d mode=0444
1408 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmaaftertab.d mode=0444
1409 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmainside.d mode=0444
1410 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmaoutside.d mode=0444
1411 file path=opt/SUNWdtrt/tst/common/probes/tst.probestar.d mode=0444
1412 file path=opt/SUNWdtrt/tst/common/proc/tst.create.ksh mode=0444
1413 file path=opt/SUNWdtrt/tst/common/proc/tst.discard.ksh mode=0444
1414 file path=opt/SUNWdtrt/tst/common/proc/tst.exec.ksh mode=0444
1415 file path=opt/SUNWdtrt/tst/common/proc/tst.execfail.ENOENT.ksh mode=0444
1416 file path=opt/SUNWdtrt/tst/common/proc/tst.execfail.ksh mode=0444
1417 file path=opt/SUNWdtrt/tst/common/proc/tst.exitcore.ksh mode=0444
1418 file path=opt/SUNWdtrt/tst/common/proc/tst.exitexit.ksh mode=0444
1419 file path=opt/SUNWdtrt/tst/common/proc/tst.exitkilled.ksh mode=0444
1420 file path=opt/SUNWdtrt/tst/common/proc/tst.signal.ksh mode=0444
1421 file path=opt/SUNWdtrt/tst/common/proc/tst.sigwait.d mode=0444
1422 file path=opt/SUNWdtrt/tst/common/proc/tst.sigwait.exe mode=0555
1423 file path=opt/SUNWdtrt/tst/common/proc/tst.startexit.ksh mode=0444
1424 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZERO.profile.d \
1425 mode=0444
1426 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROonens.d mode=0444
1427 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROonensec.d \
1428 mode=0444
1429 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROoneus.d mode=0444
1430 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROoneusec.d \
1431 mode=0444
1432 file path=opt/SUNWdtrt/tst/common/profile-n/tst.argtest.d mode=0444
1433 file path=opt/SUNWdtrt/tst/common/profile-n/tst.argtest.d.out mode=0444
1434 file path=opt/SUNWdtrt/tst/common/profile-n/tst.basic.d mode=0444
1435 file path=opt/SUNWdtrt/tst/common/profile-n/tst.basic.d.out mode=0444
1436 file path=opt/SUNWdtrt/tst/common/profile-n/tst.func.ksh mode=0444
1437 file path=opt/SUNWdtrt/tst/common/profile-n/tst.mod.ksh mode=0444
1438 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilehz.d mode=0444
1439 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilehz.d.out mode=0444
1440 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilems.d mode=0444
1441 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilems.d.out mode=0444
1442 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilemsec.d mode=0444
1443 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilemsec.d.out mode=0444
1444 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilenhz.d mode=0444
1445 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilenhz.d.out mode=0444
1446 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilens.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 23

1447 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilens.d.out mode=0444
1448 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilensec.d mode=0444
1449 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilensec.d.out mode=0444
1450 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profiles.d mode=0444
1451 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profiles.d.out mode=0444
1452 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilesec.d mode=0444
1453 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilesec.d.out mode=0444
1454 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileus.d mode=0444
1455 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileus.d.out mode=0444
1456 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileusec.d mode=0444
1457 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileusec.d.out mode=0444
1458 file path=opt/SUNWdtrt/tst/common/profile-n/tst.sym.ksh mode=0444
1459 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufunc.ksh mode=0444
1460 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.exe mode=0555
1461 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.ksh mode=0444
1462 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.ksh.out mode=0444
1463 file path=opt/SUNWdtrt/tst/common/profile-n/tst.umod.ksh mode=0444
1464 file path=opt/SUNWdtrt/tst/common/profile-n/tst.usym.ksh mode=0444
1465 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_INVAL.wrongdec4.d \
1466 mode=0444
1467 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.nonprofile.d \
1468 mode=0444
1469 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec1.d \
1470 mode=0444
1471 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec2.d \
1472 mode=0444
1473 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec3.d \
1474 mode=0444
1475 file path=opt/SUNWdtrt/tst/common/providers/tst.basics.d mode=0444
1476 file path=opt/SUNWdtrt/tst/common/providers/tst.basics.d.out mode=0444
1477 file path=opt/SUNWdtrt/tst/common/providers/tst.beginexit.d mode=0444
1478 file path=opt/SUNWdtrt/tst/common/providers/tst.beginprof.d mode=0444
1479 file path=opt/SUNWdtrt/tst/common/providers/tst.beginprof.d.out mode=0444
1480 file path=opt/SUNWdtrt/tst/common/providers/tst.probattrs.d mode=0444
1481 file path=opt/SUNWdtrt/tst/common/providers/tst.probattrs.d.out mode=0444
1482 file path=opt/SUNWdtrt/tst/common/providers/tst.probefunc.d mode=0444
1483 file path=opt/SUNWdtrt/tst/common/providers/tst.probefunc.d.out mode=0444
1484 file path=opt/SUNWdtrt/tst/common/providers/tst.probemod.d mode=0444
1485 file path=opt/SUNWdtrt/tst/common/providers/tst.probemod.d.out mode=0444
1486 file path=opt/SUNWdtrt/tst/common/providers/tst.probename.d mode=0444
1487 file path=opt/SUNWdtrt/tst/common/providers/tst.probename.d.out mode=0444
1488 file path=opt/SUNWdtrt/tst/common/providers/tst.probprov.d mode=0444
1489 file path=opt/SUNWdtrt/tst/common/providers/tst.probprov.d.out mode=0444
1490 file path=opt/SUNWdtrt/tst/common/providers/tst.profend.d mode=0444
1491 file path=opt/SUNWdtrt/tst/common/providers/tst.profend.d.out mode=0444
1492 file path=opt/SUNWdtrt/tst/common/providers/tst.profexit.d mode=0444
1493 file path=opt/SUNWdtrt/tst/common/providers/tst.profexit.d.out mode=0444
1494 file path=opt/SUNWdtrt/tst/common/providers/tst.trace.d mode=0444
1495 file path=opt/SUNWdtrt/tst/common/providers/tst.trace.d.out mode=0444
1496 file path=opt/SUNWdtrt/tst/common/providers/tst.twoprof.d mode=0444
1497 file path=opt/SUNWdtrt/tst/common/providers/tst.twoprof.d.out mode=0444
1498 file path=opt/SUNWdtrt/tst/common/raise/tst.raise1.d mode=0444
1499 file path=opt/SUNWdtrt/tst/common/raise/tst.raise1.exe mode=0555
1500 file path=opt/SUNWdtrt/tst/common/raise/tst.raise2.d mode=0444
1501 file path=opt/SUNWdtrt/tst/common/raise/tst.raise2.exe mode=0555
1502 file path=opt/SUNWdtrt/tst/common/raise/tst.raise3.d mode=0444
1503 file path=opt/SUNWdtrt/tst/common/raise/tst.raise3.exe mode=0555
1504 file path=opt/SUNWdtrt/tst/common/rates/tst.aggrate.d mode=0444
1505 file path=opt/SUNWdtrt/tst/common/rates/tst.aggrate.d.out mode=0444
1506 file path=opt/SUNWdtrt/tst/common/rates/tst.statusrate.d mode=0444
1507 file path=opt/SUNWdtrt/tst/common/rates/tst.switchrate.d mode=0444
1508 file path=opt/SUNWdtrt/tst/common/rates/tst.switchrate.d.out mode=0444
1509 file path=opt/SUNWdtrt/tst/common/safety/tst.basename.d mode=0444
1510 file path=opt/SUNWdtrt/tst/common/safety/tst.caller.d mode=0444
1511 file path=opt/SUNWdtrt/tst/common/safety/tst.cleanpath.d mode=0444
1512 file path=opt/SUNWdtrt/tst/common/safety/tst.copyin.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 24

1513 file path=opt/SUNWdtrt/tst/common/safety/tst.copyin2.d mode=0444
1514 file path=opt/SUNWdtrt/tst/common/safety/tst.ddi_pathname.d mode=0444
1515 file path=opt/SUNWdtrt/tst/common/safety/tst.dirname.d mode=0444
1516 file path=opt/SUNWdtrt/tst/common/safety/tst.errno.d mode=0444
1517 file path=opt/SUNWdtrt/tst/common/safety/tst.execname.d mode=0444
1518 file path=opt/SUNWdtrt/tst/common/safety/tst.gid.d mode=0444
1519 file path=opt/SUNWdtrt/tst/common/safety/tst.hton.d mode=0444
1520 file path=opt/SUNWdtrt/tst/common/safety/tst.index.d mode=0444
1521 file path=opt/SUNWdtrt/tst/common/safety/tst.msgdsize.d mode=0444
1522 file path=opt/SUNWdtrt/tst/common/safety/tst.msgsize.d mode=0444
1523 file path=opt/SUNWdtrt/tst/common/safety/tst.null.d mode=0444
1524 file path=opt/SUNWdtrt/tst/common/safety/tst.pid.d mode=0444
1525 file path=opt/SUNWdtrt/tst/common/safety/tst.ppid.d mode=0444
1526 file path=opt/SUNWdtrt/tst/common/safety/tst.progenyof.d mode=0444
1527 file path=opt/SUNWdtrt/tst/common/safety/tst.random.d mode=0444
1528 file path=opt/SUNWdtrt/tst/common/safety/tst.rw.d mode=0444
1529 file path=opt/SUNWdtrt/tst/common/safety/tst.shortstr.d mode=0444
1530 file path=opt/SUNWdtrt/tst/common/safety/tst.stack.d mode=0444
1531 file path=opt/SUNWdtrt/tst/common/safety/tst.stackdepth.d mode=0444
1532 file path=opt/SUNWdtrt/tst/common/safety/tst.stddev.d mode=0444
1533 file path=opt/SUNWdtrt/tst/common/safety/tst.strchr.d mode=0444
1534 file path=opt/SUNWdtrt/tst/common/safety/tst.strjoin.d mode=0444
1535 file path=opt/SUNWdtrt/tst/common/safety/tst.strstr.d mode=0444
1536 file path=opt/SUNWdtrt/tst/common/safety/tst.strtok.d mode=0444
1537 file path=opt/SUNWdtrt/tst/common/safety/tst.substr.d mode=0444
1538 file path=opt/SUNWdtrt/tst/common/safety/tst.ucaller.d mode=0444
1539 file path=opt/SUNWdtrt/tst/common/safety/tst.uid.d mode=0444
1540 file path=opt/SUNWdtrt/tst/common/safety/tst.unalign.d mode=0444
1541 file path=opt/SUNWdtrt/tst/common/safety/tst.uregs.d mode=0444
1542 file path=opt/SUNWdtrt/tst/common/safety/tst.ustack.d mode=0444
1543 file path=opt/SUNWdtrt/tst/common/safety/tst.ustackdepth.d mode=0444
1544 file path=opt/SUNWdtrt/tst/common/safety/tst.vahole.d mode=0444
1545 file path=opt/SUNWdtrt/tst/common/safety/tst.violentdeath.ksh mode=0444
1546 file path=opt/SUNWdtrt/tst/common/safety/tst.zonename.d mode=0444
1547 file path=opt/SUNWdtrt/tst/common/scalars/err.D_ARR_LOCAL.thisarray.d \
1548 mode=0444
1549 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_CLASS.selfthis.d \
1550 mode=0444
1551 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_CLASS.thisself.d \
1552 mode=0444
1553 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_IDRED.errval.d mode=0444
1554 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dec.err.d \
1555 mode=0444
1556 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupgtype.d \
1557 mode=0444
1558 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupltype.d \
1559 mode=0444
1560 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupttype.d \
1561 mode=0444
1562 file path=opt/SUNWdtrt/tst/common/scalars/err.D_SYNTAX.declare.d mode=0444
1563 file path=opt/SUNWdtrt/tst/common/scalars/tst.basicvar.d mode=0444
1564 file path=opt/SUNWdtrt/tst/common/scalars/tst.basicvar.d.out mode=0444
1565 file path=opt/SUNWdtrt/tst/common/scalars/tst.localvar.d mode=0444
1566 file path=opt/SUNWdtrt/tst/common/scalars/tst.misc.d mode=0444
1567 file path=opt/SUNWdtrt/tst/common/scalars/tst.self.d mode=0444
1568 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfarray.d mode=0444
1569 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfarray2.d mode=0444
1570 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfthis.d mode=0444
1571 file path=opt/SUNWdtrt/tst/common/scalars/tst.this.d mode=0444
1572 file path=opt/SUNWdtrt/tst/common/scalars/tst.thisself.d mode=0444
1573 file path=opt/SUNWdtrt/tst/common/sched/tst.enqueue.d mode=0444
1574 file path=opt/SUNWdtrt/tst/common/sched/tst.oncpu.d mode=0444
1575 file path=opt/SUNWdtrt/tst/common/sched/tst.stackdepth.d mode=0444
1576 file path=opt/SUNWdtrt/tst/common/scripting/err.D_MACRO_UNDEF.invalidargs.d \
1577 mode=0444
1578 file path=opt/SUNWdtrt/tst/common/scripting/err.D_OP_LVAL.rdonly.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 25

1579 file path=opt/SUNWdtrt/tst/common/scripting/err.D_OP_WRITE.usepidmacro.d \
1580 mode=0444
1581 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.concat.d mode=0444
1582 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.desc.d mode=0444
1583 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.inval.d mode=0444
1584 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.pid.d mode=0444
1585 file path=opt/SUNWdtrt/tst/common/scripting/tst.D_MACRO_UNUSED.overflow.ksh \
1586 mode=0444
1587 file path=opt/SUNWdtrt/tst/common/scripting/tst.arg0.d mode=0444
1588 file path=opt/SUNWdtrt/tst/common/scripting/tst.arguments.ksh mode=0444
1589 file path=opt/SUNWdtrt/tst/common/scripting/tst.assign.d mode=0444
1590 file path=opt/SUNWdtrt/tst/common/scripting/tst.basic.d mode=0444
1591 file path=opt/SUNWdtrt/tst/common/scripting/tst.egid.d mode=0444
1592 file path=opt/SUNWdtrt/tst/common/scripting/tst.egid.ksh mode=0444
1593 file path=opt/SUNWdtrt/tst/common/scripting/tst.euid.d mode=0444
1594 file path=opt/SUNWdtrt/tst/common/scripting/tst.euid.ksh mode=0444
1595 file path=opt/SUNWdtrt/tst/common/scripting/tst.gid.d mode=0444
1596 file path=opt/SUNWdtrt/tst/common/scripting/tst.gid.ksh mode=0444
1597 file path=opt/SUNWdtrt/tst/common/scripting/tst.pgid.d mode=0444
1598 file path=opt/SUNWdtrt/tst/common/scripting/tst.pid.d mode=0444
1599 file path=opt/SUNWdtrt/tst/common/scripting/tst.ppid.d mode=0444
1600 file path=opt/SUNWdtrt/tst/common/scripting/tst.ppid.ksh mode=0444
1601 file path=opt/SUNWdtrt/tst/common/scripting/tst.projid.d mode=0444
1602 file path=opt/SUNWdtrt/tst/common/scripting/tst.projid.ksh mode=0444
1603 file path=opt/SUNWdtrt/tst/common/scripting/tst.quite.d mode=0444
1604 file path=opt/SUNWdtrt/tst/common/scripting/tst.sid.d mode=0444
1605 file path=opt/SUNWdtrt/tst/common/scripting/tst.sid.ksh mode=0444
1606 file path=opt/SUNWdtrt/tst/common/scripting/tst.stringmacro.ksh mode=0444
1607 file path=opt/SUNWdtrt/tst/common/scripting/tst.taskid.d mode=0444
1608 file path=opt/SUNWdtrt/tst/common/scripting/tst.taskid.ksh mode=0444
1609 file path=opt/SUNWdtrt/tst/common/scripting/tst.trace.d mode=0444
1610 file path=opt/SUNWdtrt/tst/common/scripting/tst.uid.d mode=0444
1611 file path=opt/SUNWdtrt/tst/common/scripting/tst.uid.ksh mode=0444
1612 file path=opt/SUNWdtrt/tst/common/sdt/tst.sdtargs.d mode=0444
1613 file path=opt/SUNWdtrt/tst/common/sdt/tst.sdtargs.exe mode=0555
1614 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_IDENT_BADREF.SizeofAssoc.d \
1615 mode=0444
1616 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_IDENT_UNDEF.UnknownSymbol.d \
1617 mode=0444
1618 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SIZEOF_TYPE.badstruct.d \
1619 mode=0444
1620 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SIZEOF_TYPE.d mode=0444
1621 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SYNTAX.SizeofBadType.d \
1622 mode=0444
1623 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofArray.d mode=0444
1624 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofDataTypes.d mode=0444
1625 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofExpression.d mode=0444
1626 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofNULL.d mode=0444
1627 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofStrConst.d mode=0444
1628 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofStrConst.d.out mode=0444
1629 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString1.d mode=0444
1630 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString1.d.out mode=0444
1631 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString2.d mode=0444
1632 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString2.d.out mode=0444
1633 file path=opt/SUNWdtrt/tst/common/speculation/err.BufSizeVariations1.d \
1634 mode=0444
1635 file path=opt/SUNWdtrt/tst/common/speculation/err.BufSizeVariations2.d \
1636 mode=0444
1637 file \
1638 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithBreakPo
1639 mode=0444
1640 file \
1641 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithChill.d
1642 mode=0444
1643 file \
1644 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut

new/usr/src/pkg/manifests/system-dtrace-tests.mf 26

1645 mode=0444
1646 file \
1647 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut
1648 mode=0444
1649 file \
1650 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithPanic.d
1651 mode=0444
1652 file \
1653 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithRaise.d
1654 mode=0444
1655 file \
1656 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithStop.d
1657 mode=0444
1658 file path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_COMM.AggAftCommit.d \
1659 mode=0444
1660 file \
1661 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithAvg.d \
1662 mode=0444
1663 file \
1664 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithCount.d
1665 mode=0444
1666 file \
1667 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithLquant.
1668 mode=0444
1669 file \
1670 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithMax.d \
1671 mode=0444
1672 file \
1673 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithMin.d \
1674 mode=0444
1675 file \
1676 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithQuant.d
1677 mode=0444
1678 file \
1679 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithStddev.
1680 mode=0444
1681 file \
1682 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithSum.d \
1683 mode=0444
1684 file \
1685 path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_COMM.CommitAftCommit.d \
1686 mode=0444
1687 file path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_COMM.DisjointCommit.d \
1688 mode=0444
1689 file \
1690 path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_DREC.CommitAftDataRec.d
1691 mode=0444
1692 file \
1693 path=opt/SUNWdtrt/tst/common/speculation/err.D_DREC_COMM.DataRecAftCommit.d
1694 mode=0444
1695 file \
1696 path=opt/SUNWdtrt/tst/common/speculation/err.D_DREC_COMM.ExitAfterCommit.d \
1697 mode=0444
1698 file path=opt/SUNWdtrt/tst/common/speculation/err.D_EXIT_SPEC.ExitAftSpec.d \
1699 mode=0444
1700 file path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_MALFORM.NspecExpr.d \
1701 mode=0444
1702 file \
1703 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.HugeNspecValue.
1704 mode=0444
1705 file \
1706 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.InvalidSpecSize
1707 mode=0444
1708 file \
1709 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.NegSpecSize.d \
1710 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 27

1711 file path=opt/SUNWdtrt/tst/common/speculation/err.D_PROTO_LEN.SpecNoId.d \
1712 mode=0444
1713 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_COMM.SpecAftCommit.d \
1714 mode=0444
1715 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_DREC.SpecAftDataRec.d \
1716 mode=0444
1717 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_SPEC.SpecAftSpec.d \
1718 mode=0444
1719 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeBufSize.d mode=0444
1720 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeNspec.d mode=0444
1721 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeSpecSize.d mode=0444
1722 file path=opt/SUNWdtrt/tst/common/speculation/err.SpecSizeVariations1.d \
1723 mode=0444
1724 file path=opt/SUNWdtrt/tst/common/speculation/err.SpecSizeVariations2.d \
1725 mode=0444
1726 file path=opt/SUNWdtrt/tst/common/speculation/tst.CommitAfterDiscard.d \
1727 mode=0444
1728 file path=opt/SUNWdtrt/tst/common/speculation/tst.CommitWithZero.d mode=0444
1729 file path=opt/SUNWdtrt/tst/common/speculation/tst.DataRecAftDiscard.d \
1730 mode=0444
1731 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftCommit.d mode=0444
1732 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftDataRec.d \
1733 mode=0444
1734 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftDiscard.d \
1735 mode=0444
1736 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardWithZero.d mode=0444
1737 file path=opt/SUNWdtrt/tst/common/speculation/tst.ExitAftDiscard.d mode=0444
1738 file path=opt/SUNWdtrt/tst/common/speculation/tst.NoSpecBuffer.d mode=0444
1739 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations1.d \
1740 mode=0444
1741 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations2.d \
1742 mode=0444
1743 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations3.d \
1744 mode=0444
1745 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculateWithRandom.d \
1746 mode=0444
1747 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationCommit.d \
1748 mode=0444
1749 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationDiscard.d \
1750 mode=0444
1751 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationID.d mode=0444
1752 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationWithZero.d \
1753 mode=0444
1754 file path=opt/SUNWdtrt/tst/common/speculation/tst.TwoSpecBuffers.d mode=0444
1755 file path=opt/SUNWdtrt/tst/common/speculation/tst.negcommit.d mode=0444
1756 file path=opt/SUNWdtrt/tst/common/speculation/tst.negspec.d mode=0444
1757 file path=opt/SUNWdtrt/tst/common/speculation/tst.zerosize.d mode=0444
1758 file path=opt/SUNWdtrt/tst/common/stability/err.D_ATTR_MIN.MinAttributes.d \
1759 mode=0444
1760 file path=opt/SUNWdtrt/tst/common/stack/err.D_STACK_PROTO.bad.d mode=0444
1761 file path=opt/SUNWdtrt/tst/common/stack/err.D_STACK_SIZE.d mode=0444
1762 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_FRAMES.bad.d mode=0444
1763 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_PROTO.bad.d mode=0444
1764 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_STRSIZE.bad.d mode=0444
1765 file path=opt/SUNWdtrt/tst/common/stack/tst.default.d mode=0444
1766 file path=opt/SUNWdtrt/tst/common/stackdepth/tst.default.d mode=0444
1767 file path=opt/SUNWdtrt/tst/common/stop/tst.stop1.d mode=0444
1768 file path=opt/SUNWdtrt/tst/common/stop/tst.stop1.exe mode=0555
1769 file path=opt/SUNWdtrt/tst/common/stop/tst.stop2.d mode=0444
1770 file path=opt/SUNWdtrt/tst/common/stop/tst.stop2.exe mode=0555
1771 file path=opt/SUNWdtrt/tst/common/strlen/tst.strlen1.d mode=0444
1772 file path=opt/SUNWdtrt/tst/common/strtoll/err.BaseTooLarge.d mode=0444
1773 file path=opt/SUNWdtrt/tst/common/strtoll/err.BaseTooSmall.d mode=0444
1774 file path=opt/SUNWdtrt/tst/common/strtoll/tst.strtoll.d mode=0444
1775 file path=opt/SUNWdtrt/tst/common/strtoll/tst.strtoll.d.out mode=0444
1776 #endif /* ! codereview */

new/usr/src/pkg/manifests/system-dtrace-tests.mf 28

1777 file path=opt/SUNWdtrt/tst/common/struct/err.D_ADDROF_VAR.StructPointer.d \
1778 mode=0444
1779 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_COMBO.StructWithoutColon.d \
1780 mode=0444
1781 file \
1782 path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_COMBO.StructWithoutColon1.d \
1783 mode=0444
1784 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.circular.d \
1785 mode=0444
1786 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.order.d \
1787 mode=0444
1788 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.order2.d \
1789 mode=0444
1790 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.recursive.d \
1791 mode=0444
1792 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.simple.d \
1793 mode=0444
1794 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_VOIDOBJ.baddec.d mode=0444
1795 file path=opt/SUNWdtrt/tst/common/struct/err.D_PROTO_ARG.DupStructAssoc.d \
1796 mode=0444
1797 file path=opt/SUNWdtrt/tst/common/struct/tst.StructAssoc.d mode=0444
1798 file path=opt/SUNWdtrt/tst/common/struct/tst.StructDataTypes.d mode=0444
1799 file path=opt/SUNWdtrt/tst/common/struct/tst.StructInside.d mode=0444
1800 file path=opt/SUNWdtrt/tst/common/struct/tst.clauselocal.d mode=0444
1801 file path=opt/SUNWdtrt/tst/common/struct/tst.clauselocal.d.out mode=0444
1802 file path=opt/SUNWdtrt/tst/common/syscall/tst.args.d mode=0444
1803 file path=opt/SUNWdtrt/tst/common/syscall/tst.args.exe mode=0555
1804 file path=opt/SUNWdtrt/tst/common/syscall/tst.openret.ksh mode=0444
1805 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post.d mode=0444
1806 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post.exe mode=0555
1807 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post_chan.d mode=0444
1808 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post_chan.exe mode=0555
1809 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZERO.tick.d mode=0444
1810 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROonens.d mode=0444
1811 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROonensec.d mode=0444
1812 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROoneus.d mode=0444
1813 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROoneusec.d mode=0444
1814 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickarg0.d mode=0444
1815 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickms.d mode=0444
1816 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickms.d.out mode=0444
1817 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickmsec.d mode=0444
1818 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickmsec.d.out mode=0444
1819 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickns.d mode=0444
1820 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickns.d.out mode=0444
1821 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticknsec.d mode=0444
1822 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticknsec.d.out mode=0444
1823 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticks.d mode=0444
1824 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticks.d.out mode=0444
1825 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticksec.d mode=0444
1826 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticksec.d.out mode=0444
1827 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickus.d mode=0444
1828 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickus.d.out mode=0444
1829 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickusec.d mode=0444
1830 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickusec.d.out mode=0444
1831 file path=opt/SUNWdtrt/tst/common/trace/err.D_PROTO_LEN.bad.d mode=0444
1832 file path=opt/SUNWdtrt/tst/common/trace/err.D_TRACE_AGG.bad.d mode=0444
1833 file path=opt/SUNWdtrt/tst/common/trace/err.D_TRACE_VOID.bad.d mode=0444
1834 file path=opt/SUNWdtrt/tst/common/trace/tst.dyn.d mode=0444
1835 file path=opt/SUNWdtrt/tst/common/trace/tst.misc.d mode=0444
1836 file path=opt/SUNWdtrt/tst/common/trace/tst.qstring.d mode=0444
1837 file path=opt/SUNWdtrt/tst/common/trace/tst.qstring.d.out mode=0444
1838 file path=opt/SUNWdtrt/tst/common/trace/tst.string.d mode=0444
1839 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_PROTO_ARG.badsize.d mode=0444
1840 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_PROTO_LEN.toofew.d mode=0444
1841 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_ADDR.badaddr.d \
1842 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 29

1843 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_ARGS.d mode=0444
1844 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_DYNSIZE.d mode=0444
1845 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_SIZE.negsize.d \
1846 mode=0444
1847 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_SIZE.zerosize.d \
1848 mode=0444
1849 file path=opt/SUNWdtrt/tst/common/tracemem/tst.dynsize.d mode=0444
1850 file path=opt/SUNWdtrt/tst/common/tracemem/tst.dynsize.d.out mode=0444
1851 file path=opt/SUNWdtrt/tst/common/tracemem/tst.rootvp.d mode=0444
1852 file path=opt/SUNWdtrt/tst/common/tracemem/tst.smallsize.d mode=0444
1853 file path=opt/SUNWdtrt/tst/common/tracemem/tst.smallsize.d.out mode=0444
1854 file \
1855 path=opt/SUNWdtrt/tst/common/translators/err.D_DECL_TYPERED.BadTransDecl.d \
1856 mode=0444
1857 file \
1858 path=opt/SUNWdtrt/tst/common/translators/err.D_OP_INCOMPLETE.NonExistentInpu
1859 mode=0444
1860 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl1.d \
1861 mode=0444
1862 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl3.d \
1863 mode=0444
1864 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl4.d \
1865 mode=0444
1866 file \
1867 path=opt/SUNWdtrt/tst/common/translators/err.D_TYPE_MEMBER.NonExistentInput2
1868 mode=0444
1869 file \
1870 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_INCOMPAT.BadInputType1.
1871 mode=0444
1872 file \
1873 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_MEMB.NonExistentOutput2
1874 mode=0444
1875 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_NONE.BadTransDecl6.d \
1876 mode=0444
1877 file \
1878 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_REDECL.RepeatTransDecl.
1879 mode=0444
1880 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.BadTransDecl8.d \
1881 mode=0444
1882 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.BadTransInt.d \
1883 mode=0444
1884 file \
1885 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.NonExistentOutput1.
1886 mode=0444
1887 file path=opt/SUNWdtrt/tst/common/translators/tst.CircularTransDecl.d \
1888 mode=0444
1889 file path=opt/SUNWdtrt/tst/common/translators/tst.EmptyTransDecl.d mode=0444
1890 file path=opt/SUNWdtrt/tst/common/translators/tst.ForwardTag.d mode=0444
1891 file path=opt/SUNWdtrt/tst/common/translators/tst.InputAliasTrans.d mode=0444
1892 file path=opt/SUNWdtrt/tst/common/translators/tst.InputIntTrans.d mode=0444
1893 file path=opt/SUNWdtrt/tst/common/translators/tst.OutputAliasTrans.d mode=0444
1894 file path=opt/SUNWdtrt/tst/common/translators/tst.PartialDereferencing.d \
1895 mode=0444
1896 file path=opt/SUNWdtrt/tst/common/translators/tst.PartialOutputTransDefn.d \
1897 mode=0444
1898 file path=opt/SUNWdtrt/tst/common/translators/tst.ProcModelTrans.d mode=0444
1899 file path=opt/SUNWdtrt/tst/common/translators/tst.RepeatDeclaration.d \
1900 mode=0444
1901 file path=opt/SUNWdtrt/tst/common/translators/tst.SimultaneousTranslators.d \
1902 mode=0444
1903 file path=opt/SUNWdtrt/tst/common/translators/tst.StructureAssignment.d \
1904 mode=0444
1905 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability1.ksh \
1906 mode=0444
1907 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability1.ksh.out \
1908 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 30

1909 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability2.ksh \
1910 mode=0444
1911 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability2.ksh.out \
1912 mode=0444
1913 file path=opt/SUNWdtrt/tst/common/translators/tst.TransNonPointer.d mode=0444
1914 file path=opt/SUNWdtrt/tst/common/translators/tst.TransOutputPointer.d \
1915 mode=0444
1916 file path=opt/SUNWdtrt/tst/common/translators/tst.TransPointer.d mode=0444
1917 file path=opt/SUNWdtrt/tst/common/translators/tst.TranslateSelf.d mode=0444
1918 file path=opt/SUNWdtrt/tst/common/translators/tst.UnionInputTrans.d mode=0444
1919 file path=opt/SUNWdtrt/tst/common/translators/tst.UnionOutputTrans.d mode=0444
1920 file path=opt/SUNWdtrt/tst/common/typedef/err.D_DECL_IDRED.DupTypeDef.d \
1921 mode=0444
1922 file path=opt/SUNWdtrt/tst/common/typedef/err.D_SYNTAX.BadExistingTypedef.d \
1923 mode=0444
1924 file path=opt/SUNWdtrt/tst/common/typedef/err.D_SYNTAX.TypedefInClause.d \
1925 mode=0444
1926 file path=opt/SUNWdtrt/tst/common/typedef/tst.ChainTypedef.d mode=0444
1927 file path=opt/SUNWdtrt/tst/common/typedef/tst.TypedefDataAssign.d mode=0444
1928 file path=opt/SUNWdtrt/tst/common/types/err.D_CAST_INVAL.badcast.d mode=0444
1929 file path=opt/SUNWdtrt/tst/common/types/err.D_CG_DYN.ResultDynType.d mode=0444
1930 file path=opt/SUNWdtrt/tst/common/types/err.D_CHR_OFLOW.charconst.d mode=0444
1931 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_BADCLASS.bad.d mode=0444
1932 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_CHARATTR.badtype3.d \
1933 mode=0444
1934 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_COMBO.badtype4.d mode=0444
1935 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_COMBO.badtype5.d mode=0444
1936 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENCONST.badeval.d mode=0444
1937 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENOFLOW.enoflow.d mode=0444
1938 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENOFLOW.enuflow.d mode=0444
1939 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_SCOPE.scopeop.d mode=0444
1940 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_USELESS.baddec.d mode=0444
1941 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_ACT.badcond.d mode=0444
1942 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_ARITH.badoperand.d mode=0444
1943 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INCOMPAT.badassign.d \
1944 mode=0444
1945 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INT.badbitop.d mode=0444
1946 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INT.badshift.d mode=0444
1947 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badcond.d mode=0444
1948 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badincop.d mode=0444
1949 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badlogop.d mode=0444
1950 file path=opt/SUNWdtrt/tst/common/types/err.D_PROTO_LEN.badcond1.d mode=0444
1951 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badenum.d mode=0444
1952 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badid.d mode=0444
1953 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badstruct.d mode=0444
1954 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.badtype1.d mode=0444
1955 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.badtype2.d mode=0444
1956 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.dupenum.d mode=0444
1957 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.dupstruct.d mode=0444
1958 file path=opt/SUNWdtrt/tst/common/types/err.D_XLATE_REDECL.ResultDynType.d \
1959 mode=0444
1960 file path=opt/SUNWdtrt/tst/common/types/tst.assignops.d mode=0444
1961 file path=opt/SUNWdtrt/tst/common/types/tst.badshiftops.d mode=0444
1962 file path=opt/SUNWdtrt/tst/common/types/tst.basics.d mode=0444
1963 file path=opt/SUNWdtrt/tst/common/types/tst.basics.d.out mode=0444
1964 file path=opt/SUNWdtrt/tst/common/types/tst.bitops.d mode=0444
1965 file path=opt/SUNWdtrt/tst/common/types/tst.charconstants.d mode=0444
1966 file path=opt/SUNWdtrt/tst/common/types/tst.complex.d mode=0444
1967 file path=opt/SUNWdtrt/tst/common/types/tst.condexpr.d mode=0444
1968 file path=opt/SUNWdtrt/tst/common/types/tst.const.d mode=0444
1969 file path=opt/SUNWdtrt/tst/common/types/tst.constants.d mode=0444
1970 file path=opt/SUNWdtrt/tst/common/types/tst.conv.d mode=0444
1971 file path=opt/SUNWdtrt/tst/common/types/tst.enum.d mode=0444
1972 file path=opt/SUNWdtrt/tst/common/types/tst.intincop.d mode=0444
1973 file path=opt/SUNWdtrt/tst/common/types/tst.intops.d mode=0444
1974 file path=opt/SUNWdtrt/tst/common/types/tst.inttypes.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 31

1975 file path=opt/SUNWdtrt/tst/common/types/tst.ptrincop.d mode=0444
1976 file path=opt/SUNWdtrt/tst/common/types/tst.ptrops.d mode=0444
1977 file path=opt/SUNWdtrt/tst/common/types/tst.relenum.d mode=0444
1978 file path=opt/SUNWdtrt/tst/common/types/tst.relstring.d mode=0444
1979 file path=opt/SUNWdtrt/tst/common/types/tst.shiftops.d mode=0444
1980 file path=opt/SUNWdtrt/tst/common/types/tst.stringconstants.d mode=0444
1981 file path=opt/SUNWdtrt/tst/common/types/tst.struct.d mode=0444
1982 file path=opt/SUNWdtrt/tst/common/types/tst.typedef.d mode=0444
1983 file path=opt/SUNWdtrt/tst/common/types/tst.unaryop.d mode=0444
1984 file path=opt/SUNWdtrt/tst/common/union/err.D_ADDROF_VAR.UnionPointer.d \
1985 mode=0444
1986 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_COMBO.UnionWithoutColon.d \
1987 mode=0444
1988 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_COMBO.UnionWithoutColon1.d \
1989 mode=0444
1990 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.circular.d \
1991 mode=0444
1992 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.order.d \
1993 mode=0444
1994 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.recursive.d \
1995 mode=0444
1996 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.simple.d \
1997 mode=0444
1998 file path=opt/SUNWdtrt/tst/common/union/err.D_PROTO_ARG.DupUnionAssoc.d \
1999 mode=0444
2000 file path=opt/SUNWdtrt/tst/common/union/tst.UnionAssoc.d mode=0444
2001 file path=opt/SUNWdtrt/tst/common/union/tst.UnionDataTypes.d mode=0444
2002 file path=opt/SUNWdtrt/tst/common/union/tst.UnionInside.d mode=0444
2003 file path=opt/SUNWdtrt/tst/common/usdt/tst.andpid.ksh mode=0444
2004 file path=opt/SUNWdtrt/tst/common/usdt/tst.argmap.d mode=0444
2005 file path=opt/SUNWdtrt/tst/common/usdt/tst.argmap.exe mode=0555
2006 file path=opt/SUNWdtrt/tst/common/usdt/tst.args.d mode=0444
2007 file path=opt/SUNWdtrt/tst/common/usdt/tst.args.exe mode=0555
2008 file path=opt/SUNWdtrt/tst/common/usdt/tst.badguess.ksh mode=0444
2009 file path=opt/SUNWdtrt/tst/common/usdt/tst.corruptenv.ksh mode=0444
2010 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose1.ksh mode=0444
2011 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose1.ksh.out mode=0444
2012 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose2.ksh mode=0444
2013 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose2.ksh.out mode=0444
2014 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose3.ksh mode=0444
2015 file path=opt/SUNWdtrt/tst/common/usdt/tst.eliminate.ksh mode=0444
2016 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled.ksh mode=0444
2017 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled.ksh.out mode=0444
2018 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled2.ksh mode=0444
2019 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled2.ksh.out mode=0444
2020 file path=opt/SUNWdtrt/tst/common/usdt/tst.entryreturn.ksh mode=0444
2021 file path=opt/SUNWdtrt/tst/common/usdt/tst.entryreturn.ksh.out mode=0444
2022 file path=opt/SUNWdtrt/tst/common/usdt/tst.fork.ksh mode=0444
2023 file path=opt/SUNWdtrt/tst/common/usdt/tst.fork.ksh.out mode=0444
2024 file path=opt/SUNWdtrt/tst/common/usdt/tst.forker.exe mode=0555
2025 file path=opt/SUNWdtrt/tst/common/usdt/tst.forker.ksh mode=0444
2026 file path=opt/SUNWdtrt/tst/common/usdt/tst.guess32.ksh mode=0444
2027 file path=opt/SUNWdtrt/tst/common/usdt/tst.guess64.ksh mode=0444
2028 file path=opt/SUNWdtrt/tst/common/usdt/tst.header.ksh mode=0444
2029 file path=opt/SUNWdtrt/tst/common/usdt/tst.include.ksh mode=0444
2030 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe.exe mode=0555
2031 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe1.ksh mode=0444
2032 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe2.ksh mode=0444
2033 file path=opt/SUNWdtrt/tst/common/usdt/tst.linkpriv.ksh mode=0444
2034 file path=opt/SUNWdtrt/tst/common/usdt/tst.linkunpriv.ksh mode=0444
2035 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiple.ksh mode=0444
2036 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiple.ksh.out mode=0444
2037 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiprov.ksh mode=0444
2038 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiprov.ksh.out mode=0444
2039 file path=opt/SUNWdtrt/tst/common/usdt/tst.nodtrace.ksh mode=0444
2040 file path=opt/SUNWdtrt/tst/common/usdt/tst.noprobes.ksh mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 32

2041 file path=opt/SUNWdtrt/tst/common/usdt/tst.noreap.ksh mode=0444
2042 file path=opt/SUNWdtrt/tst/common/usdt/tst.noreapring.ksh mode=0444
2043 file path=opt/SUNWdtrt/tst/common/usdt/tst.onlyenabled.ksh mode=0444
2044 file path=opt/SUNWdtrt/tst/common/usdt/tst.reap.ksh mode=0444
2045 file path=opt/SUNWdtrt/tst/common/usdt/tst.reeval.ksh mode=0444
2046 file path=opt/SUNWdtrt/tst/common/usdt/tst.static.ksh mode=0444
2047 file path=opt/SUNWdtrt/tst/common/usdt/tst.static.ksh.out mode=0444
2048 file path=opt/SUNWdtrt/tst/common/usdt/tst.static2.ksh mode=0444
2049 file path=opt/SUNWdtrt/tst/common/usdt/tst.static2.ksh.out mode=0444
2050 file path=opt/SUNWdtrt/tst/common/usdt/tst.user.ksh mode=0444
2051 file path=opt/SUNWdtrt/tst/common/usdt/tst.user.ksh.out mode=0444
2052 file path=opt/SUNWdtrt/tst/common/ustack/tst.bigstack.d mode=0444
2053 file path=opt/SUNWdtrt/tst/common/ustack/tst.bigstack.exe mode=0555
2054 file path=opt/SUNWdtrt/tst/common/ustack/tst.depth.ksh mode=0444
2055 file path=opt/SUNWdtrt/tst/common/ustack/tst.spin.exe mode=0555
2056 file path=opt/SUNWdtrt/tst/common/ustack/tst.spin.ksh mode=0444
2057 file path=opt/SUNWdtrt/tst/common/vars/tst.gid.d mode=0444
2058 file path=opt/SUNWdtrt/tst/common/vars/tst.nullassign.d mode=0444
2059 file path=opt/SUNWdtrt/tst/common/vars/tst.ppid.d mode=0444
2060 file path=opt/SUNWdtrt/tst/common/vars/tst.ucaller.ksh mode=0444
2061 file path=opt/SUNWdtrt/tst/common/vars/tst.ucaller.ksh.out mode=0444
2062 file path=opt/SUNWdtrt/tst/common/vars/tst.uid.d mode=0444
2063 file path=opt/SUNWdtrt/tst/common/vars/tst.walltimestamp.d mode=0444
2064 file path=opt/SUNWdtrt/tst/common/version/tst.1.0.d mode=0444
2065 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.basic.ksh mode=0444
2066 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.hvmenable.ksh mode=0444
2067 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.memenable.ksh mode=0444
2068 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.schedargs.ksh mode=0444
2069 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.schedenable.ksh \
2070 mode=0444
2071 legacy pkg=SUNWdtrt category=internal \
2072 desc="DTrace Test Suite Internal Distribution" \
2073 hotline="Contact the DTrace discussion forum" name="DTrace Test Suite"
2074 license cr_Sun license=cr_Sun
2075 license lic_CDDL license=lic_CDDL
2076 depend fmri=runtime/java type=require
2077 depend fmri=runtime/java/runtime64 type=require

new/usr/src/uts/common/dtrace/dtrace.c 1

**
 435357 Tue Jan 14 16:49:36 2014
new/usr/src/uts/common/dtrace/dtrace.c
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions

new/usr/src/uts/common/dtrace/dtrace.c 2

61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
96 #endif /* ! codereview */

98 /*
99 * DTrace Tunable Variables
100 *
101 * The following variables may be tuned by adding a line to /etc/system that
102 * includes both the name of the DTrace module ("dtrace") and the name of the
103 * variable. For example:
104 *
105 * set dtrace:dtrace_destructive_disallow = 1
106 *
107 * In general, the only variables that one should be tuning this way are those
108 * that affect system-wide DTrace behavior, and for which the default behavior
109 * is undesirable. Most of these variables are tunable on a per-consumer
110 * basis using DTrace options, and need not be tuned on a system-wide basis.
111 * When tuning these variables, avoid pathological values; while some attempt
112 * is made to verify the integrity of these variables, they are not considered
113 * part of the supported interface to DTrace, and they are therefore not
114 * checked comprehensively. Further, these variables should not be tuned
115 * dynamically via "mdb -kw" or other means; they should only be tuned via
116 * /etc/system.
117 */
118 int dtrace_destructive_disallow = 0;
119 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
120 size_t dtrace_difo_maxsize = (256 * 1024);
121 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
122 size_t dtrace_global_maxsize = (16 * 1024);
123 size_t dtrace_actions_max = (16 * 1024);
124 size_t dtrace_retain_max = 1024;
125 dtrace_optval_t dtrace_helper_actions_max = 1024;
126 dtrace_optval_t dtrace_helper_providers_max = 32;

new/usr/src/uts/common/dtrace/dtrace.c 3

127 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
128 size_t dtrace_strsize_default = 256;
129 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
130 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
131 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
132 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
133 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
134 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
135 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
136 dtrace_optval_t dtrace_nspec_default = 1;
137 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
138 dtrace_optval_t dtrace_stackframes_default = 20;
139 dtrace_optval_t dtrace_ustackframes_default = 20;
140 dtrace_optval_t dtrace_jstackframes_default = 50;
141 dtrace_optval_t dtrace_jstackstrsize_default = 512;
142 int dtrace_msgdsize_max = 128;
143 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */
144 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
145 int dtrace_devdepth_max = 32;
146 int dtrace_err_verbose;
147 hrtime_t dtrace_deadman_interval = NANOSEC;
148 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
149 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
150 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;

152 /*
153 * DTrace External Variables
154 *
155 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
156 * available to DTrace consumers via the backtick (‘) syntax. One of these,
157 * dtrace_zero, is made deliberately so: it is provided as a source of
158 * well-known, zero-filled memory. While this variable is not documented,
159 * it is used by some translators as an implementation detail.
160 */
161 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */

163 /*
164 * DTrace Internal Variables
165 */
166 static dev_info_t *dtrace_devi; /* device info */
167 static vmem_t *dtrace_arena; /* probe ID arena */
168 static vmem_t *dtrace_minor; /* minor number arena */
169 static taskq_t *dtrace_taskq; /* task queue */
170 static dtrace_probe_t **dtrace_probes; /* array of all probes */
171 static int dtrace_nprobes; /* number of probes */
172 static dtrace_provider_t *dtrace_provider; /* provider list */
173 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
174 static int dtrace_opens; /* number of opens */
175 static int dtrace_helpers; /* number of helpers */
176 static int dtrace_getf; /* number of unpriv getf()s */
177 static void *dtrace_softstate; /* softstate pointer */
178 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
179 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
180 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
181 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
182 static int dtrace_toxranges; /* number of toxic ranges */
183 static int dtrace_toxranges_max; /* size of toxic range array */
184 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
185 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
186 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
187 static kthread_t *dtrace_panicked; /* panicking thread */
188 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
189 static dtrace_genid_t dtrace_probegen; /* current probe generation */
190 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
191 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
192 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */

new/usr/src/uts/common/dtrace/dtrace.c 4

193 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
194 static int dtrace_dynvar_failclean; /* dynvars failed to clean */

196 /*
197 * DTrace Locking
198 * DTrace is protected by three (relatively coarse-grained) locks:
199 *
200 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
201 * including enabling state, probes, ECBs, consumer state, helper state,
202 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
203 * probe context is lock-free -- synchronization is handled via the
204 * dtrace_sync() cross call mechanism.
205 *
206 * (2) dtrace_provider_lock is required when manipulating provider state, or
207 * when provider state must be held constant.
208 *
209 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
210 * when meta provider state must be held constant.
211 *
212 * The lock ordering between these three locks is dtrace_meta_lock before
213 * dtrace_provider_lock before dtrace_lock. (In particular, there are
214 * several places where dtrace_provider_lock is held by the framework as it
215 * calls into the providers -- which then call back into the framework,
216 * grabbing dtrace_lock.)
217 *
218 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
219 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
220 * role as a coarse-grained lock; it is acquired before both of these locks.
221 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
222 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
223 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
224 * acquired _between_ dtrace_provider_lock and dtrace_lock.
225 */
226 static kmutex_t dtrace_lock; /* probe state lock */
227 static kmutex_t dtrace_provider_lock; /* provider state lock */
228 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */

230 /*
231 * DTrace Provider Variables
232 *
233 * These are the variables relating to DTrace as a provider (that is, the
234 * provider of the BEGIN, END, and ERROR probes).
235 */
236 static dtrace_pattr_t dtrace_provider_attr = {
237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
242 };

244 static void
245 dtrace_nullop(void)
246 {}

248 static int
249 dtrace_enable_nullop(void)
250 {
251 return (0);
252 }

254 static dtrace_pops_t dtrace_provider_ops = {
255 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
256 (void (*)(void *, struct modctl *))dtrace_nullop,
257 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,

new/usr/src/uts/common/dtrace/dtrace.c 5

259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
261 NULL,
262 NULL,
263 NULL,
264 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
265 };

267 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
268 static dtrace_id_t dtrace_probeid_end; /* special END probe */
269 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */

271 /*
272 * DTrace Helper Tracing Variables
273 */
274 uint32_t dtrace_helptrace_next = 0;
275 uint32_t dtrace_helptrace_nlocals;
276 char *dtrace_helptrace_buffer;
277 int dtrace_helptrace_bufsize = 512 * 1024;

279 #ifdef DEBUG
280 int dtrace_helptrace_enabled = 1;
281 #else
282 int dtrace_helptrace_enabled = 0;
283 #endif

285 /*
286 * DTrace Error Hashing
287 *
288 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
289 * table. This is very useful for checking coverage of tests that are
290 * expected to induce DIF or DOF processing errors, and may be useful for
291 * debugging problems in the DIF code generator or in DOF generation . The
292 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
293 */
294 #ifdef DEBUG
295 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
296 static const char *dtrace_errlast;
297 static kthread_t *dtrace_errthread;
298 static kmutex_t dtrace_errlock;
299 #endif

301 /*
302 * DTrace Macros and Constants
303 *
304 * These are various macros that are useful in various spots in the
305 * implementation, along with a few random constants that have no meaning
306 * outside of the implementation. There is no real structure to this cpp
307 * mishmash -- but is there ever?
308 */
309 #define DTRACE_HASHSTR(hash, probe) \
310 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))

312 #define DTRACE_HASHNEXT(hash, probe) \
313 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)

315 #define DTRACE_HASHPREV(hash, probe) \
316 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)

318 #define DTRACE_HASHEQ(hash, lhs, rhs) \
319 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
320 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)

322 #define DTRACE_AGGHASHSIZE_SLEW 17

324 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)

new/usr/src/uts/common/dtrace/dtrace.c 6

326 /*
327 * The key for a thread-local variable consists of the lower 61 bits of the
328 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
329 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
330 * equal to a variable identifier. This is necessary (but not sufficient) to
331 * assure that global associative arrays never collide with thread-local
332 * variables. To guarantee that they cannot collide, we must also define the
333 * order for keying dynamic variables. That order is:
334 *
335 * [key0] ... [keyn] [variable-key] [tls-key]
336 *
337 * Because the variable-key and the tls-key are in orthogonal spaces, there is
338 * no way for a global variable key signature to match a thread-local key
339 * signature.
340 */
341 #define DTRACE_TLS_THRKEY(where) { \
342 uint_t intr = 0; \
343 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
344 for (; actv; actv >>= 1) \
345 intr++; \
346 ASSERT(intr < (1 << 3)); \
347 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
348 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
349 }

351 #define DT_BSWAP_8(x) ((x) & 0xff)
352 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
353 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
354 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))

356 #define DT_MASK_LO 0x00000000FFFFFFFFULL

358 #define DTRACE_STORE(type, tomax, offset, what) \
359 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);

361 #ifndef __x86
362 #define DTRACE_ALIGNCHECK(addr, size, flags) \
363 if (addr & (size - 1)) { \
364 *flags |= CPU_DTRACE_BADALIGN; \
365 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
366 return (0); \
367 }
368 #else
369 #define DTRACE_ALIGNCHECK(addr, size, flags)
370 #endif

372 /*
373 * Test whether a range of memory starting at testaddr of size testsz falls
374 * within the range of memory described by addr, sz. We take care to avoid
375 * problems with overflow and underflow of the unsigned quantities, and
376 * disallow all negative sizes. Ranges of size 0 are allowed.
377 */
378 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
379 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
380 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
381 (testaddr) + (testsz) >= (testaddr))

383 /*
384 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
385 * alloc_sz on the righthand side of the comparison in order to avoid overflow
386 * or underflow in the comparison with it. This is simpler than the INRANGE
387 * check above, because we know that the dtms_scratch_ptr is valid in the
388 * range. Allocations of size zero are allowed.
389 */
390 #define DTRACE_INSCRATCH(mstate, alloc_sz) \

new/usr/src/uts/common/dtrace/dtrace.c 7

391 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
392 (mstate)->dtms_scratch_ptr >= (alloc_sz))

394 #define DTRACE_LOADFUNC(bits) \
395 /*CSTYLED*/ \
396 uint##bits##_t \
397 dtrace_load##bits(uintptr_t addr) \
398 { \
399 size_t size = bits / NBBY; \
400 /*CSTYLED*/ \
401 uint##bits##_t rval; \
402 int i; \
403 volatile uint16_t *flags = (volatile uint16_t *) \
404 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
405 \
406 DTRACE_ALIGNCHECK(addr, size, flags); \
407 \
408 for (i = 0; i < dtrace_toxranges; i++) { \
409 if (addr >= dtrace_toxrange[i].dtt_limit) \
410 continue; \
411 \
412 if (addr + size <= dtrace_toxrange[i].dtt_base) \
413 continue; \
414 \
415 /* \
416 * This address falls within a toxic region; return 0. \
417 */ \
418 *flags |= CPU_DTRACE_BADADDR; \
419 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
420 return (0); \
421 } \
422 \
423 *flags |= CPU_DTRACE_NOFAULT; \
424 /*CSTYLED*/ \
425 rval = *((volatile uint##bits##_t *)addr); \
426 *flags &= ~CPU_DTRACE_NOFAULT; \
427 \
428 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
429 }

431 #ifdef _LP64
432 #define dtrace_loadptr dtrace_load64
433 #else
434 #define dtrace_loadptr dtrace_load32
435 #endif

437 #define DTRACE_DYNHASH_FREE 0
438 #define DTRACE_DYNHASH_SINK 1
439 #define DTRACE_DYNHASH_VALID 2

441 #define DTRACE_MATCH_FAIL -1
442 #define DTRACE_MATCH_NEXT 0
443 #define DTRACE_MATCH_DONE 1
444 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != ’\0’)
445 #define DTRACE_STATE_ALIGN 64

447 #define DTRACE_FLAGS2FLT(flags) \
448 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
449 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
450 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
451 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
452 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
453 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
454 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
455 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
456 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \

new/usr/src/uts/common/dtrace/dtrace.c 8

457 DTRACEFLT_UNKNOWN)

459 #define DTRACEACT_ISSTRING(act) \
460 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
461 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)

463 static size_t dtrace_strlen(const char *, size_t);
464 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
465 static void dtrace_enabling_provide(dtrace_provider_t *);
466 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
467 static void dtrace_enabling_matchall(void);
468 static void dtrace_enabling_reap(void);
469 static dtrace_state_t *dtrace_anon_grab(void);
470 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
471 dtrace_state_t *, uint64_t, uint64_t);
472 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
473 static void dtrace_buffer_drop(dtrace_buffer_t *);
474 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
475 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
476 dtrace_state_t *, dtrace_mstate_t *);
477 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
478 dtrace_optval_t);
479 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
480 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
481 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
482 static void dtrace_getf_barrier(void);

484 /*
485 * DTrace Probe Context Functions
486 *
487 * These functions are called from probe context. Because probe context is
488 * any context in which C may be called, arbitrarily locks may be held,
489 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
490 * As a result, functions called from probe context may only call other DTrace
491 * support functions -- they may not interact at all with the system at large.
492 * (Note that the ASSERT macro is made probe-context safe by redefining it in
493 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
494 * loads are to be performed from probe context, they _must_ be in terms of
495 * the safe dtrace_load*() variants.
496 *
497 * Some functions in this block are not actually called from probe context;
498 * for these functions, there will be a comment above the function reading
499 * "Note: not called from probe context."
500 */
501 void
502 dtrace_panic(const char *format, ...)
503 {
504 va_list alist;

506 va_start(alist, format);
507 dtrace_vpanic(format, alist);
508 va_end(alist);
509 }

511 int
512 dtrace_assfail(const char *a, const char *f, int l)
513 {
514 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);

516 /*
517 * We just need something here that even the most clever compiler
518 * cannot optimize away.
519 */
520 return (a[(uintptr_t)f]);
521 }

new/usr/src/uts/common/dtrace/dtrace.c 9

523 /*
524 * Atomically increment a specified error counter from probe context.
525 */
526 static void
527 dtrace_error(uint32_t *counter)
528 {
529 /*
530 * Most counters stored to in probe context are per-CPU counters.
531 * However, there are some error conditions that are sufficiently
532 * arcane that they don’t merit per-CPU storage. If these counters
533 * are incremented concurrently on different CPUs, scalability will be
534 * adversely affected -- but we don’t expect them to be white-hot in a
535 * correctly constructed enabling...
536 */
537 uint32_t oval, nval;

539 do {
540 oval = *counter;

542 if ((nval = oval + 1) == 0) {
543 /*
544 * If the counter would wrap, set it to 1 -- assuring
545 * that the counter is never zero when we have seen
546 * errors. (The counter must be 32-bits because we
547 * aren’t guaranteed a 64-bit compare&swap operation.)
548 * To save this code both the infamy of being fingered
549 * by a priggish news story and the indignity of being
550 * the target of a neo-puritan witch trial, we’re
551 * carefully avoiding any colorful description of the
552 * likelihood of this condition -- but suffice it to
553 * say that it is only slightly more likely than the
554 * overflow of predicate cache IDs, as discussed in
555 * dtrace_predicate_create().
556 */
557 nval = 1;
558 }
559 } while (dtrace_cas32(counter, oval, nval) != oval);
560 }

562 /*
563 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
564 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
565 */
566 DTRACE_LOADFUNC(8)
567 DTRACE_LOADFUNC(16)
568 DTRACE_LOADFUNC(32)
569 DTRACE_LOADFUNC(64)

571 static int
572 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
573 {
574 if (dest < mstate->dtms_scratch_base)
575 return (0);

577 if (dest + size < dest)
578 return (0);

580 if (dest + size > mstate->dtms_scratch_ptr)
581 return (0);

583 return (1);
584 }

586 static int
587 dtrace_canstore_statvar(uint64_t addr, size_t sz,
588 dtrace_statvar_t **svars, int nsvars)

new/usr/src/uts/common/dtrace/dtrace.c 10

589 {
590 int i;

592 for (i = 0; i < nsvars; i++) {
593 dtrace_statvar_t *svar = svars[i];

595 if (svar == NULL || svar->dtsv_size == 0)
596 continue;

598 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
599 return (1);
600 }

602 return (0);
603 }

605 /*
606 * Check to see if the address is within a memory region to which a store may
607 * be issued. This includes the DTrace scratch areas, and any DTrace variable
608 * region. The caller of dtrace_canstore() is responsible for performing any
609 * alignment checks that are needed before stores are actually executed.
610 */
611 static int
612 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
613 dtrace_vstate_t *vstate)
614 {
615 /*
616 * First, check to see if the address is in scratch space...
617 */
618 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
619 mstate->dtms_scratch_size))
620 return (1);

622 /*
623 * Now check to see if it’s a dynamic variable. This check will pick
624 * up both thread-local variables and any global dynamically-allocated
625 * variables.
626 */
627 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
628 vstate->dtvs_dynvars.dtds_size)) {
629 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
630 uintptr_t base = (uintptr_t)dstate->dtds_base +
631 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
632 uintptr_t chunkoffs;

634 /*
635 * Before we assume that we can store here, we need to make
636 * sure that it isn’t in our metadata -- storing to our
637 * dynamic variable metadata would corrupt our state. For
638 * the range to not include any dynamic variable metadata,
639 * it must:
640 *
641 * (1) Start above the hash table that is at the base of
642 * the dynamic variable space
643 *
644 * (2) Have a starting chunk offset that is beyond the
645 * dtrace_dynvar_t that is at the base of every chunk
646 *
647 * (3) Not span a chunk boundary
648 *
649 */
650 if (addr < base)
651 return (0);

653 chunkoffs = (addr - base) % dstate->dtds_chunksize;

new/usr/src/uts/common/dtrace/dtrace.c 11

655 if (chunkoffs < sizeof (dtrace_dynvar_t))
656 return (0);

658 if (chunkoffs + sz > dstate->dtds_chunksize)
659 return (0);

661 return (1);
662 }

664 /*
665 * Finally, check the static local and global variables. These checks
666 * take the longest, so we perform them last.
667 */
668 if (dtrace_canstore_statvar(addr, sz,
669 vstate->dtvs_locals, vstate->dtvs_nlocals))
670 return (1);

672 if (dtrace_canstore_statvar(addr, sz,
673 vstate->dtvs_globals, vstate->dtvs_nglobals))
674 return (1);

676 return (0);
677 }

680 /*
681 * Convenience routine to check to see if the address is within a memory
682 * region in which a load may be issued given the user’s privilege level;
683 * if not, it sets the appropriate error flags and loads ’addr’ into the
684 * illegal value slot.
685 *
686 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
687 * appropriate memory access protection.
688 */
689 static int
690 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
691 dtrace_vstate_t *vstate)
692 {
693 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
694 file_t *fp;

696 /*
697 * If we hold the privilege to read from kernel memory, then
698 * everything is readable.
699 */
700 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
701 return (1);

703 /*
704 * You can obviously read that which you can store.
705 */
706 if (dtrace_canstore(addr, sz, mstate, vstate))
707 return (1);

709 /*
710 * We’re allowed to read from our own string table.
711 */
712 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
713 mstate->dtms_difo->dtdo_strlen))
714 return (1);

716 if (vstate->dtvs_state != NULL &&
717 dtrace_priv_proc(vstate->dtvs_state, mstate)) {
718 proc_t *p;

720 /*

new/usr/src/uts/common/dtrace/dtrace.c 12

721 * When we have privileges to the current process, there are
722 * several context-related kernel structures that are safe to
723 * read, even absent the privilege to read from kernel memory.
724 * These reads are safe because these structures contain only
725 * state that (1) we’re permitted to read, (2) is harmless or
726 * (3) contains pointers to additional kernel state that we’re
727 * not permitted to read (and as such, do not present an
728 * opportunity for privilege escalation). Finally (and
729 * critically), because of the nature of their relation with
730 * the current thread context, the memory associated with these
731 * structures cannot change over the duration of probe context,
732 * and it is therefore impossible for this memory to be
733 * deallocated and reallocated as something else while it’s
734 * being operated upon.
735 */
736 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
737 return (1);

739 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
740 sz, curthread->t_procp, sizeof (proc_t))) {
741 return (1);
742 }

744 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
745 curthread->t_cred, sizeof (cred_t))) {
746 return (1);
747 }

749 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
750 &(p->p_pidp->pid_id), sizeof (pid_t))) {
751 return (1);
752 }

754 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
755 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
756 return (1);
757 }
758 }

760 if ((fp = mstate->dtms_getf) != NULL) {
761 uintptr_t psz = sizeof (void *);
762 vnode_t *vp;
763 vnodeops_t *op;

765 /*
766 * When getf() returns a file_t, the enabling is implicitly
767 * granted the (transient) right to read the returned file_t
768 * as well as the v_path and v_op->vnop_name of the underlying
769 * vnode. These accesses are allowed after a successful
770 * getf() because the members that they refer to cannot change
771 * once set -- and the barrier logic in the kernel’s closef()
772 * path assures that the file_t and its referenced vode_t
773 * cannot themselves be stale (that is, it impossible for
774 * either dtms_getf itself or its f_vnode member to reference
775 * freed memory).
776 */
777 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
778 return (1);

780 if ((vp = fp->f_vnode) != NULL) {
781 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
782 return (1);

784 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
785 vp->v_path, strlen(vp->v_path) + 1)) {
786 return (1);

new/usr/src/uts/common/dtrace/dtrace.c 13

787 }

789 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
790 return (1);

792 if ((op = vp->v_op) != NULL &&
793 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
794 return (1);
795 }

797 if (op != NULL && op->vnop_name != NULL &&
798 DTRACE_INRANGE(addr, sz, op->vnop_name,
799 strlen(op->vnop_name) + 1)) {
800 return (1);
801 }
802 }
803 }

805 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
806 *illval = addr;
807 return (0);
808 }

810 /*
811 * Convenience routine to check to see if a given string is within a memory
812 * region in which a load may be issued given the user’s privilege level;
813 * this exists so that we don’t need to issue unnecessary dtrace_strlen()
814 * calls in the event that the user has all privileges.
815 */
816 static int
817 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
818 dtrace_vstate_t *vstate)
819 {
820 size_t strsz;

822 /*
823 * If we hold the privilege to read from kernel memory, then
824 * everything is readable.
825 */
826 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
827 return (1);

829 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
830 if (dtrace_canload(addr, strsz, mstate, vstate))
831 return (1);

833 return (0);
834 }

836 /*
837 * Convenience routine to check to see if a given variable is within a memory
838 * region in which a load may be issued given the user’s privilege level.
839 */
840 static int
841 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
842 dtrace_vstate_t *vstate)
843 {
844 size_t sz;
845 ASSERT(type->dtdt_flags & DIF_TF_BYREF);

847 /*
848 * If we hold the privilege to read from kernel memory, then
849 * everything is readable.
850 */
851 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
852 return (1);

new/usr/src/uts/common/dtrace/dtrace.c 14

854 if (type->dtdt_kind == DIF_TYPE_STRING)
855 sz = dtrace_strlen(src,
856 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
857 else
858 sz = type->dtdt_size;

860 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
861 }

863 /*
864 * Convert a string to a signed integer using safe loads.
865 *
866 * NOTE: This function uses various macros from strtolctype.h to manipulate
867 * digit values, etc -- these have all been checked to ensure they make
868 * no additional function calls.
869 */
870 static int64_t
871 dtrace_strtoll(char *input, int base, size_t limit)
872 {
873 uintptr_t pos = (uintptr_t)input;
874 int64_t val = 0;
875 int x;
876 boolean_t neg = B_FALSE;
877 char c, cc, ccc;
878 uintptr_t end = pos + limit;

880 /*
881 * Consume any whitespace preceding digits.
882 */
883 while ((c = dtrace_load8(pos)) == ’ ’ || c == ’\t’)
884 pos++;

886 /*
887 * Handle an explicit sign if one is present.
888 */
889 if (c == ’-’ || c == ’+’) {
890 if (c == ’-’)
891 neg = B_TRUE;
892 c = dtrace_load8(++pos);
893 }

895 /*
896 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
897 * if present.
898 */
899 if (base == 16 && c == ’0’ && ((cc = dtrace_load8(pos + 1)) == ’x’ ||
900 cc == ’X’) && isxdigit(ccc = dtrace_load8(pos + 2))) {
901 pos += 2;
902 c = ccc;
903 }

905 /*
906 * Read in contiguous digits until the first non-digit character.
907 */
908 for (; pos < end && c != ’\0’ && lisalnum(c) && (x = DIGIT(c)) < base;
909 c = dtrace_load8(++pos))
910 val = val * base + x;

912 return (neg ? -val : val);
913 }

915 /*
916 #endif /* ! codereview */
917 * Compare two strings using safe loads.
918 */

new/usr/src/uts/common/dtrace/dtrace.c 15

919 static int
920 dtrace_strncmp(char *s1, char *s2, size_t limit)
921 {
922 uint8_t c1, c2;
923 volatile uint16_t *flags;

925 if (s1 == s2 || limit == 0)
926 return (0);

928 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;

930 do {
931 if (s1 == NULL) {
932 c1 = ’\0’;
933 } else {
934 c1 = dtrace_load8((uintptr_t)s1++);
935 }

937 if (s2 == NULL) {
938 c2 = ’\0’;
939 } else {
940 c2 = dtrace_load8((uintptr_t)s2++);
941 }

943 if (c1 != c2)
944 return (c1 - c2);
945 } while (--limit && c1 != ’\0’ && !(*flags & CPU_DTRACE_FAULT));

947 return (0);
948 }

950 /*
951 * Compute strlen(s) for a string using safe memory accesses. The additional
952 * len parameter is used to specify a maximum length to ensure completion.
953 */
954 static size_t
955 dtrace_strlen(const char *s, size_t lim)
956 {
957 uint_t len;

959 for (len = 0; len != lim; len++) {
960 if (dtrace_load8((uintptr_t)s++) == ’\0’)
961 break;
962 }

964 return (len);
965 }

967 /*
968 * Check if an address falls within a toxic region.
969 */
970 static int
971 dtrace_istoxic(uintptr_t kaddr, size_t size)
972 {
973 uintptr_t taddr, tsize;
974 int i;

976 for (i = 0; i < dtrace_toxranges; i++) {
977 taddr = dtrace_toxrange[i].dtt_base;
978 tsize = dtrace_toxrange[i].dtt_limit - taddr;

980 if (kaddr - taddr < tsize) {
981 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
982 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
983 return (1);
984 }

new/usr/src/uts/common/dtrace/dtrace.c 16

986 if (taddr - kaddr < size) {
987 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
988 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
989 return (1);
990 }
991 }

993 return (0);
994 }

996 /*
997 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
998 * memory specified by the DIF program. The dst is assumed to be safe memory
999 * that we can store to directly because it is managed by DTrace. As with

1000 * standard bcopy, overlapping copies are handled properly.
1001 */
1002 static void
1003 dtrace_bcopy(const void *src, void *dst, size_t len)
1004 {
1005 if (len != 0) {
1006 uint8_t *s1 = dst;
1007 const uint8_t *s2 = src;

1009 if (s1 <= s2) {
1010 do {
1011 *s1++ = dtrace_load8((uintptr_t)s2++);
1012 } while (--len != 0);
1013 } else {
1014 s2 += len;
1015 s1 += len;

1017 do {
1018 *--s1 = dtrace_load8((uintptr_t)--s2);
1019 } while (--len != 0);
1020 }
1021 }
1022 }

1024 /*
1025 * Copy src to dst using safe memory accesses, up to either the specified
1026 * length, or the point that a nul byte is encountered. The src is assumed to
1027 * be unsafe memory specified by the DIF program. The dst is assumed to be
1028 * safe memory that we can store to directly because it is managed by DTrace.
1029 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1030 */
1031 static void
1032 dtrace_strcpy(const void *src, void *dst, size_t len)
1033 {
1034 if (len != 0) {
1035 uint8_t *s1 = dst, c;
1036 const uint8_t *s2 = src;

1038 do {
1039 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1040 } while (--len != 0 && c != ’\0’);
1041 }
1042 }

1044 /*
1045 * Copy src to dst, deriving the size and type from the specified (BYREF)
1046 * variable type. The src is assumed to be unsafe memory specified by the DIF
1047 * program. The dst is assumed to be DTrace variable memory that is of the
1048 * specified type; we assume that we can store to directly.
1049 */
1050 static void

new/usr/src/uts/common/dtrace/dtrace.c 17

1051 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1052 {
1053 ASSERT(type->dtdt_flags & DIF_TF_BYREF);

1055 if (type->dtdt_kind == DIF_TYPE_STRING) {
1056 dtrace_strcpy(src, dst, type->dtdt_size);
1057 } else {
1058 dtrace_bcopy(src, dst, type->dtdt_size);
1059 }
1060 }

1062 /*
1063 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1064 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1065 * safe memory that we can access directly because it is managed by DTrace.
1066 */
1067 static int
1068 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1069 {
1070 volatile uint16_t *flags;

1072 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;

1074 if (s1 == s2)
1075 return (0);

1077 if (s1 == NULL || s2 == NULL)
1078 return (1);

1080 if (s1 != s2 && len != 0) {
1081 const uint8_t *ps1 = s1;
1082 const uint8_t *ps2 = s2;

1084 do {
1085 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1086 return (1);
1087 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1088 }
1089 return (0);
1090 }

1092 /*
1093 * Zero the specified region using a simple byte-by-byte loop. Note that this
1094 * is for safe DTrace-managed memory only.
1095 */
1096 static void
1097 dtrace_bzero(void *dst, size_t len)
1098 {
1099 uchar_t *cp;

1101 for (cp = dst; len != 0; len--)
1102 *cp++ = 0;
1103 }

1105 static void
1106 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1107 {
1108 uint64_t result[2];

1110 result[0] = addend1[0] + addend2[0];
1111 result[1] = addend1[1] + addend2[1] +
1112 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);

1114 sum[0] = result[0];
1115 sum[1] = result[1];
1116 }

new/usr/src/uts/common/dtrace/dtrace.c 18

1118 /*
1119 * Shift the 128-bit value in a by b. If b is positive, shift left.
1120 * If b is negative, shift right.
1121 */
1122 static void
1123 dtrace_shift_128(uint64_t *a, int b)
1124 {
1125 uint64_t mask;

1127 if (b == 0)
1128 return;

1130 if (b < 0) {
1131 b = -b;
1132 if (b >= 64) {
1133 a[0] = a[1] >> (b - 64);
1134 a[1] = 0;
1135 } else {
1136 a[0] >>= b;
1137 mask = 1LL << (64 - b);
1138 mask -= 1;
1139 a[0] |= ((a[1] & mask) << (64 - b));
1140 a[1] >>= b;
1141 }
1142 } else {
1143 if (b >= 64) {
1144 a[1] = a[0] << (b - 64);
1145 a[0] = 0;
1146 } else {
1147 a[1] <<= b;
1148 mask = a[0] >> (64 - b);
1149 a[1] |= mask;
1150 a[0] <<= b;
1151 }
1152 }
1153 }

1155 /*
1156 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1157 * use native multiplication on those, and then re-combine into the
1158 * resulting 128-bit value.
1159 *
1160 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1161 * hi1 * hi2 << 64 +
1162 * hi1 * lo2 << 32 +
1163 * hi2 * lo1 << 32 +
1164 * lo1 * lo2
1165 */
1166 static void
1167 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1168 {
1169 uint64_t hi1, hi2, lo1, lo2;
1170 uint64_t tmp[2];

1172 hi1 = factor1 >> 32;
1173 hi2 = factor2 >> 32;

1175 lo1 = factor1 & DT_MASK_LO;
1176 lo2 = factor2 & DT_MASK_LO;

1178 product[0] = lo1 * lo2;
1179 product[1] = hi1 * hi2;

1181 tmp[0] = hi1 * lo2;
1182 tmp[1] = 0;

new/usr/src/uts/common/dtrace/dtrace.c 19

1183 dtrace_shift_128(tmp, 32);
1184 dtrace_add_128(product, tmp, product);

1186 tmp[0] = hi2 * lo1;
1187 tmp[1] = 0;
1188 dtrace_shift_128(tmp, 32);
1189 dtrace_add_128(product, tmp, product);
1190 }

1192 /*
1193 * This privilege check should be used by actions and subroutines to
1194 * verify that the user credentials of the process that enabled the
1195 * invoking ECB match the target credentials
1196 */
1197 static int
1198 dtrace_priv_proc_common_user(dtrace_state_t *state)
1199 {
1200 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;

1202 /*
1203 * We should always have a non-NULL state cred here, since if cred
1204 * is null (anonymous tracing), we fast-path bypass this routine.
1205 */
1206 ASSERT(s_cr != NULL);

1208 if ((cr = CRED()) != NULL &&
1209 s_cr->cr_uid == cr->cr_uid &&
1210 s_cr->cr_uid == cr->cr_ruid &&
1211 s_cr->cr_uid == cr->cr_suid &&
1212 s_cr->cr_gid == cr->cr_gid &&
1213 s_cr->cr_gid == cr->cr_rgid &&
1214 s_cr->cr_gid == cr->cr_sgid)
1215 return (1);

1217 return (0);
1218 }

1220 /*
1221 * This privilege check should be used by actions and subroutines to
1222 * verify that the zone of the process that enabled the invoking ECB
1223 * matches the target credentials
1224 */
1225 static int
1226 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1227 {
1228 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;

1230 /*
1231 * We should always have a non-NULL state cred here, since if cred
1232 * is null (anonymous tracing), we fast-path bypass this routine.
1233 */
1234 ASSERT(s_cr != NULL);

1236 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1237 return (1);

1239 return (0);
1240 }

1242 /*
1243 * This privilege check should be used by actions and subroutines to
1244 * verify that the process has not setuid or changed credentials.
1245 */
1246 static int
1247 dtrace_priv_proc_common_nocd()
1248 {

new/usr/src/uts/common/dtrace/dtrace.c 20

1249 proc_t *proc;

1251 if ((proc = ttoproc(curthread)) != NULL &&
1252 !(proc->p_flag & SNOCD))
1253 return (1);

1255 return (0);
1256 }

1258 static int
1259 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1260 {
1261 int action = state->dts_cred.dcr_action;

1263 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1264 goto bad;

1266 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1267 dtrace_priv_proc_common_zone(state) == 0)
1268 goto bad;

1270 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1271 dtrace_priv_proc_common_user(state) == 0)
1272 goto bad;

1274 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1275 dtrace_priv_proc_common_nocd() == 0)
1276 goto bad;

1278 return (1);

1280 bad:
1281 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;

1283 return (0);
1284 }

1286 static int
1287 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1288 {
1289 if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1290 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1291 return (1);

1293 if (dtrace_priv_proc_common_zone(state) &&
1294 dtrace_priv_proc_common_user(state) &&
1295 dtrace_priv_proc_common_nocd())
1296 return (1);
1297 }

1299 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;

1301 return (0);
1302 }

1304 static int
1305 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1306 {
1307 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1308 (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1309 return (1);

1311 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;

1313 return (0);
1314 }

new/usr/src/uts/common/dtrace/dtrace.c 21

1316 static int
1317 dtrace_priv_kernel(dtrace_state_t *state)
1318 {
1319 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1320 return (1);

1322 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;

1324 return (0);
1325 }

1327 static int
1328 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1329 {
1330 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1331 return (1);

1333 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;

1335 return (0);
1336 }

1338 /*
1339 * Determine if the dte_cond of the specified ECB allows for processing of
1340 * the current probe to continue. Note that this routine may allow continued
1341 * processing, but with access(es) stripped from the mstate’s dtms_access
1342 * field.
1343 */
1344 static int
1345 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1346 dtrace_ecb_t *ecb)
1347 {
1348 dtrace_probe_t *probe = ecb->dte_probe;
1349 dtrace_provider_t *prov = probe->dtpr_provider;
1350 dtrace_pops_t *pops = &prov->dtpv_pops;
1351 int mode = DTRACE_MODE_NOPRIV_DROP;

1353 ASSERT(ecb->dte_cond);

1355 if (pops->dtps_mode != NULL) {
1356 mode = pops->dtps_mode(prov->dtpv_arg,
1357 probe->dtpr_id, probe->dtpr_arg);

1359 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1360 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1361 DTRACE_MODE_NOPRIV_DROP));
1362 }

1364 /*
1365 * If the dte_cond bits indicate that this consumer is only allowed to
1366 * see user-mode firings of this probe, check that the probe was fired
1367 * while in a user context. If that’s not the case, use the policy
1368 * specified by the provider to determine if we drop the probe or
1369 * merely restrict operation.
1370 */
1371 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1372 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);

1374 if (!(mode & DTRACE_MODE_USER)) {
1375 if (mode & DTRACE_MODE_NOPRIV_DROP)
1376 return (0);

1378 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1379 }
1380 }

new/usr/src/uts/common/dtrace/dtrace.c 22

1382 /*
1383 * This is more subtle than it looks. We have to be absolutely certain
1384 * that CRED() isn’t going to change out from under us so it’s only
1385 * legit to examine that structure if we’re in constrained situations.
1386 * Currently, the only times we’ll this check is if a non-super-user
1387 * has enabled the profile or syscall providers -- providers that
1388 * allow visibility of all processes. For the profile case, the check
1389 * above will ensure that we’re examining a user context.
1390 */
1391 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1392 cred_t *cr;
1393 cred_t *s_cr = state->dts_cred.dcr_cred;
1394 proc_t *proc;

1396 ASSERT(s_cr != NULL);

1398 if ((cr = CRED()) == NULL ||
1399 s_cr->cr_uid != cr->cr_uid ||
1400 s_cr->cr_uid != cr->cr_ruid ||
1401 s_cr->cr_uid != cr->cr_suid ||
1402 s_cr->cr_gid != cr->cr_gid ||
1403 s_cr->cr_gid != cr->cr_rgid ||
1404 s_cr->cr_gid != cr->cr_sgid ||
1405 (proc = ttoproc(curthread)) == NULL ||
1406 (proc->p_flag & SNOCD)) {
1407 if (mode & DTRACE_MODE_NOPRIV_DROP)
1408 return (0);

1410 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1411 }
1412 }

1414 /*
1415 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1416 * in our zone, check to see if our mode policy is to restrict rather
1417 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1418 * and DTRACE_ACCESS_ARGS
1419 */
1420 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1421 cred_t *cr;
1422 cred_t *s_cr = state->dts_cred.dcr_cred;

1424 ASSERT(s_cr != NULL);

1426 if ((cr = CRED()) == NULL ||
1427 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1428 if (mode & DTRACE_MODE_NOPRIV_DROP)
1429 return (0);

1431 mstate->dtms_access &=
1432 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1433 }
1434 }

1436 /*
1437 * By merits of being in this code path at all, we have limited
1438 * privileges. If the provider has indicated that limited privileges
1439 * are to denote restricted operation, strip off the ability to access
1440 * arguments.
1441 */
1442 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1443 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;

1445 return (1);
1446 }

new/usr/src/uts/common/dtrace/dtrace.c 23

1448 /*
1449 * Note: not called from probe context. This function is called
1450 * asynchronously (and at a regular interval) from outside of probe context to
1451 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1452 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1453 */
1454 void
1455 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1456 {
1457 dtrace_dynvar_t *dirty;
1458 dtrace_dstate_percpu_t *dcpu;
1459 dtrace_dynvar_t **rinsep;
1460 int i, j, work = 0;

1462 for (i = 0; i < NCPU; i++) {
1463 dcpu = &dstate->dtds_percpu[i];
1464 rinsep = &dcpu->dtdsc_rinsing;

1466 /*
1467 * If the dirty list is NULL, there is no dirty work to do.
1468 */
1469 if (dcpu->dtdsc_dirty == NULL)
1470 continue;

1472 if (dcpu->dtdsc_rinsing != NULL) {
1473 /*
1474 * If the rinsing list is non-NULL, then it is because
1475 * this CPU was selected to accept another CPU’s
1476 * dirty list -- and since that time, dirty buffers
1477 * have accumulated. This is a highly unlikely
1478 * condition, but we choose to ignore the dirty
1479 * buffers -- they’ll be picked up a future cleanse.
1480 */
1481 continue;
1482 }

1484 if (dcpu->dtdsc_clean != NULL) {
1485 /*
1486 * If the clean list is non-NULL, then we’re in a
1487 * situation where a CPU has done deallocations (we
1488 * have a non-NULL dirty list) but no allocations (we
1489 * also have a non-NULL clean list). We can’t simply
1490 * move the dirty list into the clean list on this
1491 * CPU, yet we also don’t want to allow this condition
1492 * to persist, lest a short clean list prevent a
1493 * massive dirty list from being cleaned (which in
1494 * turn could lead to otherwise avoidable dynamic
1495 * drops). To deal with this, we look for some CPU
1496 * with a NULL clean list, NULL dirty list, and NULL
1497 * rinsing list -- and then we borrow this CPU to
1498 * rinse our dirty list.
1499 */
1500 for (j = 0; j < NCPU; j++) {
1501 dtrace_dstate_percpu_t *rinser;

1503 rinser = &dstate->dtds_percpu[j];

1505 if (rinser->dtdsc_rinsing != NULL)
1506 continue;

1508 if (rinser->dtdsc_dirty != NULL)
1509 continue;

1511 if (rinser->dtdsc_clean != NULL)
1512 continue;

new/usr/src/uts/common/dtrace/dtrace.c 24

1514 rinsep = &rinser->dtdsc_rinsing;
1515 break;
1516 }

1518 if (j == NCPU) {
1519 /*
1520 * We were unable to find another CPU that
1521 * could accept this dirty list -- we are
1522 * therefore unable to clean it now.
1523 */
1524 dtrace_dynvar_failclean++;
1525 continue;
1526 }
1527 }

1529 work = 1;

1531 /*
1532 * Atomically move the dirty list aside.
1533 */
1534 do {
1535 dirty = dcpu->dtdsc_dirty;

1537 /*
1538 * Before we zap the dirty list, set the rinsing list.
1539 * (This allows for a potential assertion in
1540 * dtrace_dynvar(): if a free dynamic variable appears
1541 * on a hash chain, either the dirty list or the
1542 * rinsing list for some CPU must be non-NULL.)
1543 */
1544 *rinsep = dirty;
1545 dtrace_membar_producer();
1546 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1547 dirty, NULL) != dirty);
1548 }

1550 if (!work) {
1551 /*
1552 * We have no work to do; we can simply return.
1553 */
1554 return;
1555 }

1557 dtrace_sync();

1559 for (i = 0; i < NCPU; i++) {
1560 dcpu = &dstate->dtds_percpu[i];

1562 if (dcpu->dtdsc_rinsing == NULL)
1563 continue;

1565 /*
1566 * We are now guaranteed that no hash chain contains a pointer
1567 * into this dirty list; we can make it clean.
1568 */
1569 ASSERT(dcpu->dtdsc_clean == NULL);
1570 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1571 dcpu->dtdsc_rinsing = NULL;
1572 }

1574 /*
1575 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1576 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1577 * This prevents a race whereby a CPU incorrectly decides that
1578 * the state should be something other than DTRACE_DSTATE_CLEAN

new/usr/src/uts/common/dtrace/dtrace.c 25

1579 * after dtrace_dynvar_clean() has completed.
1580 */
1581 dtrace_sync();

1583 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1584 }

1586 /*
1587 * Depending on the value of the op parameter, this function looks-up,
1588 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1589 * allocation is requested, this function will return a pointer to a
1590 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1591 * variable can be allocated. If NULL is returned, the appropriate counter
1592 * will be incremented.
1593 */
1594 dtrace_dynvar_t *
1595 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1596 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1597 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1598 {
1599 uint64_t hashval = DTRACE_DYNHASH_VALID;
1600 dtrace_dynhash_t *hash = dstate->dtds_hash;
1601 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1602 processorid_t me = CPU->cpu_id, cpu = me;
1603 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1604 size_t bucket, ksize;
1605 size_t chunksize = dstate->dtds_chunksize;
1606 uintptr_t kdata, lock, nstate;
1607 uint_t i;

1609 ASSERT(nkeys != 0);

1611 /*
1612 * Hash the key. As with aggregations, we use Jenkins’ "One-at-a-time"
1613 * algorithm. For the by-value portions, we perform the algorithm in
1614 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1615 * bit, and seems to have only a minute effect on distribution. For
1616 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1617 * over each referenced byte. It’s painful to do this, but it’s much
1618 * better than pathological hash distribution. The efficacy of the
1619 * hashing algorithm (and a comparison with other algorithms) may be
1620 * found by running the ::dtrace_dynstat MDB dcmd.
1621 */
1622 for (i = 0; i < nkeys; i++) {
1623 if (key[i].dttk_size == 0) {
1624 uint64_t val = key[i].dttk_value;

1626 hashval += (val >> 48) & 0xffff;
1627 hashval += (hashval << 10);
1628 hashval ^= (hashval >> 6);

1630 hashval += (val >> 32) & 0xffff;
1631 hashval += (hashval << 10);
1632 hashval ^= (hashval >> 6);

1634 hashval += (val >> 16) & 0xffff;
1635 hashval += (hashval << 10);
1636 hashval ^= (hashval >> 6);

1638 hashval += val & 0xffff;
1639 hashval += (hashval << 10);
1640 hashval ^= (hashval >> 6);
1641 } else {
1642 /*
1643 * This is incredibly painful, but it beats the hell
1644 * out of the alternative.

new/usr/src/uts/common/dtrace/dtrace.c 26

1645 */
1646 uint64_t j, size = key[i].dttk_size;
1647 uintptr_t base = (uintptr_t)key[i].dttk_value;

1649 if (!dtrace_canload(base, size, mstate, vstate))
1650 break;

1652 for (j = 0; j < size; j++) {
1653 hashval += dtrace_load8(base + j);
1654 hashval += (hashval << 10);
1655 hashval ^= (hashval >> 6);
1656 }
1657 }
1658 }

1660 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1661 return (NULL);

1663 hashval += (hashval << 3);
1664 hashval ^= (hashval >> 11);
1665 hashval += (hashval << 15);

1667 /*
1668 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1669 * comes out to be one of our two sentinel hash values. If this
1670 * actually happens, we set the hashval to be a value known to be a
1671 * non-sentinel value.
1672 */
1673 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1674 hashval = DTRACE_DYNHASH_VALID;

1676 /*
1677 * Yes, it’s painful to do a divide here. If the cycle count becomes
1678 * important here, tricks can be pulled to reduce it. (However, it’s
1679 * critical that hash collisions be kept to an absolute minimum;
1680 * they’re much more painful than a divide.) It’s better to have a
1681 * solution that generates few collisions and still keeps things
1682 * relatively simple.
1683 */
1684 bucket = hashval % dstate->dtds_hashsize;

1686 if (op == DTRACE_DYNVAR_DEALLOC) {
1687 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;

1689 for (;;) {
1690 while ((lock = *lockp) & 1)
1691 continue;

1693 if (dtrace_casptr((void *)lockp,
1694 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1695 break;
1696 }

1698 dtrace_membar_producer();
1699 }

1701 top:
1702 prev = NULL;
1703 lock = hash[bucket].dtdh_lock;

1705 dtrace_membar_consumer();

1707 start = hash[bucket].dtdh_chain;
1708 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1709 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1710 op != DTRACE_DYNVAR_DEALLOC));

new/usr/src/uts/common/dtrace/dtrace.c 27

1712 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1713 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1714 dtrace_key_t *dkey = &dtuple->dtt_key[0];

1716 if (dvar->dtdv_hashval != hashval) {
1717 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1718 /*
1719 * We’ve reached the sink, and therefore the
1720 * end of the hash chain; we can kick out of
1721 * the loop knowing that we have seen a valid
1722 * snapshot of state.
1723 */
1724 ASSERT(dvar->dtdv_next == NULL);
1725 ASSERT(dvar == &dtrace_dynhash_sink);
1726 break;
1727 }

1729 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1730 /*
1731 * We’ve gone off the rails: somewhere along
1732 * the line, one of the members of this hash
1733 * chain was deleted. Note that we could also
1734 * detect this by simply letting this loop run
1735 * to completion, as we would eventually hit
1736 * the end of the dirty list. However, we
1737 * want to avoid running the length of the
1738 * dirty list unnecessarily (it might be quite
1739 * long), so we catch this as early as
1740 * possible by detecting the hash marker. In
1741 * this case, we simply set dvar to NULL and
1742 * break; the conditional after the loop will
1743 * send us back to top.
1744 */
1745 dvar = NULL;
1746 break;
1747 }

1749 goto next;
1750 }

1752 if (dtuple->dtt_nkeys != nkeys)
1753 goto next;

1755 for (i = 0; i < nkeys; i++, dkey++) {
1756 if (dkey->dttk_size != key[i].dttk_size)
1757 goto next; /* size or type mismatch */

1759 if (dkey->dttk_size != 0) {
1760 if (dtrace_bcmp(
1761 (void *)(uintptr_t)key[i].dttk_value,
1762 (void *)(uintptr_t)dkey->dttk_value,
1763 dkey->dttk_size))
1764 goto next;
1765 } else {
1766 if (dkey->dttk_value != key[i].dttk_value)
1767 goto next;
1768 }
1769 }

1771 if (op != DTRACE_DYNVAR_DEALLOC)
1772 return (dvar);

1774 ASSERT(dvar->dtdv_next == NULL ||
1775 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);

new/usr/src/uts/common/dtrace/dtrace.c 28

1777 if (prev != NULL) {
1778 ASSERT(hash[bucket].dtdh_chain != dvar);
1779 ASSERT(start != dvar);
1780 ASSERT(prev->dtdv_next == dvar);
1781 prev->dtdv_next = dvar->dtdv_next;
1782 } else {
1783 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1784 start, dvar->dtdv_next) != start) {
1785 /*
1786 * We have failed to atomically swing the
1787 * hash table head pointer, presumably because
1788 * of a conflicting allocation on another CPU.
1789 * We need to reread the hash chain and try
1790 * again.
1791 */
1792 goto top;
1793 }
1794 }

1796 dtrace_membar_producer();

1798 /*
1799 * Now set the hash value to indicate that it’s free.
1800 */
1801 ASSERT(hash[bucket].dtdh_chain != dvar);
1802 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;

1804 dtrace_membar_producer();

1806 /*
1807 * Set the next pointer to point at the dirty list, and
1808 * atomically swing the dirty pointer to the newly freed dvar.
1809 */
1810 do {
1811 next = dcpu->dtdsc_dirty;
1812 dvar->dtdv_next = next;
1813 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);

1815 /*
1816 * Finally, unlock this hash bucket.
1817 */
1818 ASSERT(hash[bucket].dtdh_lock == lock);
1819 ASSERT(lock & 1);
1820 hash[bucket].dtdh_lock++;

1822 return (NULL);
1823 next:
1824 prev = dvar;
1825 continue;
1826 }

1828 if (dvar == NULL) {
1829 /*
1830 * If dvar is NULL, it is because we went off the rails:
1831 * one of the elements that we traversed in the hash chain
1832 * was deleted while we were traversing it. In this case,
1833 * we assert that we aren’t doing a dealloc (deallocs lock
1834 * the hash bucket to prevent themselves from racing with
1835 * one another), and retry the hash chain traversal.
1836 */
1837 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1838 goto top;
1839 }

1841 if (op != DTRACE_DYNVAR_ALLOC) {
1842 /*

new/usr/src/uts/common/dtrace/dtrace.c 29

1843 * If we are not to allocate a new variable, we want to
1844 * return NULL now. Before we return, check that the value
1845 * of the lock word hasn’t changed. If it has, we may have
1846 * seen an inconsistent snapshot.
1847 */
1848 if (op == DTRACE_DYNVAR_NOALLOC) {
1849 if (hash[bucket].dtdh_lock != lock)
1850 goto top;
1851 } else {
1852 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1853 ASSERT(hash[bucket].dtdh_lock == lock);
1854 ASSERT(lock & 1);
1855 hash[bucket].dtdh_lock++;
1856 }

1858 return (NULL);
1859 }

1861 /*
1862 * We need to allocate a new dynamic variable. The size we need is the
1863 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t’s plus the
1864 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1865 * the size of any referred-to data (dsize). We then round the final
1866 * size up to the chunksize for allocation.
1867 */
1868 for (ksize = 0, i = 0; i < nkeys; i++)
1869 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));

1871 /*
1872 * This should be pretty much impossible, but could happen if, say,
1873 * strange DIF specified the tuple. Ideally, this should be an
1874 * assertion and not an error condition -- but that requires that the
1875 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1876 * bullet-proof. (That is, it must not be able to be fooled by
1877 * malicious DIF.) Given the lack of backwards branches in DIF,
1878 * solving this would presumably not amount to solving the Halting
1879 * Problem -- but it still seems awfully hard.
1880 */
1881 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1882 ksize + dsize > chunksize) {
1883 dcpu->dtdsc_drops++;
1884 return (NULL);
1885 }

1887 nstate = DTRACE_DSTATE_EMPTY;

1889 do {
1890 retry:
1891 free = dcpu->dtdsc_free;

1893 if (free == NULL) {
1894 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1895 void *rval;

1897 if (clean == NULL) {
1898 /*
1899 * We’re out of dynamic variable space on
1900 * this CPU. Unless we have tried all CPUs,
1901 * we’ll try to allocate from a different
1902 * CPU.
1903 */
1904 switch (dstate->dtds_state) {
1905 case DTRACE_DSTATE_CLEAN: {
1906 void *sp = &dstate->dtds_state;

1908 if (++cpu >= NCPU)

new/usr/src/uts/common/dtrace/dtrace.c 30

1909 cpu = 0;

1911 if (dcpu->dtdsc_dirty != NULL &&
1912 nstate == DTRACE_DSTATE_EMPTY)
1913 nstate = DTRACE_DSTATE_DIRTY;

1915 if (dcpu->dtdsc_rinsing != NULL)
1916 nstate = DTRACE_DSTATE_RINSING;

1918 dcpu = &dstate->dtds_percpu[cpu];

1920 if (cpu != me)
1921 goto retry;

1923 (void) dtrace_cas32(sp,
1924 DTRACE_DSTATE_CLEAN, nstate);

1926 /*
1927 * To increment the correct bean
1928 * counter, take another lap.
1929 */
1930 goto retry;
1931 }

1933 case DTRACE_DSTATE_DIRTY:
1934 dcpu->dtdsc_dirty_drops++;
1935 break;

1937 case DTRACE_DSTATE_RINSING:
1938 dcpu->dtdsc_rinsing_drops++;
1939 break;

1941 case DTRACE_DSTATE_EMPTY:
1942 dcpu->dtdsc_drops++;
1943 break;
1944 }

1946 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1947 return (NULL);
1948 }

1950 /*
1951 * The clean list appears to be non-empty. We want to
1952 * move the clean list to the free list; we start by
1953 * moving the clean pointer aside.
1954 */
1955 if (dtrace_casptr(&dcpu->dtdsc_clean,
1956 clean, NULL) != clean) {
1957 /*
1958 * We are in one of two situations:
1959 *
1960 * (a) The clean list was switched to the
1961 * free list by another CPU.
1962 *
1963 * (b) The clean list was added to by the
1964 * cleansing cyclic.
1965 *
1966 * In either of these situations, we can
1967 * just reattempt the free list allocation.
1968 */
1969 goto retry;
1970 }

1972 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);

1974 /*

new/usr/src/uts/common/dtrace/dtrace.c 31

1975 * Now we’ll move the clean list to our free list.
1976 * It’s impossible for this to fail: the only way
1977 * the free list can be updated is through this
1978 * code path, and only one CPU can own the clean list.
1979 * Thus, it would only be possible for this to fail if
1980 * this code were racing with dtrace_dynvar_clean().
1981 * (That is, if dtrace_dynvar_clean() updated the clean
1982 * list, and we ended up racing to update the free
1983 * list.) This race is prevented by the dtrace_sync()
1984 * in dtrace_dynvar_clean() -- which flushes the
1985 * owners of the clean lists out before resetting
1986 * the clean lists.
1987 */
1988 dcpu = &dstate->dtds_percpu[me];
1989 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1990 ASSERT(rval == NULL);
1991 goto retry;
1992 }

1994 dvar = free;
1995 new_free = dvar->dtdv_next;
1996 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);

1998 /*
1999 * We have now allocated a new chunk. We copy the tuple keys into the
2000 * tuple array and copy any referenced key data into the data space
2001 * following the tuple array. As we do this, we relocate dttk_value
2002 * in the final tuple to point to the key data address in the chunk.
2003 */
2004 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2005 dvar->dtdv_data = (void *)(kdata + ksize);
2006 dvar->dtdv_tuple.dtt_nkeys = nkeys;

2008 for (i = 0; i < nkeys; i++) {
2009 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2010 size_t kesize = key[i].dttk_size;

2012 if (kesize != 0) {
2013 dtrace_bcopy(
2014 (const void *)(uintptr_t)key[i].dttk_value,
2015 (void *)kdata, kesize);
2016 dkey->dttk_value = kdata;
2017 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2018 } else {
2019 dkey->dttk_value = key[i].dttk_value;
2020 }

2022 dkey->dttk_size = kesize;
2023 }

2025 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2026 dvar->dtdv_hashval = hashval;
2027 dvar->dtdv_next = start;

2029 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2030 return (dvar);

2032 /*
2033 * The cas has failed. Either another CPU is adding an element to
2034 * this hash chain, or another CPU is deleting an element from this
2035 * hash chain. The simplest way to deal with both of these cases
2036 * (though not necessarily the most efficient) is to free our
2037 * allocated block and tail-call ourselves. Note that the free is
2038 * to the dirty list and _not_ to the free list. This is to prevent
2039 * races with allocators, above.
2040 */

new/usr/src/uts/common/dtrace/dtrace.c 32

2041 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;

2043 dtrace_membar_producer();

2045 do {
2046 free = dcpu->dtdsc_dirty;
2047 dvar->dtdv_next = free;
2048 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);

2050 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2051 }

2053 /*ARGSUSED*/
2054 static void
2055 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2056 {
2057 if ((int64_t)nval < (int64_t)*oval)
2058 *oval = nval;
2059 }

2061 /*ARGSUSED*/
2062 static void
2063 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2064 {
2065 if ((int64_t)nval > (int64_t)*oval)
2066 *oval = nval;
2067 }

2069 static void
2070 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2071 {
2072 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2073 int64_t val = (int64_t)nval;

2075 if (val < 0) {
2076 for (i = 0; i < zero; i++) {
2077 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2078 quanta[i] += incr;
2079 return;
2080 }
2081 }
2082 } else {
2083 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2084 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2085 quanta[i - 1] += incr;
2086 return;
2087 }
2088 }

2090 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2091 return;
2092 }

2094 ASSERT(0);
2095 }

2097 static void
2098 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2099 {
2100 uint64_t arg = *lquanta++;
2101 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2102 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2103 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2104 int32_t val = (int32_t)nval, level;

2106 ASSERT(step != 0);

new/usr/src/uts/common/dtrace/dtrace.c 33

2107 ASSERT(levels != 0);

2109 if (val < base) {
2110 /*
2111 * This is an underflow.
2112 */
2113 lquanta[0] += incr;
2114 return;
2115 }

2117 level = (val - base) / step;

2119 if (level < levels) {
2120 lquanta[level + 1] += incr;
2121 return;
2122 }

2124 /*
2125 * This is an overflow.
2126 */
2127 lquanta[levels + 1] += incr;
2128 }

2130 static int
2131 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2132 uint16_t high, uint16_t nsteps, int64_t value)
2133 {
2134 int64_t this = 1, last, next;
2135 int base = 1, order;

2137 ASSERT(factor <= nsteps);
2138 ASSERT(nsteps % factor == 0);

2140 for (order = 0; order < low; order++)
2141 this *= factor;

2143 /*
2144 * If our value is less than our factor taken to the power of the
2145 * low order of magnitude, it goes into the zeroth bucket.
2146 */
2147 if (value < (last = this))
2148 return (0);

2150 for (this *= factor; order <= high; order++) {
2151 int nbuckets = this > nsteps ? nsteps : this;

2153 if ((next = this * factor) < this) {
2154 /*
2155 * We should not generally get log/linear quantizations
2156 * with a high magnitude that allows 64-bits to
2157 * overflow, but we nonetheless protect against this
2158 * by explicitly checking for overflow, and clamping
2159 * our value accordingly.
2160 */
2161 value = this - 1;
2162 }

2164 if (value < this) {
2165 /*
2166 * If our value lies within this order of magnitude,
2167 * determine its position by taking the offset within
2168 * the order of magnitude, dividing by the bucket
2169 * width, and adding to our (accumulated) base.
2170 */
2171 return (base + (value - last) / (this / nbuckets));
2172 }

new/usr/src/uts/common/dtrace/dtrace.c 34

2174 base += nbuckets - (nbuckets / factor);
2175 last = this;
2176 this = next;
2177 }

2179 /*
2180 * Our value is greater than or equal to our factor taken to the
2181 * power of one plus the high magnitude -- return the top bucket.
2182 */
2183 return (base);
2184 }

2186 static void
2187 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2188 {
2189 uint64_t arg = *llquanta++;
2190 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2191 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2192 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2193 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);

2195 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2196 low, high, nsteps, nval)] += incr;
2197 }

2199 /*ARGSUSED*/
2200 static void
2201 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2202 {
2203 data[0]++;
2204 data[1] += nval;
2205 }

2207 /*ARGSUSED*/
2208 static void
2209 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2210 {
2211 int64_t snval = (int64_t)nval;
2212 uint64_t tmp[2];

2214 data[0]++;
2215 data[1] += nval;

2217 /*
2218 * What we want to say here is:
2219 *
2220 * data[2] += nval * nval;
2221 *
2222 * But given that nval is 64-bit, we could easily overflow, so
2223 * we do this as 128-bit arithmetic.
2224 */
2225 if (snval < 0)
2226 snval = -snval;

2228 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2229 dtrace_add_128(data + 2, tmp, data + 2);
2230 }

2232 /*ARGSUSED*/
2233 static void
2234 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2235 {
2236 *oval = *oval + 1;
2237 }

new/usr/src/uts/common/dtrace/dtrace.c 35

2239 /*ARGSUSED*/
2240 static void
2241 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2242 {
2243 *oval += nval;
2244 }

2246 /*
2247 * Aggregate given the tuple in the principal data buffer, and the aggregating
2248 * action denoted by the specified dtrace_aggregation_t. The aggregation
2249 * buffer is specified as the buf parameter. This routine does not return
2250 * failure; if there is no space in the aggregation buffer, the data will be
2251 * dropped, and a corresponding counter incremented.
2252 */
2253 static void
2254 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2255 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2256 {
2257 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2258 uint32_t i, ndx, size, fsize;
2259 uint32_t align = sizeof (uint64_t) - 1;
2260 dtrace_aggbuffer_t *agb;
2261 dtrace_aggkey_t *key;
2262 uint32_t hashval = 0, limit, isstr;
2263 caddr_t tomax, data, kdata;
2264 dtrace_actkind_t action;
2265 dtrace_action_t *act;
2266 uintptr_t offs;

2268 if (buf == NULL)
2269 return;

2271 if (!agg->dtag_hasarg) {
2272 /*
2273 * Currently, only quantize() and lquantize() take additional
2274 * arguments, and they have the same semantics: an increment
2275 * value that defaults to 1 when not present. If additional
2276 * aggregating actions take arguments, the setting of the
2277 * default argument value will presumably have to become more
2278 * sophisticated...
2279 */
2280 arg = 1;
2281 }

2283 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2284 size = rec->dtrd_offset - agg->dtag_base;
2285 fsize = size + rec->dtrd_size;

2287 ASSERT(dbuf->dtb_tomax != NULL);
2288 data = dbuf->dtb_tomax + offset + agg->dtag_base;

2290 if ((tomax = buf->dtb_tomax) == NULL) {
2291 dtrace_buffer_drop(buf);
2292 return;
2293 }

2295 /*
2296 * The metastructure is always at the bottom of the buffer.
2297 */
2298 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2299 sizeof (dtrace_aggbuffer_t));

2301 if (buf->dtb_offset == 0) {
2302 /*
2303 * We just kludge up approximately 1/8th of the size to be
2304 * buckets. If this guess ends up being routinely

new/usr/src/uts/common/dtrace/dtrace.c 36

2305 * off-the-mark, we may need to dynamically readjust this
2306 * based on past performance.
2307 */
2308 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);

2310 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2311 (uintptr_t)tomax || hashsize == 0) {
2312 /*
2313 * We’ve been given a ludicrously small buffer;
2314 * increment our drop count and leave.
2315 */
2316 dtrace_buffer_drop(buf);
2317 return;
2318 }

2320 /*
2321 * And now, a pathetic attempt to try to get a an odd (or
2322 * perchance, a prime) hash size for better hash distribution.
2323 */
2324 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2325 hashsize -= DTRACE_AGGHASHSIZE_SLEW;

2327 agb->dtagb_hashsize = hashsize;
2328 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2329 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2330 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;

2332 for (i = 0; i < agb->dtagb_hashsize; i++)
2333 agb->dtagb_hash[i] = NULL;
2334 }

2336 ASSERT(agg->dtag_first != NULL);
2337 ASSERT(agg->dtag_first->dta_intuple);

2339 /*
2340 * Calculate the hash value based on the key. Note that we _don’t_
2341 * include the aggid in the hashing (but we will store it as part of
2342 * the key). The hashing algorithm is Bob Jenkins’ "One-at-a-time"
2343 * algorithm: a simple, quick algorithm that has no known funnels, and
2344 * gets good distribution in practice. The efficacy of the hashing
2345 * algorithm (and a comparison with other algorithms) may be found by
2346 * running the ::dtrace_aggstat MDB dcmd.
2347 */
2348 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2349 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2350 limit = i + act->dta_rec.dtrd_size;
2351 ASSERT(limit <= size);
2352 isstr = DTRACEACT_ISSTRING(act);

2354 for (; i < limit; i++) {
2355 hashval += data[i];
2356 hashval += (hashval << 10);
2357 hashval ^= (hashval >> 6);

2359 if (isstr && data[i] == ’\0’)
2360 break;
2361 }
2362 }

2364 hashval += (hashval << 3);
2365 hashval ^= (hashval >> 11);
2366 hashval += (hashval << 15);

2368 /*
2369 * Yes, the divide here is expensive -- but it’s generally the least
2370 * of the performance issues given the amount of data that we iterate

new/usr/src/uts/common/dtrace/dtrace.c 37

2371 * over to compute hash values, compare data, etc.
2372 */
2373 ndx = hashval % agb->dtagb_hashsize;

2375 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2376 ASSERT((caddr_t)key >= tomax);
2377 ASSERT((caddr_t)key < tomax + buf->dtb_size);

2379 if (hashval != key->dtak_hashval || key->dtak_size != size)
2380 continue;

2382 kdata = key->dtak_data;
2383 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);

2385 for (act = agg->dtag_first; act->dta_intuple;
2386 act = act->dta_next) {
2387 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2388 limit = i + act->dta_rec.dtrd_size;
2389 ASSERT(limit <= size);
2390 isstr = DTRACEACT_ISSTRING(act);

2392 for (; i < limit; i++) {
2393 if (kdata[i] != data[i])
2394 goto next;

2396 if (isstr && data[i] == ’\0’)
2397 break;
2398 }
2399 }

2401 if (action != key->dtak_action) {
2402 /*
2403 * We are aggregating on the same value in the same
2404 * aggregation with two different aggregating actions.
2405 * (This should have been picked up in the compiler,
2406 * so we may be dealing with errant or devious DIF.)
2407 * This is an error condition; we indicate as much,
2408 * and return.
2409 */
2410 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2411 return;
2412 }

2414 /*
2415 * This is a hit: we need to apply the aggregator to
2416 * the value at this key.
2417 */
2418 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2419 return;
2420 next:
2421 continue;
2422 }

2424 /*
2425 * We didn’t find it. We need to allocate some zero-filled space,
2426 * link it into the hash table appropriately, and apply the aggregator
2427 * to the (zero-filled) value.
2428 */
2429 offs = buf->dtb_offset;
2430 while (offs & (align - 1))
2431 offs += sizeof (uint32_t);

2433 /*
2434 * If we don’t have enough room to both allocate a new key _and_
2435 * its associated data, increment the drop count and return.
2436 */

new/usr/src/uts/common/dtrace/dtrace.c 38

2437 if ((uintptr_t)tomax + offs + fsize >
2438 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2439 dtrace_buffer_drop(buf);
2440 return;
2441 }

2443 /*CONSTCOND*/
2444 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2445 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2446 agb->dtagb_free -= sizeof (dtrace_aggkey_t);

2448 key->dtak_data = kdata = tomax + offs;
2449 buf->dtb_offset = offs + fsize;

2451 /*
2452 * Now copy the data across.
2453 */
2454 *((dtrace_aggid_t *)kdata) = agg->dtag_id;

2456 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2457 kdata[i] = data[i];

2459 /*
2460 * Because strings are not zeroed out by default, we need to iterate
2461 * looking for actions that store strings, and we need to explicitly
2462 * pad these strings out with zeroes.
2463 */
2464 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2465 int nul;

2467 if (!DTRACEACT_ISSTRING(act))
2468 continue;

2470 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2471 limit = i + act->dta_rec.dtrd_size;
2472 ASSERT(limit <= size);

2474 for (nul = 0; i < limit; i++) {
2475 if (nul) {
2476 kdata[i] = ’\0’;
2477 continue;
2478 }

2480 if (data[i] != ’\0’)
2481 continue;

2483 nul = 1;
2484 }
2485 }

2487 for (i = size; i < fsize; i++)
2488 kdata[i] = 0;

2490 key->dtak_hashval = hashval;
2491 key->dtak_size = size;
2492 key->dtak_action = action;
2493 key->dtak_next = agb->dtagb_hash[ndx];
2494 agb->dtagb_hash[ndx] = key;

2496 /*
2497 * Finally, apply the aggregator.
2498 */
2499 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2500 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2501 }

new/usr/src/uts/common/dtrace/dtrace.c 39

2503 /*
2504 * Given consumer state, this routine finds a speculation in the INACTIVE
2505 * state and transitions it into the ACTIVE state. If there is no speculation
2506 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2507 * incremented -- it is up to the caller to take appropriate action.
2508 */
2509 static int
2510 dtrace_speculation(dtrace_state_t *state)
2511 {
2512 int i = 0;
2513 dtrace_speculation_state_t current;
2514 uint32_t *stat = &state->dts_speculations_unavail, count;

2516 while (i < state->dts_nspeculations) {
2517 dtrace_speculation_t *spec = &state->dts_speculations[i];

2519 current = spec->dtsp_state;

2521 if (current != DTRACESPEC_INACTIVE) {
2522 if (current == DTRACESPEC_COMMITTINGMANY ||
2523 current == DTRACESPEC_COMMITTING ||
2524 current == DTRACESPEC_DISCARDING)
2525 stat = &state->dts_speculations_busy;
2526 i++;
2527 continue;
2528 }

2530 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2531 current, DTRACESPEC_ACTIVE) == current)
2532 return (i + 1);
2533 }

2535 /*
2536 * We couldn’t find a speculation. If we found as much as a single
2537 * busy speculation buffer, we’ll attribute this failure as "busy"
2538 * instead of "unavail".
2539 */
2540 do {
2541 count = *stat;
2542 } while (dtrace_cas32(stat, count, count + 1) != count);

2544 return (0);
2545 }

2547 /*
2548 * This routine commits an active speculation. If the specified speculation
2549 * is not in a valid state to perform a commit(), this routine will silently do
2550 * nothing. The state of the specified speculation is transitioned according
2551 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2552 */
2553 static void
2554 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2555 dtrace_specid_t which)
2556 {
2557 dtrace_speculation_t *spec;
2558 dtrace_buffer_t *src, *dest;
2559 uintptr_t daddr, saddr, dlimit, slimit;
2560 dtrace_speculation_state_t current, new;
2561 intptr_t offs;
2562 uint64_t timestamp;

2564 if (which == 0)
2565 return;

2567 if (which > state->dts_nspeculations) {
2568 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;

new/usr/src/uts/common/dtrace/dtrace.c 40

2569 return;
2570 }

2572 spec = &state->dts_speculations[which - 1];
2573 src = &spec->dtsp_buffer[cpu];
2574 dest = &state->dts_buffer[cpu];

2576 do {
2577 current = spec->dtsp_state;

2579 if (current == DTRACESPEC_COMMITTINGMANY)
2580 break;

2582 switch (current) {
2583 case DTRACESPEC_INACTIVE:
2584 case DTRACESPEC_DISCARDING:
2585 return;

2587 case DTRACESPEC_COMMITTING:
2588 /*
2589 * This is only possible if we are (a) commit()’ing
2590 * without having done a prior speculate() on this CPU
2591 * and (b) racing with another commit() on a different
2592 * CPU. There’s nothing to do -- we just assert that
2593 * our offset is 0.
2594 */
2595 ASSERT(src->dtb_offset == 0);
2596 return;

2598 case DTRACESPEC_ACTIVE:
2599 new = DTRACESPEC_COMMITTING;
2600 break;

2602 case DTRACESPEC_ACTIVEONE:
2603 /*
2604 * This speculation is active on one CPU. If our
2605 * buffer offset is non-zero, we know that the one CPU
2606 * must be us. Otherwise, we are committing on a
2607 * different CPU from the speculate(), and we must
2608 * rely on being asynchronously cleaned.
2609 */
2610 if (src->dtb_offset != 0) {
2611 new = DTRACESPEC_COMMITTING;
2612 break;
2613 }
2614 /*FALLTHROUGH*/

2616 case DTRACESPEC_ACTIVEMANY:
2617 new = DTRACESPEC_COMMITTINGMANY;
2618 break;

2620 default:
2621 ASSERT(0);
2622 }
2623 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2624 current, new) != current);

2626 /*
2627 * We have set the state to indicate that we are committing this
2628 * speculation. Now reserve the necessary space in the destination
2629 * buffer.
2630 */
2631 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2632 sizeof (uint64_t), state, NULL)) < 0) {
2633 dtrace_buffer_drop(dest);
2634 goto out;

new/usr/src/uts/common/dtrace/dtrace.c 41

2635 }

2637 /*
2638 * We have sufficient space to copy the speculative buffer into the
2639 * primary buffer. First, modify the speculative buffer, filling
2640 * in the timestamp of all entries with the current time. The data
2641 * must have the commit() time rather than the time it was traced,
2642 * so that all entries in the primary buffer are in timestamp order.
2643 */
2644 timestamp = dtrace_gethrtime();
2645 saddr = (uintptr_t)src->dtb_tomax;
2646 slimit = saddr + src->dtb_offset;
2647 while (saddr < slimit) {
2648 size_t size;
2649 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;

2651 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2652 saddr += sizeof (dtrace_epid_t);
2653 continue;
2654 }
2655 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2656 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;

2658 ASSERT3U(saddr + size, <=, slimit);
2659 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2660 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);

2662 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);

2664 saddr += size;
2665 }

2667 /*
2668 * Copy the buffer across. (Note that this is a
2669 * highly subobtimal bcopy(); in the unlikely event that this becomes
2670 * a serious performance issue, a high-performance DTrace-specific
2671 * bcopy() should obviously be invented.)
2672 */
2673 daddr = (uintptr_t)dest->dtb_tomax + offs;
2674 dlimit = daddr + src->dtb_offset;
2675 saddr = (uintptr_t)src->dtb_tomax;

2677 /*
2678 * First, the aligned portion.
2679 */
2680 while (dlimit - daddr >= sizeof (uint64_t)) {
2681 *((uint64_t *)daddr) = *((uint64_t *)saddr);

2683 daddr += sizeof (uint64_t);
2684 saddr += sizeof (uint64_t);
2685 }

2687 /*
2688 * Now any left-over bit...
2689 */
2690 while (dlimit - daddr)
2691 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);

2693 /*
2694 * Finally, commit the reserved space in the destination buffer.
2695 */
2696 dest->dtb_offset = offs + src->dtb_offset;

2698 out:
2699 /*
2700 * If we’re lucky enough to be the only active CPU on this speculation

new/usr/src/uts/common/dtrace/dtrace.c 42

2701 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2702 */
2703 if (current == DTRACESPEC_ACTIVE ||
2704 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2705 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2706 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);

2708 ASSERT(rval == DTRACESPEC_COMMITTING);
2709 }

2711 src->dtb_offset = 0;
2712 src->dtb_xamot_drops += src->dtb_drops;
2713 src->dtb_drops = 0;
2714 }

2716 /*
2717 * This routine discards an active speculation. If the specified speculation
2718 * is not in a valid state to perform a discard(), this routine will silently
2719 * do nothing. The state of the specified speculation is transitioned
2720 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2721 */
2722 static void
2723 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2724 dtrace_specid_t which)
2725 {
2726 dtrace_speculation_t *spec;
2727 dtrace_speculation_state_t current, new;
2728 dtrace_buffer_t *buf;

2730 if (which == 0)
2731 return;

2733 if (which > state->dts_nspeculations) {
2734 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2735 return;
2736 }

2738 spec = &state->dts_speculations[which - 1];
2739 buf = &spec->dtsp_buffer[cpu];

2741 do {
2742 current = spec->dtsp_state;

2744 switch (current) {
2745 case DTRACESPEC_INACTIVE:
2746 case DTRACESPEC_COMMITTINGMANY:
2747 case DTRACESPEC_COMMITTING:
2748 case DTRACESPEC_DISCARDING:
2749 return;

2751 case DTRACESPEC_ACTIVE:
2752 case DTRACESPEC_ACTIVEMANY:
2753 new = DTRACESPEC_DISCARDING;
2754 break;

2756 case DTRACESPEC_ACTIVEONE:
2757 if (buf->dtb_offset != 0) {
2758 new = DTRACESPEC_INACTIVE;
2759 } else {
2760 new = DTRACESPEC_DISCARDING;
2761 }
2762 break;

2764 default:
2765 ASSERT(0);
2766 }

new/usr/src/uts/common/dtrace/dtrace.c 43

2767 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2768 current, new) != current);

2770 buf->dtb_offset = 0;
2771 buf->dtb_drops = 0;
2772 }

2774 /*
2775 * Note: not called from probe context. This function is called
2776 * asynchronously from cross call context to clean any speculations that are
2777 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2778 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2779 * speculation.
2780 */
2781 static void
2782 dtrace_speculation_clean_here(dtrace_state_t *state)
2783 {
2784 dtrace_icookie_t cookie;
2785 processorid_t cpu = CPU->cpu_id;
2786 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2787 dtrace_specid_t i;

2789 cookie = dtrace_interrupt_disable();

2791 if (dest->dtb_tomax == NULL) {
2792 dtrace_interrupt_enable(cookie);
2793 return;
2794 }

2796 for (i = 0; i < state->dts_nspeculations; i++) {
2797 dtrace_speculation_t *spec = &state->dts_speculations[i];
2798 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];

2800 if (src->dtb_tomax == NULL)
2801 continue;

2803 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2804 src->dtb_offset = 0;
2805 continue;
2806 }

2808 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2809 continue;

2811 if (src->dtb_offset == 0)
2812 continue;

2814 dtrace_speculation_commit(state, cpu, i + 1);
2815 }

2817 dtrace_interrupt_enable(cookie);
2818 }

2820 /*
2821 * Note: not called from probe context. This function is called
2822 * asynchronously (and at a regular interval) to clean any speculations that
2823 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2824 * is work to be done, it cross calls all CPUs to perform that work;
2825 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2826 * INACTIVE state until they have been cleaned by all CPUs.
2827 */
2828 static void
2829 dtrace_speculation_clean(dtrace_state_t *state)
2830 {
2831 int work = 0, rv;
2832 dtrace_specid_t i;

new/usr/src/uts/common/dtrace/dtrace.c 44

2834 for (i = 0; i < state->dts_nspeculations; i++) {
2835 dtrace_speculation_t *spec = &state->dts_speculations[i];

2837 ASSERT(!spec->dtsp_cleaning);

2839 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2840 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2841 continue;

2843 work++;
2844 spec->dtsp_cleaning = 1;
2845 }

2847 if (!work)
2848 return;

2850 dtrace_xcall(DTRACE_CPUALL,
2851 (dtrace_xcall_t)dtrace_speculation_clean_here, state);

2853 /*
2854 * We now know that all CPUs have committed or discarded their
2855 * speculation buffers, as appropriate. We can now set the state
2856 * to inactive.
2857 */
2858 for (i = 0; i < state->dts_nspeculations; i++) {
2859 dtrace_speculation_t *spec = &state->dts_speculations[i];
2860 dtrace_speculation_state_t current, new;

2862 if (!spec->dtsp_cleaning)
2863 continue;

2865 current = spec->dtsp_state;
2866 ASSERT(current == DTRACESPEC_DISCARDING ||
2867 current == DTRACESPEC_COMMITTINGMANY);

2869 new = DTRACESPEC_INACTIVE;

2871 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2872 ASSERT(rv == current);
2873 spec->dtsp_cleaning = 0;
2874 }
2875 }

2877 /*
2878 * Called as part of a speculate() to get the speculative buffer associated
2879 * with a given speculation. Returns NULL if the specified speculation is not
2880 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2881 * the active CPU is not the specified CPU -- the speculation will be
2882 * atomically transitioned into the ACTIVEMANY state.
2883 */
2884 static dtrace_buffer_t *
2885 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2886 dtrace_specid_t which)
2887 {
2888 dtrace_speculation_t *spec;
2889 dtrace_speculation_state_t current, new;
2890 dtrace_buffer_t *buf;

2892 if (which == 0)
2893 return (NULL);

2895 if (which > state->dts_nspeculations) {
2896 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2897 return (NULL);
2898 }

new/usr/src/uts/common/dtrace/dtrace.c 45

2900 spec = &state->dts_speculations[which - 1];
2901 buf = &spec->dtsp_buffer[cpuid];

2903 do {
2904 current = spec->dtsp_state;

2906 switch (current) {
2907 case DTRACESPEC_INACTIVE:
2908 case DTRACESPEC_COMMITTINGMANY:
2909 case DTRACESPEC_DISCARDING:
2910 return (NULL);

2912 case DTRACESPEC_COMMITTING:
2913 ASSERT(buf->dtb_offset == 0);
2914 return (NULL);

2916 case DTRACESPEC_ACTIVEONE:
2917 /*
2918 * This speculation is currently active on one CPU.
2919 * Check the offset in the buffer; if it’s non-zero,
2920 * that CPU must be us (and we leave the state alone).
2921 * If it’s zero, assume that we’re starting on a new
2922 * CPU -- and change the state to indicate that the
2923 * speculation is active on more than one CPU.
2924 */
2925 if (buf->dtb_offset != 0)
2926 return (buf);

2928 new = DTRACESPEC_ACTIVEMANY;
2929 break;

2931 case DTRACESPEC_ACTIVEMANY:
2932 return (buf);

2934 case DTRACESPEC_ACTIVE:
2935 new = DTRACESPEC_ACTIVEONE;
2936 break;

2938 default:
2939 ASSERT(0);
2940 }
2941 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2942 current, new) != current);

2944 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2945 return (buf);
2946 }

2948 /*
2949 * Return a string. In the event that the user lacks the privilege to access
2950 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2951 * don’t fail access checking.
2952 *
2953 * dtrace_dif_variable() uses this routine as a helper for various
2954 * builtin values such as ’execname’ and ’probefunc.’
2955 */
2956 uintptr_t
2957 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2958 dtrace_mstate_t *mstate)
2959 {
2960 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2961 uintptr_t ret;
2962 size_t strsz;

2964 /*

new/usr/src/uts/common/dtrace/dtrace.c 46

2965 * The easy case: this probe is allowed to read all of memory, so
2966 * we can just return this as a vanilla pointer.
2967 */
2968 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2969 return (addr);

2971 /*
2972 * This is the tougher case: we copy the string in question from
2973 * kernel memory into scratch memory and return it that way: this
2974 * ensures that we won’t trip up when access checking tests the
2975 * BYREF return value.
2976 */
2977 strsz = dtrace_strlen((char *)addr, size) + 1;

2979 if (mstate->dtms_scratch_ptr + strsz >
2980 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2981 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2982 return (NULL);
2983 }

2985 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2986 strsz);
2987 ret = mstate->dtms_scratch_ptr;
2988 mstate->dtms_scratch_ptr += strsz;
2989 return (ret);
2990 }

2992 /*
2993 * This function implements the DIF emulator’s variable lookups. The emulator
2994 * passes a reserved variable identifier and optional built-in array index.
2995 */
2996 static uint64_t
2997 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2998 uint64_t ndx)
2999 {
3000 /*
3001 * If we’re accessing one of the uncached arguments, we’ll turn this
3002 * into a reference in the args array.
3003 */
3004 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3005 ndx = v - DIF_VAR_ARG0;
3006 v = DIF_VAR_ARGS;
3007 }

3009 switch (v) {
3010 case DIF_VAR_ARGS:
3011 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3012 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3013 CPU_DTRACE_KPRIV;
3014 return (0);
3015 }

3017 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3018 if (ndx >= sizeof (mstate->dtms_arg) /
3019 sizeof (mstate->dtms_arg[0])) {
3020 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3021 dtrace_provider_t *pv;
3022 uint64_t val;

3024 pv = mstate->dtms_probe->dtpr_provider;
3025 if (pv->dtpv_pops.dtps_getargval != NULL)
3026 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3027 mstate->dtms_probe->dtpr_id,
3028 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3029 else
3030 val = dtrace_getarg(ndx, aframes);

new/usr/src/uts/common/dtrace/dtrace.c 47

3032 /*
3033 * This is regrettably required to keep the compiler
3034 * from tail-optimizing the call to dtrace_getarg().
3035 * The condition always evaluates to true, but the
3036 * compiler has no way of figuring that out a priori.
3037 * (None of this would be necessary if the compiler
3038 * could be relied upon to _always_ tail-optimize
3039 * the call to dtrace_getarg() -- but it can’t.)
3040 */
3041 if (mstate->dtms_probe != NULL)
3042 return (val);

3044 ASSERT(0);
3045 }

3047 return (mstate->dtms_arg[ndx]);

3049 case DIF_VAR_UREGS: {
3050 klwp_t *lwp;

3052 if (!dtrace_priv_proc(state, mstate))
3053 return (0);

3055 if ((lwp = curthread->t_lwp) == NULL) {
3056 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3057 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3058 return (0);
3059 }

3061 return (dtrace_getreg(lwp->lwp_regs, ndx));
3062 }

3064 case DIF_VAR_VMREGS: {
3065 uint64_t rval;

3067 if (!dtrace_priv_kernel(state))
3068 return (0);

3070 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);

3072 rval = dtrace_getvmreg(ndx,
3073 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);

3075 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

3077 return (rval);
3078 }

3080 case DIF_VAR_CURTHREAD:
3081 if (!dtrace_priv_proc(state, mstate))
3082 return (0);
3083 return ((uint64_t)(uintptr_t)curthread);

3085 case DIF_VAR_TIMESTAMP:
3086 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3087 mstate->dtms_timestamp = dtrace_gethrtime();
3088 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3089 }
3090 return (mstate->dtms_timestamp);

3092 case DIF_VAR_VTIMESTAMP:
3093 ASSERT(dtrace_vtime_references != 0);
3094 return (curthread->t_dtrace_vtime);

3096 case DIF_VAR_WALLTIMESTAMP:

new/usr/src/uts/common/dtrace/dtrace.c 48

3097 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3098 mstate->dtms_walltimestamp = dtrace_gethrestime();
3099 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3100 }
3101 return (mstate->dtms_walltimestamp);

3103 case DIF_VAR_IPL:
3104 if (!dtrace_priv_kernel(state))
3105 return (0);
3106 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3107 mstate->dtms_ipl = dtrace_getipl();
3108 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3109 }
3110 return (mstate->dtms_ipl);

3112 case DIF_VAR_EPID:
3113 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3114 return (mstate->dtms_epid);

3116 case DIF_VAR_ID:
3117 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3118 return (mstate->dtms_probe->dtpr_id);

3120 case DIF_VAR_STACKDEPTH:
3121 if (!dtrace_priv_kernel(state))
3122 return (0);
3123 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3124 int aframes = mstate->dtms_probe->dtpr_aframes + 2;

3126 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3127 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3128 }
3129 return (mstate->dtms_stackdepth);

3131 case DIF_VAR_USTACKDEPTH:
3132 if (!dtrace_priv_proc(state, mstate))
3133 return (0);
3134 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3135 /*
3136 * See comment in DIF_VAR_PID.
3137 */
3138 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3139 CPU_ON_INTR(CPU)) {
3140 mstate->dtms_ustackdepth = 0;
3141 } else {
3142 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3143 mstate->dtms_ustackdepth =
3144 dtrace_getustackdepth();
3145 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3146 }
3147 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3148 }
3149 return (mstate->dtms_ustackdepth);

3151 case DIF_VAR_CALLER:
3152 if (!dtrace_priv_kernel(state))
3153 return (0);
3154 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3155 int aframes = mstate->dtms_probe->dtpr_aframes + 2;

3157 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3158 /*
3159 * If this is an unanchored probe, we are
3160 * required to go through the slow path:
3161 * dtrace_caller() only guarantees correct
3162 * results for anchored probes.

new/usr/src/uts/common/dtrace/dtrace.c 49

3163 */
3164 pc_t caller[2];

3166 dtrace_getpcstack(caller, 2, aframes,
3167 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3168 mstate->dtms_caller = caller[1];
3169 } else if ((mstate->dtms_caller =
3170 dtrace_caller(aframes)) == -1) {
3171 /*
3172 * We have failed to do this the quick way;
3173 * we must resort to the slower approach of
3174 * calling dtrace_getpcstack().
3175 */
3176 pc_t caller;

3178 dtrace_getpcstack(&caller, 1, aframes, NULL);
3179 mstate->dtms_caller = caller;
3180 }

3182 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3183 }
3184 return (mstate->dtms_caller);

3186 case DIF_VAR_UCALLER:
3187 if (!dtrace_priv_proc(state, mstate))
3188 return (0);

3190 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3191 uint64_t ustack[3];

3193 /*
3194 * dtrace_getupcstack() fills in the first uint64_t
3195 * with the current PID. The second uint64_t will
3196 * be the program counter at user-level. The third
3197 * uint64_t will contain the caller, which is what
3198 * we’re after.
3199 */
3200 ustack[2] = NULL;
3201 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3202 dtrace_getupcstack(ustack, 3);
3203 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3204 mstate->dtms_ucaller = ustack[2];
3205 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3206 }

3208 return (mstate->dtms_ucaller);

3210 case DIF_VAR_PROBEPROV:
3211 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3212 return (dtrace_dif_varstr(
3213 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3214 state, mstate));

3216 case DIF_VAR_PROBEMOD:
3217 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3218 return (dtrace_dif_varstr(
3219 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3220 state, mstate));

3222 case DIF_VAR_PROBEFUNC:
3223 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3224 return (dtrace_dif_varstr(
3225 (uintptr_t)mstate->dtms_probe->dtpr_func,
3226 state, mstate));

3228 case DIF_VAR_PROBENAME:

new/usr/src/uts/common/dtrace/dtrace.c 50

3229 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3230 return (dtrace_dif_varstr(
3231 (uintptr_t)mstate->dtms_probe->dtpr_name,
3232 state, mstate));

3234 case DIF_VAR_PID:
3235 if (!dtrace_priv_proc(state, mstate))
3236 return (0);

3238 /*
3239 * Note that we are assuming that an unanchored probe is
3240 * always due to a high-level interrupt. (And we’re assuming
3241 * that there is only a single high level interrupt.)
3242 */
3243 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3244 return (pid0.pid_id);

3246 /*
3247 * It is always safe to dereference one’s own t_procp pointer:
3248 * it always points to a valid, allocated proc structure.
3249 * Further, it is always safe to dereference the p_pidp member
3250 * of one’s own proc structure. (These are truisms becuase
3251 * threads and processes don’t clean up their own state --
3252 * they leave that task to whomever reaps them.)
3253 */
3254 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);

3256 case DIF_VAR_PPID:
3257 if (!dtrace_priv_proc(state, mstate))
3258 return (0);

3260 /*
3261 * See comment in DIF_VAR_PID.
3262 */
3263 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3264 return (pid0.pid_id);

3266 /*
3267 * It is always safe to dereference one’s own t_procp pointer:
3268 * it always points to a valid, allocated proc structure.
3269 * (This is true because threads don’t clean up their own
3270 * state -- they leave that task to whomever reaps them.)
3271 */
3272 return ((uint64_t)curthread->t_procp->p_ppid);

3274 case DIF_VAR_TID:
3275 /*
3276 * See comment in DIF_VAR_PID.
3277 */
3278 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3279 return (0);

3281 return ((uint64_t)curthread->t_tid);

3283 case DIF_VAR_EXECNAME:
3284 if (!dtrace_priv_proc(state, mstate))
3285 return (0);

3287 /*
3288 * See comment in DIF_VAR_PID.
3289 */
3290 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3291 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);

3293 /*
3294 * It is always safe to dereference one’s own t_procp pointer:

new/usr/src/uts/common/dtrace/dtrace.c 51

3295 * it always points to a valid, allocated proc structure.
3296 * (This is true because threads don’t clean up their own
3297 * state -- they leave that task to whomever reaps them.)
3298 */
3299 return (dtrace_dif_varstr(
3300 (uintptr_t)curthread->t_procp->p_user.u_comm,
3301 state, mstate));

3303 case DIF_VAR_ZONENAME:
3304 if (!dtrace_priv_proc(state, mstate))
3305 return (0);

3307 /*
3308 * See comment in DIF_VAR_PID.
3309 */
3310 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3311 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);

3313 /*
3314 * It is always safe to dereference one’s own t_procp pointer:
3315 * it always points to a valid, allocated proc structure.
3316 * (This is true because threads don’t clean up their own
3317 * state -- they leave that task to whomever reaps them.)
3318 */
3319 return (dtrace_dif_varstr(
3320 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3321 state, mstate));

3323 case DIF_VAR_UID:
3324 if (!dtrace_priv_proc(state, mstate))
3325 return (0);

3327 /*
3328 * See comment in DIF_VAR_PID.
3329 */
3330 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3331 return ((uint64_t)p0.p_cred->cr_uid);

3333 /*
3334 * It is always safe to dereference one’s own t_procp pointer:
3335 * it always points to a valid, allocated proc structure.
3336 * (This is true because threads don’t clean up their own
3337 * state -- they leave that task to whomever reaps them.)
3338 *
3339 * Additionally, it is safe to dereference one’s own process
3340 * credential, since this is never NULL after process birth.
3341 */
3342 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);

3344 case DIF_VAR_GID:
3345 if (!dtrace_priv_proc(state, mstate))
3346 return (0);

3348 /*
3349 * See comment in DIF_VAR_PID.
3350 */
3351 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3352 return ((uint64_t)p0.p_cred->cr_gid);

3354 /*
3355 * It is always safe to dereference one’s own t_procp pointer:
3356 * it always points to a valid, allocated proc structure.
3357 * (This is true because threads don’t clean up their own
3358 * state -- they leave that task to whomever reaps them.)
3359 *
3360 * Additionally, it is safe to dereference one’s own process

new/usr/src/uts/common/dtrace/dtrace.c 52

3361 * credential, since this is never NULL after process birth.
3362 */
3363 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);

3365 case DIF_VAR_ERRNO: {
3366 klwp_t *lwp;
3367 if (!dtrace_priv_proc(state, mstate))
3368 return (0);

3370 /*
3371 * See comment in DIF_VAR_PID.
3372 */
3373 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3374 return (0);

3376 /*
3377 * It is always safe to dereference one’s own t_lwp pointer in
3378 * the event that this pointer is non-NULL. (This is true
3379 * because threads and lwps don’t clean up their own state --
3380 * they leave that task to whomever reaps them.)
3381 */
3382 if ((lwp = curthread->t_lwp) == NULL)
3383 return (0);

3385 return ((uint64_t)lwp->lwp_errno);
3386 }
3387 default:
3388 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3389 return (0);
3390 }
3391 }

3394 typedef enum dtrace_json_state {
3395 DTRACE_JSON_REST = 1,
3396 DTRACE_JSON_OBJECT,
3397 DTRACE_JSON_STRING,
3398 DTRACE_JSON_STRING_ESCAPE,
3399 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3400 DTRACE_JSON_COLON,
3401 DTRACE_JSON_COMMA,
3402 DTRACE_JSON_VALUE,
3403 DTRACE_JSON_IDENTIFIER,
3404 DTRACE_JSON_NUMBER,
3405 DTRACE_JSON_NUMBER_FRAC,
3406 DTRACE_JSON_NUMBER_EXP,
3407 DTRACE_JSON_COLLECT_OBJECT
3408 } dtrace_json_state_t;

3410 /*
3411 * This function possesses just enough knowledge about JSON to extract a single
3412 * value from a JSON string and store it in the scratch buffer. It is able
3413 * to extract nested object values, and members of arrays by index.
3414 *
3415 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3416 * be looked up as we descend into the object tree. e.g.
3417 *
3418 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3419 * with nelems = 5.
3420 *
3421 * The run time of this function must be bounded above by strsize to limit the
3422 * amount of work done in probe context. As such, it is implemented as a
3423 * simple state machine, reading one character at a time using safe loads
3424 * until we find the requested element, hit a parsing error or run off the
3425 * end of the object or string.
3426 *

new/usr/src/uts/common/dtrace/dtrace.c 53

3427 * As there is no way for a subroutine to return an error without interrupting
3428 * clause execution, we simply return NULL in the event of a missing key or any
3429 * other error condition. Each NULL return in this function is commented with
3430 * the error condition it represents -- parsing or otherwise.
3431 *
3432 * The set of states for the state machine closely matches the JSON
3433 * specification (http://json.org/). Briefly:
3434 *
3435 * DTRACE_JSON_REST:
3436 * Skip whitespace until we find either a top-level Object, moving
3437 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3438 *
3439 * DTRACE_JSON_OBJECT:
3440 * Locate the next key String in an Object. Sets a flag to denote
3441 * the next String as a key string and moves to DTRACE_JSON_STRING.
3442 *
3443 * DTRACE_JSON_COLON:
3444 * Skip whitespace until we find the colon that separates key Strings
3445 * from their values. Once found, move to DTRACE_JSON_VALUE.
3446 *
3447 * DTRACE_JSON_VALUE:
3448 * Detects the type of the next value (String, Number, Identifier, Object
3449 * or Array) and routes to the states that process that type. Here we also
3450 * deal with the element selector list if we are requested to traverse down
3451 * into the object tree.
3452 *
3453 * DTRACE_JSON_COMMA:
3454 * Skip whitespace until we find the comma that separates key-value pairs
3455 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3456 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3457 * states return to this state at the end of their value, unless otherwise
3458 * noted.
3459 *
3460 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3461 * Processes a Number literal from the JSON, including any exponent
3462 * component that may be present. Numbers are returned as strings, which
3463 * may be passed to strtoll() if an integer is required.
3464 *
3465 * DTRACE_JSON_IDENTIFIER:
3466 * Processes a "true", "false" or "null" literal in the JSON.
3467 *
3468 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3469 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3470 * Processes a String literal from the JSON, whether the String denotes
3471 * a key, a value or part of a larger Object. Handles all escape sequences
3472 * present in the specification, including four-digit unicode characters,
3473 * but merely includes the escape sequence without converting it to the
3474 * actual escaped character. If the String is flagged as a key, we
3475 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3476 *
3477 * DTRACE_JSON_COLLECT_OBJECT:
3478 * This state collects an entire Object (or Array), correctly handling
3479 * embedded strings. If the full element selector list matches this nested
3480 * object, we return the Object in full as a string. If not, we use this
3481 * state to skip to the next value at this level and continue processing.
3482 *
3483 * NOTE: This function uses various macros from strtolctype.h to manipulate
3484 * digit values, etc -- these have all been checked to ensure they make
3485 * no additional function calls.
3486 */
3487 static char *
3488 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3489 char *dest)
3490 {
3491 dtrace_json_state_t state = DTRACE_JSON_REST;
3492 int64_t array_elem = INT64_MIN;

new/usr/src/uts/common/dtrace/dtrace.c 54

3493 int64_t array_pos = 0;
3494 uint8_t escape_unicount = 0;
3495 boolean_t string_is_key = B_FALSE;
3496 boolean_t collect_object = B_FALSE;
3497 boolean_t found_key = B_FALSE;
3498 boolean_t in_array = B_FALSE;
3499 uint32_t braces = 0, brackets = 0;
3500 char *elem = elemlist;
3501 char *dd = dest;
3502 uintptr_t cur;

3504 for (cur = json; cur < json + size; cur++) {
3505 char cc = dtrace_load8(cur);
3506 if (cc == ’\0’)
3507 return (NULL);

3509 switch (state) {
3510 case DTRACE_JSON_REST:
3511 if (isspace(cc))
3512 break;

3514 if (cc == ’{’) {
3515 state = DTRACE_JSON_OBJECT;
3516 break;
3517 }

3519 if (cc == ’[’) {
3520 in_array = B_TRUE;
3521 array_pos = 0;
3522 array_elem = dtrace_strtoll(elem, 10, size);
3523 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3524 state = DTRACE_JSON_VALUE;
3525 break;
3526 }

3528 /*
3529 * ERROR: expected to find a top-level object or array.
3530 */
3531 return (NULL);
3532 case DTRACE_JSON_OBJECT:
3533 if (isspace(cc))
3534 break;

3536 if (cc == ’"’) {
3537 state = DTRACE_JSON_STRING;
3538 string_is_key = B_TRUE;
3539 break;
3540 }

3542 /*
3543 * ERROR: either the object did not start with a key
3544 * string, or we’ve run off the end of the object
3545 * without finding the requested key.
3546 */
3547 return (NULL);
3548 case DTRACE_JSON_STRING:
3549 if (cc == ’\\’) {
3550 *dd++ = ’\\’;
3551 state = DTRACE_JSON_STRING_ESCAPE;
3552 break;
3553 }

3555 if (cc == ’"’) {
3556 if (collect_object) {
3557 /*
3558 * We don’t reset the dest here, as

new/usr/src/uts/common/dtrace/dtrace.c 55

3559 * the string is part of a larger
3560 * object being collected.
3561 */
3562 *dd++ = cc;
3563 collect_object = B_FALSE;
3564 state = DTRACE_JSON_COLLECT_OBJECT;
3565 break;
3566 }
3567 *dd = ’\0’;
3568 dd = dest; /* reset string buffer */
3569 if (string_is_key) {
3570 if (dtrace_strncmp(dest, elem,
3571 size) == 0)
3572 found_key = B_TRUE;
3573 } else if (found_key) {
3574 if (nelems > 1) {
3575 /*
3576 * We expected an object, not
3577 * this string.
3578 */
3579 return (NULL);
3580 }
3581 return (dest);
3582 }
3583 state = string_is_key ? DTRACE_JSON_COLON :
3584 DTRACE_JSON_COMMA;
3585 string_is_key = B_FALSE;
3586 break;
3587 }

3589 *dd++ = cc;
3590 break;
3591 case DTRACE_JSON_STRING_ESCAPE:
3592 *dd++ = cc;
3593 if (cc == ’u’) {
3594 escape_unicount = 0;
3595 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3596 } else {
3597 state = DTRACE_JSON_STRING;
3598 }
3599 break;
3600 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3601 if (!isxdigit(cc)) {
3602 /*
3603 * ERROR: invalid unicode escape, expected
3604 * four valid hexidecimal digits.
3605 */
3606 return (NULL);
3607 }

3609 *dd++ = cc;
3610 if (++escape_unicount == 4)
3611 state = DTRACE_JSON_STRING;
3612 break;
3613 case DTRACE_JSON_COLON:
3614 if (isspace(cc))
3615 break;

3617 if (cc == ’:’) {
3618 state = DTRACE_JSON_VALUE;
3619 break;
3620 }

3622 /*
3623 * ERROR: expected a colon.
3624 */

new/usr/src/uts/common/dtrace/dtrace.c 56

3625 return (NULL);
3626 case DTRACE_JSON_COMMA:
3627 if (isspace(cc))
3628 break;

3630 if (cc == ’,’) {
3631 if (in_array) {
3632 state = DTRACE_JSON_VALUE;
3633 if (++array_pos == array_elem)
3634 found_key = B_TRUE;
3635 } else {
3636 state = DTRACE_JSON_OBJECT;
3637 }
3638 break;
3639 }

3641 /*
3642 * ERROR: either we hit an unexpected character, or
3643 * we reached the end of the object or array without
3644 * finding the requested key.
3645 */
3646 return (NULL);
3647 case DTRACE_JSON_IDENTIFIER:
3648 if (islower(cc)) {
3649 *dd++ = cc;
3650 break;
3651 }

3653 *dd = ’\0’;
3654 dd = dest; /* reset string buffer */

3656 if (dtrace_strncmp(dest, "true", 5) == 0 ||
3657 dtrace_strncmp(dest, "false", 6) == 0 ||
3658 dtrace_strncmp(dest, "null", 5) == 0) {
3659 if (found_key) {
3660 if (nelems > 1) {
3661 /*
3662 * ERROR: We expected an object,
3663 * not this identifier.
3664 */
3665 return (NULL);
3666 }
3667 return (dest);
3668 } else {
3669 cur--;
3670 state = DTRACE_JSON_COMMA;
3671 break;
3672 }
3673 }

3675 /*
3676 * ERROR: we did not recognise the identifier as one
3677 * of those in the JSON specification.
3678 */
3679 return (NULL);
3680 case DTRACE_JSON_NUMBER:
3681 if (cc == ’.’) {
3682 *dd++ = cc;
3683 state = DTRACE_JSON_NUMBER_FRAC;
3684 break;
3685 }

3687 if (cc == ’x’ || cc == ’X’) {
3688 /*
3689 * ERROR: specification explicitly excludes
3690 * hexidecimal or octal numbers.

new/usr/src/uts/common/dtrace/dtrace.c 57

3691 */
3692 return (NULL);
3693 }

3695 /* FALLTHRU */
3696 case DTRACE_JSON_NUMBER_FRAC:
3697 if (cc == ’e’ || cc == ’E’) {
3698 *dd++ = cc;
3699 state = DTRACE_JSON_NUMBER_EXP;
3700 break;
3701 }

3703 if (cc == ’+’ || cc == ’-’) {
3704 /*
3705 * ERROR: expect sign as part of exponent only.
3706 */
3707 return (NULL);
3708 }
3709 /* FALLTHRU */
3710 case DTRACE_JSON_NUMBER_EXP:
3711 if (isdigit(cc) || cc == ’+’ || cc == ’-’) {
3712 *dd++ = cc;
3713 break;
3714 }

3716 *dd = ’\0’;
3717 dd = dest; /* reset string buffer */
3718 if (found_key) {
3719 if (nelems > 1) {
3720 /*
3721 * ERROR: We expected an object, not
3722 * this number.
3723 */
3724 return (NULL);
3725 }
3726 return (dest);
3727 }

3729 cur--;
3730 state = DTRACE_JSON_COMMA;
3731 break;
3732 case DTRACE_JSON_VALUE:
3733 if (isspace(cc))
3734 break;

3736 if (cc == ’{’ || cc == ’[’) {
3737 if (nelems > 1 && found_key) {
3738 in_array = cc == ’[’ ? B_TRUE : B_FALSE;
3739 /*
3740 * If our element selector directs us
3741 * to descend into this nested object,
3742 * then move to the next selector
3743 * element in the list and restart the
3744 * state machine.
3745 */
3746 while (*elem != ’\0’)
3747 elem++;
3748 elem++; /* skip the inter-element NUL */
3749 nelems--;
3750 dd = dest;
3751 if (in_array) {
3752 state = DTRACE_JSON_VALUE;
3753 array_pos = 0;
3754 array_elem = dtrace_strtoll(
3755 elem, 10, size);
3756 found_key = array_elem == 0 ?

new/usr/src/uts/common/dtrace/dtrace.c 58

3757 B_TRUE : B_FALSE;
3758 } else {
3759 found_key = B_FALSE;
3760 state = DTRACE_JSON_OBJECT;
3761 }
3762 break;
3763 }

3765 /*
3766 * Otherwise, we wish to either skip this
3767 * nested object or return it in full.
3768 */
3769 if (cc == ’[’)
3770 brackets = 1;
3771 else
3772 braces = 1;
3773 *dd++ = cc;
3774 state = DTRACE_JSON_COLLECT_OBJECT;
3775 break;
3776 }

3778 if (cc == ’"’) {
3779 state = DTRACE_JSON_STRING;
3780 break;
3781 }

3783 if (islower(cc)) {
3784 /*
3785 * Here we deal with true, false and null.
3786 */
3787 *dd++ = cc;
3788 state = DTRACE_JSON_IDENTIFIER;
3789 break;
3790 }

3792 if (cc == ’-’ || isdigit(cc)) {
3793 *dd++ = cc;
3794 state = DTRACE_JSON_NUMBER;
3795 break;
3796 }

3798 /*
3799 * ERROR: unexpected character at start of value.
3800 */
3801 return (NULL);
3802 case DTRACE_JSON_COLLECT_OBJECT:
3803 if (cc == ’\0’)
3804 /*
3805 * ERROR: unexpected end of input.
3806 */
3807 return (NULL);

3809 *dd++ = cc;
3810 if (cc == ’"’) {
3811 collect_object = B_TRUE;
3812 state = DTRACE_JSON_STRING;
3813 break;
3814 }

3816 if (cc == ’]’) {
3817 if (brackets-- == 0) {
3818 /*
3819 * ERROR: unbalanced brackets.
3820 */
3821 return (NULL);
3822 }

new/usr/src/uts/common/dtrace/dtrace.c 59

3823 } else if (cc == ’}’) {
3824 if (braces-- == 0) {
3825 /*
3826 * ERROR: unbalanced braces.
3827 */
3828 return (NULL);
3829 }
3830 } else if (cc == ’{’) {
3831 braces++;
3832 } else if (cc == ’[’) {
3833 brackets++;
3834 }

3836 if (brackets == 0 && braces == 0) {
3837 if (found_key) {
3838 *dd = ’\0’;
3839 return (dest);
3840 }
3841 dd = dest; /* reset string buffer */
3842 state = DTRACE_JSON_COMMA;
3843 }
3844 break;
3845 }
3846 }
3847 return (NULL);
3848 }

3850 #endif /* ! codereview */
3851 /*
3852 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3853 * Notice that we don’t bother validating the proper number of arguments or
3854 * their types in the tuple stack. This isn’t needed because all argument
3855 * interpretation is safe because of our load safety -- the worst that can
3856 * happen is that a bogus program can obtain bogus results.
3857 */
3858 static void
3859 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3860 dtrace_key_t *tupregs, int nargs,
3861 dtrace_mstate_t *mstate, dtrace_state_t *state)
3862 {
3863 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3864 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3865 dtrace_vstate_t *vstate = &state->dts_vstate;

3867 union {
3868 mutex_impl_t mi;
3869 uint64_t mx;
3870 } m;

3872 union {
3873 krwlock_t ri;
3874 uintptr_t rw;
3875 } r;

3877 switch (subr) {
3878 case DIF_SUBR_RAND:
3879 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3880 break;

3882 case DIF_SUBR_MUTEX_OWNED:
3883 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3884 mstate, vstate)) {
3885 regs[rd] = NULL;
3886 break;
3887 }

new/usr/src/uts/common/dtrace/dtrace.c 60

3889 m.mx = dtrace_load64(tupregs[0].dttk_value);
3890 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3891 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3892 else
3893 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3894 break;

3896 case DIF_SUBR_MUTEX_OWNER:
3897 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3898 mstate, vstate)) {
3899 regs[rd] = NULL;
3900 break;
3901 }

3903 m.mx = dtrace_load64(tupregs[0].dttk_value);
3904 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3905 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3906 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3907 else
3908 regs[rd] = 0;
3909 break;

3911 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3912 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3913 mstate, vstate)) {
3914 regs[rd] = NULL;
3915 break;
3916 }

3918 m.mx = dtrace_load64(tupregs[0].dttk_value);
3919 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3920 break;

3922 case DIF_SUBR_MUTEX_TYPE_SPIN:
3923 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3924 mstate, vstate)) {
3925 regs[rd] = NULL;
3926 break;
3927 }

3929 m.mx = dtrace_load64(tupregs[0].dttk_value);
3930 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3931 break;

3933 case DIF_SUBR_RW_READ_HELD: {
3934 uintptr_t tmp;

3936 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3937 mstate, vstate)) {
3938 regs[rd] = NULL;
3939 break;
3940 }

3942 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3943 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3944 break;
3945 }

3947 case DIF_SUBR_RW_WRITE_HELD:
3948 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3949 mstate, vstate)) {
3950 regs[rd] = NULL;
3951 break;
3952 }

3954 r.rw = dtrace_loadptr(tupregs[0].dttk_value);

new/usr/src/uts/common/dtrace/dtrace.c 61

3955 regs[rd] = _RW_WRITE_HELD(&r.ri);
3956 break;

3958 case DIF_SUBR_RW_ISWRITER:
3959 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3960 mstate, vstate)) {
3961 regs[rd] = NULL;
3962 break;
3963 }

3965 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3966 regs[rd] = _RW_ISWRITER(&r.ri);
3967 break;

3969 case DIF_SUBR_BCOPY: {
3970 /*
3971 * We need to be sure that the destination is in the scratch
3972 * region -- no other region is allowed.
3973 */
3974 uintptr_t src = tupregs[0].dttk_value;
3975 uintptr_t dest = tupregs[1].dttk_value;
3976 size_t size = tupregs[2].dttk_value;

3978 if (!dtrace_inscratch(dest, size, mstate)) {
3979 *flags |= CPU_DTRACE_BADADDR;
3980 *illval = regs[rd];
3981 break;
3982 }

3984 if (!dtrace_canload(src, size, mstate, vstate)) {
3985 regs[rd] = NULL;
3986 break;
3987 }

3989 dtrace_bcopy((void *)src, (void *)dest, size);
3990 break;
3991 }

3993 case DIF_SUBR_ALLOCA:
3994 case DIF_SUBR_COPYIN: {
3995 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3996 uint64_t size =
3997 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3998 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;

4000 /*
4001 * This action doesn’t require any credential checks since
4002 * probes will not activate in user contexts to which the
4003 * enabling user does not have permissions.
4004 */

4006 /*
4007 * Rounding up the user allocation size could have overflowed
4008 * a large, bogus allocation (like -1ULL) to 0.
4009 */
4010 if (scratch_size < size ||
4011 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4012 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4013 regs[rd] = NULL;
4014 break;
4015 }

4017 if (subr == DIF_SUBR_COPYIN) {
4018 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4019 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4020 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

new/usr/src/uts/common/dtrace/dtrace.c 62

4021 }

4023 mstate->dtms_scratch_ptr += scratch_size;
4024 regs[rd] = dest;
4025 break;
4026 }

4028 case DIF_SUBR_COPYINTO: {
4029 uint64_t size = tupregs[1].dttk_value;
4030 uintptr_t dest = tupregs[2].dttk_value;

4032 /*
4033 * This action doesn’t require any credential checks since
4034 * probes will not activate in user contexts to which the
4035 * enabling user does not have permissions.
4036 */
4037 if (!dtrace_inscratch(dest, size, mstate)) {
4038 *flags |= CPU_DTRACE_BADADDR;
4039 *illval = regs[rd];
4040 break;
4041 }

4043 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4044 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4045 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4046 break;
4047 }

4049 case DIF_SUBR_COPYINSTR: {
4050 uintptr_t dest = mstate->dtms_scratch_ptr;
4051 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];

4053 if (nargs > 1 && tupregs[1].dttk_value < size)
4054 size = tupregs[1].dttk_value + 1;

4056 /*
4057 * This action doesn’t require any credential checks since
4058 * probes will not activate in user contexts to which the
4059 * enabling user does not have permissions.
4060 */
4061 if (!DTRACE_INSCRATCH(mstate, size)) {
4062 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4063 regs[rd] = NULL;
4064 break;
4065 }

4067 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4068 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4069 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

4071 ((char *)dest)[size - 1] = ’\0’;
4072 mstate->dtms_scratch_ptr += size;
4073 regs[rd] = dest;
4074 break;
4075 }

4077 case DIF_SUBR_MSGSIZE:
4078 case DIF_SUBR_MSGDSIZE: {
4079 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4080 uintptr_t wptr, rptr;
4081 size_t count = 0;
4082 int cont = 0;

4084 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {

4086 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,

new/usr/src/uts/common/dtrace/dtrace.c 63

4087 vstate)) {
4088 regs[rd] = NULL;
4089 break;
4090 }

4092 wptr = dtrace_loadptr(baddr +
4093 offsetof(mblk_t, b_wptr));

4095 rptr = dtrace_loadptr(baddr +
4096 offsetof(mblk_t, b_rptr));

4098 if (wptr < rptr) {
4099 *flags |= CPU_DTRACE_BADADDR;
4100 *illval = tupregs[0].dttk_value;
4101 break;
4102 }

4104 daddr = dtrace_loadptr(baddr +
4105 offsetof(mblk_t, b_datap));

4107 baddr = dtrace_loadptr(baddr +
4108 offsetof(mblk_t, b_cont));

4110 /*
4111 * We want to prevent against denial-of-service here,
4112 * so we’re only going to search the list for
4113 * dtrace_msgdsize_max mblks.
4114 */
4115 if (cont++ > dtrace_msgdsize_max) {
4116 *flags |= CPU_DTRACE_ILLOP;
4117 break;
4118 }

4120 if (subr == DIF_SUBR_MSGDSIZE) {
4121 if (dtrace_load8(daddr +
4122 offsetof(dblk_t, db_type)) != M_DATA)
4123 continue;
4124 }

4126 count += wptr - rptr;
4127 }

4129 if (!(*flags & CPU_DTRACE_FAULT))
4130 regs[rd] = count;

4132 break;
4133 }

4135 case DIF_SUBR_PROGENYOF: {
4136 pid_t pid = tupregs[0].dttk_value;
4137 proc_t *p;
4138 int rval = 0;

4140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);

4142 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4143 if (p->p_pidp->pid_id == pid) {
4144 rval = 1;
4145 break;
4146 }
4147 }

4149 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

4151 regs[rd] = rval;
4152 break;

new/usr/src/uts/common/dtrace/dtrace.c 64

4153 }

4155 case DIF_SUBR_SPECULATION:
4156 regs[rd] = dtrace_speculation(state);
4157 break;

4159 case DIF_SUBR_COPYOUT: {
4160 uintptr_t kaddr = tupregs[0].dttk_value;
4161 uintptr_t uaddr = tupregs[1].dttk_value;
4162 uint64_t size = tupregs[2].dttk_value;

4164 if (!dtrace_destructive_disallow &&
4165 dtrace_priv_proc_control(state, mstate) &&
4166 !dtrace_istoxic(kaddr, size)) {
4167 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4168 dtrace_copyout(kaddr, uaddr, size, flags);
4169 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4170 }
4171 break;
4172 }

4174 case DIF_SUBR_COPYOUTSTR: {
4175 uintptr_t kaddr = tupregs[0].dttk_value;
4176 uintptr_t uaddr = tupregs[1].dttk_value;
4177 uint64_t size = tupregs[2].dttk_value;

4179 if (!dtrace_destructive_disallow &&
4180 dtrace_priv_proc_control(state, mstate) &&
4181 !dtrace_istoxic(kaddr, size)) {
4182 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4183 dtrace_copyoutstr(kaddr, uaddr, size, flags);
4184 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4185 }
4186 break;
4187 }

4189 case DIF_SUBR_STRLEN: {
4190 size_t sz;
4191 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4192 sz = dtrace_strlen((char *)addr,
4193 state->dts_options[DTRACEOPT_STRSIZE]);

4195 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4196 regs[rd] = NULL;
4197 break;
4198 }

4200 regs[rd] = sz;

4202 break;
4203 }

4205 case DIF_SUBR_STRCHR:
4206 case DIF_SUBR_STRRCHR: {
4207 /*
4208 * We’re going to iterate over the string looking for the
4209 * specified character. We will iterate until we have reached
4210 * the string length or we have found the character. If this
4211 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4212 * of the specified character instead of the first.
4213 */
4214 uintptr_t saddr = tupregs[0].dttk_value;
4215 uintptr_t addr = tupregs[0].dttk_value;
4216 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4217 char c, target = (char)tupregs[1].dttk_value;

new/usr/src/uts/common/dtrace/dtrace.c 65

4219 for (regs[rd] = NULL; addr < limit; addr++) {
4220 if ((c = dtrace_load8(addr)) == target) {
4221 regs[rd] = addr;

4223 if (subr == DIF_SUBR_STRCHR)
4224 break;
4225 }

4227 if (c == ’\0’)
4228 break;
4229 }

4231 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4232 regs[rd] = NULL;
4233 break;
4234 }

4236 break;
4237 }

4239 case DIF_SUBR_STRSTR:
4240 case DIF_SUBR_INDEX:
4241 case DIF_SUBR_RINDEX: {
4242 /*
4243 * We’re going to iterate over the string looking for the
4244 * specified string. We will iterate until we have reached
4245 * the string length or we have found the string. (Yes, this
4246 * is done in the most naive way possible -- but considering
4247 * that the string we’re searching for is likely to be
4248 * relatively short, the complexity of Rabin-Karp or similar
4249 * hardly seems merited.)
4250 */
4251 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4252 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4253 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4254 size_t len = dtrace_strlen(addr, size);
4255 size_t sublen = dtrace_strlen(substr, size);
4256 char *limit = addr + len, *orig = addr;
4257 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4258 int inc = 1;

4260 regs[rd] = notfound;

4262 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4263 regs[rd] = NULL;
4264 break;
4265 }

4267 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4268 vstate)) {
4269 regs[rd] = NULL;
4270 break;
4271 }

4273 /*
4274 * strstr() and index()/rindex() have similar semantics if
4275 * both strings are the empty string: strstr() returns a
4276 * pointer to the (empty) string, and index() and rindex()
4277 * both return index 0 (regardless of any position argument).
4278 */
4279 if (sublen == 0 && len == 0) {
4280 if (subr == DIF_SUBR_STRSTR)
4281 regs[rd] = (uintptr_t)addr;
4282 else
4283 regs[rd] = 0;
4284 break;

new/usr/src/uts/common/dtrace/dtrace.c 66

4285 }

4287 if (subr != DIF_SUBR_STRSTR) {
4288 if (subr == DIF_SUBR_RINDEX) {
4289 limit = orig - 1;
4290 addr += len;
4291 inc = -1;
4292 }

4294 /*
4295 * Both index() and rindex() take an optional position
4296 * argument that denotes the starting position.
4297 */
4298 if (nargs == 3) {
4299 int64_t pos = (int64_t)tupregs[2].dttk_value;

4301 /*
4302 * If the position argument to index() is
4303 * negative, Perl implicitly clamps it at
4304 * zero. This semantic is a little surprising
4305 * given the special meaning of negative
4306 * positions to similar Perl functions like
4307 * substr(), but it appears to reflect a
4308 * notion that index() can start from a
4309 * negative index and increment its way up to
4310 * the string. Given this notion, Perl’s
4311 * rindex() is at least self-consistent in
4312 * that it implicitly clamps positions greater
4313 * than the string length to be the string
4314 * length. Where Perl completely loses
4315 * coherence, however, is when the specified
4316 * substring is the empty string (""). In
4317 * this case, even if the position is
4318 * negative, rindex() returns 0 -- and even if
4319 * the position is greater than the length,
4320 * index() returns the string length. These
4321 * semantics violate the notion that index()
4322 * should never return a value less than the
4323 * specified position and that rindex() should
4324 * never return a value greater than the
4325 * specified position. (One assumes that
4326 * these semantics are artifacts of Perl’s
4327 * implementation and not the results of
4328 * deliberate design -- it beggars belief that
4329 * even Larry Wall could desire such oddness.)
4330 * While in the abstract one would wish for
4331 * consistent position semantics across
4332 * substr(), index() and rindex() -- or at the
4333 * very least self-consistent position
4334 * semantics for index() and rindex() -- we
4335 * instead opt to keep with the extant Perl
4336 * semantics, in all their broken glory. (Do
4337 * we have more desire to maintain Perl’s
4338 * semantics than Perl does? Probably.)
4339 */
4340 if (subr == DIF_SUBR_RINDEX) {
4341 if (pos < 0) {
4342 if (sublen == 0)
4343 regs[rd] = 0;
4344 break;
4345 }

4347 if (pos > len)
4348 pos = len;
4349 } else {
4350 if (pos < 0)

new/usr/src/uts/common/dtrace/dtrace.c 67

4351 pos = 0;

4353 if (pos >= len) {
4354 if (sublen == 0)
4355 regs[rd] = len;
4356 break;
4357 }
4358 }

4360 addr = orig + pos;
4361 }
4362 }

4364 for (regs[rd] = notfound; addr != limit; addr += inc) {
4365 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4366 if (subr != DIF_SUBR_STRSTR) {
4367 /*
4368 * As D index() and rindex() are
4369 * modeled on Perl (and not on awk),
4370 * we return a zero-based (and not a
4371 * one-based) index. (For you Perl
4372 * weenies: no, we’re not going to add
4373 * $[-- and shouldn’t you be at a con
4374 * or something?)
4375 */
4376 regs[rd] = (uintptr_t)(addr - orig);
4377 break;
4378 }

4380 ASSERT(subr == DIF_SUBR_STRSTR);
4381 regs[rd] = (uintptr_t)addr;
4382 break;
4383 }
4384 }

4386 break;
4387 }

4389 case DIF_SUBR_STRTOK: {
4390 uintptr_t addr = tupregs[0].dttk_value;
4391 uintptr_t tokaddr = tupregs[1].dttk_value;
4392 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4393 uintptr_t limit, toklimit = tokaddr + size;
4394 uint8_t c, tokmap[32]; /* 256 / 8 */
4395 char *dest = (char *)mstate->dtms_scratch_ptr;
4396 int i;

4398 /*
4399 * Check both the token buffer and (later) the input buffer,
4400 * since both could be non-scratch addresses.
4401 */
4402 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4403 regs[rd] = NULL;
4404 break;
4405 }

4407 if (!DTRACE_INSCRATCH(mstate, size)) {
4408 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4409 regs[rd] = NULL;
4410 break;
4411 }

4413 if (addr == NULL) {
4414 /*
4415 * If the address specified is NULL, we use our saved
4416 * strtok pointer from the mstate. Note that this

new/usr/src/uts/common/dtrace/dtrace.c 68

4417 * means that the saved strtok pointer is _only_
4418 * valid within multiple enablings of the same probe --
4419 * it behaves like an implicit clause-local variable.
4420 */
4421 addr = mstate->dtms_strtok;
4422 } else {
4423 /*
4424 * If the user-specified address is non-NULL we must
4425 * access check it. This is the only time we have
4426 * a chance to do so, since this address may reside
4427 * in the string table of this clause-- future calls
4428 * (when we fetch addr from mstate->dtms_strtok)
4429 * would fail this access check.
4430 */
4431 if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4432 regs[rd] = NULL;
4433 break;
4434 }
4435 }

4437 /*
4438 * First, zero the token map, and then process the token
4439 * string -- setting a bit in the map for every character
4440 * found in the token string.
4441 */
4442 for (i = 0; i < sizeof (tokmap); i++)
4443 tokmap[i] = 0;

4445 for (; tokaddr < toklimit; tokaddr++) {
4446 if ((c = dtrace_load8(tokaddr)) == ’\0’)
4447 break;

4449 ASSERT((c >> 3) < sizeof (tokmap));
4450 tokmap[c >> 3] |= (1 << (c & 0x7));
4451 }

4453 for (limit = addr + size; addr < limit; addr++) {
4454 /*
4455 * We’re looking for a character that is _not_ contained
4456 * in the token string.
4457 */
4458 if ((c = dtrace_load8(addr)) == ’\0’)
4459 break;

4461 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4462 break;
4463 }

4465 if (c == ’\0’) {
4466 /*
4467 * We reached the end of the string without finding
4468 * any character that was not in the token string.
4469 * We return NULL in this case, and we set the saved
4470 * address to NULL as well.
4471 */
4472 regs[rd] = NULL;
4473 mstate->dtms_strtok = NULL;
4474 break;
4475 }

4477 /*
4478 * From here on, we’re copying into the destination string.
4479 */
4480 for (i = 0; addr < limit && i < size - 1; addr++) {
4481 if ((c = dtrace_load8(addr)) == ’\0’)
4482 break;

new/usr/src/uts/common/dtrace/dtrace.c 69

4484 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4485 break;

4487 ASSERT(i < size);
4488 dest[i++] = c;
4489 }

4491 ASSERT(i < size);
4492 dest[i] = ’\0’;
4493 regs[rd] = (uintptr_t)dest;
4494 mstate->dtms_scratch_ptr += size;
4495 mstate->dtms_strtok = addr;
4496 break;
4497 }

4499 case DIF_SUBR_SUBSTR: {
4500 uintptr_t s = tupregs[0].dttk_value;
4501 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4502 char *d = (char *)mstate->dtms_scratch_ptr;
4503 int64_t index = (int64_t)tupregs[1].dttk_value;
4504 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4505 size_t len = dtrace_strlen((char *)s, size);
4506 int64_t i;

4508 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4509 regs[rd] = NULL;
4510 break;
4511 }

4513 if (!DTRACE_INSCRATCH(mstate, size)) {
4514 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4515 regs[rd] = NULL;
4516 break;
4517 }

4519 if (nargs <= 2)
4520 remaining = (int64_t)size;

4522 if (index < 0) {
4523 index += len;

4525 if (index < 0 && index + remaining > 0) {
4526 remaining += index;
4527 index = 0;
4528 }
4529 }

4531 if (index >= len || index < 0) {
4532 remaining = 0;
4533 } else if (remaining < 0) {
4534 remaining += len - index;
4535 } else if (index + remaining > size) {
4536 remaining = size - index;
4537 }

4539 for (i = 0; i < remaining; i++) {
4540 if ((d[i] = dtrace_load8(s + index + i)) == ’\0’)
4541 break;
4542 }

4544 d[i] = ’\0’;

4546 mstate->dtms_scratch_ptr += size;
4547 regs[rd] = (uintptr_t)d;
4548 break;

new/usr/src/uts/common/dtrace/dtrace.c 70

4549 }

4551 case DIF_SUBR_JSON: {
4552 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4553 uintptr_t json = tupregs[0].dttk_value;
4554 size_t jsonlen = dtrace_strlen((char *)json, size);
4555 uintptr_t elem = tupregs[1].dttk_value;
4556 size_t elemlen = dtrace_strlen((char *)elem, size);

4558 char *dest = (char *)mstate->dtms_scratch_ptr;
4559 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4560 char *ee = elemlist;
4561 int nelems = 1;
4562 uintptr_t cur;

4564 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4565 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4566 regs[rd] = NULL;
4567 break;
4568 }

4570 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4571 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4572 regs[rd] = NULL;
4573 break;
4574 }

4576 /*
4577 * Read the element selector and split it up into a packed list
4578 * of strings.
4579 */
4580 for (cur = elem; cur < elem + elemlen; cur++) {
4581 char cc = dtrace_load8(cur);

4583 if (cur == elem && cc == ’[’) {
4584 /*
4585 * If the first element selector key is
4586 * actually an array index then ignore the
4587 * bracket.
4588 */
4589 continue;
4590 }

4592 if (cc == ’]’)
4593 continue;

4595 if (cc == ’.’ || cc == ’[’) {
4596 nelems++;
4597 cc = ’\0’;
4598 }

4600 *ee++ = cc;
4601 }
4602 *ee++ = ’\0’;

4604 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4605 nelems, dest)) != NULL)
4606 mstate->dtms_scratch_ptr += jsonlen + 1;
4607 break;
4608 }

4610 #endif /* ! codereview */
4611 case DIF_SUBR_TOUPPER:
4612 case DIF_SUBR_TOLOWER: {
4613 uintptr_t s = tupregs[0].dttk_value;
4614 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];

new/usr/src/uts/common/dtrace/dtrace.c 71

4615 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4616 size_t len = dtrace_strlen((char *)s, size);
4617 char lower, upper, convert;
4618 int64_t i;

4620 if (subr == DIF_SUBR_TOUPPER) {
4621 lower = ’a’;
4622 upper = ’z’;
4623 convert = ’A’;
4624 } else {
4625 lower = ’A’;
4626 upper = ’Z’;
4627 convert = ’a’;
4628 }

4630 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4631 regs[rd] = NULL;
4632 break;
4633 }

4635 if (!DTRACE_INSCRATCH(mstate, size)) {
4636 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4637 regs[rd] = NULL;
4638 break;
4639 }

4641 for (i = 0; i < size - 1; i++) {
4642 if ((c = dtrace_load8(s + i)) == ’\0’)
4643 break;

4645 if (c >= lower && c <= upper)
4646 c = convert + (c - lower);

4648 dest[i] = c;
4649 }

4651 ASSERT(i < size);
4652 dest[i] = ’\0’;
4653 regs[rd] = (uintptr_t)dest;
4654 mstate->dtms_scratch_ptr += size;
4655 break;
4656 }

4658 case DIF_SUBR_GETMAJOR:
4659 #ifdef _LP64
4660 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4661 #else
4662 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4663 #endif
4664 break;

4666 case DIF_SUBR_GETMINOR:
4667 #ifdef _LP64
4668 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4669 #else
4670 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4671 #endif
4672 break;

4674 case DIF_SUBR_DDI_PATHNAME: {
4675 /*
4676 * This one is a galactic mess. We are going to roughly
4677 * emulate ddi_pathname(), but it’s made more complicated
4678 * by the fact that we (a) want to include the minor name and
4679 * (b) must proceed iteratively instead of recursively.
4680 */

new/usr/src/uts/common/dtrace/dtrace.c 72

4681 uintptr_t dest = mstate->dtms_scratch_ptr;
4682 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4683 char *start = (char *)dest, *end = start + size - 1;
4684 uintptr_t daddr = tupregs[0].dttk_value;
4685 int64_t minor = (int64_t)tupregs[1].dttk_value;
4686 char *s;
4687 int i, len, depth = 0;

4689 /*
4690 * Due to all the pointer jumping we do and context we must
4691 * rely upon, we just mandate that the user must have kernel
4692 * read privileges to use this routine.
4693 */
4694 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4695 *flags |= CPU_DTRACE_KPRIV;
4696 *illval = daddr;
4697 regs[rd] = NULL;
4698 }

4700 if (!DTRACE_INSCRATCH(mstate, size)) {
4701 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4702 regs[rd] = NULL;
4703 break;
4704 }

4706 *end = ’\0’;

4708 /*
4709 * We want to have a name for the minor. In order to do this,
4710 * we need to walk the minor list from the devinfo. We want
4711 * to be sure that we don’t infinitely walk a circular list,
4712 * so we check for circularity by sending a scout pointer
4713 * ahead two elements for every element that we iterate over;
4714 * if the list is circular, these will ultimately point to the
4715 * same element. You may recognize this little trick as the
4716 * answer to a stupid interview question -- one that always
4717 * seems to be asked by those who had to have it laboriously
4718 * explained to them, and who can’t even concisely describe
4719 * the conditions under which one would be forced to resort to
4720 * this technique. Needless to say, those conditions are
4721 * found here -- and probably only here. Is this the only use
4722 * of this infamous trick in shipping, production code? If it
4723 * isn’t, it probably should be...
4724 */
4725 if (minor != -1) {
4726 uintptr_t maddr = dtrace_loadptr(daddr +
4727 offsetof(struct dev_info, devi_minor));

4729 uintptr_t next = offsetof(struct ddi_minor_data, next);
4730 uintptr_t name = offsetof(struct ddi_minor_data,
4731 d_minor) + offsetof(struct ddi_minor, name);
4732 uintptr_t dev = offsetof(struct ddi_minor_data,
4733 d_minor) + offsetof(struct ddi_minor, dev);
4734 uintptr_t scout;

4736 if (maddr != NULL)
4737 scout = dtrace_loadptr(maddr + next);

4739 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4740 uint64_t m;
4741 #ifdef _LP64
4742 m = dtrace_load64(maddr + dev) & MAXMIN64;
4743 #else
4744 m = dtrace_load32(maddr + dev) & MAXMIN;
4745 #endif
4746 if (m != minor) {

new/usr/src/uts/common/dtrace/dtrace.c 73

4747 maddr = dtrace_loadptr(maddr + next);

4749 if (scout == NULL)
4750 continue;

4752 scout = dtrace_loadptr(scout + next);

4754 if (scout == NULL)
4755 continue;

4757 scout = dtrace_loadptr(scout + next);

4759 if (scout == NULL)
4760 continue;

4762 if (scout == maddr) {
4763 *flags |= CPU_DTRACE_ILLOP;
4764 break;
4765 }

4767 continue;
4768 }

4770 /*
4771 * We have the minor data. Now we need to
4772 * copy the minor’s name into the end of the
4773 * pathname.
4774 */
4775 s = (char *)dtrace_loadptr(maddr + name);
4776 len = dtrace_strlen(s, size);

4778 if (*flags & CPU_DTRACE_FAULT)
4779 break;

4781 if (len != 0) {
4782 if ((end -= (len + 1)) < start)
4783 break;

4785 *end = ’:’;
4786 }

4788 for (i = 1; i <= len; i++)
4789 end[i] = dtrace_load8((uintptr_t)s++);
4790 break;
4791 }
4792 }

4794 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4795 ddi_node_state_t devi_state;

4797 devi_state = dtrace_load32(daddr +
4798 offsetof(struct dev_info, devi_node_state));

4800 if (*flags & CPU_DTRACE_FAULT)
4801 break;

4803 if (devi_state >= DS_INITIALIZED) {
4804 s = (char *)dtrace_loadptr(daddr +
4805 offsetof(struct dev_info, devi_addr));
4806 len = dtrace_strlen(s, size);

4808 if (*flags & CPU_DTRACE_FAULT)
4809 break;

4811 if (len != 0) {
4812 if ((end -= (len + 1)) < start)

new/usr/src/uts/common/dtrace/dtrace.c 74

4813 break;

4815 *end = ’@’;
4816 }

4818 for (i = 1; i <= len; i++)
4819 end[i] = dtrace_load8((uintptr_t)s++);
4820 }

4822 /*
4823 * Now for the node name...
4824 */
4825 s = (char *)dtrace_loadptr(daddr +
4826 offsetof(struct dev_info, devi_node_name));

4828 daddr = dtrace_loadptr(daddr +
4829 offsetof(struct dev_info, devi_parent));

4831 /*
4832 * If our parent is NULL (that is, if we’re the root
4833 * node), we’re going to use the special path
4834 * "devices".
4835 */
4836 if (daddr == NULL)
4837 s = "devices";

4839 len = dtrace_strlen(s, size);
4840 if (*flags & CPU_DTRACE_FAULT)
4841 break;

4843 if ((end -= (len + 1)) < start)
4844 break;

4846 for (i = 1; i <= len; i++)
4847 end[i] = dtrace_load8((uintptr_t)s++);
4848 *end = ’/’;

4850 if (depth++ > dtrace_devdepth_max) {
4851 *flags |= CPU_DTRACE_ILLOP;
4852 break;
4853 }
4854 }

4856 if (end < start)
4857 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);

4859 if (daddr == NULL) {
4860 regs[rd] = (uintptr_t)end;
4861 mstate->dtms_scratch_ptr += size;
4862 }

4864 break;
4865 }

4867 case DIF_SUBR_STRJOIN: {
4868 char *d = (char *)mstate->dtms_scratch_ptr;
4869 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4870 uintptr_t s1 = tupregs[0].dttk_value;
4871 uintptr_t s2 = tupregs[1].dttk_value;
4872 int i = 0;

4874 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4875 !dtrace_strcanload(s2, size, mstate, vstate)) {
4876 regs[rd] = NULL;
4877 break;
4878 }

new/usr/src/uts/common/dtrace/dtrace.c 75

4880 if (!DTRACE_INSCRATCH(mstate, size)) {
4881 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4882 regs[rd] = NULL;
4883 break;
4884 }

4886 for (;;) {
4887 if (i >= size) {
4888 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4889 regs[rd] = NULL;
4890 break;
4891 }

4893 if ((d[i++] = dtrace_load8(s1++)) == ’\0’) {
4894 i--;
4895 break;
4896 }
4897 }

4899 for (;;) {
4900 if (i >= size) {
4901 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4902 regs[rd] = NULL;
4903 break;
4904 }

4906 if ((d[i++] = dtrace_load8(s2++)) == ’\0’)
4907 break;
4908 }

4910 if (i < size) {
4911 mstate->dtms_scratch_ptr += i;
4912 regs[rd] = (uintptr_t)d;
4913 }

4915 break;
4916 }

4918 case DIF_SUBR_STRTOLL: {
4919 uintptr_t s = tupregs[0].dttk_value;
4920 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4921 int base = 10;

4923 if (nargs > 1) {
4924 if ((base = tupregs[1].dttk_value) <= 1 ||
4925 base > (’z’ - ’a’ + 1) + (’9’ - ’0’ + 1)) {
4926 *flags |= CPU_DTRACE_ILLOP;
4927 break;
4928 }
4929 }

4931 if (!dtrace_strcanload(s, size, mstate, vstate)) {
4932 regs[rd] = INT64_MIN;
4933 break;
4934 }

4936 regs[rd] = dtrace_strtoll((char *)s, base, size);
4937 break;
4938 }

4940 #endif /* ! codereview */
4941 case DIF_SUBR_LLTOSTR: {
4942 int64_t i = (int64_t)tupregs[0].dttk_value;
4943 uint64_t val, digit;
4944 uint64_t size = 65; /* enough room for 2^64 in binary */

new/usr/src/uts/common/dtrace/dtrace.c 76

4945 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4946 int base = 10;

4948 if (nargs > 1) {
4949 if ((base = tupregs[1].dttk_value) <= 1 ||
4950 base > (’z’ - ’a’ + 1) + (’9’ - ’0’ + 1)) {
4951 *flags |= CPU_DTRACE_ILLOP;
4952 break;
4953 }
4954 }

4956 val = (base == 10 && i < 0) ? i * -1 : i;

4958 if (!DTRACE_INSCRATCH(mstate, size)) {
4959 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4960 regs[rd] = NULL;
4961 break;
4962 }

4964 for (*end-- = ’\0’; val; val /= base) {
4965 if ((digit = val % base) <= ’9’ - ’0’) {
4966 *end-- = ’0’ + digit;
4967 } else {
4968 *end-- = ’a’ + (digit - (’9’ - ’0’) - 1);
4969 }
4970 }

4972 if (i == 0 && base == 16)
4973 *end-- = ’0’;

4975 if (base == 16)
4976 *end-- = ’x’;

4978 if (i == 0 || base == 8 || base == 16)
4979 *end-- = ’0’;

4981 if (i < 0 && base == 10)
4982 *end-- = ’-’;

4984 regs[rd] = (uintptr_t)end + 1;
4985 mstate->dtms_scratch_ptr += size;
4986 break;
4987 }

4989 case DIF_SUBR_HTONS:
4990 case DIF_SUBR_NTOHS:
4991 #ifdef _BIG_ENDIAN
4992 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4993 #else
4994 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4995 #endif
4996 break;

4999 case DIF_SUBR_HTONL:
5000 case DIF_SUBR_NTOHL:
5001 #ifdef _BIG_ENDIAN
5002 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5003 #else
5004 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5005 #endif
5006 break;

5009 case DIF_SUBR_HTONLL:
5010 case DIF_SUBR_NTOHLL:

new/usr/src/uts/common/dtrace/dtrace.c 77

5011 #ifdef _BIG_ENDIAN
5012 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5013 #else
5014 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5015 #endif
5016 break;

5019 case DIF_SUBR_DIRNAME:
5020 case DIF_SUBR_BASENAME: {
5021 char *dest = (char *)mstate->dtms_scratch_ptr;
5022 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5023 uintptr_t src = tupregs[0].dttk_value;
5024 int i, j, len = dtrace_strlen((char *)src, size);
5025 int lastbase = -1, firstbase = -1, lastdir = -1;
5026 int start, end;

5028 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5029 regs[rd] = NULL;
5030 break;
5031 }

5033 if (!DTRACE_INSCRATCH(mstate, size)) {
5034 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5035 regs[rd] = NULL;
5036 break;
5037 }

5039 /*
5040 * The basename and dirname for a zero-length string is
5041 * defined to be "."
5042 */
5043 if (len == 0) {
5044 len = 1;
5045 src = (uintptr_t)".";
5046 }

5048 /*
5049 * Start from the back of the string, moving back toward the
5050 * front until we see a character that isn’t a slash. That
5051 * character is the last character in the basename.
5052 */
5053 for (i = len - 1; i >= 0; i--) {
5054 if (dtrace_load8(src + i) != ’/’)
5055 break;
5056 }

5058 if (i >= 0)
5059 lastbase = i;

5061 /*
5062 * Starting from the last character in the basename, move
5063 * towards the front until we find a slash. The character
5064 * that we processed immediately before that is the first
5065 * character in the basename.
5066 */
5067 for (; i >= 0; i--) {
5068 if (dtrace_load8(src + i) == ’/’)
5069 break;
5070 }

5072 if (i >= 0)
5073 firstbase = i + 1;

5075 /*
5076 * Now keep going until we find a non-slash character. That

new/usr/src/uts/common/dtrace/dtrace.c 78

5077 * character is the last character in the dirname.
5078 */
5079 for (; i >= 0; i--) {
5080 if (dtrace_load8(src + i) != ’/’)
5081 break;
5082 }

5084 if (i >= 0)
5085 lastdir = i;

5087 ASSERT(!(lastbase == -1 && firstbase != -1));
5088 ASSERT(!(firstbase == -1 && lastdir != -1));

5090 if (lastbase == -1) {
5091 /*
5092 * We didn’t find a non-slash character. We know that
5093 * the length is non-zero, so the whole string must be
5094 * slashes. In either the dirname or the basename
5095 * case, we return ’/’.
5096 */
5097 ASSERT(firstbase == -1);
5098 firstbase = lastbase = lastdir = 0;
5099 }

5101 if (firstbase == -1) {
5102 /*
5103 * The entire string consists only of a basename
5104 * component. If we’re looking for dirname, we need
5105 * to change our string to be just "."; if we’re
5106 * looking for a basename, we’ll just set the first
5107 * character of the basename to be 0.
5108 */
5109 if (subr == DIF_SUBR_DIRNAME) {
5110 ASSERT(lastdir == -1);
5111 src = (uintptr_t)".";
5112 lastdir = 0;
5113 } else {
5114 firstbase = 0;
5115 }
5116 }

5118 if (subr == DIF_SUBR_DIRNAME) {
5119 if (lastdir == -1) {
5120 /*
5121 * We know that we have a slash in the name --
5122 * or lastdir would be set to 0, above. And
5123 * because lastdir is -1, we know that this
5124 * slash must be the first character. (That
5125 * is, the full string must be of the form
5126 * "/basename".) In this case, the last
5127 * character of the directory name is 0.
5128 */
5129 lastdir = 0;
5130 }

5132 start = 0;
5133 end = lastdir;
5134 } else {
5135 ASSERT(subr == DIF_SUBR_BASENAME);
5136 ASSERT(firstbase != -1 && lastbase != -1);
5137 start = firstbase;
5138 end = lastbase;
5139 }

5141 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5142 dest[j] = dtrace_load8(src + i);

new/usr/src/uts/common/dtrace/dtrace.c 79

5144 dest[j] = ’\0’;
5145 regs[rd] = (uintptr_t)dest;
5146 mstate->dtms_scratch_ptr += size;
5147 break;
5148 }

5150 case DIF_SUBR_GETF: {
5151 uintptr_t fd = tupregs[0].dttk_value;
5152 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5153 file_t *fp;

5155 if (!dtrace_priv_proc(state, mstate)) {
5156 regs[rd] = NULL;
5157 break;
5158 }

5160 /*
5161 * This is safe because fi_nfiles only increases, and the
5162 * fi_list array is not freed when the array size doubles.
5163 * (See the comment in flist_grow() for details on the
5164 * management of the u_finfo structure.)
5165 */
5166 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;

5168 mstate->dtms_getf = fp;
5169 regs[rd] = (uintptr_t)fp;
5170 break;
5171 }

5173 case DIF_SUBR_CLEANPATH: {
5174 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5176 uintptr_t src = tupregs[0].dttk_value;
5177 int i = 0, j = 0;
5178 zone_t *z;

5180 if (!dtrace_strcanload(src, size, mstate, vstate)) {
5181 regs[rd] = NULL;
5182 break;
5183 }

5185 if (!DTRACE_INSCRATCH(mstate, size)) {
5186 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5187 regs[rd] = NULL;
5188 break;
5189 }

5191 /*
5192 * Move forward, loading each character.
5193 */
5194 do {
5195 c = dtrace_load8(src + i++);
5196 next:
5197 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5198 break;

5200 if (c != ’/’) {
5201 dest[j++] = c;
5202 continue;
5203 }

5205 c = dtrace_load8(src + i++);

5207 if (c == ’/’) {
5208 /*

new/usr/src/uts/common/dtrace/dtrace.c 80

5209 * We have two slashes -- we can just advance
5210 * to the next character.
5211 */
5212 goto next;
5213 }

5215 if (c != ’.’) {
5216 /*
5217 * This is not "." and it’s not ".." -- we can
5218 * just store the "/" and this character and
5219 * drive on.
5220 */
5221 dest[j++] = ’/’;
5222 dest[j++] = c;
5223 continue;
5224 }

5226 c = dtrace_load8(src + i++);

5228 if (c == ’/’) {
5229 /*
5230 * This is a "/./" component. We’re not going
5231 * to store anything in the destination buffer;
5232 * we’re just going to go to the next component.
5233 */
5234 goto next;
5235 }

5237 if (c != ’.’) {
5238 /*
5239 * This is not ".." -- we can just store the
5240 * "/." and this character and continue
5241 * processing.
5242 */
5243 dest[j++] = ’/’;
5244 dest[j++] = ’.’;
5245 dest[j++] = c;
5246 continue;
5247 }

5249 c = dtrace_load8(src + i++);

5251 if (c != ’/’ && c != ’\0’) {
5252 /*
5253 * This is not ".." -- it’s "..[mumble]".
5254 * We’ll store the "/.." and this character
5255 * and continue processing.
5256 */
5257 dest[j++] = ’/’;
5258 dest[j++] = ’.’;
5259 dest[j++] = ’.’;
5260 dest[j++] = c;
5261 continue;
5262 }

5264 /*
5265 * This is "/../" or "/..\0". We need to back up
5266 * our destination pointer until we find a "/".
5267 */
5268 i--;
5269 while (j != 0 && dest[--j] != ’/’)
5270 continue;

5272 if (c == ’\0’)
5273 dest[++j] = ’/’;
5274 } while (c != ’\0’);

new/usr/src/uts/common/dtrace/dtrace.c 81

5276 dest[j] = ’\0’;

5278 if (mstate->dtms_getf != NULL &&
5279 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5280 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5281 /*
5282 * If we’ve done a getf() as a part of this ECB and we
5283 * don’t have kernel access (and we’re not in the global
5284 * zone), check if the path we cleaned up begins with
5285 * the zone’s root path, and trim it off if so. Note
5286 * that this is an output cleanliness issue, not a
5287 * security issue: knowing one’s zone root path does
5288 * not enable privilege escalation.
5289 */
5290 if (strstr(dest, z->zone_rootpath) == dest)
5291 dest += strlen(z->zone_rootpath) - 1;
5292 }

5294 regs[rd] = (uintptr_t)dest;
5295 mstate->dtms_scratch_ptr += size;
5296 break;
5297 }

5299 case DIF_SUBR_INET_NTOA:
5300 case DIF_SUBR_INET_NTOA6:
5301 case DIF_SUBR_INET_NTOP: {
5302 size_t size;
5303 int af, argi, i;
5304 char *base, *end;

5306 if (subr == DIF_SUBR_INET_NTOP) {
5307 af = (int)tupregs[0].dttk_value;
5308 argi = 1;
5309 } else {
5310 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5311 argi = 0;
5312 }

5314 if (af == AF_INET) {
5315 ipaddr_t ip4;
5316 uint8_t *ptr8, val;

5318 /*
5319 * Safely load the IPv4 address.
5320 */
5321 ip4 = dtrace_load32(tupregs[argi].dttk_value);

5323 /*
5324 * Check an IPv4 string will fit in scratch.
5325 */
5326 size = INET_ADDRSTRLEN;
5327 if (!DTRACE_INSCRATCH(mstate, size)) {
5328 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5329 regs[rd] = NULL;
5330 break;
5331 }
5332 base = (char *)mstate->dtms_scratch_ptr;
5333 end = (char *)mstate->dtms_scratch_ptr + size - 1;

5335 /*
5336 * Stringify as a dotted decimal quad.
5337 */
5338 *end-- = ’\0’;
5339 ptr8 = (uint8_t *)&ip4;
5340 for (i = 3; i >= 0; i--) {

new/usr/src/uts/common/dtrace/dtrace.c 82

5341 val = ptr8[i];

5343 if (val == 0) {
5344 *end-- = ’0’;
5345 } else {
5346 for (; val; val /= 10) {
5347 *end-- = ’0’ + (val % 10);
5348 }
5349 }

5351 if (i > 0)
5352 *end-- = ’.’;
5353 }
5354 ASSERT(end + 1 >= base);

5356 } else if (af == AF_INET6) {
5357 struct in6_addr ip6;
5358 int firstzero, tryzero, numzero, v6end;
5359 uint16_t val;
5360 const char digits[] = "0123456789abcdef";

5362 /*
5363 * Stringify using RFC 1884 convention 2 - 16 bit
5364 * hexadecimal values with a zero-run compression.
5365 * Lower case hexadecimal digits are used.
5366 * eg, fe80::214:4fff:fe0b:76c8.
5367 * The IPv4 embedded form is returned for inet_ntop,
5368 * just the IPv4 string is returned for inet_ntoa6.
5369 */

5371 /*
5372 * Safely load the IPv6 address.
5373 */
5374 dtrace_bcopy(
5375 (void *)(uintptr_t)tupregs[argi].dttk_value,
5376 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));

5378 /*
5379 * Check an IPv6 string will fit in scratch.
5380 */
5381 size = INET6_ADDRSTRLEN;
5382 if (!DTRACE_INSCRATCH(mstate, size)) {
5383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5384 regs[rd] = NULL;
5385 break;
5386 }
5387 base = (char *)mstate->dtms_scratch_ptr;
5388 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5389 *end-- = ’\0’;

5391 /*
5392 * Find the longest run of 16 bit zero values
5393 * for the single allowed zero compression - "::".
5394 */
5395 firstzero = -1;
5396 tryzero = -1;
5397 numzero = 1;
5398 for (i = 0; i < sizeof (struct in6_addr); i++) {
5399 if (ip6._S6_un._S6_u8[i] == 0 &&
5400 tryzero == -1 && i % 2 == 0) {
5401 tryzero = i;
5402 continue;
5403 }

5405 if (tryzero != -1 &&
5406 (ip6._S6_un._S6_u8[i] != 0 ||

new/usr/src/uts/common/dtrace/dtrace.c 83

5407 i == sizeof (struct in6_addr) - 1)) {

5409 if (i - tryzero <= numzero) {
5410 tryzero = -1;
5411 continue;
5412 }

5414 firstzero = tryzero;
5415 numzero = i - i % 2 - tryzero;
5416 tryzero = -1;

5418 if (ip6._S6_un._S6_u8[i] == 0 &&
5419 i == sizeof (struct in6_addr) - 1)
5420 numzero += 2;
5421 }
5422 }
5423 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));

5425 /*
5426 * Check for an IPv4 embedded address.
5427 */
5428 v6end = sizeof (struct in6_addr) - 2;
5429 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5430 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5431 for (i = sizeof (struct in6_addr) - 1;
5432 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5433 ASSERT(end >= base);

5435 val = ip6._S6_un._S6_u8[i];

5437 if (val == 0) {
5438 *end-- = ’0’;
5439 } else {
5440 for (; val; val /= 10) {
5441 *end-- = ’0’ + val % 10;
5442 }
5443 }

5445 if (i > DTRACE_V4MAPPED_OFFSET)
5446 *end-- = ’.’;
5447 }

5449 if (subr == DIF_SUBR_INET_NTOA6)
5450 goto inetout;

5452 /*
5453 * Set v6end to skip the IPv4 address that
5454 * we have already stringified.
5455 */
5456 v6end = 10;
5457 }

5459 /*
5460 * Build the IPv6 string by working through the
5461 * address in reverse.
5462 */
5463 for (i = v6end; i >= 0; i -= 2) {
5464 ASSERT(end >= base);

5466 if (i == firstzero + numzero - 2) {
5467 *end-- = ’:’;
5468 *end-- = ’:’;
5469 i -= numzero - 2;
5470 continue;
5471 }

new/usr/src/uts/common/dtrace/dtrace.c 84

5473 if (i < 14 && i != firstzero - 2)
5474 *end-- = ’:’;

5476 val = (ip6._S6_un._S6_u8[i] << 8) +
5477 ip6._S6_un._S6_u8[i + 1];

5479 if (val == 0) {
5480 *end-- = ’0’;
5481 } else {
5482 for (; val; val /= 16) {
5483 *end-- = digits[val % 16];
5484 }
5485 }
5486 }
5487 ASSERT(end + 1 >= base);

5489 } else {
5490 /*
5491 * The user didn’t use AH_INET or AH_INET6.
5492 */
5493 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5494 regs[rd] = NULL;
5495 break;
5496 }

5498 inetout: regs[rd] = (uintptr_t)end + 1;
5499 mstate->dtms_scratch_ptr += size;
5500 break;
5501 }

5503 }
5504 }

5506 /*
5507 * Emulate the execution of DTrace IR instructions specified by the given
5508 * DIF object. This function is deliberately void of assertions as all of
5509 * the necessary checks are handled by a call to dtrace_difo_validate().
5510 */
5511 static uint64_t
5512 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5513 dtrace_vstate_t *vstate, dtrace_state_t *state)
5514 {
5515 const dif_instr_t *text = difo->dtdo_buf;
5516 const uint_t textlen = difo->dtdo_len;
5517 const char *strtab = difo->dtdo_strtab;
5518 const uint64_t *inttab = difo->dtdo_inttab;

5520 uint64_t rval = 0;
5521 dtrace_statvar_t *svar;
5522 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5523 dtrace_difv_t *v;
5524 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5525 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;

5527 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5528 uint64_t regs[DIF_DIR_NREGS];
5529 uint64_t *tmp;

5531 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5532 int64_t cc_r;
5533 uint_t pc = 0, id, opc;
5534 uint8_t ttop = 0;
5535 dif_instr_t instr;
5536 uint_t r1, r2, rd;

5538 /*

new/usr/src/uts/common/dtrace/dtrace.c 85

5539 * We stash the current DIF object into the machine state: we need it
5540 * for subsequent access checking.
5541 */
5542 mstate->dtms_difo = difo;

5544 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */

5546 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5547 opc = pc;

5549 instr = text[pc++];
5550 r1 = DIF_INSTR_R1(instr);
5551 r2 = DIF_INSTR_R2(instr);
5552 rd = DIF_INSTR_RD(instr);

5554 switch (DIF_INSTR_OP(instr)) {
5555 case DIF_OP_OR:
5556 regs[rd] = regs[r1] | regs[r2];
5557 break;
5558 case DIF_OP_XOR:
5559 regs[rd] = regs[r1] ^ regs[r2];
5560 break;
5561 case DIF_OP_AND:
5562 regs[rd] = regs[r1] & regs[r2];
5563 break;
5564 case DIF_OP_SLL:
5565 regs[rd] = regs[r1] << regs[r2];
5566 break;
5567 case DIF_OP_SRL:
5568 regs[rd] = regs[r1] >> regs[r2];
5569 break;
5570 case DIF_OP_SUB:
5571 regs[rd] = regs[r1] - regs[r2];
5572 break;
5573 case DIF_OP_ADD:
5574 regs[rd] = regs[r1] + regs[r2];
5575 break;
5576 case DIF_OP_MUL:
5577 regs[rd] = regs[r1] * regs[r2];
5578 break;
5579 case DIF_OP_SDIV:
5580 if (regs[r2] == 0) {
5581 regs[rd] = 0;
5582 *flags |= CPU_DTRACE_DIVZERO;
5583 } else {
5584 regs[rd] = (int64_t)regs[r1] /
5585 (int64_t)regs[r2];
5586 }
5587 break;

5589 case DIF_OP_UDIV:
5590 if (regs[r2] == 0) {
5591 regs[rd] = 0;
5592 *flags |= CPU_DTRACE_DIVZERO;
5593 } else {
5594 regs[rd] = regs[r1] / regs[r2];
5595 }
5596 break;

5598 case DIF_OP_SREM:
5599 if (regs[r2] == 0) {
5600 regs[rd] = 0;
5601 *flags |= CPU_DTRACE_DIVZERO;
5602 } else {
5603 regs[rd] = (int64_t)regs[r1] %
5604 (int64_t)regs[r2];

new/usr/src/uts/common/dtrace/dtrace.c 86

5605 }
5606 break;

5608 case DIF_OP_UREM:
5609 if (regs[r2] == 0) {
5610 regs[rd] = 0;
5611 *flags |= CPU_DTRACE_DIVZERO;
5612 } else {
5613 regs[rd] = regs[r1] % regs[r2];
5614 }
5615 break;

5617 case DIF_OP_NOT:
5618 regs[rd] = ~regs[r1];
5619 break;
5620 case DIF_OP_MOV:
5621 regs[rd] = regs[r1];
5622 break;
5623 case DIF_OP_CMP:
5624 cc_r = regs[r1] - regs[r2];
5625 cc_n = cc_r < 0;
5626 cc_z = cc_r == 0;
5627 cc_v = 0;
5628 cc_c = regs[r1] < regs[r2];
5629 break;
5630 case DIF_OP_TST:
5631 cc_n = cc_v = cc_c = 0;
5632 cc_z = regs[r1] == 0;
5633 break;
5634 case DIF_OP_BA:
5635 pc = DIF_INSTR_LABEL(instr);
5636 break;
5637 case DIF_OP_BE:
5638 if (cc_z)
5639 pc = DIF_INSTR_LABEL(instr);
5640 break;
5641 case DIF_OP_BNE:
5642 if (cc_z == 0)
5643 pc = DIF_INSTR_LABEL(instr);
5644 break;
5645 case DIF_OP_BG:
5646 if ((cc_z | (cc_n ^ cc_v)) == 0)
5647 pc = DIF_INSTR_LABEL(instr);
5648 break;
5649 case DIF_OP_BGU:
5650 if ((cc_c | cc_z) == 0)
5651 pc = DIF_INSTR_LABEL(instr);
5652 break;
5653 case DIF_OP_BGE:
5654 if ((cc_n ^ cc_v) == 0)
5655 pc = DIF_INSTR_LABEL(instr);
5656 break;
5657 case DIF_OP_BGEU:
5658 if (cc_c == 0)
5659 pc = DIF_INSTR_LABEL(instr);
5660 break;
5661 case DIF_OP_BL:
5662 if (cc_n ^ cc_v)
5663 pc = DIF_INSTR_LABEL(instr);
5664 break;
5665 case DIF_OP_BLU:
5666 if (cc_c)
5667 pc = DIF_INSTR_LABEL(instr);
5668 break;
5669 case DIF_OP_BLE:
5670 if (cc_z | (cc_n ^ cc_v))

new/usr/src/uts/common/dtrace/dtrace.c 87

5671 pc = DIF_INSTR_LABEL(instr);
5672 break;
5673 case DIF_OP_BLEU:
5674 if (cc_c | cc_z)
5675 pc = DIF_INSTR_LABEL(instr);
5676 break;
5677 case DIF_OP_RLDSB:
5678 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5679 break;
5680 /*FALLTHROUGH*/
5681 case DIF_OP_LDSB:
5682 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5683 break;
5684 case DIF_OP_RLDSH:
5685 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5686 break;
5687 /*FALLTHROUGH*/
5688 case DIF_OP_LDSH:
5689 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5690 break;
5691 case DIF_OP_RLDSW:
5692 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5693 break;
5694 /*FALLTHROUGH*/
5695 case DIF_OP_LDSW:
5696 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5697 break;
5698 case DIF_OP_RLDUB:
5699 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5700 break;
5701 /*FALLTHROUGH*/
5702 case DIF_OP_LDUB:
5703 regs[rd] = dtrace_load8(regs[r1]);
5704 break;
5705 case DIF_OP_RLDUH:
5706 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5707 break;
5708 /*FALLTHROUGH*/
5709 case DIF_OP_LDUH:
5710 regs[rd] = dtrace_load16(regs[r1]);
5711 break;
5712 case DIF_OP_RLDUW:
5713 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5714 break;
5715 /*FALLTHROUGH*/
5716 case DIF_OP_LDUW:
5717 regs[rd] = dtrace_load32(regs[r1]);
5718 break;
5719 case DIF_OP_RLDX:
5720 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5721 break;
5722 /*FALLTHROUGH*/
5723 case DIF_OP_LDX:
5724 regs[rd] = dtrace_load64(regs[r1]);
5725 break;
5726 case DIF_OP_ULDSB:
5727 regs[rd] = (int8_t)
5728 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5729 break;
5730 case DIF_OP_ULDSH:
5731 regs[rd] = (int16_t)
5732 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5733 break;
5734 case DIF_OP_ULDSW:
5735 regs[rd] = (int32_t)
5736 dtrace_fuword32((void *)(uintptr_t)regs[r1]);

new/usr/src/uts/common/dtrace/dtrace.c 88

5737 break;
5738 case DIF_OP_ULDUB:
5739 regs[rd] =
5740 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5741 break;
5742 case DIF_OP_ULDUH:
5743 regs[rd] =
5744 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5745 break;
5746 case DIF_OP_ULDUW:
5747 regs[rd] =
5748 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5749 break;
5750 case DIF_OP_ULDX:
5751 regs[rd] =
5752 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5753 break;
5754 case DIF_OP_RET:
5755 rval = regs[rd];
5756 pc = textlen;
5757 break;
5758 case DIF_OP_NOP:
5759 break;
5760 case DIF_OP_SETX:
5761 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5762 break;
5763 case DIF_OP_SETS:
5764 regs[rd] = (uint64_t)(uintptr_t)
5765 (strtab + DIF_INSTR_STRING(instr));
5766 break;
5767 case DIF_OP_SCMP: {
5768 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5769 uintptr_t s1 = regs[r1];
5770 uintptr_t s2 = regs[r2];

5772 if (s1 != NULL &&
5773 !dtrace_strcanload(s1, sz, mstate, vstate))
5774 break;
5775 if (s2 != NULL &&
5776 !dtrace_strcanload(s2, sz, mstate, vstate))
5777 break;

5779 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);

5781 cc_n = cc_r < 0;
5782 cc_z = cc_r == 0;
5783 cc_v = cc_c = 0;
5784 break;
5785 }
5786 case DIF_OP_LDGA:
5787 regs[rd] = dtrace_dif_variable(mstate, state,
5788 r1, regs[r2]);
5789 break;
5790 case DIF_OP_LDGS:
5791 id = DIF_INSTR_VAR(instr);

5793 if (id >= DIF_VAR_OTHER_UBASE) {
5794 uintptr_t a;

5796 id -= DIF_VAR_OTHER_UBASE;
5797 svar = vstate->dtvs_globals[id];
5798 ASSERT(svar != NULL);
5799 v = &svar->dtsv_var;

5801 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5802 regs[rd] = svar->dtsv_data;

new/usr/src/uts/common/dtrace/dtrace.c 89

5803 break;
5804 }

5806 a = (uintptr_t)svar->dtsv_data;

5808 if (*(uint8_t *)a == UINT8_MAX) {
5809 /*
5810 * If the 0th byte is set to UINT8_MAX
5811 * then this is to be treated as a
5812 * reference to a NULL variable.
5813 */
5814 regs[rd] = NULL;
5815 } else {
5816 regs[rd] = a + sizeof (uint64_t);
5817 }

5819 break;
5820 }

5822 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5823 break;

5825 case DIF_OP_STGS:
5826 id = DIF_INSTR_VAR(instr);

5828 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5829 id -= DIF_VAR_OTHER_UBASE;

5831 svar = vstate->dtvs_globals[id];
5832 ASSERT(svar != NULL);
5833 v = &svar->dtsv_var;

5835 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5836 uintptr_t a = (uintptr_t)svar->dtsv_data;

5838 ASSERT(a != NULL);
5839 ASSERT(svar->dtsv_size != 0);

5841 if (regs[rd] == NULL) {
5842 *(uint8_t *)a = UINT8_MAX;
5843 break;
5844 } else {
5845 *(uint8_t *)a = 0;
5846 a += sizeof (uint64_t);
5847 }
5848 if (!dtrace_vcanload(
5849 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5850 mstate, vstate))
5851 break;

5853 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5854 (void *)a, &v->dtdv_type);
5855 break;
5856 }

5858 svar->dtsv_data = regs[rd];
5859 break;

5861 case DIF_OP_LDTA:
5862 /*
5863 * There are no DTrace built-in thread-local arrays at
5864 * present. This opcode is saved for future work.
5865 */
5866 *flags |= CPU_DTRACE_ILLOP;
5867 regs[rd] = 0;
5868 break;

new/usr/src/uts/common/dtrace/dtrace.c 90

5870 case DIF_OP_LDLS:
5871 id = DIF_INSTR_VAR(instr);

5873 if (id < DIF_VAR_OTHER_UBASE) {
5874 /*
5875 * For now, this has no meaning.
5876 */
5877 regs[rd] = 0;
5878 break;
5879 }

5881 id -= DIF_VAR_OTHER_UBASE;

5883 ASSERT(id < vstate->dtvs_nlocals);
5884 ASSERT(vstate->dtvs_locals != NULL);

5886 svar = vstate->dtvs_locals[id];
5887 ASSERT(svar != NULL);
5888 v = &svar->dtsv_var;

5890 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5891 uintptr_t a = (uintptr_t)svar->dtsv_data;
5892 size_t sz = v->dtdv_type.dtdt_size;

5894 sz += sizeof (uint64_t);
5895 ASSERT(svar->dtsv_size == NCPU * sz);
5896 a += CPU->cpu_id * sz;

5898 if (*(uint8_t *)a == UINT8_MAX) {
5899 /*
5900 * If the 0th byte is set to UINT8_MAX
5901 * then this is to be treated as a
5902 * reference to a NULL variable.
5903 */
5904 regs[rd] = NULL;
5905 } else {
5906 regs[rd] = a + sizeof (uint64_t);
5907 }

5909 break;
5910 }

5912 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5913 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5914 regs[rd] = tmp[CPU->cpu_id];
5915 break;

5917 case DIF_OP_STLS:
5918 id = DIF_INSTR_VAR(instr);

5920 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5921 id -= DIF_VAR_OTHER_UBASE;
5922 ASSERT(id < vstate->dtvs_nlocals);

5924 ASSERT(vstate->dtvs_locals != NULL);
5925 svar = vstate->dtvs_locals[id];
5926 ASSERT(svar != NULL);
5927 v = &svar->dtsv_var;

5929 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5930 uintptr_t a = (uintptr_t)svar->dtsv_data;
5931 size_t sz = v->dtdv_type.dtdt_size;

5933 sz += sizeof (uint64_t);
5934 ASSERT(svar->dtsv_size == NCPU * sz);

new/usr/src/uts/common/dtrace/dtrace.c 91

5935 a += CPU->cpu_id * sz;

5937 if (regs[rd] == NULL) {
5938 *(uint8_t *)a = UINT8_MAX;
5939 break;
5940 } else {
5941 *(uint8_t *)a = 0;
5942 a += sizeof (uint64_t);
5943 }

5945 if (!dtrace_vcanload(
5946 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5947 mstate, vstate))
5948 break;

5950 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5951 (void *)a, &v->dtdv_type);
5952 break;
5953 }

5955 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5956 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5957 tmp[CPU->cpu_id] = regs[rd];
5958 break;

5960 case DIF_OP_LDTS: {
5961 dtrace_dynvar_t *dvar;
5962 dtrace_key_t *key;

5964 id = DIF_INSTR_VAR(instr);
5965 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5966 id -= DIF_VAR_OTHER_UBASE;
5967 v = &vstate->dtvs_tlocals[id];

5969 key = &tupregs[DIF_DTR_NREGS];
5970 key[0].dttk_value = (uint64_t)id;
5971 key[0].dttk_size = 0;
5972 DTRACE_TLS_THRKEY(key[1].dttk_value);
5973 key[1].dttk_size = 0;

5975 dvar = dtrace_dynvar(dstate, 2, key,
5976 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5977 mstate, vstate);

5979 if (dvar == NULL) {
5980 regs[rd] = 0;
5981 break;
5982 }

5984 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5985 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5986 } else {
5987 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5988 }

5990 break;
5991 }

5993 case DIF_OP_STTS: {
5994 dtrace_dynvar_t *dvar;
5995 dtrace_key_t *key;

5997 id = DIF_INSTR_VAR(instr);
5998 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5999 id -= DIF_VAR_OTHER_UBASE;

new/usr/src/uts/common/dtrace/dtrace.c 92

6001 key = &tupregs[DIF_DTR_NREGS];
6002 key[0].dttk_value = (uint64_t)id;
6003 key[0].dttk_size = 0;
6004 DTRACE_TLS_THRKEY(key[1].dttk_value);
6005 key[1].dttk_size = 0;
6006 v = &vstate->dtvs_tlocals[id];

6008 dvar = dtrace_dynvar(dstate, 2, key,
6009 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6010 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6011 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6012 DTRACE_DYNVAR_DEALLOC, mstate, vstate);

6014 /*
6015 * Given that we’re storing to thread-local data,
6016 * we need to flush our predicate cache.
6017 */
6018 curthread->t_predcache = NULL;

6020 if (dvar == NULL)
6021 break;

6023 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6024 if (!dtrace_vcanload(
6025 (void *)(uintptr_t)regs[rd],
6026 &v->dtdv_type, mstate, vstate))
6027 break;

6029 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6030 dvar->dtdv_data, &v->dtdv_type);
6031 } else {
6032 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6033 }

6035 break;
6036 }

6038 case DIF_OP_SRA:
6039 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6040 break;

6042 case DIF_OP_CALL:
6043 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6044 regs, tupregs, ttop, mstate, state);
6045 break;

6047 case DIF_OP_PUSHTR:
6048 if (ttop == DIF_DTR_NREGS) {
6049 *flags |= CPU_DTRACE_TUPOFLOW;
6050 break;
6051 }

6053 if (r1 == DIF_TYPE_STRING) {
6054 /*
6055 * If this is a string type and the size is 0,
6056 * we’ll use the system-wide default string
6057 * size. Note that we are _not_ looking at
6058 * the value of the DTRACEOPT_STRSIZE option;
6059 * had this been set, we would expect to have
6060 * a non-zero size value in the "pushtr".
6061 */
6062 tupregs[ttop].dttk_size =
6063 dtrace_strlen((char *)(uintptr_t)regs[rd],
6064 regs[r2] ? regs[r2] :
6065 dtrace_strsize_default) + 1;
6066 } else {

new/usr/src/uts/common/dtrace/dtrace.c 93

6067 tupregs[ttop].dttk_size = regs[r2];
6068 }

6070 tupregs[ttop++].dttk_value = regs[rd];
6071 break;

6073 case DIF_OP_PUSHTV:
6074 if (ttop == DIF_DTR_NREGS) {
6075 *flags |= CPU_DTRACE_TUPOFLOW;
6076 break;
6077 }

6079 tupregs[ttop].dttk_value = regs[rd];
6080 tupregs[ttop++].dttk_size = 0;
6081 break;

6083 case DIF_OP_POPTS:
6084 if (ttop != 0)
6085 ttop--;
6086 break;

6088 case DIF_OP_FLUSHTS:
6089 ttop = 0;
6090 break;

6092 case DIF_OP_LDGAA:
6093 case DIF_OP_LDTAA: {
6094 dtrace_dynvar_t *dvar;
6095 dtrace_key_t *key = tupregs;
6096 uint_t nkeys = ttop;

6098 id = DIF_INSTR_VAR(instr);
6099 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6100 id -= DIF_VAR_OTHER_UBASE;

6102 key[nkeys].dttk_value = (uint64_t)id;
6103 key[nkeys++].dttk_size = 0;

6105 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6106 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6107 key[nkeys++].dttk_size = 0;
6108 v = &vstate->dtvs_tlocals[id];
6109 } else {
6110 v = &vstate->dtvs_globals[id]->dtsv_var;
6111 }

6113 dvar = dtrace_dynvar(dstate, nkeys, key,
6114 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6115 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6116 DTRACE_DYNVAR_NOALLOC, mstate, vstate);

6118 if (dvar == NULL) {
6119 regs[rd] = 0;
6120 break;
6121 }

6123 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6124 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6125 } else {
6126 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6127 }

6129 break;
6130 }

6132 case DIF_OP_STGAA:

new/usr/src/uts/common/dtrace/dtrace.c 94

6133 case DIF_OP_STTAA: {
6134 dtrace_dynvar_t *dvar;
6135 dtrace_key_t *key = tupregs;
6136 uint_t nkeys = ttop;

6138 id = DIF_INSTR_VAR(instr);
6139 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6140 id -= DIF_VAR_OTHER_UBASE;

6142 key[nkeys].dttk_value = (uint64_t)id;
6143 key[nkeys++].dttk_size = 0;

6145 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6146 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6147 key[nkeys++].dttk_size = 0;
6148 v = &vstate->dtvs_tlocals[id];
6149 } else {
6150 v = &vstate->dtvs_globals[id]->dtsv_var;
6151 }

6153 dvar = dtrace_dynvar(dstate, nkeys, key,
6154 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6155 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6156 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6157 DTRACE_DYNVAR_DEALLOC, mstate, vstate);

6159 if (dvar == NULL)
6160 break;

6162 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6163 if (!dtrace_vcanload(
6164 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6165 mstate, vstate))
6166 break;

6168 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6169 dvar->dtdv_data, &v->dtdv_type);
6170 } else {
6171 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6172 }

6174 break;
6175 }

6177 case DIF_OP_ALLOCS: {
6178 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6179 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];

6181 /*
6182 * Rounding up the user allocation size could have
6183 * overflowed large, bogus allocations (like -1ULL) to
6184 * 0.
6185 */
6186 if (size < regs[r1] ||
6187 !DTRACE_INSCRATCH(mstate, size)) {
6188 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6189 regs[rd] = NULL;
6190 break;
6191 }

6193 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6194 mstate->dtms_scratch_ptr += size;
6195 regs[rd] = ptr;
6196 break;
6197 }

new/usr/src/uts/common/dtrace/dtrace.c 95

6199 case DIF_OP_COPYS:
6200 if (!dtrace_canstore(regs[rd], regs[r2],
6201 mstate, vstate)) {
6202 *flags |= CPU_DTRACE_BADADDR;
6203 *illval = regs[rd];
6204 break;
6205 }

6207 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6208 break;

6210 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6211 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6212 break;

6214 case DIF_OP_STB:
6215 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6216 *flags |= CPU_DTRACE_BADADDR;
6217 *illval = regs[rd];
6218 break;
6219 }
6220 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6221 break;

6223 case DIF_OP_STH:
6224 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6225 *flags |= CPU_DTRACE_BADADDR;
6226 *illval = regs[rd];
6227 break;
6228 }
6229 if (regs[rd] & 1) {
6230 *flags |= CPU_DTRACE_BADALIGN;
6231 *illval = regs[rd];
6232 break;
6233 }
6234 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6235 break;

6237 case DIF_OP_STW:
6238 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6239 *flags |= CPU_DTRACE_BADADDR;
6240 *illval = regs[rd];
6241 break;
6242 }
6243 if (regs[rd] & 3) {
6244 *flags |= CPU_DTRACE_BADALIGN;
6245 *illval = regs[rd];
6246 break;
6247 }
6248 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6249 break;

6251 case DIF_OP_STX:
6252 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6253 *flags |= CPU_DTRACE_BADADDR;
6254 *illval = regs[rd];
6255 break;
6256 }
6257 if (regs[rd] & 7) {
6258 *flags |= CPU_DTRACE_BADALIGN;
6259 *illval = regs[rd];
6260 break;
6261 }
6262 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6263 break;
6264 }

new/usr/src/uts/common/dtrace/dtrace.c 96

6265 }

6267 if (!(*flags & CPU_DTRACE_FAULT))
6268 return (rval);

6270 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6271 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;

6273 return (0);
6274 }

6276 static void
6277 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6278 {
6279 dtrace_probe_t *probe = ecb->dte_probe;
6280 dtrace_provider_t *prov = probe->dtpr_provider;
6281 char c[DTRACE_FULLNAMELEN + 80], *str;
6282 char *msg = "dtrace: breakpoint action at probe ";
6283 char *ecbmsg = " (ecb ";
6284 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6285 uintptr_t val = (uintptr_t)ecb;
6286 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;

6288 if (dtrace_destructive_disallow)
6289 return;

6291 /*
6292 * It’s impossible to be taking action on the NULL probe.
6293 */
6294 ASSERT(probe != NULL);

6296 /*
6297 * This is a poor man’s (destitute man’s?) sprintf(): we want to
6298 * print the provider name, module name, function name and name of
6299 * the probe, along with the hex address of the ECB with the breakpoint
6300 * action -- all of which we must place in the character buffer by
6301 * hand.
6302 */
6303 while (*msg != ’\0’)
6304 c[i++] = *msg++;

6306 for (str = prov->dtpv_name; *str != ’\0’; str++)
6307 c[i++] = *str;
6308 c[i++] = ’:’;

6310 for (str = probe->dtpr_mod; *str != ’\0’; str++)
6311 c[i++] = *str;
6312 c[i++] = ’:’;

6314 for (str = probe->dtpr_func; *str != ’\0’; str++)
6315 c[i++] = *str;
6316 c[i++] = ’:’;

6318 for (str = probe->dtpr_name; *str != ’\0’; str++)
6319 c[i++] = *str;

6321 while (*ecbmsg != ’\0’)
6322 c[i++] = *ecbmsg++;

6324 while (shift >= 0) {
6325 mask = (uintptr_t)0xf << shift;

6327 if (val >= ((uintptr_t)1 << shift))
6328 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6329 shift -= 4;
6330 }

new/usr/src/uts/common/dtrace/dtrace.c 97

6332 c[i++] = ’)’;
6333 c[i] = ’\0’;

6335 debug_enter(c);
6336 }

6338 static void
6339 dtrace_action_panic(dtrace_ecb_t *ecb)
6340 {
6341 dtrace_probe_t *probe = ecb->dte_probe;

6343 /*
6344 * It’s impossible to be taking action on the NULL probe.
6345 */
6346 ASSERT(probe != NULL);

6348 if (dtrace_destructive_disallow)
6349 return;

6351 if (dtrace_panicked != NULL)
6352 return;

6354 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6355 return;

6357 /*
6358 * We won the right to panic. (We want to be sure that only one
6359 * thread calls panic() from dtrace_probe(), and that panic() is
6360 * called exactly once.)
6361 */
6362 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6363 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6364 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6365 }

6367 static void
6368 dtrace_action_raise(uint64_t sig)
6369 {
6370 if (dtrace_destructive_disallow)
6371 return;

6373 if (sig >= NSIG) {
6374 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6375 return;
6376 }

6378 /*
6379 * raise() has a queue depth of 1 -- we ignore all subsequent
6380 * invocations of the raise() action.
6381 */
6382 if (curthread->t_dtrace_sig == 0)
6383 curthread->t_dtrace_sig = (uint8_t)sig;

6385 curthread->t_sig_check = 1;
6386 aston(curthread);
6387 }

6389 static void
6390 dtrace_action_stop(void)
6391 {
6392 if (dtrace_destructive_disallow)
6393 return;

6395 if (!curthread->t_dtrace_stop) {
6396 curthread->t_dtrace_stop = 1;

new/usr/src/uts/common/dtrace/dtrace.c 98

6397 curthread->t_sig_check = 1;
6398 aston(curthread);
6399 }
6400 }

6402 static void
6403 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6404 {
6405 hrtime_t now;
6406 volatile uint16_t *flags;
6407 cpu_t *cpu = CPU;

6409 if (dtrace_destructive_disallow)
6410 return;

6412 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;

6414 now = dtrace_gethrtime();

6416 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6417 /*
6418 * We need to advance the mark to the current time.
6419 */
6420 cpu->cpu_dtrace_chillmark = now;
6421 cpu->cpu_dtrace_chilled = 0;
6422 }

6424 /*
6425 * Now check to see if the requested chill time would take us over
6426 * the maximum amount of time allowed in the chill interval. (Or
6427 * worse, if the calculation itself induces overflow.)
6428 */
6429 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6430 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6431 *flags |= CPU_DTRACE_ILLOP;
6432 return;
6433 }

6435 while (dtrace_gethrtime() - now < val)
6436 continue;

6438 /*
6439 * Normally, we assure that the value of the variable "timestamp" does
6440 * not change within an ECB. The presence of chill() represents an
6441 * exception to this rule, however.
6442 */
6443 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6444 cpu->cpu_dtrace_chilled += val;
6445 }

6447 static void
6448 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6449 uint64_t *buf, uint64_t arg)
6450 {
6451 int nframes = DTRACE_USTACK_NFRAMES(arg);
6452 int strsize = DTRACE_USTACK_STRSIZE(arg);
6453 uint64_t *pcs = &buf[1], *fps;
6454 char *str = (char *)&pcs[nframes];
6455 int size, offs = 0, i, j;
6456 uintptr_t old = mstate->dtms_scratch_ptr, saved;
6457 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6458 char *sym;

6460 /*
6461 * Should be taking a faster path if string space has not been
6462 * allocated.

new/usr/src/uts/common/dtrace/dtrace.c 99

6463 */
6464 ASSERT(strsize != 0);

6466 /*
6467 * We will first allocate some temporary space for the frame pointers.
6468 */
6469 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6470 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6471 (nframes * sizeof (uint64_t));

6473 if (!DTRACE_INSCRATCH(mstate, size)) {
6474 /*
6475 * Not enough room for our frame pointers -- need to indicate
6476 * that we ran out of scratch space.
6477 */
6478 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6479 return;
6480 }

6482 mstate->dtms_scratch_ptr += size;
6483 saved = mstate->dtms_scratch_ptr;

6485 /*
6486 * Now get a stack with both program counters and frame pointers.
6487 */
6488 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6489 dtrace_getufpstack(buf, fps, nframes + 1);
6490 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

6492 /*
6493 * If that faulted, we’re cooked.
6494 */
6495 if (*flags & CPU_DTRACE_FAULT)
6496 goto out;

6498 /*
6499 * Now we want to walk up the stack, calling the USTACK helper. For
6500 * each iteration, we restore the scratch pointer.
6501 */
6502 for (i = 0; i < nframes; i++) {
6503 mstate->dtms_scratch_ptr = saved;

6505 if (offs >= strsize)
6506 break;

6508 sym = (char *)(uintptr_t)dtrace_helper(
6509 DTRACE_HELPER_ACTION_USTACK,
6510 mstate, state, pcs[i], fps[i]);

6512 /*
6513 * If we faulted while running the helper, we’re going to
6514 * clear the fault and null out the corresponding string.
6515 */
6516 if (*flags & CPU_DTRACE_FAULT) {
6517 *flags &= ~CPU_DTRACE_FAULT;
6518 str[offs++] = ’\0’;
6519 continue;
6520 }

6522 if (sym == NULL) {
6523 str[offs++] = ’\0’;
6524 continue;
6525 }

6527 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);

new/usr/src/uts/common/dtrace/dtrace.c 100

6529 /*
6530 * Now copy in the string that the helper returned to us.
6531 */
6532 for (j = 0; offs + j < strsize; j++) {
6533 if ((str[offs + j] = sym[j]) == ’\0’)
6534 break;
6535 }

6537 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

6539 offs += j + 1;
6540 }

6542 if (offs >= strsize) {
6543 /*
6544 * If we didn’t have room for all of the strings, we don’t
6545 * abort processing -- this needn’t be a fatal error -- but we
6546 * still want to increment a counter (dts_stkstroverflows) to
6547 * allow this condition to be warned about. (If this is from
6548 * a jstack() action, it is easily tuned via jstackstrsize.)
6549 */
6550 dtrace_error(&state->dts_stkstroverflows);
6551 }

6553 while (offs < strsize)
6554 str[offs++] = ’\0’;

6556 out:
6557 mstate->dtms_scratch_ptr = old;
6558 }

6560 /*
6561 * If you’re looking for the epicenter of DTrace, you just found it. This
6562 * is the function called by the provider to fire a probe -- from which all
6563 * subsequent probe-context DTrace activity emanates.
6564 */
6565 void
6566 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6567 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6568 {
6569 processorid_t cpuid;
6570 dtrace_icookie_t cookie;
6571 dtrace_probe_t *probe;
6572 dtrace_mstate_t mstate;
6573 dtrace_ecb_t *ecb;
6574 dtrace_action_t *act;
6575 intptr_t offs;
6576 size_t size;
6577 int vtime, onintr;
6578 volatile uint16_t *flags;
6579 hrtime_t now, end;

6581 /*
6582 * Kick out immediately if this CPU is still being born (in which case
6583 * curthread will be set to -1) or the current thread can’t allow
6584 * probes in its current context.
6585 */
6586 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6587 return;

6589 cookie = dtrace_interrupt_disable();
6590 probe = dtrace_probes[id - 1];
6591 cpuid = CPU->cpu_id;
6592 onintr = CPU_ON_INTR(CPU);

6594 CPU->cpu_dtrace_probes++;

new/usr/src/uts/common/dtrace/dtrace.c 101

6596 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6597 probe->dtpr_predcache == curthread->t_predcache) {
6598 /*
6599 * We have hit in the predicate cache; we know that
6600 * this predicate would evaluate to be false.
6601 */
6602 dtrace_interrupt_enable(cookie);
6603 return;
6604 }

6606 if (panic_quiesce) {
6607 /*
6608 * We don’t trace anything if we’re panicking.
6609 */
6610 dtrace_interrupt_enable(cookie);
6611 return;
6612 }

6614 now = dtrace_gethrtime();
6615 vtime = dtrace_vtime_references != 0;

6617 if (vtime && curthread->t_dtrace_start)
6618 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;

6620 mstate.dtms_difo = NULL;
6621 mstate.dtms_probe = probe;
6622 mstate.dtms_strtok = NULL;
6623 mstate.dtms_arg[0] = arg0;
6624 mstate.dtms_arg[1] = arg1;
6625 mstate.dtms_arg[2] = arg2;
6626 mstate.dtms_arg[3] = arg3;
6627 mstate.dtms_arg[4] = arg4;

6629 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;

6631 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6632 dtrace_predicate_t *pred = ecb->dte_predicate;
6633 dtrace_state_t *state = ecb->dte_state;
6634 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6635 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6636 dtrace_vstate_t *vstate = &state->dts_vstate;
6637 dtrace_provider_t *prov = probe->dtpr_provider;
6638 uint64_t tracememsize = 0;
6639 int committed = 0;
6640 caddr_t tomax;

6642 /*
6643 * A little subtlety with the following (seemingly innocuous)
6644 * declaration of the automatic ’val’: by looking at the
6645 * code, you might think that it could be declared in the
6646 * action processing loop, below. (That is, it’s only used in
6647 * the action processing loop.) However, it must be declared
6648 * out of that scope because in the case of DIF expression
6649 * arguments to aggregating actions, one iteration of the
6650 * action loop will use the last iteration’s value.
6651 */
6652 #ifdef lint
6653 uint64_t val = 0;
6654 #else
6655 uint64_t val;
6656 #endif

6658 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6659 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6660 mstate.dtms_getf = NULL;

new/usr/src/uts/common/dtrace/dtrace.c 102

6662 *flags &= ~CPU_DTRACE_ERROR;

6664 if (prov == dtrace_provider) {
6665 /*
6666 * If dtrace itself is the provider of this probe,
6667 * we’re only going to continue processing the ECB if
6668 * arg0 (the dtrace_state_t) is equal to the ECB’s
6669 * creating state. (This prevents disjoint consumers
6670 * from seeing one another’s metaprobes.)
6671 */
6672 if (arg0 != (uint64_t)(uintptr_t)state)
6673 continue;
6674 }

6676 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6677 /*
6678 * We’re not currently active. If our provider isn’t
6679 * the dtrace pseudo provider, we’re not interested.
6680 */
6681 if (prov != dtrace_provider)
6682 continue;

6684 /*
6685 * Now we must further check if we are in the BEGIN
6686 * probe. If we are, we will only continue processing
6687 * if we’re still in WARMUP -- if one BEGIN enabling
6688 * has invoked the exit() action, we don’t want to
6689 * evaluate subsequent BEGIN enablings.
6690 */
6691 if (probe->dtpr_id == dtrace_probeid_begin &&
6692 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6693 ASSERT(state->dts_activity ==
6694 DTRACE_ACTIVITY_DRAINING);
6695 continue;
6696 }
6697 }

6699 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6700 continue;

6702 if (now - state->dts_alive > dtrace_deadman_timeout) {
6703 /*
6704 * We seem to be dead. Unless we (a) have kernel
6705 * destructive permissions (b) have explicitly enabled
6706 * destructive actions and (c) destructive actions have
6707 * not been disabled, we’re going to transition into
6708 * the KILLED state, from which no further processing
6709 * on this state will be performed.
6710 */
6711 if (!dtrace_priv_kernel_destructive(state) ||
6712 !state->dts_cred.dcr_destructive ||
6713 dtrace_destructive_disallow) {
6714 void *activity = &state->dts_activity;
6715 dtrace_activity_t current;

6717 do {
6718 current = state->dts_activity;
6719 } while (dtrace_cas32(activity, current,
6720 DTRACE_ACTIVITY_KILLED) != current);

6722 continue;
6723 }
6724 }

6726 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,

new/usr/src/uts/common/dtrace/dtrace.c 103

6727 ecb->dte_alignment, state, &mstate)) < 0)
6728 continue;

6730 tomax = buf->dtb_tomax;
6731 ASSERT(tomax != NULL);

6733 if (ecb->dte_size != 0) {
6734 dtrace_rechdr_t dtrh;
6735 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6736 mstate.dtms_timestamp = dtrace_gethrtime();
6737 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6738 }
6739 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6740 dtrh.dtrh_epid = ecb->dte_epid;
6741 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6742 mstate.dtms_timestamp);
6743 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6744 }

6746 mstate.dtms_epid = ecb->dte_epid;
6747 mstate.dtms_present |= DTRACE_MSTATE_EPID;

6749 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6750 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;

6752 if (pred != NULL) {
6753 dtrace_difo_t *dp = pred->dtp_difo;
6754 int rval;

6756 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);

6758 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6759 dtrace_cacheid_t cid = probe->dtpr_predcache;

6761 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6762 /*
6763 * Update the predicate cache...
6764 */
6765 ASSERT(cid == pred->dtp_cacheid);
6766 curthread->t_predcache = cid;
6767 }

6769 continue;
6770 }
6771 }

6773 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6774 act != NULL; act = act->dta_next) {
6775 size_t valoffs;
6776 dtrace_difo_t *dp;
6777 dtrace_recdesc_t *rec = &act->dta_rec;

6779 size = rec->dtrd_size;
6780 valoffs = offs + rec->dtrd_offset;

6782 if (DTRACEACT_ISAGG(act->dta_kind)) {
6783 uint64_t v = 0xbad;
6784 dtrace_aggregation_t *agg;

6786 agg = (dtrace_aggregation_t *)act;

6788 if ((dp = act->dta_difo) != NULL)
6789 v = dtrace_dif_emulate(dp,
6790 &mstate, vstate, state);

6792 if (*flags & CPU_DTRACE_ERROR)

new/usr/src/uts/common/dtrace/dtrace.c 104

6793 continue;

6795 /*
6796 * Note that we always pass the expression
6797 * value from the previous iteration of the
6798 * action loop. This value will only be used
6799 * if there is an expression argument to the
6800 * aggregating action, denoted by the
6801 * dtag_hasarg field.
6802 */
6803 dtrace_aggregate(agg, buf,
6804 offs, aggbuf, v, val);
6805 continue;
6806 }

6808 switch (act->dta_kind) {
6809 case DTRACEACT_STOP:
6810 if (dtrace_priv_proc_destructive(state,
6811 &mstate))
6812 dtrace_action_stop();
6813 continue;

6815 case DTRACEACT_BREAKPOINT:
6816 if (dtrace_priv_kernel_destructive(state))
6817 dtrace_action_breakpoint(ecb);
6818 continue;

6820 case DTRACEACT_PANIC:
6821 if (dtrace_priv_kernel_destructive(state))
6822 dtrace_action_panic(ecb);
6823 continue;

6825 case DTRACEACT_STACK:
6826 if (!dtrace_priv_kernel(state))
6827 continue;

6829 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6830 size / sizeof (pc_t), probe->dtpr_aframes,
6831 DTRACE_ANCHORED(probe) ? NULL :
6832 (uint32_t *)arg0);

6834 continue;

6836 case DTRACEACT_JSTACK:
6837 case DTRACEACT_USTACK:
6838 if (!dtrace_priv_proc(state, &mstate))
6839 continue;

6841 /*
6842 * See comment in DIF_VAR_PID.
6843 */
6844 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6845 CPU_ON_INTR(CPU)) {
6846 int depth = DTRACE_USTACK_NFRAMES(
6847 rec->dtrd_arg) + 1;

6849 dtrace_bzero((void *)(tomax + valoffs),
6850 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6851 + depth * sizeof (uint64_t));

6853 continue;
6854 }

6856 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6857 curproc->p_dtrace_helpers != NULL) {
6858 /*

new/usr/src/uts/common/dtrace/dtrace.c 105

6859 * This is the slow path -- we have
6860 * allocated string space, and we’re
6861 * getting the stack of a process that
6862 * has helpers. Call into a separate
6863 * routine to perform this processing.
6864 */
6865 dtrace_action_ustack(&mstate, state,
6866 (uint64_t *)(tomax + valoffs),
6867 rec->dtrd_arg);
6868 continue;
6869 }

6871 /*
6872 * Clear the string space, since there’s no
6873 * helper to do it for us.
6874 */
6875 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6876 int depth = DTRACE_USTACK_NFRAMES(
6877 rec->dtrd_arg);
6878 size_t strsize = DTRACE_USTACK_STRSIZE(
6879 rec->dtrd_arg);
6880 uint64_t *buf = (uint64_t *)(tomax +
6881 valoffs);
6882 void *strspace = &buf[depth + 1];

6884 dtrace_bzero(strspace,
6885 MIN(depth, strsize));
6886 }

6888 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6889 dtrace_getupcstack((uint64_t *)
6890 (tomax + valoffs),
6891 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6892 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6893 continue;

6895 default:
6896 break;
6897 }

6899 dp = act->dta_difo;
6900 ASSERT(dp != NULL);

6902 val = dtrace_dif_emulate(dp, &mstate, vstate, state);

6904 if (*flags & CPU_DTRACE_ERROR)
6905 continue;

6907 switch (act->dta_kind) {
6908 case DTRACEACT_SPECULATE: {
6909 dtrace_rechdr_t *dtrh;

6911 ASSERT(buf == &state->dts_buffer[cpuid]);
6912 buf = dtrace_speculation_buffer(state,
6913 cpuid, val);

6915 if (buf == NULL) {
6916 *flags |= CPU_DTRACE_DROP;
6917 continue;
6918 }

6920 offs = dtrace_buffer_reserve(buf,
6921 ecb->dte_needed, ecb->dte_alignment,
6922 state, NULL);

6924 if (offs < 0) {

new/usr/src/uts/common/dtrace/dtrace.c 106

6925 *flags |= CPU_DTRACE_DROP;
6926 continue;
6927 }

6929 tomax = buf->dtb_tomax;
6930 ASSERT(tomax != NULL);

6932 if (ecb->dte_size == 0)
6933 continue;

6935 ASSERT3U(ecb->dte_size, >=,
6936 sizeof (dtrace_rechdr_t));
6937 dtrh = ((void *)(tomax + offs));
6938 dtrh->dtrh_epid = ecb->dte_epid;
6939 /*
6940 * When the speculation is committed, all of
6941 * the records in the speculative buffer will
6942 * have their timestamps set to the commit
6943 * time. Until then, it is set to a sentinel
6944 * value, for debugability.
6945 */
6946 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6947 continue;
6948 }

6950 case DTRACEACT_CHILL:
6951 if (dtrace_priv_kernel_destructive(state))
6952 dtrace_action_chill(&mstate, val);
6953 continue;

6955 case DTRACEACT_RAISE:
6956 if (dtrace_priv_proc_destructive(state,
6957 &mstate))
6958 dtrace_action_raise(val);
6959 continue;

6961 case DTRACEACT_COMMIT:
6962 ASSERT(!committed);

6964 /*
6965 * We need to commit our buffer state.
6966 */
6967 if (ecb->dte_size)
6968 buf->dtb_offset = offs + ecb->dte_size;
6969 buf = &state->dts_buffer[cpuid];
6970 dtrace_speculation_commit(state, cpuid, val);
6971 committed = 1;
6972 continue;

6974 case DTRACEACT_DISCARD:
6975 dtrace_speculation_discard(state, cpuid, val);
6976 continue;

6978 case DTRACEACT_DIFEXPR:
6979 case DTRACEACT_LIBACT:
6980 case DTRACEACT_PRINTF:
6981 case DTRACEACT_PRINTA:
6982 case DTRACEACT_SYSTEM:
6983 case DTRACEACT_FREOPEN:
6984 case DTRACEACT_TRACEMEM:
6985 break;

6987 case DTRACEACT_TRACEMEM_DYNSIZE:
6988 tracememsize = val;
6989 break;

new/usr/src/uts/common/dtrace/dtrace.c 107

6991 case DTRACEACT_SYM:
6992 case DTRACEACT_MOD:
6993 if (!dtrace_priv_kernel(state))
6994 continue;
6995 break;

6997 case DTRACEACT_USYM:
6998 case DTRACEACT_UMOD:
6999 case DTRACEACT_UADDR: {
7000 struct pid *pid = curthread->t_procp->p_pidp;

7002 if (!dtrace_priv_proc(state, &mstate))
7003 continue;

7005 DTRACE_STORE(uint64_t, tomax,
7006 valoffs, (uint64_t)pid->pid_id);
7007 DTRACE_STORE(uint64_t, tomax,
7008 valoffs + sizeof (uint64_t), val);

7010 continue;
7011 }

7013 case DTRACEACT_EXIT: {
7014 /*
7015 * For the exit action, we are going to attempt
7016 * to atomically set our activity to be
7017 * draining. If this fails (either because
7018 * another CPU has beat us to the exit action,
7019 * or because our current activity is something
7020 * other than ACTIVE or WARMUP), we will
7021 * continue. This assures that the exit action
7022 * can be successfully recorded at most once
7023 * when we’re in the ACTIVE state. If we’re
7024 * encountering the exit() action while in
7025 * COOLDOWN, however, we want to honor the new
7026 * status code. (We know that we’re the only
7027 * thread in COOLDOWN, so there is no race.)
7028 */
7029 void *activity = &state->dts_activity;
7030 dtrace_activity_t current = state->dts_activity;

7032 if (current == DTRACE_ACTIVITY_COOLDOWN)
7033 break;

7035 if (current != DTRACE_ACTIVITY_WARMUP)
7036 current = DTRACE_ACTIVITY_ACTIVE;

7038 if (dtrace_cas32(activity, current,
7039 DTRACE_ACTIVITY_DRAINING) != current) {
7040 *flags |= CPU_DTRACE_DROP;
7041 continue;
7042 }

7044 break;
7045 }

7047 default:
7048 ASSERT(0);
7049 }

7051 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
7052 uintptr_t end = valoffs + size;

7054 if (tracememsize != 0 &&
7055 valoffs + tracememsize < end) {
7056 end = valoffs + tracememsize;

new/usr/src/uts/common/dtrace/dtrace.c 108

7057 tracememsize = 0;
7058 }

7060 if (!dtrace_vcanload((void *)(uintptr_t)val,
7061 &dp->dtdo_rtype, &mstate, vstate))
7062 continue;

7064 /*
7065 * If this is a string, we’re going to only
7066 * load until we find the zero byte -- after
7067 * which we’ll store zero bytes.
7068 */
7069 if (dp->dtdo_rtype.dtdt_kind ==
7070 DIF_TYPE_STRING) {
7071 char c = ’\0’ + 1;
7072 int intuple = act->dta_intuple;
7073 size_t s;

7075 for (s = 0; s < size; s++) {
7076 if (c != ’\0’)
7077 c = dtrace_load8(val++);

7079 DTRACE_STORE(uint8_t, tomax,
7080 valoffs++, c);

7082 if (c == ’\0’ && intuple)
7083 break;
7084 }

7086 continue;
7087 }

7089 while (valoffs < end) {
7090 DTRACE_STORE(uint8_t, tomax, valoffs++,
7091 dtrace_load8(val++));
7092 }

7094 continue;
7095 }

7097 switch (size) {
7098 case 0:
7099 break;

7101 case sizeof (uint8_t):
7102 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7103 break;
7104 case sizeof (uint16_t):
7105 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7106 break;
7107 case sizeof (uint32_t):
7108 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7109 break;
7110 case sizeof (uint64_t):
7111 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7112 break;
7113 default:
7114 /*
7115 * Any other size should have been returned by
7116 * reference, not by value.
7117 */
7118 ASSERT(0);
7119 break;
7120 }
7121 }

new/usr/src/uts/common/dtrace/dtrace.c 109

7123 if (*flags & CPU_DTRACE_DROP)
7124 continue;

7126 if (*flags & CPU_DTRACE_FAULT) {
7127 int ndx;
7128 dtrace_action_t *err;

7130 buf->dtb_errors++;

7132 if (probe->dtpr_id == dtrace_probeid_error) {
7133 /*
7134 * There’s nothing we can do -- we had an
7135 * error on the error probe. We bump an
7136 * error counter to at least indicate that
7137 * this condition happened.
7138 */
7139 dtrace_error(&state->dts_dblerrors);
7140 continue;
7141 }

7143 if (vtime) {
7144 /*
7145 * Before recursing on dtrace_probe(), we
7146 * need to explicitly clear out our start
7147 * time to prevent it from being accumulated
7148 * into t_dtrace_vtime.
7149 */
7150 curthread->t_dtrace_start = 0;
7151 }

7153 /*
7154 * Iterate over the actions to figure out which action
7155 * we were processing when we experienced the error.
7156 * Note that act points _past_ the faulting action; if
7157 * act is ecb->dte_action, the fault was in the
7158 * predicate, if it’s ecb->dte_action->dta_next it’s
7159 * in action #1, and so on.
7160 */
7161 for (err = ecb->dte_action, ndx = 0;
7162 err != act; err = err->dta_next, ndx++)
7163 continue;

7165 dtrace_probe_error(state, ecb->dte_epid, ndx,
7166 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7167 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7168 cpu_core[cpuid].cpuc_dtrace_illval);

7170 continue;
7171 }

7173 if (!committed)
7174 buf->dtb_offset = offs + ecb->dte_size;
7175 }

7177 end = dtrace_gethrtime();
7178 if (vtime)
7179 curthread->t_dtrace_start = end;

7181 CPU->cpu_dtrace_nsec += end - now;

7183 dtrace_interrupt_enable(cookie);
7184 }

7186 /*
7187 * DTrace Probe Hashing Functions
7188 *

new/usr/src/uts/common/dtrace/dtrace.c 110

7189 * The functions in this section (and indeed, the functions in remaining
7190 * sections) are not _called_ from probe context. (Any exceptions to this are
7191 * marked with a "Note:".) Rather, they are called from elsewhere in the
7192 * DTrace framework to look-up probes in, add probes to and remove probes from
7193 * the DTrace probe hashes. (Each probe is hashed by each element of the
7194 * probe tuple -- allowing for fast lookups, regardless of what was
7195 * specified.)
7196 */
7197 static uint_t
7198 dtrace_hash_str(char *p)
7199 {
7200 unsigned int g;
7201 uint_t hval = 0;

7203 while (*p) {
7204 hval = (hval << 4) + *p++;
7205 if ((g = (hval & 0xf0000000)) != 0)
7206 hval ^= g >> 24;
7207 hval &= ~g;
7208 }
7209 return (hval);
7210 }

7212 static dtrace_hash_t *
7213 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7214 {
7215 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);

7217 hash->dth_stroffs = stroffs;
7218 hash->dth_nextoffs = nextoffs;
7219 hash->dth_prevoffs = prevoffs;

7221 hash->dth_size = 1;
7222 hash->dth_mask = hash->dth_size - 1;

7224 hash->dth_tab = kmem_zalloc(hash->dth_size *
7225 sizeof (dtrace_hashbucket_t *), KM_SLEEP);

7227 return (hash);
7228 }

7230 static void
7231 dtrace_hash_destroy(dtrace_hash_t *hash)
7232 {
7233 #ifdef DEBUG
7234 int i;

7236 for (i = 0; i < hash->dth_size; i++)
7237 ASSERT(hash->dth_tab[i] == NULL);
7238 #endif

7240 kmem_free(hash->dth_tab,
7241 hash->dth_size * sizeof (dtrace_hashbucket_t *));
7242 kmem_free(hash, sizeof (dtrace_hash_t));
7243 }

7245 static void
7246 dtrace_hash_resize(dtrace_hash_t *hash)
7247 {
7248 int size = hash->dth_size, i, ndx;
7249 int new_size = hash->dth_size << 1;
7250 int new_mask = new_size - 1;
7251 dtrace_hashbucket_t **new_tab, *bucket, *next;

7253 ASSERT((new_size & new_mask) == 0);

new/usr/src/uts/common/dtrace/dtrace.c 111

7255 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);

7257 for (i = 0; i < size; i++) {
7258 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7259 dtrace_probe_t *probe = bucket->dthb_chain;

7261 ASSERT(probe != NULL);
7262 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;

7264 next = bucket->dthb_next;
7265 bucket->dthb_next = new_tab[ndx];
7266 new_tab[ndx] = bucket;
7267 }
7268 }

7270 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7271 hash->dth_tab = new_tab;
7272 hash->dth_size = new_size;
7273 hash->dth_mask = new_mask;
7274 }

7276 static void
7277 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7278 {
7279 int hashval = DTRACE_HASHSTR(hash, new);
7280 int ndx = hashval & hash->dth_mask;
7281 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7282 dtrace_probe_t **nextp, **prevp;

7284 for (; bucket != NULL; bucket = bucket->dthb_next) {
7285 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7286 goto add;
7287 }

7289 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7290 dtrace_hash_resize(hash);
7291 dtrace_hash_add(hash, new);
7292 return;
7293 }

7295 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7296 bucket->dthb_next = hash->dth_tab[ndx];
7297 hash->dth_tab[ndx] = bucket;
7298 hash->dth_nbuckets++;

7300 add:
7301 nextp = DTRACE_HASHNEXT(hash, new);
7302 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7303 *nextp = bucket->dthb_chain;

7305 if (bucket->dthb_chain != NULL) {
7306 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7307 ASSERT(*prevp == NULL);
7308 *prevp = new;
7309 }

7311 bucket->dthb_chain = new;
7312 bucket->dthb_len++;
7313 }

7315 static dtrace_probe_t *
7316 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7317 {
7318 int hashval = DTRACE_HASHSTR(hash, template);
7319 int ndx = hashval & hash->dth_mask;
7320 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];

new/usr/src/uts/common/dtrace/dtrace.c 112

7322 for (; bucket != NULL; bucket = bucket->dthb_next) {
7323 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7324 return (bucket->dthb_chain);
7325 }

7327 return (NULL);
7328 }

7330 static int
7331 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7332 {
7333 int hashval = DTRACE_HASHSTR(hash, template);
7334 int ndx = hashval & hash->dth_mask;
7335 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];

7337 for (; bucket != NULL; bucket = bucket->dthb_next) {
7338 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7339 return (bucket->dthb_len);
7340 }

7342 return (NULL);
7343 }

7345 static void
7346 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7347 {
7348 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7349 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];

7351 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7352 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);

7354 /*
7355 * Find the bucket that we’re removing this probe from.
7356 */
7357 for (; bucket != NULL; bucket = bucket->dthb_next) {
7358 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7359 break;
7360 }

7362 ASSERT(bucket != NULL);

7364 if (*prevp == NULL) {
7365 if (*nextp == NULL) {
7366 /*
7367 * The removed probe was the only probe on this
7368 * bucket; we need to remove the bucket.
7369 */
7370 dtrace_hashbucket_t *b = hash->dth_tab[ndx];

7372 ASSERT(bucket->dthb_chain == probe);
7373 ASSERT(b != NULL);

7375 if (b == bucket) {
7376 hash->dth_tab[ndx] = bucket->dthb_next;
7377 } else {
7378 while (b->dthb_next != bucket)
7379 b = b->dthb_next;
7380 b->dthb_next = bucket->dthb_next;
7381 }

7383 ASSERT(hash->dth_nbuckets > 0);
7384 hash->dth_nbuckets--;
7385 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7386 return;

new/usr/src/uts/common/dtrace/dtrace.c 113

7387 }

7389 bucket->dthb_chain = *nextp;
7390 } else {
7391 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7392 }

7394 if (*nextp != NULL)
7395 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7396 }

7398 /*
7399 * DTrace Utility Functions
7400 *
7401 * These are random utility functions that are _not_ called from probe context.
7402 */
7403 static int
7404 dtrace_badattr(const dtrace_attribute_t *a)
7405 {
7406 return (a->dtat_name > DTRACE_STABILITY_MAX ||
7407 a->dtat_data > DTRACE_STABILITY_MAX ||
7408 a->dtat_class > DTRACE_CLASS_MAX);
7409 }

7411 /*
7412 * Return a duplicate copy of a string. If the specified string is NULL,
7413 * this function returns a zero-length string.
7414 */
7415 static char *
7416 dtrace_strdup(const char *str)
7417 {
7418 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);

7420 if (str != NULL)
7421 (void) strcpy(new, str);

7423 return (new);
7424 }

7426 #define DTRACE_ISALPHA(c) \
7427 (((c) >= ’a’ && (c) <= ’z’) || ((c) >= ’A’ && (c) <= ’Z’))

7429 static int
7430 dtrace_badname(const char *s)
7431 {
7432 char c;

7434 if (s == NULL || (c = *s++) == ’\0’)
7435 return (0);

7437 if (!DTRACE_ISALPHA(c) && c != ’-’ && c != ’_’ && c != ’.’)
7438 return (1);

7440 while ((c = *s++) != ’\0’) {
7441 if (!DTRACE_ISALPHA(c) && (c < ’0’ || c > ’9’) &&
7442 c != ’-’ && c != ’_’ && c != ’.’ && c != ’‘’)
7443 return (1);
7444 }

7446 return (0);
7447 }

7449 static void
7450 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7451 {
7452 uint32_t priv;

new/usr/src/uts/common/dtrace/dtrace.c 114

7454 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7455 /*
7456 * For DTRACE_PRIV_ALL, the uid and zoneid don’t matter.
7457 */
7458 priv = DTRACE_PRIV_ALL;
7459 } else {
7460 *uidp = crgetuid(cr);
7461 *zoneidp = crgetzoneid(cr);

7463 priv = 0;
7464 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7465 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7466 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7467 priv |= DTRACE_PRIV_USER;
7468 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7469 priv |= DTRACE_PRIV_PROC;
7470 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7471 priv |= DTRACE_PRIV_OWNER;
7472 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7473 priv |= DTRACE_PRIV_ZONEOWNER;
7474 }

7476 *privp = priv;
7477 }

7479 #ifdef DTRACE_ERRDEBUG
7480 static void
7481 dtrace_errdebug(const char *str)
7482 {
7483 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7484 int occupied = 0;

7486 mutex_enter(&dtrace_errlock);
7487 dtrace_errlast = str;
7488 dtrace_errthread = curthread;

7490 while (occupied++ < DTRACE_ERRHASHSZ) {
7491 if (dtrace_errhash[hval].dter_msg == str) {
7492 dtrace_errhash[hval].dter_count++;
7493 goto out;
7494 }

7496 if (dtrace_errhash[hval].dter_msg != NULL) {
7497 hval = (hval + 1) % DTRACE_ERRHASHSZ;
7498 continue;
7499 }

7501 dtrace_errhash[hval].dter_msg = str;
7502 dtrace_errhash[hval].dter_count = 1;
7503 goto out;
7504 }

7506 panic("dtrace: undersized error hash");
7507 out:
7508 mutex_exit(&dtrace_errlock);
7509 }
7510 #endif

7512 /*
7513 * DTrace Matching Functions
7514 *
7515 * These functions are used to match groups of probes, given some elements of
7516 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7517 */
7518 static int

new/usr/src/uts/common/dtrace/dtrace.c 115

7519 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7520 zoneid_t zoneid)
7521 {
7522 if (priv != DTRACE_PRIV_ALL) {
7523 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7524 uint32_t match = priv & ppriv;

7526 /*
7527 * No PRIV_DTRACE_* privileges...
7528 */
7529 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7530 DTRACE_PRIV_KERNEL)) == 0)
7531 return (0);

7533 /*
7534 * No matching bits, but there were bits to match...
7535 */
7536 if (match == 0 && ppriv != 0)
7537 return (0);

7539 /*
7540 * Need to have permissions to the process, but don’t...
7541 */
7542 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7543 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7544 return (0);
7545 }

7547 /*
7548 * Need to be in the same zone unless we possess the
7549 * privilege to examine all zones.
7550 */
7551 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7552 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7553 return (0);
7554 }
7555 }

7557 return (1);
7558 }

7560 /*
7561 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7562 * consists of input pattern strings and an ops-vector to evaluate them.
7563 * This function returns >0 for match, 0 for no match, and <0 for error.
7564 */
7565 static int
7566 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7567 uint32_t priv, uid_t uid, zoneid_t zoneid)
7568 {
7569 dtrace_provider_t *pvp = prp->dtpr_provider;
7570 int rv;

7572 if (pvp->dtpv_defunct)
7573 return (0);

7575 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7576 return (rv);

7578 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7579 return (rv);

7581 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7582 return (rv);

7584 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)

new/usr/src/uts/common/dtrace/dtrace.c 116

7585 return (rv);

7587 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7588 return (0);

7590 return (rv);
7591 }

7593 /*
7594 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7595 * interface for matching a glob pattern ’p’ to an input string ’s’. Unlike
7596 * libc’s version, the kernel version only applies to 8-bit ASCII strings.
7597 * In addition, all of the recursion cases except for ’*’ matching have been
7598 * unwound. For ’*’, we still implement recursive evaluation, but a depth
7599 * counter is maintained and matching is aborted if we recurse too deep.
7600 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7601 */
7602 static int
7603 dtrace_match_glob(const char *s, const char *p, int depth)
7604 {
7605 const char *olds;
7606 char s1, c;
7607 int gs;

7609 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7610 return (-1);

7612 if (s == NULL)
7613 s = ""; /* treat NULL as empty string */

7615 top:
7616 olds = s;
7617 s1 = *s++;

7619 if (p == NULL)
7620 return (0);

7622 if ((c = *p++) == ’\0’)
7623 return (s1 == ’\0’);

7625 switch (c) {
7626 case ’[’: {
7627 int ok = 0, notflag = 0;
7628 char lc = ’\0’;

7630 if (s1 == ’\0’)
7631 return (0);

7633 if (*p == ’!’) {
7634 notflag = 1;
7635 p++;
7636 }

7638 if ((c = *p++) == ’\0’)
7639 return (0);

7641 do {
7642 if (c == ’-’ && lc != ’\0’ && *p != ’]’) {
7643 if ((c = *p++) == ’\0’)
7644 return (0);
7645 if (c == ’\\’ && (c = *p++) == ’\0’)
7646 return (0);

7648 if (notflag) {
7649 if (s1 < lc || s1 > c)
7650 ok++;

new/usr/src/uts/common/dtrace/dtrace.c 117

7651 else
7652 return (0);
7653 } else if (lc <= s1 && s1 <= c)
7654 ok++;

7656 } else if (c == ’\\’ && (c = *p++) == ’\0’)
7657 return (0);

7659 lc = c; /* save left-hand ’c’ for next iteration */

7661 if (notflag) {
7662 if (s1 != c)
7663 ok++;
7664 else
7665 return (0);
7666 } else if (s1 == c)
7667 ok++;

7669 if ((c = *p++) == ’\0’)
7670 return (0);

7672 } while (c != ’]’);

7674 if (ok)
7675 goto top;

7677 return (0);
7678 }

7680 case ’\\’:
7681 if ((c = *p++) == ’\0’)
7682 return (0);
7683 /*FALLTHRU*/

7685 default:
7686 if (c != s1)
7687 return (0);
7688 /*FALLTHRU*/

7690 case ’?’:
7691 if (s1 != ’\0’)
7692 goto top;
7693 return (0);

7695 case ’*’:
7696 while (*p == ’*’)
7697 p++; /* consecutive *’s are identical to a single one */

7699 if (*p == ’\0’)
7700 return (1);

7702 for (s = olds; *s != ’\0’; s++) {
7703 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7704 return (gs);
7705 }

7707 return (0);
7708 }
7709 }

7711 /*ARGSUSED*/
7712 static int
7713 dtrace_match_string(const char *s, const char *p, int depth)
7714 {
7715 return (s != NULL && strcmp(s, p) == 0);
7716 }

new/usr/src/uts/common/dtrace/dtrace.c 118

7718 /*ARGSUSED*/
7719 static int
7720 dtrace_match_nul(const char *s, const char *p, int depth)
7721 {
7722 return (1); /* always match the empty pattern */
7723 }

7725 /*ARGSUSED*/
7726 static int
7727 dtrace_match_nonzero(const char *s, const char *p, int depth)
7728 {
7729 return (s != NULL && s[0] != ’\0’);
7730 }

7732 static int
7733 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7734 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7735 {
7736 dtrace_probe_t template, *probe;
7737 dtrace_hash_t *hash = NULL;
7738 int len, rc, best = INT_MAX, nmatched = 0;
7739 dtrace_id_t i;

7741 ASSERT(MUTEX_HELD(&dtrace_lock));

7743 /*
7744 * If the probe ID is specified in the key, just lookup by ID and
7745 * invoke the match callback once if a matching probe is found.
7746 */
7747 if (pkp->dtpk_id != DTRACE_IDNONE) {
7748 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7749 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7750 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7751 return (DTRACE_MATCH_FAIL);
7752 nmatched++;
7753 }
7754 return (nmatched);
7755 }

7757 template.dtpr_mod = (char *)pkp->dtpk_mod;
7758 template.dtpr_func = (char *)pkp->dtpk_func;
7759 template.dtpr_name = (char *)pkp->dtpk_name;

7761 /*
7762 * We want to find the most distinct of the module name, function
7763 * name, and name. So for each one that is not a glob pattern or
7764 * empty string, we perform a lookup in the corresponding hash and
7765 * use the hash table with the fewest collisions to do our search.
7766 */
7767 if (pkp->dtpk_mmatch == &dtrace_match_string &&
7768 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7769 best = len;
7770 hash = dtrace_bymod;
7771 }

7773 if (pkp->dtpk_fmatch == &dtrace_match_string &&
7774 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7775 best = len;
7776 hash = dtrace_byfunc;
7777 }

7779 if (pkp->dtpk_nmatch == &dtrace_match_string &&
7780 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7781 best = len;
7782 hash = dtrace_byname;

new/usr/src/uts/common/dtrace/dtrace.c 119

7783 }

7785 /*
7786 * If we did not select a hash table, iterate over every probe and
7787 * invoke our callback for each one that matches our input probe key.
7788 */
7789 if (hash == NULL) {
7790 for (i = 0; i < dtrace_nprobes; i++) {
7791 if ((probe = dtrace_probes[i]) == NULL ||
7792 dtrace_match_probe(probe, pkp, priv, uid,
7793 zoneid) <= 0)
7794 continue;

7796 nmatched++;

7798 if ((rc = (*matched)(probe, arg)) !=
7799 DTRACE_MATCH_NEXT) {
7800 if (rc == DTRACE_MATCH_FAIL)
7801 return (DTRACE_MATCH_FAIL);
7802 break;
7803 }
7804 }

7806 return (nmatched);
7807 }

7809 /*
7810 * If we selected a hash table, iterate over each probe of the same key
7811 * name and invoke the callback for every probe that matches the other
7812 * attributes of our input probe key.
7813 */
7814 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7815 probe = *(DTRACE_HASHNEXT(hash, probe))) {

7817 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7818 continue;

7820 nmatched++;

7822 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7823 if (rc == DTRACE_MATCH_FAIL)
7824 return (DTRACE_MATCH_FAIL);
7825 break;
7826 }
7827 }

7829 return (nmatched);
7830 }

7832 /*
7833 * Return the function pointer dtrace_probecmp() should use to compare the
7834 * specified pattern with a string. For NULL or empty patterns, we select
7835 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7836 * For non-empty non-glob strings, we use dtrace_match_string().
7837 */
7838 static dtrace_probekey_f *
7839 dtrace_probekey_func(const char *p)
7840 {
7841 char c;

7843 if (p == NULL || *p == ’\0’)
7844 return (&dtrace_match_nul);

7846 while ((c = *p++) != ’\0’) {
7847 if (c == ’[’ || c == ’?’ || c == ’*’ || c == ’\\’)
7848 return (&dtrace_match_glob);

new/usr/src/uts/common/dtrace/dtrace.c 120

7849 }

7851 return (&dtrace_match_string);
7852 }

7854 /*
7855 * Build a probe comparison key for use with dtrace_match_probe() from the
7856 * given probe description. By convention, a null key only matches anchored
7857 * probes: if each field is the empty string, reset dtpk_fmatch to
7858 * dtrace_match_nonzero().
7859 */
7860 static void
7861 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7862 {
7863 pkp->dtpk_prov = pdp->dtpd_provider;
7864 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);

7866 pkp->dtpk_mod = pdp->dtpd_mod;
7867 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);

7869 pkp->dtpk_func = pdp->dtpd_func;
7870 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);

7872 pkp->dtpk_name = pdp->dtpd_name;
7873 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);

7875 pkp->dtpk_id = pdp->dtpd_id;

7877 if (pkp->dtpk_id == DTRACE_IDNONE &&
7878 pkp->dtpk_pmatch == &dtrace_match_nul &&
7879 pkp->dtpk_mmatch == &dtrace_match_nul &&
7880 pkp->dtpk_fmatch == &dtrace_match_nul &&
7881 pkp->dtpk_nmatch == &dtrace_match_nul)
7882 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7883 }

7885 /*
7886 * DTrace Provider-to-Framework API Functions
7887 *
7888 * These functions implement much of the Provider-to-Framework API, as
7889 * described in <sys/dtrace.h>. The parts of the API not in this section are
7890 * the functions in the API for probe management (found below), and
7891 * dtrace_probe() itself (found above).
7892 */

7894 /*
7895 * Register the calling provider with the DTrace framework. This should
7896 * generally be called by DTrace providers in their attach(9E) entry point.
7897 */
7898 int
7899 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7900 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7901 {
7902 dtrace_provider_t *provider;

7904 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7905 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7906 "arguments", name ? name : "<NULL>");
7907 return (EINVAL);
7908 }

7910 if (name[0] == ’\0’ || dtrace_badname(name)) {
7911 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7912 "provider name", name);
7913 return (EINVAL);
7914 }

new/usr/src/uts/common/dtrace/dtrace.c 121

7916 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7917 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7918 pops->dtps_destroy == NULL ||
7919 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7920 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7921 "provider ops", name);
7922 return (EINVAL);
7923 }

7925 if (dtrace_badattr(&pap->dtpa_provider) ||
7926 dtrace_badattr(&pap->dtpa_mod) ||
7927 dtrace_badattr(&pap->dtpa_func) ||
7928 dtrace_badattr(&pap->dtpa_name) ||
7929 dtrace_badattr(&pap->dtpa_args)) {
7930 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7931 "provider attributes", name);
7932 return (EINVAL);
7933 }

7935 if (priv & ~DTRACE_PRIV_ALL) {
7936 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7937 "privilege attributes", name);
7938 return (EINVAL);
7939 }

7941 if ((priv & DTRACE_PRIV_KERNEL) &&
7942 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7943 pops->dtps_mode == NULL) {
7944 cmn_err(CE_WARN, "failed to register provider ’%s’: need "
7945 "dtps_mode() op for given privilege attributes", name);
7946 return (EINVAL);
7947 }

7949 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7950 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7951 (void) strcpy(provider->dtpv_name, name);

7953 provider->dtpv_attr = *pap;
7954 provider->dtpv_priv.dtpp_flags = priv;
7955 if (cr != NULL) {
7956 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7957 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7958 }
7959 provider->dtpv_pops = *pops;

7961 if (pops->dtps_provide == NULL) {
7962 ASSERT(pops->dtps_provide_module != NULL);
7963 provider->dtpv_pops.dtps_provide =
7964 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7965 }

7967 if (pops->dtps_provide_module == NULL) {
7968 ASSERT(pops->dtps_provide != NULL);
7969 provider->dtpv_pops.dtps_provide_module =
7970 (void (*)(void *, struct modctl *))dtrace_nullop;
7971 }

7973 if (pops->dtps_suspend == NULL) {
7974 ASSERT(pops->dtps_resume == NULL);
7975 provider->dtpv_pops.dtps_suspend =
7976 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7977 provider->dtpv_pops.dtps_resume =
7978 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7979 }

new/usr/src/uts/common/dtrace/dtrace.c 122

7981 provider->dtpv_arg = arg;
7982 *idp = (dtrace_provider_id_t)provider;

7984 if (pops == &dtrace_provider_ops) {
7985 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7986 ASSERT(MUTEX_HELD(&dtrace_lock));
7987 ASSERT(dtrace_anon.dta_enabling == NULL);

7989 /*
7990 * We make sure that the DTrace provider is at the head of
7991 * the provider chain.
7992 */
7993 provider->dtpv_next = dtrace_provider;
7994 dtrace_provider = provider;
7995 return (0);
7996 }

7998 mutex_enter(&dtrace_provider_lock);
7999 mutex_enter(&dtrace_lock);

8001 /*
8002 * If there is at least one provider registered, we’ll add this
8003 * provider after the first provider.
8004 */
8005 if (dtrace_provider != NULL) {
8006 provider->dtpv_next = dtrace_provider->dtpv_next;
8007 dtrace_provider->dtpv_next = provider;
8008 } else {
8009 dtrace_provider = provider;
8010 }

8012 if (dtrace_retained != NULL) {
8013 dtrace_enabling_provide(provider);

8015 /*
8016 * Now we need to call dtrace_enabling_matchall() -- which
8017 * will acquire cpu_lock and dtrace_lock. We therefore need
8018 * to drop all of our locks before calling into it...
8019 */
8020 mutex_exit(&dtrace_lock);
8021 mutex_exit(&dtrace_provider_lock);
8022 dtrace_enabling_matchall();

8024 return (0);
8025 }

8027 mutex_exit(&dtrace_lock);
8028 mutex_exit(&dtrace_provider_lock);

8030 return (0);
8031 }

8033 /*
8034 * Unregister the specified provider from the DTrace framework. This should
8035 * generally be called by DTrace providers in their detach(9E) entry point.
8036 */
8037 int
8038 dtrace_unregister(dtrace_provider_id_t id)
8039 {
8040 dtrace_provider_t *old = (dtrace_provider_t *)id;
8041 dtrace_provider_t *prev = NULL;
8042 int i, self = 0, noreap = 0;
8043 dtrace_probe_t *probe, *first = NULL;

8045 if (old->dtpv_pops.dtps_enable ==
8046 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {

new/usr/src/uts/common/dtrace/dtrace.c 123

8047 /*
8048 * If DTrace itself is the provider, we’re called with locks
8049 * already held.
8050 */
8051 ASSERT(old == dtrace_provider);
8052 ASSERT(dtrace_devi != NULL);
8053 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8054 ASSERT(MUTEX_HELD(&dtrace_lock));
8055 self = 1;

8057 if (dtrace_provider->dtpv_next != NULL) {
8058 /*
8059 * There’s another provider here; return failure.
8060 */
8061 return (EBUSY);
8062 }
8063 } else {
8064 mutex_enter(&dtrace_provider_lock);
8065 mutex_enter(&mod_lock);
8066 mutex_enter(&dtrace_lock);
8067 }

8069 /*
8070 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8071 * probes, we refuse to let providers slither away, unless this
8072 * provider has already been explicitly invalidated.
8073 */
8074 if (!old->dtpv_defunct &&
8075 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8076 dtrace_anon.dta_state->dts_necbs > 0))) {
8077 if (!self) {
8078 mutex_exit(&dtrace_lock);
8079 mutex_exit(&mod_lock);
8080 mutex_exit(&dtrace_provider_lock);
8081 }
8082 return (EBUSY);
8083 }

8085 /*
8086 * Attempt to destroy the probes associated with this provider.
8087 */
8088 for (i = 0; i < dtrace_nprobes; i++) {
8089 if ((probe = dtrace_probes[i]) == NULL)
8090 continue;

8092 if (probe->dtpr_provider != old)
8093 continue;

8095 if (probe->dtpr_ecb == NULL)
8096 continue;

8098 /*
8099 * If we are trying to unregister a defunct provider, and the
8100 * provider was made defunct within the interval dictated by
8101 * dtrace_unregister_defunct_reap, we’ll (asynchronously)
8102 * attempt to reap our enablings. To denote that the provider
8103 * should reattempt to unregister itself at some point in the
8104 * future, we will return a differentiable error code (EAGAIN
8105 * instead of EBUSY) in this case.
8106 */
8107 if (dtrace_gethrtime() - old->dtpv_defunct >
8108 dtrace_unregister_defunct_reap)
8109 noreap = 1;

8111 if (!self) {
8112 mutex_exit(&dtrace_lock);

new/usr/src/uts/common/dtrace/dtrace.c 124

8113 mutex_exit(&mod_lock);
8114 mutex_exit(&dtrace_provider_lock);
8115 }

8117 if (noreap)
8118 return (EBUSY);

8120 (void) taskq_dispatch(dtrace_taskq,
8121 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);

8123 return (EAGAIN);
8124 }

8126 /*
8127 * All of the probes for this provider are disabled; we can safely
8128 * remove all of them from their hash chains and from the probe array.
8129 */
8130 for (i = 0; i < dtrace_nprobes; i++) {
8131 if ((probe = dtrace_probes[i]) == NULL)
8132 continue;

8134 if (probe->dtpr_provider != old)
8135 continue;

8137 dtrace_probes[i] = NULL;

8139 dtrace_hash_remove(dtrace_bymod, probe);
8140 dtrace_hash_remove(dtrace_byfunc, probe);
8141 dtrace_hash_remove(dtrace_byname, probe);

8143 if (first == NULL) {
8144 first = probe;
8145 probe->dtpr_nextmod = NULL;
8146 } else {
8147 probe->dtpr_nextmod = first;
8148 first = probe;
8149 }
8150 }

8152 /*
8153 * The provider’s probes have been removed from the hash chains and
8154 * from the probe array. Now issue a dtrace_sync() to be sure that
8155 * everyone has cleared out from any probe array processing.
8156 */
8157 dtrace_sync();

8159 for (probe = first; probe != NULL; probe = first) {
8160 first = probe->dtpr_nextmod;

8162 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8163 probe->dtpr_arg);
8164 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8165 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8166 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8167 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8168 kmem_free(probe, sizeof (dtrace_probe_t));
8169 }

8171 if ((prev = dtrace_provider) == old) {
8172 ASSERT(self || dtrace_devi == NULL);
8173 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8174 dtrace_provider = old->dtpv_next;
8175 } else {
8176 while (prev != NULL && prev->dtpv_next != old)
8177 prev = prev->dtpv_next;

new/usr/src/uts/common/dtrace/dtrace.c 125

8179 if (prev == NULL) {
8180 panic("attempt to unregister non-existent "
8181 "dtrace provider %p\n", (void *)id);
8182 }

8184 prev->dtpv_next = old->dtpv_next;
8185 }

8187 if (!self) {
8188 mutex_exit(&dtrace_lock);
8189 mutex_exit(&mod_lock);
8190 mutex_exit(&dtrace_provider_lock);
8191 }

8193 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8194 kmem_free(old, sizeof (dtrace_provider_t));

8196 return (0);
8197 }

8199 /*
8200 * Invalidate the specified provider. All subsequent probe lookups for the
8201 * specified provider will fail, but its probes will not be removed.
8202 */
8203 void
8204 dtrace_invalidate(dtrace_provider_id_t id)
8205 {
8206 dtrace_provider_t *pvp = (dtrace_provider_t *)id;

8208 ASSERT(pvp->dtpv_pops.dtps_enable !=
8209 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);

8211 mutex_enter(&dtrace_provider_lock);
8212 mutex_enter(&dtrace_lock);

8214 pvp->dtpv_defunct = dtrace_gethrtime();

8216 mutex_exit(&dtrace_lock);
8217 mutex_exit(&dtrace_provider_lock);
8218 }

8220 /*
8221 * Indicate whether or not DTrace has attached.
8222 */
8223 int
8224 dtrace_attached(void)
8225 {
8226 /*
8227 * dtrace_provider will be non-NULL iff the DTrace driver has
8228 * attached. (It’s non-NULL because DTrace is always itself a
8229 * provider.)
8230 */
8231 return (dtrace_provider != NULL);
8232 }

8234 /*
8235 * Remove all the unenabled probes for the given provider. This function is
8236 * not unlike dtrace_unregister(), except that it doesn’t remove the provider
8237 * -- just as many of its associated probes as it can.
8238 */
8239 int
8240 dtrace_condense(dtrace_provider_id_t id)
8241 {
8242 dtrace_provider_t *prov = (dtrace_provider_t *)id;
8243 int i;
8244 dtrace_probe_t *probe;

new/usr/src/uts/common/dtrace/dtrace.c 126

8246 /*
8247 * Make sure this isn’t the dtrace provider itself.
8248 */
8249 ASSERT(prov->dtpv_pops.dtps_enable !=
8250 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);

8252 mutex_enter(&dtrace_provider_lock);
8253 mutex_enter(&dtrace_lock);

8255 /*
8256 * Attempt to destroy the probes associated with this provider.
8257 */
8258 for (i = 0; i < dtrace_nprobes; i++) {
8259 if ((probe = dtrace_probes[i]) == NULL)
8260 continue;

8262 if (probe->dtpr_provider != prov)
8263 continue;

8265 if (probe->dtpr_ecb != NULL)
8266 continue;

8268 dtrace_probes[i] = NULL;

8270 dtrace_hash_remove(dtrace_bymod, probe);
8271 dtrace_hash_remove(dtrace_byfunc, probe);
8272 dtrace_hash_remove(dtrace_byname, probe);

8274 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8275 probe->dtpr_arg);
8276 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8277 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8278 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8279 kmem_free(probe, sizeof (dtrace_probe_t));
8280 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8281 }

8283 mutex_exit(&dtrace_lock);
8284 mutex_exit(&dtrace_provider_lock);

8286 return (0);
8287 }

8289 /*
8290 * DTrace Probe Management Functions
8291 *
8292 * The functions in this section perform the DTrace probe management,
8293 * including functions to create probes, look-up probes, and call into the
8294 * providers to request that probes be provided. Some of these functions are
8295 * in the Provider-to-Framework API; these functions can be identified by the
8296 * fact that they are not declared "static".
8297 */

8299 /*
8300 * Create a probe with the specified module name, function name, and name.
8301 */
8302 dtrace_id_t
8303 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8304 const char *func, const char *name, int aframes, void *arg)
8305 {
8306 dtrace_probe_t *probe, **probes;
8307 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8308 dtrace_id_t id;

8310 if (provider == dtrace_provider) {

new/usr/src/uts/common/dtrace/dtrace.c 127

8311 ASSERT(MUTEX_HELD(&dtrace_lock));
8312 } else {
8313 mutex_enter(&dtrace_lock);
8314 }

8316 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8317 VM_BESTFIT | VM_SLEEP);
8318 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);

8320 probe->dtpr_id = id;
8321 probe->dtpr_gen = dtrace_probegen++;
8322 probe->dtpr_mod = dtrace_strdup(mod);
8323 probe->dtpr_func = dtrace_strdup(func);
8324 probe->dtpr_name = dtrace_strdup(name);
8325 probe->dtpr_arg = arg;
8326 probe->dtpr_aframes = aframes;
8327 probe->dtpr_provider = provider;

8329 dtrace_hash_add(dtrace_bymod, probe);
8330 dtrace_hash_add(dtrace_byfunc, probe);
8331 dtrace_hash_add(dtrace_byname, probe);

8333 if (id - 1 >= dtrace_nprobes) {
8334 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8335 size_t nsize = osize << 1;

8337 if (nsize == 0) {
8338 ASSERT(osize == 0);
8339 ASSERT(dtrace_probes == NULL);
8340 nsize = sizeof (dtrace_probe_t *);
8341 }

8343 probes = kmem_zalloc(nsize, KM_SLEEP);

8345 if (dtrace_probes == NULL) {
8346 ASSERT(osize == 0);
8347 dtrace_probes = probes;
8348 dtrace_nprobes = 1;
8349 } else {
8350 dtrace_probe_t **oprobes = dtrace_probes;

8352 bcopy(oprobes, probes, osize);
8353 dtrace_membar_producer();
8354 dtrace_probes = probes;

8356 dtrace_sync();

8358 /*
8359 * All CPUs are now seeing the new probes array; we can
8360 * safely free the old array.
8361 */
8362 kmem_free(oprobes, osize);
8363 dtrace_nprobes <<= 1;
8364 }

8366 ASSERT(id - 1 < dtrace_nprobes);
8367 }

8369 ASSERT(dtrace_probes[id - 1] == NULL);
8370 dtrace_probes[id - 1] = probe;

8372 if (provider != dtrace_provider)
8373 mutex_exit(&dtrace_lock);

8375 return (id);
8376 }

new/usr/src/uts/common/dtrace/dtrace.c 128

8378 static dtrace_probe_t *
8379 dtrace_probe_lookup_id(dtrace_id_t id)
8380 {
8381 ASSERT(MUTEX_HELD(&dtrace_lock));

8383 if (id == 0 || id > dtrace_nprobes)
8384 return (NULL);

8386 return (dtrace_probes[id - 1]);
8387 }

8389 static int
8390 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8391 {
8392 *((dtrace_id_t *)arg) = probe->dtpr_id;

8394 return (DTRACE_MATCH_DONE);
8395 }

8397 /*
8398 * Look up a probe based on provider and one or more of module name, function
8399 * name and probe name.
8400 */
8401 dtrace_id_t
8402 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8403 const char *func, const char *name)
8404 {
8405 dtrace_probekey_t pkey;
8406 dtrace_id_t id;
8407 int match;

8409 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8410 pkey.dtpk_pmatch = &dtrace_match_string;
8411 pkey.dtpk_mod = mod;
8412 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8413 pkey.dtpk_func = func;
8414 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8415 pkey.dtpk_name = name;
8416 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8417 pkey.dtpk_id = DTRACE_IDNONE;

8419 mutex_enter(&dtrace_lock);
8420 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8421 dtrace_probe_lookup_match, &id);
8422 mutex_exit(&dtrace_lock);

8424 ASSERT(match == 1 || match == 0);
8425 return (match ? id : 0);
8426 }

8428 /*
8429 * Returns the probe argument associated with the specified probe.
8430 */
8431 void *
8432 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8433 {
8434 dtrace_probe_t *probe;
8435 void *rval = NULL;

8437 mutex_enter(&dtrace_lock);

8439 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8440 probe->dtpr_provider == (dtrace_provider_t *)id)
8441 rval = probe->dtpr_arg;

new/usr/src/uts/common/dtrace/dtrace.c 129

8443 mutex_exit(&dtrace_lock);

8445 return (rval);
8446 }

8448 /*
8449 * Copy a probe into a probe description.
8450 */
8451 static void
8452 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8453 {
8454 bzero(pdp, sizeof (dtrace_probedesc_t));
8455 pdp->dtpd_id = prp->dtpr_id;

8457 (void) strncpy(pdp->dtpd_provider,
8458 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);

8460 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8461 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8462 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8463 }

8465 /*
8466 * Called to indicate that a probe -- or probes -- should be provided by a
8467 * specfied provider. If the specified description is NULL, the provider will
8468 * be told to provide all of its probes. (This is done whenever a new
8469 * consumer comes along, or whenever a retained enabling is to be matched.) If
8470 * the specified description is non-NULL, the provider is given the
8471 * opportunity to dynamically provide the specified probe, allowing providers
8472 * to support the creation of probes on-the-fly. (So-called _autocreated_
8473 * probes.) If the provider is NULL, the operations will be applied to all
8474 * providers; if the provider is non-NULL the operations will only be applied
8475 * to the specified provider. The dtrace_provider_lock must be held, and the
8476 * dtrace_lock must _not_ be held -- the provider’s dtps_provide() operation
8477 * will need to grab the dtrace_lock when it reenters the framework through
8478 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8479 */
8480 static void
8481 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8482 {
8483 struct modctl *ctl;
8484 int all = 0;

8486 ASSERT(MUTEX_HELD(&dtrace_provider_lock));

8488 if (prv == NULL) {
8489 all = 1;
8490 prv = dtrace_provider;
8491 }

8493 do {
8494 /*
8495 * First, call the blanket provide operation.
8496 */
8497 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);

8499 /*
8500 * Now call the per-module provide operation. We will grab
8501 * mod_lock to prevent the list from being modified. Note
8502 * that this also prevents the mod_busy bits from changing.
8503 * (mod_busy can only be changed with mod_lock held.)
8504 */
8505 mutex_enter(&mod_lock);

8507 ctl = &modules;
8508 do {

new/usr/src/uts/common/dtrace/dtrace.c 130

8509 if (ctl->mod_busy || ctl->mod_mp == NULL)
8510 continue;

8512 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);

8514 } while ((ctl = ctl->mod_next) != &modules);

8516 mutex_exit(&mod_lock);
8517 } while (all && (prv = prv->dtpv_next) != NULL);
8518 }

8520 /*
8521 * Iterate over each probe, and call the Framework-to-Provider API function
8522 * denoted by offs.
8523 */
8524 static void
8525 dtrace_probe_foreach(uintptr_t offs)
8526 {
8527 dtrace_provider_t *prov;
8528 void (*func)(void *, dtrace_id_t, void *);
8529 dtrace_probe_t *probe;
8530 dtrace_icookie_t cookie;
8531 int i;

8533 /*
8534 * We disable interrupts to walk through the probe array. This is
8535 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8536 * won’t see stale data.
8537 */
8538 cookie = dtrace_interrupt_disable();

8540 for (i = 0; i < dtrace_nprobes; i++) {
8541 if ((probe = dtrace_probes[i]) == NULL)
8542 continue;

8544 if (probe->dtpr_ecb == NULL) {
8545 /*
8546 * This probe isn’t enabled -- don’t call the function.
8547 */
8548 continue;
8549 }

8551 prov = probe->dtpr_provider;
8552 func = *((void(**)(void *, dtrace_id_t, void *))
8553 ((uintptr_t)&prov->dtpv_pops + offs));

8555 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8556 }

8558 dtrace_interrupt_enable(cookie);
8559 }

8561 static int
8562 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8563 {
8564 dtrace_probekey_t pkey;
8565 uint32_t priv;
8566 uid_t uid;
8567 zoneid_t zoneid;

8569 ASSERT(MUTEX_HELD(&dtrace_lock));
8570 dtrace_ecb_create_cache = NULL;

8572 if (desc == NULL) {
8573 /*
8574 * If we’re passed a NULL description, we’re being asked to

new/usr/src/uts/common/dtrace/dtrace.c 131

8575 * create an ECB with a NULL probe.
8576 */
8577 (void) dtrace_ecb_create_enable(NULL, enab);
8578 return (0);
8579 }

8581 dtrace_probekey(desc, &pkey);
8582 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8583 &priv, &uid, &zoneid);

8585 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8586 enab));
8587 }

8589 /*
8590 * DTrace Helper Provider Functions
8591 */
8592 static void
8593 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8594 {
8595 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8596 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8597 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8598 }

8600 static void
8601 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8602 const dof_provider_t *dofprov, char *strtab)
8603 {
8604 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8605 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8606 dofprov->dofpv_provattr);
8607 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8608 dofprov->dofpv_modattr);
8609 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8610 dofprov->dofpv_funcattr);
8611 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8612 dofprov->dofpv_nameattr);
8613 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8614 dofprov->dofpv_argsattr);
8615 }

8617 static void
8618 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8619 {
8620 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8621 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8622 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8623 dof_provider_t *provider;
8624 dof_probe_t *probe;
8625 uint32_t *off, *enoff;
8626 uint8_t *arg;
8627 char *strtab;
8628 uint_t i, nprobes;
8629 dtrace_helper_provdesc_t dhpv;
8630 dtrace_helper_probedesc_t dhpb;
8631 dtrace_meta_t *meta = dtrace_meta_pid;
8632 dtrace_mops_t *mops = &meta->dtm_mops;
8633 void *parg;

8635 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8636 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8637 provider->dofpv_strtab * dof->dofh_secsize);
8638 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8639 provider->dofpv_probes * dof->dofh_secsize);
8640 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +

new/usr/src/uts/common/dtrace/dtrace.c 132

8641 provider->dofpv_prargs * dof->dofh_secsize);
8642 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8643 provider->dofpv_proffs * dof->dofh_secsize);

8645 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8646 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8647 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8648 enoff = NULL;

8650 /*
8651 * See dtrace_helper_provider_validate().
8652 */
8653 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8654 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8655 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8656 provider->dofpv_prenoffs * dof->dofh_secsize);
8657 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8658 }

8660 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

8662 /*
8663 * Create the provider.
8664 */
8665 dtrace_dofprov2hprov(&dhpv, provider, strtab);

8667 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8668 return;

8670 meta->dtm_count++;

8672 /*
8673 * Create the probes.
8674 */
8675 for (i = 0; i < nprobes; i++) {
8676 probe = (dof_probe_t *)(uintptr_t)(daddr +
8677 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);

8679 dhpb.dthpb_mod = dhp->dofhp_mod;
8680 dhpb.dthpb_func = strtab + probe->dofpr_func;
8681 dhpb.dthpb_name = strtab + probe->dofpr_name;
8682 dhpb.dthpb_base = probe->dofpr_addr;
8683 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8684 dhpb.dthpb_noffs = probe->dofpr_noffs;
8685 if (enoff != NULL) {
8686 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8687 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8688 } else {
8689 dhpb.dthpb_enoffs = NULL;
8690 dhpb.dthpb_nenoffs = 0;
8691 }
8692 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8693 dhpb.dthpb_nargc = probe->dofpr_nargc;
8694 dhpb.dthpb_xargc = probe->dofpr_xargc;
8695 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8696 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;

8698 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8699 }
8700 }

8702 static void
8703 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8704 {
8705 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8706 dof_hdr_t *dof = (dof_hdr_t *)daddr;

new/usr/src/uts/common/dtrace/dtrace.c 133

8707 int i;

8709 ASSERT(MUTEX_HELD(&dtrace_meta_lock));

8711 for (i = 0; i < dof->dofh_secnum; i++) {
8712 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8713 dof->dofh_secoff + i * dof->dofh_secsize);

8715 if (sec->dofs_type != DOF_SECT_PROVIDER)
8716 continue;

8718 dtrace_helper_provide_one(dhp, sec, pid);
8719 }

8721 /*
8722 * We may have just created probes, so we must now rematch against
8723 * any retained enablings. Note that this call will acquire both
8724 * cpu_lock and dtrace_lock; the fact that we are holding
8725 * dtrace_meta_lock now is what defines the ordering with respect to
8726 * these three locks.
8727 */
8728 dtrace_enabling_matchall();
8729 }

8731 static void
8732 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8733 {
8734 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8735 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8736 dof_sec_t *str_sec;
8737 dof_provider_t *provider;
8738 char *strtab;
8739 dtrace_helper_provdesc_t dhpv;
8740 dtrace_meta_t *meta = dtrace_meta_pid;
8741 dtrace_mops_t *mops = &meta->dtm_mops;

8743 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8744 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8745 provider->dofpv_strtab * dof->dofh_secsize);

8747 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

8749 /*
8750 * Create the provider.
8751 */
8752 dtrace_dofprov2hprov(&dhpv, provider, strtab);

8754 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);

8756 meta->dtm_count--;
8757 }

8759 static void
8760 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8761 {
8762 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8763 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8764 int i;

8766 ASSERT(MUTEX_HELD(&dtrace_meta_lock));

8768 for (i = 0; i < dof->dofh_secnum; i++) {
8769 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8770 dof->dofh_secoff + i * dof->dofh_secsize);

8772 if (sec->dofs_type != DOF_SECT_PROVIDER)

new/usr/src/uts/common/dtrace/dtrace.c 134

8773 continue;

8775 dtrace_helper_provider_remove_one(dhp, sec, pid);
8776 }
8777 }

8779 /*
8780 * DTrace Meta Provider-to-Framework API Functions
8781 *
8782 * These functions implement the Meta Provider-to-Framework API, as described
8783 * in <sys/dtrace.h>.
8784 */
8785 int
8786 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8787 dtrace_meta_provider_id_t *idp)
8788 {
8789 dtrace_meta_t *meta;
8790 dtrace_helpers_t *help, *next;
8791 int i;

8793 *idp = DTRACE_METAPROVNONE;

8795 /*
8796 * We strictly don’t need the name, but we hold onto it for
8797 * debuggability. All hail error queues!
8798 */
8799 if (name == NULL) {
8800 cmn_err(CE_WARN, "failed to register meta-provider: "
8801 "invalid name");
8802 return (EINVAL);
8803 }

8805 if (mops == NULL ||
8806 mops->dtms_create_probe == NULL ||
8807 mops->dtms_provide_pid == NULL ||
8808 mops->dtms_remove_pid == NULL) {
8809 cmn_err(CE_WARN, "failed to register meta-register %s: "
8810 "invalid ops", name);
8811 return (EINVAL);
8812 }

8814 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8815 meta->dtm_mops = *mops;
8816 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8817 (void) strcpy(meta->dtm_name, name);
8818 meta->dtm_arg = arg;

8820 mutex_enter(&dtrace_meta_lock);
8821 mutex_enter(&dtrace_lock);

8823 if (dtrace_meta_pid != NULL) {
8824 mutex_exit(&dtrace_lock);
8825 mutex_exit(&dtrace_meta_lock);
8826 cmn_err(CE_WARN, "failed to register meta-register %s: "
8827 "user-land meta-provider exists", name);
8828 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8829 kmem_free(meta, sizeof (dtrace_meta_t));
8830 return (EINVAL);
8831 }

8833 dtrace_meta_pid = meta;
8834 *idp = (dtrace_meta_provider_id_t)meta;

8836 /*
8837 * If there are providers and probes ready to go, pass them
8838 * off to the new meta provider now.

new/usr/src/uts/common/dtrace/dtrace.c 135

8839 */

8841 help = dtrace_deferred_pid;
8842 dtrace_deferred_pid = NULL;

8844 mutex_exit(&dtrace_lock);

8846 while (help != NULL) {
8847 for (i = 0; i < help->dthps_nprovs; i++) {
8848 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8849 help->dthps_pid);
8850 }

8852 next = help->dthps_next;
8853 help->dthps_next = NULL;
8854 help->dthps_prev = NULL;
8855 help->dthps_deferred = 0;
8856 help = next;
8857 }

8859 mutex_exit(&dtrace_meta_lock);

8861 return (0);
8862 }

8864 int
8865 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8866 {
8867 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;

8869 mutex_enter(&dtrace_meta_lock);
8870 mutex_enter(&dtrace_lock);

8872 if (old == dtrace_meta_pid) {
8873 pp = &dtrace_meta_pid;
8874 } else {
8875 panic("attempt to unregister non-existent "
8876 "dtrace meta-provider %p\n", (void *)old);
8877 }

8879 if (old->dtm_count != 0) {
8880 mutex_exit(&dtrace_lock);
8881 mutex_exit(&dtrace_meta_lock);
8882 return (EBUSY);
8883 }

8885 *pp = NULL;

8887 mutex_exit(&dtrace_lock);
8888 mutex_exit(&dtrace_meta_lock);

8890 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8891 kmem_free(old, sizeof (dtrace_meta_t));

8893 return (0);
8894 }

8897 /*
8898 * DTrace DIF Object Functions
8899 */
8900 static int
8901 dtrace_difo_err(uint_t pc, const char *format, ...)
8902 {
8903 if (dtrace_err_verbose) {
8904 va_list alist;

new/usr/src/uts/common/dtrace/dtrace.c 136

8906 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8907 va_start(alist, format);
8908 (void) vuprintf(format, alist);
8909 va_end(alist);
8910 }

8912 #ifdef DTRACE_ERRDEBUG
8913 dtrace_errdebug(format);
8914 #endif
8915 return (1);
8916 }

8918 /*
8919 * Validate a DTrace DIF object by checking the IR instructions. The following
8920 * rules are currently enforced by dtrace_difo_validate():
8921 *
8922 * 1. Each instruction must have a valid opcode
8923 * 2. Each register, string, variable, or subroutine reference must be valid
8924 * 3. No instruction can modify register %r0 (must be zero)
8925 * 4. All instruction reserved bits must be set to zero
8926 * 5. The last instruction must be a "ret" instruction
8927 * 6. All branch targets must reference a valid instruction _after_ the branch
8928 */
8929 static int
8930 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8931 cred_t *cr)
8932 {
8933 int err = 0, i;
8934 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8935 int kcheckload;
8936 uint_t pc;

8938 kcheckload = cr == NULL ||
8939 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;

8941 dp->dtdo_destructive = 0;

8943 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8944 dif_instr_t instr = dp->dtdo_buf[pc];

8946 uint_t r1 = DIF_INSTR_R1(instr);
8947 uint_t r2 = DIF_INSTR_R2(instr);
8948 uint_t rd = DIF_INSTR_RD(instr);
8949 uint_t rs = DIF_INSTR_RS(instr);
8950 uint_t label = DIF_INSTR_LABEL(instr);
8951 uint_t v = DIF_INSTR_VAR(instr);
8952 uint_t subr = DIF_INSTR_SUBR(instr);
8953 uint_t type = DIF_INSTR_TYPE(instr);
8954 uint_t op = DIF_INSTR_OP(instr);

8956 switch (op) {
8957 case DIF_OP_OR:
8958 case DIF_OP_XOR:
8959 case DIF_OP_AND:
8960 case DIF_OP_SLL:
8961 case DIF_OP_SRL:
8962 case DIF_OP_SRA:
8963 case DIF_OP_SUB:
8964 case DIF_OP_ADD:
8965 case DIF_OP_MUL:
8966 case DIF_OP_SDIV:
8967 case DIF_OP_UDIV:
8968 case DIF_OP_SREM:
8969 case DIF_OP_UREM:
8970 case DIF_OP_COPYS:

new/usr/src/uts/common/dtrace/dtrace.c 137

8971 if (r1 >= nregs)
8972 err += efunc(pc, "invalid register %u\n", r1);
8973 if (r2 >= nregs)
8974 err += efunc(pc, "invalid register %u\n", r2);
8975 if (rd >= nregs)
8976 err += efunc(pc, "invalid register %u\n", rd);
8977 if (rd == 0)
8978 err += efunc(pc, "cannot write to %r0\n");
8979 break;
8980 case DIF_OP_NOT:
8981 case DIF_OP_MOV:
8982 case DIF_OP_ALLOCS:
8983 if (r1 >= nregs)
8984 err += efunc(pc, "invalid register %u\n", r1);
8985 if (r2 != 0)
8986 err += efunc(pc, "non-zero reserved bits\n");
8987 if (rd >= nregs)
8988 err += efunc(pc, "invalid register %u\n", rd);
8989 if (rd == 0)
8990 err += efunc(pc, "cannot write to %r0\n");
8991 break;
8992 case DIF_OP_LDSB:
8993 case DIF_OP_LDSH:
8994 case DIF_OP_LDSW:
8995 case DIF_OP_LDUB:
8996 case DIF_OP_LDUH:
8997 case DIF_OP_LDUW:
8998 case DIF_OP_LDX:
8999 if (r1 >= nregs)
9000 err += efunc(pc, "invalid register %u\n", r1);
9001 if (r2 != 0)
9002 err += efunc(pc, "non-zero reserved bits\n");
9003 if (rd >= nregs)
9004 err += efunc(pc, "invalid register %u\n", rd);
9005 if (rd == 0)
9006 err += efunc(pc, "cannot write to %r0\n");
9007 if (kcheckload)
9008 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9009 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9010 break;
9011 case DIF_OP_RLDSB:
9012 case DIF_OP_RLDSH:
9013 case DIF_OP_RLDSW:
9014 case DIF_OP_RLDUB:
9015 case DIF_OP_RLDUH:
9016 case DIF_OP_RLDUW:
9017 case DIF_OP_RLDX:
9018 if (r1 >= nregs)
9019 err += efunc(pc, "invalid register %u\n", r1);
9020 if (r2 != 0)
9021 err += efunc(pc, "non-zero reserved bits\n");
9022 if (rd >= nregs)
9023 err += efunc(pc, "invalid register %u\n", rd);
9024 if (rd == 0)
9025 err += efunc(pc, "cannot write to %r0\n");
9026 break;
9027 case DIF_OP_ULDSB:
9028 case DIF_OP_ULDSH:
9029 case DIF_OP_ULDSW:
9030 case DIF_OP_ULDUB:
9031 case DIF_OP_ULDUH:
9032 case DIF_OP_ULDUW:
9033 case DIF_OP_ULDX:
9034 if (r1 >= nregs)
9035 err += efunc(pc, "invalid register %u\n", r1);
9036 if (r2 != 0)

new/usr/src/uts/common/dtrace/dtrace.c 138

9037 err += efunc(pc, "non-zero reserved bits\n");
9038 if (rd >= nregs)
9039 err += efunc(pc, "invalid register %u\n", rd);
9040 if (rd == 0)
9041 err += efunc(pc, "cannot write to %r0\n");
9042 break;
9043 case DIF_OP_STB:
9044 case DIF_OP_STH:
9045 case DIF_OP_STW:
9046 case DIF_OP_STX:
9047 if (r1 >= nregs)
9048 err += efunc(pc, "invalid register %u\n", r1);
9049 if (r2 != 0)
9050 err += efunc(pc, "non-zero reserved bits\n");
9051 if (rd >= nregs)
9052 err += efunc(pc, "invalid register %u\n", rd);
9053 if (rd == 0)
9054 err += efunc(pc, "cannot write to 0 address\n");
9055 break;
9056 case DIF_OP_CMP:
9057 case DIF_OP_SCMP:
9058 if (r1 >= nregs)
9059 err += efunc(pc, "invalid register %u\n", r1);
9060 if (r2 >= nregs)
9061 err += efunc(pc, "invalid register %u\n", r2);
9062 if (rd != 0)
9063 err += efunc(pc, "non-zero reserved bits\n");
9064 break;
9065 case DIF_OP_TST:
9066 if (r1 >= nregs)
9067 err += efunc(pc, "invalid register %u\n", r1);
9068 if (r2 != 0 || rd != 0)
9069 err += efunc(pc, "non-zero reserved bits\n");
9070 break;
9071 case DIF_OP_BA:
9072 case DIF_OP_BE:
9073 case DIF_OP_BNE:
9074 case DIF_OP_BG:
9075 case DIF_OP_BGU:
9076 case DIF_OP_BGE:
9077 case DIF_OP_BGEU:
9078 case DIF_OP_BL:
9079 case DIF_OP_BLU:
9080 case DIF_OP_BLE:
9081 case DIF_OP_BLEU:
9082 if (label >= dp->dtdo_len) {
9083 err += efunc(pc, "invalid branch target %u\n",
9084 label);
9085 }
9086 if (label <= pc) {
9087 err += efunc(pc, "backward branch to %u\n",
9088 label);
9089 }
9090 break;
9091 case DIF_OP_RET:
9092 if (r1 != 0 || r2 != 0)
9093 err += efunc(pc, "non-zero reserved bits\n");
9094 if (rd >= nregs)
9095 err += efunc(pc, "invalid register %u\n", rd);
9096 break;
9097 case DIF_OP_NOP:
9098 case DIF_OP_POPTS:
9099 case DIF_OP_FLUSHTS:
9100 if (r1 != 0 || r2 != 0 || rd != 0)
9101 err += efunc(pc, "non-zero reserved bits\n");
9102 break;

new/usr/src/uts/common/dtrace/dtrace.c 139

9103 case DIF_OP_SETX:
9104 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9105 err += efunc(pc, "invalid integer ref %u\n",
9106 DIF_INSTR_INTEGER(instr));
9107 }
9108 if (rd >= nregs)
9109 err += efunc(pc, "invalid register %u\n", rd);
9110 if (rd == 0)
9111 err += efunc(pc, "cannot write to %r0\n");
9112 break;
9113 case DIF_OP_SETS:
9114 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9115 err += efunc(pc, "invalid string ref %u\n",
9116 DIF_INSTR_STRING(instr));
9117 }
9118 if (rd >= nregs)
9119 err += efunc(pc, "invalid register %u\n", rd);
9120 if (rd == 0)
9121 err += efunc(pc, "cannot write to %r0\n");
9122 break;
9123 case DIF_OP_LDGA:
9124 case DIF_OP_LDTA:
9125 if (r1 > DIF_VAR_ARRAY_MAX)
9126 err += efunc(pc, "invalid array %u\n", r1);
9127 if (r2 >= nregs)
9128 err += efunc(pc, "invalid register %u\n", r2);
9129 if (rd >= nregs)
9130 err += efunc(pc, "invalid register %u\n", rd);
9131 if (rd == 0)
9132 err += efunc(pc, "cannot write to %r0\n");
9133 break;
9134 case DIF_OP_LDGS:
9135 case DIF_OP_LDTS:
9136 case DIF_OP_LDLS:
9137 case DIF_OP_LDGAA:
9138 case DIF_OP_LDTAA:
9139 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9140 err += efunc(pc, "invalid variable %u\n", v);
9141 if (rd >= nregs)
9142 err += efunc(pc, "invalid register %u\n", rd);
9143 if (rd == 0)
9144 err += efunc(pc, "cannot write to %r0\n");
9145 break;
9146 case DIF_OP_STGS:
9147 case DIF_OP_STTS:
9148 case DIF_OP_STLS:
9149 case DIF_OP_STGAA:
9150 case DIF_OP_STTAA:
9151 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9152 err += efunc(pc, "invalid variable %u\n", v);
9153 if (rs >= nregs)
9154 err += efunc(pc, "invalid register %u\n", rd);
9155 break;
9156 case DIF_OP_CALL:
9157 if (subr > DIF_SUBR_MAX)
9158 err += efunc(pc, "invalid subr %u\n", subr);
9159 if (rd >= nregs)
9160 err += efunc(pc, "invalid register %u\n", rd);
9161 if (rd == 0)
9162 err += efunc(pc, "cannot write to %r0\n");

9164 if (subr == DIF_SUBR_COPYOUT ||
9165 subr == DIF_SUBR_COPYOUTSTR) {
9166 dp->dtdo_destructive = 1;
9167 }

new/usr/src/uts/common/dtrace/dtrace.c 140

9169 if (subr == DIF_SUBR_GETF) {
9170 /*
9171 * If we have a getf() we need to record that
9172 * in our state. Note that our state can be
9173 * NULL if this is a helper -- but in that
9174 * case, the call to getf() is itself illegal,
9175 * and will be caught (slightly later) when
9176 * the helper is validated.
9177 */
9178 if (vstate->dtvs_state != NULL)
9179 vstate->dtvs_state->dts_getf++;
9180 }

9182 break;
9183 case DIF_OP_PUSHTR:
9184 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9185 err += efunc(pc, "invalid ref type %u\n", type);
9186 if (r2 >= nregs)
9187 err += efunc(pc, "invalid register %u\n", r2);
9188 if (rs >= nregs)
9189 err += efunc(pc, "invalid register %u\n", rs);
9190 break;
9191 case DIF_OP_PUSHTV:
9192 if (type != DIF_TYPE_CTF)
9193 err += efunc(pc, "invalid val type %u\n", type);
9194 if (r2 >= nregs)
9195 err += efunc(pc, "invalid register %u\n", r2);
9196 if (rs >= nregs)
9197 err += efunc(pc, "invalid register %u\n", rs);
9198 break;
9199 default:
9200 err += efunc(pc, "invalid opcode %u\n",
9201 DIF_INSTR_OP(instr));
9202 }
9203 }

9205 if (dp->dtdo_len != 0 &&
9206 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9207 err += efunc(dp->dtdo_len - 1,
9208 "expected ’ret’ as last DIF instruction\n");
9209 }

9211 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
9212 /*
9213 * If we’re not returning by reference, the size must be either
9214 * 0 or the size of one of the base types.
9215 */
9216 switch (dp->dtdo_rtype.dtdt_size) {
9217 case 0:
9218 case sizeof (uint8_t):
9219 case sizeof (uint16_t):
9220 case sizeof (uint32_t):
9221 case sizeof (uint64_t):
9222 break;

9224 default:
9225 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9226 }
9227 }

9229 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9230 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9231 dtrace_diftype_t *vt, *et;
9232 uint_t id, ndx;

9234 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&

new/usr/src/uts/common/dtrace/dtrace.c 141

9235 v->dtdv_scope != DIFV_SCOPE_THREAD &&
9236 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9237 err += efunc(i, "unrecognized variable scope %d\n",
9238 v->dtdv_scope);
9239 break;
9240 }

9242 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9243 v->dtdv_kind != DIFV_KIND_SCALAR) {
9244 err += efunc(i, "unrecognized variable type %d\n",
9245 v->dtdv_kind);
9246 break;
9247 }

9249 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9250 err += efunc(i, "%d exceeds variable id limit\n", id);
9251 break;
9252 }

9254 if (id < DIF_VAR_OTHER_UBASE)
9255 continue;

9257 /*
9258 * For user-defined variables, we need to check that this
9259 * definition is identical to any previous definition that we
9260 * encountered.
9261 */
9262 ndx = id - DIF_VAR_OTHER_UBASE;

9264 switch (v->dtdv_scope) {
9265 case DIFV_SCOPE_GLOBAL:
9266 if (ndx < vstate->dtvs_nglobals) {
9267 dtrace_statvar_t *svar;

9269 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9270 existing = &svar->dtsv_var;
9271 }

9273 break;

9275 case DIFV_SCOPE_THREAD:
9276 if (ndx < vstate->dtvs_ntlocals)
9277 existing = &vstate->dtvs_tlocals[ndx];
9278 break;

9280 case DIFV_SCOPE_LOCAL:
9281 if (ndx < vstate->dtvs_nlocals) {
9282 dtrace_statvar_t *svar;

9284 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9285 existing = &svar->dtsv_var;
9286 }

9288 break;
9289 }

9291 vt = &v->dtdv_type;

9293 if (vt->dtdt_flags & DIF_TF_BYREF) {
9294 if (vt->dtdt_size == 0) {
9295 err += efunc(i, "zero-sized variable\n");
9296 break;
9297 }

9299 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9300 vt->dtdt_size > dtrace_global_maxsize) {

new/usr/src/uts/common/dtrace/dtrace.c 142

9301 err += efunc(i, "oversized by-ref global\n");
9302 break;
9303 }
9304 }

9306 if (existing == NULL || existing->dtdv_id == 0)
9307 continue;

9309 ASSERT(existing->dtdv_id == v->dtdv_id);
9310 ASSERT(existing->dtdv_scope == v->dtdv_scope);

9312 if (existing->dtdv_kind != v->dtdv_kind)
9313 err += efunc(i, "%d changed variable kind\n", id);

9315 et = &existing->dtdv_type;

9317 if (vt->dtdt_flags != et->dtdt_flags) {
9318 err += efunc(i, "%d changed variable type flags\n", id);
9319 break;
9320 }

9322 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9323 err += efunc(i, "%d changed variable type size\n", id);
9324 break;
9325 }
9326 }

9328 return (err);
9329 }

9331 /*
9332 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9333 * are much more constrained than normal DIFOs. Specifically, they may
9334 * not:
9335 *
9336 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9337 * miscellaneous string routines
9338 * 2. Access DTrace variables other than the args[] array, and the
9339 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9340 * 3. Have thread-local variables.
9341 * 4. Have dynamic variables.
9342 */
9343 static int
9344 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9345 {
9346 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9347 int err = 0;
9348 uint_t pc;

9350 for (pc = 0; pc < dp->dtdo_len; pc++) {
9351 dif_instr_t instr = dp->dtdo_buf[pc];

9353 uint_t v = DIF_INSTR_VAR(instr);
9354 uint_t subr = DIF_INSTR_SUBR(instr);
9355 uint_t op = DIF_INSTR_OP(instr);

9357 switch (op) {
9358 case DIF_OP_OR:
9359 case DIF_OP_XOR:
9360 case DIF_OP_AND:
9361 case DIF_OP_SLL:
9362 case DIF_OP_SRL:
9363 case DIF_OP_SRA:
9364 case DIF_OP_SUB:
9365 case DIF_OP_ADD:
9366 case DIF_OP_MUL:

new/usr/src/uts/common/dtrace/dtrace.c 143

9367 case DIF_OP_SDIV:
9368 case DIF_OP_UDIV:
9369 case DIF_OP_SREM:
9370 case DIF_OP_UREM:
9371 case DIF_OP_COPYS:
9372 case DIF_OP_NOT:
9373 case DIF_OP_MOV:
9374 case DIF_OP_RLDSB:
9375 case DIF_OP_RLDSH:
9376 case DIF_OP_RLDSW:
9377 case DIF_OP_RLDUB:
9378 case DIF_OP_RLDUH:
9379 case DIF_OP_RLDUW:
9380 case DIF_OP_RLDX:
9381 case DIF_OP_ULDSB:
9382 case DIF_OP_ULDSH:
9383 case DIF_OP_ULDSW:
9384 case DIF_OP_ULDUB:
9385 case DIF_OP_ULDUH:
9386 case DIF_OP_ULDUW:
9387 case DIF_OP_ULDX:
9388 case DIF_OP_STB:
9389 case DIF_OP_STH:
9390 case DIF_OP_STW:
9391 case DIF_OP_STX:
9392 case DIF_OP_ALLOCS:
9393 case DIF_OP_CMP:
9394 case DIF_OP_SCMP:
9395 case DIF_OP_TST:
9396 case DIF_OP_BA:
9397 case DIF_OP_BE:
9398 case DIF_OP_BNE:
9399 case DIF_OP_BG:
9400 case DIF_OP_BGU:
9401 case DIF_OP_BGE:
9402 case DIF_OP_BGEU:
9403 case DIF_OP_BL:
9404 case DIF_OP_BLU:
9405 case DIF_OP_BLE:
9406 case DIF_OP_BLEU:
9407 case DIF_OP_RET:
9408 case DIF_OP_NOP:
9409 case DIF_OP_POPTS:
9410 case DIF_OP_FLUSHTS:
9411 case DIF_OP_SETX:
9412 case DIF_OP_SETS:
9413 case DIF_OP_LDGA:
9414 case DIF_OP_LDLS:
9415 case DIF_OP_STGS:
9416 case DIF_OP_STLS:
9417 case DIF_OP_PUSHTR:
9418 case DIF_OP_PUSHTV:
9419 break;

9421 case DIF_OP_LDGS:
9422 if (v >= DIF_VAR_OTHER_UBASE)
9423 break;

9425 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9426 break;

9428 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9429 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9430 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9431 v == DIF_VAR_UID || v == DIF_VAR_GID)
9432 break;

new/usr/src/uts/common/dtrace/dtrace.c 144

9434 err += efunc(pc, "illegal variable %u\n", v);
9435 break;

9437 case DIF_OP_LDTA:
9438 case DIF_OP_LDTS:
9439 case DIF_OP_LDGAA:
9440 case DIF_OP_LDTAA:
9441 err += efunc(pc, "illegal dynamic variable load\n");
9442 break;

9444 case DIF_OP_STTS:
9445 case DIF_OP_STGAA:
9446 case DIF_OP_STTAA:
9447 err += efunc(pc, "illegal dynamic variable store\n");
9448 break;

9450 case DIF_OP_CALL:
9451 if (subr == DIF_SUBR_ALLOCA ||
9452 subr == DIF_SUBR_BCOPY ||
9453 subr == DIF_SUBR_COPYIN ||
9454 subr == DIF_SUBR_COPYINTO ||
9455 subr == DIF_SUBR_COPYINSTR ||
9456 subr == DIF_SUBR_INDEX ||
9457 subr == DIF_SUBR_INET_NTOA ||
9458 subr == DIF_SUBR_INET_NTOA6 ||
9459 subr == DIF_SUBR_INET_NTOP ||
9460 subr == DIF_SUBR_JSON ||
9461 #endif /* ! codereview */
9462 subr == DIF_SUBR_LLTOSTR ||
9463 subr == DIF_SUBR_STRTOLL ||
9464 #endif /* ! codereview */
9465 subr == DIF_SUBR_RINDEX ||
9466 subr == DIF_SUBR_STRCHR ||
9467 subr == DIF_SUBR_STRJOIN ||
9468 subr == DIF_SUBR_STRRCHR ||
9469 subr == DIF_SUBR_STRSTR ||
9470 subr == DIF_SUBR_HTONS ||
9471 subr == DIF_SUBR_HTONL ||
9472 subr == DIF_SUBR_HTONLL ||
9473 subr == DIF_SUBR_NTOHS ||
9474 subr == DIF_SUBR_NTOHL ||
9475 subr == DIF_SUBR_NTOHLL)
9476 break;

9478 err += efunc(pc, "invalid subr %u\n", subr);
9479 break;

9481 default:
9482 err += efunc(pc, "invalid opcode %u\n",
9483 DIF_INSTR_OP(instr));
9484 }
9485 }

9487 return (err);
9488 }

9490 /*
9491 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9492 * basis; 0 if not.
9493 */
9494 static int
9495 dtrace_difo_cacheable(dtrace_difo_t *dp)
9496 {
9497 int i;

new/usr/src/uts/common/dtrace/dtrace.c 145

9499 if (dp == NULL)
9500 return (0);

9502 for (i = 0; i < dp->dtdo_varlen; i++) {
9503 dtrace_difv_t *v = &dp->dtdo_vartab[i];

9505 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9506 continue;

9508 switch (v->dtdv_id) {
9509 case DIF_VAR_CURTHREAD:
9510 case DIF_VAR_PID:
9511 case DIF_VAR_TID:
9512 case DIF_VAR_EXECNAME:
9513 case DIF_VAR_ZONENAME:
9514 break;

9516 default:
9517 return (0);
9518 }
9519 }

9521 /*
9522 * This DIF object may be cacheable. Now we need to look for any
9523 * array loading instructions, any memory loading instructions, or
9524 * any stores to thread-local variables.
9525 */
9526 for (i = 0; i < dp->dtdo_len; i++) {
9527 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);

9529 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9530 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9531 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9532 op == DIF_OP_LDGA || op == DIF_OP_STTS)
9533 return (0);
9534 }

9536 return (1);
9537 }

9539 static void
9540 dtrace_difo_hold(dtrace_difo_t *dp)
9541 {
9542 int i;

9544 ASSERT(MUTEX_HELD(&dtrace_lock));

9546 dp->dtdo_refcnt++;
9547 ASSERT(dp->dtdo_refcnt != 0);

9549 /*
9550 * We need to check this DIF object for references to the variable
9551 * DIF_VAR_VTIMESTAMP.
9552 */
9553 for (i = 0; i < dp->dtdo_varlen; i++) {
9554 dtrace_difv_t *v = &dp->dtdo_vartab[i];

9556 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9557 continue;

9559 if (dtrace_vtime_references++ == 0)
9560 dtrace_vtime_enable();
9561 }
9562 }

9564 /*

new/usr/src/uts/common/dtrace/dtrace.c 146

9565 * This routine calculates the dynamic variable chunksize for a given DIF
9566 * object. The calculation is not fool-proof, and can probably be tricked by
9567 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9568 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9569 * if a dynamic variable size exceeds the chunksize.
9570 */
9571 static void
9572 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9573 {
9574 uint64_t sval;
9575 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9576 const dif_instr_t *text = dp->dtdo_buf;
9577 uint_t pc, srd = 0;
9578 uint_t ttop = 0;
9579 size_t size, ksize;
9580 uint_t id, i;

9582 for (pc = 0; pc < dp->dtdo_len; pc++) {
9583 dif_instr_t instr = text[pc];
9584 uint_t op = DIF_INSTR_OP(instr);
9585 uint_t rd = DIF_INSTR_RD(instr);
9586 uint_t r1 = DIF_INSTR_R1(instr);
9587 uint_t nkeys = 0;
9588 uchar_t scope;

9590 dtrace_key_t *key = tupregs;

9592 switch (op) {
9593 case DIF_OP_SETX:
9594 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9595 srd = rd;
9596 continue;

9598 case DIF_OP_STTS:
9599 key = &tupregs[DIF_DTR_NREGS];
9600 key[0].dttk_size = 0;
9601 key[1].dttk_size = 0;
9602 nkeys = 2;
9603 scope = DIFV_SCOPE_THREAD;
9604 break;

9606 case DIF_OP_STGAA:
9607 case DIF_OP_STTAA:
9608 nkeys = ttop;

9610 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9611 key[nkeys++].dttk_size = 0;

9613 key[nkeys++].dttk_size = 0;

9615 if (op == DIF_OP_STTAA) {
9616 scope = DIFV_SCOPE_THREAD;
9617 } else {
9618 scope = DIFV_SCOPE_GLOBAL;
9619 }

9621 break;

9623 case DIF_OP_PUSHTR:
9624 if (ttop == DIF_DTR_NREGS)
9625 return;

9627 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9628 /*
9629 * If the register for the size of the "pushtr"
9630 * is %r0 (or the value is 0) and the type is

new/usr/src/uts/common/dtrace/dtrace.c 147

9631 * a string, we’ll use the system-wide default
9632 * string size.
9633 */
9634 tupregs[ttop++].dttk_size =
9635 dtrace_strsize_default;
9636 } else {
9637 if (srd == 0)
9638 return;

9640 tupregs[ttop++].dttk_size = sval;
9641 }

9643 break;

9645 case DIF_OP_PUSHTV:
9646 if (ttop == DIF_DTR_NREGS)
9647 return;

9649 tupregs[ttop++].dttk_size = 0;
9650 break;

9652 case DIF_OP_FLUSHTS:
9653 ttop = 0;
9654 break;

9656 case DIF_OP_POPTS:
9657 if (ttop != 0)
9658 ttop--;
9659 break;
9660 }

9662 sval = 0;
9663 srd = 0;

9665 if (nkeys == 0)
9666 continue;

9668 /*
9669 * We have a dynamic variable allocation; calculate its size.
9670 */
9671 for (ksize = 0, i = 0; i < nkeys; i++)
9672 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));

9674 size = sizeof (dtrace_dynvar_t);
9675 size += sizeof (dtrace_key_t) * (nkeys - 1);
9676 size += ksize;

9678 /*
9679 * Now we need to determine the size of the stored data.
9680 */
9681 id = DIF_INSTR_VAR(instr);

9683 for (i = 0; i < dp->dtdo_varlen; i++) {
9684 dtrace_difv_t *v = &dp->dtdo_vartab[i];

9686 if (v->dtdv_id == id && v->dtdv_scope == scope) {
9687 size += v->dtdv_type.dtdt_size;
9688 break;
9689 }
9690 }

9692 if (i == dp->dtdo_varlen)
9693 return;

9695 /*
9696 * We have the size. If this is larger than the chunk size

new/usr/src/uts/common/dtrace/dtrace.c 148

9697 * for our dynamic variable state, reset the chunk size.
9698 */
9699 size = P2ROUNDUP(size, sizeof (uint64_t));

9701 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9702 vstate->dtvs_dynvars.dtds_chunksize = size;
9703 }
9704 }

9706 static void
9707 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9708 {
9709 int i, oldsvars, osz, nsz, otlocals, ntlocals;
9710 uint_t id;

9712 ASSERT(MUTEX_HELD(&dtrace_lock));
9713 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);

9715 for (i = 0; i < dp->dtdo_varlen; i++) {
9716 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9717 dtrace_statvar_t *svar, ***svarp;
9718 size_t dsize = 0;
9719 uint8_t scope = v->dtdv_scope;
9720 int *np;

9722 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9723 continue;

9725 id -= DIF_VAR_OTHER_UBASE;

9727 switch (scope) {
9728 case DIFV_SCOPE_THREAD:
9729 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9730 dtrace_difv_t *tlocals;

9732 if ((ntlocals = (otlocals << 1)) == 0)
9733 ntlocals = 1;

9735 osz = otlocals * sizeof (dtrace_difv_t);
9736 nsz = ntlocals * sizeof (dtrace_difv_t);

9738 tlocals = kmem_zalloc(nsz, KM_SLEEP);

9740 if (osz != 0) {
9741 bcopy(vstate->dtvs_tlocals,
9742 tlocals, osz);
9743 kmem_free(vstate->dtvs_tlocals, osz);
9744 }

9746 vstate->dtvs_tlocals = tlocals;
9747 vstate->dtvs_ntlocals = ntlocals;
9748 }

9750 vstate->dtvs_tlocals[id] = *v;
9751 continue;

9753 case DIFV_SCOPE_LOCAL:
9754 np = &vstate->dtvs_nlocals;
9755 svarp = &vstate->dtvs_locals;

9757 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9758 dsize = NCPU * (v->dtdv_type.dtdt_size +
9759 sizeof (uint64_t));
9760 else
9761 dsize = NCPU * sizeof (uint64_t);

new/usr/src/uts/common/dtrace/dtrace.c 149

9763 break;

9765 case DIFV_SCOPE_GLOBAL:
9766 np = &vstate->dtvs_nglobals;
9767 svarp = &vstate->dtvs_globals;

9769 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9770 dsize = v->dtdv_type.dtdt_size +
9771 sizeof (uint64_t);

9773 break;

9775 default:
9776 ASSERT(0);
9777 }

9779 while (id >= (oldsvars = *np)) {
9780 dtrace_statvar_t **statics;
9781 int newsvars, oldsize, newsize;

9783 if ((newsvars = (oldsvars << 1)) == 0)
9784 newsvars = 1;

9786 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9787 newsize = newsvars * sizeof (dtrace_statvar_t *);

9789 statics = kmem_zalloc(newsize, KM_SLEEP);

9791 if (oldsize != 0) {
9792 bcopy(*svarp, statics, oldsize);
9793 kmem_free(*svarp, oldsize);
9794 }

9796 *svarp = statics;
9797 *np = newsvars;
9798 }

9800 if ((svar = (*svarp)[id]) == NULL) {
9801 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9802 svar->dtsv_var = *v;

9804 if ((svar->dtsv_size = dsize) != 0) {
9805 svar->dtsv_data = (uint64_t)(uintptr_t)
9806 kmem_zalloc(dsize, KM_SLEEP);
9807 }

9809 (*svarp)[id] = svar;
9810 }

9812 svar->dtsv_refcnt++;
9813 }

9815 dtrace_difo_chunksize(dp, vstate);
9816 dtrace_difo_hold(dp);
9817 }

9819 static dtrace_difo_t *
9820 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9821 {
9822 dtrace_difo_t *new;
9823 size_t sz;

9825 ASSERT(dp->dtdo_buf != NULL);
9826 ASSERT(dp->dtdo_refcnt != 0);

9828 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);

new/usr/src/uts/common/dtrace/dtrace.c 150

9830 ASSERT(dp->dtdo_buf != NULL);
9831 sz = dp->dtdo_len * sizeof (dif_instr_t);
9832 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9833 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9834 new->dtdo_len = dp->dtdo_len;

9836 if (dp->dtdo_strtab != NULL) {
9837 ASSERT(dp->dtdo_strlen != 0);
9838 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9839 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9840 new->dtdo_strlen = dp->dtdo_strlen;
9841 }

9843 if (dp->dtdo_inttab != NULL) {
9844 ASSERT(dp->dtdo_intlen != 0);
9845 sz = dp->dtdo_intlen * sizeof (uint64_t);
9846 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9847 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9848 new->dtdo_intlen = dp->dtdo_intlen;
9849 }

9851 if (dp->dtdo_vartab != NULL) {
9852 ASSERT(dp->dtdo_varlen != 0);
9853 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9854 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9855 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9856 new->dtdo_varlen = dp->dtdo_varlen;
9857 }

9859 dtrace_difo_init(new, vstate);
9860 return (new);
9861 }

9863 static void
9864 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9865 {
9866 int i;

9868 ASSERT(dp->dtdo_refcnt == 0);

9870 for (i = 0; i < dp->dtdo_varlen; i++) {
9871 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9872 dtrace_statvar_t *svar, **svarp;
9873 uint_t id;
9874 uint8_t scope = v->dtdv_scope;
9875 int *np;

9877 switch (scope) {
9878 case DIFV_SCOPE_THREAD:
9879 continue;

9881 case DIFV_SCOPE_LOCAL:
9882 np = &vstate->dtvs_nlocals;
9883 svarp = vstate->dtvs_locals;
9884 break;

9886 case DIFV_SCOPE_GLOBAL:
9887 np = &vstate->dtvs_nglobals;
9888 svarp = vstate->dtvs_globals;
9889 break;

9891 default:
9892 ASSERT(0);
9893 }

new/usr/src/uts/common/dtrace/dtrace.c 151

9895 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9896 continue;

9898 id -= DIF_VAR_OTHER_UBASE;
9899 ASSERT(id < *np);

9901 svar = svarp[id];
9902 ASSERT(svar != NULL);
9903 ASSERT(svar->dtsv_refcnt > 0);

9905 if (--svar->dtsv_refcnt > 0)
9906 continue;

9908 if (svar->dtsv_size != 0) {
9909 ASSERT(svar->dtsv_data != NULL);
9910 kmem_free((void *)(uintptr_t)svar->dtsv_data,
9911 svar->dtsv_size);
9912 }

9914 kmem_free(svar, sizeof (dtrace_statvar_t));
9915 svarp[id] = NULL;
9916 }

9918 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9919 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9920 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9921 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));

9923 kmem_free(dp, sizeof (dtrace_difo_t));
9924 }

9926 static void
9927 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9928 {
9929 int i;

9931 ASSERT(MUTEX_HELD(&dtrace_lock));
9932 ASSERT(dp->dtdo_refcnt != 0);

9934 for (i = 0; i < dp->dtdo_varlen; i++) {
9935 dtrace_difv_t *v = &dp->dtdo_vartab[i];

9937 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9938 continue;

9940 ASSERT(dtrace_vtime_references > 0);
9941 if (--dtrace_vtime_references == 0)
9942 dtrace_vtime_disable();
9943 }

9945 if (--dp->dtdo_refcnt == 0)
9946 dtrace_difo_destroy(dp, vstate);
9947 }

9949 /*
9950 * DTrace Format Functions
9951 */
9952 static uint16_t
9953 dtrace_format_add(dtrace_state_t *state, char *str)
9954 {
9955 char *fmt, **new;
9956 uint16_t ndx, len = strlen(str) + 1;

9958 fmt = kmem_zalloc(len, KM_SLEEP);
9959 bcopy(str, fmt, len);

new/usr/src/uts/common/dtrace/dtrace.c 152

9961 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9962 if (state->dts_formats[ndx] == NULL) {
9963 state->dts_formats[ndx] = fmt;
9964 return (ndx + 1);
9965 }
9966 }

9968 if (state->dts_nformats == USHRT_MAX) {
9969 /*
9970 * This is only likely if a denial-of-service attack is being
9971 * attempted. As such, it’s okay to fail silently here.
9972 */
9973 kmem_free(fmt, len);
9974 return (0);
9975 }

9977 /*
9978 * For simplicity, we always resize the formats array to be exactly the
9979 * number of formats.
9980 */
9981 ndx = state->dts_nformats++;
9982 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);

9984 if (state->dts_formats != NULL) {
9985 ASSERT(ndx != 0);
9986 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9987 kmem_free(state->dts_formats, ndx * sizeof (char *));
9988 }

9990 state->dts_formats = new;
9991 state->dts_formats[ndx] = fmt;

9993 return (ndx + 1);
9994 }

9996 static void
9997 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9998 {
9999 char *fmt;

10001 ASSERT(state->dts_formats != NULL);
10002 ASSERT(format <= state->dts_nformats);
10003 ASSERT(state->dts_formats[format - 1] != NULL);

10005 fmt = state->dts_formats[format - 1];
10006 kmem_free(fmt, strlen(fmt) + 1);
10007 state->dts_formats[format - 1] = NULL;
10008 }

10010 static void
10011 dtrace_format_destroy(dtrace_state_t *state)
10012 {
10013 int i;

10015 if (state->dts_nformats == 0) {
10016 ASSERT(state->dts_formats == NULL);
10017 return;
10018 }

10020 ASSERT(state->dts_formats != NULL);

10022 for (i = 0; i < state->dts_nformats; i++) {
10023 char *fmt = state->dts_formats[i];

10025 if (fmt == NULL)
10026 continue;

new/usr/src/uts/common/dtrace/dtrace.c 153

10028 kmem_free(fmt, strlen(fmt) + 1);
10029 }

10031 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10032 state->dts_nformats = 0;
10033 state->dts_formats = NULL;
10034 }

10036 /*
10037 * DTrace Predicate Functions
10038 */
10039 static dtrace_predicate_t *
10040 dtrace_predicate_create(dtrace_difo_t *dp)
10041 {
10042 dtrace_predicate_t *pred;

10044 ASSERT(MUTEX_HELD(&dtrace_lock));
10045 ASSERT(dp->dtdo_refcnt != 0);

10047 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10048 pred->dtp_difo = dp;
10049 pred->dtp_refcnt = 1;

10051 if (!dtrace_difo_cacheable(dp))
10052 return (pred);

10054 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10055 /*
10056 * This is only theoretically possible -- we have had 2^32
10057 * cacheable predicates on this machine. We cannot allow any
10058 * more predicates to become cacheable: as unlikely as it is,
10059 * there may be a thread caching a (now stale) predicate cache
10060 * ID. (N.B.: the temptation is being successfully resisted to
10061 * have this cmn_err() "Holy shit -- we executed this code!")
10062 */
10063 return (pred);
10064 }

10066 pred->dtp_cacheid = dtrace_predcache_id++;

10068 return (pred);
10069 }

10071 static void
10072 dtrace_predicate_hold(dtrace_predicate_t *pred)
10073 {
10074 ASSERT(MUTEX_HELD(&dtrace_lock));
10075 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10076 ASSERT(pred->dtp_refcnt > 0);

10078 pred->dtp_refcnt++;
10079 }

10081 static void
10082 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10083 {
10084 dtrace_difo_t *dp = pred->dtp_difo;

10086 ASSERT(MUTEX_HELD(&dtrace_lock));
10087 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10088 ASSERT(pred->dtp_refcnt > 0);

10090 if (--pred->dtp_refcnt == 0) {
10091 dtrace_difo_release(pred->dtp_difo, vstate);
10092 kmem_free(pred, sizeof (dtrace_predicate_t));

new/usr/src/uts/common/dtrace/dtrace.c 154

10093 }
10094 }

10096 /*
10097 * DTrace Action Description Functions
10098 */
10099 static dtrace_actdesc_t *
10100 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10101 uint64_t uarg, uint64_t arg)
10102 {
10103 dtrace_actdesc_t *act;

10105 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10106 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));

10108 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10109 act->dtad_kind = kind;
10110 act->dtad_ntuple = ntuple;
10111 act->dtad_uarg = uarg;
10112 act->dtad_arg = arg;
10113 act->dtad_refcnt = 1;

10115 return (act);
10116 }

10118 static void
10119 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10120 {
10121 ASSERT(act->dtad_refcnt >= 1);
10122 act->dtad_refcnt++;
10123 }

10125 static void
10126 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10127 {
10128 dtrace_actkind_t kind = act->dtad_kind;
10129 dtrace_difo_t *dp;

10131 ASSERT(act->dtad_refcnt >= 1);

10133 if (--act->dtad_refcnt != 0)
10134 return;

10136 if ((dp = act->dtad_difo) != NULL)
10137 dtrace_difo_release(dp, vstate);

10139 if (DTRACEACT_ISPRINTFLIKE(kind)) {
10140 char *str = (char *)(uintptr_t)act->dtad_arg;

10142 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10143 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));

10145 if (str != NULL)
10146 kmem_free(str, strlen(str) + 1);
10147 }

10149 kmem_free(act, sizeof (dtrace_actdesc_t));
10150 }

10152 /*
10153 * DTrace ECB Functions
10154 */
10155 static dtrace_ecb_t *
10156 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10157 {
10158 dtrace_ecb_t *ecb;

new/usr/src/uts/common/dtrace/dtrace.c 155

10159 dtrace_epid_t epid;

10161 ASSERT(MUTEX_HELD(&dtrace_lock));

10163 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10164 ecb->dte_predicate = NULL;
10165 ecb->dte_probe = probe;

10167 /*
10168 * The default size is the size of the default action: recording
10169 * the header.
10170 */
10171 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10172 ecb->dte_alignment = sizeof (dtrace_epid_t);

10174 epid = state->dts_epid++;

10176 if (epid - 1 >= state->dts_necbs) {
10177 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10178 int necbs = state->dts_necbs << 1;

10180 ASSERT(epid == state->dts_necbs + 1);

10182 if (necbs == 0) {
10183 ASSERT(oecbs == NULL);
10184 necbs = 1;
10185 }

10187 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);

10189 if (oecbs != NULL)
10190 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));

10192 dtrace_membar_producer();
10193 state->dts_ecbs = ecbs;

10195 if (oecbs != NULL) {
10196 /*
10197 * If this state is active, we must dtrace_sync()
10198 * before we can free the old dts_ecbs array: we’re
10199 * coming in hot, and there may be active ring
10200 * buffer processing (which indexes into the dts_ecbs
10201 * array) on another CPU.
10202 */
10203 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10204 dtrace_sync();

10206 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10207 }

10209 dtrace_membar_producer();
10210 state->dts_necbs = necbs;
10211 }

10213 ecb->dte_state = state;

10215 ASSERT(state->dts_ecbs[epid - 1] == NULL);
10216 dtrace_membar_producer();
10217 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;

10219 return (ecb);
10220 }

10222 static int
10223 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10224 {

new/usr/src/uts/common/dtrace/dtrace.c 156

10225 dtrace_probe_t *probe = ecb->dte_probe;

10227 ASSERT(MUTEX_HELD(&cpu_lock));
10228 ASSERT(MUTEX_HELD(&dtrace_lock));
10229 ASSERT(ecb->dte_next == NULL);

10231 if (probe == NULL) {
10232 /*
10233 * This is the NULL probe -- there’s nothing to do.
10234 */
10235 return (0);
10236 }

10238 if (probe->dtpr_ecb == NULL) {
10239 dtrace_provider_t *prov = probe->dtpr_provider;

10241 /*
10242 * We’re the first ECB on this probe.
10243 */
10244 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;

10246 if (ecb->dte_predicate != NULL)
10247 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;

10249 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10250 probe->dtpr_id, probe->dtpr_arg));
10251 } else {
10252 /*
10253 * This probe is already active. Swing the last pointer to
10254 * point to the new ECB, and issue a dtrace_sync() to assure
10255 * that all CPUs have seen the change.
10256 */
10257 ASSERT(probe->dtpr_ecb_last != NULL);
10258 probe->dtpr_ecb_last->dte_next = ecb;
10259 probe->dtpr_ecb_last = ecb;
10260 probe->dtpr_predcache = 0;

10262 dtrace_sync();
10263 return (0);
10264 }
10265 }

10267 static void
10268 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10269 {
10270 dtrace_action_t *act;
10271 uint32_t curneeded = UINT32_MAX;
10272 uint32_t aggbase = UINT32_MAX;

10274 /*
10275 * If we record anything, we always record the dtrace_rechdr_t. (And
10276 * we always record it first.)
10277 */
10278 ecb->dte_size = sizeof (dtrace_rechdr_t);
10279 ecb->dte_alignment = sizeof (dtrace_epid_t);

10281 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10282 dtrace_recdesc_t *rec = &act->dta_rec;
10283 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);

10285 ecb->dte_alignment = MAX(ecb->dte_alignment,
10286 rec->dtrd_alignment);

10288 if (DTRACEACT_ISAGG(act->dta_kind)) {
10289 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;

new/usr/src/uts/common/dtrace/dtrace.c 157

10291 ASSERT(rec->dtrd_size != 0);
10292 ASSERT(agg->dtag_first != NULL);
10293 ASSERT(act->dta_prev->dta_intuple);
10294 ASSERT(aggbase != UINT32_MAX);
10295 ASSERT(curneeded != UINT32_MAX);

10297 agg->dtag_base = aggbase;

10299 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10300 rec->dtrd_offset = curneeded;
10301 curneeded += rec->dtrd_size;
10302 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);

10304 aggbase = UINT32_MAX;
10305 curneeded = UINT32_MAX;
10306 } else if (act->dta_intuple) {
10307 if (curneeded == UINT32_MAX) {
10308 /*
10309 * This is the first record in a tuple. Align
10310 * curneeded to be at offset 4 in an 8-byte
10311 * aligned block.
10312 */
10313 ASSERT(act->dta_prev == NULL ||
10314 !act->dta_prev->dta_intuple);
10315 ASSERT3U(aggbase, ==, UINT32_MAX);
10316 curneeded = P2PHASEUP(ecb->dte_size,
10317 sizeof (uint64_t), sizeof (dtrace_aggid_t));

10319 aggbase = curneeded - sizeof (dtrace_aggid_t);
10320 ASSERT(IS_P2ALIGNED(aggbase,
10321 sizeof (uint64_t)));
10322 }
10323 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10324 rec->dtrd_offset = curneeded;
10325 curneeded += rec->dtrd_size;
10326 } else {
10327 /* tuples must be followed by an aggregation */
10328 ASSERT(act->dta_prev == NULL ||
10329 !act->dta_prev->dta_intuple);

10331 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10332 rec->dtrd_alignment);
10333 rec->dtrd_offset = ecb->dte_size;
10334 ecb->dte_size += rec->dtrd_size;
10335 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10336 }
10337 }

10339 if ((act = ecb->dte_action) != NULL &&
10340 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10341 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10342 /*
10343 * If the size is still sizeof (dtrace_rechdr_t), then all
10344 * actions store no data; set the size to 0.
10345 */
10346 ecb->dte_size = 0;
10347 }

10349 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10350 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10351 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10352 ecb->dte_needed);
10353 }

10355 static dtrace_action_t *
10356 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)

new/usr/src/uts/common/dtrace/dtrace.c 158

10357 {
10358 dtrace_aggregation_t *agg;
10359 size_t size = sizeof (uint64_t);
10360 int ntuple = desc->dtad_ntuple;
10361 dtrace_action_t *act;
10362 dtrace_recdesc_t *frec;
10363 dtrace_aggid_t aggid;
10364 dtrace_state_t *state = ecb->dte_state;

10366 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10367 agg->dtag_ecb = ecb;

10369 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));

10371 switch (desc->dtad_kind) {
10372 case DTRACEAGG_MIN:
10373 agg->dtag_initial = INT64_MAX;
10374 agg->dtag_aggregate = dtrace_aggregate_min;
10375 break;

10377 case DTRACEAGG_MAX:
10378 agg->dtag_initial = INT64_MIN;
10379 agg->dtag_aggregate = dtrace_aggregate_max;
10380 break;

10382 case DTRACEAGG_COUNT:
10383 agg->dtag_aggregate = dtrace_aggregate_count;
10384 break;

10386 case DTRACEAGG_QUANTIZE:
10387 agg->dtag_aggregate = dtrace_aggregate_quantize;
10388 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10389 sizeof (uint64_t);
10390 break;

10392 case DTRACEAGG_LQUANTIZE: {
10393 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10394 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);

10396 agg->dtag_initial = desc->dtad_arg;
10397 agg->dtag_aggregate = dtrace_aggregate_lquantize;

10399 if (step == 0 || levels == 0)
10400 goto err;

10402 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10403 break;
10404 }

10406 case DTRACEAGG_LLQUANTIZE: {
10407 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10408 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10409 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10410 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10411 int64_t v;

10413 agg->dtag_initial = desc->dtad_arg;
10414 agg->dtag_aggregate = dtrace_aggregate_llquantize;

10416 if (factor < 2 || low >= high || nsteps < factor)
10417 goto err;

10419 /*
10420 * Now check that the number of steps evenly divides a power
10421 * of the factor. (This assures both integer bucket size and
10422 * linearity within each magnitude.)

new/usr/src/uts/common/dtrace/dtrace.c 159

10423 */
10424 for (v = factor; v < nsteps; v *= factor)
10425 continue;

10427 if ((v % nsteps) || (nsteps % factor))
10428 goto err;

10430 size = (dtrace_aggregate_llquantize_bucket(factor,
10431 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10432 break;
10433 }

10435 case DTRACEAGG_AVG:
10436 agg->dtag_aggregate = dtrace_aggregate_avg;
10437 size = sizeof (uint64_t) * 2;
10438 break;

10440 case DTRACEAGG_STDDEV:
10441 agg->dtag_aggregate = dtrace_aggregate_stddev;
10442 size = sizeof (uint64_t) * 4;
10443 break;

10445 case DTRACEAGG_SUM:
10446 agg->dtag_aggregate = dtrace_aggregate_sum;
10447 break;

10449 default:
10450 goto err;
10451 }

10453 agg->dtag_action.dta_rec.dtrd_size = size;

10455 if (ntuple == 0)
10456 goto err;

10458 /*
10459 * We must make sure that we have enough actions for the n-tuple.
10460 */
10461 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10462 if (DTRACEACT_ISAGG(act->dta_kind))
10463 break;

10465 if (--ntuple == 0) {
10466 /*
10467 * This is the action with which our n-tuple begins.
10468 */
10469 agg->dtag_first = act;
10470 goto success;
10471 }
10472 }

10474 /*
10475 * This n-tuple is short by ntuple elements. Return failure.
10476 */
10477 ASSERT(ntuple != 0);
10478 err:
10479 kmem_free(agg, sizeof (dtrace_aggregation_t));
10480 return (NULL);

10482 success:
10483 /*
10484 * If the last action in the tuple has a size of zero, it’s actually
10485 * an expression argument for the aggregating action.
10486 */
10487 ASSERT(ecb->dte_action_last != NULL);
10488 act = ecb->dte_action_last;

new/usr/src/uts/common/dtrace/dtrace.c 160

10490 if (act->dta_kind == DTRACEACT_DIFEXPR) {
10491 ASSERT(act->dta_difo != NULL);

10493 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10494 agg->dtag_hasarg = 1;
10495 }

10497 /*
10498 * We need to allocate an id for this aggregation.
10499 */
10500 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10501 VM_BESTFIT | VM_SLEEP);

10503 if (aggid - 1 >= state->dts_naggregations) {
10504 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10505 dtrace_aggregation_t **aggs;
10506 int naggs = state->dts_naggregations << 1;
10507 int onaggs = state->dts_naggregations;

10509 ASSERT(aggid == state->dts_naggregations + 1);

10511 if (naggs == 0) {
10512 ASSERT(oaggs == NULL);
10513 naggs = 1;
10514 }

10516 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);

10518 if (oaggs != NULL) {
10519 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10520 kmem_free(oaggs, onaggs * sizeof (*aggs));
10521 }

10523 state->dts_aggregations = aggs;
10524 state->dts_naggregations = naggs;
10525 }

10527 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10528 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;

10530 frec = &agg->dtag_first->dta_rec;
10531 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10532 frec->dtrd_alignment = sizeof (dtrace_aggid_t);

10534 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10535 ASSERT(!act->dta_intuple);
10536 act->dta_intuple = 1;
10537 }

10539 return (&agg->dtag_action);
10540 }

10542 static void
10543 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10544 {
10545 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10546 dtrace_state_t *state = ecb->dte_state;
10547 dtrace_aggid_t aggid = agg->dtag_id;

10549 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10550 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);

10552 ASSERT(state->dts_aggregations[aggid - 1] == agg);
10553 state->dts_aggregations[aggid - 1] = NULL;

new/usr/src/uts/common/dtrace/dtrace.c 161

10555 kmem_free(agg, sizeof (dtrace_aggregation_t));
10556 }

10558 static int
10559 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10560 {
10561 dtrace_action_t *action, *last;
10562 dtrace_difo_t *dp = desc->dtad_difo;
10563 uint32_t size = 0, align = sizeof (uint8_t), mask;
10564 uint16_t format = 0;
10565 dtrace_recdesc_t *rec;
10566 dtrace_state_t *state = ecb->dte_state;
10567 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10568 uint64_t arg = desc->dtad_arg;

10570 ASSERT(MUTEX_HELD(&dtrace_lock));
10571 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);

10573 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10574 /*
10575 * If this is an aggregating action, there must be neither
10576 * a speculate nor a commit on the action chain.
10577 */
10578 dtrace_action_t *act;

10580 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10581 if (act->dta_kind == DTRACEACT_COMMIT)
10582 return (EINVAL);

10584 if (act->dta_kind == DTRACEACT_SPECULATE)
10585 return (EINVAL);
10586 }

10588 action = dtrace_ecb_aggregation_create(ecb, desc);

10590 if (action == NULL)
10591 return (EINVAL);
10592 } else {
10593 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10594 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10595 dp != NULL && dp->dtdo_destructive)) {
10596 state->dts_destructive = 1;
10597 }

10599 switch (desc->dtad_kind) {
10600 case DTRACEACT_PRINTF:
10601 case DTRACEACT_PRINTA:
10602 case DTRACEACT_SYSTEM:
10603 case DTRACEACT_FREOPEN:
10604 case DTRACEACT_DIFEXPR:
10605 /*
10606 * We know that our arg is a string -- turn it into a
10607 * format.
10608 */
10609 if (arg == NULL) {
10610 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10611 desc->dtad_kind == DTRACEACT_DIFEXPR);
10612 format = 0;
10613 } else {
10614 ASSERT(arg != NULL);
10615 ASSERT(arg > KERNELBASE);
10616 format = dtrace_format_add(state,
10617 (char *)(uintptr_t)arg);
10618 }

10620 /*FALLTHROUGH*/

new/usr/src/uts/common/dtrace/dtrace.c 162

10621 case DTRACEACT_LIBACT:
10622 case DTRACEACT_TRACEMEM:
10623 case DTRACEACT_TRACEMEM_DYNSIZE:
10624 if (dp == NULL)
10625 return (EINVAL);

10627 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10628 break;

10630 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10631 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10632 return (EINVAL);

10634 size = opt[DTRACEOPT_STRSIZE];
10635 }

10637 break;

10639 case DTRACEACT_STACK:
10640 if ((nframes = arg) == 0) {
10641 nframes = opt[DTRACEOPT_STACKFRAMES];
10642 ASSERT(nframes > 0);
10643 arg = nframes;
10644 }

10646 size = nframes * sizeof (pc_t);
10647 break;

10649 case DTRACEACT_JSTACK:
10650 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10651 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];

10653 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10654 nframes = opt[DTRACEOPT_JSTACKFRAMES];

10656 arg = DTRACE_USTACK_ARG(nframes, strsize);

10658 /*FALLTHROUGH*/
10659 case DTRACEACT_USTACK:
10660 if (desc->dtad_kind != DTRACEACT_JSTACK &&
10661 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10662 strsize = DTRACE_USTACK_STRSIZE(arg);
10663 nframes = opt[DTRACEOPT_USTACKFRAMES];
10664 ASSERT(nframes > 0);
10665 arg = DTRACE_USTACK_ARG(nframes, strsize);
10666 }

10668 /*
10669 * Save a slot for the pid.
10670 */
10671 size = (nframes + 1) * sizeof (uint64_t);
10672 size += DTRACE_USTACK_STRSIZE(arg);
10673 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));

10675 break;

10677 case DTRACEACT_SYM:
10678 case DTRACEACT_MOD:
10679 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10680 sizeof (uint64_t)) ||
10681 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10682 return (EINVAL);
10683 break;

10685 case DTRACEACT_USYM:
10686 case DTRACEACT_UMOD:

new/usr/src/uts/common/dtrace/dtrace.c 163

10687 case DTRACEACT_UADDR:
10688 if (dp == NULL ||
10689 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10690 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10691 return (EINVAL);

10693 /*
10694 * We have a slot for the pid, plus a slot for the
10695 * argument. To keep things simple (aligned with
10696 * bitness-neutral sizing), we store each as a 64-bit
10697 * quantity.
10698 */
10699 size = 2 * sizeof (uint64_t);
10700 break;

10702 case DTRACEACT_STOP:
10703 case DTRACEACT_BREAKPOINT:
10704 case DTRACEACT_PANIC:
10705 break;

10707 case DTRACEACT_CHILL:
10708 case DTRACEACT_DISCARD:
10709 case DTRACEACT_RAISE:
10710 if (dp == NULL)
10711 return (EINVAL);
10712 break;

10714 case DTRACEACT_EXIT:
10715 if (dp == NULL ||
10716 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10717 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10718 return (EINVAL);
10719 break;

10721 case DTRACEACT_SPECULATE:
10722 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10723 return (EINVAL);

10725 if (dp == NULL)
10726 return (EINVAL);

10728 state->dts_speculates = 1;
10729 break;

10731 case DTRACEACT_COMMIT: {
10732 dtrace_action_t *act = ecb->dte_action;

10734 for (; act != NULL; act = act->dta_next) {
10735 if (act->dta_kind == DTRACEACT_COMMIT)
10736 return (EINVAL);
10737 }

10739 if (dp == NULL)
10740 return (EINVAL);
10741 break;
10742 }

10744 default:
10745 return (EINVAL);
10746 }

10748 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10749 /*
10750 * If this is a data-storing action or a speculate,
10751 * we must be sure that there isn’t a commit on the
10752 * action chain.

new/usr/src/uts/common/dtrace/dtrace.c 164

10753 */
10754 dtrace_action_t *act = ecb->dte_action;

10756 for (; act != NULL; act = act->dta_next) {
10757 if (act->dta_kind == DTRACEACT_COMMIT)
10758 return (EINVAL);
10759 }
10760 }

10762 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10763 action->dta_rec.dtrd_size = size;
10764 }

10766 action->dta_refcnt = 1;
10767 rec = &action->dta_rec;
10768 size = rec->dtrd_size;

10770 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10771 if (!(size & mask)) {
10772 align = mask + 1;
10773 break;
10774 }
10775 }

10777 action->dta_kind = desc->dtad_kind;

10779 if ((action->dta_difo = dp) != NULL)
10780 dtrace_difo_hold(dp);

10782 rec->dtrd_action = action->dta_kind;
10783 rec->dtrd_arg = arg;
10784 rec->dtrd_uarg = desc->dtad_uarg;
10785 rec->dtrd_alignment = (uint16_t)align;
10786 rec->dtrd_format = format;

10788 if ((last = ecb->dte_action_last) != NULL) {
10789 ASSERT(ecb->dte_action != NULL);
10790 action->dta_prev = last;
10791 last->dta_next = action;
10792 } else {
10793 ASSERT(ecb->dte_action == NULL);
10794 ecb->dte_action = action;
10795 }

10797 ecb->dte_action_last = action;

10799 return (0);
10800 }

10802 static void
10803 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10804 {
10805 dtrace_action_t *act = ecb->dte_action, *next;
10806 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10807 dtrace_difo_t *dp;
10808 uint16_t format;

10810 if (act != NULL && act->dta_refcnt > 1) {
10811 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10812 act->dta_refcnt--;
10813 } else {
10814 for (; act != NULL; act = next) {
10815 next = act->dta_next;
10816 ASSERT(next != NULL || act == ecb->dte_action_last);
10817 ASSERT(act->dta_refcnt == 1);

new/usr/src/uts/common/dtrace/dtrace.c 165

10819 if ((format = act->dta_rec.dtrd_format) != 0)
10820 dtrace_format_remove(ecb->dte_state, format);

10822 if ((dp = act->dta_difo) != NULL)
10823 dtrace_difo_release(dp, vstate);

10825 if (DTRACEACT_ISAGG(act->dta_kind)) {
10826 dtrace_ecb_aggregation_destroy(ecb, act);
10827 } else {
10828 kmem_free(act, sizeof (dtrace_action_t));
10829 }
10830 }
10831 }

10833 ecb->dte_action = NULL;
10834 ecb->dte_action_last = NULL;
10835 ecb->dte_size = 0;
10836 }

10838 static void
10839 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10840 {
10841 /*
10842 * We disable the ECB by removing it from its probe.
10843 */
10844 dtrace_ecb_t *pecb, *prev = NULL;
10845 dtrace_probe_t *probe = ecb->dte_probe;

10847 ASSERT(MUTEX_HELD(&dtrace_lock));

10849 if (probe == NULL) {
10850 /*
10851 * This is the NULL probe; there is nothing to disable.
10852 */
10853 return;
10854 }

10856 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10857 if (pecb == ecb)
10858 break;
10859 prev = pecb;
10860 }

10862 ASSERT(pecb != NULL);

10864 if (prev == NULL) {
10865 probe->dtpr_ecb = ecb->dte_next;
10866 } else {
10867 prev->dte_next = ecb->dte_next;
10868 }

10870 if (ecb == probe->dtpr_ecb_last) {
10871 ASSERT(ecb->dte_next == NULL);
10872 probe->dtpr_ecb_last = prev;
10873 }

10875 /*
10876 * The ECB has been disconnected from the probe; now sync to assure
10877 * that all CPUs have seen the change before returning.
10878 */
10879 dtrace_sync();

10881 if (probe->dtpr_ecb == NULL) {
10882 /*
10883 * That was the last ECB on the probe; clear the predicate
10884 * cache ID for the probe, disable it and sync one more time

new/usr/src/uts/common/dtrace/dtrace.c 166

10885 * to assure that we’ll never hit it again.
10886 */
10887 dtrace_provider_t *prov = probe->dtpr_provider;

10889 ASSERT(ecb->dte_next == NULL);
10890 ASSERT(probe->dtpr_ecb_last == NULL);
10891 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10892 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10893 probe->dtpr_id, probe->dtpr_arg);
10894 dtrace_sync();
10895 } else {
10896 /*
10897 * There is at least one ECB remaining on the probe. If there
10898 * is _exactly_ one, set the probe’s predicate cache ID to be
10899 * the predicate cache ID of the remaining ECB.
10900 */
10901 ASSERT(probe->dtpr_ecb_last != NULL);
10902 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);

10904 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10905 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;

10907 ASSERT(probe->dtpr_ecb->dte_next == NULL);

10909 if (p != NULL)
10910 probe->dtpr_predcache = p->dtp_cacheid;
10911 }

10913 ecb->dte_next = NULL;
10914 }
10915 }

10917 static void
10918 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10919 {
10920 dtrace_state_t *state = ecb->dte_state;
10921 dtrace_vstate_t *vstate = &state->dts_vstate;
10922 dtrace_predicate_t *pred;
10923 dtrace_epid_t epid = ecb->dte_epid;

10925 ASSERT(MUTEX_HELD(&dtrace_lock));
10926 ASSERT(ecb->dte_next == NULL);
10927 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);

10929 if ((pred = ecb->dte_predicate) != NULL)
10930 dtrace_predicate_release(pred, vstate);

10932 dtrace_ecb_action_remove(ecb);

10934 ASSERT(state->dts_ecbs[epid - 1] == ecb);
10935 state->dts_ecbs[epid - 1] = NULL;

10937 kmem_free(ecb, sizeof (dtrace_ecb_t));
10938 }

10940 static dtrace_ecb_t *
10941 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10942 dtrace_enabling_t *enab)
10943 {
10944 dtrace_ecb_t *ecb;
10945 dtrace_predicate_t *pred;
10946 dtrace_actdesc_t *act;
10947 dtrace_provider_t *prov;
10948 dtrace_ecbdesc_t *desc = enab->dten_current;

10950 ASSERT(MUTEX_HELD(&dtrace_lock));

new/usr/src/uts/common/dtrace/dtrace.c 167

10951 ASSERT(state != NULL);

10953 ecb = dtrace_ecb_add(state, probe);
10954 ecb->dte_uarg = desc->dted_uarg;

10956 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10957 dtrace_predicate_hold(pred);
10958 ecb->dte_predicate = pred;
10959 }

10961 if (probe != NULL) {
10962 /*
10963 * If the provider shows more leg than the consumer is old
10964 * enough to see, we need to enable the appropriate implicit
10965 * predicate bits to prevent the ecb from activating at
10966 * revealing times.
10967 *
10968 * Providers specifying DTRACE_PRIV_USER at register time
10969 * are stating that they need the /proc-style privilege
10970 * model to be enforced, and this is what DTRACE_COND_OWNER
10971 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10972 */
10973 prov = probe->dtpr_provider;
10974 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10975 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10976 ecb->dte_cond |= DTRACE_COND_OWNER;

10978 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10979 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10980 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;

10982 /*
10983 * If the provider shows us kernel innards and the user
10984 * is lacking sufficient privilege, enable the
10985 * DTRACE_COND_USERMODE implicit predicate.
10986 */
10987 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10988 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10989 ecb->dte_cond |= DTRACE_COND_USERMODE;
10990 }

10992 if (dtrace_ecb_create_cache != NULL) {
10993 /*
10994 * If we have a cached ecb, we’ll use its action list instead
10995 * of creating our own (saving both time and space).
10996 */
10997 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10998 dtrace_action_t *act = cached->dte_action;

11000 if (act != NULL) {
11001 ASSERT(act->dta_refcnt > 0);
11002 act->dta_refcnt++;
11003 ecb->dte_action = act;
11004 ecb->dte_action_last = cached->dte_action_last;
11005 ecb->dte_needed = cached->dte_needed;
11006 ecb->dte_size = cached->dte_size;
11007 ecb->dte_alignment = cached->dte_alignment;
11008 }

11010 return (ecb);
11011 }

11013 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11014 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11015 dtrace_ecb_destroy(ecb);
11016 return (NULL);

new/usr/src/uts/common/dtrace/dtrace.c 168

11017 }
11018 }

11020 dtrace_ecb_resize(ecb);

11022 return (dtrace_ecb_create_cache = ecb);
11023 }

11025 static int
11026 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11027 {
11028 dtrace_ecb_t *ecb;
11029 dtrace_enabling_t *enab = arg;
11030 dtrace_state_t *state = enab->dten_vstate->dtvs_state;

11032 ASSERT(state != NULL);

11034 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11035 /*
11036 * This probe was created in a generation for which this
11037 * enabling has previously created ECBs; we don’t want to
11038 * enable it again, so just kick out.
11039 */
11040 return (DTRACE_MATCH_NEXT);
11041 }

11043 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11044 return (DTRACE_MATCH_DONE);

11046 if (dtrace_ecb_enable(ecb) < 0)
11047 return (DTRACE_MATCH_FAIL);

11049 return (DTRACE_MATCH_NEXT);
11050 }

11052 static dtrace_ecb_t *
11053 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11054 {
11055 dtrace_ecb_t *ecb;

11057 ASSERT(MUTEX_HELD(&dtrace_lock));

11059 if (id == 0 || id > state->dts_necbs)
11060 return (NULL);

11062 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11063 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);

11065 return (state->dts_ecbs[id - 1]);
11066 }

11068 static dtrace_aggregation_t *
11069 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11070 {
11071 dtrace_aggregation_t *agg;

11073 ASSERT(MUTEX_HELD(&dtrace_lock));

11075 if (id == 0 || id > state->dts_naggregations)
11076 return (NULL);

11078 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11079 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11080 agg->dtag_id == id);

11082 return (state->dts_aggregations[id - 1]);

new/usr/src/uts/common/dtrace/dtrace.c 169

11083 }

11085 /*
11086 * DTrace Buffer Functions
11087 *
11088 * The following functions manipulate DTrace buffers. Most of these functions
11089 * are called in the context of establishing or processing consumer state;
11090 * exceptions are explicitly noted.
11091 */

11093 /*
11094 * Note: called from cross call context. This function switches the two
11095 * buffers on a given CPU. The atomicity of this operation is assured by
11096 * disabling interrupts while the actual switch takes place; the disabling of
11097 * interrupts serializes the execution with any execution of dtrace_probe() on
11098 * the same CPU.
11099 */
11100 static void
11101 dtrace_buffer_switch(dtrace_buffer_t *buf)
11102 {
11103 caddr_t tomax = buf->dtb_tomax;
11104 caddr_t xamot = buf->dtb_xamot;
11105 dtrace_icookie_t cookie;
11106 hrtime_t now;

11108 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11109 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));

11111 cookie = dtrace_interrupt_disable();
11112 now = dtrace_gethrtime();
11113 buf->dtb_tomax = xamot;
11114 buf->dtb_xamot = tomax;
11115 buf->dtb_xamot_drops = buf->dtb_drops;
11116 buf->dtb_xamot_offset = buf->dtb_offset;
11117 buf->dtb_xamot_errors = buf->dtb_errors;
11118 buf->dtb_xamot_flags = buf->dtb_flags;
11119 buf->dtb_offset = 0;
11120 buf->dtb_drops = 0;
11121 buf->dtb_errors = 0;
11122 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11123 buf->dtb_interval = now - buf->dtb_switched;
11124 buf->dtb_switched = now;
11125 dtrace_interrupt_enable(cookie);
11126 }

11128 /*
11129 * Note: called from cross call context. This function activates a buffer
11130 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11131 * is guaranteed by the disabling of interrupts.
11132 */
11133 static void
11134 dtrace_buffer_activate(dtrace_state_t *state)
11135 {
11136 dtrace_buffer_t *buf;
11137 dtrace_icookie_t cookie = dtrace_interrupt_disable();

11139 buf = &state->dts_buffer[CPU->cpu_id];

11141 if (buf->dtb_tomax != NULL) {
11142 /*
11143 * We might like to assert that the buffer is marked inactive,
11144 * but this isn’t necessarily true: the buffer for the CPU
11145 * that processes the BEGIN probe has its buffer activated
11146 * manually. In this case, we take the (harmless) action
11147 * re-clearing the bit INACTIVE bit.
11148 */

new/usr/src/uts/common/dtrace/dtrace.c 170

11149 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11150 }

11152 dtrace_interrupt_enable(cookie);
11153 }

11155 static int
11156 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11157 processorid_t cpu, int *factor)
11158 {
11159 cpu_t *cp;
11160 dtrace_buffer_t *buf;
11161 int allocated = 0, desired = 0;

11163 ASSERT(MUTEX_HELD(&cpu_lock));
11164 ASSERT(MUTEX_HELD(&dtrace_lock));

11166 *factor = 1;

11168 if (size > dtrace_nonroot_maxsize &&
11169 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11170 return (EFBIG);

11172 cp = cpu_list;

11174 do {
11175 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11176 continue;

11178 buf = &bufs[cp->cpu_id];

11180 /*
11181 * If there is already a buffer allocated for this CPU, it
11182 * is only possible that this is a DR event. In this case,
11183 * the buffer size must match our specified size.
11184 */
11185 if (buf->dtb_tomax != NULL) {
11186 ASSERT(buf->dtb_size == size);
11187 continue;
11188 }

11190 ASSERT(buf->dtb_xamot == NULL);

11192 if ((buf->dtb_tomax = kmem_zalloc(size,
11193 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11194 goto err;

11196 buf->dtb_size = size;
11197 buf->dtb_flags = flags;
11198 buf->dtb_offset = 0;
11199 buf->dtb_drops = 0;

11201 if (flags & DTRACEBUF_NOSWITCH)
11202 continue;

11204 if ((buf->dtb_xamot = kmem_zalloc(size,
11205 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11206 goto err;
11207 } while ((cp = cp->cpu_next) != cpu_list);

11209 return (0);

11211 err:
11212 cp = cpu_list;

11214 do {

new/usr/src/uts/common/dtrace/dtrace.c 171

11215 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11216 continue;

11218 buf = &bufs[cp->cpu_id];
11219 desired += 2;

11221 if (buf->dtb_xamot != NULL) {
11222 ASSERT(buf->dtb_tomax != NULL);
11223 ASSERT(buf->dtb_size == size);
11224 kmem_free(buf->dtb_xamot, size);
11225 allocated++;
11226 }

11228 if (buf->dtb_tomax != NULL) {
11229 ASSERT(buf->dtb_size == size);
11230 kmem_free(buf->dtb_tomax, size);
11231 allocated++;
11232 }

11234 buf->dtb_tomax = NULL;
11235 buf->dtb_xamot = NULL;
11236 buf->dtb_size = 0;
11237 } while ((cp = cp->cpu_next) != cpu_list);

11239 *factor = desired / (allocated > 0 ? allocated : 1);

11241 return (ENOMEM);
11242 }

11244 /*
11245 * Note: called from probe context. This function just increments the drop
11246 * count on a buffer. It has been made a function to allow for the
11247 * possibility of understanding the source of mysterious drop counts. (A
11248 * problem for which one may be particularly disappointed that DTrace cannot
11249 * be used to understand DTrace.)
11250 */
11251 static void
11252 dtrace_buffer_drop(dtrace_buffer_t *buf)
11253 {
11254 buf->dtb_drops++;
11255 }

11257 /*
11258 * Note: called from probe context. This function is called to reserve space
11259 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11260 * mstate. Returns the new offset in the buffer, or a negative value if an
11261 * error has occurred.
11262 */
11263 static intptr_t
11264 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11265 dtrace_state_t *state, dtrace_mstate_t *mstate)
11266 {
11267 intptr_t offs = buf->dtb_offset, soffs;
11268 intptr_t woffs;
11269 caddr_t tomax;
11270 size_t total;

11272 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11273 return (-1);

11275 if ((tomax = buf->dtb_tomax) == NULL) {
11276 dtrace_buffer_drop(buf);
11277 return (-1);
11278 }

11280 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {

new/usr/src/uts/common/dtrace/dtrace.c 172

11281 while (offs & (align - 1)) {
11282 /*
11283 * Assert that our alignment is off by a number which
11284 * is itself sizeof (uint32_t) aligned.
11285 */
11286 ASSERT(!((align - (offs & (align - 1))) &
11287 (sizeof (uint32_t) - 1)));
11288 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11289 offs += sizeof (uint32_t);
11290 }

11292 if ((soffs = offs + needed) > buf->dtb_size) {
11293 dtrace_buffer_drop(buf);
11294 return (-1);
11295 }

11297 if (mstate == NULL)
11298 return (offs);

11300 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11301 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11302 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;

11304 return (offs);
11305 }

11307 if (buf->dtb_flags & DTRACEBUF_FILL) {
11308 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11309 (buf->dtb_flags & DTRACEBUF_FULL))
11310 return (-1);
11311 goto out;
11312 }

11314 total = needed + (offs & (align - 1));

11316 /*
11317 * For a ring buffer, life is quite a bit more complicated. Before
11318 * we can store any padding, we need to adjust our wrapping offset.
11319 * (If we’ve never before wrapped or we’re not about to, no adjustment
11320 * is required.)
11321 */
11322 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11323 offs + total > buf->dtb_size) {
11324 woffs = buf->dtb_xamot_offset;

11326 if (offs + total > buf->dtb_size) {
11327 /*
11328 * We can’t fit in the end of the buffer. First, a
11329 * sanity check that we can fit in the buffer at all.
11330 */
11331 if (total > buf->dtb_size) {
11332 dtrace_buffer_drop(buf);
11333 return (-1);
11334 }

11336 /*
11337 * We’re going to be storing at the top of the buffer,
11338 * so now we need to deal with the wrapped offset. We
11339 * only reset our wrapped offset to 0 if it is
11340 * currently greater than the current offset. If it
11341 * is less than the current offset, it is because a
11342 * previous allocation induced a wrap -- but the
11343 * allocation didn’t subsequently take the space due
11344 * to an error or false predicate evaluation. In this
11345 * case, we’ll just leave the wrapped offset alone: if
11346 * the wrapped offset hasn’t been advanced far enough

new/usr/src/uts/common/dtrace/dtrace.c 173

11347 * for this allocation, it will be adjusted in the
11348 * lower loop.
11349 */
11350 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11351 if (woffs >= offs)
11352 woffs = 0;
11353 } else {
11354 woffs = 0;
11355 }

11357 /*
11358 * Now we know that we’re going to be storing to the
11359 * top of the buffer and that there is room for us
11360 * there. We need to clear the buffer from the current
11361 * offset to the end (there may be old gunk there).
11362 */
11363 while (offs < buf->dtb_size)
11364 tomax[offs++] = 0;

11366 /*
11367 * We need to set our offset to zero. And because we
11368 * are wrapping, we need to set the bit indicating as
11369 * much. We can also adjust our needed space back
11370 * down to the space required by the ECB -- we know
11371 * that the top of the buffer is aligned.
11372 */
11373 offs = 0;
11374 total = needed;
11375 buf->dtb_flags |= DTRACEBUF_WRAPPED;
11376 } else {
11377 /*
11378 * There is room for us in the buffer, so we simply
11379 * need to check the wrapped offset.
11380 */
11381 if (woffs < offs) {
11382 /*
11383 * The wrapped offset is less than the offset.
11384 * This can happen if we allocated buffer space
11385 * that induced a wrap, but then we didn’t
11386 * subsequently take the space due to an error
11387 * or false predicate evaluation. This is
11388 * okay; we know that _this_ allocation isn’t
11389 * going to induce a wrap. We still can’t
11390 * reset the wrapped offset to be zero,
11391 * however: the space may have been trashed in
11392 * the previous failed probe attempt. But at
11393 * least the wrapped offset doesn’t need to
11394 * be adjusted at all...
11395 */
11396 goto out;
11397 }
11398 }

11400 while (offs + total > woffs) {
11401 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11402 size_t size;

11404 if (epid == DTRACE_EPIDNONE) {
11405 size = sizeof (uint32_t);
11406 } else {
11407 ASSERT3U(epid, <=, state->dts_necbs);
11408 ASSERT(state->dts_ecbs[epid - 1] != NULL);

11410 size = state->dts_ecbs[epid - 1]->dte_size;
11411 }

new/usr/src/uts/common/dtrace/dtrace.c 174

11413 ASSERT(woffs + size <= buf->dtb_size);
11414 ASSERT(size != 0);

11416 if (woffs + size == buf->dtb_size) {
11417 /*
11418 * We’ve reached the end of the buffer; we want
11419 * to set the wrapped offset to 0 and break
11420 * out. However, if the offs is 0, then we’re
11421 * in a strange edge-condition: the amount of
11422 * space that we want to reserve plus the size
11423 * of the record that we’re overwriting is
11424 * greater than the size of the buffer. This
11425 * is problematic because if we reserve the
11426 * space but subsequently don’t consume it (due
11427 * to a failed predicate or error) the wrapped
11428 * offset will be 0 -- yet the EPID at offset 0
11429 * will not be committed. This situation is
11430 * relatively easy to deal with: if we’re in
11431 * this case, the buffer is indistinguishable
11432 * from one that hasn’t wrapped; we need only
11433 * finish the job by clearing the wrapped bit,
11434 * explicitly setting the offset to be 0, and
11435 * zero’ing out the old data in the buffer.
11436 */
11437 if (offs == 0) {
11438 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11439 buf->dtb_offset = 0;
11440 woffs = total;

11442 while (woffs < buf->dtb_size)
11443 tomax[woffs++] = 0;
11444 }

11446 woffs = 0;
11447 break;
11448 }

11450 woffs += size;
11451 }

11453 /*
11454 * We have a wrapped offset. It may be that the wrapped offset
11455 * has become zero -- that’s okay.
11456 */
11457 buf->dtb_xamot_offset = woffs;
11458 }

11460 out:
11461 /*
11462 * Now we can plow the buffer with any necessary padding.
11463 */
11464 while (offs & (align - 1)) {
11465 /*
11466 * Assert that our alignment is off by a number which
11467 * is itself sizeof (uint32_t) aligned.
11468 */
11469 ASSERT(!((align - (offs & (align - 1))) &
11470 (sizeof (uint32_t) - 1)));
11471 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11472 offs += sizeof (uint32_t);
11473 }

11475 if (buf->dtb_flags & DTRACEBUF_FILL) {
11476 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11477 buf->dtb_flags |= DTRACEBUF_FULL;
11478 return (-1);

new/usr/src/uts/common/dtrace/dtrace.c 175

11479 }
11480 }

11482 if (mstate == NULL)
11483 return (offs);

11485 /*
11486 * For ring buffers and fill buffers, the scratch space is always
11487 * the inactive buffer.
11488 */
11489 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11490 mstate->dtms_scratch_size = buf->dtb_size;
11491 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;

11493 return (offs);
11494 }

11496 static void
11497 dtrace_buffer_polish(dtrace_buffer_t *buf)
11498 {
11499 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11500 ASSERT(MUTEX_HELD(&dtrace_lock));

11502 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11503 return;

11505 /*
11506 * We need to polish the ring buffer. There are three cases:
11507 *
11508 * - The first (and presumably most common) is that there is no gap
11509 * between the buffer offset and the wrapped offset. In this case,
11510 * there is nothing in the buffer that isn’t valid data; we can
11511 * mark the buffer as polished and return.
11512 *
11513 * - The second (less common than the first but still more common
11514 * than the third) is that there is a gap between the buffer offset
11515 * and the wrapped offset, and the wrapped offset is larger than the
11516 * buffer offset. This can happen because of an alignment issue, or
11517 * can happen because of a call to dtrace_buffer_reserve() that
11518 * didn’t subsequently consume the buffer space. In this case,
11519 * we need to zero the data from the buffer offset to the wrapped
11520 * offset.
11521 *
11522 * - The third (and least common) is that there is a gap between the
11523 * buffer offset and the wrapped offset, but the wrapped offset is
11524 * _less_ than the buffer offset. This can only happen because a
11525 * call to dtrace_buffer_reserve() induced a wrap, but the space
11526 * was not subsequently consumed. In this case, we need to zero the
11527 * space from the offset to the end of the buffer _and_ from the
11528 * top of the buffer to the wrapped offset.
11529 */
11530 if (buf->dtb_offset < buf->dtb_xamot_offset) {
11531 bzero(buf->dtb_tomax + buf->dtb_offset,
11532 buf->dtb_xamot_offset - buf->dtb_offset);
11533 }

11535 if (buf->dtb_offset > buf->dtb_xamot_offset) {
11536 bzero(buf->dtb_tomax + buf->dtb_offset,
11537 buf->dtb_size - buf->dtb_offset);
11538 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11539 }
11540 }

11542 /*
11543 * This routine determines if data generated at the specified time has likely
11544 * been entirely consumed at user-level. This routine is called to determine

new/usr/src/uts/common/dtrace/dtrace.c 176

11545 * if an ECB on a defunct probe (but for an active enabling) can be safely
11546 * disabled and destroyed.
11547 */
11548 static int
11549 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11550 {
11551 int i;

11553 for (i = 0; i < NCPU; i++) {
11554 dtrace_buffer_t *buf = &bufs[i];

11556 if (buf->dtb_size == 0)
11557 continue;

11559 if (buf->dtb_flags & DTRACEBUF_RING)
11560 return (0);

11562 if (!buf->dtb_switched && buf->dtb_offset != 0)
11563 return (0);

11565 if (buf->dtb_switched - buf->dtb_interval < when)
11566 return (0);
11567 }

11569 return (1);
11570 }

11572 static void
11573 dtrace_buffer_free(dtrace_buffer_t *bufs)
11574 {
11575 int i;

11577 for (i = 0; i < NCPU; i++) {
11578 dtrace_buffer_t *buf = &bufs[i];

11580 if (buf->dtb_tomax == NULL) {
11581 ASSERT(buf->dtb_xamot == NULL);
11582 ASSERT(buf->dtb_size == 0);
11583 continue;
11584 }

11586 if (buf->dtb_xamot != NULL) {
11587 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11588 kmem_free(buf->dtb_xamot, buf->dtb_size);
11589 }

11591 kmem_free(buf->dtb_tomax, buf->dtb_size);
11592 buf->dtb_size = 0;
11593 buf->dtb_tomax = NULL;
11594 buf->dtb_xamot = NULL;
11595 }
11596 }

11598 /*
11599 * DTrace Enabling Functions
11600 */
11601 static dtrace_enabling_t *
11602 dtrace_enabling_create(dtrace_vstate_t *vstate)
11603 {
11604 dtrace_enabling_t *enab;

11606 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11607 enab->dten_vstate = vstate;

11609 return (enab);
11610 }

new/usr/src/uts/common/dtrace/dtrace.c 177

11612 static void
11613 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11614 {
11615 dtrace_ecbdesc_t **ndesc;
11616 size_t osize, nsize;

11618 /*
11619 * We can’t add to enablings after we’ve enabled them, or after we’ve
11620 * retained them.
11621 */
11622 ASSERT(enab->dten_probegen == 0);
11623 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);

11625 if (enab->dten_ndesc < enab->dten_maxdesc) {
11626 enab->dten_desc[enab->dten_ndesc++] = ecb;
11627 return;
11628 }

11630 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);

11632 if (enab->dten_maxdesc == 0) {
11633 enab->dten_maxdesc = 1;
11634 } else {
11635 enab->dten_maxdesc <<= 1;
11636 }

11638 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);

11640 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11641 ndesc = kmem_zalloc(nsize, KM_SLEEP);
11642 bcopy(enab->dten_desc, ndesc, osize);
11643 kmem_free(enab->dten_desc, osize);

11645 enab->dten_desc = ndesc;
11646 enab->dten_desc[enab->dten_ndesc++] = ecb;
11647 }

11649 static void
11650 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11651 dtrace_probedesc_t *pd)
11652 {
11653 dtrace_ecbdesc_t *new;
11654 dtrace_predicate_t *pred;
11655 dtrace_actdesc_t *act;

11657 /*
11658 * We’re going to create a new ECB description that matches the
11659 * specified ECB in every way, but has the specified probe description.
11660 */
11661 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);

11663 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11664 dtrace_predicate_hold(pred);

11666 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11667 dtrace_actdesc_hold(act);

11669 new->dted_action = ecb->dted_action;
11670 new->dted_pred = ecb->dted_pred;
11671 new->dted_probe = *pd;
11672 new->dted_uarg = ecb->dted_uarg;

11674 dtrace_enabling_add(enab, new);
11675 }

new/usr/src/uts/common/dtrace/dtrace.c 178

11677 static void
11678 dtrace_enabling_dump(dtrace_enabling_t *enab)
11679 {
11680 int i;

11682 for (i = 0; i < enab->dten_ndesc; i++) {
11683 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;

11685 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11686 desc->dtpd_provider, desc->dtpd_mod,
11687 desc->dtpd_func, desc->dtpd_name);
11688 }
11689 }

11691 static void
11692 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11693 {
11694 int i;
11695 dtrace_ecbdesc_t *ep;
11696 dtrace_vstate_t *vstate = enab->dten_vstate;

11698 ASSERT(MUTEX_HELD(&dtrace_lock));

11700 for (i = 0; i < enab->dten_ndesc; i++) {
11701 dtrace_actdesc_t *act, *next;
11702 dtrace_predicate_t *pred;

11704 ep = enab->dten_desc[i];

11706 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11707 dtrace_predicate_release(pred, vstate);

11709 for (act = ep->dted_action; act != NULL; act = next) {
11710 next = act->dtad_next;
11711 dtrace_actdesc_release(act, vstate);
11712 }

11714 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11715 }

11717 kmem_free(enab->dten_desc,
11718 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));

11720 /*
11721 * If this was a retained enabling, decrement the dts_nretained count
11722 * and take it off of the dtrace_retained list.
11723 */
11724 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11725 dtrace_retained == enab) {
11726 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11727 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11728 enab->dten_vstate->dtvs_state->dts_nretained--;
11729 dtrace_retained_gen++;
11730 }

11732 if (enab->dten_prev == NULL) {
11733 if (dtrace_retained == enab) {
11734 dtrace_retained = enab->dten_next;

11736 if (dtrace_retained != NULL)
11737 dtrace_retained->dten_prev = NULL;
11738 }
11739 } else {
11740 ASSERT(enab != dtrace_retained);
11741 ASSERT(dtrace_retained != NULL);
11742 enab->dten_prev->dten_next = enab->dten_next;

new/usr/src/uts/common/dtrace/dtrace.c 179

11743 }

11745 if (enab->dten_next != NULL) {
11746 ASSERT(dtrace_retained != NULL);
11747 enab->dten_next->dten_prev = enab->dten_prev;
11748 }

11750 kmem_free(enab, sizeof (dtrace_enabling_t));
11751 }

11753 static int
11754 dtrace_enabling_retain(dtrace_enabling_t *enab)
11755 {
11756 dtrace_state_t *state;

11758 ASSERT(MUTEX_HELD(&dtrace_lock));
11759 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11760 ASSERT(enab->dten_vstate != NULL);

11762 state = enab->dten_vstate->dtvs_state;
11763 ASSERT(state != NULL);

11765 /*
11766 * We only allow each state to retain dtrace_retain_max enablings.
11767 */
11768 if (state->dts_nretained >= dtrace_retain_max)
11769 return (ENOSPC);

11771 state->dts_nretained++;
11772 dtrace_retained_gen++;

11774 if (dtrace_retained == NULL) {
11775 dtrace_retained = enab;
11776 return (0);
11777 }

11779 enab->dten_next = dtrace_retained;
11780 dtrace_retained->dten_prev = enab;
11781 dtrace_retained = enab;

11783 return (0);
11784 }

11786 static int
11787 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11788 dtrace_probedesc_t *create)
11789 {
11790 dtrace_enabling_t *new, *enab;
11791 int found = 0, err = ENOENT;

11793 ASSERT(MUTEX_HELD(&dtrace_lock));
11794 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11795 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11796 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11797 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);

11799 new = dtrace_enabling_create(&state->dts_vstate);

11801 /*
11802 * Iterate over all retained enablings, looking for enablings that
11803 * match the specified state.
11804 */
11805 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11806 int i;

11808 /*

new/usr/src/uts/common/dtrace/dtrace.c 180

11809 * dtvs_state can only be NULL for helper enablings -- and
11810 * helper enablings can’t be retained.
11811 */
11812 ASSERT(enab->dten_vstate->dtvs_state != NULL);

11814 if (enab->dten_vstate->dtvs_state != state)
11815 continue;

11817 /*
11818 * Now iterate over each probe description; we’re looking for
11819 * an exact match to the specified probe description.
11820 */
11821 for (i = 0; i < enab->dten_ndesc; i++) {
11822 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11823 dtrace_probedesc_t *pd = &ep->dted_probe;

11825 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11826 continue;

11828 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11829 continue;

11831 if (strcmp(pd->dtpd_func, match->dtpd_func))
11832 continue;

11834 if (strcmp(pd->dtpd_name, match->dtpd_name))
11835 continue;

11837 /*
11838 * We have a winning probe! Add it to our growing
11839 * enabling.
11840 */
11841 found = 1;
11842 dtrace_enabling_addlike(new, ep, create);
11843 }
11844 }

11846 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11847 dtrace_enabling_destroy(new);
11848 return (err);
11849 }

11851 return (0);
11852 }

11854 static void
11855 dtrace_enabling_retract(dtrace_state_t *state)
11856 {
11857 dtrace_enabling_t *enab, *next;

11859 ASSERT(MUTEX_HELD(&dtrace_lock));

11861 /*
11862 * Iterate over all retained enablings, destroy the enablings retained
11863 * for the specified state.
11864 */
11865 for (enab = dtrace_retained; enab != NULL; enab = next) {
11866 next = enab->dten_next;

11868 /*
11869 * dtvs_state can only be NULL for helper enablings -- and
11870 * helper enablings can’t be retained.
11871 */
11872 ASSERT(enab->dten_vstate->dtvs_state != NULL);

11874 if (enab->dten_vstate->dtvs_state == state) {

new/usr/src/uts/common/dtrace/dtrace.c 181

11875 ASSERT(state->dts_nretained > 0);
11876 dtrace_enabling_destroy(enab);
11877 }
11878 }

11880 ASSERT(state->dts_nretained == 0);
11881 }

11883 static int
11884 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11885 {
11886 int i = 0;
11887 int total_matched = 0, matched = 0;

11889 ASSERT(MUTEX_HELD(&cpu_lock));
11890 ASSERT(MUTEX_HELD(&dtrace_lock));

11892 for (i = 0; i < enab->dten_ndesc; i++) {
11893 dtrace_ecbdesc_t *ep = enab->dten_desc[i];

11895 enab->dten_current = ep;
11896 enab->dten_error = 0;

11898 /*
11899 * If a provider failed to enable a probe then get out and
11900 * let the consumer know we failed.
11901 */
11902 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11903 return (EBUSY);

11905 total_matched += matched;

11907 if (enab->dten_error != 0) {
11908 /*
11909 * If we get an error half-way through enabling the
11910 * probes, we kick out -- perhaps with some number of
11911 * them enabled. Leaving enabled probes enabled may
11912 * be slightly confusing for user-level, but we expect
11913 * that no one will attempt to actually drive on in
11914 * the face of such errors. If this is an anonymous
11915 * enabling (indicated with a NULL nmatched pointer),
11916 * we cmn_err() a message. We aren’t expecting to
11917 * get such an error -- such as it can exist at all,
11918 * it would be a result of corrupted DOF in the driver
11919 * properties.
11920 */
11921 if (nmatched == NULL) {
11922 cmn_err(CE_WARN, "dtrace_enabling_match() "
11923 "error on %p: %d", (void *)ep,
11924 enab->dten_error);
11925 }

11927 return (enab->dten_error);
11928 }
11929 }

11931 enab->dten_probegen = dtrace_probegen;
11932 if (nmatched != NULL)
11933 *nmatched = total_matched;

11935 return (0);
11936 }

11938 static void
11939 dtrace_enabling_matchall(void)
11940 {

new/usr/src/uts/common/dtrace/dtrace.c 182

11941 dtrace_enabling_t *enab;

11943 mutex_enter(&cpu_lock);
11944 mutex_enter(&dtrace_lock);

11946 /*
11947 * Iterate over all retained enablings to see if any probes match
11948 * against them. We only perform this operation on enablings for which
11949 * we have sufficient permissions by virtue of being in the global zone
11950 * or in the same zone as the DTrace client. Because we can be called
11951 * after dtrace_detach() has been called, we cannot assert that there
11952 * are retained enablings. We can safely load from dtrace_retained,
11953 * however: the taskq_destroy() at the end of dtrace_detach() will
11954 * block pending our completion.
11955 */
11956 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11957 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11958 cred_t *cr = dcr->dcr_cred;
11959 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;

11961 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11962 (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11963 (void) dtrace_enabling_match(enab, NULL);
11964 }

11966 mutex_exit(&dtrace_lock);
11967 mutex_exit(&cpu_lock);
11968 }

11970 /*
11971 * If an enabling is to be enabled without having matched probes (that is, if
11972 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11973 * enabling must be _primed_ by creating an ECB for every ECB description.
11974 * This must be done to assure that we know the number of speculations, the
11975 * number of aggregations, the minimum buffer size needed, etc. before we
11976 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11977 * enabling any probes, we create ECBs for every ECB decription, but with a
11978 * NULL probe -- which is exactly what this function does.
11979 */
11980 static void
11981 dtrace_enabling_prime(dtrace_state_t *state)
11982 {
11983 dtrace_enabling_t *enab;
11984 int i;

11986 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11987 ASSERT(enab->dten_vstate->dtvs_state != NULL);

11989 if (enab->dten_vstate->dtvs_state != state)
11990 continue;

11992 /*
11993 * We don’t want to prime an enabling more than once, lest
11994 * we allow a malicious user to induce resource exhaustion.
11995 * (The ECBs that result from priming an enabling aren’t
11996 * leaked -- but they also aren’t deallocated until the
11997 * consumer state is destroyed.)
11998 */
11999 if (enab->dten_primed)
12000 continue;

12002 for (i = 0; i < enab->dten_ndesc; i++) {
12003 enab->dten_current = enab->dten_desc[i];
12004 (void) dtrace_probe_enable(NULL, enab);
12005 }

new/usr/src/uts/common/dtrace/dtrace.c 183

12007 enab->dten_primed = 1;
12008 }
12009 }

12011 /*
12012 * Called to indicate that probes should be provided due to retained
12013 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12014 * must take an initial lap through the enabling calling the dtps_provide()
12015 * entry point explicitly to allow for autocreated probes.
12016 */
12017 static void
12018 dtrace_enabling_provide(dtrace_provider_t *prv)
12019 {
12020 int i, all = 0;
12021 dtrace_probedesc_t desc;
12022 dtrace_genid_t gen;

12024 ASSERT(MUTEX_HELD(&dtrace_lock));
12025 ASSERT(MUTEX_HELD(&dtrace_provider_lock));

12027 if (prv == NULL) {
12028 all = 1;
12029 prv = dtrace_provider;
12030 }

12032 do {
12033 dtrace_enabling_t *enab;
12034 void *parg = prv->dtpv_arg;

12036 retry:
12037 gen = dtrace_retained_gen;
12038 for (enab = dtrace_retained; enab != NULL;
12039 enab = enab->dten_next) {
12040 for (i = 0; i < enab->dten_ndesc; i++) {
12041 desc = enab->dten_desc[i]->dted_probe;
12042 mutex_exit(&dtrace_lock);
12043 prv->dtpv_pops.dtps_provide(parg, &desc);
12044 mutex_enter(&dtrace_lock);
12045 /*
12046 * Process the retained enablings again if
12047 * they have changed while we weren’t holding
12048 * dtrace_lock.
12049 */
12050 if (gen != dtrace_retained_gen)
12051 goto retry;
12052 }
12053 }
12054 } while (all && (prv = prv->dtpv_next) != NULL);

12056 mutex_exit(&dtrace_lock);
12057 dtrace_probe_provide(NULL, all ? NULL : prv);
12058 mutex_enter(&dtrace_lock);
12059 }

12061 /*
12062 * Called to reap ECBs that are attached to probes from defunct providers.
12063 */
12064 static void
12065 dtrace_enabling_reap(void)
12066 {
12067 dtrace_provider_t *prov;
12068 dtrace_probe_t *probe;
12069 dtrace_ecb_t *ecb;
12070 hrtime_t when;
12071 int i;

new/usr/src/uts/common/dtrace/dtrace.c 184

12073 mutex_enter(&cpu_lock);
12074 mutex_enter(&dtrace_lock);

12076 for (i = 0; i < dtrace_nprobes; i++) {
12077 if ((probe = dtrace_probes[i]) == NULL)
12078 continue;

12080 if (probe->dtpr_ecb == NULL)
12081 continue;

12083 prov = probe->dtpr_provider;

12085 if ((when = prov->dtpv_defunct) == 0)
12086 continue;

12088 /*
12089 * We have ECBs on a defunct provider: we want to reap these
12090 * ECBs to allow the provider to unregister. The destruction
12091 * of these ECBs must be done carefully: if we destroy the ECB
12092 * and the consumer later wishes to consume an EPID that
12093 * corresponds to the destroyed ECB (and if the EPID metadata
12094 * has not been previously consumed), the consumer will abort
12095 * processing on the unknown EPID. To reduce (but not, sadly,
12096 * eliminate) the possibility of this, we will only destroy an
12097 * ECB for a defunct provider if, for the state that
12098 * corresponds to the ECB:
12099 *
12100 * (a) There is no speculative tracing (which can effectively
12101 * cache an EPID for an arbitrary amount of time).
12102 *
12103 * (b) The principal buffers have been switched twice since the
12104 * provider became defunct.
12105 *
12106 * (c) The aggregation buffers are of zero size or have been
12107 * switched twice since the provider became defunct.
12108 *
12109 * We use dts_speculates to determine (a) and call a function
12110 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12111 * that as soon as we’ve been unable to destroy one of the ECBs
12112 * associated with the probe, we quit trying -- reaping is only
12113 * fruitful in as much as we can destroy all ECBs associated
12114 * with the defunct provider’s probes.
12115 */
12116 while ((ecb = probe->dtpr_ecb) != NULL) {
12117 dtrace_state_t *state = ecb->dte_state;
12118 dtrace_buffer_t *buf = state->dts_buffer;
12119 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;

12121 if (state->dts_speculates)
12122 break;

12124 if (!dtrace_buffer_consumed(buf, when))
12125 break;

12127 if (!dtrace_buffer_consumed(aggbuf, when))
12128 break;

12130 dtrace_ecb_disable(ecb);
12131 ASSERT(probe->dtpr_ecb != ecb);
12132 dtrace_ecb_destroy(ecb);
12133 }
12134 }

12136 mutex_exit(&dtrace_lock);
12137 mutex_exit(&cpu_lock);
12138 }

new/usr/src/uts/common/dtrace/dtrace.c 185

12140 /*
12141 * DTrace DOF Functions
12142 */
12143 /*ARGSUSED*/
12144 static void
12145 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12146 {
12147 if (dtrace_err_verbose)
12148 cmn_err(CE_WARN, "failed to process DOF: %s", str);

12150 #ifdef DTRACE_ERRDEBUG
12151 dtrace_errdebug(str);
12152 #endif
12153 }

12155 /*
12156 * Create DOF out of a currently enabled state. Right now, we only create
12157 * DOF containing the run-time options -- but this could be expanded to create
12158 * complete DOF representing the enabled state.
12159 */
12160 static dof_hdr_t *
12161 dtrace_dof_create(dtrace_state_t *state)
12162 {
12163 dof_hdr_t *dof;
12164 dof_sec_t *sec;
12165 dof_optdesc_t *opt;
12166 int i, len = sizeof (dof_hdr_t) +
12167 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12168 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;

12170 ASSERT(MUTEX_HELD(&dtrace_lock));

12172 dof = kmem_zalloc(len, KM_SLEEP);
12173 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12174 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12175 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12176 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;

12178 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12179 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12180 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12181 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12182 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12183 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;

12185 dof->dofh_flags = 0;
12186 dof->dofh_hdrsize = sizeof (dof_hdr_t);
12187 dof->dofh_secsize = sizeof (dof_sec_t);
12188 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
12189 dof->dofh_secoff = sizeof (dof_hdr_t);
12190 dof->dofh_loadsz = len;
12191 dof->dofh_filesz = len;
12192 dof->dofh_pad = 0;

12194 /*
12195 * Fill in the option section header...
12196 */
12197 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12198 sec->dofs_type = DOF_SECT_OPTDESC;
12199 sec->dofs_align = sizeof (uint64_t);
12200 sec->dofs_flags = DOF_SECF_LOAD;
12201 sec->dofs_entsize = sizeof (dof_optdesc_t);

12203 opt = (dof_optdesc_t *)((uintptr_t)sec +
12204 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));

new/usr/src/uts/common/dtrace/dtrace.c 186

12206 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12207 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;

12209 for (i = 0; i < DTRACEOPT_MAX; i++) {
12210 opt[i].dofo_option = i;
12211 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12212 opt[i].dofo_value = state->dts_options[i];
12213 }

12215 return (dof);
12216 }

12218 static dof_hdr_t *
12219 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12220 {
12221 dof_hdr_t hdr, *dof;

12223 ASSERT(!MUTEX_HELD(&dtrace_lock));

12225 /*
12226 * First, we’re going to copyin() the sizeof (dof_hdr_t).
12227 */
12228 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12229 dtrace_dof_error(NULL, "failed to copyin DOF header");
12230 *errp = EFAULT;
12231 return (NULL);
12232 }

12234 /*
12235 * Now we’ll allocate the entire DOF and copy it in -- provided
12236 * that the length isn’t outrageous.
12237 */
12238 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12239 dtrace_dof_error(&hdr, "load size exceeds maximum");
12240 *errp = E2BIG;
12241 return (NULL);
12242 }

12244 if (hdr.dofh_loadsz < sizeof (hdr)) {
12245 dtrace_dof_error(&hdr, "invalid load size");
12246 *errp = EINVAL;
12247 return (NULL);
12248 }

12250 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);

12252 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12253 dof->dofh_loadsz != hdr.dofh_loadsz) {
12254 kmem_free(dof, hdr.dofh_loadsz);
12255 *errp = EFAULT;
12256 return (NULL);
12257 }

12259 return (dof);
12260 }

12262 static dof_hdr_t *
12263 dtrace_dof_property(const char *name)
12264 {
12265 uchar_t *buf;
12266 uint64_t loadsz;
12267 unsigned int len, i;
12268 dof_hdr_t *dof;

12270 /*

new/usr/src/uts/common/dtrace/dtrace.c 187

12271 * Unfortunately, array of values in .conf files are always (and
12272 * only) interpreted to be integer arrays. We must read our DOF
12273 * as an integer array, and then squeeze it into a byte array.
12274 */
12275 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12276 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12277 return (NULL);

12279 for (i = 0; i < len; i++)
12280 buf[i] = (uchar_t)(((int *)buf)[i]);

12282 if (len < sizeof (dof_hdr_t)) {
12283 ddi_prop_free(buf);
12284 dtrace_dof_error(NULL, "truncated header");
12285 return (NULL);
12286 }

12288 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12289 ddi_prop_free(buf);
12290 dtrace_dof_error(NULL, "truncated DOF");
12291 return (NULL);
12292 }

12294 if (loadsz >= dtrace_dof_maxsize) {
12295 ddi_prop_free(buf);
12296 dtrace_dof_error(NULL, "oversized DOF");
12297 return (NULL);
12298 }

12300 dof = kmem_alloc(loadsz, KM_SLEEP);
12301 bcopy(buf, dof, loadsz);
12302 ddi_prop_free(buf);

12304 return (dof);
12305 }

12307 static void
12308 dtrace_dof_destroy(dof_hdr_t *dof)
12309 {
12310 kmem_free(dof, dof->dofh_loadsz);
12311 }

12313 /*
12314 * Return the dof_sec_t pointer corresponding to a given section index. If the
12315 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12316 * a type other than DOF_SECT_NONE is specified, the header is checked against
12317 * this type and NULL is returned if the types do not match.
12318 */
12319 static dof_sec_t *
12320 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12321 {
12322 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12323 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);

12325 if (i >= dof->dofh_secnum) {
12326 dtrace_dof_error(dof, "referenced section index is invalid");
12327 return (NULL);
12328 }

12330 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12331 dtrace_dof_error(dof, "referenced section is not loadable");
12332 return (NULL);
12333 }

12335 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12336 dtrace_dof_error(dof, "referenced section is the wrong type");

new/usr/src/uts/common/dtrace/dtrace.c 188

12337 return (NULL);
12338 }

12340 return (sec);
12341 }

12343 static dtrace_probedesc_t *
12344 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12345 {
12346 dof_probedesc_t *probe;
12347 dof_sec_t *strtab;
12348 uintptr_t daddr = (uintptr_t)dof;
12349 uintptr_t str;
12350 size_t size;

12352 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12353 dtrace_dof_error(dof, "invalid probe section");
12354 return (NULL);
12355 }

12357 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12358 dtrace_dof_error(dof, "bad alignment in probe description");
12359 return (NULL);
12360 }

12362 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12363 dtrace_dof_error(dof, "truncated probe description");
12364 return (NULL);
12365 }

12367 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12368 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);

12370 if (strtab == NULL)
12371 return (NULL);

12373 str = daddr + strtab->dofs_offset;
12374 size = strtab->dofs_size;

12376 if (probe->dofp_provider >= strtab->dofs_size) {
12377 dtrace_dof_error(dof, "corrupt probe provider");
12378 return (NULL);
12379 }

12381 (void) strncpy(desc->dtpd_provider,
12382 (char *)(str + probe->dofp_provider),
12383 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));

12385 if (probe->dofp_mod >= strtab->dofs_size) {
12386 dtrace_dof_error(dof, "corrupt probe module");
12387 return (NULL);
12388 }

12390 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12391 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));

12393 if (probe->dofp_func >= strtab->dofs_size) {
12394 dtrace_dof_error(dof, "corrupt probe function");
12395 return (NULL);
12396 }

12398 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12399 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));

12401 if (probe->dofp_name >= strtab->dofs_size) {
12402 dtrace_dof_error(dof, "corrupt probe name");

new/usr/src/uts/common/dtrace/dtrace.c 189

12403 return (NULL);
12404 }

12406 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12407 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));

12409 return (desc);
12410 }

12412 static dtrace_difo_t *
12413 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12414 cred_t *cr)
12415 {
12416 dtrace_difo_t *dp;
12417 size_t ttl = 0;
12418 dof_difohdr_t *dofd;
12419 uintptr_t daddr = (uintptr_t)dof;
12420 size_t max = dtrace_difo_maxsize;
12421 int i, l, n;

12423 static const struct {
12424 int section;
12425 int bufoffs;
12426 int lenoffs;
12427 int entsize;
12428 int align;
12429 const char *msg;
12430 } difo[] = {
12431 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12432 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12433 sizeof (dif_instr_t), "multiple DIF sections" },

12435 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12436 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12437 sizeof (uint64_t), "multiple integer tables" },

12439 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12440 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12441 sizeof (char), "multiple string tables" },

12443 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12444 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12445 sizeof (uint_t), "multiple variable tables" },

12447 { DOF_SECT_NONE, 0, 0, 0, NULL }
12448 };

12450 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12451 dtrace_dof_error(dof, "invalid DIFO header section");
12452 return (NULL);
12453 }

12455 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12456 dtrace_dof_error(dof, "bad alignment in DIFO header");
12457 return (NULL);
12458 }

12460 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12461 sec->dofs_size % sizeof (dof_secidx_t)) {
12462 dtrace_dof_error(dof, "bad size in DIFO header");
12463 return (NULL);
12464 }

12466 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12467 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;

new/usr/src/uts/common/dtrace/dtrace.c 190

12469 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12470 dp->dtdo_rtype = dofd->dofd_rtype;

12472 for (l = 0; l < n; l++) {
12473 dof_sec_t *subsec;
12474 void **bufp;
12475 uint32_t *lenp;

12477 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12478 dofd->dofd_links[l])) == NULL)
12479 goto err; /* invalid section link */

12481 if (ttl + subsec->dofs_size > max) {
12482 dtrace_dof_error(dof, "exceeds maximum size");
12483 goto err;
12484 }

12486 ttl += subsec->dofs_size;

12488 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12489 if (subsec->dofs_type != difo[i].section)
12490 continue;

12492 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12493 dtrace_dof_error(dof, "section not loaded");
12494 goto err;
12495 }

12497 if (subsec->dofs_align != difo[i].align) {
12498 dtrace_dof_error(dof, "bad alignment");
12499 goto err;
12500 }

12502 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12503 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);

12505 if (*bufp != NULL) {
12506 dtrace_dof_error(dof, difo[i].msg);
12507 goto err;
12508 }

12510 if (difo[i].entsize != subsec->dofs_entsize) {
12511 dtrace_dof_error(dof, "entry size mismatch");
12512 goto err;
12513 }

12515 if (subsec->dofs_entsize != 0 &&
12516 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12517 dtrace_dof_error(dof, "corrupt entry size");
12518 goto err;
12519 }

12521 *lenp = subsec->dofs_size;
12522 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12523 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12524 *bufp, subsec->dofs_size);

12526 if (subsec->dofs_entsize != 0)
12527 *lenp /= subsec->dofs_entsize;

12529 break;
12530 }

12532 /*
12533 * If we encounter a loadable DIFO sub-section that is not
12534 * known to us, assume this is a broken program and fail.

new/usr/src/uts/common/dtrace/dtrace.c 191

12535 */
12536 if (difo[i].section == DOF_SECT_NONE &&
12537 (subsec->dofs_flags & DOF_SECF_LOAD)) {
12538 dtrace_dof_error(dof, "unrecognized DIFO subsection");
12539 goto err;
12540 }
12541 }

12543 if (dp->dtdo_buf == NULL) {
12544 /*
12545 * We can’t have a DIF object without DIF text.
12546 */
12547 dtrace_dof_error(dof, "missing DIF text");
12548 goto err;
12549 }

12551 /*
12552 * Before we validate the DIF object, run through the variable table
12553 * looking for the strings -- if any of their size are under, we’ll set
12554 * their size to be the system-wide default string size. Note that
12555 * this should _not_ happen if the "strsize" option has been set --
12556 * in this case, the compiler should have set the size to reflect the
12557 * setting of the option.
12558 */
12559 for (i = 0; i < dp->dtdo_varlen; i++) {
12560 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12561 dtrace_diftype_t *t = &v->dtdv_type;

12563 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12564 continue;

12566 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12567 t->dtdt_size = dtrace_strsize_default;
12568 }

12570 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12571 goto err;

12573 dtrace_difo_init(dp, vstate);
12574 return (dp);

12576 err:
12577 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12578 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12579 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12580 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));

12582 kmem_free(dp, sizeof (dtrace_difo_t));
12583 return (NULL);
12584 }

12586 static dtrace_predicate_t *
12587 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12588 cred_t *cr)
12589 {
12590 dtrace_difo_t *dp;

12592 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12593 return (NULL);

12595 return (dtrace_predicate_create(dp));
12596 }

12598 static dtrace_actdesc_t *
12599 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12600 cred_t *cr)

new/usr/src/uts/common/dtrace/dtrace.c 192

12601 {
12602 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12603 dof_actdesc_t *desc;
12604 dof_sec_t *difosec;
12605 size_t offs;
12606 uintptr_t daddr = (uintptr_t)dof;
12607 uint64_t arg;
12608 dtrace_actkind_t kind;

12610 if (sec->dofs_type != DOF_SECT_ACTDESC) {
12611 dtrace_dof_error(dof, "invalid action section");
12612 return (NULL);
12613 }

12615 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12616 dtrace_dof_error(dof, "truncated action description");
12617 return (NULL);
12618 }

12620 if (sec->dofs_align != sizeof (uint64_t)) {
12621 dtrace_dof_error(dof, "bad alignment in action description");
12622 return (NULL);
12623 }

12625 if (sec->dofs_size < sec->dofs_entsize) {
12626 dtrace_dof_error(dof, "section entry size exceeds total size");
12627 return (NULL);
12628 }

12630 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12631 dtrace_dof_error(dof, "bad entry size in action description");
12632 return (NULL);
12633 }

12635 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12636 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12637 return (NULL);
12638 }

12640 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12641 desc = (dof_actdesc_t *)(daddr +
12642 (uintptr_t)sec->dofs_offset + offs);
12643 kind = (dtrace_actkind_t)desc->dofa_kind;

12645 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12646 (kind != DTRACEACT_PRINTA ||
12647 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12648 (kind == DTRACEACT_DIFEXPR &&
12649 desc->dofa_strtab != DOF_SECIDX_NONE)) {
12650 dof_sec_t *strtab;
12651 char *str, *fmt;
12652 uint64_t i;

12654 /*
12655 * The argument to these actions is an index into the
12656 * DOF string table. For printf()-like actions, this
12657 * is the format string. For print(), this is the
12658 * CTF type of the expression result.
12659 */
12660 if ((strtab = dtrace_dof_sect(dof,
12661 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12662 goto err;

12664 str = (char *)((uintptr_t)dof +
12665 (uintptr_t)strtab->dofs_offset);

new/usr/src/uts/common/dtrace/dtrace.c 193

12667 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12668 if (str[i] == ’\0’)
12669 break;
12670 }

12672 if (i >= strtab->dofs_size) {
12673 dtrace_dof_error(dof, "bogus format string");
12674 goto err;
12675 }

12677 if (i == desc->dofa_arg) {
12678 dtrace_dof_error(dof, "empty format string");
12679 goto err;
12680 }

12682 i -= desc->dofa_arg;
12683 fmt = kmem_alloc(i + 1, KM_SLEEP);
12684 bcopy(&str[desc->dofa_arg], fmt, i + 1);
12685 arg = (uint64_t)(uintptr_t)fmt;
12686 } else {
12687 if (kind == DTRACEACT_PRINTA) {
12688 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12689 arg = 0;
12690 } else {
12691 arg = desc->dofa_arg;
12692 }
12693 }

12695 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12696 desc->dofa_uarg, arg);

12698 if (last != NULL) {
12699 last->dtad_next = act;
12700 } else {
12701 first = act;
12702 }

12704 last = act;

12706 if (desc->dofa_difo == DOF_SECIDX_NONE)
12707 continue;

12709 if ((difosec = dtrace_dof_sect(dof,
12710 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12711 goto err;

12713 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);

12715 if (act->dtad_difo == NULL)
12716 goto err;
12717 }

12719 ASSERT(first != NULL);
12720 return (first);

12722 err:
12723 for (act = first; act != NULL; act = next) {
12724 next = act->dtad_next;
12725 dtrace_actdesc_release(act, vstate);
12726 }

12728 return (NULL);
12729 }

12731 static dtrace_ecbdesc_t *
12732 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,

new/usr/src/uts/common/dtrace/dtrace.c 194

12733 cred_t *cr)
12734 {
12735 dtrace_ecbdesc_t *ep;
12736 dof_ecbdesc_t *ecb;
12737 dtrace_probedesc_t *desc;
12738 dtrace_predicate_t *pred = NULL;

12740 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12741 dtrace_dof_error(dof, "truncated ECB description");
12742 return (NULL);
12743 }

12745 if (sec->dofs_align != sizeof (uint64_t)) {
12746 dtrace_dof_error(dof, "bad alignment in ECB description");
12747 return (NULL);
12748 }

12750 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12751 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);

12753 if (sec == NULL)
12754 return (NULL);

12756 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12757 ep->dted_uarg = ecb->dofe_uarg;
12758 desc = &ep->dted_probe;

12760 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12761 goto err;

12763 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12764 if ((sec = dtrace_dof_sect(dof,
12765 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12766 goto err;

12768 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12769 goto err;

12771 ep->dted_pred.dtpdd_predicate = pred;
12772 }

12774 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12775 if ((sec = dtrace_dof_sect(dof,
12776 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12777 goto err;

12779 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);

12781 if (ep->dted_action == NULL)
12782 goto err;
12783 }

12785 return (ep);

12787 err:
12788 if (pred != NULL)
12789 dtrace_predicate_release(pred, vstate);
12790 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12791 return (NULL);
12792 }

12794 /*
12795 * Apply the relocations from the specified ’sec’ (a DOF_SECT_URELHDR) to the
12796 * specified DOF. At present, this amounts to simply adding ’ubase’ to the
12797 * site of any user SETX relocations to account for load object base address.
12798 * In the future, if we need other relocations, this function can be extended.

new/usr/src/uts/common/dtrace/dtrace.c 195

12799 */
12800 static int
12801 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12802 {
12803 uintptr_t daddr = (uintptr_t)dof;
12804 dof_relohdr_t *dofr =
12805 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12806 dof_sec_t *ss, *rs, *ts;
12807 dof_relodesc_t *r;
12808 uint_t i, n;

12810 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12811 sec->dofs_align != sizeof (dof_secidx_t)) {
12812 dtrace_dof_error(dof, "invalid relocation header");
12813 return (-1);
12814 }

12816 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12817 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12818 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);

12820 if (ss == NULL || rs == NULL || ts == NULL)
12821 return (-1); /* dtrace_dof_error() has been called already */

12823 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12824 rs->dofs_align != sizeof (uint64_t)) {
12825 dtrace_dof_error(dof, "invalid relocation section");
12826 return (-1);
12827 }

12829 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12830 n = rs->dofs_size / rs->dofs_entsize;

12832 for (i = 0; i < n; i++) {
12833 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;

12835 switch (r->dofr_type) {
12836 case DOF_RELO_NONE:
12837 break;
12838 case DOF_RELO_SETX:
12839 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12840 sizeof (uint64_t) > ts->dofs_size) {
12841 dtrace_dof_error(dof, "bad relocation offset");
12842 return (-1);
12843 }

12845 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12846 dtrace_dof_error(dof, "misaligned setx relo");
12847 return (-1);
12848 }

12850 *(uint64_t *)taddr += ubase;
12851 break;
12852 default:
12853 dtrace_dof_error(dof, "invalid relocation type");
12854 return (-1);
12855 }

12857 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12858 }

12860 return (0);
12861 }

12863 /*
12864 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated

new/usr/src/uts/common/dtrace/dtrace.c 196

12865 * header: it should be at the front of a memory region that is at least
12866 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12867 * size. It need not be validated in any other way.
12868 */
12869 static int
12870 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12871 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12872 {
12873 uint64_t len = dof->dofh_loadsz, seclen;
12874 uintptr_t daddr = (uintptr_t)dof;
12875 dtrace_ecbdesc_t *ep;
12876 dtrace_enabling_t *enab;
12877 uint_t i;

12879 ASSERT(MUTEX_HELD(&dtrace_lock));
12880 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));

12882 /*
12883 * Check the DOF header identification bytes. In addition to checking
12884 * valid settings, we also verify that unused bits/bytes are zeroed so
12885 * we can use them later without fear of regressing existing binaries.
12886 */
12887 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12888 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12889 dtrace_dof_error(dof, "DOF magic string mismatch");
12890 return (-1);
12891 }

12893 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12894 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12895 dtrace_dof_error(dof, "DOF has invalid data model");
12896 return (-1);
12897 }

12899 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12900 dtrace_dof_error(dof, "DOF encoding mismatch");
12901 return (-1);
12902 }

12904 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12905 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12906 dtrace_dof_error(dof, "DOF version mismatch");
12907 return (-1);
12908 }

12910 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12911 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12912 return (-1);
12913 }

12915 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12916 dtrace_dof_error(dof, "DOF uses too many integer registers");
12917 return (-1);
12918 }

12920 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12921 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12922 return (-1);
12923 }

12925 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12926 if (dof->dofh_ident[i] != 0) {
12927 dtrace_dof_error(dof, "DOF has invalid ident byte set");
12928 return (-1);
12929 }
12930 }

new/usr/src/uts/common/dtrace/dtrace.c 197

12932 if (dof->dofh_flags & ~DOF_FL_VALID) {
12933 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12934 return (-1);
12935 }

12937 if (dof->dofh_secsize == 0) {
12938 dtrace_dof_error(dof, "zero section header size");
12939 return (-1);
12940 }

12942 /*
12943 * Check that the section headers don’t exceed the amount of DOF
12944 * data. Note that we cast the section size and number of sections
12945 * to uint64_t’s to prevent possible overflow in the multiplication.
12946 */
12947 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;

12949 if (dof->dofh_secoff > len || seclen > len ||
12950 dof->dofh_secoff + seclen > len) {
12951 dtrace_dof_error(dof, "truncated section headers");
12952 return (-1);
12953 }

12955 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12956 dtrace_dof_error(dof, "misaligned section headers");
12957 return (-1);
12958 }

12960 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12961 dtrace_dof_error(dof, "misaligned section size");
12962 return (-1);
12963 }

12965 /*
12966 * Take an initial pass through the section headers to be sure that
12967 * the headers don’t have stray offsets. If the ’noprobes’ flag is
12968 * set, do not permit sections relating to providers, probes, or args.
12969 */
12970 for (i = 0; i < dof->dofh_secnum; i++) {
12971 dof_sec_t *sec = (dof_sec_t *)(daddr +
12972 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

12974 if (noprobes) {
12975 switch (sec->dofs_type) {
12976 case DOF_SECT_PROVIDER:
12977 case DOF_SECT_PROBES:
12978 case DOF_SECT_PRARGS:
12979 case DOF_SECT_PROFFS:
12980 dtrace_dof_error(dof, "illegal sections "
12981 "for enabling");
12982 return (-1);
12983 }
12984 }

12986 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12987 !(sec->dofs_flags & DOF_SECF_LOAD)) {
12988 dtrace_dof_error(dof, "loadable section with load "
12989 "flag unset");
12990 return (-1);
12991 }

12993 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12994 continue; /* just ignore non-loadable sections */

12996 if (sec->dofs_align & (sec->dofs_align - 1)) {

new/usr/src/uts/common/dtrace/dtrace.c 198

12997 dtrace_dof_error(dof, "bad section alignment");
12998 return (-1);
12999 }

13001 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13002 dtrace_dof_error(dof, "misaligned section");
13003 return (-1);
13004 }

13006 if (sec->dofs_offset > len || sec->dofs_size > len ||
13007 sec->dofs_offset + sec->dofs_size > len) {
13008 dtrace_dof_error(dof, "corrupt section header");
13009 return (-1);
13010 }

13012 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13013 sec->dofs_offset + sec->dofs_size - 1) != ’\0’) {
13014 dtrace_dof_error(dof, "non-terminating string table");
13015 return (-1);
13016 }
13017 }

13019 /*
13020 * Take a second pass through the sections and locate and perform any
13021 * relocations that are present. We do this after the first pass to
13022 * be sure that all sections have had their headers validated.
13023 */
13024 for (i = 0; i < dof->dofh_secnum; i++) {
13025 dof_sec_t *sec = (dof_sec_t *)(daddr +
13026 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

13028 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13029 continue; /* skip sections that are not loadable */

13031 switch (sec->dofs_type) {
13032 case DOF_SECT_URELHDR:
13033 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13034 return (-1);
13035 break;
13036 }
13037 }

13039 if ((enab = *enabp) == NULL)
13040 enab = *enabp = dtrace_enabling_create(vstate);

13042 for (i = 0; i < dof->dofh_secnum; i++) {
13043 dof_sec_t *sec = (dof_sec_t *)(daddr +
13044 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

13046 if (sec->dofs_type != DOF_SECT_ECBDESC)
13047 continue;

13049 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13050 dtrace_enabling_destroy(enab);
13051 *enabp = NULL;
13052 return (-1);
13053 }

13055 dtrace_enabling_add(enab, ep);
13056 }

13058 return (0);
13059 }

13061 /*
13062 * Process DOF for any options. This routine assumes that the DOF has been

new/usr/src/uts/common/dtrace/dtrace.c 199

13063 * at least processed by dtrace_dof_slurp().
13064 */
13065 static int
13066 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13067 {
13068 int i, rval;
13069 uint32_t entsize;
13070 size_t offs;
13071 dof_optdesc_t *desc;

13073 for (i = 0; i < dof->dofh_secnum; i++) {
13074 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13075 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

13077 if (sec->dofs_type != DOF_SECT_OPTDESC)
13078 continue;

13080 if (sec->dofs_align != sizeof (uint64_t)) {
13081 dtrace_dof_error(dof, "bad alignment in "
13082 "option description");
13083 return (EINVAL);
13084 }

13086 if ((entsize = sec->dofs_entsize) == 0) {
13087 dtrace_dof_error(dof, "zeroed option entry size");
13088 return (EINVAL);
13089 }

13091 if (entsize < sizeof (dof_optdesc_t)) {
13092 dtrace_dof_error(dof, "bad option entry size");
13093 return (EINVAL);
13094 }

13096 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13097 desc = (dof_optdesc_t *)((uintptr_t)dof +
13098 (uintptr_t)sec->dofs_offset + offs);

13100 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13101 dtrace_dof_error(dof, "non-zero option string");
13102 return (EINVAL);
13103 }

13105 if (desc->dofo_value == DTRACEOPT_UNSET) {
13106 dtrace_dof_error(dof, "unset option");
13107 return (EINVAL);
13108 }

13110 if ((rval = dtrace_state_option(state,
13111 desc->dofo_option, desc->dofo_value)) != 0) {
13112 dtrace_dof_error(dof, "rejected option");
13113 return (rval);
13114 }
13115 }
13116 }

13118 return (0);
13119 }

13121 /*
13122 * DTrace Consumer State Functions
13123 */
13124 int
13125 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13126 {
13127 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13128 void *base;

new/usr/src/uts/common/dtrace/dtrace.c 200

13129 uintptr_t limit;
13130 dtrace_dynvar_t *dvar, *next, *start;
13131 int i;

13133 ASSERT(MUTEX_HELD(&dtrace_lock));
13134 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);

13136 bzero(dstate, sizeof (dtrace_dstate_t));

13138 if ((dstate->dtds_chunksize = chunksize) == 0)
13139 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;

13141 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13142 size = min;

13144 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13145 return (ENOMEM);

13147 dstate->dtds_size = size;
13148 dstate->dtds_base = base;
13149 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13150 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));

13152 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));

13154 if (hashsize != 1 && (hashsize & 1))
13155 hashsize--;

13157 dstate->dtds_hashsize = hashsize;
13158 dstate->dtds_hash = dstate->dtds_base;

13160 /*
13161 * Set all of our hash buckets to point to the single sink, and (if
13162 * it hasn’t already been set), set the sink’s hash value to be the
13163 * sink sentinel value. The sink is needed for dynamic variable
13164 * lookups to know that they have iterated over an entire, valid hash
13165 * chain.
13166 */
13167 for (i = 0; i < hashsize; i++)
13168 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;

13170 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13171 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;

13173 /*
13174 * Determine number of active CPUs. Divide free list evenly among
13175 * active CPUs.
13176 */
13177 start = (dtrace_dynvar_t *)
13178 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13179 limit = (uintptr_t)base + size;

13181 maxper = (limit - (uintptr_t)start) / NCPU;
13182 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;

13184 for (i = 0; i < NCPU; i++) {
13185 dstate->dtds_percpu[i].dtdsc_free = dvar = start;

13187 /*
13188 * If we don’t even have enough chunks to make it once through
13189 * NCPUs, we’re just going to allocate everything to the first
13190 * CPU. And if we’re on the last CPU, we’re going to allocate
13191 * whatever is left over. In either case, we set the limit to
13192 * be the limit of the dynamic variable space.
13193 */
13194 if (maxper == 0 || i == NCPU - 1) {

new/usr/src/uts/common/dtrace/dtrace.c 201

13195 limit = (uintptr_t)base + size;
13196 start = NULL;
13197 } else {
13198 limit = (uintptr_t)start + maxper;
13199 start = (dtrace_dynvar_t *)limit;
13200 }

13202 ASSERT(limit <= (uintptr_t)base + size);

13204 for (;;) {
13205 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13206 dstate->dtds_chunksize);

13208 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13209 break;

13211 dvar->dtdv_next = next;
13212 dvar = next;
13213 }

13215 if (maxper == 0)
13216 break;
13217 }

13219 return (0);
13220 }

13222 void
13223 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13224 {
13225 ASSERT(MUTEX_HELD(&cpu_lock));

13227 if (dstate->dtds_base == NULL)
13228 return;

13230 kmem_free(dstate->dtds_base, dstate->dtds_size);
13231 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13232 }

13234 static void
13235 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13236 {
13237 /*
13238 * Logical XOR, where are you?
13239 */
13240 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));

13242 if (vstate->dtvs_nglobals > 0) {
13243 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13244 sizeof (dtrace_statvar_t *));
13245 }

13247 if (vstate->dtvs_ntlocals > 0) {
13248 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13249 sizeof (dtrace_difv_t));
13250 }

13252 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));

13254 if (vstate->dtvs_nlocals > 0) {
13255 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13256 sizeof (dtrace_statvar_t *));
13257 }
13258 }

13260 static void

new/usr/src/uts/common/dtrace/dtrace.c 202

13261 dtrace_state_clean(dtrace_state_t *state)
13262 {
13263 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13264 return;

13266 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13267 dtrace_speculation_clean(state);
13268 }

13270 static void
13271 dtrace_state_deadman(dtrace_state_t *state)
13272 {
13273 hrtime_t now;

13275 dtrace_sync();

13277 now = dtrace_gethrtime();

13279 if (state != dtrace_anon.dta_state &&
13280 now - state->dts_laststatus >= dtrace_deadman_user)
13281 return;

13283 /*
13284 * We must be sure that dts_alive never appears to be less than the
13285 * value upon entry to dtrace_state_deadman(), and because we lack a
13286 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13287 * store INT64_MAX to it, followed by a memory barrier, followed by
13288 * the new value. This assures that dts_alive never appears to be
13289 * less than its true value, regardless of the order in which the
13290 * stores to the underlying storage are issued.
13291 */
13292 state->dts_alive = INT64_MAX;
13293 dtrace_membar_producer();
13294 state->dts_alive = now;
13295 }

13297 dtrace_state_t *
13298 dtrace_state_create(dev_t *devp, cred_t *cr)
13299 {
13300 minor_t minor;
13301 major_t major;
13302 char c[30];
13303 dtrace_state_t *state;
13304 dtrace_optval_t *opt;
13305 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;

13307 ASSERT(MUTEX_HELD(&dtrace_lock));
13308 ASSERT(MUTEX_HELD(&cpu_lock));

13310 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13311 VM_BESTFIT | VM_SLEEP);

13313 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13314 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13315 return (NULL);
13316 }

13318 state = ddi_get_soft_state(dtrace_softstate, minor);
13319 state->dts_epid = DTRACE_EPIDNONE + 1;

13321 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13322 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13323 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);

13325 if (devp != NULL) {
13326 major = getemajor(*devp);

new/usr/src/uts/common/dtrace/dtrace.c 203

13327 } else {
13328 major = ddi_driver_major(dtrace_devi);
13329 }

13331 state->dts_dev = makedevice(major, minor);

13333 if (devp != NULL)
13334 *devp = state->dts_dev;

13336 /*
13337 * We allocate NCPU buffers. On the one hand, this can be quite
13338 * a bit of memory per instance (nearly 36K on a Starcat). On the
13339 * other hand, it saves an additional memory reference in the probe
13340 * path.
13341 */
13342 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13343 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13344 state->dts_cleaner = CYCLIC_NONE;
13345 state->dts_deadman = CYCLIC_NONE;
13346 state->dts_vstate.dtvs_state = state;

13348 for (i = 0; i < DTRACEOPT_MAX; i++)
13349 state->dts_options[i] = DTRACEOPT_UNSET;

13351 /*
13352 * Set the default options.
13353 */
13354 opt = state->dts_options;
13355 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13356 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13357 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13358 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13359 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13360 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13361 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13362 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13363 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13364 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13365 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13366 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13367 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13368 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;

13370 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;

13372 /*
13373 * Depending on the user credentials, we set flag bits which alter probe
13374 * visibility or the amount of destructiveness allowed. In the case of
13375 * actual anonymous tracing, or the possession of all privileges, all of
13376 * the normal checks are bypassed.
13377 */
13378 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13379 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13380 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13381 } else {
13382 /*
13383 * Set up the credentials for this instantiation. We take a
13384 * hold on the credential to prevent it from disappearing on
13385 * us; this in turn prevents the zone_t referenced by this
13386 * credential from disappearing. This means that we can
13387 * examine the credential and the zone from probe context.
13388 */
13389 crhold(cr);
13390 state->dts_cred.dcr_cred = cr;

13392 /*

new/usr/src/uts/common/dtrace/dtrace.c 204

13393 * CRA_PROC means "we have *some* privilege for dtrace" and
13394 * unlocks the use of variables like pid, zonename, etc.
13395 */
13396 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13397 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13398 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13399 }

13401 /*
13402 * dtrace_user allows use of syscall and profile providers.
13403 * If the user also has proc_owner and/or proc_zone, we
13404 * extend the scope to include additional visibility and
13405 * destructive power.
13406 */
13407 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13408 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13409 state->dts_cred.dcr_visible |=
13410 DTRACE_CRV_ALLPROC;

13412 state->dts_cred.dcr_action |=
13413 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13414 }

13416 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13417 state->dts_cred.dcr_visible |=
13418 DTRACE_CRV_ALLZONE;

13420 state->dts_cred.dcr_action |=
13421 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13422 }

13424 /*
13425 * If we have all privs in whatever zone this is,
13426 * we can do destructive things to processes which
13427 * have altered credentials.
13428 */
13429 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13430 cr->cr_zone->zone_privset)) {
13431 state->dts_cred.dcr_action |=
13432 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13433 }
13434 }

13436 /*
13437 * Holding the dtrace_kernel privilege also implies that
13438 * the user has the dtrace_user privilege from a visibility
13439 * perspective. But without further privileges, some
13440 * destructive actions are not available.
13441 */
13442 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13443 /*
13444 * Make all probes in all zones visible. However,
13445 * this doesn’t mean that all actions become available
13446 * to all zones.
13447 */
13448 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13449 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;

13451 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13452 DTRACE_CRA_PROC;
13453 /*
13454 * Holding proc_owner means that destructive actions
13455 * for *this* zone are allowed.
13456 */
13457 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13458 state->dts_cred.dcr_action |=

new/usr/src/uts/common/dtrace/dtrace.c 205

13459 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;

13461 /*
13462 * Holding proc_zone means that destructive actions
13463 * for this user/group ID in all zones is allowed.
13464 */
13465 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13466 state->dts_cred.dcr_action |=
13467 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;

13469 /*
13470 * If we have all privs in whatever zone this is,
13471 * we can do destructive things to processes which
13472 * have altered credentials.
13473 */
13474 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13475 cr->cr_zone->zone_privset)) {
13476 state->dts_cred.dcr_action |=
13477 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13478 }
13479 }

13481 /*
13482 * Holding the dtrace_proc privilege gives control over fasttrap
13483 * and pid providers. We need to grant wider destructive
13484 * privileges in the event that the user has proc_owner and/or
13485 * proc_zone.
13486 */
13487 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13488 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13489 state->dts_cred.dcr_action |=
13490 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;

13492 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13493 state->dts_cred.dcr_action |=
13494 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13495 }
13496 }

13498 return (state);
13499 }

13501 static int
13502 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13503 {
13504 dtrace_optval_t *opt = state->dts_options, size;
13505 processorid_t cpu;
13506 int flags = 0, rval, factor, divisor = 1;

13508 ASSERT(MUTEX_HELD(&dtrace_lock));
13509 ASSERT(MUTEX_HELD(&cpu_lock));
13510 ASSERT(which < DTRACEOPT_MAX);
13511 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13512 (state == dtrace_anon.dta_state &&
13513 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));

13515 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13516 return (0);

13518 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13519 cpu = opt[DTRACEOPT_CPU];

13521 if (which == DTRACEOPT_SPECSIZE)
13522 flags |= DTRACEBUF_NOSWITCH;

13524 if (which == DTRACEOPT_BUFSIZE) {

new/usr/src/uts/common/dtrace/dtrace.c 206

13525 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13526 flags |= DTRACEBUF_RING;

13528 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13529 flags |= DTRACEBUF_FILL;

13531 if (state != dtrace_anon.dta_state ||
13532 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13533 flags |= DTRACEBUF_INACTIVE;
13534 }

13536 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13537 /*
13538 * The size must be 8-byte aligned. If the size is not 8-byte
13539 * aligned, drop it down by the difference.
13540 */
13541 if (size & (sizeof (uint64_t) - 1))
13542 size -= size & (sizeof (uint64_t) - 1);

13544 if (size < state->dts_reserve) {
13545 /*
13546 * Buffers always must be large enough to accommodate
13547 * their prereserved space. We return E2BIG instead
13548 * of ENOMEM in this case to allow for user-level
13549 * software to differentiate the cases.
13550 */
13551 return (E2BIG);
13552 }

13554 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);

13556 if (rval != ENOMEM) {
13557 opt[which] = size;
13558 return (rval);
13559 }

13561 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13562 return (rval);

13564 for (divisor = 2; divisor < factor; divisor <<= 1)
13565 continue;
13566 }

13568 return (ENOMEM);
13569 }

13571 static int
13572 dtrace_state_buffers(dtrace_state_t *state)
13573 {
13574 dtrace_speculation_t *spec = state->dts_speculations;
13575 int rval, i;

13577 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13578 DTRACEOPT_BUFSIZE)) != 0)
13579 return (rval);

13581 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13582 DTRACEOPT_AGGSIZE)) != 0)
13583 return (rval);

13585 for (i = 0; i < state->dts_nspeculations; i++) {
13586 if ((rval = dtrace_state_buffer(state,
13587 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13588 return (rval);
13589 }

new/usr/src/uts/common/dtrace/dtrace.c 207

13591 return (0);
13592 }

13594 static void
13595 dtrace_state_prereserve(dtrace_state_t *state)
13596 {
13597 dtrace_ecb_t *ecb;
13598 dtrace_probe_t *probe;

13600 state->dts_reserve = 0;

13602 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13603 return;

13605 /*
13606 * If our buffer policy is a "fill" buffer policy, we need to set the
13607 * prereserved space to be the space required by the END probes.
13608 */
13609 probe = dtrace_probes[dtrace_probeid_end - 1];
13610 ASSERT(probe != NULL);

13612 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13613 if (ecb->dte_state != state)
13614 continue;

13616 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13617 }
13618 }

13620 static int
13621 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13622 {
13623 dtrace_optval_t *opt = state->dts_options, sz, nspec;
13624 dtrace_speculation_t *spec;
13625 dtrace_buffer_t *buf;
13626 cyc_handler_t hdlr;
13627 cyc_time_t when;
13628 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13629 dtrace_icookie_t cookie;

13631 mutex_enter(&cpu_lock);
13632 mutex_enter(&dtrace_lock);

13634 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13635 rval = EBUSY;
13636 goto out;
13637 }

13639 /*
13640 * Before we can perform any checks, we must prime all of the
13641 * retained enablings that correspond to this state.
13642 */
13643 dtrace_enabling_prime(state);

13645 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13646 rval = EACCES;
13647 goto out;
13648 }

13650 dtrace_state_prereserve(state);

13652 /*
13653 * Now we want to do is try to allocate our speculations.
13654 * We do not automatically resize the number of speculations; if
13655 * this fails, we will fail the operation.
13656 */

new/usr/src/uts/common/dtrace/dtrace.c 208

13657 nspec = opt[DTRACEOPT_NSPEC];
13658 ASSERT(nspec != DTRACEOPT_UNSET);

13660 if (nspec > INT_MAX) {
13661 rval = ENOMEM;
13662 goto out;
13663 }

13665 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13666 KM_NOSLEEP | KM_NORMALPRI);

13668 if (spec == NULL) {
13669 rval = ENOMEM;
13670 goto out;
13671 }

13673 state->dts_speculations = spec;
13674 state->dts_nspeculations = (int)nspec;

13676 for (i = 0; i < nspec; i++) {
13677 if ((buf = kmem_zalloc(bufsize,
13678 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13679 rval = ENOMEM;
13680 goto err;
13681 }

13683 spec[i].dtsp_buffer = buf;
13684 }

13686 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13687 if (dtrace_anon.dta_state == NULL) {
13688 rval = ENOENT;
13689 goto out;
13690 }

13692 if (state->dts_necbs != 0) {
13693 rval = EALREADY;
13694 goto out;
13695 }

13697 state->dts_anon = dtrace_anon_grab();
13698 ASSERT(state->dts_anon != NULL);
13699 state = state->dts_anon;

13701 /*
13702 * We want "grabanon" to be set in the grabbed state, so we’ll
13703 * copy that option value from the grabbing state into the
13704 * grabbed state.
13705 */
13706 state->dts_options[DTRACEOPT_GRABANON] =
13707 opt[DTRACEOPT_GRABANON];

13709 *cpu = dtrace_anon.dta_beganon;

13711 /*
13712 * If the anonymous state is active (as it almost certainly
13713 * is if the anonymous enabling ultimately matched anything),
13714 * we don’t allow any further option processing -- but we
13715 * don’t return failure.
13716 */
13717 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13718 goto out;
13719 }

13721 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13722 opt[DTRACEOPT_AGGSIZE] != 0) {

new/usr/src/uts/common/dtrace/dtrace.c 209

13723 if (state->dts_aggregations == NULL) {
13724 /*
13725 * We’re not going to create an aggregation buffer
13726 * because we don’t have any ECBs that contain
13727 * aggregations -- set this option to 0.
13728 */
13729 opt[DTRACEOPT_AGGSIZE] = 0;
13730 } else {
13731 /*
13732 * If we have an aggregation buffer, we must also have
13733 * a buffer to use as scratch.
13734 */
13735 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13736 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13737 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13738 }
13739 }
13740 }

13742 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13743 opt[DTRACEOPT_SPECSIZE] != 0) {
13744 if (!state->dts_speculates) {
13745 /*
13746 * We’re not going to create speculation buffers
13747 * because we don’t have any ECBs that actually
13748 * speculate -- set the speculation size to 0.
13749 */
13750 opt[DTRACEOPT_SPECSIZE] = 0;
13751 }
13752 }

13754 /*
13755 * The bare minimum size for any buffer that we’re actually going to
13756 * do anything to is sizeof (uint64_t).
13757 */
13758 sz = sizeof (uint64_t);

13760 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13761 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13762 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13763 /*
13764 * A buffer size has been explicitly set to 0 (or to a size
13765 * that will be adjusted to 0) and we need the space -- we
13766 * need to return failure. We return ENOSPC to differentiate
13767 * it from failing to allocate a buffer due to failure to meet
13768 * the reserve (for which we return E2BIG).
13769 */
13770 rval = ENOSPC;
13771 goto out;
13772 }

13774 if ((rval = dtrace_state_buffers(state)) != 0)
13775 goto err;

13777 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13778 sz = dtrace_dstate_defsize;

13780 do {
13781 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);

13783 if (rval == 0)
13784 break;

13786 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13787 goto err;
13788 } while (sz >>= 1);

new/usr/src/uts/common/dtrace/dtrace.c 210

13790 opt[DTRACEOPT_DYNVARSIZE] = sz;

13792 if (rval != 0)
13793 goto err;

13795 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13796 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;

13798 if (opt[DTRACEOPT_CLEANRATE] == 0)
13799 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;

13801 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13802 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;

13804 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13805 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;

13807 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13808 hdlr.cyh_arg = state;
13809 hdlr.cyh_level = CY_LOW_LEVEL;

13811 when.cyt_when = 0;
13812 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];

13814 state->dts_cleaner = cyclic_add(&hdlr, &when);

13816 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13817 hdlr.cyh_arg = state;
13818 hdlr.cyh_level = CY_LOW_LEVEL;

13820 when.cyt_when = 0;
13821 when.cyt_interval = dtrace_deadman_interval;

13823 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13824 state->dts_deadman = cyclic_add(&hdlr, &when);

13826 state->dts_activity = DTRACE_ACTIVITY_WARMUP;

13828 if (state->dts_getf != 0 &&
13829 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13830 /*
13831 * We don’t have kernel privs but we have at least one call
13832 * to getf(); we need to bump our zone’s count, and (if
13833 * this is the first enabling to have an unprivileged call
13834 * to getf()) we need to hook into closef().
13835 */
13836 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;

13838 if (dtrace_getf++ == 0) {
13839 ASSERT(dtrace_closef == NULL);
13840 dtrace_closef = dtrace_getf_barrier;
13841 }
13842 }

13844 /*
13845 * Now it’s time to actually fire the BEGIN probe. We need to disable
13846 * interrupts here both to record the CPU on which we fired the BEGIN
13847 * probe (the data from this CPU will be processed first at user
13848 * level) and to manually activate the buffer for this CPU.
13849 */
13850 cookie = dtrace_interrupt_disable();
13851 *cpu = CPU->cpu_id;
13852 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13853 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;

new/usr/src/uts/common/dtrace/dtrace.c 211

13855 dtrace_probe(dtrace_probeid_begin,
13856 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13857 dtrace_interrupt_enable(cookie);
13858 /*
13859 * We may have had an exit action from a BEGIN probe; only change our
13860 * state to ACTIVE if we’re still in WARMUP.
13861 */
13862 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13863 state->dts_activity == DTRACE_ACTIVITY_DRAINING);

13865 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13866 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;

13868 /*
13869 * Regardless of whether or not now we’re in ACTIVE or DRAINING, we
13870 * want each CPU to transition its principal buffer out of the
13871 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13872 * processing an ECB halfway down a probe’s ECB chain; all CPUs will
13873 * atomically transition from processing none of a state’s ECBs to
13874 * processing all of them.
13875 */
13876 dtrace_xcall(DTRACE_CPUALL,
13877 (dtrace_xcall_t)dtrace_buffer_activate, state);
13878 goto out;

13880 err:
13881 dtrace_buffer_free(state->dts_buffer);
13882 dtrace_buffer_free(state->dts_aggbuffer);

13884 if ((nspec = state->dts_nspeculations) == 0) {
13885 ASSERT(state->dts_speculations == NULL);
13886 goto out;
13887 }

13889 spec = state->dts_speculations;
13890 ASSERT(spec != NULL);

13892 for (i = 0; i < state->dts_nspeculations; i++) {
13893 if ((buf = spec[i].dtsp_buffer) == NULL)
13894 break;

13896 dtrace_buffer_free(buf);
13897 kmem_free(buf, bufsize);
13898 }

13900 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13901 state->dts_nspeculations = 0;
13902 state->dts_speculations = NULL;

13904 out:
13905 mutex_exit(&dtrace_lock);
13906 mutex_exit(&cpu_lock);

13908 return (rval);
13909 }

13911 static int
13912 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13913 {
13914 dtrace_icookie_t cookie;

13916 ASSERT(MUTEX_HELD(&dtrace_lock));

13918 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13919 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13920 return (EINVAL);

new/usr/src/uts/common/dtrace/dtrace.c 212

13922 /*
13923 * We’ll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13924 * to be sure that every CPU has seen it. See below for the details
13925 * on why this is done.
13926 */
13927 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13928 dtrace_sync();

13930 /*
13931 * By this point, it is impossible for any CPU to be still processing
13932 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13933 * DTRACE_ACTIVITY_COOLDOWN and know that we’re not racing with any
13934 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13935 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13936 * iff we’re in the END probe.
13937 */
13938 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13939 dtrace_sync();
13940 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);

13942 /*
13943 * Finally, we can release the reserve and call the END probe. We
13944 * disable interrupts across calling the END probe to allow us to
13945 * return the CPU on which we actually called the END probe. This
13946 * allows user-land to be sure that this CPU’s principal buffer is
13947 * processed last.
13948 */
13949 state->dts_reserve = 0;

13951 cookie = dtrace_interrupt_disable();
13952 *cpu = CPU->cpu_id;
13953 dtrace_probe(dtrace_probeid_end,
13954 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13955 dtrace_interrupt_enable(cookie);

13957 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13958 dtrace_sync();

13960 if (state->dts_getf != 0 &&
13961 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13962 /*
13963 * We don’t have kernel privs but we have at least one call
13964 * to getf(); we need to lower our zone’s count, and (if
13965 * this is the last enabling to have an unprivileged call
13966 * to getf()) we need to clear the closef() hook.
13967 */
13968 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
13969 ASSERT(dtrace_closef == dtrace_getf_barrier);
13970 ASSERT(dtrace_getf > 0);

13972 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;

13974 if (--dtrace_getf == 0)
13975 dtrace_closef = NULL;
13976 }

13978 return (0);
13979 }

13981 static int
13982 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13983 dtrace_optval_t val)
13984 {
13985 ASSERT(MUTEX_HELD(&dtrace_lock));

new/usr/src/uts/common/dtrace/dtrace.c 213

13987 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13988 return (EBUSY);

13990 if (option >= DTRACEOPT_MAX)
13991 return (EINVAL);

13993 if (option != DTRACEOPT_CPU && val < 0)
13994 return (EINVAL);

13996 switch (option) {
13997 case DTRACEOPT_DESTRUCTIVE:
13998 if (dtrace_destructive_disallow)
13999 return (EACCES);

14001 state->dts_cred.dcr_destructive = 1;
14002 break;

14004 case DTRACEOPT_BUFSIZE:
14005 case DTRACEOPT_DYNVARSIZE:
14006 case DTRACEOPT_AGGSIZE:
14007 case DTRACEOPT_SPECSIZE:
14008 case DTRACEOPT_STRSIZE:
14009 if (val < 0)
14010 return (EINVAL);

14012 if (val >= LONG_MAX) {
14013 /*
14014 * If this is an otherwise negative value, set it to
14015 * the highest multiple of 128m less than LONG_MAX.
14016 * Technically, we’re adjusting the size without
14017 * regard to the buffer resizing policy, but in fact,
14018 * this has no effect -- if we set the buffer size to
14019 * ~LONG_MAX and the buffer policy is ultimately set to
14020 * be "manual", the buffer allocation is guaranteed to
14021 * fail, if only because the allocation requires two
14022 * buffers. (We set the the size to the highest
14023 * multiple of 128m because it ensures that the size
14024 * will remain a multiple of a megabyte when
14025 * repeatedly halved -- all the way down to 15m.)
14026 */
14027 val = LONG_MAX - (1 << 27) + 1;
14028 }
14029 }

14031 state->dts_options[option] = val;

14033 return (0);
14034 }

14036 static void
14037 dtrace_state_destroy(dtrace_state_t *state)
14038 {
14039 dtrace_ecb_t *ecb;
14040 dtrace_vstate_t *vstate = &state->dts_vstate;
14041 minor_t minor = getminor(state->dts_dev);
14042 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14043 dtrace_speculation_t *spec = state->dts_speculations;
14044 int nspec = state->dts_nspeculations;
14045 uint32_t match;

14047 ASSERT(MUTEX_HELD(&dtrace_lock));
14048 ASSERT(MUTEX_HELD(&cpu_lock));

14050 /*
14051 * First, retract any retained enablings for this state.
14052 */

new/usr/src/uts/common/dtrace/dtrace.c 214

14053 dtrace_enabling_retract(state);
14054 ASSERT(state->dts_nretained == 0);

14056 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14057 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14058 /*
14059 * We have managed to come into dtrace_state_destroy() on a
14060 * hot enabling -- almost certainly because of a disorderly
14061 * shutdown of a consumer. (That is, a consumer that is
14062 * exiting without having called dtrace_stop().) In this case,
14063 * we’re going to set our activity to be KILLED, and then
14064 * issue a sync to be sure that everyone is out of probe
14065 * context before we start blowing away ECBs.
14066 */
14067 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14068 dtrace_sync();
14069 }

14071 /*
14072 * Release the credential hold we took in dtrace_state_create().
14073 */
14074 if (state->dts_cred.dcr_cred != NULL)
14075 crfree(state->dts_cred.dcr_cred);

14077 /*
14078 * Now we can safely disable and destroy any enabled probes. Because
14079 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14080 * (especially if they’re all enabled), we take two passes through the
14081 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14082 * in the second we disable whatever is left over.
14083 */
14084 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14085 for (i = 0; i < state->dts_necbs; i++) {
14086 if ((ecb = state->dts_ecbs[i]) == NULL)
14087 continue;

14089 if (match && ecb->dte_probe != NULL) {
14090 dtrace_probe_t *probe = ecb->dte_probe;
14091 dtrace_provider_t *prov = probe->dtpr_provider;

14093 if (!(prov->dtpv_priv.dtpp_flags & match))
14094 continue;
14095 }

14097 dtrace_ecb_disable(ecb);
14098 dtrace_ecb_destroy(ecb);
14099 }

14101 if (!match)
14102 break;
14103 }

14105 /*
14106 * Before we free the buffers, perform one more sync to assure that
14107 * every CPU is out of probe context.
14108 */
14109 dtrace_sync();

14111 dtrace_buffer_free(state->dts_buffer);
14112 dtrace_buffer_free(state->dts_aggbuffer);

14114 for (i = 0; i < nspec; i++)
14115 dtrace_buffer_free(spec[i].dtsp_buffer);

14117 if (state->dts_cleaner != CYCLIC_NONE)
14118 cyclic_remove(state->dts_cleaner);

new/usr/src/uts/common/dtrace/dtrace.c 215

14120 if (state->dts_deadman != CYCLIC_NONE)
14121 cyclic_remove(state->dts_deadman);

14123 dtrace_dstate_fini(&vstate->dtvs_dynvars);
14124 dtrace_vstate_fini(vstate);
14125 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));

14127 if (state->dts_aggregations != NULL) {
14128 #ifdef DEBUG
14129 for (i = 0; i < state->dts_naggregations; i++)
14130 ASSERT(state->dts_aggregations[i] == NULL);
14131 #endif
14132 ASSERT(state->dts_naggregations > 0);
14133 kmem_free(state->dts_aggregations,
14134 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14135 }

14137 kmem_free(state->dts_buffer, bufsize);
14138 kmem_free(state->dts_aggbuffer, bufsize);

14140 for (i = 0; i < nspec; i++)
14141 kmem_free(spec[i].dtsp_buffer, bufsize);

14143 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));

14145 dtrace_format_destroy(state);

14147 vmem_destroy(state->dts_aggid_arena);
14148 ddi_soft_state_free(dtrace_softstate, minor);
14149 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14150 }

14152 /*
14153 * DTrace Anonymous Enabling Functions
14154 */
14155 static dtrace_state_t *
14156 dtrace_anon_grab(void)
14157 {
14158 dtrace_state_t *state;

14160 ASSERT(MUTEX_HELD(&dtrace_lock));

14162 if ((state = dtrace_anon.dta_state) == NULL) {
14163 ASSERT(dtrace_anon.dta_enabling == NULL);
14164 return (NULL);
14165 }

14167 ASSERT(dtrace_anon.dta_enabling != NULL);
14168 ASSERT(dtrace_retained != NULL);

14170 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14171 dtrace_anon.dta_enabling = NULL;
14172 dtrace_anon.dta_state = NULL;

14174 return (state);
14175 }

14177 static void
14178 dtrace_anon_property(void)
14179 {
14180 int i, rv;
14181 dtrace_state_t *state;
14182 dof_hdr_t *dof;
14183 char c[32]; /* enough for "dof-data-" + digits */

new/usr/src/uts/common/dtrace/dtrace.c 216

14185 ASSERT(MUTEX_HELD(&dtrace_lock));
14186 ASSERT(MUTEX_HELD(&cpu_lock));

14188 for (i = 0; ; i++) {
14189 (void) snprintf(c, sizeof (c), "dof-data-%d", i);

14191 dtrace_err_verbose = 1;

14193 if ((dof = dtrace_dof_property(c)) == NULL) {
14194 dtrace_err_verbose = 0;
14195 break;
14196 }

14198 /*
14199 * We want to create anonymous state, so we need to transition
14200 * the kernel debugger to indicate that DTrace is active. If
14201 * this fails (e.g. because the debugger has modified text in
14202 * some way), we won’t continue with the processing.
14203 */
14204 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14205 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14206 "enabling ignored.");
14207 dtrace_dof_destroy(dof);
14208 break;
14209 }

14211 /*
14212 * If we haven’t allocated an anonymous state, we’ll do so now.
14213 */
14214 if ((state = dtrace_anon.dta_state) == NULL) {
14215 state = dtrace_state_create(NULL, NULL);
14216 dtrace_anon.dta_state = state;

14218 if (state == NULL) {
14219 /*
14220 * This basically shouldn’t happen: the only
14221 * failure mode from dtrace_state_create() is a
14222 * failure of ddi_soft_state_zalloc() that
14223 * itself should never happen. Still, the
14224 * interface allows for a failure mode, and
14225 * we want to fail as gracefully as possible:
14226 * we’ll emit an error message and cease
14227 * processing anonymous state in this case.
14228 */
14229 cmn_err(CE_WARN, "failed to create "
14230 "anonymous state");
14231 dtrace_dof_destroy(dof);
14232 break;
14233 }
14234 }

14236 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14237 &dtrace_anon.dta_enabling, 0, B_TRUE);

14239 if (rv == 0)
14240 rv = dtrace_dof_options(dof, state);

14242 dtrace_err_verbose = 0;
14243 dtrace_dof_destroy(dof);

14245 if (rv != 0) {
14246 /*
14247 * This is malformed DOF; chuck any anonymous state
14248 * that we created.
14249 */
14250 ASSERT(dtrace_anon.dta_enabling == NULL);

new/usr/src/uts/common/dtrace/dtrace.c 217

14251 dtrace_state_destroy(state);
14252 dtrace_anon.dta_state = NULL;
14253 break;
14254 }

14256 ASSERT(dtrace_anon.dta_enabling != NULL);
14257 }

14259 if (dtrace_anon.dta_enabling != NULL) {
14260 int rval;

14262 /*
14263 * dtrace_enabling_retain() can only fail because we are
14264 * trying to retain more enablings than are allowed -- but
14265 * we only have one anonymous enabling, and we are guaranteed
14266 * to be allowed at least one retained enabling; we assert
14267 * that dtrace_enabling_retain() returns success.
14268 */
14269 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14270 ASSERT(rval == 0);

14272 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14273 }
14274 }

14276 /*
14277 * DTrace Helper Functions
14278 */
14279 static void
14280 dtrace_helper_trace(dtrace_helper_action_t *helper,
14281 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14282 {
14283 uint32_t size, next, nnext, i;
14284 dtrace_helptrace_t *ent;
14285 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;

14287 if (!dtrace_helptrace_enabled)
14288 return;

14290 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);

14292 /*
14293 * What would a tracing framework be without its own tracing
14294 * framework? (Well, a hell of a lot simpler, for starters...)
14295 */
14296 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14297 sizeof (uint64_t) - sizeof (uint64_t);

14299 /*
14300 * Iterate until we can allocate a slot in the trace buffer.
14301 */
14302 do {
14303 next = dtrace_helptrace_next;

14305 if (next + size < dtrace_helptrace_bufsize) {
14306 nnext = next + size;
14307 } else {
14308 nnext = size;
14309 }
14310 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);

14312 /*
14313 * We have our slot; fill it in.
14314 */
14315 if (nnext == size)
14316 next = 0;

new/usr/src/uts/common/dtrace/dtrace.c 218

14318 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14319 ent->dtht_helper = helper;
14320 ent->dtht_where = where;
14321 ent->dtht_nlocals = vstate->dtvs_nlocals;

14323 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14324 mstate->dtms_fltoffs : -1;
14325 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14326 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;

14328 for (i = 0; i < vstate->dtvs_nlocals; i++) {
14329 dtrace_statvar_t *svar;

14331 if ((svar = vstate->dtvs_locals[i]) == NULL)
14332 continue;

14334 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14335 ent->dtht_locals[i] =
14336 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14337 }
14338 }

14340 static uint64_t
14341 dtrace_helper(int which, dtrace_mstate_t *mstate,
14342 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14343 {
14344 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14345 uint64_t sarg0 = mstate->dtms_arg[0];
14346 uint64_t sarg1 = mstate->dtms_arg[1];
14347 uint64_t rval;
14348 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14349 dtrace_helper_action_t *helper;
14350 dtrace_vstate_t *vstate;
14351 dtrace_difo_t *pred;
14352 int i, trace = dtrace_helptrace_enabled;

14354 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);

14356 if (helpers == NULL)
14357 return (0);

14359 if ((helper = helpers->dthps_actions[which]) == NULL)
14360 return (0);

14362 vstate = &helpers->dthps_vstate;
14363 mstate->dtms_arg[0] = arg0;
14364 mstate->dtms_arg[1] = arg1;

14366 /*
14367 * Now iterate over each helper. If its predicate evaluates to ’true’,
14368 * we’ll call the corresponding actions. Note that the below calls
14369 * to dtrace_dif_emulate() may set faults in machine state. This is
14370 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14371 * the stored DIF offset with its own (which is the desired behavior).
14372 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14373 * from machine state; this is okay, too.
14374 */
14375 for (; helper != NULL; helper = helper->dtha_next) {
14376 if ((pred = helper->dtha_predicate) != NULL) {
14377 if (trace)
14378 dtrace_helper_trace(helper, mstate, vstate, 0);

14380 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14381 goto next;

new/usr/src/uts/common/dtrace/dtrace.c 219

14383 if (*flags & CPU_DTRACE_FAULT)
14384 goto err;
14385 }

14387 for (i = 0; i < helper->dtha_nactions; i++) {
14388 if (trace)
14389 dtrace_helper_trace(helper,
14390 mstate, vstate, i + 1);

14392 rval = dtrace_dif_emulate(helper->dtha_actions[i],
14393 mstate, vstate, state);

14395 if (*flags & CPU_DTRACE_FAULT)
14396 goto err;
14397 }

14399 next:
14400 if (trace)
14401 dtrace_helper_trace(helper, mstate, vstate,
14402 DTRACE_HELPTRACE_NEXT);
14403 }

14405 if (trace)
14406 dtrace_helper_trace(helper, mstate, vstate,
14407 DTRACE_HELPTRACE_DONE);

14409 /*
14410 * Restore the arg0 that we saved upon entry.
14411 */
14412 mstate->dtms_arg[0] = sarg0;
14413 mstate->dtms_arg[1] = sarg1;

14415 return (rval);

14417 err:
14418 if (trace)
14419 dtrace_helper_trace(helper, mstate, vstate,
14420 DTRACE_HELPTRACE_ERR);

14422 /*
14423 * Restore the arg0 that we saved upon entry.
14424 */
14425 mstate->dtms_arg[0] = sarg0;
14426 mstate->dtms_arg[1] = sarg1;

14428 return (NULL);
14429 }

14431 static void
14432 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14433 dtrace_vstate_t *vstate)
14434 {
14435 int i;

14437 if (helper->dtha_predicate != NULL)
14438 dtrace_difo_release(helper->dtha_predicate, vstate);

14440 for (i = 0; i < helper->dtha_nactions; i++) {
14441 ASSERT(helper->dtha_actions[i] != NULL);
14442 dtrace_difo_release(helper->dtha_actions[i], vstate);
14443 }

14445 kmem_free(helper->dtha_actions,
14446 helper->dtha_nactions * sizeof (dtrace_difo_t *));
14447 kmem_free(helper, sizeof (dtrace_helper_action_t));
14448 }

new/usr/src/uts/common/dtrace/dtrace.c 220

14450 static int
14451 dtrace_helper_destroygen(int gen)
14452 {
14453 proc_t *p = curproc;
14454 dtrace_helpers_t *help = p->p_dtrace_helpers;
14455 dtrace_vstate_t *vstate;
14456 int i;

14458 ASSERT(MUTEX_HELD(&dtrace_lock));

14460 if (help == NULL || gen > help->dthps_generation)
14461 return (EINVAL);

14463 vstate = &help->dthps_vstate;

14465 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14466 dtrace_helper_action_t *last = NULL, *h, *next;

14468 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14469 next = h->dtha_next;

14471 if (h->dtha_generation == gen) {
14472 if (last != NULL) {
14473 last->dtha_next = next;
14474 } else {
14475 help->dthps_actions[i] = next;
14476 }

14478 dtrace_helper_action_destroy(h, vstate);
14479 } else {
14480 last = h;
14481 }
14482 }
14483 }

14485 /*
14486 * Interate until we’ve cleared out all helper providers with the
14487 * given generation number.
14488 */
14489 for (;;) {
14490 dtrace_helper_provider_t *prov;

14492 /*
14493 * Look for a helper provider with the right generation. We
14494 * have to start back at the beginning of the list each time
14495 * because we drop dtrace_lock. It’s unlikely that we’ll make
14496 * more than two passes.
14497 */
14498 for (i = 0; i < help->dthps_nprovs; i++) {
14499 prov = help->dthps_provs[i];

14501 if (prov->dthp_generation == gen)
14502 break;
14503 }

14505 /*
14506 * If there were no matches, we’re done.
14507 */
14508 if (i == help->dthps_nprovs)
14509 break;

14511 /*
14512 * Move the last helper provider into this slot.
14513 */
14514 help->dthps_nprovs--;

new/usr/src/uts/common/dtrace/dtrace.c 221

14515 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14516 help->dthps_provs[help->dthps_nprovs] = NULL;

14518 mutex_exit(&dtrace_lock);

14520 /*
14521 * If we have a meta provider, remove this helper provider.
14522 */
14523 mutex_enter(&dtrace_meta_lock);
14524 if (dtrace_meta_pid != NULL) {
14525 ASSERT(dtrace_deferred_pid == NULL);
14526 dtrace_helper_provider_remove(&prov->dthp_prov,
14527 p->p_pid);
14528 }
14529 mutex_exit(&dtrace_meta_lock);

14531 dtrace_helper_provider_destroy(prov);

14533 mutex_enter(&dtrace_lock);
14534 }

14536 return (0);
14537 }

14539 static int
14540 dtrace_helper_validate(dtrace_helper_action_t *helper)
14541 {
14542 int err = 0, i;
14543 dtrace_difo_t *dp;

14545 if ((dp = helper->dtha_predicate) != NULL)
14546 err += dtrace_difo_validate_helper(dp);

14548 for (i = 0; i < helper->dtha_nactions; i++)
14549 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);

14551 return (err == 0);
14552 }

14554 static int
14555 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14556 {
14557 dtrace_helpers_t *help;
14558 dtrace_helper_action_t *helper, *last;
14559 dtrace_actdesc_t *act;
14560 dtrace_vstate_t *vstate;
14561 dtrace_predicate_t *pred;
14562 int count = 0, nactions = 0, i;

14564 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14565 return (EINVAL);

14567 help = curproc->p_dtrace_helpers;
14568 last = help->dthps_actions[which];
14569 vstate = &help->dthps_vstate;

14571 for (count = 0; last != NULL; last = last->dtha_next) {
14572 count++;
14573 if (last->dtha_next == NULL)
14574 break;
14575 }

14577 /*
14578 * If we already have dtrace_helper_actions_max helper actions for this
14579 * helper action type, we’ll refuse to add a new one.
14580 */

new/usr/src/uts/common/dtrace/dtrace.c 222

14581 if (count >= dtrace_helper_actions_max)
14582 return (ENOSPC);

14584 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14585 helper->dtha_generation = help->dthps_generation;

14587 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14588 ASSERT(pred->dtp_difo != NULL);
14589 dtrace_difo_hold(pred->dtp_difo);
14590 helper->dtha_predicate = pred->dtp_difo;
14591 }

14593 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14594 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14595 goto err;

14597 if (act->dtad_difo == NULL)
14598 goto err;

14600 nactions++;
14601 }

14603 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14604 (helper->dtha_nactions = nactions), KM_SLEEP);

14606 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14607 dtrace_difo_hold(act->dtad_difo);
14608 helper->dtha_actions[i++] = act->dtad_difo;
14609 }

14611 if (!dtrace_helper_validate(helper))
14612 goto err;

14614 if (last == NULL) {
14615 help->dthps_actions[which] = helper;
14616 } else {
14617 last->dtha_next = helper;
14618 }

14620 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14621 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14622 dtrace_helptrace_next = 0;
14623 }

14625 return (0);
14626 err:
14627 dtrace_helper_action_destroy(helper, vstate);
14628 return (EINVAL);
14629 }

14631 static void
14632 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14633 dof_helper_t *dofhp)
14634 {
14635 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));

14637 mutex_enter(&dtrace_meta_lock);
14638 mutex_enter(&dtrace_lock);

14640 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14641 /*
14642 * If the dtrace module is loaded but not attached, or if
14643 * there aren’t isn’t a meta provider registered to deal with
14644 * these provider descriptions, we need to postpone creating
14645 * the actual providers until later.
14646 */

new/usr/src/uts/common/dtrace/dtrace.c 223

14648 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14649 dtrace_deferred_pid != help) {
14650 help->dthps_deferred = 1;
14651 help->dthps_pid = p->p_pid;
14652 help->dthps_next = dtrace_deferred_pid;
14653 help->dthps_prev = NULL;
14654 if (dtrace_deferred_pid != NULL)
14655 dtrace_deferred_pid->dthps_prev = help;
14656 dtrace_deferred_pid = help;
14657 }

14659 mutex_exit(&dtrace_lock);

14661 } else if (dofhp != NULL) {
14662 /*
14663 * If the dtrace module is loaded and we have a particular
14664 * helper provider description, pass that off to the
14665 * meta provider.
14666 */

14668 mutex_exit(&dtrace_lock);

14670 dtrace_helper_provide(dofhp, p->p_pid);

14672 } else {
14673 /*
14674 * Otherwise, just pass all the helper provider descriptions
14675 * off to the meta provider.
14676 */

14678 int i;
14679 mutex_exit(&dtrace_lock);

14681 for (i = 0; i < help->dthps_nprovs; i++) {
14682 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14683 p->p_pid);
14684 }
14685 }

14687 mutex_exit(&dtrace_meta_lock);
14688 }

14690 static int
14691 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14692 {
14693 dtrace_helpers_t *help;
14694 dtrace_helper_provider_t *hprov, **tmp_provs;
14695 uint_t tmp_maxprovs, i;

14697 ASSERT(MUTEX_HELD(&dtrace_lock));

14699 help = curproc->p_dtrace_helpers;
14700 ASSERT(help != NULL);

14702 /*
14703 * If we already have dtrace_helper_providers_max helper providers,
14704 * we’re refuse to add a new one.
14705 */
14706 if (help->dthps_nprovs >= dtrace_helper_providers_max)
14707 return (ENOSPC);

14709 /*
14710 * Check to make sure this isn’t a duplicate.
14711 */
14712 for (i = 0; i < help->dthps_nprovs; i++) {

new/usr/src/uts/common/dtrace/dtrace.c 224

14713 if (dofhp->dofhp_dof ==
14714 help->dthps_provs[i]->dthp_prov.dofhp_dof)
14715 return (EALREADY);
14716 }

14718 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14719 hprov->dthp_prov = *dofhp;
14720 hprov->dthp_ref = 1;
14721 hprov->dthp_generation = gen;

14723 /*
14724 * Allocate a bigger table for helper providers if it’s already full.
14725 */
14726 if (help->dthps_maxprovs == help->dthps_nprovs) {
14727 tmp_maxprovs = help->dthps_maxprovs;
14728 tmp_provs = help->dthps_provs;

14730 if (help->dthps_maxprovs == 0)
14731 help->dthps_maxprovs = 2;
14732 else
14733 help->dthps_maxprovs *= 2;
14734 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14735 help->dthps_maxprovs = dtrace_helper_providers_max;

14737 ASSERT(tmp_maxprovs < help->dthps_maxprovs);

14739 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14740 sizeof (dtrace_helper_provider_t *), KM_SLEEP);

14742 if (tmp_provs != NULL) {
14743 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14744 sizeof (dtrace_helper_provider_t *));
14745 kmem_free(tmp_provs, tmp_maxprovs *
14746 sizeof (dtrace_helper_provider_t *));
14747 }
14748 }

14750 help->dthps_provs[help->dthps_nprovs] = hprov;
14751 help->dthps_nprovs++;

14753 return (0);
14754 }

14756 static void
14757 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14758 {
14759 mutex_enter(&dtrace_lock);

14761 if (--hprov->dthp_ref == 0) {
14762 dof_hdr_t *dof;
14763 mutex_exit(&dtrace_lock);
14764 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14765 dtrace_dof_destroy(dof);
14766 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14767 } else {
14768 mutex_exit(&dtrace_lock);
14769 }
14770 }

14772 static int
14773 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14774 {
14775 uintptr_t daddr = (uintptr_t)dof;
14776 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14777 dof_provider_t *provider;
14778 dof_probe_t *probe;

new/usr/src/uts/common/dtrace/dtrace.c 225

14779 uint8_t *arg;
14780 char *strtab, *typestr;
14781 dof_stridx_t typeidx;
14782 size_t typesz;
14783 uint_t nprobes, j, k;

14785 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);

14787 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14788 dtrace_dof_error(dof, "misaligned section offset");
14789 return (-1);
14790 }

14792 /*
14793 * The section needs to be large enough to contain the DOF provider
14794 * structure appropriate for the given version.
14795 */
14796 if (sec->dofs_size <
14797 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14798 offsetof(dof_provider_t, dofpv_prenoffs) :
14799 sizeof (dof_provider_t))) {
14800 dtrace_dof_error(dof, "provider section too small");
14801 return (-1);
14802 }

14804 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14805 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14806 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14807 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14808 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);

14810 if (str_sec == NULL || prb_sec == NULL ||
14811 arg_sec == NULL || off_sec == NULL)
14812 return (-1);

14814 enoff_sec = NULL;

14816 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14817 provider->dofpv_prenoffs != DOF_SECT_NONE &&
14818 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14819 provider->dofpv_prenoffs)) == NULL)
14820 return (-1);

14822 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

14824 if (provider->dofpv_name >= str_sec->dofs_size ||
14825 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14826 dtrace_dof_error(dof, "invalid provider name");
14827 return (-1);
14828 }

14830 if (prb_sec->dofs_entsize == 0 ||
14831 prb_sec->dofs_entsize > prb_sec->dofs_size) {
14832 dtrace_dof_error(dof, "invalid entry size");
14833 return (-1);
14834 }

14836 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14837 dtrace_dof_error(dof, "misaligned entry size");
14838 return (-1);
14839 }

14841 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14842 dtrace_dof_error(dof, "invalid entry size");
14843 return (-1);
14844 }

new/usr/src/uts/common/dtrace/dtrace.c 226

14846 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14847 dtrace_dof_error(dof, "misaligned section offset");
14848 return (-1);
14849 }

14851 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14852 dtrace_dof_error(dof, "invalid entry size");
14853 return (-1);
14854 }

14856 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);

14858 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

14860 /*
14861 * Take a pass through the probes to check for errors.
14862 */
14863 for (j = 0; j < nprobes; j++) {
14864 probe = (dof_probe_t *)(uintptr_t)(daddr +
14865 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);

14867 if (probe->dofpr_func >= str_sec->dofs_size) {
14868 dtrace_dof_error(dof, "invalid function name");
14869 return (-1);
14870 }

14872 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14873 dtrace_dof_error(dof, "function name too long");
14874 return (-1);
14875 }

14877 if (probe->dofpr_name >= str_sec->dofs_size ||
14878 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14879 dtrace_dof_error(dof, "invalid probe name");
14880 return (-1);
14881 }

14883 /*
14884 * The offset count must not wrap the index, and the offsets
14885 * must also not overflow the section’s data.
14886 */
14887 if (probe->dofpr_offidx + probe->dofpr_noffs <
14888 probe->dofpr_offidx ||
14889 (probe->dofpr_offidx + probe->dofpr_noffs) *
14890 off_sec->dofs_entsize > off_sec->dofs_size) {
14891 dtrace_dof_error(dof, "invalid probe offset");
14892 return (-1);
14893 }

14895 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14896 /*
14897 * If there’s no is-enabled offset section, make sure
14898 * there aren’t any is-enabled offsets. Otherwise
14899 * perform the same checks as for probe offsets
14900 * (immediately above).
14901 */
14902 if (enoff_sec == NULL) {
14903 if (probe->dofpr_enoffidx != 0 ||
14904 probe->dofpr_nenoffs != 0) {
14905 dtrace_dof_error(dof, "is-enabled "
14906 "offsets with null section");
14907 return (-1);
14908 }
14909 } else if (probe->dofpr_enoffidx +
14910 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||

new/usr/src/uts/common/dtrace/dtrace.c 227

14911 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14912 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14913 dtrace_dof_error(dof, "invalid is-enabled "
14914 "offset");
14915 return (-1);
14916 }

14918 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14919 dtrace_dof_error(dof, "zero probe and "
14920 "is-enabled offsets");
14921 return (-1);
14922 }
14923 } else if (probe->dofpr_noffs == 0) {
14924 dtrace_dof_error(dof, "zero probe offsets");
14925 return (-1);
14926 }

14928 if (probe->dofpr_argidx + probe->dofpr_xargc <
14929 probe->dofpr_argidx ||
14930 (probe->dofpr_argidx + probe->dofpr_xargc) *
14931 arg_sec->dofs_entsize > arg_sec->dofs_size) {
14932 dtrace_dof_error(dof, "invalid args");
14933 return (-1);
14934 }

14936 typeidx = probe->dofpr_nargv;
14937 typestr = strtab + probe->dofpr_nargv;
14938 for (k = 0; k < probe->dofpr_nargc; k++) {
14939 if (typeidx >= str_sec->dofs_size) {
14940 dtrace_dof_error(dof, "bad "
14941 "native argument type");
14942 return (-1);
14943 }

14945 typesz = strlen(typestr) + 1;
14946 if (typesz > DTRACE_ARGTYPELEN) {
14947 dtrace_dof_error(dof, "native "
14948 "argument type too long");
14949 return (-1);
14950 }
14951 typeidx += typesz;
14952 typestr += typesz;
14953 }

14955 typeidx = probe->dofpr_xargv;
14956 typestr = strtab + probe->dofpr_xargv;
14957 for (k = 0; k < probe->dofpr_xargc; k++) {
14958 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14959 dtrace_dof_error(dof, "bad "
14960 "native argument index");
14961 return (-1);
14962 }

14964 if (typeidx >= str_sec->dofs_size) {
14965 dtrace_dof_error(dof, "bad "
14966 "translated argument type");
14967 return (-1);
14968 }

14970 typesz = strlen(typestr) + 1;
14971 if (typesz > DTRACE_ARGTYPELEN) {
14972 dtrace_dof_error(dof, "translated argument "
14973 "type too long");
14974 return (-1);
14975 }

new/usr/src/uts/common/dtrace/dtrace.c 228

14977 typeidx += typesz;
14978 typestr += typesz;
14979 }
14980 }

14982 return (0);
14983 }

14985 static int
14986 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14987 {
14988 dtrace_helpers_t *help;
14989 dtrace_vstate_t *vstate;
14990 dtrace_enabling_t *enab = NULL;
14991 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14992 uintptr_t daddr = (uintptr_t)dof;

14994 ASSERT(MUTEX_HELD(&dtrace_lock));

14996 if ((help = curproc->p_dtrace_helpers) == NULL)
14997 help = dtrace_helpers_create(curproc);

14999 vstate = &help->dthps_vstate;

15001 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15002 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15003 dtrace_dof_destroy(dof);
15004 return (rv);
15005 }

15007 /*
15008 * Look for helper providers and validate their descriptions.
15009 */
15010 if (dhp != NULL) {
15011 for (i = 0; i < dof->dofh_secnum; i++) {
15012 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15013 dof->dofh_secoff + i * dof->dofh_secsize);

15015 if (sec->dofs_type != DOF_SECT_PROVIDER)
15016 continue;

15018 if (dtrace_helper_provider_validate(dof, sec) != 0) {
15019 dtrace_enabling_destroy(enab);
15020 dtrace_dof_destroy(dof);
15021 return (-1);
15022 }

15024 nprovs++;
15025 }
15026 }

15028 /*
15029 * Now we need to walk through the ECB descriptions in the enabling.
15030 */
15031 for (i = 0; i < enab->dten_ndesc; i++) {
15032 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15033 dtrace_probedesc_t *desc = &ep->dted_probe;

15035 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15036 continue;

15038 if (strcmp(desc->dtpd_mod, "helper") != 0)
15039 continue;

15041 if (strcmp(desc->dtpd_func, "ustack") != 0)
15042 continue;

new/usr/src/uts/common/dtrace/dtrace.c 229

15044 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15045 ep)) != 0) {
15046 /*
15047 * Adding this helper action failed -- we are now going
15048 * to rip out the entire generation and return failure.
15049 */
15050 (void) dtrace_helper_destroygen(help->dthps_generation);
15051 dtrace_enabling_destroy(enab);
15052 dtrace_dof_destroy(dof);
15053 return (-1);
15054 }

15056 nhelpers++;
15057 }

15059 if (nhelpers < enab->dten_ndesc)
15060 dtrace_dof_error(dof, "unmatched helpers");

15062 gen = help->dthps_generation++;
15063 dtrace_enabling_destroy(enab);

15065 if (dhp != NULL && nprovs > 0) {
15066 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15067 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15068 mutex_exit(&dtrace_lock);
15069 dtrace_helper_provider_register(curproc, help, dhp);
15070 mutex_enter(&dtrace_lock);

15072 destroy = 0;
15073 }
15074 }

15076 if (destroy)
15077 dtrace_dof_destroy(dof);

15079 return (gen);
15080 }

15082 static dtrace_helpers_t *
15083 dtrace_helpers_create(proc_t *p)
15084 {
15085 dtrace_helpers_t *help;

15087 ASSERT(MUTEX_HELD(&dtrace_lock));
15088 ASSERT(p->p_dtrace_helpers == NULL);

15090 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15091 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15092 DTRACE_NHELPER_ACTIONS, KM_SLEEP);

15094 p->p_dtrace_helpers = help;
15095 dtrace_helpers++;

15097 return (help);
15098 }

15100 static void
15101 dtrace_helpers_destroy(void)
15102 {
15103 dtrace_helpers_t *help;
15104 dtrace_vstate_t *vstate;
15105 proc_t *p = curproc;
15106 int i;

15108 mutex_enter(&dtrace_lock);

new/usr/src/uts/common/dtrace/dtrace.c 230

15110 ASSERT(p->p_dtrace_helpers != NULL);
15111 ASSERT(dtrace_helpers > 0);

15113 help = p->p_dtrace_helpers;
15114 vstate = &help->dthps_vstate;

15116 /*
15117 * We’re now going to lose the help from this process.
15118 */
15119 p->p_dtrace_helpers = NULL;
15120 dtrace_sync();

15122 /*
15123 * Destory the helper actions.
15124 */
15125 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15126 dtrace_helper_action_t *h, *next;

15128 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15129 next = h->dtha_next;
15130 dtrace_helper_action_destroy(h, vstate);
15131 h = next;
15132 }
15133 }

15135 mutex_exit(&dtrace_lock);

15137 /*
15138 * Destroy the helper providers.
15139 */
15140 if (help->dthps_maxprovs > 0) {
15141 mutex_enter(&dtrace_meta_lock);
15142 if (dtrace_meta_pid != NULL) {
15143 ASSERT(dtrace_deferred_pid == NULL);

15145 for (i = 0; i < help->dthps_nprovs; i++) {
15146 dtrace_helper_provider_remove(
15147 &help->dthps_provs[i]->dthp_prov, p->p_pid);
15148 }
15149 } else {
15150 mutex_enter(&dtrace_lock);
15151 ASSERT(help->dthps_deferred == 0 ||
15152 help->dthps_next != NULL ||
15153 help->dthps_prev != NULL ||
15154 help == dtrace_deferred_pid);

15156 /*
15157 * Remove the helper from the deferred list.
15158 */
15159 if (help->dthps_next != NULL)
15160 help->dthps_next->dthps_prev = help->dthps_prev;
15161 if (help->dthps_prev != NULL)
15162 help->dthps_prev->dthps_next = help->dthps_next;
15163 if (dtrace_deferred_pid == help) {
15164 dtrace_deferred_pid = help->dthps_next;
15165 ASSERT(help->dthps_prev == NULL);
15166 }

15168 mutex_exit(&dtrace_lock);
15169 }

15171 mutex_exit(&dtrace_meta_lock);

15173 for (i = 0; i < help->dthps_nprovs; i++) {
15174 dtrace_helper_provider_destroy(help->dthps_provs[i]);

new/usr/src/uts/common/dtrace/dtrace.c 231

15175 }

15177 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15178 sizeof (dtrace_helper_provider_t *));
15179 }

15181 mutex_enter(&dtrace_lock);

15183 dtrace_vstate_fini(&help->dthps_vstate);
15184 kmem_free(help->dthps_actions,
15185 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15186 kmem_free(help, sizeof (dtrace_helpers_t));

15188 --dtrace_helpers;
15189 mutex_exit(&dtrace_lock);
15190 }

15192 static void
15193 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15194 {
15195 dtrace_helpers_t *help, *newhelp;
15196 dtrace_helper_action_t *helper, *new, *last;
15197 dtrace_difo_t *dp;
15198 dtrace_vstate_t *vstate;
15199 int i, j, sz, hasprovs = 0;

15201 mutex_enter(&dtrace_lock);
15202 ASSERT(from->p_dtrace_helpers != NULL);
15203 ASSERT(dtrace_helpers > 0);

15205 help = from->p_dtrace_helpers;
15206 newhelp = dtrace_helpers_create(to);
15207 ASSERT(to->p_dtrace_helpers != NULL);

15209 newhelp->dthps_generation = help->dthps_generation;
15210 vstate = &newhelp->dthps_vstate;

15212 /*
15213 * Duplicate the helper actions.
15214 */
15215 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15216 if ((helper = help->dthps_actions[i]) == NULL)
15217 continue;

15219 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15220 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15221 KM_SLEEP);
15222 new->dtha_generation = helper->dtha_generation;

15224 if ((dp = helper->dtha_predicate) != NULL) {
15225 dp = dtrace_difo_duplicate(dp, vstate);
15226 new->dtha_predicate = dp;
15227 }

15229 new->dtha_nactions = helper->dtha_nactions;
15230 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15231 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);

15233 for (j = 0; j < new->dtha_nactions; j++) {
15234 dtrace_difo_t *dp = helper->dtha_actions[j];

15236 ASSERT(dp != NULL);
15237 dp = dtrace_difo_duplicate(dp, vstate);
15238 new->dtha_actions[j] = dp;
15239 }

new/usr/src/uts/common/dtrace/dtrace.c 232

15241 if (last != NULL) {
15242 last->dtha_next = new;
15243 } else {
15244 newhelp->dthps_actions[i] = new;
15245 }

15247 last = new;
15248 }
15249 }

15251 /*
15252 * Duplicate the helper providers and register them with the
15253 * DTrace framework.
15254 */
15255 if (help->dthps_nprovs > 0) {
15256 newhelp->dthps_nprovs = help->dthps_nprovs;
15257 newhelp->dthps_maxprovs = help->dthps_nprovs;
15258 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15259 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15260 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15261 newhelp->dthps_provs[i] = help->dthps_provs[i];
15262 newhelp->dthps_provs[i]->dthp_ref++;
15263 }

15265 hasprovs = 1;
15266 }

15268 mutex_exit(&dtrace_lock);

15270 if (hasprovs)
15271 dtrace_helper_provider_register(to, newhelp, NULL);
15272 }

15274 /*
15275 * DTrace Hook Functions
15276 */
15277 static void
15278 dtrace_module_loaded(struct modctl *ctl)
15279 {
15280 dtrace_provider_t *prv;

15282 mutex_enter(&dtrace_provider_lock);
15283 mutex_enter(&mod_lock);

15285 ASSERT(ctl->mod_busy);

15287 /*
15288 * We’re going to call each providers per-module provide operation
15289 * specifying only this module.
15290 */
15291 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15292 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);

15294 mutex_exit(&mod_lock);
15295 mutex_exit(&dtrace_provider_lock);

15297 /*
15298 * If we have any retained enablings, we need to match against them.
15299 * Enabling probes requires that cpu_lock be held, and we cannot hold
15300 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15301 * module. (In particular, this happens when loading scheduling
15302 * classes.) So if we have any retained enablings, we need to dispatch
15303 * our task queue to do the match for us.
15304 */
15305 mutex_enter(&dtrace_lock);

new/usr/src/uts/common/dtrace/dtrace.c 233

15307 if (dtrace_retained == NULL) {
15308 mutex_exit(&dtrace_lock);
15309 return;
15310 }

15312 (void) taskq_dispatch(dtrace_taskq,
15313 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);

15315 mutex_exit(&dtrace_lock);

15317 /*
15318 * And now, for a little heuristic sleaze: in general, we want to
15319 * match modules as soon as they load. However, we cannot guarantee
15320 * this, because it would lead us to the lock ordering violation
15321 * outlined above. The common case, of course, is that cpu_lock is
15322 * _not_ held -- so we delay here for a clock tick, hoping that that’s
15323 * long enough for the task queue to do its work. If it’s not, it’s
15324 * not a serious problem -- it just means that the module that we
15325 * just loaded may not be immediately instrumentable.
15326 */
15327 delay(1);
15328 }

15330 static void
15331 dtrace_module_unloaded(struct modctl *ctl)
15332 {
15333 dtrace_probe_t template, *probe, *first, *next;
15334 dtrace_provider_t *prov;

15336 template.dtpr_mod = ctl->mod_modname;

15338 mutex_enter(&dtrace_provider_lock);
15339 mutex_enter(&mod_lock);
15340 mutex_enter(&dtrace_lock);

15342 if (dtrace_bymod == NULL) {
15343 /*
15344 * The DTrace module is loaded (obviously) but not attached;
15345 * we don’t have any work to do.
15346 */
15347 mutex_exit(&dtrace_provider_lock);
15348 mutex_exit(&mod_lock);
15349 mutex_exit(&dtrace_lock);
15350 return;
15351 }

15353 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15354 probe != NULL; probe = probe->dtpr_nextmod) {
15355 if (probe->dtpr_ecb != NULL) {
15356 mutex_exit(&dtrace_provider_lock);
15357 mutex_exit(&mod_lock);
15358 mutex_exit(&dtrace_lock);

15360 /*
15361 * This shouldn’t _actually_ be possible -- we’re
15362 * unloading a module that has an enabled probe in it.
15363 * (It’s normally up to the provider to make sure that
15364 * this can’t happen.) However, because dtps_enable()
15365 * doesn’t have a failure mode, there can be an
15366 * enable/unload race. Upshot: we don’t want to
15367 * assert, but we’re not going to disable the
15368 * probe, either.
15369 */
15370 if (dtrace_err_verbose) {
15371 cmn_err(CE_WARN, "unloaded module ’%s’ had "
15372 "enabled probes", ctl->mod_modname);

new/usr/src/uts/common/dtrace/dtrace.c 234

15373 }

15375 return;
15376 }
15377 }

15379 probe = first;

15381 for (first = NULL; probe != NULL; probe = next) {
15382 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);

15384 dtrace_probes[probe->dtpr_id - 1] = NULL;

15386 next = probe->dtpr_nextmod;
15387 dtrace_hash_remove(dtrace_bymod, probe);
15388 dtrace_hash_remove(dtrace_byfunc, probe);
15389 dtrace_hash_remove(dtrace_byname, probe);

15391 if (first == NULL) {
15392 first = probe;
15393 probe->dtpr_nextmod = NULL;
15394 } else {
15395 probe->dtpr_nextmod = first;
15396 first = probe;
15397 }
15398 }

15400 /*
15401 * We’ve removed all of the module’s probes from the hash chains and
15402 * from the probe array. Now issue a dtrace_sync() to be sure that
15403 * everyone has cleared out from any probe array processing.
15404 */
15405 dtrace_sync();

15407 for (probe = first; probe != NULL; probe = first) {
15408 first = probe->dtpr_nextmod;
15409 prov = probe->dtpr_provider;
15410 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15411 probe->dtpr_arg);
15412 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15413 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15414 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15415 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15416 kmem_free(probe, sizeof (dtrace_probe_t));
15417 }

15419 mutex_exit(&dtrace_lock);
15420 mutex_exit(&mod_lock);
15421 mutex_exit(&dtrace_provider_lock);
15422 }

15424 void
15425 dtrace_suspend(void)
15426 {
15427 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15428 }

15430 void
15431 dtrace_resume(void)
15432 {
15433 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15434 }

15436 static int
15437 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15438 {

new/usr/src/uts/common/dtrace/dtrace.c 235

15439 ASSERT(MUTEX_HELD(&cpu_lock));
15440 mutex_enter(&dtrace_lock);

15442 switch (what) {
15443 case CPU_CONFIG: {
15444 dtrace_state_t *state;
15445 dtrace_optval_t *opt, rs, c;

15447 /*
15448 * For now, we only allocate a new buffer for anonymous state.
15449 */
15450 if ((state = dtrace_anon.dta_state) == NULL)
15451 break;

15453 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15454 break;

15456 opt = state->dts_options;
15457 c = opt[DTRACEOPT_CPU];

15459 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15460 break;

15462 /*
15463 * Regardless of what the actual policy is, we’re going to
15464 * temporarily set our resize policy to be manual. We’re
15465 * also going to temporarily set our CPU option to denote
15466 * the newly configured CPU.
15467 */
15468 rs = opt[DTRACEOPT_BUFRESIZE];
15469 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15470 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;

15472 (void) dtrace_state_buffers(state);

15474 opt[DTRACEOPT_BUFRESIZE] = rs;
15475 opt[DTRACEOPT_CPU] = c;

15477 break;
15478 }

15480 case CPU_UNCONFIG:
15481 /*
15482 * We don’t free the buffer in the CPU_UNCONFIG case. (The
15483 * buffer will be freed when the consumer exits.)
15484 */
15485 break;

15487 default:
15488 break;
15489 }

15491 mutex_exit(&dtrace_lock);
15492 return (0);
15493 }

15495 static void
15496 dtrace_cpu_setup_initial(processorid_t cpu)
15497 {
15498 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15499 }

15501 static void
15502 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15503 {
15504 if (dtrace_toxranges >= dtrace_toxranges_max) {

new/usr/src/uts/common/dtrace/dtrace.c 236

15505 int osize, nsize;
15506 dtrace_toxrange_t *range;

15508 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);

15510 if (osize == 0) {
15511 ASSERT(dtrace_toxrange == NULL);
15512 ASSERT(dtrace_toxranges_max == 0);
15513 dtrace_toxranges_max = 1;
15514 } else {
15515 dtrace_toxranges_max <<= 1;
15516 }

15518 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15519 range = kmem_zalloc(nsize, KM_SLEEP);

15521 if (dtrace_toxrange != NULL) {
15522 ASSERT(osize != 0);
15523 bcopy(dtrace_toxrange, range, osize);
15524 kmem_free(dtrace_toxrange, osize);
15525 }

15527 dtrace_toxrange = range;
15528 }

15530 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15531 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);

15533 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15534 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15535 dtrace_toxranges++;
15536 }

15538 static void
15539 dtrace_getf_barrier()
15540 {
15541 /*
15542 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15543 * that contain calls to getf(), this routine will be called on every
15544 * closef() before either the underlying vnode is released or the
15545 * file_t itself is freed. By the time we are here, it is essential
15546 * that the file_t can no longer be accessed from a call to getf()
15547 * in probe context -- that assures that a dtrace_sync() can be used
15548 * to clear out any enablings referring to the old structures.
15549 */
15550 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15551 kcred->cr_zone->zone_dtrace_getf != 0)
15552 dtrace_sync();
15553 }

15555 /*
15556 * DTrace Driver Cookbook Functions
15557 */
15558 /*ARGSUSED*/
15559 static int
15560 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15561 {
15562 dtrace_provider_id_t id;
15563 dtrace_state_t *state = NULL;
15564 dtrace_enabling_t *enab;

15566 mutex_enter(&cpu_lock);
15567 mutex_enter(&dtrace_provider_lock);
15568 mutex_enter(&dtrace_lock);

15570 if (ddi_soft_state_init(&dtrace_softstate,

new/usr/src/uts/common/dtrace/dtrace.c 237

15571 sizeof (dtrace_state_t), 0) != 0) {
15572 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15573 mutex_exit(&cpu_lock);
15574 mutex_exit(&dtrace_provider_lock);
15575 mutex_exit(&dtrace_lock);
15576 return (DDI_FAILURE);
15577 }

15579 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15580 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15581 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15582 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15583 cmn_err(CE_NOTE, "/dev/dtrace couldn’t create minor nodes");
15584 ddi_remove_minor_node(devi, NULL);
15585 ddi_soft_state_fini(&dtrace_softstate);
15586 mutex_exit(&cpu_lock);
15587 mutex_exit(&dtrace_provider_lock);
15588 mutex_exit(&dtrace_lock);
15589 return (DDI_FAILURE);
15590 }

15592 ddi_report_dev(devi);
15593 dtrace_devi = devi;

15595 dtrace_modload = dtrace_module_loaded;
15596 dtrace_modunload = dtrace_module_unloaded;
15597 dtrace_cpu_init = dtrace_cpu_setup_initial;
15598 dtrace_helpers_cleanup = dtrace_helpers_destroy;
15599 dtrace_helpers_fork = dtrace_helpers_duplicate;
15600 dtrace_cpustart_init = dtrace_suspend;
15601 dtrace_cpustart_fini = dtrace_resume;
15602 dtrace_debugger_init = dtrace_suspend;
15603 dtrace_debugger_fini = dtrace_resume;

15605 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);

15607 ASSERT(MUTEX_HELD(&cpu_lock));

15609 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15610 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15611 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15612 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15613 VM_SLEEP | VMC_IDENTIFIER);
15614 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15615 1, INT_MAX, 0);

15617 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15618 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15619 NULL, NULL, NULL, NULL, NULL, 0);

15621 ASSERT(MUTEX_HELD(&cpu_lock));
15622 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15623 offsetof(dtrace_probe_t, dtpr_nextmod),
15624 offsetof(dtrace_probe_t, dtpr_prevmod));

15626 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15627 offsetof(dtrace_probe_t, dtpr_nextfunc),
15628 offsetof(dtrace_probe_t, dtpr_prevfunc));

15630 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15631 offsetof(dtrace_probe_t, dtpr_nextname),
15632 offsetof(dtrace_probe_t, dtpr_prevname));

15634 if (dtrace_retain_max < 1) {
15635 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15636 "setting to 1", dtrace_retain_max);

new/usr/src/uts/common/dtrace/dtrace.c 238

15637 dtrace_retain_max = 1;
15638 }

15640 /*
15641 * Now discover our toxic ranges.
15642 */
15643 dtrace_toxic_ranges(dtrace_toxrange_add);

15645 /*
15646 * Before we register ourselves as a provider to our own framework,
15647 * we would like to assert that dtrace_provider is NULL -- but that’s
15648 * not true if we were loaded as a dependency of a DTrace provider.
15649 * Once we’ve registered, we can assert that dtrace_provider is our
15650 * pseudo provider.
15651 */
15652 (void) dtrace_register("dtrace", &dtrace_provider_attr,
15653 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);

15655 ASSERT(dtrace_provider != NULL);
15656 ASSERT((dtrace_provider_id_t)dtrace_provider == id);

15658 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15659 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15660 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15661 dtrace_provider, NULL, NULL, "END", 0, NULL);
15662 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15663 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);

15665 dtrace_anon_property();
15666 mutex_exit(&cpu_lock);

15668 /*
15669 * If DTrace helper tracing is enabled, we need to allocate the
15670 * trace buffer and initialize the values.
15671 */
15672 if (dtrace_helptrace_enabled) {
15673 ASSERT(dtrace_helptrace_buffer == NULL);
15674 dtrace_helptrace_buffer =
15675 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15676 dtrace_helptrace_next = 0;
15677 }

15679 /*
15680 * If there are already providers, we must ask them to provide their
15681 * probes, and then match any anonymous enabling against them. Note
15682 * that there should be no other retained enablings at this time:
15683 * the only retained enablings at this time should be the anonymous
15684 * enabling.
15685 */
15686 if (dtrace_anon.dta_enabling != NULL) {
15687 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);

15689 dtrace_enabling_provide(NULL);
15690 state = dtrace_anon.dta_state;

15692 /*
15693 * We couldn’t hold cpu_lock across the above call to
15694 * dtrace_enabling_provide(), but we must hold it to actually
15695 * enable the probes. We have to drop all of our locks, pick
15696 * up cpu_lock, and regain our locks before matching the
15697 * retained anonymous enabling.
15698 */
15699 mutex_exit(&dtrace_lock);
15700 mutex_exit(&dtrace_provider_lock);

15702 mutex_enter(&cpu_lock);

new/usr/src/uts/common/dtrace/dtrace.c 239

15703 mutex_enter(&dtrace_provider_lock);
15704 mutex_enter(&dtrace_lock);

15706 if ((enab = dtrace_anon.dta_enabling) != NULL)
15707 (void) dtrace_enabling_match(enab, NULL);

15709 mutex_exit(&cpu_lock);
15710 }

15712 mutex_exit(&dtrace_lock);
15713 mutex_exit(&dtrace_provider_lock);

15715 if (state != NULL) {
15716 /*
15717 * If we created any anonymous state, set it going now.
15718 */
15719 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15720 }

15722 return (DDI_SUCCESS);
15723 }

15725 /*ARGSUSED*/
15726 static int
15727 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15728 {
15729 dtrace_state_t *state;
15730 uint32_t priv;
15731 uid_t uid;
15732 zoneid_t zoneid;

15734 if (getminor(*devp) == DTRACEMNRN_HELPER)
15735 return (0);

15737 /*
15738 * If this wasn’t an open with the "helper" minor, then it must be
15739 * the "dtrace" minor.
15740 */
15741 if (getminor(*devp) != DTRACEMNRN_DTRACE)
15742 return (ENXIO);

15744 /*
15745 * If no DTRACE_PRIV_* bits are set in the credential, then the
15746 * caller lacks sufficient permission to do anything with DTrace.
15747 */
15748 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15749 if (priv == DTRACE_PRIV_NONE)
15750 return (EACCES);

15752 /*
15753 * Ask all providers to provide all their probes.
15754 */
15755 mutex_enter(&dtrace_provider_lock);
15756 dtrace_probe_provide(NULL, NULL);
15757 mutex_exit(&dtrace_provider_lock);

15759 mutex_enter(&cpu_lock);
15760 mutex_enter(&dtrace_lock);
15761 dtrace_opens++;
15762 dtrace_membar_producer();

15764 /*
15765 * If the kernel debugger is active (that is, if the kernel debugger
15766 * modified text in some way), we won’t allow the open.
15767 */
15768 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {

new/usr/src/uts/common/dtrace/dtrace.c 240

15769 dtrace_opens--;
15770 mutex_exit(&cpu_lock);
15771 mutex_exit(&dtrace_lock);
15772 return (EBUSY);
15773 }

15775 state = dtrace_state_create(devp, cred_p);
15776 mutex_exit(&cpu_lock);

15778 if (state == NULL) {
15779 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15780 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15781 mutex_exit(&dtrace_lock);
15782 return (EAGAIN);
15783 }

15785 mutex_exit(&dtrace_lock);

15787 return (0);
15788 }

15790 /*ARGSUSED*/
15791 static int
15792 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15793 {
15794 minor_t minor = getminor(dev);
15795 dtrace_state_t *state;

15797 if (minor == DTRACEMNRN_HELPER)
15798 return (0);

15800 state = ddi_get_soft_state(dtrace_softstate, minor);

15802 mutex_enter(&cpu_lock);
15803 mutex_enter(&dtrace_lock);

15805 if (state->dts_anon) {
15806 /*
15807 * There is anonymous state. Destroy that first.
15808 */
15809 ASSERT(dtrace_anon.dta_state == NULL);
15810 dtrace_state_destroy(state->dts_anon);
15811 }

15813 dtrace_state_destroy(state);
15814 ASSERT(dtrace_opens > 0);

15816 /*
15817 * Only relinquish control of the kernel debugger interface when there
15818 * are no consumers and no anonymous enablings.
15819 */
15820 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15821 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);

15823 mutex_exit(&dtrace_lock);
15824 mutex_exit(&cpu_lock);

15826 return (0);
15827 }

15829 /*ARGSUSED*/
15830 static int
15831 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15832 {
15833 int rval;
15834 dof_helper_t help, *dhp = NULL;

new/usr/src/uts/common/dtrace/dtrace.c 241

15836 switch (cmd) {
15837 case DTRACEHIOC_ADDDOF:
15838 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15839 dtrace_dof_error(NULL, "failed to copyin DOF helper");
15840 return (EFAULT);
15841 }

15843 dhp = &help;
15844 arg = (intptr_t)help.dofhp_dof;
15845 /*FALLTHROUGH*/

15847 case DTRACEHIOC_ADD: {
15848 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);

15850 if (dof == NULL)
15851 return (rval);

15853 mutex_enter(&dtrace_lock);

15855 /*
15856 * dtrace_helper_slurp() takes responsibility for the dof --
15857 * it may free it now or it may save it and free it later.
15858 */
15859 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15860 *rv = rval;
15861 rval = 0;
15862 } else {
15863 rval = EINVAL;
15864 }

15866 mutex_exit(&dtrace_lock);
15867 return (rval);
15868 }

15870 case DTRACEHIOC_REMOVE: {
15871 mutex_enter(&dtrace_lock);
15872 rval = dtrace_helper_destroygen(arg);
15873 mutex_exit(&dtrace_lock);

15875 return (rval);
15876 }

15878 default:
15879 break;
15880 }

15882 return (ENOTTY);
15883 }

15885 /*ARGSUSED*/
15886 static int
15887 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15888 {
15889 minor_t minor = getminor(dev);
15890 dtrace_state_t *state;
15891 int rval;

15893 if (minor == DTRACEMNRN_HELPER)
15894 return (dtrace_ioctl_helper(cmd, arg, rv));

15896 state = ddi_get_soft_state(dtrace_softstate, minor);

15898 if (state->dts_anon) {
15899 ASSERT(dtrace_anon.dta_state == NULL);
15900 state = state->dts_anon;

new/usr/src/uts/common/dtrace/dtrace.c 242

15901 }

15903 switch (cmd) {
15904 case DTRACEIOC_PROVIDER: {
15905 dtrace_providerdesc_t pvd;
15906 dtrace_provider_t *pvp;

15908 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15909 return (EFAULT);

15911 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = ’\0’;
15912 mutex_enter(&dtrace_provider_lock);

15914 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15915 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15916 break;
15917 }

15919 mutex_exit(&dtrace_provider_lock);

15921 if (pvp == NULL)
15922 return (ESRCH);

15924 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15925 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15926 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15927 return (EFAULT);

15929 return (0);
15930 }

15932 case DTRACEIOC_EPROBE: {
15933 dtrace_eprobedesc_t epdesc;
15934 dtrace_ecb_t *ecb;
15935 dtrace_action_t *act;
15936 void *buf;
15937 size_t size;
15938 uintptr_t dest;
15939 int nrecs;

15941 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15942 return (EFAULT);

15944 mutex_enter(&dtrace_lock);

15946 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15947 mutex_exit(&dtrace_lock);
15948 return (EINVAL);
15949 }

15951 if (ecb->dte_probe == NULL) {
15952 mutex_exit(&dtrace_lock);
15953 return (EINVAL);
15954 }

15956 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15957 epdesc.dtepd_uarg = ecb->dte_uarg;
15958 epdesc.dtepd_size = ecb->dte_size;

15960 nrecs = epdesc.dtepd_nrecs;
15961 epdesc.dtepd_nrecs = 0;
15962 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15963 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15964 continue;

15966 epdesc.dtepd_nrecs++;

new/usr/src/uts/common/dtrace/dtrace.c 243

15967 }

15969 /*
15970 * Now that we have the size, we need to allocate a temporary
15971 * buffer in which to store the complete description. We need
15972 * the temporary buffer to be able to drop dtrace_lock()
15973 * across the copyout(), below.
15974 */
15975 size = sizeof (dtrace_eprobedesc_t) +
15976 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));

15978 buf = kmem_alloc(size, KM_SLEEP);
15979 dest = (uintptr_t)buf;

15981 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15982 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);

15984 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15985 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15986 continue;

15988 if (nrecs-- == 0)
15989 break;

15991 bcopy(&act->dta_rec, (void *)dest,
15992 sizeof (dtrace_recdesc_t));
15993 dest += sizeof (dtrace_recdesc_t);
15994 }

15996 mutex_exit(&dtrace_lock);

15998 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15999 kmem_free(buf, size);
16000 return (EFAULT);
16001 }

16003 kmem_free(buf, size);
16004 return (0);
16005 }

16007 case DTRACEIOC_AGGDESC: {
16008 dtrace_aggdesc_t aggdesc;
16009 dtrace_action_t *act;
16010 dtrace_aggregation_t *agg;
16011 int nrecs;
16012 uint32_t offs;
16013 dtrace_recdesc_t *lrec;
16014 void *buf;
16015 size_t size;
16016 uintptr_t dest;

16018 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16019 return (EFAULT);

16021 mutex_enter(&dtrace_lock);

16023 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16024 mutex_exit(&dtrace_lock);
16025 return (EINVAL);
16026 }

16028 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;

16030 nrecs = aggdesc.dtagd_nrecs;
16031 aggdesc.dtagd_nrecs = 0;

new/usr/src/uts/common/dtrace/dtrace.c 244

16033 offs = agg->dtag_base;
16034 lrec = &agg->dtag_action.dta_rec;
16035 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;

16037 for (act = agg->dtag_first; ; act = act->dta_next) {
16038 ASSERT(act->dta_intuple ||
16039 DTRACEACT_ISAGG(act->dta_kind));

16041 /*
16042 * If this action has a record size of zero, it
16043 * denotes an argument to the aggregating action.
16044 * Because the presence of this record doesn’t (or
16045 * shouldn’t) affect the way the data is interpreted,
16046 * we don’t copy it out to save user-level the
16047 * confusion of dealing with a zero-length record.
16048 */
16049 if (act->dta_rec.dtrd_size == 0) {
16050 ASSERT(agg->dtag_hasarg);
16051 continue;
16052 }

16054 aggdesc.dtagd_nrecs++;

16056 if (act == &agg->dtag_action)
16057 break;
16058 }

16060 /*
16061 * Now that we have the size, we need to allocate a temporary
16062 * buffer in which to store the complete description. We need
16063 * the temporary buffer to be able to drop dtrace_lock()
16064 * across the copyout(), below.
16065 */
16066 size = sizeof (dtrace_aggdesc_t) +
16067 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));

16069 buf = kmem_alloc(size, KM_SLEEP);
16070 dest = (uintptr_t)buf;

16072 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16073 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);

16075 for (act = agg->dtag_first; ; act = act->dta_next) {
16076 dtrace_recdesc_t rec = act->dta_rec;

16078 /*
16079 * See the comment in the above loop for why we pass
16080 * over zero-length records.
16081 */
16082 if (rec.dtrd_size == 0) {
16083 ASSERT(agg->dtag_hasarg);
16084 continue;
16085 }

16087 if (nrecs-- == 0)
16088 break;

16090 rec.dtrd_offset -= offs;
16091 bcopy(&rec, (void *)dest, sizeof (rec));
16092 dest += sizeof (dtrace_recdesc_t);

16094 if (act == &agg->dtag_action)
16095 break;
16096 }

16098 mutex_exit(&dtrace_lock);

new/usr/src/uts/common/dtrace/dtrace.c 245

16100 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16101 kmem_free(buf, size);
16102 return (EFAULT);
16103 }

16105 kmem_free(buf, size);
16106 return (0);
16107 }

16109 case DTRACEIOC_ENABLE: {
16110 dof_hdr_t *dof;
16111 dtrace_enabling_t *enab = NULL;
16112 dtrace_vstate_t *vstate;
16113 int err = 0;

16115 *rv = 0;

16117 /*
16118 * If a NULL argument has been passed, we take this as our
16119 * cue to reevaluate our enablings.
16120 */
16121 if (arg == NULL) {
16122 dtrace_enabling_matchall();

16124 return (0);
16125 }

16127 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16128 return (rval);

16130 mutex_enter(&cpu_lock);
16131 mutex_enter(&dtrace_lock);
16132 vstate = &state->dts_vstate;

16134 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16135 mutex_exit(&dtrace_lock);
16136 mutex_exit(&cpu_lock);
16137 dtrace_dof_destroy(dof);
16138 return (EBUSY);
16139 }

16141 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16142 mutex_exit(&dtrace_lock);
16143 mutex_exit(&cpu_lock);
16144 dtrace_dof_destroy(dof);
16145 return (EINVAL);
16146 }

16148 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16149 dtrace_enabling_destroy(enab);
16150 mutex_exit(&dtrace_lock);
16151 mutex_exit(&cpu_lock);
16152 dtrace_dof_destroy(dof);
16153 return (rval);
16154 }

16156 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16157 err = dtrace_enabling_retain(enab);
16158 } else {
16159 dtrace_enabling_destroy(enab);
16160 }

16162 mutex_exit(&cpu_lock);
16163 mutex_exit(&dtrace_lock);
16164 dtrace_dof_destroy(dof);

new/usr/src/uts/common/dtrace/dtrace.c 246

16166 return (err);
16167 }

16169 case DTRACEIOC_REPLICATE: {
16170 dtrace_repldesc_t desc;
16171 dtrace_probedesc_t *match = &desc.dtrpd_match;
16172 dtrace_probedesc_t *create = &desc.dtrpd_create;
16173 int err;

16175 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16176 return (EFAULT);

16178 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = ’\0’;
16179 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = ’\0’;
16180 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = ’\0’;
16181 match->dtpd_name[DTRACE_NAMELEN - 1] = ’\0’;

16183 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = ’\0’;
16184 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = ’\0’;
16185 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = ’\0’;
16186 create->dtpd_name[DTRACE_NAMELEN - 1] = ’\0’;

16188 mutex_enter(&dtrace_lock);
16189 err = dtrace_enabling_replicate(state, match, create);
16190 mutex_exit(&dtrace_lock);

16192 return (err);
16193 }

16195 case DTRACEIOC_PROBEMATCH:
16196 case DTRACEIOC_PROBES: {
16197 dtrace_probe_t *probe = NULL;
16198 dtrace_probedesc_t desc;
16199 dtrace_probekey_t pkey;
16200 dtrace_id_t i;
16201 int m = 0;
16202 uint32_t priv;
16203 uid_t uid;
16204 zoneid_t zoneid;

16206 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16207 return (EFAULT);

16209 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = ’\0’;
16210 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = ’\0’;
16211 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = ’\0’;
16212 desc.dtpd_name[DTRACE_NAMELEN - 1] = ’\0’;

16214 /*
16215 * Before we attempt to match this probe, we want to give
16216 * all providers the opportunity to provide it.
16217 */
16218 if (desc.dtpd_id == DTRACE_IDNONE) {
16219 mutex_enter(&dtrace_provider_lock);
16220 dtrace_probe_provide(&desc, NULL);
16221 mutex_exit(&dtrace_provider_lock);
16222 desc.dtpd_id++;
16223 }

16225 if (cmd == DTRACEIOC_PROBEMATCH) {
16226 dtrace_probekey(&desc, &pkey);
16227 pkey.dtpk_id = DTRACE_IDNONE;
16228 }

16230 dtrace_cred2priv(cr, &priv, &uid, &zoneid);

new/usr/src/uts/common/dtrace/dtrace.c 247

16232 mutex_enter(&dtrace_lock);

16234 if (cmd == DTRACEIOC_PROBEMATCH) {
16235 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16236 if ((probe = dtrace_probes[i - 1]) != NULL &&
16237 (m = dtrace_match_probe(probe, &pkey,
16238 priv, uid, zoneid)) != 0)
16239 break;
16240 }

16242 if (m < 0) {
16243 mutex_exit(&dtrace_lock);
16244 return (EINVAL);
16245 }

16247 } else {
16248 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16249 if ((probe = dtrace_probes[i - 1]) != NULL &&
16250 dtrace_match_priv(probe, priv, uid, zoneid))
16251 break;
16252 }
16253 }

16255 if (probe == NULL) {
16256 mutex_exit(&dtrace_lock);
16257 return (ESRCH);
16258 }

16260 dtrace_probe_description(probe, &desc);
16261 mutex_exit(&dtrace_lock);

16263 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16264 return (EFAULT);

16266 return (0);
16267 }

16269 case DTRACEIOC_PROBEARG: {
16270 dtrace_argdesc_t desc;
16271 dtrace_probe_t *probe;
16272 dtrace_provider_t *prov;

16274 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16275 return (EFAULT);

16277 if (desc.dtargd_id == DTRACE_IDNONE)
16278 return (EINVAL);

16280 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16281 return (EINVAL);

16283 mutex_enter(&dtrace_provider_lock);
16284 mutex_enter(&mod_lock);
16285 mutex_enter(&dtrace_lock);

16287 if (desc.dtargd_id > dtrace_nprobes) {
16288 mutex_exit(&dtrace_lock);
16289 mutex_exit(&mod_lock);
16290 mutex_exit(&dtrace_provider_lock);
16291 return (EINVAL);
16292 }

16294 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16295 mutex_exit(&dtrace_lock);
16296 mutex_exit(&mod_lock);

new/usr/src/uts/common/dtrace/dtrace.c 248

16297 mutex_exit(&dtrace_provider_lock);
16298 return (EINVAL);
16299 }

16301 mutex_exit(&dtrace_lock);

16303 prov = probe->dtpr_provider;

16305 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16306 /*
16307 * There isn’t any typed information for this probe.
16308 * Set the argument number to DTRACE_ARGNONE.
16309 */
16310 desc.dtargd_ndx = DTRACE_ARGNONE;
16311 } else {
16312 desc.dtargd_native[0] = ’\0’;
16313 desc.dtargd_xlate[0] = ’\0’;
16314 desc.dtargd_mapping = desc.dtargd_ndx;

16316 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16317 probe->dtpr_id, probe->dtpr_arg, &desc);
16318 }

16320 mutex_exit(&mod_lock);
16321 mutex_exit(&dtrace_provider_lock);

16323 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16324 return (EFAULT);

16326 return (0);
16327 }

16329 case DTRACEIOC_GO: {
16330 processorid_t cpuid;
16331 rval = dtrace_state_go(state, &cpuid);

16333 if (rval != 0)
16334 return (rval);

16336 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16337 return (EFAULT);

16339 return (0);
16340 }

16342 case DTRACEIOC_STOP: {
16343 processorid_t cpuid;

16345 mutex_enter(&dtrace_lock);
16346 rval = dtrace_state_stop(state, &cpuid);
16347 mutex_exit(&dtrace_lock);

16349 if (rval != 0)
16350 return (rval);

16352 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16353 return (EFAULT);

16355 return (0);
16356 }

16358 case DTRACEIOC_DOFGET: {
16359 dof_hdr_t hdr, *dof;
16360 uint64_t len;

16362 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)

new/usr/src/uts/common/dtrace/dtrace.c 249

16363 return (EFAULT);

16365 mutex_enter(&dtrace_lock);
16366 dof = dtrace_dof_create(state);
16367 mutex_exit(&dtrace_lock);

16369 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16370 rval = copyout(dof, (void *)arg, len);
16371 dtrace_dof_destroy(dof);

16373 return (rval == 0 ? 0 : EFAULT);
16374 }

16376 case DTRACEIOC_AGGSNAP:
16377 case DTRACEIOC_BUFSNAP: {
16378 dtrace_bufdesc_t desc;
16379 caddr_t cached;
16380 dtrace_buffer_t *buf;

16382 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16383 return (EFAULT);

16385 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16386 return (EINVAL);

16388 mutex_enter(&dtrace_lock);

16390 if (cmd == DTRACEIOC_BUFSNAP) {
16391 buf = &state->dts_buffer[desc.dtbd_cpu];
16392 } else {
16393 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16394 }

16396 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16397 size_t sz = buf->dtb_offset;

16399 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16400 mutex_exit(&dtrace_lock);
16401 return (EBUSY);
16402 }

16404 /*
16405 * If this buffer has already been consumed, we’re
16406 * going to indicate that there’s nothing left here
16407 * to consume.
16408 */
16409 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16410 mutex_exit(&dtrace_lock);

16412 desc.dtbd_size = 0;
16413 desc.dtbd_drops = 0;
16414 desc.dtbd_errors = 0;
16415 desc.dtbd_oldest = 0;
16416 sz = sizeof (desc);

16418 if (copyout(&desc, (void *)arg, sz) != 0)
16419 return (EFAULT);

16421 return (0);
16422 }

16424 /*
16425 * If this is a ring buffer that has wrapped, we want
16426 * to copy the whole thing out.
16427 */
16428 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {

new/usr/src/uts/common/dtrace/dtrace.c 250

16429 dtrace_buffer_polish(buf);
16430 sz = buf->dtb_size;
16431 }

16433 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16434 mutex_exit(&dtrace_lock);
16435 return (EFAULT);
16436 }

16438 desc.dtbd_size = sz;
16439 desc.dtbd_drops = buf->dtb_drops;
16440 desc.dtbd_errors = buf->dtb_errors;
16441 desc.dtbd_oldest = buf->dtb_xamot_offset;
16442 desc.dtbd_timestamp = dtrace_gethrtime();

16444 mutex_exit(&dtrace_lock);

16446 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16447 return (EFAULT);

16449 buf->dtb_flags |= DTRACEBUF_CONSUMED;

16451 return (0);
16452 }

16454 if (buf->dtb_tomax == NULL) {
16455 ASSERT(buf->dtb_xamot == NULL);
16456 mutex_exit(&dtrace_lock);
16457 return (ENOENT);
16458 }

16460 cached = buf->dtb_tomax;
16461 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));

16463 dtrace_xcall(desc.dtbd_cpu,
16464 (dtrace_xcall_t)dtrace_buffer_switch, buf);

16466 state->dts_errors += buf->dtb_xamot_errors;

16468 /*
16469 * If the buffers did not actually switch, then the cross call
16470 * did not take place -- presumably because the given CPU is
16471 * not in the ready set. If this is the case, we’ll return
16472 * ENOENT.
16473 */
16474 if (buf->dtb_tomax == cached) {
16475 ASSERT(buf->dtb_xamot != cached);
16476 mutex_exit(&dtrace_lock);
16477 return (ENOENT);
16478 }

16480 ASSERT(cached == buf->dtb_xamot);

16482 /*
16483 * We have our snapshot; now copy it out.
16484 */
16485 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16486 buf->dtb_xamot_offset) != 0) {
16487 mutex_exit(&dtrace_lock);
16488 return (EFAULT);
16489 }

16491 desc.dtbd_size = buf->dtb_xamot_offset;
16492 desc.dtbd_drops = buf->dtb_xamot_drops;
16493 desc.dtbd_errors = buf->dtb_xamot_errors;
16494 desc.dtbd_oldest = 0;

new/usr/src/uts/common/dtrace/dtrace.c 251

16495 desc.dtbd_timestamp = buf->dtb_switched;

16497 mutex_exit(&dtrace_lock);

16499 /*
16500 * Finally, copy out the buffer description.
16501 */
16502 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16503 return (EFAULT);

16505 return (0);
16506 }

16508 case DTRACEIOC_CONF: {
16509 dtrace_conf_t conf;

16511 bzero(&conf, sizeof (conf));
16512 conf.dtc_difversion = DIF_VERSION;
16513 conf.dtc_difintregs = DIF_DIR_NREGS;
16514 conf.dtc_diftupregs = DIF_DTR_NREGS;
16515 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;

16517 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16518 return (EFAULT);

16520 return (0);
16521 }

16523 case DTRACEIOC_STATUS: {
16524 dtrace_status_t stat;
16525 dtrace_dstate_t *dstate;
16526 int i, j;
16527 uint64_t nerrs;

16529 /*
16530 * See the comment in dtrace_state_deadman() for the reason
16531 * for setting dts_laststatus to INT64_MAX before setting
16532 * it to the correct value.
16533 */
16534 state->dts_laststatus = INT64_MAX;
16535 dtrace_membar_producer();
16536 state->dts_laststatus = dtrace_gethrtime();

16538 bzero(&stat, sizeof (stat));

16540 mutex_enter(&dtrace_lock);

16542 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16543 mutex_exit(&dtrace_lock);
16544 return (ENOENT);
16545 }

16547 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16548 stat.dtst_exiting = 1;

16550 nerrs = state->dts_errors;
16551 dstate = &state->dts_vstate.dtvs_dynvars;

16553 for (i = 0; i < NCPU; i++) {
16554 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];

16556 stat.dtst_dyndrops += dcpu->dtdsc_drops;
16557 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16558 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;

16560 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)

new/usr/src/uts/common/dtrace/dtrace.c 252

16561 stat.dtst_filled++;

16563 nerrs += state->dts_buffer[i].dtb_errors;

16565 for (j = 0; j < state->dts_nspeculations; j++) {
16566 dtrace_speculation_t *spec;
16567 dtrace_buffer_t *buf;

16569 spec = &state->dts_speculations[j];
16570 buf = &spec->dtsp_buffer[i];
16571 stat.dtst_specdrops += buf->dtb_xamot_drops;
16572 }
16573 }

16575 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16576 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16577 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16578 stat.dtst_dblerrors = state->dts_dblerrors;
16579 stat.dtst_killed =
16580 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16581 stat.dtst_errors = nerrs;

16583 mutex_exit(&dtrace_lock);

16585 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16586 return (EFAULT);

16588 return (0);
16589 }

16591 case DTRACEIOC_FORMAT: {
16592 dtrace_fmtdesc_t fmt;
16593 char *str;
16594 int len;

16596 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16597 return (EFAULT);

16599 mutex_enter(&dtrace_lock);

16601 if (fmt.dtfd_format == 0 ||
16602 fmt.dtfd_format > state->dts_nformats) {
16603 mutex_exit(&dtrace_lock);
16604 return (EINVAL);
16605 }

16607 /*
16608 * Format strings are allocated contiguously and they are
16609 * never freed; if a format index is less than the number
16610 * of formats, we can assert that the format map is non-NULL
16611 * and that the format for the specified index is non-NULL.
16612 */
16613 ASSERT(state->dts_formats != NULL);
16614 str = state->dts_formats[fmt.dtfd_format - 1];
16615 ASSERT(str != NULL);

16617 len = strlen(str) + 1;

16619 if (len > fmt.dtfd_length) {
16620 fmt.dtfd_length = len;

16622 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16623 mutex_exit(&dtrace_lock);
16624 return (EINVAL);
16625 }
16626 } else {

new/usr/src/uts/common/dtrace/dtrace.c 253

16627 if (copyout(str, fmt.dtfd_string, len) != 0) {
16628 mutex_exit(&dtrace_lock);
16629 return (EINVAL);
16630 }
16631 }

16633 mutex_exit(&dtrace_lock);
16634 return (0);
16635 }

16637 default:
16638 break;
16639 }

16641 return (ENOTTY);
16642 }

16644 /*ARGSUSED*/
16645 static int
16646 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16647 {
16648 dtrace_state_t *state;

16650 switch (cmd) {
16651 case DDI_DETACH:
16652 break;

16654 case DDI_SUSPEND:
16655 return (DDI_SUCCESS);

16657 default:
16658 return (DDI_FAILURE);
16659 }

16661 mutex_enter(&cpu_lock);
16662 mutex_enter(&dtrace_provider_lock);
16663 mutex_enter(&dtrace_lock);

16665 ASSERT(dtrace_opens == 0);

16667 if (dtrace_helpers > 0) {
16668 mutex_exit(&dtrace_provider_lock);
16669 mutex_exit(&dtrace_lock);
16670 mutex_exit(&cpu_lock);
16671 return (DDI_FAILURE);
16672 }

16674 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16675 mutex_exit(&dtrace_provider_lock);
16676 mutex_exit(&dtrace_lock);
16677 mutex_exit(&cpu_lock);
16678 return (DDI_FAILURE);
16679 }

16681 dtrace_provider = NULL;

16683 if ((state = dtrace_anon_grab()) != NULL) {
16684 /*
16685 * If there were ECBs on this state, the provider should
16686 * have not been allowed to detach; assert that there is
16687 * none.
16688 */
16689 ASSERT(state->dts_necbs == 0);
16690 dtrace_state_destroy(state);

16692 /*

new/usr/src/uts/common/dtrace/dtrace.c 254

16693 * If we’re being detached with anonymous state, we need to
16694 * indicate to the kernel debugger that DTrace is now inactive.
16695 */
16696 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16697 }

16699 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16700 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16701 dtrace_cpu_init = NULL;
16702 dtrace_helpers_cleanup = NULL;
16703 dtrace_helpers_fork = NULL;
16704 dtrace_cpustart_init = NULL;
16705 dtrace_cpustart_fini = NULL;
16706 dtrace_debugger_init = NULL;
16707 dtrace_debugger_fini = NULL;
16708 dtrace_modload = NULL;
16709 dtrace_modunload = NULL;

16711 ASSERT(dtrace_getf == 0);
16712 ASSERT(dtrace_closef == NULL);

16714 mutex_exit(&cpu_lock);

16716 if (dtrace_helptrace_enabled) {
16717 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16718 dtrace_helptrace_buffer = NULL;
16719 }

16721 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16722 dtrace_probes = NULL;
16723 dtrace_nprobes = 0;

16725 dtrace_hash_destroy(dtrace_bymod);
16726 dtrace_hash_destroy(dtrace_byfunc);
16727 dtrace_hash_destroy(dtrace_byname);
16728 dtrace_bymod = NULL;
16729 dtrace_byfunc = NULL;
16730 dtrace_byname = NULL;

16732 kmem_cache_destroy(dtrace_state_cache);
16733 vmem_destroy(dtrace_minor);
16734 vmem_destroy(dtrace_arena);

16736 if (dtrace_toxrange != NULL) {
16737 kmem_free(dtrace_toxrange,
16738 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16739 dtrace_toxrange = NULL;
16740 dtrace_toxranges = 0;
16741 dtrace_toxranges_max = 0;
16742 }

16744 ddi_remove_minor_node(dtrace_devi, NULL);
16745 dtrace_devi = NULL;

16747 ddi_soft_state_fini(&dtrace_softstate);

16749 ASSERT(dtrace_vtime_references == 0);
16750 ASSERT(dtrace_opens == 0);
16751 ASSERT(dtrace_retained == NULL);

16753 mutex_exit(&dtrace_lock);
16754 mutex_exit(&dtrace_provider_lock);

16756 /*
16757 * We don’t destroy the task queue until after we have dropped our
16758 * locks (taskq_destroy() may block on running tasks). To prevent

new/usr/src/uts/common/dtrace/dtrace.c 255

16759 * attempting to do work after we have effectively detached but before
16760 * the task queue has been destroyed, all tasks dispatched via the
16761 * task queue must check that DTrace is still attached before
16762 * performing any operation.
16763 */
16764 taskq_destroy(dtrace_taskq);
16765 dtrace_taskq = NULL;

16767 return (DDI_SUCCESS);
16768 }

16770 /*ARGSUSED*/
16771 static int
16772 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16773 {
16774 int error;

16776 switch (infocmd) {
16777 case DDI_INFO_DEVT2DEVINFO:
16778 *result = (void *)dtrace_devi;
16779 error = DDI_SUCCESS;
16780 break;
16781 case DDI_INFO_DEVT2INSTANCE:
16782 *result = (void *)0;
16783 error = DDI_SUCCESS;
16784 break;
16785 default:
16786 error = DDI_FAILURE;
16787 }
16788 return (error);
16789 }

16791 static struct cb_ops dtrace_cb_ops = {
16792 dtrace_open, /* open */
16793 dtrace_close, /* close */
16794 nulldev, /* strategy */
16795 nulldev, /* print */
16796 nodev, /* dump */
16797 nodev, /* read */
16798 nodev, /* write */
16799 dtrace_ioctl, /* ioctl */
16800 nodev, /* devmap */
16801 nodev, /* mmap */
16802 nodev, /* segmap */
16803 nochpoll, /* poll */
16804 ddi_prop_op, /* cb_prop_op */
16805 0, /* streamtab */
16806 D_NEW | D_MP /* Driver compatibility flag */
16807 };

16809 static struct dev_ops dtrace_ops = {
16810 DEVO_REV, /* devo_rev */
16811 0, /* refcnt */
16812 dtrace_info, /* get_dev_info */
16813 nulldev, /* identify */
16814 nulldev, /* probe */
16815 dtrace_attach, /* attach */
16816 dtrace_detach, /* detach */
16817 nodev, /* reset */
16818 &dtrace_cb_ops, /* driver operations */
16819 NULL, /* bus operations */
16820 nodev, /* dev power */
16821 ddi_quiesce_not_needed, /* quiesce */
16822 };

16824 static struct modldrv modldrv = {

new/usr/src/uts/common/dtrace/dtrace.c 256

16825 &mod_driverops, /* module type (this is a pseudo driver) */
16826 "Dynamic Tracing", /* name of module */
16827 &dtrace_ops, /* driver ops */
16828 };

16830 static struct modlinkage modlinkage = {
16831 MODREV_1,
16832 (void *)&modldrv,
16833 NULL
16834 };

16836 int
16837 _init(void)
16838 {
16839 return (mod_install(&modlinkage));
16840 }

16842 int
16843 _info(struct modinfo *modinfop)
16844 {
16845 return (mod_info(&modlinkage, modinfop));
16846 }

16848 int
16849 _fini(void)
16850 {
16851 return (mod_remove(&modlinkage));
16852 }

new/usr/src/uts/common/sys/dtrace.h 1

**
 101984 Tue Jan 14 16:49:37 2014
new/usr/src/uts/common/sys/dtrace.h
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**
______unchanged_portion_omitted_

97 /*
98 * DTrace Intermediate Format (DIF)
99 *
100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 * a RISC-like instruction set and program encoding used to represent
102 * predicates and actions that can be bound to DTrace probes. The constants
103 * below defining the number of available registers are suggested minimums; the
104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 * registers provided by the current DTrace implementation.
106 */
107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */

113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 #define DIF_OP_NOT 13 /* not r1, rd */
126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 #define DIF_OP_TST 16 /* tst r1 */
129 #define DIF_OP_BA 17 /* ba label */
130 #define DIF_OP_BE 18 /* be label */
131 #define DIF_OP_BNE 19 /* bne label */
132 #define DIF_OP_BG 20 /* bg label */
133 #define DIF_OP_BGU 21 /* bgu label */
134 #define DIF_OP_BGE 22 /* bge label */
135 #define DIF_OP_BGEU 23 /* bgeu label */
136 #define DIF_OP_BL 24 /* bl label */
137 #define DIF_OP_BLU 25 /* blu label */
138 #define DIF_OP_BLE 26 /* ble label */
139 #define DIF_OP_BLEU 27 /* bleu label */
140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 #define DIF_OP_RET 35 /* ret rd */
148 #define DIF_OP_NOP 36 /* nop */
149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 #define DIF_OP_STGS 42 /* stgs var, rs */

new/usr/src/uts/common/sys/dtrace.h 2

155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 #define DIF_OP_STTS 45 /* stts var, rs */
158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 #define DIF_OP_CALL 47 /* call subr, rd */
160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 #define DIF_OP_POPTS 50 /* popts */
163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 #define DIF_OP_STLS 57 /* stls var, rs */
170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */

193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
195 #define DIF_REGISTER_MAX 0xff /* highest register number */
196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */

199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */

203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */

207 #define DIF_VAR_ARGS 0x0000 /* arguments array */
208 #define DIF_VAR_REGS 0x0001 /* registers array */
209 #define DIF_VAR_UREGS 0x0002 /* user registers array */
210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
216 #define DIF_VAR_ID 0x0105 /* probe ID */
217 #define DIF_VAR_ARG0 0x0106 /* first argument */
218 #define DIF_VAR_ARG1 0x0107 /* second argument */
219 #define DIF_VAR_ARG2 0x0108 /* third argument */
220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */

new/usr/src/uts/common/sys/dtrace.h 3

221 #define DIF_VAR_ARG4 0x010a /* fifth argument */
222 #define DIF_VAR_ARG5 0x010b /* sixth argument */
223 #define DIF_VAR_ARG6 0x010c /* seventh argument */
224 #define DIF_VAR_ARG7 0x010d /* eighth argument */
225 #define DIF_VAR_ARG8 0x010e /* ninth argument */
226 #define DIF_VAR_ARG9 0x010f /* tenth argument */
227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
228 #define DIF_VAR_CALLER 0x0111 /* caller */
229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
233 #define DIF_VAR_PID 0x0116 /* process ID */
234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
240 #define DIF_VAR_PPID 0x011d /* parent process ID */
241 #define DIF_VAR_UID 0x011e /* process user ID */
242 #define DIF_VAR_GID 0x011f /* process group ID */
243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */

245 #define DIF_SUBR_RAND 0
246 #define DIF_SUBR_MUTEX_OWNED 1
247 #define DIF_SUBR_MUTEX_OWNER 2
248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
250 #define DIF_SUBR_RW_READ_HELD 5
251 #define DIF_SUBR_RW_WRITE_HELD 6
252 #define DIF_SUBR_RW_ISWRITER 7
253 #define DIF_SUBR_COPYIN 8
254 #define DIF_SUBR_COPYINSTR 9
255 #define DIF_SUBR_SPECULATION 10
256 #define DIF_SUBR_PROGENYOF 11
257 #define DIF_SUBR_STRLEN 12
258 #define DIF_SUBR_COPYOUT 13
259 #define DIF_SUBR_COPYOUTSTR 14
260 #define DIF_SUBR_ALLOCA 15
261 #define DIF_SUBR_BCOPY 16
262 #define DIF_SUBR_COPYINTO 17
263 #define DIF_SUBR_MSGDSIZE 18
264 #define DIF_SUBR_MSGSIZE 19
265 #define DIF_SUBR_GETMAJOR 20
266 #define DIF_SUBR_GETMINOR 21
267 #define DIF_SUBR_DDI_PATHNAME 22
268 #define DIF_SUBR_STRJOIN 23
269 #define DIF_SUBR_LLTOSTR 24
270 #define DIF_SUBR_BASENAME 25
271 #define DIF_SUBR_DIRNAME 26
272 #define DIF_SUBR_CLEANPATH 27
273 #define DIF_SUBR_STRCHR 28
274 #define DIF_SUBR_STRRCHR 29
275 #define DIF_SUBR_STRSTR 30
276 #define DIF_SUBR_STRTOK 31
277 #define DIF_SUBR_SUBSTR 32
278 #define DIF_SUBR_INDEX 33
279 #define DIF_SUBR_RINDEX 34
280 #define DIF_SUBR_HTONS 35
281 #define DIF_SUBR_HTONL 36
282 #define DIF_SUBR_HTONLL 37
283 #define DIF_SUBR_NTOHS 38
284 #define DIF_SUBR_NTOHL 39
285 #define DIF_SUBR_NTOHLL 40
286 #define DIF_SUBR_INET_NTOP 41

new/usr/src/uts/common/sys/dtrace.h 4

287 #define DIF_SUBR_INET_NTOA 42
288 #define DIF_SUBR_INET_NTOA6 43
289 #define DIF_SUBR_TOUPPER 44
290 #define DIF_SUBR_TOLOWER 45
291 #define DIF_SUBR_GETF 46
292 #define DIF_SUBR_JSON 47
293 #define DIF_SUBR_STRTOLL 48
294 #endif /* ! codereview */

296 #define DIF_SUBR_MAX 48 /* max subroutine value */
292 #define DIF_SUBR_MAX 46 /* max subroutine value */

298 typedef uint32_t dif_instr_t;

300 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
301 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
302 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
303 #define DIF_INSTR_RD(i) ((i) & 0xff)
304 #define DIF_INSTR_RS(i) ((i) & 0xff)
305 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
306 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
307 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
308 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
309 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
310 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
311 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)

313 #define DIF_INSTR_FMT(op, r1, r2, d) \
314 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))

316 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
317 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
318 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
319 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
320 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
321 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
322 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
323 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
324 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
325 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
326 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
327 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
328 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
329 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
330 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
331 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
332 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
333 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
334 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
335 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
336 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))

338 #define DIF_REG_R0 0 /* %r0 is always set to zero */

340 /*
341 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
342 * of variables, function and associative array arguments, and the return type
343 * for each DIF object (shown below). It contains a description of the type,
344 * its size in bytes, and a module identifier.
345 */
346 typedef struct dtrace_diftype {
347 uint8_t dtdt_kind; /* type kind (see below) */
348 uint8_t dtdt_ckind; /* type kind in CTF */
349 uint8_t dtdt_flags; /* type flags (see below) */
350 uint8_t dtdt_pad; /* reserved for future use */
351 uint32_t dtdt_size; /* type size in bytes (unless string) */

new/usr/src/uts/common/sys/dtrace.h 5

352 } dtrace_diftype_t;
______unchanged_portion_omitted_

new/usr/src/uts/intel/dtrace/Makefile 1

**
 2206 Tue Jan 14 16:49:38 2014
new/usr/src/uts/intel/dtrace/Makefile
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 UTSBASE = ../..

28 MODULE = dtrace
29 OBJECTS = $(DTRACE_OBJS:%=$(OBJS_DIR)/%)
30 LINTS = $(DTRACE_OBJS:%.o=$(LINTS_DIR)/%.ln)
31 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
32 CONF_SRCDIR = $(UTSBASE)/common/dtrace

34 include $(UTSBASE)/intel/Makefile.intel

36 #
37 # For now, disable these lint checks; maintainers should endeavor
38 # to investigate and remove these for maximum lint coverage.
39 # Please do not carry these forward to new Makefiles.
40 #
41 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON
42 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
43 LINTTAGS += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED
44 LINTTAGS += -erroff=E_STATIC_UNUSED
45 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
46 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

48 CERRWARN += -_gcc=-Wno-parentheses
49 CERRWARN += -_gcc=-Wno-type-limits
50 CERRWARN += -_gcc=-Wno-uninitialized

52 CPPFLAGS += -I$(SRC)/common/util

54 #endif /* ! codereview */
55 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
56 LINT_TARGET = $(MODULE).lint
57 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)
58 AS_INC_PATH += -I$(DSF_DIR)/$(OBJS_DIR)

60 ASSYM_H = $(DSF_DIR)/$(OBJS_DIR)/assym.h

new/usr/src/uts/intel/dtrace/Makefile 2

62 .KEEP_STATE:

64 def: $(DEF_DEPS)

66 all: $(ALL_DEPS)

68 clean: $(CLEAN_DEPS)

70 clobber: $(CLOBBER_DEPS)

72 lint: $(LINT_DEPS)

74 modlintlib: $(MODLINTLIB_DEPS)

76 clean.lint: $(CLEAN_LINT_DEPS)

78 install: $(INSTALL_DEPS)

80 $(BINARY): $(ASSYM_H)

82 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/sparc/dtrace/Makefile 1

**
 2550 Tue Jan 14 16:49:39 2014
new/usr/src/uts/sparc/dtrace/Makefile
4477 DTrace should speak JSON
Reviewed by: Bryan Cantrill <bmc@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 UTSBASE = ../..

28 PLATFORM = sun4u
29 MODULE = dtrace
30 OBJECTS = $(DTRACE_OBJS:%=$(OBJS_DIR)/%)
31 LINTS = $(DTRACE_OBJS:%.o=$(LINTS_DIR)/%.ln)
32 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
33 CONF_SRCDIR = $(UTSBASE)/common/dtrace

35 include $(UTSBASE)/sparc/Makefile.sparc

37 #
38 # Redefine DSF_DIR
39 #
40 DSF_DIR = $(UTSBASE)/$(PLATFORM)/genassym

42 CERRWARN += -_gcc=-Wno-parentheses
43 CERRWARN += -_gcc=-Wno-type-limits
44 CERRWARN += -_gcc=-Wno-uninitialized

46 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
47 LINT_TARGET = $(MODULE).lint
48 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

50 DTRACE_INC_32 = -I$(UTSBASE)/sparc/v7
51 DTRACE_INC_64 = -I$(UTSBASE)/sparc/v9

53 CFLAGS += $(CCVERBOSE)
54 CPPFLAGS += $(DTRACE_INC_$(CLASS))
55 CPPFLAGS += -I$(SRC)/common/util
56 #endif /* ! codereview */

58 DTRACE_XAS_32 = -xarch=v8plus
59 DTRACE_XAS_64 = -xarch=v9

new/usr/src/uts/sparc/dtrace/Makefile 2

61 AS_CPPFLAGS += $(DTRACE_INC_64)
62 ASFLAGS += $(DTRACE_XAS_$(CLASS))
63 AS_INC_PATH += -I$(DSF_DIR)/$(OBJS_DIR)

65 ASSYM_H = $(DSF_DIR)/$(OBJS_DIR)/assym.h

67 #
68 # For now, disable these lint checks; maintainers should endeavor
69 # to investigate and remove these for maximum lint coverage.
70 # Please do not carry these forward to new Makefiles.
71 #
72 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON
73 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
74 LINTTAGS += -erroff=E_SUPPRESSION_DIRECTIVE_UNUSED
75 LINTTAGS += -erroff=E_STATIC_UNUSED
76 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
77 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

79 .KEEP_STATE:

81 def: $(DEF_DEPS)

83 all: $(ALL_DEPS)

85 clean: $(CLEAN_DEPS)

87 clobber: $(CLOBBER_DEPS)

89 lint: $(LINT_DEPS)

91 modlintlib: $(MODLINTLIB_DEPS)

93 clean.lint: $(CLEAN_LINT_DEPS)

95 install: $(INSTALL_DEPS)

97 $(BINARY): $(ASSYM_H)

99 include $(UTSBASE)/sparc/Makefile.targ

