new usr/src/cnd/ dtrace/test/tst/common/ Makefile

R R R R

4180 Tue Jan 14 16:49:30 2014
new usr/src/cnd/ dtrace/test/tst/comon/ Makefile
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»

LR R

Copyright (c) 2012, Joyent, Inc. Al rights reserved.
endif /* | codereview */

1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the ternms of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing pernissions
11 # and limtations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
22 #
23 # Copyright 2008 Sun Mcrosystens, Inc. Al rights reserved.
24 # Use is subject to |icense terns.
25 #
27 #
28 # Copyright (c) 2012 by Del phix. Al rights reserved.

#

#

#

33 include $(SRC)/ Makefile. master
34 include ../ Mkefile.com

36 SNOOPDI R = $(SRC)/ cnd/ cd-i net/ usr. sbi n/ snoop
37 SNOOPOBJS = nfs4_xdr.o

38 SNOOPSRCS = ${ SNOOPOBJS: % 0=% c}

39 CLOBBERFI LES += nf s/ $(SNOOPOBJS)

41 RPCSVCDI R = $(SRC)/ head/rpcsvc

42 RPCSVCOBJS = nfs_prot.o

43 RPCSVCSRCS = ${ RPCSVCOBJS: Y%0=%}

44 CLOBBERFI LES += nf s/ $(RPCSVCOBJS) $(RPCSVCDI R)/ $(RPCSVCSRCS)
45 CLOBBERFI LES += usdt/forker.h usdt/|azyprobe. h

47 fasttrap/tst.fasttrap.exe := LDLIBS += -l dtrace
48 fasttrap/tst.stack.exe := LDLIBS += -ldtrace

50 sysevent/tst.post.exe := LDLIBS += -|sysevent
51 sysevent/tst.post_chan.exe := LDLIBS += -|sysevent

53 ustack/tst.bigstack.exe : = COPTFLAG += -xO1
55 GOC = $(ONBLD_TQOLS)/ bi n/ $(MACH) / cw - _gcc
57 nfs/%o: $(SNOOPDIR)/ % c

58 $(COWPILE.c) -0 $@ $< -1 $(SNOOPDI R)

59 $(POST_PROCESS_O)
60 nfs/tst.call.exe: nfs/tst.call.o nfs/$(SNOOPOBIS)

new usr/src/cnd/ dtrace/test/tst/common/ Makefile

115
116

118
119
120
121

123
124
125

$(LINK. c) -0 $@nfs/tst.call.o nfs/$(SNOOPOBIS) $(LDLIBS) -Insl

$(POST_PROCESS) ; $(STRI P_STABS)
$(RPCSVCDI R) / % c: $(RPCSVCDI R) / % X
$(RPCGEN) -Cc $< > $
nf s/ $(RPCSVOOBJS) : $(RPCSVCDI R) / $(RPCSVCSRCS)
$(COMPI LE. ¢) -0 $@ $(RPCSVCDI R) / $(RPCSVCSRCS)
$(POST_PROCESS_0)
nfs/tst.call3.exe: nfs/tst.call 3.0 nfs/$(RPCSVCOBIS)
$(LINK.c) -0 $@nfs/tst.call3.o nfs/$(RPCSVCOBIS) \
$(LDLIBS) -Insl -Ilrpcsve
$(POST_PROCESS) ; $(STRI P_STABS)

pi d/tst.gcc.exe: pid/tst.gcc.c
$(GCC) -0 pid/tst.gcc.exe pid/tst.gcc.c $(LDFLAGS)
$(POST_PROCESS) ; $(STRI P_STABS)

json/tst.usdt.o: json/usdt.h

json/usdt. h: json/usdt.d
$(DTRACE) -h -s json/usdt.d -0 json/usdt.h

json/usdt.o: json/usdt.d json/tst.usdt.o

$(COWPILE. d) -0 json/usdt.o -s json/usdt.d json/tst.usdt.

json/tst.usdt.exe: json/tst.usdt.o json/usdt.o

$(LINK.c) -0 json/tst.usdt.exe json/tst.usdt.o json/usdt.

$(POST_PROCESS) ; $(STRI P_STABS)

#endif /* | codereview */
usdt/tst.args.exe: usdt/tst.args.o usdt/args.o

$(LINK. c) -0 usdt/tst.args.exe usdt/tst.args.o usdt/args.

$(POST_PROCESS) ; $(STRI P_STABS)

usdt/args. o: usdt/args.d usdt/tst.args.o

$(COWPILE. d) -0 usdt/args.o -s usdt/args.d usdt/tst.args.

usdt/tst.argmap. exe: usdt/tst.argmap.o usdt/argnmap. o
$(LINK. c) -0 usdt/tst.argnap.exe \
usdt/tst.argmap. o usdt/argmap. o $(LDLIBS)
$(POST_PROCESS) ; $(STRI P_STABS)

usdt/argmap. o: usdt/argmap.d usdt/tst.argnmap. o

o $(LDLIBS)

o $(LDLIBS)

$(COWPI LE. d) -0 usdt/argnmap.o -s usdt/argmap.d usdt/tst.argmap.o

usdt/tst.forker.exe: usdt/tst.forker.o usdt/forker.o
$(LINK. c) -o usdt/tst.forker.exe \
usdt/tst.forker.o usdt/forker.o $(LDLIBS)
$(POST_PROCESS) ; $(STRI P_STABS)

usdt/forker.o: usdt/forker.d usdt/tst.forker.o

$(COWPILE. d) -0 usdt/forker.o -s usdt/forker.d usdt/tst.forker.o

usdt/tst.forker.o: usdt/forker.h

usdt/forker.h: usdt/forker.d
$(DTRACE) -h -s usdt/forker.d -o usdt/forker.h

usdt/tst.|azyprobe. exe: usdt/tst.|azyprobe.o usdt/|azyprobe.o
$(LINK. c) -0 usdt/tst.lazyprobe.exe \
usdt/tst. |l azyprobe. o usdt/| azyprobe. o $(LDLI BS)
$(POST_PROCESS) ; $(STRI P_STABS)

usdt/ | azyprobe. o: usdt/| azyprobe.d usdt/tst.|azyprobe.o
$(COWPI LE. d) -xlazyl oad -o usdt/|azyprobe.o \
-s usdt/l azyprobe.d usdt/tst.|azyprobe.o

new usr/src/cnd/ dtrace/test/tst/common/ Makefile
127 usdt/tst.|lazyprobe. o: usdt/|azyprobe. h

129 usdt/ | azyprobe. h: usdt/|azyprobe.d
130 $(DTRACE) -h -s usdt/|azyprobe.d -o usdt/|azyprobe. h

132 SUBDI RS = java_api
133 include ../../Makefile.subdirs

new usr/src/cnd/ dtrace/test/tst/comon/aggs/tst.subr.d

R R R R

3096 Tue Jan 14 16:49:31 2014
new usr/src/cnd/ dtrace/test/tst/comon/aggs/tst.subr.d
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»

LR R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.

24 * Use is subject to |license terns.

25 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
26 #endif /* | codereview */

*

/

29 #include <sys/dtrace. h>

31 #define | NTFUNC(x) \
32 BEG N \
33 | * DSTYLED*/ \
34 { \
35 subr ++; \
36 @ (long)x] = sum(1); \
37 | * DSTYLED*/ \
38 1

40 #define STRFUNC(x) \
41 BEG N \
42 | * DSTYLED*/ \
43 { \
44 subr ++; \
45 @tr[x] = sun(l); \
46 | * DSTYLED*/ \
47 1

49 #define VO DFUNC(x) \
50 BEG N \
51 | * DSTYLED*/ \
52 { \
53] subr ++; \
54 | * DSTYLED*/ \
55 1

57 I NTFUNC(rand())

58 | NTFUNC(nut ex_owned(& cpu_I ock))

59 | NTFUNC(nut ex_owner (& cpu_I ock))

60 | NTFUNC(nut ex_t ype_adapti ve(& cpu_l ock))

new usr/src/cnd/ dtrace/test/tst/comon/aggs/tst.subr.d

I NTFUNC(nut ex_t ype_spi n(& cpu_l ock))

I NTFUNC(r w_r ead_hel d(& vfssw_| ock))

I NTFUNC(rw_write_hel d(& vfssw_| ock))

I NTFUNC(rw_i swriter (& vfssw_|ock))

I NTFUNC(copyi n(NULL, 1))

STRFUNC(copyi nstr (NULL, 1))

I NTFUNC(specul ation())

I NTFUNC(pr ogenyof ($pi d))

I NTFUNC(strlen("fooey"))

VO DFUNC(copyout)

VO DFUNC(copyout str)

I NTFUNC(al | oca(10))

VO DFUNC(bcopy)

VO DFUNC(copyi nt 0)

I NTFUNC(msgdsi ze(NULL))

I NTFUNC(nsgsi ze(NULL))

I NTFUNC(get maj or (0))

I NTFUNC(get i nor (0))

STRFUNC(ddi _pat hnanme(NULL, 0))
STRFUNC(strj oi n("foo", "bar"))

STRFUNC(I | t ostr(12373))

STRFUNC(basenane("/ var/ crash/ systent ap"))
STRFUNC(di r name("/ var/ crash/ syst ent ap"))
STRFUNC(cl eanpat h("/var/crash/ systent ap"))
STRFUNC(strchr (" The Systenirap, The.", 't’)
STRFUNC(strrchr (" The Systenifap, The.", 't’))
STRFUNC(strstr("The SysteniTap, The.", "The"))
STRFUNC(strtok("The Systenlap, The.", "T")
STRFUNC(substr (" The Systenirap, The.", 0))

I NTFUNC(i ndex (" The Systenifap, The.", "The"))

I NTFUNC(ri ndex(" The Systenirap, The.", "The"))

| NTFUNC(ht ons(0x1234))

I NTFUNC(ht onl (0x12345678))

I NTFUNC(ht onl | (0x1234567890abcdef L))

| NTFUNC(nt ohs(0x1234))

| NTFUNC(nt ohl (0x12345678))

I NTFUNC(nt ohl | (0x1234567890abcdef L))

STRFUNC(i net _ntoa((i paddr _t *)all oca(sizeof (ipaddr_t))))

— ae—

STRFUNC(i net _nt oa6((1 n6_addr _t *)all oca(sizeof (in6_addr
STRFUNC(i net _nt op(AF_I NET, (void *)alloca(sizeof (ipaddr
STRFUNC(t oupper ("fo0"))

STRFUNC(t ol ower (" BAR"))

I NTFUNC(get f (0))

I NTFUNC(strtol | ("Ox12EE5D5", 16))

STRFUNC(j son("{\"systentap\": false}", "systentap"))
#endif /* | codereview */

£))))
t))))

BEG N
/'subr == DI F_SUBR MAX + 1/
{

exit(0);

112 }

114
115
116
117
118

BEG N

{
printf("found %l subroutines, expected %\ n", subr, D F_SUBR MAX + 1);
exit(1);

}

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d 1

R R R R

3846 Tue Jan 14 16:49:31 2014
new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»

LR R

1/*

2 * This file and its contents are supplied under the terms of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2012, Joyent, Inc. Al rights reserved.

14 */

16 /*

17 * General functional tests of JSON parser for json().

18 */

20 #pragma D option quiet
21 #pragma D option strsize=1k

23 #define TST(nane) \
24 printf("\ntst |%|\n", nane)

25 #define I N2(val a, val b) \
26 |n:str]0|n(vala val b); \
27 printf("in |%]|\n", in)

28 #define I N(val) \
29 in =val; \
30 printf("in |%]|\n", in)

31 #define SEL(sS) \
32 out = json(in, ss); \
33 printf("sel |%]|\nout |%|\n", ss, \
34 out !'= NULL ? out : "<NULL>")

36 BEG N

37 {

38 TST(" errpty array");

39 I N(" ;

40 SEL("0")

42 TST(one-el ement array: integer");

43 INC*[1]") 5

44 SEL("0");

45 SEL("1");

46 SEL("100");

47 SEL("-1");

49 TST("one-el ement array: hex integer (not in spec, not supported)");
50 I N("[0x1000] ") ;

51 SEL("0");

53 TST("one-el ement array: float");

54 IN("[1.5001]");

55 SEL("0");

57 TST("one-el ement array: float + exponent");
58 IN("[16.3e10]");

59 SEL("0");

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d

61 TST(one-el ement array: integer + whitespace");
62 INC'[\t 5\t]");

63 SEL("0");

65 TST("one-el ement array: integer + exponent + whitespace");
66 INC"[\t \t 16E10 \t]");

67 SEL("0");

69 TST(" one-el enent array string");

70 INC" [\ al pha\"

71 SEL("0");

73 TST("al ternative fi rst -el enent indexing");

74 INC"[1,5,10,15,20]"

75 SEL("[0]");

76 SEL("[3]");

77 SEL("[4]"):

78 SEL("[5]");

80 TST("one-el enent array: object");

81 IN("[{ \"first\": true, \"second\": false }]");
82 SEL("O0.first")

83 SEL(" 0. second”)

84 SEL("0.third");

86 TST("many-el erent array: integers");

87 IN([01123581321345589144233377])
88 SEL("10"); /* F(10) = 55 */

89 SEL("14"); /* F(14) = 377 */

90 SEL("19");

92 TST("many-el enent array: nultiple types");

93 IN2("[\"string\",32,true, {\"a\":9,\ 'b\"'false} 100. 3el0, fal se, 200. 5, "
94 "{\"key\":\"val\“},nuII]"),

95 SEL("0");

96 SEL(" 0. not obj ect");

97 SEL("1");

98 SEL("2");

99 SEL("3");

100 SEL("3.a");

101 SEL("3.b");

102 SEL("3.c");

103 SEL("4");

104 SEL("5");

105 SEL("6");

106 SEL("7");

107 SEL(" 7. key");

108 SEL("7. key. not Obj ect");

109 SEL(" 7. nonexi st");

110 SEL('8"),

111 SEL("9");

113 TST("many-el enent array: nultiple types + whitespace");
114 IN2("\n[\t\"string\" ,\t32 , true\t,\t {\"a\": 9, VEATB\ " fal se},
115 "100. 3e10, false, 200. 5,{\"key\" \t:\n \"vaI\"} \t\t null J\t\
116 SEL("0");

117 SEL(" 0. not obj ect");

118 SEL("1");

119 SEL('2")

120 SEL("3"),

121 SEL("3.a");

122 SEL("3.b");

123 SEL("3.c");

124 SEL("4");

125 SEL("5");

126 SEL("6");

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d 3

127 SEL("7");

128 SEL(" 7. key");

129 SEL(" 7. key. not obj ect™) ;

130 SEL(" 7. nonexi st");

131 SEL("8");

132 SEL("9");

134 TST("two-el ement array: various string escape codes");
135 IN2("[V"abcd \\\" \NAN AN/ AVb AVf V\n \\r \\t \\u0000 \\ufOOF \", ",
136 "“\"final\"]");

137 SEL("0");

138 SEL("1");

140 TST("three-el enent array: broken escape code");

141 INC"[\"fine here\", \"dodgey \\uO00OAZ\", \"wont get here\"]");
142 SEL("0");

143 SEL("1");

144 SEL("2");

146 TST("nest ed objects");

147 IN2("{ \"top\": { \"md\" : { \"legs\": \"feet\" }, \"nunber\": 9, ",
148 "\"array\":[0,1,{\"a\":true,\"bb\":[1,2,false, {\"x\":\"yz\"}]}]1}}");
149 SEL("top");

150 SEL("fargo");

151 SEL("top. m d");

152 SEL("top.centre");

153 SEL("top. mid.legs");

154 SEL("top. m d. nunber");

155 SEL("top.m d.array");

156 SEL("top. nunber");

157 SEL("top.array");

158 SEL("top.array[0]");

159 SEL("top.array[1]");

160 SEL("top.array[2]");

161 SEL("top.array[2].a");

162 SEL("top.array[2].b");

163 SEL("top. array[2].bb");

164 SEL("top.array[2].bb[0]");

165 SEL("top.array[2].bb[1]");

166 SEL("top.array[2].bb[2]");

167 SEL("top.array[2].bb[3]");

168 SEL("top.array[2].bb[3].x");

169 SEL("top.array[2].bb[3].x.nofurther");

170 SEL("top.array[2].bb[4]");

171 SEL("top.array[3]");

173 exit(0);

174 }

176 ERROR

177 {

178 exit(1);

179 }

180 #endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d. out

R R R R

3653 Tue Jan 14 16:49:31 2014
new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d. out
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill

LR R

2 tst
3in
4 sel
5 out
7 tst
8in
9 sel
10 out
11 sel
12 out
13 sel
14 out
15 sel
16 out

18 tst
19 in
20 sel
21 out

23 tst
24 in
25 sel
26 out

28 tst

30 sel
31 out

33 tst

35 sel
36 out

38 tst

40 sel
41 out

43 tst
44 in
45 sel
46 out

48 tst
49 in
50 sel
51 out
52 sel
53 out
54 sel
55 out
56 sel
57 out

59 tst
60 in

enpty array|
[11

0]
<NULL>|

one-el ement arr ay:

<NULL>|

one-el ement array:
[0x1000] |
0

<NULL>|

one-el ement array:
[1.5001] |
0

[
1. 5001]

one-el enent arr ay:
[16.3e10] |
0

|
16. 3e10]|
one-el enent array:
[5 11
0|
5|
one-el ement array:

16E10

0|
16E10|

one-el enent array:
["al pha"] |
0

al pha|

Ite
1,5, 10, 15, 20] |
01|
|

|
NULL>|

t
j
3|
5|
4]
0|
5]

A N |

| one- el ement array:
|[{ "first": true,

<bnt @ oyent . con>

i nteger |

hex integer (not in spec, not supported)]|

float|

float + exponent|

i nteger + whitespace|

i nteger + exponent + whitespace|

11

string|

rnative first-el enent indexing|

obj ect |
"second": false }]|

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d. out

61 sel |0.first]|

62 out |true|

63 sel |0.second|

64 out |false|

65 sel |0.third|

66 out | <NULL>|

68 tst |nmany-el ement array: integers|
69 in |[0,1,1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377] |
70 sel |10]

71 out |55|

72 sel |14]

73 out |377|

74 sel |19

75 out | <NULL>|

77 tst |many-el ement array: nultiple types|
78 in ["string",32,true, {"a":9,"b": fal se}, 100. 3el0, f al se, 200. 5, {"key": "val "}, nul |
79 sel |0

80 out |string|

81 sel |0.notobject]|

82 out | <NULL>|

83 sel |1]

84 out | 32|

85 sel | 2]

86 out |true|

87 sel |3

88 out |[{"a":9,"b":fal se}|

89 sel |3.a

90 out |9]

91 sel |3.b|

92 out |false|

93 sel |3.c|

94 out | <NULL>|

95 sel |4

96 out | 100. 3el0]|

97 sel |5

98 out |false|

99 sel | 6]

100 out | 200. 5]

101 sel |7]

102 out |{"key":"val"}|

103 sel |7.key]|

104 out |val |

105 sel |7.key. notobject]|

106 out | <NULL>|

107 sel |7.nonexi st|

108 out | <NULL>|

109 sel |8

110 out |null]

111 sel |9|

112 out | <NULL>|

114 tst |many-element array: nultiple types + whitespace|
115 in

116 "string" , 32, true s {"a":
117 “val "}, null] |
118 sel |0

119 out |string|

120 sel | 0. notobject|

121 out | <NULL>|

122 sel |1]

123 out | 32|

124 sel |2]

125 out |true|

126 sel |3|

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d. out

127 out |{"a": 9, "b": false}|
128 sel |3.a]

129 out |9

130 sel |3.b]
131 out |fal se|
132 sel |3.c]|
133 out | <NULL>|
134 sel |4

135 out | 100. 3e10|
136 sel |5]

137 out |fal se|
138 sel | 6]

139 out | 200. 5|
140 sel |7]

141 out |{"key"
142 “val "}

143 sel |7.key]|
144 out |val |

145 sel |7.key. notobject]|
146 out | <NULL>|

147 sel |7.nonexi st|

148 out | <NULL>|

149 sel |8
150 out |null]
151 sel |9|

152 out | <NULL>|

154 tst |two-el ement array: various string escape codes|
155 in ["abcd \™ \\ \/ \b \f \n \r \t \u0000 \ufOOF ", "final"]|
156 sel |0

157 out |abcd \" \\ \/ \b \f \n \r \t \u0000 \ufOOF |

158 sel |1]
159 out |final|

161 tst |three-element array: broken escape code|

162 in ["fine here", "dodgey \uOOAZ", "wont get here"]|
163 sel |0

164 out |fine here|

165 sel |1]
166 out | <NULL>|
167 sel

2
168 out | <NULL>|

170 tst |nested objects|

171 in |[{ "top": { "md" : { "legs": "feet" }, "nunber": 9, "array":[0,1,{"a":true
172 sel |top]
173 out |[{ "md" : { "legs": "feet" }, "nunber": 9, "array":[0,1,{"a":true,"bb":[1,

174 sel |fargo|

175 out | <NULL>|

176 sel |top.md|

177 out |{ "legs": "feet" }|
178 sel |top.centre|

179 out | <NULL>|

180 sel |top.mid.|egs|

181 out |feet]

182 sel |top.m d. nunber|

183 out | <NULL>|

184 sel |top.mid.array|

185 out | <NULL>|

186 sel |top. nunber|

187 out |9|

188 sel |top.array|

189 out |[0,1,{"a":true,"bb":[1,2,false, {"x":"yz"}]}]]|
190 sel |top.array[O0]|

191 out | 0|

192 sel |top.array[1]]

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.general.d. out

193 out | 1|

194 sel |top.array[2]]|

195 out |[{"a":true,"bb":[1,2,false, {"x":"yz"}]1}|

196 sel |top.array[2].a]|

197 out |[true

198 sel |top.array[2].b|

199 out | <NULL>|

200 sel |top.array[2].bb|

201 out |[1,2,false, {"x":"yz"}]|

202 sel |top.array[2].bb[O]]

203 out |1

204 sel |top.array[2].bb[1]]

205 out |2

206 sel |top.array[2].bb[2]]

207 out |false|

208 sel |top.array[2].bb[3]]
2"

209 out |{"x":"
210 sel |top.array[2].bb[3].x]|
211 out

yz|
212 sel |top.array[2].bb[3].x.nofurther|
213 out | <NULL>|
214 sel |top.array[2].bb[4]]
215 out | <NULL>|
216 sel |top.array[3]]
217 out | <NULL>|

219 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.strsize.d

R R R R

1329 Tue Jan 14 16:49:31 2014
new usr/src/cnd/ dtrace/test/tst/comon/json/tst.strsize.d
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmps.org/license/ CDDL.

=
QOONOUIAWN
* Ok Ok k% R ¥ O

13 * Copyright 2012, Joyent, Inc. Al rights reserved.
*/

16 /*

17 * ASSERTI ON:

18 * json() run tine nmust be bounded above by strsize. This test nmakes strsize
19 * smal | and deliberately overflows it to prove we bail and return NULL in
20 * the event that we run off the end of the string.

21 *

22 */

24 #pragma D option quiet
25 #pragma D option strsize=18

27 BEG N

28 {

29 in="{\"a\": 1024}"; /* length == 19 */

30 out = json(in, "a");

31 prlntf("|°/s|\n°/s n\n", in, out !'= NULL ? out : "<NULL>");
33 in="{\"a\": 1024} /* length == 11 */

34 out = json(in, "a");

35 printf("|%|\n¥%\n\n", in, out !'= NULL ? out : "<NULL>");
37 i “{\"a\" false\ b\":true}"; /* length == 20 */

38 out :]son(ln "b");

39 prlntf("|°/s|\n°/|s\n\n" in, out '= NULL ? out : "<NULL>");
41 in="{\"a\":false,\"b\":20}"; /* length == 18 */

42 out = |son(|n "b");

43 printf(" |°/s|\n°/s\n\n in, out '= NULL ? out : "<NULL>");
45 exit(0);

46 }

48 ERROR

49 {

50 exit(1);

51 }

52 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.strsize.d.out

R R R R

104 Tue Jan 14 16:49:32 2014
new usr/src/cnd/ dtrace/test/tst/comon/json/tst.strsize.d.out
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1[{"a": 1024

2 <NULL>

4 |{"a": 1024}|

5 1024

7 |{"a":false,"b":tru|
8 <NULL>

10 [{"a":fal se,"b":20}|
11 20

14 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.c 1 new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.c

R R R R

61 }
1279 Tue Jan 14 16:49: 32 2014 62 #endif /* | codereview */
new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.c
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at

=
QOONOUIAWN
* Ok Ok k% R ¥ O

http://ww.illunmps.org/license/ CDDL.

/
12 /*
13 * Copyright 2012 (c), Joyent, Inc. Al rights reserved.
14 */

16 #incl ude <sys/sdt.h>
17 #include "usdt.h"

19 #define FMI IR

20 " \"sizes\": [\"first\", 2, %]," \
21 " \"index\": %, " \

22 " \"facts\": {" \

23 " \Modd\": \"9s\", "\

24 " \"even\": \"os\"" \

25 A SRR

26 " \"action\": \"os\"" \

27 "\ n"

29 int

30 waiting(volatile int *a)

31 {

32 return (*a);

33}

35 int

36 nmin(int argc, char **argv)

37

38 volatile int a = 0;

39 int idx;

40 doubl e size = 250.5;

42 while (waiting(&) == 0)

43 conti nue;

45 for (idx = 0; idx < 10; idx++)

46 char *odd, *even, *json, *action;

48 size *= 1.78;

49 odd = idx %2 ==1 ? "true" : "false";
50 even = idx %2 == 0 ? "true" : "false";
51 action = idx == 7 ? "ignore" : "print";
53 asprintf(& son, FMI, size, idx, odd, even, action);
54 BUNYAN FAKE LOG DEBUG j son);

55 free(json);

56 }

58 BUNYAN_FAKE _LOG DEBUG "{\"fi nished\": true}");

60 return (0);

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.d 1

R R R R

1529 Tue Jan 14 16:49:32 2014
new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.d
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1/*
2 * This file and its contents are supplied under the terms of the
3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.
6 *
7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.
10 */
12 /*
13 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
14 */

16 #pragma D option strsize=4k
17 #pragma D option quiet
18 #pragna D option destructive

20 /*

21 * This test reads a JSON string froma USDT probe, roughly sinulating the
22 * primary notivating use case for the json() subroutine: filtering

23 */JSO\l-f ornmatted | og messages froma | oggi ng subsystem |i ke node-bunyan.
24 *

26 pid$l:a.out:waiting:entry

27 {

28 this->value = (int *)alloca(sizeof (int));

29 *t hi s->val ue = 1;

30 copyout (t hi s->val ue, arg0, sizeof (int));

31}

33 bunyan*$1:::1o0g-*

34

35 this->j = copyinstr(argo0);

36 }

38 bunyan*$1:::1o0g-*

39 gj son(this->j, "finished") == NULL && json(this->j, "action") != "ignore"/
40

41 this->index = strtoll(json(this->j, "index"));

42 this->size = json(this->j, "sizes[2]");

43 this->odd = json(this->, "facts.odd");

44 this->even = json(this->j, "facts.even");

45 printf("[%l] sz % odd % even %\n", this->index, this->size,
46 t hi s->odd, this->even);

47 }

49 bunyan*$1:::|o0g-*
50 /json(this->j, "finished") != NULL/
{

51

52 printf("FINISHED \n");

53 exit(0);

54 }

56 tick-10s

57 {

58 printf("ERROR Timed out before finish nessage!\n");
59 exit(1);

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.d

62 ERROR
63 {
64 exit(1);

65 }
66 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.d.out

R R R R

363 Tue Jan 14 16:49: 32 2014

new usr/src/cnd/ dtrace/test/tst/comon/json/tst.usdt.d.out
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
[0] sz 445.890000 odd fal se even true
1] sz 793.684200 odd true even fal se
sz 1412. 757876 odd fal se even true
sz 2514.709019 odd true even fal se
4476. 182054 odd fal se even true

sz 7967. 604057 odd true even false

sz 14182. 335221 odd fal se even true

sz 44935. 310914 odd fal se even true

sz 79984. 853427 odd true even fal se
NI SHED!

QOO~NOUAWNEF
"
N

[

[2
[3
[4
[5
[6
[8
[9
FI

B
N

#endi f /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/json/usdt.d

R R R R

753 Tue Jan 14 16:49: 32 2014
new usr/src/cnd/ dtrace/test/tst/comon/json/usdt.d
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnt@ oyent.conp
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]

1/*

2 * This file and its contents are supplied under the terms of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.

4 * You may only use this file in accordance with the terns of version

5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy of the CDDL is also available via the Internet at

9 * http://www.illunos.org/license/ CDDL.

10 *

12 /*

13 * Copyright 2012, Joyent, Inc. Al rights reserved.

14 *

16 /*

17 * Sets up a fake node-bunyan-1like USDT provider for use fromC.

18 =

20 provider bunyan_fake {

21 probe |l og__trace(char *msg);

22 probe | og__debug(char *nsg);

23 probe log__info(char *nsg);

24 probe | og__warn(char *nsg);

25 probe log__error(char *msg);

26 probe log__fatal (char *nsg);

27

Ik
#endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst.func_access. ksh

R R R R

2609 Tue Jan 14 16:49: 33 2014
new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.func_access. ksh
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the ternms of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing pernissions
11 # and limtations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
22 #
23 # Copyright 2006 Sun M crosystenms, Inc. Al rights reserved.
24 # Use is subject to license terns.
25 # Copyright (c) 2012, Joyent, Inc. Al rights reserved.

26 #endif /* | codereview */

27 #

25 #ident "%&Z%4W6 % % %% SM "

29 ppriv -s A=basic,dtrace_proc, dtrace_user $$

31 /usr/sbin/dtrace -q -s /dev/stdin <<"EOF"

33 BEG N {

34 errorcount = O;

35 expect ed_errorcount = 27;

33 expected_errorcount = 23;

36 }

38 BEGA N { trace(nutex_owned(& pidlock)); }

39 BEA N { trace(nutex_owner (& pidlock)); }

40 BEG N { trace(nutex_type_adaptive(& pidlock)); }
41 BEGA N { trace(nutex_type_spin(& pidlock));

43 BEGA N { trace(rw_read_hel d(& ksyns_l ock)); }

44 BEGA N { trace(rw wite_hel d(& ksyns_l ock)); }

45 BEGA N { trace(rw_iswiter(& ksyms_lock)); }

47 BEGA N { x = alloca(10); bcopy(‘initname, x, 10); trace(stringof(x)); }
48 /* W have no reliable way to test nsgsize */

50 BEG N { trace(strlen(‘initnane)); }

51 BEG N { trace(strchr(‘initnanme, 0x69)); }

52 BEGA N { trace(strrchr(‘initname, 0x69)); }

53 BEG N { trace(strstr("/sbin/init/foo", ‘initnanme)); }
54 BEG N { trace(strstr(‘initnane, "in")); }

55 BEG N { trace(strtok(‘initnanme, "/")); }

56 BEG N { trace(strtok(NULL, "/"));

57 BEG N { trace(strtok("foo/bar", ‘initnanme)); }
58 BEG N { trace(strtok(NULL, ‘initnanme)); }

new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.func_access. ksh

59 BEGA N { trace(strtoll(‘initname)); }

60 BEG N { trace(strtoll ('initname, 10)); }
61 #endif /* | codereview */

62 BEG N { trace(substr(‘initnane, 2, 3)); }

errorcount);

64 BEG N { trace(ddi _pathnane(‘top_devinfo, 1)); }
65 BEG N { trace(strjoin(‘initname, "foo")); }

66 BEG N { trace(strjoin("foo", ‘initname)); }

67 BEA N { trace(dirnane(‘initnane));

68 BEGA N { trace(cleanpath(‘initnane)); }

70 BEG N { = "{\"/sbin/init\":\"uh oh\"}"; trace(json(j, ‘initnanme)); }
71 BEG N { trace(json(‘initnane, "x")); }

73 #endif /* | codereview */

74 ERRCR {

75 errorcount ++;

76 }

78 BEG N /errorcount == expected_errorcount/ {

79 trace("test passed");

80 exit(0);

81 }

83 BEG N /errorcount != expected_errorcount/

84 printf("“fail: expected %. saw %.", expected_errorcount,
85 exit(1);

86 }

87 ECF

90 exit $?

new usr/src/cnd/ dtrace/test/tst/comon/strtoll/err.BaseToolLarge. d

R R R R

749 Tue Jan 14 16:49:33 2014

new usr/src/cnd/ dtrace/test/tst/comon/strtoll/err.BaseToolLarge. d
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]

1/*
* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at

=
QOONOUIAWN
* Ok Ok k% R ¥ O

http://ww.illunmps.org/license/ CDDL.

/
12 /*
51 :/Oopyri ght (c) 2012, Joyent, Inc. Al rights reserved.
16 /*
17 * ASSERTI ON:
18 * The | argest base we will accept is Base 36 -- i.e. using all of 0-9 and
19 * A-Z as nuneral s.
20 *
21 * SECTION: Actions and Subroutines/strtoll ()

*

/

24 #pragma D option quiet
26 BEA N

27 {

28 printf("%\n", strtoll("0", 37));
29 exit(0);

30 }

32 ERROR

34 exit(1);

}
36 #endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/comon/strtoll/err.BaseTooSnall.d 1

R R R R

698 Tue Jan 14 16:49: 34 2014
new usr/src/cnd/ dtrace/test/tst/comon/strtoll/err.BaseTooSnall.d
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at

=
QOONOUIAWN
* Ok Ok k% R ¥ O

http://ww.illunmps.org/license/ CDDL.
/

12 /*
13 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
14 */
16 /*
17 * ASSERTI ON:
18 * The snall est base we will accept is Base 2.
19 =
20 * SECTION: Actions and Subroutines/strtoll ()

*

/

23 #pragma D option quiet

25 BEGA N

26 {

27 printf("%\n", strtoll("0", 1));
28 exit(0);

29 }

31 ERROR

33 exit(1);

}
35 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/strtoll/tst.strtoll.d 1 new usr/src/cnd/ dtrace/test/tst/comon/strtoll/tst.strtoll.d

R R R R

1699 Tue Jan 14 16:49: 34 2014 62 /* enpty string: */
new usr/src/cnd/ dtrace/test/tst/comon/strtoll/tst.strtoll.d 63 printf("%l\n", strtoll(""));
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con» 65 exit(0);
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE] 66

1/ 67 #endif /* ! codereview */

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at

=
QOONOUIAWN
* Ok Ok k% R ¥ O

http://ww.illunmps.org/license/ CDDL.
/

12 /*
13 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
14 */
16 /*
17 * ASSERTI ON:
18 * Test the strtoll () subroutine.
19 =
20 * SECTION: Actions and Subroutines/strtoll ()

*

/
23 #pragma D option quiet

25 BEGA N

26 {

28 /* mni mum base (2) and maxi mum base (36): */

29 printf("%l\n", strtoll("0", 2));

30 printf("%\n", strtoll("1", 36));

32 /* sinple tests: */

33 printf("%l\n", strtoll("0x20", 16));

34 printf("%\n", strtoll("-32", 10));

35 printf("%\n", strtoll("010", 8));

36 printf("%\n", strtoll("101010", 2));

38 /* INT64_M N and | NT64_MAX: */

39 printf("%\n", strtoll ("9223372036854775807"));

40 printf("%l\n", strtoll("-9223372036854775808"));

41 printf("%\n", strtoll ("0777777777777777777777", 8));
42 printf("%\n", strtoll("-01000000000000000000000", 8));
44 /* wrapping: */

45 printf("%\n", strtoll("1000000000000000000000", 8));
46 printf("%\n", strtoll("-1000000000000000000001", 8));
48 /* hex without prefix: */

49 printf("%\n", strtoll("baddcafe", 16));

51 /* stopping at first out-of-base character: */

52 printf("%\n", strtoll("12j", 10));

53 printf("%\n", strtoll("102", 2));

55 /* base 36: */

56 printf("%l\n", strtoll("-0DTraced4EverZ", 36));

58 /* base 10 is assuned: */

59 printf("%l\n", strtoll("1985"));

60 printf("%\n", strtoll("-2012"));

new usr/src/cnd/ dtrace/test/tst/comon/strtoll/tst.strtoll.d.out

R R R R

190 Tue Jan 14 16:49: 34 2014
new usr/src/cnd/ dtrace/test/tst/comon/strtoll/tst.strtoll.d.out
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
10
21
3 32
4 -32
58
6 42
7 9223372036854775807
8 -9223372036854775808
9 9223372036854775807
10 -9223372036854775808
11 -9223372036854775808
12 9223372036854775807
13 3135097598
14 12

2
16 -1819882045752187535
17 1985
18 -2012
19 0

21 #endif /* 1 codereview */

new usr/src/common/util/strtol ctype.h

R R R R

2529 Tue Jan 14 16:49: 34 2014
new usr/src/common/util/strtol ctype.h
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill <bnt@ oyent.conp
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE

9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 * |f applicable, add the follow ng below this CODL HEADER, with the

16 * fields enclosed by brackets "[]" replaced with your own identifying

17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright 2009 Sun M crosystens, Inc. Al rights reserved.

24 * Use is subject to license terns.

25 */

27 | * Copyright (c) 1988 AT&T */

28 [* Al Rights Reserved */

30 #ifndef _COMMON UTIL_CTYPE H

31 #define _COMMON_UTI L_CTYPE_H

33 #ifdef __cplusplus

34 extern "C' {

35 #endi f

37 /*

38 * This header file contains a collection of macros that the strtou?l|?

39 * functions in common/util use to test characters. What we need is a kernel

40 * version of ctype.h.

41 *

42 * NOTE: These nmcros are used within several DTrace probe context functions.

43 * They nust not be altered to make function calls or performactions not

44 * safe in probe context.
45 #endif /* ! codereview */

46 */

48 #if defi ned(_KERNEL) && !defined(_BOOT)

50 #define isal nun{ch) (isal pha(ch) || isdigit(ch))

51 #define isal pha(ch) (i supper(ch) || islower(ch))

52 #define isdigit(ch) ((ch)y >="0" && (ch) <='9")

53 #define islower(ch) ((ch) >="a" && (ch) <="'z")

54 #define isspace(ch) (((ch)y ==) || ((ch) =="\r") || ((ch) =="\n") |]
55 o ((ch)y =="\t") || ((ch) =="\f"))

56 #define isupper(ch) ((ch) >="A && (ch) <="'2")

57 #define isxdigit(ch) (isdigit(ch) || ((ch) >="a && (ch) <="f") || \
58 ((ch) >="A" && (ch) <= "F))

60 #endif /* _KERNEL && ! _BOOT */

\

new usr/src/common/util/strtol ctype.h

62
63

#define D A T(x)
(isdigit(x) ? (x) -0

#def i ne MBASE
/

islower(x) ? (x) + 10 - "a (x) +10 - "A)

'z’ - a +1+10)

*

* The following macro is a version of isalnun() that limts al phabetic

* characters to the ranges a-z and A-Z; |ocal e dependent characters will not

* return 1. The nenbers of a-z and A-Z are assuned to be in ascending order

* and conti guous.

*

#define |isal num(x) \
(isdigit(x) [| ((x) >=

Al && (x) <='2') || ((x) >='A && (x) <='Z))
#i fdef __ cpl usplus
#endi f
#endif /* _COMMON_UTIL_CTYPE_H */

new usr/src/lib/libdtrace/ conmon/dt_open.c 1 new usr/src/lib/libdtrace/ conmon/dt_open.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 138 DT VERS l 9 1 /* D API 1 9 1 */
54172 Tue Jan 14 16:49:35 2014 139 DT_VERS_1_10, /* D APl 1.10 */
new usr/src/lib/libdtrace/ conmon/dt_open.c 140 DT_VERS 111, /* DAPI 1.11 */
4477 DTrace shoul d speak JSON 141 #endif /* ! codereview */
Revi ewed by: Bryan Cantrill <bnc@ oyent.con» 142 0
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE] 143 }’
__unchanged_portion_omtted_
145 | *
82 [* 146 * Table of global identifiers. This is used to populate the global identifier
83 * The version nunber should be increased for every custoner visible release 147 * hash when a new dtrace client open occurs. For nore info see dt_ident.h.
84 * of DTrace. The nmmjor nunber should be increnmented when a fundanental 148 * The global identifiers that represent functions use the dt_idops_func ops
85 * change has been nade that would affect all consumers, and would reflect 149 * and specify the private data pointer as a prototype string which is parsed
86 * sweeping changes to DTrace or the D | anguage. The minor nunber should be 150 * when the identifier is first encountered. These prototypes | ook |ike ANSI
87 * increnented when a change is introduced that could break scripts that had 151 * C function prototypes except that the special synbol "@ can be used as a
88 * previously worked; for exanple, adding a new built-in variable could break 152 * wildcard to represent a single paraneter of any type (i.e. any dt_node_t).
89 * a script which was already using that identifier. The micro nunber should 153 * The standard "..." notation can also be used to represent varargs. An enpty
90 * be changed when introducing functionality changes or mjor bug fixes that 154 * paraneter list is taken to nean void (that is, no argunments are permitted).
91 * do not affect backward conpatibility -- this is merely to make capabilities 155 * A paraneter enclosed in square brackets (e.g. "[int]") denotes an optional
92 * easily deternmined fromthe version nunber. M nor bugs do not require any 156 * argunent.
93 * nodification to the version nunber. 157 */
94 =/ 158 static const dt_ident_t _dtrace_globals[] = {
95 #define DT_VERS 1 0 DT_VERSI ON_NUMBER(1, 0, 0) 159 { "alloca", DT_TDENT_FUNC, 0, DIF_SUBR ALLOCA, DT_ATTR STABCMWN, DT_VERS_1 0,
96 #define DI_VERS 1 1 DT_VERSI ON_NUMBER(1, 1, 0) 160 &dt _i dops_func, "void *(size_t)" },
97 #define DI_VERS 1 2 DT_VERSI ON_NUMBER(1, 2, 0) 161 { "arg0", DT_I| DENT_. SCALAR 0, DIF_VAR AR®), DT_ATTR_STABCW\, DT_VERS_1_0,
98 #define DI_VERS 1_2_1 DT_VERS| ON_NUMBER(1, 2, 1) 162 &dt _idops_type, "int64_t" },
99 #define DI_VERS 1 2 2 DT_VERSI ON_NUMBER(1, 2, 2) 163 { "argl", DT I DENT SCALAR 0, DIF_VAR ARGl, DT_ATTR STABCWN, DT_VERS 1 0,
100 #define DT_VERS 1_3 DT_VERSI ON_NUMBER(1, 3, 0) 164 &dt i dops_type, "int64_t" },
101 #define DT_VERS 1_4 DT_VERSI ON_NUMBER(1, 4, 0) 165 { "arg2", DT_I DENT_SCALAR, 0, DIF_VAR ARG, DT_ATTR STABCWN, DT_VERS_1_0,
102 #define DT_VERS 1_4_1 DT_VERS| ON_NUMBER(1, 4, 1) 166 &dt _idops_type, "int64_t" },
103 #define DI_VERS 1_5 DT_VERSI ON_NUMBER(1, 5, 0) 167 { "arg3", DT_| DENT_SCALAR, 0, DI F_VAR ARG3, DT_ATTR STABCWN, DT_VERS 1_0,
104 #define DT_VERS 1_6 DT_VERSI ON_NUMBER(1, 6, 0) 168 &dt i dops_type, "int64_t" },
105 #define DT_VERS 1 6 1 DT_VERSI ON_NUMBER(1, 6, 1) 169 { "arg4", DT | DENT SCALAR 0, DIF VAR AR®, DT_ATTR STABCWN, DT _VERS 1 0,
106 #define DT_VERS_1_6_2 DT_VERSI ON_NUMBER(1, 6, 2) 170 &dt idops_type, "int64_t" },
107 #define DT_VERS_1_6_3 DT_VERSI ON_NUMBER(1, 6, 3) 171 { "arg5", DT_|I DENT_SCALAR, 0, DI F_VAR ARG5, DT_ATTR STABCWN, DT_VERS 1_0,
108 #define DI_VERS 1 7 DT_VERSI ON_NUMBER(1, 7, 0) 172 &dt i dops_type, "int64_t" },
109 #define DT_VERS 1 7 1 DT_VERSI ON_NUMBER(1, 7, 1) 173 { "arg6", DT | DENT SCALAR 0, DIF VAR ARG6, DT_ATTR STABCWN, DT VERS 1 0,
110 #define DI_VERS 1_8 DT_VERSI ON_NUMBER(1, 8, 0) 174 &t _idops_type, "int64 t" },
111 #define DI_VERS 1_8_1 DT_VERS| ON_NUMBER(1, 8, 1) 175 { "arg7", DT_I DENT_SCALAR, 0, DI F_VAR ARG/, DT_ATTR STABCWN, DT_VERS 1_0,
112 #define DT_VERS 1_9 DT_VERSI ON_NUMBER(1, 9, 0) 176 &dt T dops_type, “"int64 t" },
113 #define DT_VERS 1 9 1 DT_VERSI ON_NUMBER(1, 9, 1) 177 { "arg8", DT IDENT SCALAR 0, DIF VAR ARG3, DT_ATTR STABCWN, DT VERS 1 0,
114 #define DT_VERS_1_10 DT_VERSI ON_NUMBER(1, 10, 0) 178 &dt _i dops_type, "int64_t"
115 #define DI_VERS 1_11 DT_VERSI ON_NUMBER(1, 11, 0) 179 { "arg9", DT_IDENT_SCALAR 0, DIF_ VAR AR®, DT_ATTR_STABCMN, DT_VERS_1_0,
116 #define DT_VERS _LATEST DT _VERS_1_11 180 &dt _idops_type, "int64 t" },
117 #define DI_VERS STRING "Sun D 1.711" 181 { "args", DT_IDENT_ARRAY, 0, DIF_VAR ARGS, DT_ATTR STABCW, DT _VERS 1 0,
115 #define DT_VERS_LATEST DT _VERS 1_10 182 &dt _idops_args, NJLL 1,
116 #define DT_VERS_STRING "Sun D 1.10" 183 { "avg", DT_| DENT_ AGGFUNC, 0, DTRACEAGG AVG, DT_ATTR_STABCWN, DT_VERS_1_0,
184 &dt ~i dops_func, "voi d(@ },
119 const dt_version_t _dtrace_versions[] = { 185 { "basenane", DT_I| DENT_| FUNC 0, DI F_SUBR_BASENAME, DT_ATTR STABCWN, DT_VERS 1 _0,
120 DT_VERS 1 0, /* D APl 1.0.0 (PSARC 2001/466) Solaris 10 FCS */ 186 &dt |dops func, "stri ng(const char *)"
121 DT_VERS 1_1, /* DAPI 1.1.0 Solaris Express 6/05 */ 187 { "bcopy", DT_| DENT_| FUNC 0, DI F_SUBR _BCOPY, DT_, ATTR STABCWN, DT_VERS 1_0,
122 DI_VERS 1_2, /* DAPI 1.2.0 Solaris 10 Update 1 */ 188 &dt |dops func, "void(void *, void *, size_ t)" },
123 DT_VERS 1 2 1, /* DAPlI 1.2.1 Solaris Express 4/06 */ 189 { "breakpoint", DT_I DENT_ACTFUNC, O, DT_ACT_BREAKPC] NT,
124 DI_VERS 1 2 2, /* DAPI 1.2.2 Solaris Express 6/06 */ 190 DT_ATTR STABCWN, DT_VERS_1 0
125 DT_VERS 1_3, /* D APl 1.3 Solaris Express 10/06 */ 191 &dt _i dops_func, "void()"
126 DT_VERS 1_4, /* D APl 1.4 Solaris Express 2/07 */ 192 { "caller", DT_IDENT_ SCALAR 0, D F VAR _CALLER, DT_ATTR _STABCMN, DT_VERS_1_0,
127 DT_VERS 1 4 1, /* DAPlI 1.4.1 Solaris Express 4/07 */ 193 &dt _idops_type, “uintptr_t" "},
128 DT_VERS_1_5, /* D APl 1.5 Solaris Express 7/07 */ 194 { "chill", DT_I DENT ACTFUNC 0, DT_ACT _CHILL, DT_ATTR STABCWN, DT_VERS 1 0,
129 DT_VERS 1_6, /* DAPI 1.6 */ 195 &dt |dops func, "voi d(l nt)"
130 DI_VERS 1 6_1, /* DAPl 1.6.1 */ 196 { "cl eanpath", DT_ | DENT_FUNC, 0, DI [F SUBR CLEANPATH, DT_ATTR_STABCM\,
131 DT_VERS 1. 6_2, /* DAPI 1.6.2 */ 197 DT VERS 1_0, &dt_idops_func, "string(const char *)" },
132 DT_VERS 1 6_3, /* DAPI 1.6.3 */ 198 { "clear", DT_| DENT ACTFUNC 0, DT_ ACT _CLEAR, DT_ATTR _STABCM\, DT_VERS 1_0,
133 DT_VERS 1 _7, /* DAPI 1.7 */ 199 &dt _idops_func, "void(. i
134 DI_VERS 1_7_1, [/* DAPI 1.7.1 */ 200 { "commit", DT_I| DENT_. ACTFUNC 0, DT ACT COMWM T, DT_ATTR _STABCMN, DT_VERS_1_0,
135 DT_VERS 1_38, /* D APl 1.8 */ 201 &dt _idops_func, "void(int)" },
136 DT VERS_l_B_l, /* DAPI 1.8.1 */ 202 { "copyin", DT_I DENT FUNC 0, DI F_SUBR _COPYI N, DT_ATTR STABCWN, DT_VERS 1_0,
137 DT_VERS 1_9, /* DAPI 1.9 */ 203 &dt _idops_func, "voi d *(uintptr_t, si ze_t) },

new usr/src/lib/libdtrace/ conmon/dt_open.c

204 {
205
206
207
208
209
210
211
212
213
214
215
216 {
217
218
219
220 {
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246 {
247
248
249 {
250
251 {
252
253 {
254
255 {
256
257 {
{
{
{
{
{

”~ m -

-~

258
259
260
261
262
263
264
265
266
267
268
269 {

' copyi

" copyi
"copyo

"copyo

"count",

"curth

"ddi _p

"denor
"dirnal
"di scal

"epi d"

"errno",

"execn
"exit"
"freop
"ftrun
"func"

" get mg|

"get mi

"ht onl

"ht onl

"htons",

"getf"
"gid,
"id",

"i ndex",

"i net
"i net
"i net

"ipl",

nstr", DT_|I DENT_FUNC, 0, DI F_SUBR COPYI NSTR,

DT_ATTR STABCWN, DT VERS_1 0,

&dt _i dops_f unc, strlng(wntptr t, [size_t])" },

nto", DT_IDENT_FUNC, 0, DIF_SUBR COPYI NTQ, DT_ATTR_STABCMWN,

DT_ VERS 1 0, &dt_idops_func, "void(uintptr_t, size t, void *)"

ut™, DT_I DENT FUNC 0, DIF_ SUBR COPYQUT, DT_, ATTR STABCI\/N DT_ VERS 1.0,
&dt’ |dops func, "voi d(v0|d Tx, uintptr_t, size_t)" },

utstr", DT_ IDENT FUNC, 0, DI F_SUBR_ COPYOUTSTR,

DT_ATTR_STABOWN, DT_VERS_1_0,

&dt _i dops_func, "void(char *, uintptr_t, size t)" },

DT_| DENT AGGFUNC 0, DTRACEAGG. CQJNT DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _i dops_func, "voi d()

read", DT_| IDENT SCALAR, 0, DI F_VAR_CURTHREAD,

{ DTRACE STABI LT TY_STABLE, DTRACE_STABI LI TY_PRI VATE,

DTRACE_CLASS _ OO\/N[N }, DT VERS 1 0,

&dt |dops type, "genunix'kthread_t *"

at hnarme", "DT_| DENT_FUNC, 0, DI F_SUBR_ DD _PATHNAME,

DT_ATTR EVQCI\/N DT_VERS 1 0,

&dt_l dops func, "string(void *, int64_t)" },

DT_| | DENT ACTFUNC, 0, DT_ACT_DENORVALI ZE, DT_ATTR_STABCW\,

mal i ze"
DT_ VERS 1_0, &dt_idops_func, "void(...)"
me™, DT_| DENT FUNC 0, DIF SUBR DI RNAI\/E DT ATTR_STABCWN, DT_VERS 1_0,

&dt | _idops_func, "string(const char *)" }
rd", DT_I DENT ACT FUNC, O, DT ACT_DI SCARD, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt i dops_func, "void(int T,
DT_| DENT SCALAR 0, DI F_VAR EPI D, DT_ATTR_STABCM\, DT_VERS_1_0,
&dt _idops_type, "uint_t" Y,
DT_I DENT_SCALAR, 0 DI F_VAR ERRNO, DT_ATTR _STABCM\, DT_VERS 1_0,
&dt |dops type i
ame”, DT_TDENT SCALAR 0, DI F_VAR_EXECNAME,
DT_. ATTR STABCNN DT_VERS 1 0, &dt_idops_type, "string" },
DT_I DENT ACTFUNC ~0, DT . ACT EXI T, DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _idops_func, "voi d(| nt },
en", DT_| DENT_ACTFUNC, O, DT_ACT_FREGPEN, DT_ATTR_STABCMWN,
DT VERS 1 1, &dt_idops_func, "void(@ ...)" ¥,
cate", DT | DENT ACTFUNC, O, DT ACT FTRUNCATE DT_ATTR_STABCWN,
DT VERS 1_0, &dt _idops_ func "void()" },
DT_| DENT_ACTFUNC, 0, DT_ ACT SYM DT_ATTR_STABCW,
DT VERS 1 2, &dt_idops_func, " _symaddr(uintptr_t)" },
jor", DT IDENT FUNC, 0, DI F_SUBR GETMAJOR,
DT_ATTR EVOLCWN, DT_ VERS 1.0,
&dt’ |dops func, "genunix‘ major_t(genunix‘dev_t)" },
nor", DT_IDENT_FUNC, 0, DI F_SUBR _GETM NOR
DT_ATTR EVOLCWN, DT VERS 1.0,
&dt _i dops_func, "genuni x" m nor_t (genuni x‘ dev_t)" },
", DT_I DENT_| FUNC 0, DI F_SUBR HTONL, DT_ATTR _EVOLCWN, DT_VERS 1_3,
&dt _idops_func, "uint32_t(uint32_t)" },
1", DT_I DENT FUNC 0, DIF_SUBR HTONLL, DT_ATTR EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "ui nt 64 _t(uint64_t)"

DT_I DENT_| FUNC 0, DI F_SUBR_HTONS, DT ATTR_EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "uint16_t(uint16_t)" },

DT _| DENT FLNC 0, DI F_SUBR GETF, DT_ATTR STABCWN, DT_VERS 1_10,
adt _idops_func, f||et “*(int)"

DT_| DENT _ SCALAR 0, DIF_VAR G D, DT ATTR_STABCWN, DT_VERS_1_0,
&dt i dops_type, "gi dt"

DT_TDENT_SCALAR, 0, DIF_ VAR I D, DT_ATTR _STABCWN, DT_VERS 1_0,
&dt _i dops_type, "uint_t" },

DT_| DENT FUNC 0, DI F_SUBR | NDEX, DT_ATTR STABCWN, DT_VERS 1 1,
&dt |dops func, |nt(const char *, const char *, [int])"

_ntoa", DT_IDENT_FUNC, 0, DIF_ SUBR I NET_NTOA, DT_ATTR STABCNN
DT VERS 1°5, &dt_idops_ func "string(ipaddr_t *)" },

ntoa6", DT | DENT FUNC, O, Di F SUBR_INET_NTOAG6, DT_ATTR_STABCMWN,
DT VERS 1.5, &dt i dops_func "string(in6_addr_t *)"

_ntop", DT_IDENT_FUNC, 0, DI F_ SUBR | NET_NTOP, DT_ATTR_ STABCNN
DT VERSlS &dt’ |dopsfunc "string(int, v0|d*)" },

DT_| DENT_ SCALAR, 0, DIF_VAR_IPL, DT_ ATTR STABCWN, DT_VERS 1_0,

new usr/src/lib/libdtrace/ conmon/dt_open.c

270 &dt _i dops_type, “uint_t" },

271 { "json", DT_IDENT _FUNC, 0, DIF_SUBR JSON, DT_ATTR STABCWN, DT_VERS 1 11,
272 &dt _idops_func, stnng(const char * “const char *)" },

273 #endif /* | codereview */

274 { "jstack", DT_I DENT ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR STABCWN, DT_VERS_1_0,
275 &dt _i dops_func, "stack(. "},

276 { "lltostr", DT_I DENT FUI\C 0, D F SUBR_LLTOSTR, DT_ATTR_STABCWN, DT_VERS_1_0,
277 &dt |dops func, strlng(lnt64t [int])" },

278 { "llquantize", DT_ IDENT AGGFUNC, 0, DTRACEAGG 5 LLQUANTI ZE, DT_ATTR_STABCMWN,
279 DT VERS 1 7, &dt_idops_func,

280 v0|d(@ |nt32t int32_t, |nt32t int32_t, ...)" },

281 { "lquantize", DT_| DENT . AGGFUNC O DTRACEA% LQJANTI ZE

282 DT_ ATTR STABCWN, DT_VERS_1_0,

283 &dt _idops_func, "void(@ int32_t, int32_t, DERE

284 { "max", DT_I DENT_. AGGFUNC 0, DTRACEAGG IW-\X DT_ ATTR STABCIVN DT_VERS_ 1_0,
285 &dt ~i dops_func, "voi d(@ },

286 { "min", DT_| DENT_, AGGFUNC 0, DTRACEAGG_M N, DT_ATTR _STABCWN, DT_VERS_1_0,
287 &dt ~i dops_func, "voi d(},

288 { "nod", DT_| DENT_ ACTFUNC 0, DT_ACT_MOD, DT_ATTR _STABCW\,

289 DT VERS 12, &dt |dops_func _symaddr (uintptr_t)" },

290 { "msgdsize", DT_ IDENT FUNC, 0, DI F_SUBR_MSGDSI ZE,

291 DT ATTR STABCWN, DT_VERS 1 0,

292 &dt _idops_func, "size t(mblk_t *)" },

293 { "msgsize", DT_I| DENT_| FUI\C 0, DI F_SUBR MSGSI ZE,

294 DT _ ATTR STABCWN, DT_VERS_1_0,

295 &dt’ |dops func, "size_t(mblk_t *)" },

296 { "mutex_owned", DT_ IDENT FUNC, 0, DI F_SUBR_MJUTEX_OWNED,

297 DT_ATTR EVOLCWN, DT VERS_l 0,

298 &dt _i dops_func "int(genunix‘kmutex_t *)" },

299 { "nutex_owner", DT_| DENT_FUNC, O| Dl F_SUBR_MUTEX_OWKER,

300 DT ATTR EVOLCW, DT _VERS 1 0,

301 &dt _i dops_func, "genuni x"kthread_t *(genunix‘kmutex_t *)" },

302 { "mutex type adaptive", DT_|IDENT_FUNC, 0, DI F_SUBR MJUTEX_TYPE_ADAPTI VE,
303 DT_ATTR_EVOLOWN, DT_VERS I 0,

304 &dt |dops func "int(genuni x' kmutex_t *)" },

305 { "nmutex_type_spin" DT | DENT_FUNC, 0, DI F_SUBR MJTEX_TYPE_SPI N,

306 DT_ATTR EVO_CNN DT_VERS 1 0,

307 &dt _i dops_func, "int(genunix‘knutex_t *)"

308 { "ntohl", DT_I DENT FUNC 0, DI F_SUBR NTCHL, DT ATTR EVOLCWN, DT_VERS 1_3,
309 &dt _i dops_func, "uint32_t(uint32_t)" },

310 { "ntohll", DT_I DENT FUNC 0, DI F_SUBR_NTOHLL, DT_ATTR EVOLCWN, DT_VERS 1_3,
311 &dt _i dops_func, "uint64_t(uint64_t)"

312 { "ntohs", DT_I DENT FUNC 0, DI F_SUBR_NTCHS, DT ATTR_EVOLCWN, DT_VERS 1_3,
313 &dt | dops_func, "uint16_t(uint16_t)" },

314 { "nornalize", DT_ | DENT ACTFUNC, O, DT ACT_NORMALI ZE, DT_ATTR_STABCW\,

315 DT VERS 1_0, &dt_idops_ func "void(...)"

316 { "panic", DT_| DENT ACTFUNC 0, DT_. ACT PANI C DT ATTR STABCWN, DT_VERS 1_0,
317 &dt _idops_func, "voi d() 1,

318 { "pid", DT_I DENT SCALAR 0, DIF_VAR_PID, DT_ATTR STABCWMN, DT_VERS 1_0,

319 &dt i dops_type, "pi d _t"

320 { "ppid", DT_I DENT_ SCALAR 0, DI F VAR _PPI D, DT_ATTR STABCWN, DT_VERS_1_0,
321 &dt _idops_type, "pid_t" },

322 { "print", DT_I DENT ACTFUNC -0, DT ACT_PRI NT, DT_ATTR_STABCWN, DT_VERS_1_9,
323 &dt _i dops_func, "voi d(T,

324 { "printa", DT_| DENT ACT FUNC, 0, DT_ACT_PRINTA, DT_ATTR _STABCWN, DT_VERS_1_0,
325 &dt _idops_func, "void(@ BERE

326 { "printf", DT_I DENT ACTFUNC 0, DT ACT_PRI NTF, DT_ATTR_STABCWN, DT_VERS_1_0,
327 &dt |dops func, "voi d(@ O Y

328 { "probefunc", DT | DENT_SCALAR, 0, DI F_VAR PROBEFUNC,

329 DT ATTR STABCW, DT_VERS 1 0, &dt_idops_type, "string" },

330 { "probenod", DT |DENT_SCALAR, 0, DI F VAR_PROBEMOD,

331 DT ATTR STABCWN, DT VERS_l 0, &dt _i dops_type, "string" },

332 { "probename", DT_| DENT_SCALAR 0, DI F_VAR PROBENAME,

333 DT ATTR STABCWN, DT_VERS 1 0, &dt_idops_type, "string" },

334 { "probeprov”, DT | DENT _SCALAR 0, DI F_VAR PROBEPROV,

335 DT_. ATTR STABCW, DT_VERS 1 0, &dt_idops_type, "string" },

new usr/src/lib/libdtrace/ conmon/dt_open.c

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

{

~—~ -

-~

{
{
{
{
{
{
{
{
{
#
{
{
{
{
{

"progenyof ", DT_I DENT_FUNC, 0, DI F_SUBR_PROGENYCF,
DT_ATTR STABCWN, DT VERS 10,
&dt _i dops_func, "int(pid_t)" },

"quantize", DT_|I DENT_AGGFUNC, 0, DTRACEAGG_QUANTI ZE,
DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _i dops_func, "void(@ ...)" },

"raise", DT_I DENT ACTFUNC 0, DT ACT RAI SE, DT_ATTR _STABCM\, DT_VERS 1_0,
&dt _i dops_func, "voi d(| nt) "

“rand", DT_| DENT FUNC, 0, DI F_SUBR_ RAND, DT_ATTR_STABCWN, DT_VERS_1_0,
&dt i dops_func, "i nt(BE

"rindex", DT_| DENT FUNC 0, DI F_SUBR_RI NDEX, DT_ATTR STABCWN, DT_VERS 1_1,
&dt |dops func, |nt(const char *, const char *, [int])" },

"rw_iswiter", DT_I DENT_FUNC, 0, DI F_SUBR_RW.| SWRI TER,
DT ATTR EVOLCW, DT_VERS 1_0,
&dt _i dops_func, "int(genunix‘krw ock_t *)" },

"rw_read_hel d", DT_ IDENT FUNC, 0, DI F_SUBR_RW READ HELD,
DT_ATTR_ EVOLOWN, DT_VERS_1_0,
&dt |dops func, "int(genunix‘krw ock_t *)" },

"rw_wite_hel d" DTIDENT FUNC, 0, DIF_SUBR RWWRI TE_HELD,
DT_ATTR EVO_CNN DT_VERS_1 0
&dt _i dops_func, "int(genunix‘krw ock_t *)"

"sel f", DT_| DENT_PTR, 0 0, DT_ATTR STABCMN, DT | VERS 1.0,
&dt _idops_type, "voi d" },

"setopt”, DT_I DENT_ACTFUNC, 0, DT_ ACT SETOPT, DT_ATTR_STABCMW,
DT_VERS_1_2, &dt_i dops_ func "voi d(const char *, [const char *])" },

"specul ate", DT_| | DENT ACTFUNC, 0, DT_ACT_SPECULATE,
DT_ATTR STABCWN, DT_VERS_1 0,
&dt _i dops func, "void(int)" }

"specul ation", DT_| DENT FUNC, 0, DI F_SUBR_SPECULATI ON,
DT_ATTR_STABOWN, DT_VERS_1_0,
&dt _i dops_func, "int()" 7,

"stack", DT_| DENT ACTFUNC 0, DT_ACT_STACK, DT_ATTR _STABCM\, DT_VERS 1_0,
&dt _idops_func, "st ack(D

"stackdepth”, DT IDENT SCALAR 0, DI F VAR_STACKDEPTH,
DT ATTR STABCWN, DT_VERS_1 0,
&dt _i dops_type, "uint32_t" },

"stddev", DT_|I DENT_AGGFUNC, 0, DTRACEA(XB STDDEV DT_ATTR_STABCWN,
DT_VERS_ 1_6, &dt_i dops_ func "voi d(

"stop", DT_I DENT ACTFUNC o, DT_ACT STOP, DT_. ATTR STABCMN, DT_VERS_1_0,
&dt _iTdops_func, "voi d() },

"strchr", DT_I DENT FUNC 0, DI F_SUBR _STRCHR, DT ATTR STABCMN, DT_VERS 1_1,
&dt _i dops_func, strlng(const char *, char)" },

"strlen", DT_I DENT FUNC 0, DI F_SUBR STRLEN, DT_ATTR STABCWN, DT_VERS 1_0,
&dt_l dops_func, "size_t(const char *)" },

"strjoin", DT_|DENT FUNC 0, DIF_SUBR _STRJO N, DT_ATTR STABCWN, DT_VERS 1_0,
&dt | _idops_func, strlng(const char *, const char *)"

“strrchr", DT_| DENT FUNC 0, DI F_SUBR_STRRCHR, DT ATTR_ STABCM\I DT_VERS 1_1,
&dt | _idops_func, strlng(const char *, char)™ },

"strstr", DT_I DENT FUNC 0, DI F_SUBR_STRSTR, DT_ATTR STABCWN, DT_VERS 1_1,
&dt _i dops_func, strlng(const char *, const char *)"

"strtok", DT_I DENT FUNC 0, DI F_SUBR STRTCOK, DT_ATTR STABCM\I DT_VERS 1_1,
&dt_l dops_func, "string(const char *, const char *)" },

"strtoll", DT_| DENT. FUI\C 0, DI F_SUBR_STRTOLL, DT_ATTR STABCWN, DT_VERS 1_11,
&dt _i dops_func, "int 64_t(const char *, [| nt])" },

endif /* ! codereview */

"substr", DT_I DENT FUNC 0, DI F_SUBR SUBSTR, DT_ATTR STABCI\/N DT_VERS 1_1,
&dt _i dops_func, "string(const char *, int, [int

"suni', DT_I DENT_, AGGFUNC 0, DTRACEAGG 5> SUM DT_, ATTR STABCNN DT_VERS_1_0,
&dt i dops_func, "voi d(},

"syni', DT_| DENT_ACT FUNC 0, DT_ACT_SYM DT_ATTR STABCMW\,
DT_VERS 1 2, &dt |dops func, "_symaddr(uintptr_t)" },

"systent, DT T DENT ACTFUNC 0, DT_ ACT _SYSTEM DT_ATTR_STABCMN, DT_VERS_1_0,
&dt i dops_func, "void(@ .

"this", DT_IDENT_PTR, 0 0, DT_ ATTR STABCNN DT_VERS_1_0,
&dt i idops_type, "voi d"

401 { "tid", DT_IDENT_SCALAR, 0, DI F VAR TI D, DT_ATTR_STABCWN, DT_VERS_1_0,

new usr/src/lib/libdtrace/ conmon/dt_open.c

402 &dt |dops type, "id_t" },

403 { "tinmestanp", DT_| DENT_SCALAR, 0, DI F_VAR TI MESTAMP,

404 DT_ATTR STABCWN, DT_VERS_1_0,

405 &dt _idops_type, "uint64_t" },

406 { "tol ower", DT_I DENT FUNC, 0, Dl F_SUBR TOLOAER, DT_ATTR STABCWN, DT_VERS_1_8,
407 &dt | _idops_func, "string(const char *)"

408 { "toupper", DT_I DENT FUI\C 0, DI F_SUBR_TOUPPER, DT ATTR_STABCWN, DT_VERS 1_8,
409 &dt | _i dops_func, strlng(const char *)"

410 { “"trace", DT_I DENT ACTFUNC 0, DT_ACT_TRACE, DT ATTR_STABCWN, DT_VERS 1_0,
411 &dt _i dops_func, "void(@" 7,

412 { "traceneni, DT_I DENT_ACTFUNC, 0, DT_ACT_TRACEMEM

413 DT_ATTR STABCMWN, DT_VERS_ 1 _0,

414 &dt _i dops_func, "void(@ size_t, . "},

415 { "trunc", DT_I DENT_ ACTFUNC 0, DT ACT TRUNC DT_ATTR_STABCW\,

416 DT VERS 1_0, &dt_idops_func, "void(.

417 { “"uaddr", DT_|I DENT_ACTFUNC 0, DT ACT

418 DT_VERS_1_2, &dt _i dops_func, "_usymaddr (ui ntptr_

419 { "ucaller", DT_|DENT_SCALAR, 0, DIF_ VAR UOALLER DT_. ATTR STABCNN

420 DT VERS 1 2, &dt_idops_type, "uint64_t" },

421 { "ufunc", DT_I DENT_ACTFUNC, 0, DT_ACT_USYM DT_ATTR | STABCNN

422 DT VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_ },

423 { "uid", DT_| DENT SCALAR 0, DIF_VAR U D, DT_ATTR_ STABCNN DT_VERS 1_0,
424 &dt ~i dops_type, "ui d_t" Y.

425 { "unod", DT_| DENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_ STABCNN

426 DT_VERS_ 1_2, &dt |dops func, "_usymaddr (uintptr_

427 { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR UREGS, DT_ATTR STABCI\/N DT VERS_1_0,
428 &dt _idops_regs, NULL },

429 { "ustack", DT_I DENT ACTFUNC 0, DT_ACT_USTACK, DT_ATTR STABCWN, DT_VERS 1_0,
430 &dt _i dops_func, "stack)"

431 { "ustackdepth", DT IDENT SCALAR, 0, Di F_VAR_USTACKDEPTH,

432 DT_ATTR_STABCWN, DT_VERS 1 2,

433 &dt _i dops_type, "uint32_t" },

434 { "usyni', DT_| DENT_ACTFUNC, 0, DT_ACT_USYM DT_ATTR_ STABCNN

435 DT_VERS 1 _2, &dt |dops func, "_usymaddr(uintptr_

436 { "vnregs", DT_IDENT_ARRAY, O,

437 &dt |dops regs, NULL },

438 { "vtinmestanp", DT_| DENT_SCALAR, 0, DI F_VAR VTl MESTAWP,

439 DT_ ATTR STABCWN, DT_VERS_1_0,

440 &dt |dops type, "uint64_t" },

441 { "wal | timestanp", DI_I DENT_SCALAR 0, DI

442 DT_ATTR STABCNN DT_VERS 1 0,

443 &dt _i dops_type, "int64_t" ¥,

444 { "zonename™, DT_IDENT_SCALAR, 0, DI F_VAR ZONENAME,

445 DT_. ATTR STABCMWN, DT _VERS 1 0, &dt

446 { NULL, 0,0, O, { O, O, O}, O, NOLL, NULL }

447 };

449 /

450 * Tables of ILP32 intrinsic integer and floating-point type tenplates to use
451 */to popul ate the dynamc "C' CTF type container.

452

453 st atl c const dt_intrinsic_t _dtrace_intrinsics_32[] = {

454 { "void" CTF_INT_SIGNED, O, 0 }, CTF_K_INTEGER },

455 { "signed”, { CTF_INT_SIGNED, 0, 32 }, CTF _K_|NTEGER },

456 { "unsigned", { 0, 0, 32 }, CTF_K INTEGER },

457 { "char”, { CTF_INT_SI GNED | A

458 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_| NTEGER },

459 "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_|NTEGER },

460 { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },

461 { "long long", { CTE_INT _SIGNED, 0, 64 }, CTF_K_INTEGER},

462 "signed char", { CTF_INT_SIGNED | CTF_INT_

463 { "signed short", { CTF INT SIGNED, O, 16 }, CTF K INTEGER },

464 { "signed int" { CTF_INT_SIGNED, 0, 32},

465 "si gned Iong", { CTF_INT_SIGNED, 0, 32 }, CTF_K_|INTEGER },

466 "signed long long", { CTF_INT_

467 "unsi gned char", { CTF_INT_CHAR, 0, 8},

)2 e
UADDR, DT_ATTR_ STABONN

Dl F_VAR VMREGS, DT_ATTR ! STABCNN DT_VERS_1_7,

F_VAR WALLTI MESTAWP,

i dops_type, "string" },

CTE_TNT_CHAR "0, 8 }, CTF_K_INTEGER },

NT_CHAR 0, 8 }, CTF_K_INTEGER },
CTFKINTEGER}

SIGNED, 0, 64 }, CTFKINTEGER}

CTF_K_I NTEGER },

new usr/src/lib/libdtrace/ conmon/dt_open.c

468 { "unsigned short", { 0, 0, 16 },
469 "unsigned int", { O O, 32 },
470 "unsi gned | ong", { 0, 0, 32 } CTF_K INTEGER}

471 { "unsigned long long", { 0, 0, 64 }, CTF_K | NTEGER },
472 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_ INTEGER },
473 { "float", { CTF_FP_SINGE, 0, 32 }, CTF_K FLOAT },
474 "doubl e", { CTF_FP DOUBLE, 0, 64 }, CTF_K FLQAT },
475 { "long double", [CTF_FP_LDOUBLE, 0, 1287},

CTF_K_I NTEGER },
CTF_K_I NTEGER },

CTF_K_FLOAT },

476 { "float inmmginary", { CIE_FP_INAGRY, 0, 32}, CTF_K FLOAT },

477 "doubl e i magi nary", { CTF FP_DI MAGRY, 0, 64 },
478 "l ong doubl e imaginary", { CTF_FP_LDI NAGRY 0, 1287},
479 { "float conpl ex", { CTF P CPLX, 0, 64 }, CIF_K FLOAT },

480 { "doubl e conpl ex" { F_FP_DCPLX, 0, 128 }, CTF_K_FLOAT
481 "l ong doubl e corrpl e , { CTF_FP_LDCPLX, 0, 256 }, CTF_K_
482 NuLL, { O, O, 0}, }

483 };

485 [*

CTF_K_FLOAT },
CTF_K_FLOAT },

e
FLOAT 1},

486 * Tables of LP64 intrinsic integer and floating-point type tenplates to use

487 * to popul ate the dynamc "C' CTF type container.
488 */

489 static const dt_intrinsic_t _dtrace_intrinsics_64[] = {
490 { "void", { CTE_INT_SIGNED, 0, O }, CTF_K INTEGER },

491 { "signed", { CTF_INT_SIGNED, 0, 32 }, CIF_K |INTEGER },
492 { "unsigned", { 0, 0, 32 }, CTF_K INTEGER },

493 { "char™, { CTF_INT_SIGNED | CTF_INT_CHAR 0, 8 }, CTF_K.|
494 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K | NTEGER },
495 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_ |INTEGER },

496 { "long", { CTF_I NT_SI G\ED, 64 }, CTF_K_| NTEGE

497 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_ | NTEGER
498 "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR 0, 8 },

499 "si gned short", {

500 { "signed int", { CT .

501 { "signed long", { CT I NT_SI GNED, 0, 64 },
on I NT.

502 "signed | ong | ong",

NTEGER },

{ CTF_
503 { "unsigned char", { CTF_INT_CHAR 0, 8 }, CTF K | NTEGER },
504 { "unsigned short", { 0, 0, 16 }, CTF_K_I NTEGER T,
505 "unsigned int", { 0, 0, 32}, CTF_K_|INTEGER },
506 "unsigned long", { 0, 0, 64 }, CTF_K_ |INTEGER },
507 unsrgned | ong Iong , { 0, 0, 64}, CIF_K_INTEGER },
508 { " Bool", { CTF_INT_BOO., 0, 8 }, CTF_K INTEGER },
509 { "float", { CIF_FP_SINGLE, 0, 32 }, CTF_K FLOAT },
510 { “"double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
511 { "long double", { CTF_FP_LDOUBLE, 0, 1287}, CTF K FLOAT },

512 { "float immginary", { CTF_FP_IMAGRY, 0, 32},
513 { "doubl e imaginary", { CTF FP_DI MAGRY, 0, 64 }, |
514 { "long double |mag| nary { CTF_FP_LDI MAGRY, 0, 128},

515 { "float complex”, { CTF_FP_CPLX, 0, 64 }, CTF_K FLOAT },

516 "doubl e conpl ex' { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT

517 "l ong doubl e conpl ex", [CTF_FP_LDCPLX, 0, 256 }, CTF_K_
518 NULL, { O, O, O}, O}

519 };

521 /*

CTF_K_FLOAT },
CTF_K_FLOAT },
CTF_K_FLOAT },

e
FLOAT 1},

522 * Tables of ILP32 typedefs to use to populate the dynamc "D' CTF container.

523 * These aliases ensure that D definitions can use typical
524 */

525 static const dt_typedef_t _dtrace_typedefs_32[] = {

526 { “"char", "int8_t" },

527 { "short", "intl6_t" },

528 { "int", "int32_t" },

529 { "long long", "int64_t" },
530 { "int", "intptr_t" },

531 { "int", "ssize_t" },

532 { "unsigned char", "uint8_t" },
533 { "unsigned short", "uint16_t" },

<sys/types. h> nanes.

new us

534
535
536
537
538
539
540
541
542
543
544
545
546
547

549 /
550

551

552

553 s
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
5175

577 |
578
579
580
581 s
582 {
583 {
584 {
585 {
586 {
587 {
588 }
/

590
591

592

593

504 s
595 {
596 {
597 {
508 {
599 {

r/src/lib/libdtrace/ common/dt_open.c
"unsi gned", "uint32_t" },
"unsi gned i ong | ong "uint64_t" },
"unsi gned char" uchar_t "},
"unsi gned short 8 ushort I
"unsi gned", "ui nt _t" o},
"unsi gned | ong", "ul ong_ t" o},

"unsi gned | ong Iong ,
"int", "ptrdiff_t" },

u_longlong_t" },

"unsi gned" “uintptr_t" },
"unsi gned , "size_t" },
"long", "id_t" },

"long". "pid.t" },

NULL, NULL }

*

* Tabl es of LP64 typedefs to use to popul ate the dynam c "D' CTF contai ner.
* These aliases ensure that D definitions can use typical <sys/types.h> nanes.
*/

tatic const dt_typedef_t _dtrace_typedefs_64[] = {
“char", "int8_t" },

“short", "intl6_t" },

"int", "int32_t' },

"long", "int64_t" },

"l ong", intptr t" 3,

"long", "ssize_t" },

"unsi gned char", "uint8_t" },
"unsi gned short", "uintl6_t" },
"unsi gned", "ui nt 32_t" },
"unsigned long", "uint64_t" },
"unsi gned char", "uchar Tt },
"unsi gned short "ushort _t" },
"unsi gned", "ui nt _t"

"unsi gned | ong", "ul ong_ t" o},

"unsi gned | ong Iong ,
"long", "ptrdiff_t" },

"u_l onglong_t" },

"unsi gned | ong", "uintptr_t" },
"unsi gned Iong", "size_t" },
"int", id t" },

"int", "pid_t" },

NULL " NULL Y

*

* Tables of ILP32 integer type tenplates used to popul ate the dtp->dt_ints[]
* cache when a new dtrace client open occurs. Values are set by dtrace_open().
*/

tatic const dt_intdesc_t _dtrace_ints_32[] = {
"int", NULL, CTF ERR ~Ox7fffffffuULL },
unS|gned int", NULL, CTF_ERR, OxffFfffffULL },
"l ong™, NULL, CTF ERR, Ox7fffffffULL },
"unsigned long", NULL, CTF_ERR, Oxfffffff
"l ong | ong", NULL, CTF_ERR, Ox7ffffffffff
"unsigned long long", NULL, CTF_ERR, Oxff

—h —h —h

*

* Tabl es of LP64 integer type tenplates used to popul ate the dtp->dt_ints[]

* cache when a new dtrace client open occurs. Values are set by dtrace_open().
=

tatic const dt_intdesc_t
"int" NULL, CTF ERR, Ox7fffffffuL
"unsi gned int", NULL, CTF_ERR, Oxf
Iong , NULL, CTF ERR, OX7ffffffff
"unsi gned Iong NULL, CTF_ERR, Ox
"l ong | ong", NULL CTF ERR, Ox7fff

L

ff
ff
ff
ff

new usr/src/lib/libdtrace/ common/dt_open.c 9 new usr/src/lib/libdtrace/ common/dt_open.c 10

600 { "unsi gned long |l ong", NULL, CTF_ERR, OxffffffffffffffffULL } 666 DTRACE_STABI LI TY_PRI VATE,
601 } 667 DTRACE_STABI LI TY_PRI VATE,
668 DTRACE_CLASS_UNKNOWN
603 /* 669 };
604 * Table of macro variable tenplates used to populate the macro identifier hash
605 * when a new dtrace client open occurs. Values are set by dtrace_update(). 671 const dtrace_attribute_t _dtrace_prvattr = {
606 */ 672 DTRACE_STABI LI TY_PRI VATE,
607 static const dt_ident_t _dtrace_nmacros[] = { 673 DTRACE_STABI LI TY_PRI VATE,
608 { "egid", DT_|DENT_SCALAR 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 }, 674 DTRACE_CLASS_UNKNOWN
609 “euid", DT_|IDENT_SCALAR, 0, 0, DT_ATTR_STABCWN, DT_VERS 1 0 }, 675 };

610 "gid", DT_TDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 }
611 "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS_1_0

1 677 const dtrace_pattr_t _dtrace_prvdesc = {
612 { "pgid", DT_IDENT _SCALAR 0, 0, DT_ATTR STABCWN, DT _VERS 1_
RS_1

}
}
’} 678 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS_COMVON
}
0

0}, Is

613 " ppi d", DT | DENT SCALAR, 0, O, DT ATTR STABCMWN, DT VEI 01}, 679 { DTRACE_STABI LI TY_UNSTABLE DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS_COWMON },
614 "projid*, DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 }, 680 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS COMMON },
615 "sid", DT | DENT_SCALAR, 0, 0, DT ATTR_STABCWN, DT _VERS 1 0 }, 681 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS COMMON },
616 "taski d", DT_I DENT_SCALAR 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 }, 682 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS_COWMMN },
617 { "tar get DT_I DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 }, 683 };
618 "ui d" DT | DENT_SCALAR, 0, O, DT ATTR_STABCWN, DT _VERS 1 0 7},
619 NULL, 0 0, 0 {0 0 0 } 0} 685 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(l) to invoke */
620 }; 686 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default 1d(1) to invoke */
622 /* 688 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
623 * Hard-wired definition string to be conpiled and cached every tinme a new 689 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */
624 * Dlrace library handle is initialized. This string should only be used to
625 * contain definitions that shoul d be present regardl ess of DTRACE_O NOLIBS. 691 int _dtrace_strbuckets = 211; /* default nunber of hash buckets (prine) */
626 */ 692 int _dtrace_intbuckets = 256; /* default nunber of integer buckets (Pof2) */
627 static const char _dtrace_hardwire[] = "\ 693 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
628 inline long NULL = 0; \n\ 694 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
629 #pragma D bi ndi ng V"1.0\" NULL\ n\ 695 uint_t _dtrace_ _pi dbuckets = 64; /* default number of pid hash buckets */
630 "; 696 uint_t _dtrace_pidirulim= 8 /* default nunmber of pid handles to cache */

697 size_t _dtrace_bufsize = 512, /* default dt_buf_create() size */
632 /* 698 int _dtrace_argmax = 32; /* default maxi mum nunber of probe argunents */
633 * Default DTrace configuration to use when opening |ibdtrace DTRACE_O NODEV.
634 * |If DTRACE_O NODEV is not set, we load the configuration fromthe kernel. 700 int _dtrace_debug = O; /* debug nessages enabled (off) */
635 * The use of CTF_NMDDEL_NATIVE is nore subtle than it m ght appear: we are 701 const char *const _dtrace_version = DI_VERS STRING /* APl version string */
636 * relying on the fact that when running dtrace(1M, isaexec will invoke the 702 int _dtrace_rdvers = RD VERSION, /* rtld_db feature version */
637 * binary with the same bitness as the kernel, whi ch is what we want by defaul t
638 * when generating our DIF. The user can override the choice usi ng of | ags. 704 typedef struct dt_fdlist {
639 */ 705 int *df _fds; /* array of provider driver file descriptors */
640 static const dtrace_conf_t _dtrace_conf = { 706 uint_t df_ents; /* nunber of valid elements in df_fds[] */
641 DI F_VERSI ON, /* dtc_difversion */ 707 uint_t df_size; /* size of df_fds[] */
642 DI F_DI R_NREGS, /* dtc_difintregs */ 708 } dt_fdlist_t;
643 DI F_DTR_NREGS, /* dtc_diftupregs */
644 CTF_MODEL_NATI VE /* dtc_ctfrodel */ 710 #pragnme init(_dtrace_init)
645 }; 711 void

712 _dtrace_init(void)
647 const dtrace_attribute_t _dtrace_nmaxattr = { 713 {
648 DTRACE_STABI LI TY_NAX, 714 _dtrace_debug = getenv("DTRACE_DEBUG') != NULL;
649 DTRACE_STABI LI TY_MAX,
650 DTRACE_CLASS MAX 716 for (; _dtrace_rdvers > 0; _dtrace rdvers——) {
651 }; 717 Tif (rd_init(_dtrace_rdvers) == RD_OK)

718 br eak;
653 const dtrace_attribute_ t _dtrace_defattr = { 719 }
654 DTRACE_STABI LI TY_STABLE, 720 }
655 DTRACE_STABI LI TY_STABLE,
656 DTRACE_CLASS_COMVON 722 static dtrace_hdl _t *
657 }; 723 {set _open_errno(dtrace_hdl _t *dtp, int *errp, int err)

724
659 const dtrace_attribute_t _dtrace_symattr = { 725 if (dtp !'= NULL)
660 DTRACE_STABI LI TY_PRI VATE, 726 dtrace_cl ose(dtp);
661 DTRACE_STABI LI TY_PRI VATE, 727 if (errp !'= NULL)
662 DTRACE_CLASS_UNKNOMN 728 *errp = err;
663 }; 729 return (NULL);

730 }

665 const dtrace_attribute_t _dtrace_typattr = {

new usr/src/lib/libdtrace/ conmon/dt_open.c

732 static void

733 dt
734 {
735
736
737
738
739

741
742

744
745

747
748
749

751
752
753

755
756

758
759
760

762
763

765
766

768
769
770
771
772
773

775
776
777

779
780
781

783
784 }

_provnod_open(dt_provnod_t **provnod,

dt_fdlist_t *dfp)

dt _provnod_t *prov;
char pat h[PATH_MAX] ;
struct dirent *dp, *ep;
DR *dirp;

int fd;

if ((dirp = opendir(_dtrace_provdir)) == NULL)
return; /* failed to open directory; just skip it */

ep = alloca(sizeof (struct dirent) + PATH MAX + 1);
bzero(ep, sizeof (struct dirent) + PATH MAX + 1);

while (readdir_r(dirp, ep, &p) == 0 & dp !'= NULL) {
if (dp->d_nanme[0] == "."
continue; /* skip "." and ".." */

if (dfp->df _ents == df p->df_size) {
ui nt _t S|ze—dfp->df _size ? dfp->df _size * 2 : 16;
int *fds = realloc(dfp->df _fds, size * sizeof (|nt))

if (fds == NULL)
break; /* skip the rest of this directory */

df p->df _fds = fds;
df p- >df _si ze = si ze;

}

(void) snprintf(path,
_dtrace_provdir,

if ((fd = open(path, O RDO\NLY)) == -1)
continue; /* failed to open driver;

si zeof (path),
dp- >d_nane) ;

s/ Ys",

just skip it */
if (((prov = malloc(sizeof (dt_provnod_t))) == NULL)

(prov->dp_nanme = malloc(strlen(dp->d_nanme) + 1)) == NULL)
free(prov);
(v0|d) close(fd)
br eak;

}

(void) strcpy(prov->dp_nane, dp->d_nane);
prov->dp_next = *provnod;
*provnod = prov;

dt _dprintf("opened provider %\n",
df p- >df _fds[df p->df _ents++] = fd;

dp- >d_nane) ;

}
(void) closedir(dirp);

786 static void

787 d
788 {
789

791
792
793
794
795

t _provnod_destroy(dt_provnod_t **provnod)

dt_provnod_t *next, *current;

for (current = *provnod; current != NULL; current = next) {
next = current->dp_next;
free(current->dp_nane);
free(current);

}
*provmod = NULL;

11

new usr/src/lib/libdtrace/ conmon/dt_open.c

798

}

800 static const char *

801 dt_get _sysinfo(int cnd,

802 {

803
804

806
807

809
810

812
813

815
816
817

}

char *buf, size_t |en)

ssize_t rv = sysinfo(cnd, buf, len);
char *p = buf;

if (rv<O0|]|] rv>len)

(void) snprintf(buf, len, "%", "Unknown");
while ((p = strchr(p, '.")) !'= NULL)

*ptt+ =0

return (buf);

static dtrace_hdl _t *

dt _vopen(int version,

818 {

819
820
821
822
823
824
825

827
828
829

831
832
833

835

837
838

840
841

843
844

846
847
848
849
850
851
852
853
854
855
856
857
858
859

861
862

int flags, int *errp,

const dtrace vector_t *vector, void *arg)
dtrace_hdl _t *dtp = NULL;
int dtfd = -1, ftfd = -1, fterr = 0;

dtrace prog t *pgp;

dt _nmodul e dr'rp
dt_provm)d_t *provmod = NULL;
int i, err;

struct rlimt rl;

const dt_intrinsic_t *dinp;
const dt_typedef t *dtyp;
const dt_ident_t *idp;

dtrace_typeinfo_t dtt;
ctf_funcinfo_t ctc;

ctf_arinfo_t ctr;

= { NULL, O, O };

char isadef[32], utsdef[32];
char s1[64], s2[64];

dt _fdlist_t df

if (version <= 0)
return (set_open_errno(dtp, errp, EINVAL));

if (version > DTRACE_VERSI ON)
return (set_open_errno(dtp, errp, EDT_VERSIQON));

if (version < DTRACE_VERSION) {
/

Currently, increasing the library version nunber is used to
denote a binary inconpatible change. That is, a consumer
of the library cannot run on a version of the library with
a hi gher DTRACE_VERSI ON nunmber than the consumer conpiled
against. Once the library APl has been conmitted to,
backwards binary conpatibility will be required; at that
tinme, this check should change to return EDT_ OVERS| ON only
if the specified version nurmber is Iess than the version

* nunber at the time of interface comm tnent.

*

/
return (set_open_errno(dtp, errp, EDT_OVERSION));

EE N

if (flags & ~DTRACE_O_MASK)
return (set_open_errno(dtp, errp, EINVAL));

12

new usr/src/lib/libdtrace/ common/dt_open.c 13

864
865

867
868

870
871

873
874

876
877
878
879
880
881
882
883
884
885
886
887

889
890
891
892
893
894
895
896

898
899

901
902

904
905

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

if ((flags & DTRACE O LP64) && (flags & DTRACE O | LP32))
return (set_open_errno(dtp, errp, EINVAL));

if (vector == NULL && arg != NULL)
return (set_open_errno(dtp, errp, EINVAL));

if (elf_version(EV_CURRENT) == EV_NONE)
return (set_open_errno(dtp, errp, EDT_ELFVERSION));

if (vector !'= NULL || (flags & DTRACE_O_NODEV))
goto alloc; /* do not attenpt to open dtrace device */

*
* Before we get going, crank our limt on file descriptors up to the
* hard limt. This is to allow for the fact that |ibproc keeps file
* descriptors to objects open for the lifetinme of the proc handle;

* without raising our hard limt, we would have an acceptably snall
* bound on the nunber of processes that we coul d concurrently

* instrunent with the pid provider.

*

f

(getrlimt(RLIMT_NOFILE, &l) == 0) {
rl.rlimecur = rl.rlimnax;
(v0|d) setrllmt(RLIMT NCFILE &rl);

}
/*
* Cet the device path of each of the providers. W hold them open
* in the df.df _fds list until we open the DTrace driver itself,
* allowing us to see all of the probes provided on this system Once
*

we have the DTrace driver open, we can safely close all the providers
* now that they have registered with the framework.
*
/
dt _provnod_open(&provnod, &df);

dtfd = open("/dev/dtrace/dtrace", O RDIR);
err = errno; /* save errno from opem ng dtfd */

ftfd = open(/dev/ dtrace/ provi der/fasttrap”", O RDWR);
fterr = ftfd == -1 ? errno : 0; /* save errno fromopen ftfd */

while (df.df_ents-- 1= 0)
(void) close(df.df_fds[df.df_ents]);

free(df.df_fds);

/
If we failed to open the dtrace device, fail dtrace_open().
We convert sone kernel errnos to customlibdtrace errnos to
i mprove the resulting nmessage fromthe usual strerror().

if (dtfd == -1) {

dt _provnod_dest roy(&rovnod) ;

switch (err) {

case ENCENT:
err = EDT_NCENT;
break;

case EBUSY:
err = EDT_BUSY;
br eak;

case EACCES:
err = EDT_ACCESS;
br eak;

* %k ok
-

}
return (set_open_errno(dtp, errp, err));

new usr/src/lib/libdtrace/ conmon/dt_open.c

930
931

933
934
935

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

968
969
970
971
972

974
975

979
980

982
983
984

986
987
988
989
990
991
992

994
995

al | oc:

(void) fcntl(dtfd, F_SETFD, FD_CLOEXEC);
(void) fentl (ftfd, F_SETFD, FD_CLOEXEC);

if ((dtp =

mal | oc(sizeof (dtrace_hdl_t))) == NULL)
return (set_open_errno(dtp, errp, ED

T_NOVEM)) ;

bzero(dtp, sizeof (dtrace_hdl_t));

dt p->dt _ofl ags = fl ags;

dt p- >dt _prcnode = DT_PROC_STOP_PREI NI T;
dt p->dt _| i nknode = DT_LI NK_KERNEL;

dt p->dt _| i nktype = DT_LTYP_ELF;

dt p- >dt _xI| at enode = DT_XL_STATI C,

dt p- >dt _st dcm)de = DT_STDC XA

dt p- >dt_ver3| on = version;
dtp->dt_fd = dtfd;
dtp->dt_ftfd = ftfd;
dtp->dt _fterr =
dt p->dt _cdefs_fd
dt p- >dt _ddefs_fd
dt p->dt _stdout _fd =

fter

dt p- >dt _nodbuckets = _dtrace_strbuckets;
dt p- >dt _nods = cal | oc(dt p->dt _npdbuckets, sizeof (dt_nodule_t *));
dt p- >dt _provbuckets = _dtrace_strbuckets;

dt p->dt _provs = cal | oc(dtp->dt_provbuckets, sizeof (dt_provider_t *));
dt _proc_init(dtp);

dt p- >dt _vmax = DT_VERS_LATEST,;

dt p->dt _cpp_path st rdup(_dtrace_def cpp) ;

dt p- >dt _cpp_ar gv mal | oc(si zeof (char *));

dt p->dt _cpp_argc 1;

dt p- >dt _cpp_args 1;

dtp->dt _| d_path = strdup(_dtrace_defld);
dt p- >dt _provnod = provnod;

dt p->dt _vector = vector;

dtp->dt _varg = arg;

dt _dof _init(dtp);

(voi d) unarre(&dt p->dt_uts);

if (dtp->dt_nmods == NULL || dtp->dt_provs == NULL ||
dt p->dt _procs == NULL || dtp->dt_proc_env == NULL ||
dt p->dt _l d_path == NULL || dtp->dt_cpp_| path == NULL ||
dt p->dt _cpp_argv == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

for (i = 0; i < DTRACEOPT_MAX; i ++)
dt p->dt _options[i] = DTRACEOPT_UNSET;

dt p->dt _cpp_argv[0] = (char *)strbasenane(dtp->dt_cpp_path);

(void) snprintf(isadef, sizeof (isadef), "-D__SUNWD %",
(uint_t)(sizeof (void *) * NBBY));
(void) snprintf(utsdef, sizeof (utsdef), "-D__%_%",

dt _get _sysi nfo(SI _SYSNAME, s1, si zeof (sl))
dt _get _sysi nfo(SI _RELEASE, s2, sizeof (52)));

if (dt_cpp_add_arg(d
dt _cpp_add_ar g(

tp, "-D sun)—: NULL ||
dt p,
dt _cpp_add_ar g(dtp,
dt p,
dt p,

-D uni x") == NULL ||
-D__SVR4") == NULL ||
dt _cpp_add_ar g("—D_SUNW_D:1) == NULL ||
dt _cpp_add_ar g(i sadef) == NULL ||
dt _cpp_add_arg(dtp, utsdef) == NULL)
return (set_open_errno(dtp, errp, EDI_NOVEM);

if (flags & DTRACE O

) NODEV) .
bcopy(& dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));

14

new usr/src/lib/libdtrace/ common/dt_open.c 15

996
997

999
1000
1001
1002

1004
1005
1006
1007
1008
1009
1010

1012
1013
1014
1015

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

1032
1033

1035
1036
1037
1038

1040
1041
1042

1044
1045

1047
1048

1050
1051
1052

1054
1055
1056
1057
1058
1059
1060
1061

#i f def

#endi f
#i f def

#endi f

else if (dt_ioctl(dtp, DTRACEI OC_CONF, &dtp->dt_conf) != 0)
return (set_open_errno(dtp, errp, errno));

if (flags & DTRACE_O LP64)
dt p- >dt _ conf.dtc ct f nodel
else if (flags & DTRACE O | LP32)
dt p->dt _conf.dtc_ctfnodel = CTF_MODEL_| LP32;

CTF_MODEL_LP64;

__sparc
/*

* On SPARC systens, _ sparc is always defined for <sys/isa_defs.h>
* and __sparcv9 is defined if we are doing a 64-bit conpile.
*

if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_LP64 &&
dt _cpp_add_arg(dtp, "-D__sparcv9") == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

__Xx86
/*
* On x86 systens, _ 1386 is defined for <sys/isa_defs.h> for 32-bit
* conpiles and __and64 is defined for 64-bit conpiles. Unlike SPARC,
* they are defined exclusive of one another (see PSARC 2004/ 619).
*
/
if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL LP64) {
if (dt_cpp_add_arg(dtp, "-D__and64™) NULL)
return (set_open_errno(dtp, errp, EDT_NOMVEM)) ;
} else {

if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
return (set_open_errno(dtp, errp, EDT_NOMVEM));

if (dtp->dt_conf.dtc_difversion < DI F_VERSI ON)
return (set_open_errno(dtp, errp, EDT_DI FVERS));

if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_I LP32)
bcopy(_dtrace_ints_32, dtp >dt_ints, sizeof (_dtrace_ints_32));
el se
bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

dt p- >dt_macros = dt_i dhash_create("rracro" NULL, 0, Ul NT_MAX);
dt p->dt _aggs = dt _i dhash_create("aggregation", NULL,
DTRACE AGGVARIDNONE + 1, Ul NT_MAX) ;
dt p->dt _gl obal s = dt _i dhash_create("gl obal", _dtrace_globals,
DI F_VAR _OTHER UBASE, DI F_VAR OTHER NAX)

dtp->dt _tls = dt _idhash_create("thread |ocal", NULL,
Dl F_VAR _OTHER UBASE, DI F_VAR OTHER MAX) ;

if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
dt p->dt _globals == NULL || dtp->dt_tls == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

/*
* Popul ate the dt _nmacros identifier hash table by hand: we can’'t use
* the dt_idhash_popul ate() mechani sm because we’re not yet conpiling
*/and dtrace_update() needs to i medi ately reference these idents.
*
for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {

if (dt_idhash msert(dtp >dt _macros, idp->di _nane,

i dp->di _kind, idp->di_flags, |dp >di _id, idp->di_attr,

new usr/src/lib/libdtrace/ comon/dt_open.c 16
1062 i dp->di _vers, idp >d| _ops ? idp->di _ops : &dt_idops_thaw,
1063 idp->di _iarg, 0) == NULL)

1064 return (set_open_errno(dtp, errp, EDT_NOVEM);

1065 }

1067 /*

1068 * Update the nodule |ist using /systenlobject and |oad the values for
1069 * the macro variable definitions according to the current process.
1070 *

1071 dtrace_updat e(dtp);

1073 /*

1074 * Select the intrinsics and typedefs we want based on the data nodel .
1075 * The intrinsics are under "C'. The typedefs are added under "D'.
1076 */

1077 if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_| LP32) {

1078 dinp = _dtrace_intrinsics_32;

1079 dtyp = _dtrace_typedefs_32;

1080 } else {

1081 dinp = _dtrace_intrinsics_64;

1082 dtyp = _dtrace_typedefs_64;

1083 }

1085 /*

1086 * Create a dynamic CTF container under the "C' scope for intrinsic
1087 * types and types defined in ANSI-C header files that are included.
1088 */

1089 if ((dnmp = dtp->dt_cdefs = dt_nodul e_create(dtp, "C')) == NULL)
1090 return (set_open_ errno(dtp, errp, EDT_NOVEM);

1092 if ((dmp->dmctfp = ctf_create(&tp->dt_ctferr)) == NULL)

1093 return (set_open_errno(dtp, errp, EDT_CTF));

1095 dt _dprintf("created CTF container for % (%)\n",

1096 dnp->dm nane, (void *)dnp->dmctfp);

1098 (void) ctf_setnodel (dnmp->dm ctfp, dtp->dt_conf.dtc_ctfnodel);

1099 ctf_setspecific(dnp->dmctfp, dnp);

1101 dnp->dm fl ags = DT_DM LOADED; /* fake up |oaded bit */

1102 dnmp->dm nodid = -1; /* no nodule ID */

1104 /*

1105 * Fill the dynamic "C' CTF container with all of the intrinsic
1106 * integer and floating-point types appropriate for this data nodel.
1107 */

1108 for (; dinp->din_nane != NULL di np++) {

1109 if (dinp->di n ki nd == CTF_K_| NTEGER)

1110 err = ctf_add_i nteger (dnp->dm ctfp, CTF_ADD ROOCT,
1111 di np->di n_nane, &di np->din_data);

1112 } else {

1113 err = ctf_add_fl oat (dnp->dm ctfp, CTF_ADD_ ROOT,
1114 di np->di n_nane, &di np->din_data);

1115 }

1117 if (err == F_ERR) {

1118 dt _dprintf("failed to add % to C container: %\n",
1119 di np->di n_nare, ctf_errnsg(

1120 ctf_errno(dnp->dmctfp)));

1121 return (set_open_errno(dtp, errp, EDT_CTF));

1122 }

1123 }

1125 if (ctf updat e(dnp->dmctfp) != 0)

1126 _dprintf("failed to update C container: %\n",

1127 ctf_errmsg(ctf_errno(dnp->dmctfp)));

new usr/src/lib/libdtrace/ common/dt_open.c 17

1128
1129

1131
1132
1133
1134
1135
1136

1138
1139

1141
1142

1144
1145
1146
1147
1148

1150
1151
1152
1153
1154
1155
1156

1158
1159

1161
1162

1164
1165

1167
1168

1170
1171
1172
1173
1174

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

1192
1193

return (set_open_errno(dtp, errp, EDT_CTF));
}

/*
* Add intrinsic pointer types that are needed to initialize printf
* format dictionary types (see table in dt_printf.c).
*/
(void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD_ROOT,
ctf_l ookup_by_nane(dnmp->dmctfp, "void"));

(void) ctf_add_pointer(dnp->dmctfp, CTF_ADD ROOT,
ctf_Il ookup_by_nane(dnp->dmctfp, "char"));

(void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD ROOT,
ctf_l ookup_by_nane(dnp->dmctfp, "int"));

if (ctf_update(dnp->dmctfp) != 0)
dt _dprintf("failed to update C container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
} return (set_open_errno(dtp, errp, EDT_CTF));

/*

* Create a dynam c CTF container under the "D' scope for types that

* are deflned by the D programitself or on- the-fly by the D conpiler.
* The "D' CTF container is a child of the "C' CTF container.

*

/
if ((dnmp = dtp->dt_ddefs = dt_nodul e_create(dtp, "D')) == NULL)

return (set_open_ errno(dtp, errp, EDT_NOVEM);

if ((dnmp->dmctfp = ctf_create(&Jtp->dt_ctferr)) == NULL)
return (set_open_errno(dtp, errp, EDT_CTF));

dt _dprintf("created CTF container for % (%)\n",
dnp->dm nane, (void *)dnp->dmctfp);

(void) ctf_setnodel (dnmp->dm ctfp, dtp->dt_conf.dtc_ctfnodel);
ctf_setspecific(dnp->dmctfp, dnp);

drp->dm f | ags
dnmp- >dm _nodi d

DT_DM LOADED; /* fake up |oaded bit */
-1; /* no nodule ID */

if (ctf_inport(dnmp->dmctfp, dtp->dt_cdefs->dmctfp) == CTF ERR) {
dt dprintf("failed to inport D parent container: %\n"
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDI_CTF));

}

* Fill the dynamic "D' CTF container with all of the built-in typedefs
* that we need to use for our D variable and function definitions.
* This ensures that basic inttypes.h names are always avail able to us.
for (; dtyp->dty_src !'= NULL; dtyp++) {
if (ctf_add typedef(drrp >dm ctfp, CTF_ADD_ROOT,
dtyp->dty_dst, ctf _l ookup_by_name(dnp->dm ct fp,
dtyp->dty_. src)) == CTF_ERR) {
dt dprlntf("falled to add typedef % % to D"
‘container: %", dtyp->dty_src, dtyp->dty_dst,
ctf_errmsg(ctf errno(dnp >dmctfp)))
return (set_open_errno(dtp, errp, EDT CTF))

}

/*
* Insert a CTF ID corresponding to a pointer to a type of kind

new usr/src/lib/libdtrace/ common/dt_open.c 18
1194 * CTF_K_FUNCTI ON we can use in the coerlIer for function pointers.
1195 * CTF treats all function pointers as "int (*)()" so we only need one.
1196 */

1197 ctc.ctc_return = ctf_| ookup_by_name(dnp->dmctfp, "int");

1198 ctc.ctc_argc = O;

1199 ctc.ctc_flags = O;

1201 dt p- >dt _type_func = ctf_add_function(dnmp->dmctfp,

1202 F_ADD_ROOT, &ctc, NULL);

1204 dt p->dt _type_fptr = ctf_add_poi nter(dnp->dmctfp,

1205 CTF_ADD ROOT, dtp->dt_type_func);

1207 /*

1208 * W also insert CTF definitions for the special Dintrinsic types
1209 * string and <DYN> into the D container. The string type is added
1210 * as a typedef of char[n]. The <DYN> type is an alias for void.
1211 * W conpare types to these special CTF 1ds throughout the conpiler.
1212 */

1213 ctr.ctr_contents = ctf_| ookup_by_name(dnmp->dmctfp, "char");

1214 ctr.ctr_index = ctf_|l ookup_by_name(dnp->dmctfp, "long");

1215 ctr.ctr_nelens = _dtrace_strsize;

1217 dt p->dt _type_str = ctf_add_t ypedef (dnp->dmctfp, CTF_ADD ROOT,

1218 "string", ctf_add_array(dmp->dmctfp, CTF_ADD ROOT, &ctr));

1220 dt p->dt _type_dyn = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD ROOT,

1221 "<DYN>", ctf_l ookup_by_name(dnp->dmctfp, "void"));

1223 dt p->dt _type_stack = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD_ROOT,
1224 "stack", ctf_lookup_by_nane(dnp->dmctfp, "void"));

1226 dt p- >dt _type_ symaddr = ctf_add_t ypedef (dnmp->dm ctfp, CTF_ADD_ROOT,
1227 _symmddr", ctf_| ookup_by name(dmp->dmctfp, "void"));

1229 dt p- >dt _type_usynaddr = ctf_add_typedef (dnp->dm ctfp, CTF_ADD ROOT,
1230 " _usymaddr", ctf_| ookup_by_nane(dnp->dmctfp, "void"));

1232 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1233 dt p->dt _type_str == CTF ERR || dtp->dt_type_dyn == CTF_ERR ||
1234 dt p- >dt _type_st ack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR ||
1235 dt p- >dt _type_| usyrraddr == CTF_ERR) {

1236 dt _dprintf("failed to add intrinsic to D container: %\n",
1237 ctf_errmsg(ctf_errno(dnp->dmctfp)));

1238 return (set_open_errno(dtp, errp, EDT CTF));

1239 }

1241 if (ctf_update(dnmp->dmctfp) != 0) {

1242 dt _dprintf("failed update D container: %\n",

1243 ctf_errmsg(ctf_errno(dnp->dmctfp)));

1244 return (set_open_errno(dtp, errp, EDI_CTF));

1245 1

1247 /*

1248 * Initialize the integer description table used to convert integer
1249 * constants to the appropriate types. Refer to the comrents above
1250 * dt _node_int() for a conplete description of howthis table is used.
1251 */

1252 for (i =0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1253 if (dtrace_| ookup_by_type(dtp, DTRACE_OBJ_EVERY,

1254 dtp->dt _ints[i].did_name, &dtt) != 0)

1255 dt _dprintf("failed to | ookup integer type %: %\n",
1256 dtp->dt_ints[i].did_nane,

1257 dtrace_errnsg(dtp, dtrace _errno(dtp)));

1258 return (set_open_errno(dtp, errp, dtp->dt errno))
1259 }

new usr/src/lib/libdtrace/ common/dt_open.c 19

1260 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;

1261 dtp->dt _ints[i].did_type = dtt.dtt_type;

1262 }

1264 /*

1265 * Now that we’'ve created the "C' and "D' containers, nobve themto the
1266 * start of the mpbdule list so that these types and synbols are found
1267 * first (for stability) when iterating through the nodule |ist.

1268 */

1269 dt Iist del et e(&t p- >dt _nodl i st, dtp->dt_ddefs);

1270 dt _li st _prepend(&dt p->dt _nodl i st dt p- >dt _ddef s)

1272 dt _|ist_del ete(&dtp->dt_nodlist, dtp->dt_cdefs);

1273 dt _|i st _prepend(&dt p->dt _nodl i st, dtp->dt_cdefs);

1275 if (dt_pfdict_create(dtp) == -1)

1276 return (set_open_errno(dtp, errp, dtp->dt_errno));

1278 /*

1279 * |f we are opening |ibdtrace DTRACE_O NODEV enabl e C ZDEFS by defaul t
1280 * because without /dev/dtrace open, we will not be able to |oad the
1281 * nanes and attributes of any providers or probes fromthe kernel.
1282 */

1283 if (flags & DTRACE_O NODEV)

1284 dt p->dt _cflags | = DTRACE_C_ZDEFS;

1286 /*

1287 * Load hard-wired inlines into the definition cache by calling the
1288 * conpiler on the raw definition string defined above.

1289 */

1290 if ((pgp dtrace_program strconpil e(dtp, _dtrace_har d\M re,

1291 DTRACE_PROBESPEC NONE, DTRACE_C EMPTY, 0, NULL)) == NULL) {

1292 dt _dprintf("fail ed to |oad hard-wired definitions: 9%!\n",
1293 dtrace_errnsg(dtp, dtrace_errno(dtp)));

1294 return (set_open_errno(dtp, errp, EDT_HARDWRE)),

1295 1

1297 dt _program destroy(dtp, pgp);

1299 /*

1300 * Set up the default DTrace library path. Once set, the next call to
1301 * dt_conpile() will compile all the libraries. W intentionally defer
1302 * library processing to i nprove overhead for clients that don't ever
1303 * conpile, and to provide better error reporting (because the full
1304 * reporting of conpiler errors requires dtrace_open() to succeed).
1305 */

1306 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)

1307 return (set_open_errno(dtp, errp, dtp->dt_errno));

1309 return (dtp);

1310 }

1312 dtrace_hdl _t *

1313 dtrace_open(int version, int flags, int *errp)

1314 {

1315 return (dt_vopen(version, flags, errp, NULL, NULL));
1316 }

1318 dtrace_hdl _t *
1319 dtrace_vopen(int version, int flags, int *errp,

1320 const dtrace_vector_t *vector, void *arg)

1321 {

1322 return (dt_vopen(version, flags, errp, vector, arg))
1323 }

1325 void

new usr/src/lib/libdtrace/ conmon/dt_open.c

1326 dtrace_cl ose(dtrace_hdl _t *dtp)

1327 {

1328 dt_ident_t *idp, *ndp;

1329 dt _nodul e_t *dnp;

1330 dt _provider_t *pvp;

1331 dtrace_prog_t *pgp;

1332 dt _xlator_t *dxp;

1333 dt _dirpath_t *dirp;

1334 int i;

1336 if (dtp->dt_procs != NULL)

1337 dt _proc_fini(dtp);

1339 while ((pgp = dt_list_next(&dtp->dt_prograns)) != NULL)
1340 dt _program destroy(dtp, pgp);

1342 whil e ((dxp = dt _|ist_next(&tp->dt_xlators)) != NULL)
1343 dt_xl ator_destroy(dtp, dxp);

1345 dt _free(dtp, dtp->dt_xI atornmap);

1347 for (idp = dtp >dt _externs; idp != NULL; idp = ndp) {
1348 ndp = idp->di _next;

1349 dt _i dent _destroy(i dp)

1350 }

1352 if (dtp->dt_macros != NULL)

1353 dt _idhash_dest roy(dt p->dt _macros);
1354 if (dtp->dt_aggs T= NULL)

1355 dt _i dhash_dest roy(dt p- >dt _aggs);
1356 if (dtp->dt_global's != NULL)

1357 dt _i dhash_dest roy(dt p->dt_gl obal s);
1358 if (dtp->dt _tls !'= NULL

1359 dt _idhash_destroy(dtp->dt_tls);
1361 Wmle((dnp dt _list_next(&dtp->dt_nodlist)) != NULL)
1362 dt _nodul e_destroy(dtp, dmp);

1364 while ((pvp = dt_list_next(&dtp->dt_provlist)) !'= NULL)
1365 dt _provi der _destroy(dtp, pvp);
1367 if (dtp->dt_fd != -1)

1368 (void) close(dtp->dt_fd);

1369 if (dtp->dt_ftfd != -1)

1370 (void) close(dtp->dt_ftfd);

1371 if (dtp->dt_cdefs_fd != -1)

1372 (void) close(dtp->dt_cdefs fd);
1373 if (dtp->dt_ddefs_fd != -1)

1374 (void) close(dtp->dt_ddefs_fd);
1375 if (dtp->dt_stdout_fd != -1)

1376 (void) close(dtp->dt_stdout_fd);
1378 dt _epi d_destroy(dtp);

1379 dt _aggi d_destroy(dtp);

1380 dt _format_destroy(dtp);

1381 dt _strdata_destroy(dtp);

1382 dt _buf f ered_destroy(dtp);

1383 dt _aggregat e_destroy(dtp);

1384 dt _pfdict_destroy(dtp);

1385 dt _provnod_ destroy(&dtp >dt _provnod) ;

1386 dt _dof _fini (dtp);

1388 for (i =1; i < dtp->dt_cpp_argc; i++)
1389 free(dtp->dt _cpp_argv[i]);

1391 while ((dirp = dt_list_next(&Jtp->dt_lib_path)) !'= NULL)

20

new usr/src/lib/libdtrace/ common/dt_open.c 21

1392 dt _|ist_del ete(&tp->dt_lib_path, dirp)
1393 free(dirp->dir_path)

1394 free(dirp)

1395 }

1397 free(dtp->dt_cpp_argv)

1398 free(dtp->dt_cpp_pat h)

1399 free(dtp->dt_I d_path)

1401 free(dtp->dt_nods)

1402 free(dtp->dt_provs)

1403 free(dtp);

1404 }

1406 int

1407 dtrace_provi der_nmodul es(dtrace_hdl _t *dtp, const char **npds, int nnods)
1408 {

1409 dt _provnod_t *prov

1410 int i =0;

1412 for (prov = dtp->dt_provnod; prov != NULL; prov = prov->dp_next, i++) {
1413 if (i < nnods)

1414 nods[1] = prov->dp_nane

1415 }

1417 return (i);

1418 }

1420 int

1421 dtrace_ctlfd(dtrace_hdl _t *dtp)

1422 {

1423 return (dtp->dt_fd)

1424 }

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

R R R R

120669 Tue Jan 14 16:49:35 2014
new usr/ src/ pkg/ mani f est s/ system dtrace-tests. nf
4477 DTrace shoul d speak JSON
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»

LR R

HHHH HHHHHHHFHBHHFHHRHE RS

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.

set name=pkg. fnri val ue=pkg:/systenidtrace/tests@)(PKGVERS)

set nanme=pkg. description val ue="DTrace Test Suite Internal Distribution"

set name=pkg.sumary val ue="DIrace Test Suite"
set name=info.classification\

val ue=or g. opensol ari s. cat egory. 2008: Devel opnent / Syst em

set nanme=vari ant. arch val ue=$(ARCH)

pat h=opt/ SUNWIt rt group=sys

pat h=opt / SUNWdt rt/ bi n

pat h=opt / SUNWit r t / bi n/ $(ARCH32)
pat h=opt / SUNWIt r t / bi n/ $(ARCH64)

pat h=opt/ SUNWItrt/1ib/java
pat h=opt/ SUNWIt rt/t st
pat h=opt / SUNWIt rt / t st / $(ARCH)

r
r
r
r

ir path=opt/SUNWItrt/lib
r
r
r

ir path=opt/SUNWitrt/tst/$(ARCH)/arrays

$(i386_ONLY)dir path= opt/SUl\l\Mtrt/tst/$(ARC|—|)/funcs

di

r path=opt/SUNWItrt/tst/$(ARCH)/p

$(sparc_ONLY)dir path= opt/SUl\Nwtrt/tst/$(ARC|-|)/usdt

dir path=opt/SUNWit rt/t st/ $(ARCH)/ ust ack

pat h=opt/ SUNWIt rt/t st/ conmmon

pat h=opt/ SUNWit rt/t st/ common/ aggs

pat h=opt/ SUNWitrt/tst/common/arithnetic
pat h=opt/ SUNWit rt/tst/common/ arrays

pat h=opt/ SUNWIt rt/t st/ comon/ assocs

pat h=opt/ SUNWIt rt/t st/ common/ begi n

pat h=opt/ SUNWitrt/tst/common/bitfiel ds

pat h=opt/ SUNWt rt/t st/ comron/ bui | ti nvar
pat h=opt/ SUNWIt rt/t st/ comon/ cg

pat h=opt/ SUNWIt rt/t st/ common/ cl auses
pat h=opt/ SUNWit rt/t st/ common/ cpc

pat h=opt/ SUNWIt rt/t st/ comron/ decl s

pat h=opt/ SUNWIt rt/t st/ comron/ dr ops

pat h=opt/ SUNWIt rt/t st/ common/dtracelti |

r
r
r
r
r
r
r
ir path=opt/SUNWItrt/tst/comon/buffering
r
r
r
r
r
r
r

new usr/ src/ pkg/ mani f est s/ system dtrace-tests. nf

r
r
r
r
r
r
ir
r
r
r
r
r
r

r

pat h=opt/ SUNWit rt/t st/ common/ end

pat h=opt/ SUNWIt rt/t st/ comron/ enum
pat h=opt/ SUNWIt rt/t st/ comron/ env

pat h=opt/ SUNWitrt/t st/ comon/ error
pat h=opt/ SUNWit rt/tst/common/ exi t

pat h=opt/ SUNWIt rt/t st/ comron/ f bt pr ovi der
pat h=opt/ SUNWIt rt/t st/ comron/ funcs
pat h=opt/ SUNWit rt/ t st/ common/ gr anmar
pat h=opt/ SUNWit rt/t st/ common/ i ncl ude
pat h=opt/ SUNWIt rt/t st/ comon/inline
pat h=opt/ SUNWIt rt/t st/ comon/io

pat h=opt/ SUNWIt rt/t st/ comron/ip

pat h=opt/ SUNWit rt/t st/ common/j ava_api
pat h=opt/ SUNWIt rt/t st/ comon/ | son

#endif /* 1 codereview */

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

r

pat h=opt/ SUNWIt rt/t st/ comron/ | exer

pat h=opt/ SUNWitrt/tst/common/ || quanti ze
pat h=opt/ SUNWt rt/t st/ comron/ mdb

pat h=opt/ SUNWItrt/t st/ comron/ m b

pat h=opt / SUNWIt rt/t st/ comon/ m sc

pat h=opt/ SUNWitrt/tst/common/ nul ti aggs
pat h=opt/ SUNWt rt/t st/ comron/ nfs

pat h=opt/ SUNWt rt/ t st/ conmon/ of f set of
pat h=opt/ SUNWIt rt/t st/ common/ operators
pat h=opt/ SUNWitrt/t st/ comon/ pi d

pat h=opt/ SUNWit rt/t st/ common/ pl ockst at
pat h=opt/ SUNWIt rt/t st/ common/ poi nters
pat h=opt/ SUNWit rt/ t st/ conmon/ pr agna

pat h=opt/ SUNWit rt/t st/ common/ pr edi cat es
pat h=opt/ SUNWit rt/t st/ conmmon/ pr epr ocessor
pat h=opt/ SUNWIt rt/t st/ comron/ pri nt

pat h=opt/ SUNWIt rt/t st/ comron/ printa

pat h=opt/ SUNWitrt/tst/comon/printf

pat h=opt/ SUNWitrt/tst/common/privs

pat h=opt / SUNWIt rt/ t st/ common/ pr obes

pat h=opt / SUNWIt rt/t st/ common/ pr oc

pat h=opt/ SUNWIt rt/t st/ comron/profile-n
pat h=opt/ SUNWit rt/t st/ comon/ provi ders
pat h=opt/ SUNWItrt/t st/ comron/rai se

pat h=opt/ SUNWIt rt/t st/ comron/rates

pat h=opt/ SUNWIt rt/t st/ common/ saf ety

pat h=opt/ SUNWitrt/tst/common/scal ars
pat h=opt/ SUNWIt rt/t st/ comron/ sched

pat h=opt/ SUNWIt rt/t st/ comron/ scri pting
pat h=opt / SUNWt rt/ t st/ common/ sdt

pat h=opt/ SUNWit rt/t st/ common/ si zeof

pat h=opt/ SUNWit rt/t st/ common/ specul ati on
pat h=opt/ SUNWItrt/tst/comron/stability
pat h=opt/ SUNWIt rt/t st/ comron/ st ack

pat h=opt/ SUNWit rt/t st/ common/ st ackdept h
pat h=opt/ SUNWit rt/t st/ common/ st op

pat h=opt/ SUNWItrt/t st/ comon/strlen

pat h=opt / SUNWitrt/tst/common/strtoll

#endif /* 1 codereview */

r

r
r
r
o
r
r
r
P
r
r
r

pat h=opt/ SUNWit rt/t st/ common/ st ruct
pat h=opt / SUNWIt rt/t st/ comron/ syscal |
pat h=opt/ SUNWt rt/t st/ common/ sysevent
pat h=opt/ SUNWitrt/tst/common/tick-n
pat h=opt/ SUNWitrt/tst/common/trace

pat h=opt/ SUNWIt rt/t st/ comron/ tracenem
pat h=opt/ SUNWItrt/t st/ comron/transl ators
pat h=opt/ SUNWIt rt/t st/ comron/ t ypedef
pat h=opt/ SUNWitrt/tst/common/types

pat h=opt/ SUNWIt rt/t st/ comron/ uni on

pat h=opt/ SUNWt rt/t st/ conmon/ usdt

pat h=opt / SUNWt rt / t st/ common/ ust ack

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

di r path=opt/SUNWItrt/tst/common/vars
dir path=opt/ SUNWItrt/tst/comon/version

$(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv
$(i 386_ONLY) dir pat h=opt/ SUNWAtrt/tst/i86xpv/ xdt

pat h=opt / SUNWIt r t / READMVE node=0444

pat h=opt / SUNWIt r t / bi n/ badi oct |

ODODODODDDDDDDDMDD

|
|
|
|
|
|
|
|
|
|
|
|
| e pat h=opt/ SUNWitrt/t st/ $(ARCH)
i

fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
$(i

node=0444

$(i 386_ O\lLY)flIe pat h=opt / SUNWit rt/t st/ $(ARCH)/ funcs/tst.

node=044

$(i 386_(]\ILY)f|Ie pat h=opt / SUNWit rt/t st/ $(ARCH)/ funcs/ tst.

node=0444
$(sparc_ONLY)file \

pat h=opt / SUNWIt r t / bi n/ $(ARCH32) / chkar gs npde=0555
pat h=opt / SUNWt r t / bi n/ $(ARCH64) / chkar gs npde=0555
pat h=opt / SUNWAt r t / bi n/ baddof npde=0555

node=0555

pat h=opt / SUNWAt r t / bi n/ chkar gs npde=0555

pat h=opt / SUNWt rt / bi n/ dst yl e node=0555

pat h=opt / SUNWAt r t / bi n/ dt est npde=0555

pat h=opt/ SUNWdt rt/ bi n/ dt f ai | ures npde=0555

pat h=opt / SUNWAt r t / bi n/ excepti on. | st npde=0444

pat h=opt / SUNWAt rt / bi n/ j dt race npde=0555

pat h=opt/ SUNWAtrt/lib/javaljdtrace.jar
larrays/tst.uregsarray.d node=0444
386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.
$(i 386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.

badcopyi n. d node=0444
badcopyinstr.d \

badcopyout . d \
badcopyoutstr.d \

pat h=opt / SUNWit rt/t st/ $(ARCH)/ pi d/ err. D _PROC_ALI GN. nmi sal i gned. d npde=0444

$(sparc_ONLY)file \

pat h=opt / SUNWIt rt/t st/ $(ARCH)/ pi d/ err. D_PROC_ALI GN. ni sal i gned. exe \

node=0555
$(i 386_ONLY) fi pat h=opt / SUNWIt rt/t st/ $(ARCH) / pi d/ t st. badi nstr.d node=0444
$(i 386_ONLY) fi

$(sparc_ONLY)
$(sparc_ONLY)
$(spar c_ONLY)
ile path= opt

SUNWIt rt/tst/$
SUNWIt rt/tst/$
SUNWIt rt/tst/$
SUNWIt rt/tst/$

(ARCH) / pi d/ t st.

(ARCH)/pid/tst.

(ARCH) / pi d/ t st.
i (ARCH) / pi d/ t st .
ile path=opt/SUNWItrt/ st
ile path=opt/SUNWItrt/tst
ile path=opt/SUNWItrt/tst
ile path=opt/SUNWItrt/tst
il s

/
/
/
/
e path=opt/SUNWItrt/tst

SLLHBHRLHL T
il P o i gmmimny
oI

w

[ee]

()]

9

=

pat h=opt / SUNWdt rt/t st
pat h=opt/ SUNWitrt/ts
pat h=opt/ SUNWtrt/ts
pat h=opt/ SUNWItrt/ts
pat h=opt/ SUNWItrt/ts
pat h=opt/ SUNWitrt/ts
pat h=opt/ SUNWtrt/ts
pat h=opt / SUNWdt rt/t st

t
t
t
t
t
t

TDOD®D®D®MD®MO®DD
—~_—————
PBRBAROARBSH

AN AN AN A

node=0444
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWdtrt/t st/ conmmon/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ comon/ aggs/ err.
pat h=opt/ SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .

—h —h —h —h —h —h —h —h
D®D®D®DdDDMDD

node=0444

file path=opt/SUNWitrt/tst/conmon/ aggs/err.

node=0444

file path=opt/SUNWitrt/tst/conmon/ aggs/err.

$(ARCH) / pid/ tst.
$(ARCH) / pid/ tst.
$(ARCH) / pi d/ t st .
$(ARCH) / pi d/ t st.
/ $(ARCH) /usdt/tst.tailcall.

pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err.

e pat h=opt/SUNWItrt/tst/$(ARCH)/ pi d/tst.br.d npde=0444
e pat h=opt/SUNWItrt/tst/$(ARCH)/ pi d/tst.br.d.out node=0444
e

e
e pat h=opt/SUNWItrt/tst/$(ARCH)/ pi d/ t st. badi nstr. exe node=0555
il
il
ile path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.br.exe node=0555

branch. d node=0444

branch. exe node=0555

enbedded. d node=0444

enbedded. exe npde=0555

ret.d node=0444
ret.exe node=0555
retlist.exe nbde=0555
retlist.ksh node=0444
ksh \

ARCH) / ust ack/ t st . annot at ed. d nbde=0444
ARCH) / ust ack/ t st. annot at ed. d. out
ARCH) / ust ack/ t st. annot at ed. exe npde=0555
ARCH) / ust ack/t st. circstack.d nbde=0444

ARCH) / ust ack/ t st. ci rcst ack. exe nbde=0555
ARCH) / ust ack/ t st .

ARCH) / ust ack/ t st .
/ust ack/ t st . hel

arc_ONLY)file path=opt/SUNWAtrt/tst/$(ARCH)/ustack/tst.trapstat.ksh \

node=0444

hel per.d node=0444
hel per. d. out npde=0444
per. exe node=0555

D_AGG _FUNC. bad. d npde=0444

D_AGG MDI M bad. d node=0444

AGG _NULL. bad. d node=0444
AGG_REDEF. redef . d node=0444
AGG_SCALAR. avgt oof ew. d node=0444
D_AGG_SCALAR maxnoar g. d node=0444
D_AGG_SCALAR. ni nt oof ew. d node=0444
D_AGG _SCALAR. quanti zet oof ew. d \

U|

U|U

D AGG SCALAR. st ddevt oof ew. d \
D AGG SCALAR. sunt oof ew. d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255,
256
257
258

pat h=opt/ SUNWtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWAtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ conmmon/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
node=0444
file path=opt/SUNWItrt/tst/common/aggs/err.
node=0444
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWdt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWtrt/t st/ common/ aggs/err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
node=0444
P
P
P

—h —h —h —h —h —h —h —h —h —h —h
ODOD®D®D®MD®D®D®CDDD

file
file
file
file
file

at h=opt / SUNWIt rt/t st/ conmon/ aggs/ err.
at h=opt / SUNWIt rt / t st/ conrmon/ aggs/ err .
at h=opt / SUNWIt rt/ t st/ conmon/ aggs/ err .
pat h=opt/ SUNWtrt/t st/ common/ aggs/ err.
node=0444

file
file
file
file

file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444

file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
node=0444

file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWitrt/tst/conmon/ aggs/err.

node=0444

file path=opt/SUNWitrt/tst/conmon/aggs/err.

node=0444

file path=opt/SUNWitrt/tst/conmon/ aggs/err.

node=0444

file path=opt/SUNWitrt/tst/common/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWItrt/tst/conmon/ aggs/err.
file path=opt/SUNWitrt/tst/common/ aggs/err.

node=0444

file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444

fil

fil
node=0444

pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .

pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.

—h —h —h —h —h —h —h —h —h —h —h
DODOD®DDD®DDDDD

e path=opt/SUNWItrt/tst/common/ aggs/err.
e pat h=opt/SUNWItrt/tst/common/ aggs/err.

pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .

pat h=opt / SUNWAt rt/ t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWIt rt/t st/ cormon/ aggs/ t st .
pat h=opt/ SUNWdtrt/t st/ common/ aggs/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/t st .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ t st .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ t st .

EAR_AGGARG bad. d npode=0444
EAR_PROTO. bad. d node=0444
NC_TDENT. bad. d node=0444
NC_UNDEF. badaggf unc. d node=0444
DENT_UNDEF. badexpr. d node=0444
DENT_UNDEF. badkey3. d node=0444
DENT_UNDEF. noef f ect . d node=0444
EY_TYPE. badkeyl. d node=0444
EY_TYPE. badkey2. d node=0444

) KEY_TYPE. badkey4. d node=0444

) LQUANT_BASETYPE. | gbad1. d \

e

Ul
Ul

F
F
|
|
|
Kl
) K

) LQUANT_BASETYPE. | gshort.d \

) LQUANT_BASEVAL. bad. d npode=0444

) LQUANT_LI MTYPE. | gbadl. d nbde=0444
) LQUANT_LI WAL. bad. d node=0444

) LQUANT_MATCHBASE. d node=0444

) LQUANT_MATCHBASE. order. d \

) LQUANT_MATCHLI M d npde=0444
QUANT_MATCHLI M or der. d node=0444
D_LQUANT_MATCHSTEP. d npde=0444
D_LQUANT_M SMATCH. | gbadarg. d \

U U U U U U U U U U UIUIUIUIUIUIUIUIU

l_l_ f_f_l_

D _LQUANT_STEPLARGE. | gt oof ew. d \

D_LQUANT_STEPSMALL. bad. d node=0444
D_LQUANT_STEPTYPE. | gbadi nc. d \

D _LQUANT_STEPVAL. bad. d node=0444
D_NORMALT ZE_AGGARG. bad. d node=0444
D_NORMALI ZE_PROTO. bad. d node=0444
D _NORMALI ZE_SCALAR. bad. d node=0444
D_PROTO ARG | quanti zet oof ew. d \

D PROTO_LEN. avgnoar g. d node=0444
D PROTO_LEN. avgt oomany. d node=0444
D PROTO_LEN. countt oomany. d \

D PROTO_LEN. | quanti zenoarg.d \
D PROTO_LEN. | quanti zet oomany. d \

D PROTO_LEN. maxnoar g. d node=0444

D PROTO_LEN. maxt oomany. d node=0444
D PROTO_LEN. mi nnoar g. d node=0444

D PROTO _LEN. m nt oomany. d node=0444
D PROTO_LEN. quanti zenoarg.d \

D PROTO_LEN. quanti zet oomany. d \

D PROTO_LEN. st ddevnoar g. d node=0444
D PROTO_LEN. st ddevt oonany. d \

D PROTO _LEN. sutmoar g. d node=0444
D_PROTO_LEN. sunt oonany. d node=0444
D_TRUNC_AGGARG bad. d node=0444
D_TRUNC_PROTO. badmany. d node=0444
D _TRUNC_PROTO. badnone. d node=0444
D TRUNC_SCALAR. bad. d node=0444

al | quant. d node=0444

al | quant . d. out npde=0444

avg. d node=0444

avg. d. out node=0444

avg_neg. d node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 5 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf
259 file path=opt/SUNWItrt/tst/common/aggs/tst.avg_neg.d. out npde=0444 325 file path=opt/SUNWItrt/tst/common/aggs/tst.normalize.d node=0444
260 file path=opt/SUNWItrt/tst/comon/ aggs/tst.clear.d node=0444 326 file path=opt/SUNWItrt/tst/comon/ aggs/tst.normalize.d. out node=0444
261 file path=opt/SUNWItrt/tst/comon/aggs/tst.clear.d.out nmde=0444 327 file path=opt/SUNWItrt/tst/comon/aggs/tst.order.d node=0444
262 file path=opt/SUNWItrt/tst/common/aggs/tst.clearavg.d node=0444 328 file path=opt/SUNWItrt/tst/common/aggs/tst.order.d.out node=0444
263 file path=opt/SUNWItrt/tst/common/ aggs/tst.clearavg. d. out node=0444 329 file path=opt/SUNWItrt/tst/common/aggs/tst.quantize.d node=0444
264 file path=opt/SUNWItrt/tst/comon/ aggs/tst.clearavg2.d node=0444 330 file path=opt/SUNWItrt/tst/common/aggs/tst.quantize. d. out node=0444
265 file path=opt/SUNWItrt/tst/comon/ aggs/tst.cl earavg2. d. out node=0444 331 file path=opt/SUNWItrt/tst/comon/aggs/tst.quant many.d node=0444
266 file path=opt/SUNWItrt/tst/common/aggs/tst.cleardenormalize.d node=0444 332 file path=opt/SUNWItrt/tst/common/aggs/tst.quantmany. d. out node=0444
267 file path=opt/SUNWItrt/tst/common/aggs/tst.cleardenormalize.d. out node=0444 333 file path=opt/SUNWItrt/tst/comon/aggs/tst.quantround.d npbde=0444
268 file path=opt/SUNWItrt/tst/common/ aggs/tst.clearlquantize.d node=0444 334 file path=opt/SUNWItrt/tst/common/ aggs/tst. quantround. d. out node=0444
269 file path=opt/SUNWItrt/tst/common/aggs/tst.clearlquantize.d. out node=0444 335 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quantzero.d node=0444
270 file path=opt/SUNWItrt/tst/common/ aggs/tst.clearnormalize.d node=0444 336 file path=opt/SUNWItrt/tst/comon/aggs/tst.quantzero. d. out node=0444
271 file path=opt/SUNWItrt/tst/common/aggs/tst.clearnornalize.d. out node=0444 337 file path=opt/SUNWItrt/tst/common/aggs/tst.signature.d node=0444
272 file path=opt/SUNWItrt/tst/comon/ aggs/tst.cl earstddev.d node=0444 338 file path=opt/SUNWItrt/tst/common/ aggs/tst. si gnedkeys. d node=0444
273 file path=opt/SUNWItrt/tst/comon/ aggs/tst.cl earstddev. d. out node=0444 339 file path=opt/SUNWItrt/tst/common/ aggs/tst. si gnedkeys. d. out node=0444
274 file path=opt/SUNWItrt/tst/comon/aggs/tst.count.d node=0444 340 file path=opt/SUNWItrt/tst/comon/ aggs/tst.signedkeyspos.d node=0444
275 file path=opt/SUNWItrt/tst/common/aggs/tst.count.d.out node=0444 341 file path=opt/SUNWItrt/tst/common/ aggs/tst.signedkeyspos. d. out npde=0444
276 file path=opt/SUNWItrt/tst/common/ aggs/tst.count?2.d node=0444 342 file path=opt/SUNWItrt/tst/comon/ aggs/tst.sizedkeys.d node=0444
277 file path=opt/SUNWItrt/tst/common/ aggs/tst.count?2.d. out node=0444 343 file path=opt/SUNWItrt/tst/comon/ aggs/tst.sizedkeys. d. out node=0444
278 file path=opt/SUNWItrt/tst/common/aggs/tst.count3.d node=0444 344 file path=opt/SUNWItrt/tst/common/aggs/tst.stddev.d node=0444
279 file path=opt/SUNWItrt/tst/common/aggs/tst.denormalize.d node=0444 345 file path=opt/SUNWItrt/tst/comon/aggs/tst.stddev. d. out npbde=0444
280 file path=opt/SUNWItrt/tst/common/ aggs/tst.denormalize.d. out node=0444 346 file path=opt/SUNWItrt/tst/common/ aggs/tst.subr.d node=0444
281 file path=opt/SUNWItrt/tst/comon/ aggs/tst.denormalizeonly.d node=0444 347 file path=opt/SUNWItrt/tst/comon/ aggs/tst.sumd node=0444
282 file path=opt/SUNWItrt/tst/comon/aggs/tst.denormalizeonly.d.out node=0444 348 file path=opt/SUNWItrt/tst/comon/aggs/tst.sum d.out node=0444
283 file path=opt/SUNWItrt/tst/comon/aggs/tst.fntnormalize.d node=0444 349 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc.d node=0444
284 file path=opt/SUNWItrt/tst/common/aggs/tst.fntnormalize.d. out nbde=0444 350 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc.d.out npde=0444
285 file path=opt/SUNWItrt/tst/comon/ aggs/tst.forns.d node=0444 351 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc0.d node=0444
286 file path=opt/SUNWItrt/tst/comon/aggs/tst.forms.d.out nbde=0444 352 file path=opt/SUNWItrt/tst/comon/aggs/tst.truncO.d.out nbde=0444
287 file path=opt/SUNWItrt/tst/common/aggs/tst.goodkey.d npde=0444 353 file path=opt/SUNWItrt/tst/comon/aggs/tst.truncquant.d npbde=0444
288 file path=opt/SUNWItrt/tst/common/aggs/tst.keysort.d node=0444 354 file path=opt/SUNWItrt/tst/common/aggs/tst.truncquant.d.out node=0444
289 file path=opt/SUNWItrt/tst/comon/ aggs/tst. keysort.d.out node=0444 355 file path=opt/SUNWItrt/tst/comon/ aggs/tst.val sortkeypos.d node=0444
290 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantize.d node=0444 356 file path=opt/SUNWItrt/tst/comon/aggs/tst.val sortkeypos. d. out node=0444
291 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantize.d.out node=0444 357 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO. di vby0. d nbde=0444
292 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantnornal.d node=0444 358 file path=opt/SUNWItrt/tst/comon/arithnmetic/err.D D V_ZERO divby0_1.d \
293 file path=opt/SUNWItrt/tst/common/ aggs/tst. | quantnormal.d. out node=0444 359 nmode=0444
294 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantrange.d node=0444 360 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO divby0_2.d \
295 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantrange. d. out node=0444 361 node=0444
296 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantround.d npde=0444 362 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO nodby0.d npde=0444
297 file path=opt/SUNWItrt/tst/comon/ aggs/tst.| quantround. d. out node=0444 363 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX addm n.d node=0444
298 file path=opt/SUNWItrt/tst/common/ aggs/tst.|quantzero.d node=0444 364 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX di vim n.d node=0444
299 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantzero.d. out node=0444 365 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX. mul add. d node=0444
300 file path=opt/SUNWItrt/tst/common/aggs/tst.max.d npbde=0444 366 file path=opt/SUNWItrt/tst/comon/arithnmetic/err.D SYNTAX nul div.d node=0444
301 file path=opt/SUNWItrt/tst/comon/ aggs/tst. max. d. out node=0444 367 file path=opt/SUNWItrt/tst/common/arithmetic/tst.basics.d node=0444
302 file path=opt/SUNWItrt/tst/comon/aggs/tst.max_neg.d node=0444 368 file path=opt/SUNWItrt/tst/common/arithnetic/tst.basics.d.out node=0444
303 file path=opt/SUNWItrt/tst/comon/ aggs/tst.max_neg. d. out node=0444 369 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpcast.d node=0444
304 file path=opt/SUNWItrt/tst/common/aggs/tst.m n.d node=0444 370 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpcast.d.out node=0444
305 file path=opt/SUNWItrt/tst/common/aggs/tst. m n.d.out node=0444 371 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpnarrowassign.d node=0444
306 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n_neg.d node=0444 372 file path=opt/SUNWItrt/tst/common/arithmetic/tst.conpnarrowassign.d.out \
307 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n_neg.d. out node=0444 373 node=0444
308 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggsl.d node=0444 374 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.execcast.d node=0444
309 file path=opt/SUNWItrt/tst/comon/aggs/tst. mltiaggs2.d npde=0444 375 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.execcast.d.out node=0444
310 file path=opt/SUNWItrt/tst/common/aggs/tst. multiaggs2.d. out node=0444 376 file path=opt/SUNWItrt/tst/common/arrays/err.D ARR BADREF. bad. d node=0444
311 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggs3.d npbde=0444 377 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRBI G t oobi g. d npde=0444
312 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggs3.d.out node=0444 378 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRNULL. bad.d npde=0444
313 file path=opt/SUNWItrt/tst/comon/aggs/tst. multinormalize.d node=0444 379 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRSUB. bad. d node=0444
314 file path=opt/SUNWItrt/tst/common/aggs/tst. multinormalize.d. out node=0444 380 file path=opt/SUNWItrt/tst/common/arrays/err.D DECL_PROTO TYPE. badtuple.d \
315 file path=opt/SUNWItrt/tst/comon/ aggs/tst.negl quant.d node=0444 381 node=0444
316 file path=opt/SUNWItrt/tst/common/aggs/tst.negl quant.d. out node=0444 382 file path=opt/SUNWItrt/tst/comon/arrays/err.D_| DENT_UNDEF. badur eg. d nbde=0444
317 file path=opt/SUNWItrt/tst/common/ aggs/tst.negorder.d node=0444 383 file path=opt/SUNWItrt/tst/common/arrays/tst.basicl.d node=0444
318 file path=opt/SUNWItrt/tst/common/ aggs/tst. negorder.d. out node=0444 384 file path=opt/SUNWItrt/tst/common/arrays/tst.basic2.d node=0444
319 file path=opt/SUNWItrt/tst/common/aggs/tst.negquant.d node=0444 385 file path=opt/SUNWItrt/tst/common/arrays/tst.basic3.d node=0444
320 file path=opt/SUNWItrt/tst/common/aggs/tst.negquant.d. out node=0444 386 file path=opt/SUNWItrt/tst/common/arrays/tst.basic4.d node=0444
321 file path=opt/SUNWItrt/tst/common/aggs/tst.negtrunc.d node=0444 387 file path=opt/SUNWItrt/tst/common/arrays/tst.basic5.d node=0444
322 file path=opt/SUNWItrt/tst/common/ aggs/tst.negtrunc. d. out node=0444 388 file path=opt/SUNWItrt/tst/common/arrays/tst.basic6.d node=0444
323 file path=opt/SUNWItrt/tst/comon/ aggs/tst.negtruncquant.d node=0444 389 file path=opt/SUNWItrt/tst/common/arrays/tst.uregsarray.d node=0444
324 file path=opt/SUNWItrt/tst/comon/aggs/tst.negtruncquant.d. out node=0444 390 file path=opt/SUNWItrt/tst/common/assocs/err.D OP_| NCOWAT. dupgt ype. d \

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 7 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 8
391 node=0444 457 file path=opt/SUNWItrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. ni ce.d \
392 file path=opt/SUNWItrt/tst/common/assocs/err.D _OP_| NCOWPAT. dupttype. d \ 458 node=0444
393 node=0444 459 file path=opt/SUNWitrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. priority.d \
394 file path=opt/SUNWItrt/tst/common/assocs/err.D _OP_| NCOWPAT. t hi s.d node=0444 460 node=0444
395 file path=opt/SUNWItrt/tst/conmmon/ assocs/ err. D _PROTO ARG badsi g. d node=0444 461 file path=opt/SUNWItrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. prsize.d \
396 file path=opt/SUNWItrt/tst/conmon/ assocs/err. D _PROTO LEN. t oof ew. d node=0444 462 node=0444
397 file path=opt/SUNWItrt/tst/comon/assocs/err.D_PROTO LEN. toomany. d node=0444 463 file path=opt/SUNWitrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV.rssize.d \
398 file path=opt/SUNWItrt/tst/common/ assocs/err.D_SYNTAX. errassign.d node=0444 464 node=0444
399 file path=opt/SUNWItrt/tst/comon/assocs/err.tupoflow d node=0444 465 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.arg0.d node=0444
400 file path=opt/SUNWitrt/tst/comon/assocs/tst.cpyarray.d node=0444 466 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.argOcl ause.d node=0444
401 file path=opt/SUNWitrt/tst/comon/ assocs/tst.diffprofile.d node=0444 467 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.argl.d node=0444
402 file path=opt/SUNWItrt/tst/comon/assocs/tst.initialize.d node=0444 468 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.arglto8.d node=0444
403 file path=opt/SUNWitrt/tst/common/assocs/tst.invalidref.d npde=0444 469 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.arglto8clause.d npde=0444
404 file path=opt/SUNWitrt/tst/comon/assocs/tst.m sc.d node=0444 470 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.caller.d node=0444
405 file path=opt/SUNWItrt/tst/common/ assocs/tst.orthogonality.d node=0444 471 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.callerl.d node=0444
406 file path=opt/SUNWItrt/tst/common/assocs/tst.this.d node=0444 472 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.epid.d node=0444
407 file path=opt/SUNWitrt/tst/common/ assocs/tst.val assign. d. out node=0444 473 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.epidl.d node=0444
408 file path=opt/SUNWitrt/tst/common/ begin/err. D _PDESC ZERO. begi n. d node=0444 474 file path=opt/SUNWitrt/tst/common/builtinvar/tst.errno.d node=0444
409 file path=opt/SUNWitrt/tst/comon/begin/err. D PDESC ZERO.tick.d node=0444 475 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.errnol.d node=0444
410 file path=opt/SUNWItrt/tst/comon/ begin/tst.begin.d node=0444 476 file path=opt/SUNWAtrt/tst/comon/ builtinvar/tst.execnanme.d node=0444
411 file path=opt/SUNWitrt/tst/comon/ begi n/tst.begin.d. out node=0444 477 file path=opt/SUNWtrt/tst/comon/builtinvar/tst.hpriority.d node=0444
412 file path=opt/SUNWitrt/tst/common/ begin/tst. multibegin.d node=0444 478 file pat h=opt/SUNWitrt/tst/comon/builtinvar/tst.id.d node=0444
413 file path=opt/SUNWitrt/tst/comon/ begin/tst. multibegin.d.out node=0444 479 file pat h=opt/SUNWItrt/tst/comon/builtinvar/tst.idl.d node=0444
414 file \ 480 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.ipl.d node=0444
415 pat h=opt/ SUNWitrt/tst/common/ bitfiel ds/err. D_ADDROF_BI TFI ELD. Bi t f i el dAddr ess 481 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.ipll.d node=0444
416 node=0444 482 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.|wpsinfo.d node=0444
417 file path=opt/SUNWitrt/tst/comon/bitfields/err.D _DECL_BFCONST. NegBitField.d \ 483 file pat h=opt/SUNWitrt/tst/comon/builtinvar/tst.|wsinfol.d node=0444
418 node=0444 484 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.pid.d node=0444
419 file path=opt/SUNWitrt/tst/comon/ bitfields/err.D DECL_BFCONST. ZeroBitField.d \ 485 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.pidl.d node=0444
420 node=0444 486 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.psinfo.d nbde=0444
421 file path=opt/SUNWitrt/tst/comon/bitfields/err.D _DECL_BFSI ZE. ExceedBaseType. d \ 487 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.psinfol.d node=0444
422 node=0444 488 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.tid.d node=0444
423 file path=opt/SUNWItrt/tst/comon/bitfields/err.D DECL_BFSI ZE. G- eat er Than64.d \ 489 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.tidl. d node=0444
424 node=0444 490 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.timestanp.d node=0444
425 file path=opt/SUNWitrt/tst/comon/bitfields/err.D _DECL_BFTYPE. badt ype.d \ 491 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.vtinmestanp.d node=0444
426 node=0444 492 file path=opt/SUNWItrt/tst/common/cg/err.D NOREG noreg.d node=0444
427 file path=opt/SUNWitrt/tst/common/bitfields/err.D OFFSETOF_BI TFI ELD.d \ 493 file path=opt/SUNWtrt/tst/comon/cg/err.baddi f.d npde=0444
428 node=0444 494 file path=opt/SUNWItrt/tst/common/clauses/err. D | DENT_UNDEF. aggf un. d node=0444
429 file \ 495 file pat h=opt/SUNWitrt/tst/common/cl auses/ err. D_| DENT_UNDEF. aggt up. d node=0444
430 pat h=opt/ SUNWItrt/t st/ comron/bitfiel ds/err.D_SI ZEOF_BI TFI ELD. Si zeof Bitfi el d. 496 file path=opt/SUNWIitrt/tst/comon/cl auses/err.D_| DENT_UNDEF. arrtup.d node=0444
431 node=0444 497 file path=opt/SUNWItrt/tst/common/cl auses/ err.D_| DENT_UNDEF. body. d node=0444
432 file path=opt/SUNWitrt/tst/comon/ bitfields/tst.BitFieldPronotion.d node=0444 498 file path=opt/SUNWItrt/tst/comon/ cl auses/ err.D_| DENT_UNDEF. bot h. d node=0444
433 file path=opt/SUNWitrt/tst/common/bitfields/tst.SizeofBitField. d node=0444 499 file path=opt/SUNWItrt/tst/comon/ cl auses/ err.D_| DENT_UNDEF. pred. d node=0444
434 file path=opt/SUNWitrt/tst/comon/buffering/err.end.d node=0444 500 file path=opt/SUNWItrt/tst/comon/cl auses/tst.nopred.d node=0444
435 file pat h=opt/SUNWItrt/tst/common/buffering/err.resizel.d node=0444 501 file path=opt/SUNWItrt/tst/comon/cl auses/tst.pred.d node=0444
436 file path=opt/SUNWitrt/tst/comon/ buffering/err.resize2.d node=0444 502 file path=opt/SUNWItrt/tst/comon/cl auses/tst.predfirst.d node=0444
437 file path=opt/SUNWItrt/tst/comon/ buffering/err.resize3.d node=0444 503 file path=opt/SUNWItrt/tst/comon/cl auses/tst.predl ast.d npde=0444
438 file path=opt/SUNWitrt/tst/comon/buffering/err.zerobuf.d node=0444 504 file path=opt/SUNWItrt/tst/common/cpc/err.D PDESC ZERO. | owf r equency. d \
439 file path=opt/SUNWItrt/tst/common/buffering/tst.alignring.d node=0444 505 node=0444
440 file path=opt/SUNWitrt/tst/comon/ buffering/tst.cputine.ksh node=0444 506 file path=opt/SUNWItrt/tst/comon/cpc/err.D PDESC ZERO. mal f or medoverflow. d \
441 file path=opt/SUNWItrt/tst/comon/ buffering/tst.dynvarsize.d node=0444 507 node=0444
442 file path=opt/SUNWitrt/tst/comon/buffering/tst.filll.d node=0444 508 file path=opt/SUNWItrt/tst/common/cpc/err.D PDESC ZERO nonexi stentevent.d \
443 file path=opt/SUNWitrt/tst/comon/buffering/tst.filll.d.out node=0444 509 node=0444
444 file path=opt/SUNWitrt/tst/comon/ buffering/tst.resizel.d node=0444 510 file path=opt/SUNWItrt/tst/comon/cpc/err.cpcvscpustatpartl. ksh node=0444
445 file path=opt/SUNWitrt/tst/comon/ buffering/tst.resize2.d node=0444 511 file path=opt/SUNWItrt/tst/comon/cpc/err.cpcvscpustatpart2. ksh node=0444
446 file path=opt/SUNWitrt/tst/comon/buffering/tst.resize3.d node=0444 512 file path=opt/SUNWItrt/tst/comon/cpc/err.cputrackfailtostart.ksh node=0444
447 file path=opt/SUNWItrt/tst/comon/buffering/tst.ringl.d node=0444 513 file path=opt/SUNWItrt/tst/comon/cpc/err.cputracktermn nates. ksh node=0444
448 file path=opt/SUNWitrt/tst/comon/ buffering/tst.ring2.d node=0444 514 file path=opt/SUNWItrt/tst/comon/cpc/err.toonmanyenablings.d node=0444
449 file path=opt/SUNWItrt/tst/common/buffering/tst.ring2.d.out node=0444 515 file path=opt/SUNWItrt/tst/comon/cpc/tst.allcpus. ksh node=0444
450 file path=opt/SUNWitrt/tst/comon/buffering/tst.ring3.d node=0444 516 file path=opt/SUNWItrt/tst/comon/cpc/tst.genericevent.d node=0444
451 file path=opt/SUNWitrt/tst/comon/buffering/tst.ring3.d.out node=0444 517 file path=opt/SUNWItrt/tst/common/cpc/tst.platfornmevent. ksh node=0444
452 file path=opt/SUNWitrt/tst/common/buffering/tst.smallring.d node=0444 518 file path=opt/SUNWItrt/tst/comon/decls/err.D DECL_LOCASSC. NonLocal Assoc. d \
453 file path=opt/SUNWitrt/tst/comon/ buffering/tst.sw tchl.d node=0444 519 node=0444
454 file pat h=opt/SUNWitrt/tst/comon/buffering/tst.sw tchl.d.out npde=0444 520 file path=opt/SUNWItrt/tst/common/decl s/err.D DECL_LONG NT. LongStruct.d \
455 file pat h=opt/SUNWitrt/tst/comon/builtinvar/err.D_XLATE_NOCONV. cpuusage.d \ 521 node=0444
456 node=0444 522 file path=opt/SUNWItrt/tst/comon/decl s/err.D DECL_PARMCLASS. BadSt or ageCl ass. d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552,
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

node=0444

file path=opt/SUNWitrt/tst/comon/decls/err.
node=0444

fil

fil
node=0444

file path=opt/SUNWItrt/tst/common/decls/err.
node=0444

D_DECL_PROTO_NAME. Voi dNane. d \

e pat h=opt/SUNWItrt/tst/comon/ decl s/ err. D DECL_PROTO TYPE. Dyn. d node=0444
e pat h=opt/ SUNWItrt/tst/comon/ decl s/ err. D _DECL_PROTO VARARGS. Var LenArgs.d \

D _DECL_PROTO VO D. NonSol eVoi d. d \

file path=opt/SUNWItrt/tst/common/decls/err.D DECL_SI GNI NT. Unsi gnedStruct.d \

node=0444
file path=opt/SUNWitrt/tst/comon/decls/err.

node=0444
pat h=opt/ SUNWdtrt/t st/ comon/ decl s/ tst.
pat h=opt/ SUNWIt rt/t st/ comon/ decl s/ tst.
pat h=opt/ SUNWIt rt/t st/ comon/ decl s/t st.
pat h=opt/ SUNWdt rt/t st/ common/ decl s/t st .
pat h=opt/ SUNWdtrt/t st/ common/ decl s/ tst.
pat h=opt/ SUNWdt rt/ t st/ conmmon/ dr ops/ dr p.
pat h=opt/ SUNWIt rt/ t st/ common/ dr ops/ dr p.
pat h=opt/ SUNWdt rt/ t st/ conmon/ dr ops/ dr p.
pat h=opt/ SUNWdt rt/t st/ conmmon/ dr ops/ dr p.
pat h=opt / SUNWdt rt/ t st/ common/ dr ops/ dr p.

node=0444

OO D®D®MD®D®D®DDD

D_DECL_VO DATTR. Shor t Voi dDecl .

d\

arrays.d node=0444

basi cs. d node=0444

funcs. d node=0444

poi nters. d node=0444

var ar gsfuncs. d node=0444
DTRACEDROP_AGGREGATI ON. d node=0444
DTRACEDROP_DBLERROR. d node=0444
DTRACEDRCOP_DYNAM C. d npde=0444
DTRACEDROP_PRI NCI PAL. d node=0444
DTRACEDROP_PRI NCI PAL. end. d \

DTRACEDROP_SPEC. d npde=0444
DTRACEDROP_SPECUNAVAI L. d node=0444
DTRACEDROP_STKSTROVERFLOW d \

pat h=opt/ SUNWitrt/tst/common/ dtraceltil/err. D PDESC ZEROQ. | nval i dDescri ptionl

file path=opt/SUNWItrt/tst/comon/drops/drp.

file path=opt/SUNWItrt/tst/comon/drops/drp.

file path=opt/SUNWItrt/tst/common/drops/drp.
node=0444

file\
node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

file path=opt/SUNWIitrt/tst/common/dtraceUtil/tst.

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file\

AddSear chPat h. d. ksh nbde=0444
Buf si zeG ga. d. ksh npode=0444
Buf si zeKi | 0. d. ksh npde=0444
Buf si zeMega. d. ksh npde=0444
Buf si zeTer a. d. ksh node=0444
Dat aMbdel 32. d. ksh node=0444
Dat aMbdel 64. d. ksh npbde=0444
Def i neNameW t hCPP. d. ksh \

Def i neNaneW t hCPP. d. ksh. out \
Destruct Wt hFunction. d. ksh \

pat h=opt/ SUNWIt rt/t st/ comron/ dtraceltil/tst.Destruct Wt hFuncti on. d. ksh. out \

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444
file\

Destruct Wt hl D. d. ksh \
Destruct Wt hl D. d. ksh. out \
Destruct Wt hMbdul e. d. ksh \
Destruct Wt hMbdul e. d. ksh. out \
Destruct Wt hNare. d. ksh \

Dest ruct Wt hNane. d. ksh. out \

Destruct Wt hProvi der.d. ksh \

pat h=opt/ SUNWIt rt/t st/ comron/ dtraceltil/tst.Destruct WthProvider.d. ksh. out \

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

Destruct Wt hout Wd. ksh \
ELFGener ati onQut . d. ksh \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUltil/tst.

node=0444
file
file
file

nmode=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444
pat h=opt/ SUNWIt rt/t st/ comon/dtraceltil/ts
pat h= opt/SUNWJtrt/tst/cormDn/dtraceUtlI/t
pat h=opt/ SUNWIt rt/t st/ comron/dtraceUtil/t
pat h=opt / SUNWIt rt/t st/ comon/dtraceUtil/t
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWtrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

pat h=opt/ SUNWdtrt/t st/ common/ dtraceUtil/tst.
pat h=opt/ SUNWdtrt/t st/ comon/dtraceUtil/tst.
pat h=opt / SUNWAt rt/t st/ comon/dtraceUtil/tst.

10

ELFGener ati onWthO d. ksh \

Exi t St at usl. d. ksh npbde=0444
Exi t St at us2. d. ksh npbde=0444
Ext r aneousPr obel ds. d. ksh \

I nval i dFuncNanel.

I nval i dFuncNane2.

.Invalidldl.d. ksh
.I'nvalidld2.d. ksh
.Invalidld3.d. ksh
. I nval i dMbdul el. d.

I nval i dvbdul e2. d.
I nval i dvbdul e3. d.
I nval i dvbdul e4. d.
I nval i dProbel dent
I nval i dProvi der 1.
I nval i dProvi der 2.
I nval i dProvi der 3.

I nval i dProvi der 4.

I nval i dTraceFuncl.
I nval i dTraceFunc2.
I nval i dTraceFunc3.
I nval i dTr aceFunc4.
I nval i dTr aceFunc5.
I nval i dTr aceFunc6.
I nval i dTraceFunc?.
I nval i dTr aceFunc8.

I nval i dTr aceFunc9.

I nval i dTr acel D1.

I nval i dTr acel D2.

I nval i dTr acel D4.
I nval i dTr acel D5.

I nval i dTr acel D6.

I nval i dTracel D7. d.

I nval i dTr aceMbdul

d
d
I nval i dTracel D3. d.
d
d
d

d. ksh
d. ksh
node=
node=
node=
ksh \
ksh \
ksh \

ksh \

ifier.

d. ksh
d. ksh
d. ksh
d. ksh
. ks
. ks
. ks
. ks

d

d

d

d

d. ks
d. ks
d. ks
d. ks
d. ks
. ksh
. ksh
ksh
. ksh
. ksh
. ksh
ksh
el.d.

\
\
0444

0444
0444

d. ksh \

—

—

h\
h\
h\
h\
h\
h\
h\
h\
h\
\

\

ksh \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 11 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 12
655 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceMdul e2.d. ksh \ 721 node=0444
656 node=0444 722 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.ZeroProbesWthoutZ. d. ksh \
657 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceMdul e3.d. ksh \ 723 node=0444
658 node=0444 724 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.ZeroProviderProbes.d. ksh \
659 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceMdul e4.d. ksh \ 725 node=0444
660 node=0444 726 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.ZeroProviderProbes. d. ksh. out \
661 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.InvalidTraceMdul e5.d. ksh \ 727 node=0444
662 node=0444 728 file path=opt/SUNWItrt/tst/comon/end/ err.D_ | DENT_UNDEF. ti nespent.d npde=0444
663 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceMdul e6.d. ksh \ 729 file path=opt/SUNWItrt/tst/comon/end/tst.end.d nmode=0444
664 node=0444 730 file path=opt/SUNWItrt/tst/comon/end/tst.endw thoutbegi n.d node=0444
665 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceMdul e7.d. ksh \ 731 file path=opt/SUNWItrt/tst/comon/end/tst.multibegi nend.d node=0444
666 node=0444 732 file path=opt/SUNWItrt/tst/comon/end/tst.nultiend.d node=0444
667 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceMdul e8.d. ksh \ 733 file path=opt/SUNWItrt/tst/comon/ enunierr. D DECL_| DRED. EnunSaneNane. d \
668 node=0444 734 node=0444
669 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceNanel. d. ksh \ 735 file path=opt/SUNWItrt/tst/comon/ enuni err. D UNKNOWN. Repeat | dentifiers.d \
670 node=0444 736 node=0444
671 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceNane2.d. ksh \ 737 file path=opt/SUNWItrt/tst/comon/enunltst. EnunEquality.d node=0444
672 nmode=0444 738 file path=opt/SUNWItrt/tst/comon/ enum t st. EnunSaneVal ue. d node=0444
673 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceNane3. d. ksh \ 739 file path=opt/SUNWItrt/tst/comon/ enun tst.EnunVal Assi gn.d node=0444
674 node=0444 740 file path=opt/SUNWItrt/tst/comon/env/err.D PRAGVA OPTSET. setfromscript.d \
675 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceNane4.d. ksh \ 741 node=0444
676 nmode=0444 742 file path=opt/SUNWItrt/tst/common/env/err. D PRAGVA OPTSET. unsetfromscript.d \
677 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceNane5. d. ksh \ 743 node=0444
678 node=0444 744 file path=opt/SUNWItrt/tst/comon/env/tst.|d_nol azyl oad. ksh node=0444
679 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceNane6. d. ksh \ 745 file path=opt/SUNWItrt/tst/comon/env/tst.|d_nol azyl oad. ksh. out npde=0444
680 node=0444 746 file path=opt/SUNWItrt/tst/common/env/tst.setenvl. ksh node=0444
681 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceNane7.d. ksh \ 747 file path=opt/SUNWItrt/tst/common/env/tst.setenvl. ksh. out node=0444
682 node=0444 748 file path=opt/SUNWItrt/tst/common/env/tst.setenv2. ksh node=0444
683 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceNane8.d. ksh \ 749 file path=opt/SUNWItrt/tst/comon/env/tst.setenv2. ksh. out node=0444
684 node=0444 750 file path=opt/SUNWItrt/tst/comon/env/tst.unsetenvl. ksh node=0444
685 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceNane9. d. ksh \ 751 file path=opt/SUNWItrt/tst/common/env/tst.unsetenvl. ksh. out node=0444
686 node=0444 752 file path=opt/SUNWItrt/tst/comon/env/tst.unsetenv2. ksh node=0444
687 file path=opt/SUNWAtrt/tst/conmmon/dtraceltil/tst.InvalidTraceProviderl.d.ksh \ 753 file path=opt/SUNWAtrt/tst/conmon/ env/tst.unsetenv2. ksh. out node=0444
688 node=0444 754 file path=opt/SUNWItrt/tst/comon/error/tst. DTRACEFLT_BADADDR. d npde=0444
689 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceProvider2.d.ksh \ 755 file path=opt/SUNWItrt/tst/conmon/ error/tst. DTRACEFLT_DI VZERO. d node=0444
690 node=0444 756 file path=opt/SUNWItrt/tst/conmon/error/tst. DTRACEFLT_UNKNOM. d npde=0444
691 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceProvider3.d.ksh \ 757 file path=opt/SUNWItrt/tst/comon/error/tst.error.d node=0444
692 node=0444 758 file path=opt/SUNWItrt/tst/comon/error/tst.errorend.d node=0444
693 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.|nvalidTraceProvider4.d.ksh \ 759 file path=opt/SUNWItrt/tst/comon/exit/err.D PROTO LEN. noarg.d node=0444
694 node=0444 760 file path=opt/SUNWItrt/tst/common/exit/err.exitargl.d node=0444
695 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.|nvalidTraceProvider5.d.ksh \ 761 file path=opt/SUNWItrt/tst/comon/exit/tst.basicl.d node=0444
696 node=0444 762 file path=opt/SUNWItrt/tst/comon/fbtprovider/err.D PDESC ZERO notreturn.d \
697 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.MiltiplelnvalidProbeld.d.ksh\ 763 nmode=0444
698 node=0444 764 file path=opt/SUNWItrt/tst/common/ fbtprovider/tst.basic.d node=0444
699 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.PreprocessorStatenent.d. ksh \ 765 file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.functionentry.d node=0444
700 node=0444 766 file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.functionreturnvalue.d \
701 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst. Qi etMde.d.ksh node=0444 767 node=0444
702 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst. QuietMde. d. ksh. out node=0444 768 file path=opt/SUNWItrt/tst/common/fbtprovider/tst.ioctlargs.d node=0444
703 file path=opt/SUNWItrt/tst/comon/dtraceltil /tst . Test Conpi | e. d. ksh nbde=0444 769 file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.offset.d node=0444
704 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst. Test Conpile.d. ksh. out \ 770 file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.offsetzero.d npde=0444
705 node=0444 771 file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.return.d node=0444
706 file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst. UnDefi neNameW t hCPP. d. ksh \ 772 file path=opt/SUNWItrt/tst/common/fbtprovider/tst.return0.d node=0444
707 node=0444 773 file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.tailcall.d node=0444
708 file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.ZeroFunctionProbes.d. ksh \ 774 file path=opt/SUNWItrt/tst/comon/funcs/err. D FUNC UNDEF. progenyof badl.d \
709 node=0444 775 node=0444
710 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes. d. ksh. out \ 776 file path=opt/SUNWItrt/tst/comon/funcs/err.D OP_VFPTR badop.d node=0444
711 node=0444 777 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO ARG chillbadarg.d \
712 file path=opt/SUNWItrt/tst/conmon/ dtraceltil/tst.ZeroMdul eProbes. d. ksh \ 778 node=0444
713 node=0444 779 file path=opt/SUNWItrt/tst/comon/funcs/err. D PROTO ARG copyout badarg.d \
714 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.ZeroMdul eProbes. d. ksh. out \ 780 nmode=0444
715 node=0444 781 file path=opt/SUNWItrt/tst/common/funcs/err.D PROTO ARG nobadarg. d node=0444
716 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.Zer oNameProbes. d. ksh \ 782 file path=opt/SUNWItrt/tst/common/funcs/err. D PROTO ARG rai sebadarg. d \
717 node=0444 783 node=0444
718 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.ZeroNameProbes. d. ksh. out \ 784 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO ARG tol ower.d node=0444
719 node=0444 785 file path=opt/SUNWItrt/tst/conmon/funcs/err.D PROTO ARG t oupper.d node=0444
720 file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.ZeroProbeldentfier.d.ksh \ 786 file path=opt/SUNWItrt/tst/common/funcs/err.D PROTO LEN. al | ocanoarg. d \

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 13 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf
787 node=0444 853 file path=opt/SUNWItrt/tst/comon/funcs/tst.hton.d node=0444
788 file path=opt/SUNWItrt/tst/common/funcs/err.D PROTO LEN. badbreakpoint.d \ 854 file path=opt/SUNWItrt/tst/comon/funcs/tst.index.d node=0444
789 node=0444 855 file path=opt/SUNWItrt/tst/comon/funcs/tst.index.d.out node=0444
790 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. chilltoofew. d \ 856 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa.d npbde=0444
791 node=0444 857 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa.d.out node=0444
792 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. chilltoomany.d \ 858 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa6.d node=0444
793 node=0444 859 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa6.d. out node=0444
794 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyoutstrbadarg.d \ 860 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntop.d nbde=0444
795 node=0444 861 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntop.d.out node=0444
796 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyoutstrtoofew d \ 862 file path=opt/SUNWItrt/tst/comon/funcs/tst.|ltostr.d node=0444
797 node=0444 863 file path=opt/SUNWItrt/tst/comon/funcs/tst.|lltostr.d. out node=0444
798 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyouttoofew d \ 864 file path=opt/SUNWItrt/tst/comon/funcs/tst.||tostrbase.d node=0444
799 node=0444 865 file path=opt/SUNWItrt/tst/comon/funcs/tst.||tostrbase.d. out nobde=0444
800 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyouttoomany.d \ 866 file path=opt/SUNWItrt/tst/common/funcs/tst. nmutex_owned.d node=0444
801 node=0444 867 file path=opt/SUNWItrt/tst/comon/funcs/tst. nutex_owner.d node=0444
802 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. not oof ew. d node=0444 868 file path=opt/SUNWItrt/tst/comon/funcs/tst. nmutex_type_adaptive.d node=0444
803 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. not oomany. d node=0444 869 file path=opt/SUNWItrt/tst/comon/funcs/tst.progenyof.d nbde=0444
804 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. nt abadarg. d node=0444 870 file path=opt/SUNWItrt/tst/comon/funcs/tst.rand.d node=0444
805 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. nt at oof ew. d node=0444 871 file path=opt/SUNWItrt/tst/comon/funcs/tst.strchr.d node=0444
806 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. nt at oonmany. d node=0444 872 file path=opt/SUNWItrt/tst/comon/funcs/tst.strchr.d. out node=0444
807 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. pani cbadarg.d \ 873 file path=opt/SUNWItrt/tst/comon/funcs/tst.strjoin.d node=0444
808 nmode=0444 874 file path=opt/SUNWItrt/tst/comon/funcs/tst.strjoin.d out node=0444
809 file path=opt/SUNWItrt/tst/common/funcs/err.D PROTO LEN. progenyof bad2.d \ 875 file path=opt/SUNWItrt/tst/comon/funcs/tst.strstr.d node=0444
810 node=0444 876 file path=opt/SUNWItrt/tst/comon/funcs/tst.strstr.d.out node=0444
811 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. stopbadarg.d npbde=0444 877 file path=opt/SUNWItrt/tst/comon/funcs/tst.strtok.d node=0444
812 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. tol ower.d node=0444 878 file path=opt/SUNWItrt/tst/comon/funcs/tst.strtok.d.out npde=0444
813 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN.tol owertoomany.d \ 879 file path=opt/SUNWItrt/tst/comon/funcs/tst.strtok_null.d node=0444
814 node=0444 880 file path=opt/SUNWItrt/tst/comon/funcs/tst.substr.d node=0444
815 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. toupper.d npode=0444 881 file path=opt/SUNWItrt/tst/comon/funcs/tst.substr.d.out npde=0444
816 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. touppertoomany.d \ 882 file path=opt/SUNWItrt/tst/comon/funcs/tst.substrm nate.d node=0444
817 node=0444 883 file path=opt/SUNWItrt/tst/comon/funcs/tst.substrm nate.d. out node=0444
818 file path=opt/SUNWItrt/tst/comon/funcs/err.D STRI NGOF_TYPE. badstri ngof.d \ 884 file path=opt/SUNWItrt/tst/comon/funcs/tst.systemd node=0444
819 node=0444 885 file path=opt/SUNWItrt/tst/comon/funcs/tst.systemd. out npde=0444
820 file path=opt/SUNWItrt/tst/comon/funcs/err.D VAR UNDEF. badvar.d node=0444 886 file path=opt/SUNWItrt/tst/comon/funcs/tst.tol ower.d node=0444
821 file path=opt/SUNWItrt/tst/comon/funcs/err.badal | oca.d node=0444 887 file path=opt/SUNWItrt/tst/common/funcs/tst.toupper.d node=0444
822 file path=opt/SUNWItrt/tst/comon/funcs/err.badalloca2.d node=0444 888 file path=opt/SUNWItrt/tst/common/granmar/err. D ADDROF_LVAL. d npde=0444
823 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy.d node=0444 889 file path=opt/SUNWItrt/tst/common/granmar/err.D EMPTY. enpty. d node=0444
824 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopyl.d nbde=0444 890 file path=opt/SUNWItrt/tst/comon/granmar/tst.clauses.d npbde=0444
825 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy2.d node=0444 891 file path=opt/SUNWItrt/tst/common/grammar/tst.stnts.d node=0444
826 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy3.d node=0444 892 file path=opt/SUNWItrt/tst/comon/include/tst.includefirst.ksh node=0444
827 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy4.d node=0444 893 file path=opt/SUNWItrt/tst/comon/inline/err.D DECL_| DRED. redef1.d node=0444
828 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy5.d nbde=0444 894 file path=opt/SUNWItrt/tst/comon/inline/err.D DECL_|I DRED.redef2.d node=0444
829 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy6.d node=0444 895 file path=opt/SUNWItrt/tst/comon/inline/err.D_| DENT_UNDEF.recur.d node=0444
830 file path=opt/SUNWItrt/tst/comon/funcs/err.badchill.d node=0444 896 file path=opt/SUNWItrt/tst/comon/inline/err.D OP_| NCOWPAT. baddef 1. d node=0444
831 file path=opt/SUNWItrt/tst/comon/funcs/err.chillbadarg. ksh node=0444 897 file path=opt/SUNWItrt/tst/comon/inline/err.D OP_| NCOWPAT. baddef 2. d node=0444
832 file path=opt/SUNWItrt/tst/comon/funcs/err.copyout.d node=0444 898 file path=opt/SUNWItrt/tst/comon/inline/err.D OP_| NCOWAT. badxl ate.d \
833 file path=opt/SUNWItrt/tst/comon/funcs/err.copyout badaddr. ksh npde=0444 899 node=0444
834 file path=opt/SUNWItrt/tst/common/funcs/err.copyoutstrbadaddr. ksh node=0444 900 e path=opt/SUNWItrt/tst/comon/inline/tst.|nlineDataAssign.d node=0444
835 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntoa6badaddr.d npode=0444 901 e path=opt/SUNWItrt/tst/comon/inline/tst.InlineExpression.d node=0444
836 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntoabadaddr.d npde=0444 902 e pat h=opt/SUNWItrt/tst/comon/inline/tst.InlinekKinds.d node=0444
837 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntopbadaddr.d npde=0444 903 e pat h=opt/SUNWItrt/tst/comon/inline/tst.InlineKinds.d. out node=0444
838 file path=opt/SUNWItrt/tst/common/funcs/err.inet_ntopbadarg.d node=0444 904 e path=opt/SUNWItrt/tst/comon/inline/tst.InlineTypedef.d node=0444
839 file path=opt/SUNWItrt/tst/comon/funcs/tst.badfreopen. ksh node=0444 905 e path=opt/SUNWItrt/tst/comon/inline/tst.InlineWitableAssign.d nbde=0444
840 file path=opt/SUNWItrt/tst/comon/funcs/tst.basenane.d node=0444 906 e pat h=opt/SUNWItrt/tst/comon/io/tst.fds.d node=0444
841 file path=opt/SUNWItrt/tst/comon/funcs/tst.basenane. d. out node=0444 907 e path=opt/SUNWItrt/tst/comon/io/tst.fds.d. out node=0444
842 file path=opt/SUNWItrt/tst/comon/funcs/tst.bcopy.d node=0444 908 e path=opt/SUNWItrt/tst/comon/io/tst.fds. exe nbde=0555
843 file path=opt/SUNWItrt/tst/comon/funcs/tst.chill.ksh node=0444 909 e path=opt/SUNWItrt/tst/comon/i p/get.ipvadrenote. pl node=0555
844 file path=opt/SUNWItrt/tst/comon/funcs/tst.cleanpath.d nbde=0444 910 e pat h=opt/SUNWItrt/tst/comon/ip/get.ipv6renote.pl node=0555
845 file path=opt/SUNWItrt/tst/comon/funcs/tst.cleanpath.d. out node=0444 911 e pat h=opt/SUNWItrt/tst/comon/ip/tst.ipv4l ocalicnp.ksh node=0444
846 file path=opt/SUNWItrt/tst/comon/funcs/tst.copyin.d node=0444 912 e path=opt/SUNWAtrt/tst/comon/ip/tst.ipv4l ocalicnp. ksh. out node=0444
847 file path=opt/SUNWItrt/tst/comon/funcs/tst.copyinto.d node=0444 913 e path=opt/SUNWItrt/tst/comon/ip/tst.ipval ocal tcp. ksh nbde=0444
848 file path=opt/SUNWItrt/tst/comon/funcs/tst.ddi _pathnanme.d node=0444 914 e path=opt/SUNWItrt/tst/comon/ip/tst.ipvd4l ocal tcp. ksh. out nbde=0444
849 file path=opt/SUNWItrt/tst/comon/funcs/tst.default.d node=0444 915 e path=opt/SUNWItrt/tst/comon/ip/tst.ipv4l ocal udp. ksh node=0444
850 file path=opt/SUNWItrt/tst/comon/funcs/tst.freopen. ksh node=0444 916 e path=opt/SUNWAtrt/tst/comon/ip/tst.ipval ocal udp. ksh. out node=0444
851 file path=opt/SUNWItrt/tst/comon/funcs/tst.ftruncate. ksh node=0444 917 e path=opt/SUNWItrt/tst/comon/ip/tst.ipvarenoteicnp. ksh nbde=0444
852 file path=opt/SUNWItrt/tst/comon/funcs/tst.ftruncate. ksh. out node=0444 918 e path=opt/SUNWItrt/tst/comon/ip/tst.ipvarenoteicnp. ksh. out node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

pat h=opt/ SUNWtrt/t st/ comon/ip/tst.
pat h=opt / SUNWItrt/t st/ comon/ip/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ip/tst.

pat h=opt/ SUNWdtrt/t st/ comon/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/t st/ comon/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWtrt/t st/ common/
node=0444
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWtrt/t st/ common/
pat h=opt / SUNWIt rt/ t st/ comron/
pat h=opt / SUNWdt rt/t st/ comron/
node=0444
P
P
P
P

OCODODODDODDDDDODDDDODODDDDDDMDMDMDMDMDMDMD

at h=opt / SUNWIt rt/t st/ common/

at h=opt / SUNWIt rt/ t st/ common/

at h=opt / SUNWIt rt/t st/ common/

at h=opt / SUNWdt rt/t st/ common/
pat h=opt/ SUNWdtrt/t st/ common/

node=0444
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comon/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWt rt/ t st/ conmmon/
pat h=opt / SUNWdt rt/t st/ comron/
if /* ! codereview */

ODODODD®DD®DDMDDMDMDMDMD D

node=0444

—h —h —h —h —h —h —h —h —h
DD®D®DDDDDD

pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ common/ip/tst.
pat h=opt / SUNWAtrt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/tst/comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt / SUNWIt rt/t st/ comon/ip/tst.
pat h=opt / SUNWIt rt/t st/ comon/ip/tst.
pat h=opt/ SUNWIt rt/t st/ comon/i p/tst.
ava_api/test.jar
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api/tst.

ava_api /tst.
ava_api/tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.

ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.

ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
son/tst.
son/tst.
son/tst.
son/tst.
son/tst.
son/tst.
son/tst.

i pv4r enot et cp. ksh npde=0444
i pv4r enot et cp. ksh. out node=0444
i pv4r enot eudp. ksh npde=0444
i pv4r enot eudp. ksh. out node=0444
i pvél ocal i cnp. ksh npde=0444
i pv6l ocal i cnp. ksh. out node=0444
i pvér enot ei cnp. ksh nbde=0444
i pv6renot ei cnp. ksh. out node=0444
| ocal t cpst at e. ksh npde=0444
| ocal t cpst at e. ksh. out node=0444
renot et cpst at e. ksh node=0444
renot et cpst at e. ksh. out node=0444

Abort. ksh node=0444

Abort . ksh. out npde=0444

Bean. ksh nbde=0444

Bean. ksh. out node=0444

Cl ose. ksh node=0444

Cl ose. ksh. out node=0444

Dr op. ksh nbde=0444

Dr op. ksh. out node=0444

Enabl e. ksh nbde=0444

Enabl e. ksh. out npde=0444
Funct i onLookup. exe nbde=0555
Functi onLookup. ksh npde=0444
Functi onLookup. ksh. out \

Get Aggr egat e. ksh node=0444
MaxConsurer s. ksh npbde=0444
MaxConsuner s. ksh. out node=0444
Mul ti AggPri nt a. ksh node=0444
Ml ti AggPri nt a. ksh. out \

Pr obeDat a. exe nbde=0555
ProbeDat a. ksh node=0444
ProbeDat a. ksh. out node=0444
ProbeDescri pti on. ksh nbde=0444
ProbeDescri ption. ksh. out \

St at eMachi ne. ksh node=0444
St at eMachi ne. ksh. out npde=0444
St opLock. ksh npbde=0444

St opLock. ksh. out node=0444
printa.d node=0444
printa.d.out npbde=0444
general .d node=0444

general . d. out node=0444
strsize.d node=0444

strsize.d. out node=0444

usdt. d npde=0444

usdt . d. out node=0444

usdt . exe node=0555

pat h=opt/ SUNWAt rt/t st/ conmon/ |l exer/err.D CHR NL. char.d npde=0444
pat h=opt / SUNWdt rt/t st/ common/ | exer/err. D_CHR_NULL. char.d npode=0444
pat h=opt / SUNWAt rt /t st/ common/ | exer/err.D_INT_DIG T.InvalidDigit.d \

pat h=opt/ SUNWdtrt/t st/ common/ | exer/err.D | NT_OFLOW Bi gl nt. d nbde=0444
pat h=opt/ SUNWdtrt/t st/ comon/ | exer/err.D STR_NL. string.
pat h=opt/ SUNWIt rt/t st/ comon/ | exer/err. D_SYNTAX. bracel.
pat h=opt / SUNWAt rt /t st/ common/ | exer/ err. D_SYNTAX. br ace2.
pat h=opt/ SUNWIt rt/t st/ comon/ | exer/err.
pat h=opt / SUNWAt rt/t st/ conmon/ | exer/ err. D_SYNTAX. br ack2.
pat h=opt/ SUNWAt rt/t st/ comon/ | exer/err. D_SYNTAX. br ack3.
pat h=opt / SUNWAt rt / t st/ common/ | exer/ err. D_SYNTAX. par enl.
pat h=opt/ SUNWdt rt/t st/ comon/ | exer/err.

d node=0444
d node=0444
d node=0444
D_SYNTAX. brackl. d node=0444
d npde=0444
d node=0444
d node=0444
d

D_SYNTAX. paren2. d node=0444

15

1049

enabl erace. ksh node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 16
985 file path=opt/SUNWItrt/tst/common/| exer/err.D SYNTAX paren3.d npde=0444
986 file path=opt/SUNWItrt/tst/conmon/|exer/tst.D MACRO OFLOW Par | nt Ovf | ow. d. ksh \
987 node=0444
988 file \
989 pat h=opt/ SUNWitrt/tst/common/ || quanti ze/ err. D_LLQUANT_FACTOREVEN. nodi vi de. d
990 node=0444
991 file \
992 pat h=opt/ SUNWitrt/tst/common/ || quanti ze/ err. D_LLQUANT_FACTOREVEN. not f actor. d
993 node=0444
994 file path=opt/SUNWItrt/tst/comon/Il| quantize/err.D LLQUANT_FACTORVATCH. d \
995 node=0444
996 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_FACTORNSTEPS. d \
997 node=0444
998 file path=opt/SUNWItrt/tst/comon/Il | quantize/err.D LLQUANT_FACTORSMALL. d \
999 node=0444
1000 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_FACTORTYPE. d \
1001 node=0444
1002 file path=opt/SUNWItrt/tst/common/| | quantize/err.D LLQUANT_FACTORVAL.d \
1003 node=0444
1004 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_HI GHVATCH. d \
1005 node=0444
1006 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_H GHTYPE. d \
1007 node=0444
1008 file path=opt/SUNWItrt/tst/comon/Il | quantize/err.D LLQUANT_H GHVAL. d npode=0444
1009 file path=opt/SUNWItrt/tst/common/ || quantize/err.D LLQUANT_LOWATCH. d \
1010 node=0444
1011 file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_LOAMYPE. d node=0444
1012 file path=opt/SUNWItrt/tst/common/ || quantize/err. D LLQUANT_LOWAL. d npde=0444
1013 file path=opt/SUNWItrt/tst/common/ || quantize/err. D LLQUANT_MAGRANGE. d \
1014 node=0444
1015 file path=opt/SUNWItrt/tst/common/| | quantize/err.D LLQUANT_MAGTOOBI G. d \
1016 node=0444
1017 file path=opt/SUNWItrt/tst/common/ || quantize/err. D LLQUANT_NSTEPMATCH. d \
1018 node=0444
1019 file path=opt/SUNWItrt/tst/common/l | quantize/err.D LLQUANT_NSTEPTYPE. d \
1020 node=0444
1021 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_NSTEPVAL.d \
1022 node=0444
1023 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.bases.d node=0444
1024 file path=opt/SUNWItrt/tst/comon/Il | quanti ze/tst.bases. d. out node=0444
1025 file path=opt/SUNWItrt/tst/common/ || quantize/tst.basic.d node=0444
1026 file path=opt/SUNWItrt/tst/common/ || quantize/tst.basic.d. out node=0444
1027 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.negorder.d node=0444
1028 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.negorder.d.out node=0444
1029 file path=opt/SUNWItrt/tst/common/ || quantize/tst.negval ue.d nbde=0444
1030 file path=opt/SUNWItrt/tst/common/ || quantize/tst.negval ue.d. out node=0444
1031 file path=opt/SUNWItrt/tst/common/ || quantize/tst.normal.d node=0444
1032 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.nornal.d. out nbde=0444
1033 file path=opt/SUNWItrt/tst/common/ || quantize/tst.range.d node=0444
1034 file path=opt/SUNWItrt/tst/common/ || quantize/tst.range.d. out npde=0444
1035 file path=opt/SUNWItrt/tst/common/ || quantize/tst.steps.d node=0444
1036 file path=opt/SUNWAtrt/tst/comon/l | quantize/tst.steps.d.out node=0444
1037 file path=opt/SUNWItrt/tst/comon/ || quantize/tst.trunc.d node=0444
1038 file path=opt/SUNWItrt/tst/comon/I | quantize/tst.trunc.d.out node=0444
1039 file path=opt/SUNWItrt/tst/common/ ndb/tst. dtracedcnd. ksh node=0444
1040 file path=opt/SUNWItrt/tst/comon/ m b/tst.icnp.ksh node=0444
1041 file path=opt/SUNWItrt/tst/comon/ m b/tst.tcp.ksh node=0444
1042 file path=opt/SUNWItrt/tst/common/ m b/tst.udp. ksh node=0444
1043 file path=opt/SUNWItrt/tst/common/ m sc/err. D _PRAGVA_OPTSET. d npde=0444
1044 file path=opt/SUNWItrt/tst/comon/m sc/tst.badopt.d node=0444
1045 file path=opt/SUNWItrt/tst/comon/ m sc/tst.bool opt.d node=0444
1046 file path=opt/SUNWItrt/tst/comon/ m sc/tst.bool opt.d. out node=0444
1047 file path=opt/SUNWItrt/tst/common/ m sc/tst.dynopt.d node=0444
1048 file path=opt/SUNWItrt/tst/comon/m sc/tst.dynopt.d.out node=0444
file
file

1050

pat h=opt/ SUNWAt rt/t st/ comon/ m sc/tst.

pat h=opt/ SUNWdtrt/t st/ comon/ m sc/tst. hasl am d npde=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 17 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 18
1051 file path=opt/SUNWItrt/tst/common/ m sc/tst.include. ksh node=0444 1117 file path=opt/SUNWItrt/tst/common/ pid/tst.coverage.d node=0444

1052 file path=opt/SUNWItrt/tst/comon/ m sc/tst.macrogl ob. ksh node=0444 1118 file path=opt/ SUNWItrt/tst/comon/ pi d/tst.coverage. exe nbode=0555

1053 file path=opt/SUNWItrt/tst/comon/ m sc/tst.nmacrogl ob. ksh. out node=0444 1119 file path=opt/SUNWItrt/tst/comon/ pi d/tst.enptystack.d node=0444

1054 file path=opt/SUNWItrt/tst/common/ m sc/tst.roch.d node=0444 1120 file path=opt/SUNWItrt/tst/conmon/ pid/tst.enptystack.d.out node=0444

1055 file path=opt/SUNWItrt/tst/common/ m sc/tst.schrock. ksh node=0444 1121 file path=opt/ SUNWItrt/tst/common/ pid/tst.enptystack. exe node=0555

1056 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/err.D PRI NTA AGSKEY.d node=0444 1122 file path=opt/SUNWItrt/tst/comon/pid/tst.float.d node=0444

1057 file path=opt/SUNWItrt/tst/comon/ mul tiaggs/err.D PRI NTA_AGGPROTO. d npde=0444 1123 file path=opt/SUNWItrt/tst/common/ pid/tst.float.exe nobde=0555

1058 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.nmany.d npode=0444 1124 file path=opt/SUNWItrt/tst/common/ pid/tst.fork.d node=0444

1059 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst. many.d.out node=0444 1125 file path=opt/ SUNWItrt/tst/common/ pid/tst.fork.exe node=0555

1060 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.sanme.d node=0444 1126 file path=opt/SUNWItrt/tst/comon/pid/tst.gcc.d node=0444

1061 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.sane.d.out node=0444 1127 file path=opt/SUNWItrt/tst/comon/ pid/tst.gcc. exe node=0555

1062 file path=opt/SUNWItrt/tst/comon/ mul tiaggs/tst.sort.d node=0444 1128 file path=opt/SUNWItrt/tst/comon/pid/tst.Kkillonerror.ksh nbde=0444

1063 file path=opt/SUNWItrt/tst/conmmon/ mul tiaggs/tst.sort.d.out node=0444 1129 file path=opt/ SUNWItrt/tst/common/ pid/tst.main. ksh node=0444

1064 file path=opt/SUNWItrt/tst/comon/ nultiaggs/tst.sortpos.d npode=0444 1130 file path=opt/SUNWItrt/tst/comon/ pi d/tst.manypi ds. ksh node=0444

1065 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.sortpos.d.out nbde=0444 1131 file path=opt/SUNWItrt/tst/comon/ pi d/tst.newprobes. ksh nbde=0444

1066 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.tupleconpat.d nbde=0444 1132 file path=opt/SUNWItrt/tst/comon/ pi d/tst.newprobes. ksh. out nbde=0444

1067 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.tupl econpat.d.out nobde=0444 1133 file path=opt/SUNWItrt/tst/common/ pid/tst.probenpd. ksh node=0444

1068 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero.d node=0444 1134 file path=opt/SUNWItrt/tst/comon/ pid/tst.provregexl. ksh node=0444

1069 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero.d. out node=0444 1135 file path=opt/SUNWItrt/tst/comon/ pi d/tst.provregex2. ksh node=0444

1070 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero2.d node=0444 1136 file path=opt/SUNWItrt/tst/comon/ pid/tst.provregex2. ksh. out node=0444

1071 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.zero2.d.out node=0444 1137 file path=opt/SUNWItrt/tst/common/ pid/tst.provregex3. ksh node=0444

1072 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero3.d node=0444 1138 file path=opt/ SUNWItrt/tst/common/ pid/tst.provregex3. ksh. out node=0444

1073 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero3.d. out nbde=0444 1139 file path=opt/SUNWItrt/tst/comon/ pid/tst.provregex4. ksh node=0444

1074 file path=opt/SUNWItrt/tst/comon/nfs/tst.call.d nbde=0444 1140 file path=opt/SUNWItrt/tst/comon/ pi d/tst.provregex4. ksh. out node=0444

1075 file path=opt/SUNWItrt/tst/common/nfs/tst.call.exe nbde=0555 1141 file path=opt/SUNWItrt/tst/common/pid/tst.retl.d node=0444

1076 file path=opt/SUNWItrt/tst/common/nfs/tst.call3.d node=0444 1142 file path=opt/SUNWItrt/tst/common/ pid/tst.retl. exe node=0555

1077 file path=opt/SUNWItrt/tst/comon/nfs/tst.call3.exe nbode=0555 1143 file path=opt/SUNWItrt/tst/comon/pid/tst.ret2.d nbde=0444

1078 file path=opt/SUNWItrt/tst/common/ of fsetof/err. D OFFSETOF_BI TFIELD. bitfield.d \ 1144 file path=opt/SUNWItrt/tst/common/ pid/tst.ret2. exe nbde=0555

1079 node=0444 1145 file path=opt/ SUNWItrt/tst/common/ pid/tst.utf8probefunc. ksh nbde=0444

1080 file path=opt/SUNWItrt/tst/common/ of fsetof/err. D OFFSETOF_TYPE. badtype. d \ 1146 file path=opt/ SUNWItrt/tst/common/ pid/tst.utf8probefunc. ksh. out node=0444
1081 node=0444 1147 file path=opt/SUNWItrt/tst/comon/ pid/tst.utf8probenpd. ksh node=0444

1082 file path=opt/SUNWItrt/tst/comon/ of f setof/err. D OFFSETOF_TYPE. not sou. d \ 1148 file path=opt/SUNWItrt/tst/comon/ pid/tst.utf8probenpd. ksh. out node=0444
1083 node=0444 1149 file path=opt/SUNWItrt/tst/common/ pid/tst.vfork.d node=0444

1084 file path=opt/SUNWItrt/tst/common/ of fsetof/err. D UNKNOM. Of f set of NULL. d \ 1150 file path=opt/SUNWItrt/tst/common/ pid/tst.vfork. exe node=0555

1085 nmode=0444 1151 file path=opt/SUNWItrt/tst/comon/ pid/tst.weakl. d node=0444

1086 file path=opt/SUNWItrt/tst/comon/ of fsetof/err. D UNKNOMN. badmenb. d node=0444 1152 file path=opt/SUNWItrt/tst/comon/ pid/tst.weakl. exe node=0555

1087 file path=opt/SUNWItrt/tst/comon/ of fsetof/tst. O fsetof Alias.d node=0444 1153 file path=opt/SUNWItrt/tst/comon/ pid/tst.weak2.d node=0444

1088 file path=opt/SUNWItrt/tst/common/of fsetof/tst. OFfsetof Arith.d node=0444 1154 file path=opt/SUNWItrt/tst/common/ pid/tst.weak2. exe npode=0555

1089 file path=opt/SUNWItrt/tst/comon/ of fsetof/tst.Of fsetof Uni on.d node=0444 1155 file path=opt/SUNWItrt/tst/comon/ pl ockstat/tst.avail abl e.d nbde=0444

1090 file path=opt/SUNWItrt/tst/comon/of fsetof/tst.struct.d nbde=0444 1156 file path=opt/SUNWItrt/tst/comon/ pl ockstat/tst.avail abl e. exe nbde=0555

1091 file path=opt/SUNWItrt/tst/comon/of fsetof/tst.struct.d.out nbde=0444 1157 file path=opt/SUNWItrt/tst/comon/pl ockstat/tst.|ibmap.d node=0444

1092 file path=opt/SUNWItrt/tst/common/of fsetof/tst.union.d node=0444 1158 file path=opt/SUNWItrt/tst/common/ pl ockstat/tst.|ibmap. exe nbode=0555

1093 file path=opt/SUNWItrt/tst/comon/ of fsetof/tst.union.d. out node=0444 1159 file path=opt/SUNWItrt/tst/comon/ poi nters/err.BadAlign.d node=0444

1094 file path=opt/SUNWItrt/tst/comon/operators/tst.ternary.d node=0444 1160 file path=opt/SUNWItrt/tst/comon/ poi nters/err. D ADDROF_VAR ArrayVar.d \
1095 file path=opt/SUNWItrt/tst/comon/operators/tst.ternary.d. out nbde=0444 1161 node=0444

1096 file path=opt/SUNWItrt/tst/common/ pid/err.D PDESC ZERO badlib.d npode=0444 1162 file path=opt/SUNWItrt/tst/conmon/ pointers/err.D ADDROF_VAR. Dynam cVar.d \
1097 file path=opt/SUNWItrt/tst/comon/ pi d/ err. D PDESC ZERO. badl i b. exe npde=0555 1163 node=0444

1098 file path=opt/SUNWAtrt/tst/comon/ pi d/ err. D _PDESC_ZERO. badprocl. d node=0444 1164 file path=opt/SUNWItrt/tst/comon/ pointers/err. D ADDROF_VAR agg. d node=0444
1099 file path=opt/SUNWItrt/tst/comron/ pi d/ err. D_PROC BADPI D. badproc2. d node=0444 1165 file pat h=opt/SUNWitrt/tst/comon/ poi nters/err. D DEREF_NONPTR noptr.d \

1100 file path=opt/SUNWItrt/tst/comon/ pid/ err. D_PROC_CREATEFAI L. many. d node=0444 1166 node=0444

1101 file path=opt/SUNWItrt/tst/comon/ pi d/ err. D_PROC_CREATEFAI L. many. exe node=0555 1167 file path=opt/ SUNWItrt/tst/common/ poi nters/err.D DEREF_ VO D. Voi dPoi nter Deref.d \
1102 file path=opt/SUNWItrt/tst/comon/ pid/err. D _PROC FUNC. badf unc.d node=0444 1168 node=0444

1103 file path=opt/SUNWItrt/tst/comon/ pid/err.D _PROC FUNC. badf unc. exe nbde=0555 1169 file path=opt/SUNWItrt/tst/comon/ pointers/err.D OP_ARRFUN. ArrayAssi gnnment.d \
1104 file path=opt/SUNWItrt/tst/comon/pid/err.D PROC LIB.|ibdash.d node=0444 1170 node=0444

1105 file path=opt/SUNWItrt/tst/common/ pid/err.D PROC LIB.!|ibdash. exe nbde=0555 1171 file \

1106 file path=opt/SUNWItrt/tst/comon/ pid/err. D _PROC NAME. al | dash. d node=0444 1172 pat h=opt/ SUNWt rt/t st/ comron/ poi nters/ err. D_OP_| NCOWPAT. Voi dPoi nterArith.d \
1107 file path=opt/SUNWItrt/tst/comon/ pid/err. D PROC NAME. al | dash. exe nbde=0555 1173 node=0444

1108 file path=opt/SUNWItrt/tst/common/ pid/ err.D PROC NAME. badnane. d node=0444 1174 file path=opt/ SUNWItrt/tst/common/ pointers/err.D OP_LVAL. AddressChange. d \
1109 file path=opt/SUNWItrt/tst/conmon/ pid/ err.D PROC NAME. badnane. exe npde=0555 1175 node=0444

1110 file path=opt/SUNWitrt/tst/comon/ pi d/ err. D_PROC_NAME. gl obdash. d node=0444 1176 file path=opt/SUNWItrt/tst/comon/ poi nters/err.D OP_PTR NonPoi nt er Access. d \
1111 file path=opt/ SUNWItrt/tst/comon/ pi d/ err. D PROC NAME. gl obdash. exe node=0555 1177 node=0444

1112 file path=opt/SUNWItrt/tst/comon/ pid/err. D PROC OFF.toobi g.d nbde=0444 1178 file path=opt/SUNWItrt/tst/common/ pointers/err.D OP_PTR badpointer.d node=0444
1113 file path=opt/SUNWItrt/tst/comon/ pi d/ err. D_PROC_OFF. t oobi g. exe npde=0555 1179 file path=opt/ SUNWItrt/tst/common/ pointers/err.D _OP_SOU. BadPoi nt er Access. d \
1114 file path=opt/SUNWItrt/tst/comon/ pi d/tst.addprobes. ksh node=0444 1180 node=0444

1115 file path=opt/SUNWItrt/tst/comon/pid/tst.argsl.d node=0444 1181 file path=opt/SUNWItrt/tst/common/ pointers/err.D OP_SCU. badpoi nter.d node=0444
1116 file path=opt/SUNWItrt/tst/comon/pid/tst.argsl. exe node=0555 1182 file path=opt/SUNWItrt/tst/comon/ pointers/err.|nvali dAddressl.d node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 19 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf

1183 file path=opt/ SUNWItrt/tst/common/ pointers/err.|nvali dAddress2.d node=0444 1249 file path=opt/ SUNWItrt/tst/conmon/ preprocessor/tst.| ogical andor.d npbde=0444
1184 file path=opt/SUNWItrt/tst/comon/ pointers/err.|nvali dAddress3.d node=0444 1250 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.| ogical andor.d. out \
1185 file path=opt/SUNWItrt/tst/common/ pointers/err.|nvali dAddress4.d node=0444 1251 node=0444

1186 file path=opt/SUNWItrt/tst/common/ pointers/err.|nvali dAddress5.d node=0444 1252 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.|ogical or.d node=0444
1187 file path=opt/ SUNWItrt/tst/common/ pointers/tst.ArrayPoi nterl.d node=0444 1253 file path=opt/SUNWItrt/tst/common/ preprocessor/tst.|ogical or.d. out nbde=0444
1188 file path=opt/ SUNWItrt/tst/comon/ pointers/tst.ArrayPointer2.d node=0444 1254 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.mul and.d nbde=0444

1189 file path=opt/SUNWItrt/tst/common/ pointers/tst.ArrayPointer3.d node=0444 1255 file path=opt/SUNWItrt/tst/common/ preprocessor/tst. mul and. d. out node=0444
1190 file path=opt/SUNWItrt/tst/common/ pointers/tst.d obal Var.d node=0444 1256 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst. mulor.d node=0444

1191 file path=opt/SUNWItrt/tst/common/ pointers/tst.|ntegerArithnmeticl.d node=0444 1257 file path=opt/ SUNWItrt/tst/conmon/ preprocessor/tst.mulor.d.out node=0444
1192 file path=opt/SUNWItrt/tst/comon/ pointers/tst.PointerArithnmeticl.d node=0444 1258 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.precondi.d npode=0444
1193 file path=opt/SUNWItrt/tst/comon/ pointers/tst.PointerArithnetic2.d node=0444 1259 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.precondi.d.out nbde=0444
1194 file path=opt/SUNWItrt/tst/comon/ pointers/tst.PointerArithnetic3.d node=0444 1260 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.predi catedeclare.d \
1195 file path=opt/ SUNWItrt/tst/conmon/ poi nters/tst.PointerAssignment.d nbde=0444 1261 node=0444

1196 file path=opt/SUNWItrt/tst/comon/ pointers/tst. ValidPointerl.d node=0444 1262 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.preexp.d node=0444

1197 file path=opt/SUNWItrt/tst/comon/ pointers/tst. ValidPointer2.d node=0444 1263 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.preexp.d.out node=0444
1198 file path=opt/SUNWItrt/tst/comon/ poi nters/tst.VoidCast.d nbde=0444 1264 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.preexpel se.d nbde=0444
1199 file path=opt/SUNWItrt/tst/common/ poi nters/tst.assigncastl.d node=0444 1265 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst. preexpel se.d. out node=0444
1200 file path=opt/SUNWItrt/tst/comon/ poi nters/tst.assigncast2.d node=0444 1266 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.preexpif.d node=0444
1201 file path=opt/SUNWItrt/tst/comon/ pointers/tst.basicl.d node=0444 1267 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.preexpif.d.out node=0444
1202 file path=opt/SUNWItrt/tst/comon/ poi nters/tst.basic2.d node=0444 1268 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.preexpifel se.d nbde=0444
1203 file path=opt/SUNWItrt/tst/common/ pragma/ err. D_PRAGERR d npode=0444 1269 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst. preexpifelse.d out \
1204 file path=opt/SUNWItrt/tst/comon/ pragne/ err. D PRAGVA DEPEND. mai n. d node=0444 1270 node=0444

1205 file path=opt/SUNWItrt/tst/comon/ pragne/ err. D PRAGVA | NVAL. d nbde=0444 1271 file path=opt/ SUNWItrt/tst/comon/ preprocessor/tst.w thinprobe.d node=0444
1206 file path=opt/SUNWItrt/tst/comon/pragnme/err. D PRAGVA MALFORM d nbde=0444 1272 file path=opt/SUNWItrt/tst/comon/print/err.D PRI NT_AGG bad.d nbde=0444
1207 file path=opt/SUNWItrt/tst/conmmon/ pragma/ err. D_PRAGVA UNUSED. UnusedPragma. d \ 1273 file path=opt/SUNWItrt/tst/common/print/err.D_PRI NT_VO D. bad. d node=0444
1208 node=0444 1274 file path=opt/SUNWItrt/tst/comon/ print/err.D PROTO LEN. bad.d node=0444
1209 file path=opt/SUNWItrt/tst/comon/pragne/err.circlibdep. ksh nbde=0444 1275 file path=opt/SUNWAtrt/tst/comon/print/tst.array.d node=0444

1210 file path=opt/SUNWItrt/tst/common/ pragma/err.invalidlibdep.ksh node=0444 1276 file path=opt/SUNWItrt/tst/comon/print/tst.array.d.out node=0444

1211 file path=opt/SUNWItrt/tst/common/ pragma/tst.|ibchain. ksh node=0444 1277 file path=opt/SUNWItrt/tst/common/print/tst.bitfield. d node=0444

1212 file path=opt/SUNWItrt/tst/common/ pragma/tst.|ibdep. ksh node=0444 1278 file path=opt/SUNWItrt/tst/common/print/tst.bitfield.d. out node=0444

1213 file path=opt/SUNWItrt/tst/comon/ pragne/tst.|ibdepful|lyconnected. ksh \ 1279 file path=opt/SUNWItrt/tst/comon/print/tst.dyn.d node=0444

1214 node=0444 1280 file path=opt/SUNWItrt/tst/comon/print/tst.enumd nbde=0444

1215 file path=opt/ SUNWItrt/tst/common/ pragma/tst.|ibdepsepdir. ksh node=0444 1281 file path=opt/SUNWItrt/tst/common/print/tst.enumd.out npde=0444

1216 file path=opt/SUNWItrt/tst/common/ pragma/tst.tenporal.ksh node=0444 1282 file path=opt/SUNWItrt/tst/common/print/tst.primtive.d node=0444

1217 file path=opt/ SUNWItrt/tst/comon/ pragna/tst.tenporal 2. ksh node=0444 1283 file path=opt/SUNWItrt/tst/comon/print/tst.primtive.d. out node=0444

1218 file path=opt/SUNWItrt/tst/comon/ pragna/tst.tenporal 3.d node=0444 1284 file path=opt/SUNWItrt/tst/comon/print/tst.struct.d node=0444

1219 file path=opt/ SUNWItrt/tst/comon/ predicates/err. D PRED SCALAR NonScal arPred.d \ 1285 file path=opt/SUNWItrt/tst/comon/print/tst.struct.d.out node=0444

1220 node=0444 1286 file path=opt/SUNWItrt/tst/common/print/tst.xlate.d node=0444

1221 file path=opt/SUNWItrt/tst/comon/ predicates/err.D SYNTAX. invalid.d node=0444 1287 file path=opt/SUNWItrt/tst/comon/print/tst.xl ate.d.out node=0444

1222 file path=opt/SUNWItrt/tst/comon/ predicates/err.D SYNTAX. operr.d node=0444 1288 file path=opt/SUNWItrt/tst/comon/printal/err.D PRI NTA AGGARG badagg.d \
1223 file path=opt/SUNWItrt/tst/comon/ predi cates/tst.argsnotcached. d node=0444 1289 node=0444

1224 file path=opt/SUNWItrt/tst/common/ predicates/tst.basics.d node=0444 1290 file path=opt/SUNWItrt/tst/conmmon/ printal/err.D_PRI NTA AGGARG badfnt.d \
1225 file path=opt/SUNWItrt/tst/comon/ predi cates/tst.basics.d. out node=0444 1291 nmode=0444

1226 file path=opt/SUNWItrt/tst/comon/ predicates/tst.conpl ex.d node=0444 1292 file path=opt/SUNWItrt/tst/comon/printal/err.D PRI NTA AGGARG badval .d \
1227 file path=opt/ SUNWItrt/tst/comon/ predicates/tst.conpl ex.d. out node=0444 1293 node=0444

1228 file path=opt/SUNWItrt/tst/conmon/ preprocessor/err.D_| DENT_UNDEF. af t er probe. d \ 1294 file path=opt/SUNWItrt/tst/common/ printalerr.D_PRI NTA PROTO bad. d node=0444
1229 node=0444 1295 file path=opt/SUNWItrt/tst/comon/ printalerr.D PRI NTF_ARG TYPE. | stack.d \
1230 file path=opt/SUNWAtrt/tst/comon/ preprocessor/err.D PRAGCTL_I NVAL. t abdefine.d \ 1296 node=0444

1231 node=0444 1297 file path=opt/SUNWItrt/tst/comon/printal/err.D PRI NTF_ARG TYPE. stack.d \
1232 file path=opt/SUNWItrt/tst/conmon/ preprocessor/err.D_SYNTAX. wi t hout pound. d \ 1298 node=0444

1233 node=0444 1299 file path=opt/SUNWItrt/tst/common/ printal/err.D_PRI NTF_ARG TYPE. ustack.d \
1234 file path=opt/ SUNWItrt/tst/comon/ preprocessor/err.definconp.d node=0444 1300 node=0444

1235 file path=opt/ SUNWItrt/tst/common/ preprocessor/err.ifdefelsenotendif.d \ 1301 file path=opt/SUNWItrt/tst/common/printal/tst.basics.d nbde=0444

1236 node=0444 1302 file path=opt/SUNWItrt/tst/common/ printal/tst.basics.d.out node=0444

1237 file path=opt/ SUNWItrt/tst/common/ preprocessor/err.ifdefinconp.d node=0444 1303 file path=opt/SUNWItrt/tst/common/printal/tst.def.d node=0444

1238 file path=opt/ SUNWItrt/tst/comon/ preprocessor/err.ifdefnotendif.d node=0444 1304 file path=opt/SUNWItrt/tst/comon/printaltst.def.d.out node=0444

1239 file path=opt/SUNWItrt/tst/comon/ preprocessor/err.inconpel se.d node=0444 1305 file path=opt/SUNWItrt/tst/comon/printaltst.dynw dth.d nbde=0444

1240 file path=opt/SUNWItrt/tst/conmmon/ preprocessor/err.nul el se.d node=0444 1306 file path=opt/SUNWItrt/tst/common/ printal/tst.dynw dth.d.out node=0444

1241 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.ifdef.d node=0444 1307 file path=opt/SUNWItrt/tst/common/printal/tst.fnt.d node=0444

1242 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.ifdef.d. out node=0444 1308 file path=opt/SUNWItrt/tst/comon/printa/tst.fnt.d.out node=0444

1243 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.ifndef.d nbde=0444 1309 file path=opt/SUNWItrt/tst/comon/printal/tst.|argeusersymksh nbde=0444
1244 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.ifndef.d.out nbde=0444 1310 file path=opt/SUNWItrt/tst/comon/printaltst.many.d node=0444

1245 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.ifnotdef.d node=0444 1311 file path=opt/SUNWItrt/tst/common/ printal/tst.manyval.d npde=0444

1246 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.ifnotdef.d.out node=0444 1312 file path=opt/SUNWItrt/tst/comon/printaltst.manyval . d. out node=0444

1247 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.| ogical and.d node=0444 1313 file path=opt/SUNWItrt/tst/comon/printal/tst.stack.d node=0444

1248 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.|ogical and. d. out node=0444 1314 file path=opt/SUNWItrt/tst/comon/printa/tst.tuple.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

e pat h=opt/SUNWItrt/tst/comon/ pri
e path=opt/SUNWItrt/tst/comon/ pri
e path=opt/ SUNWItrt/tst/comon/ pri
e pat h=opt/SUNWItrt/tst/comon/ pri
node=0444
file path=opt/SUNWitrt/tst/common/pri
node=0444
file path=opt/SUNWItrt/tst/comon/pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWitrt/tst/conmmon/pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWitrt/tst/common/pri
node=0444
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri

DPODODDDDDODDDDDDDDDODDDDDODDDDDDPDPDDDDDDDDDDDMDMDMD

ntaltst.
nta/tst.
nta/tst.
ntf/err.
ntf/err.
ntf/err.
ntf/err.
ntf/err.
ntf/err.
ntf/err.
ntf/err.

ntf/err.

ntf/err.

tupl e. d. out node=0444
wal | ti mestanp. ksh node=0444

D_PRI NTF_AGG CONV. aggfnt.d \

D_PRI NTF_ARG FMT. badfnt.d \

D PRI NTF_ARG TYPE. aggarg. d \

. D_PRI NTF_DYN_TYPE. badwi dth. d \

. D_PROTO _LEN. t oof ew. d node=0444
. D_SYNTAX. badconvl. d node=0444
. D_SYNTAX. badconv2. d node=0444
. D_SYNTAX. badconv3. d node=0444

. basi cs. d node=0444

. basi cs. d. out node=0444
.flags.d node=0444
.flags.d. out node=0444

. hel | o. d npde=0444

. hell 0. d. out npde=0444
.ints.d node=0444
.ints.d.out nbde=0444
.precs.d node=0444

. precs. d. out node=0444
.print-f.d node=0444
.print-f.d.out node=0444
.printT. ksh node=0444
.printT. ksh. out node=0444
.printY.ksh node=0444
.printY.ksh. out node=0444
.printcont.d npde=0444
.printcont.d. out node=0444
.printeE. d node=0444
.printeE. d. out node=0444
.printgG d node=0444
.printgG d. out node=0444
.rawf nt.d node=0444
.rawf nt.d. out node=0444
.signs.d node=0444
.signs.d.out npode=0444
.str.d node=0444
.str.d.out npde=0444
.symd node=0444
.symd. out node=0444
.uints.d node=0444
.uints.d.out npde=0444
.wi dths. d node=0444

.wi dt hs. d. out node=0444
.widthsl. d node=0444
.wp.d node=0444
.wp. d. out npde=0444

wal | ti nestanp. ksh. out node=0444

D_PRI NTF_ARG_EXTRA. t oomany. d \
D PRI NTF_ARG EXTRA. wi dths.d \

D_PRI NTF_ARG_PROTO noval ue. d \

D _PRI NTF_ARG TYPE. recursive. d \
D_PRI NTF_DYN_PROTO. noprec.d \
D_PRI NTF_DYN_PROTO. nowi dt h. d \
D PRI NTF_DYN_TYPE. badprec.d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

DODOD®DDDD®D®DDMDMD D

node=0444

pat h=opt / SUNWdt rt/ t st/ common/ pr obes/ t
pat h=opt / SUNWdt rt/ t st/ common/ pr obes/ t
pat h=opt/ SUNWt rt/t st/ conmmon/ pr obes/ t
pat h=opt/ SUNWdt rt/t st/ common/ pr obes/ t
pat h=opt/ SUNWt rt/t st/ common/ pr obes/ t
pat h=opt / SUNWAt rt/ t st/ common/ pr obes/ t
pat h=opt/ SUNWdt rt/t st/ conmmon/ pr obes/ t
pat h=opt/ SUNWdt rt/t st/ conmmon/ pr obes/ t
pat h=opt/ SUNWdt rt/t st/ common/ pr obes/ t
pat h=opt / SUNWdt rt/ t st/ common/ pr obes/ t

OODODODOPDODDDDDDDDDDDDODDDDDDDMDMDMDMDMDD

pat h=opt / SUNWdt rt/t st/ comon/ profil e-

node=0444
file path=opt/SUNWItrt/tst/comon/profile-
file path=opt/SUNWItrt/tst/comon/profile-
node=0444
ile path=opt/SUNWItrt/tst/comon/profile-

fil

file path=opt/SUNWItrt/tst/comon/profile-

node=0444
pat h=opt / SUNWAt rt / t st/ common/ pr of
pat h=opt / SUNWdt rt / t st/ common/ pr of
pat h=opt / SUNWdt rt/ t st/ conmmon/ pr of
pat h=opt / SUNWt rt/ t st/ common/ pr of
pat h=opt / SUNWdt rt / t st/ common/ pr of
pat h=opt / SUNWdt rt / t st/ common/ pr of
pat h=opt/ SUNWdt rt/ t st/ conmmon/ pr of
pat h=opt/ SUNWdtrt/ t st/ common/ pr of
pat h=opt / SUNWdt rt / t st/ common/ pr of
pat h=opt / SUNWdt rt / t st/ comon/ pr of
pat h=opt / SUNWdt rt / t st/ common/ pr of
pat h=opt/ SUNWdt rt/ t st/ conmmon/ pr of
pat h=opt / SUNWAt rt/ t st/ conmon/ pr of i
pat h=opt / SUNWdt rt/t st/ comon/ profil e-
pat h=opt / SUNWdt rt/t st/ common/ profil e-

ile-
ile-
ile-
ile-
ile-
ile-
ile-
ile-
ile-
ile-
ile-
ile-
| e-

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OODODDDDDDDDDMDMDD

pat h=opt/ SUNWAt rt/t st/ common/ proc/t st .
pat h=opt/ SUNWdtrt/t st/ conmmon/ proc/tst.
pat h=opt/ SUNWdtrt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ comon/ proc/tst.
pat h=opt/ SUNWdt rt/t st/ common/ proc/t st .
pat h=opt/ SUNWdtrt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ proc/t st .
pat h=opt/ SUNWdt rt/t st/ common/ proc/t st .
pat h=opt/ SUNWdtrt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.

pat h=opt/ SUNWtrt/t st/ comon/ privs/tst.fds. ksh node=0444

pat h=opt/ SUNWAt rt/t st/ comon/ privs/tst.func_access. ksh nbde=0444
pat h=opt/ SUNWdtrt/t st/ common/ privs/tst.getf.ksh node=0444

pat h=opt/ SUNWdtrt/t st/ common/ privs/tst.noprivdrop. ksh node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ privs/tst.noprivrestrict.ksh node=0444
pat h=opt/ SUNWIt rt/t st/ comon/ privs/tst.op_access. ksh node=0444

pat h=opt/ SUNWtrt/t st/ comon/ privs/tst.procpriv. ksh nbde=0444

pat h=opt/ SUNWdt rt/t st/ common/ privs/tst.providers. ksh node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ privs/tst.tick. ksh node=0444

pat h=opt/ SUNWIt rt/t st/ comon/ privs/tst.unpriv_funcs. ksh node=0444
pat h=opt / SUNWIt rt/ t st/ conmon/ pr obes/ err. D_PDESC_ZERO. pr obeqt n. d node=0444
pat h=opt / SUNWdt rt/ t st/ conmon/ pr obes/ err. D_PDESC_ZERO. probestar.d \

pat h=opt / SUNWAt rt/ t st/ cormon/ pr obes/ err. D_PDESC ZERO. ti ckstar.d node=0444
pat h=opt / SUNWAt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. assi gn. d node=0444

pat h=opt / SUNWdt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. decl are. d node=0444

pat h=opt/ SUNWdt rt/t st/ common/ probes/ err. D_SYNTAX. decl arei n. d node=0444
pat h=opt / SUNWAt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. | br aces. d node=0444

pat h=opt / SUNWAt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. pr obespec. d node=0444
pat h=opt / SUNWdt rt / t st/ cormon/ pr obes/ err. D_SYNTAX. r br aces. d node=0444

pat h=opt/ SUNWdt rt/t st/ common/ probes/ err. D _SYNTAX. recdec. d node=0444

st. basicl.d npde=0444

st. check. d node=0444

st. decl are. d nbde=0444
st.decl areafter.d node=0444
st. enptyprobe. d nbde=0444

st. pragma. d node=0444

st. pragmaaftertab.d node=0444
st. pragmai nsi de. d node=0444
st. pragmaout si de. d node=0444
st. probestar.d node=0444
create. ksh node=0444

di scard. ksh node=0444

exec. ksh npde=0444

execf ai | . ENCENT. ksh npde=0444
execfail.ksh node=0444
exitcore. ksh node=0444
exitexit.ksh node=0444

exi tkilled. ksh node=0444

si gnal . ksh node=0444

sigwai t.d node=0444

si gwai t . exe nobde=0555
startexit.ksh node=0444
n/err.D_PDESC ZERO profile.d \

n/ err. D_PDESC ZERQonens. d node=0444
n/err. D _PDESC ZEROonensec. d \

n/err. D PDESC ZERConeus. d npde=0444
n/ err.D_PDESC ZEROoneusec. d \

n/tst.argtest.d node=0444
n/tst.argtest.d.out node=0444
n/tst.basic.d nbde=0444
n/tst.basic.d. out node=0444
n/tst.func. ksh node=0444
n/tst.nod. ksh node=0444
n/tst.profilehz.d node=0444
n/tst.profilehz.d. out node=0444
n/tst.profil ems.d node=0444
n/tst.profil ens.d. out node=0444
n/tst.profil enmsec.d node=0444
n/tst.profilensec.d. out node=0444
n/tst.profil enhz.d node=0444
n/tst.profilenhz.d. out node=0444
n/tst.profil ens.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWItrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/comon/profile-n/tst
file path=opt/SUNWitrt/tst/common/profile-n/tst.
file path=opt/SUNWItrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/ providers/err.

node=0444

file path=opt/SUNWItrt/tst/comon/providers/err.

nmode=0444

file path=opt/SUNWitrt/tst/comon/ providers/err.

node=0444

file path=opt/SUNWItrt/tst/comon/providers/err.

node=0444

file path=opt/SUNWitrt/tst/common/ providers/err.

node=0444

pat h=opt/ SUNWIt rt/t st/ comon/rai se/tst.
pat h=opt/ SUNWIt rt/t st/ comon/rai se/tst.
pat h=opt/ SUNWdtrt/t st/ common/rai se/tst.
pat h=opt/ SUNWdtrt/t st/ comon/rai se/tst.
pat h=opt/ SUNWIt rt/t st/ comon/rai se/tst.
pat h=opt/ SUNWIt rt/t st/ comon/rai se/tst.
pat h=opt/ SUNWdtrt/t st/ common/rates/tst.
pat h=opt/ SUNWdtrt/tst/common/rates/tst.
pat h=opt/ SUNWItrt/t st/ comon/rates/tst.
pat h=opt/ SUNWItrt/tst/comon/rates/tst.
pat h=opt/ SUNWIt rt/t st/ comon/rates/tst.

DDODDDDDODDDDODDDDODDDDDDDDPDDDDDDDDDDDDMDDD

pat h=opt/ SUNWdtrt/t st/ common/ provi ders/tst.
pat h=opt/ SUNWdtrt/t st/ common/ provi ders/ tst.
pat h=opt / SUNWAt rt/t st/ common/ provi der s/t st.
pat h=opt / SUNWAt rt/t st/ comon/ provi der s/t st.
pat h=opt/ SUNWdtrt/t st/ conmmon/ provi ders/tst.
pat h=opt/ SUNWdtrt/t st/ common/ provi ders/tst.
pat h=opt / SUNWAt rt/t st/ comon/ provi ders/tst.
pat h=opt / SUNWdt rt/t st/ comon/ provi der s/t st.
pat h=opt / SUNWdt rt/t st/ common/ provi der s/ t st.
pat h=opt/ SUNWdtrt/t st/ common/ provi ders/tst.
pat h=opt / SUNWAt rt/t st/ common/ provi der s/ tst.
pat h=opt / SUNWdt rt/t st/ comon/ provi der s/t st.
pat h=opt / SUNWdt rt/t st/ common/ provi der s/ t st.
pat h=opt/ SUNWtrt/t st/ common/ provi ders/tst.
pat h=opt / SUNWAt rt/t st/ common/ pr ovi der s/t st.
pat h=opt / SUNWAt rt/t st/ comon/ provi der s/t st.
pat h=opt / SUNWdt rt/t st/ common/ provi der s/ t st.
pat h=opt/ SUNWdtrt/t st/ common/ provi ders/tst.
pat h=opt/ SUNWdtrt/t st/ common/ provi ders/ tst.
pat h=opt / SUNWAt rt/t st/ common/ provi der s/t st.
pat h=opt/ SUNWdt rt/t st/ comon/ provi der s/ tst.
pat h=opt/ SUNWdtrt/t st/ common/ provi ders/tst.
pat h=opt/ SUNWtrt/t st/ common/ provi ders/ tst.

.ufuncsort.
uf uncsort. ksh. out

.profilens.d.out
.profilensec.d nbde=0444
.profilensec.d. out
.profiles.d npde=0444
.profiles.d. out node=0444
.profilesec.d node=0444
.profilesec.d. out node=0444
.profileus.d node=0444
.profileus.d. out

.profileusec.d. out
.sym ksh nbde=0444
.ufunc. ksh nbde=0444

.ufuncsort. exe nmbde=0555

23
node=0444
node=0444

node=0444

.profileusec.d nbde=0444

node=0444

ksh npode=0444

node=0444

urod. ksh npde=0444
usym ksh node=0444
D PDESC | NVAL. wr ongdec4. d \

D _PDESC_ZERO nonprofile.d \

D _PDESC_ZERO wr ongdecl. d \

D _PDESC_ZERO wr ongdec2.d \

D _PDESC_ZERO wr ongdec3. d \

basi cs. d node=0444
basi cs. d. out node=0444

begi nexit.
begi nprof .
begi nprof .
probattrs.
probattrs.
pr obef unc.
pr obef unc.

d

d
d
d
d
d
d

node=0444
node=0444

.out node=0444

node=0444

.out node=0444

node=0444

.out node=0444

probenod. d node=0444
probenod. d. out node=0444
probenane. d node=0444
probenane. d. out node=0444
probprov. d node=0444
probprov. d. out node=0444
profend. d node=0444

prof end. d. out node=0444
profexit.d node=0444
profexit.d.out node=0444
trace.d node=0444

trace. d. out
twoprof . d nbde=0444

twopr of . d. out
rai sel.d node=0444
rai sel. exe npde=0555
rai se2.d node=0444
rai se2. exe nnde=0555
rai se3.d node=0444
rai se3. exe nnde=0555
aggrate.d node=0444
aggr at e. d. out
statusrate.d node=0444

swi tchrate.d node=0444
switchrate. d. out node=0444
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/ t st. basenanme. d node=0444

pat h=opt/ SUNWIt rt/t st/ comon/safety/tst.caller.d node=0444

pat h=opt / SUNWIt rt/t st/ common/ saf ety/tst.cl eanpat h. d nnde=0444

pat h=opt / SUNWIt rt/t st/ cormon/ saf et y/t st. copyi n. d node=0444

node=0444
nmode=0444

node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

pat h=opt/ SUNWtrt/t st/ comon/ saf ety/tst.

pat h=opt/ SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt / SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWitrt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ common/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt / SUNWItrt/t st/ comon/ safety/tst.
pat h=opt/ SUNWIt rt/t st/ common/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt / SUNWAtrt/t st/ comon/ safety/tst.
pat h=opt / SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt / SUNWIt rt/t st/ common/ safety/tst.
pat h=opt / SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWItrt/t st/ common/ safety/tst.
pat h=opt / SUNWItrt/t st/ comon/ safety/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt / SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt / SUNWItrt/t st/ comon/ safety/tst.
pat h=opt / SUNWIt rt/t st/ comon/ safety/tst.
pat h=opt/ SUNWdtrt/t st/ common/ saf ety/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ saf ety/tst.
pat h=opt / SUNWAt rt/t st/ comon/ scal ars/err.
node=0444
file path=opt/SUNWitrt/tst/comon/scal ars/err.
node=0444
file path=opt/SUNWitrt/tst/common/scal ars/err.
node=0444
ile path=opt/SUNWItrt/tst/comon/scal ars/err.

ODODODODODDDDDDODDDODDDDODODDDODODDDD®D®MD®MD®MD®MD®DDDD

copyi n2.d npode=0444
pat h=opt/ SUNWAt rt/t st/ comon/ saf et y/ t st. ddi

pat hnanme. d node=0444

di rnane. d node=0444
errno. d node=0444
execnarne. d node=0444
gi d. d node=0444

ht on. d node=0444

i ndex. d node=0444
negdsi ze. d node=0444
msgsi ze. d node=0444
nul | .
pi d. d node=0444
ppi d. d npde=0444
progenyof . d node=0444
random d node=0444
rw. d node=0444
shortstr.
stack. d node=0444
st ackdept h. d node=0444
stddev. d npbde=0444
strchr.
strjoin.d node=0444
strstr.
strtok.d npde=0444
substr.
ucal | er.d node=0444
ui d. d node=0444
unal i gn. d node=0444
uregs.d node=0444
ust ack. d node=0444
ust ackdept h. d node=0444
vahol e. d node=0444
vi ol ent deat h. ksh npbde=0444
zonenane. d node=0444
D ARR LOCAL.thisarray.d \

d node=0444

d npbde=0444

d npde=0444
d node=0444
d npde=0444

D DECL_| DRED. errval .

D DECL_CLASS. sel fthis.d \
D_DECL_CLASS. thisself.d \

d npde=0444

f
file path=opt/SUNWAtrt/tst/common/scal ars/err. D _OP_| NCOWPAT. dec. err.d \

node=0444
file path=opt/SUNWitrt/tst/common/scal ars/err.
node=0444

D_OP_| NCOWPAT. dupgt ype. d \

file path=opt/SUNWItrt/tst/common/scal ars/err.D_OP_| NCOWPAT. dupl type. d \

node=0444
file path=opt/SUNWitrt/tst/common/scal ars/err.
node=0444

pat h=opt/ SUNWtrt/t st/ comon/ scal ars/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ scal ars/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ scal ars/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ scal ars/ tst.
pat h=opt/ SUNWdtrt/t st/ common/ scal ars/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ scal ars/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ scal ars/tst.
pat h=opt/ SUNWdtrt/t st/ common/ scal ars/ tst.
pat h=opt/ SUNWdtrt/t st/ comon/ scal ars/ tst.
pat h=opt / SUNWAt rt/t st/ comon/ scal ars/tst.

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OODODODDODDDDDDDDMDDD

node=0444

file path=opt/SUNWitrt/tst/comon/scripting/err.

D_OP_| NCOWPAT. dupt t ype. d \

pat h=opt/ SUNWdtrt/t st/ common/ scal ars/ err. D_SYNTAX. decl are. d nbde=0444
basi cvar.d nmpde=0444

basi cvar. d. out node=0444

| ocal var. d npde=0444
m sc.d node=0444

sel f.d npde=0444

sel farray. d node=0444
sel farray2.d node=0444
sel fthis.d node=0444
this.d nmbde=0444
thissel f.d node=0444
pat h=opt / SUNWIt rt/t st/ cormon/ sched/ t st . enqueue. d nbde=0444
pat h=opt / SUNWIt rt/t st/ cormon/ sched/ t st . oncpu. d nbde=0444

pat h=opt/ SUNWtrt/t st/ comon/ sched/ t st. st ackdept h. d nbde=0444
pat h=opt / SUNWAt rt/t st/ common/ scri pting/ err. D _MACRO UNDEF. i nval i dargs.d \

D OP_LVAL.rdonly.d nbde=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 25

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
A595]
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

file path=opt/SUNWItrt/tst/comon/scripti
node=0444
file path=opt/SUNWitrt/tst/common/scripti
file path=opt/SUNWItrt/tst/common/scripti
file path=opt/SUNWItrt/tst/comon/scripti
file path=opt/SUNWitrt/tst/common/scripti
file path=opt/SUNWItrt/tst/comon/scripti
node=0444
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ comon/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ comon/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ comon/ scri pti
pat h=opt / SUNWIt rt/t st/ comon/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti

OODODODDOPDODDDPDODDDDDDDDDDDDMDMDMDMDMDD

node=0444

ng/ err. D _OP_WRI TE. usepi dmacro. d \

ng/ err. D _SYNTAX. concat. d node=0444
ng/ err. D_SYNTAX. desc. d npde=0444

ng/ err. D_SYNTAX. i nval . d node=0444
ng/ err. D_SYNTAX. pi d. d node=0444

ng/ tst. D_MACRO UNUSED. over f | ow. ksh \

ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/ tst.
ng/tst.
ng/tst.
ng/tst.
ng/ tst.

arg0. d node=0444
argunment s. ksh node=0444
assi gn. d node=0444
basi c. d npode=0444
egi d. d node=0444
egi d. ksh node=0444
eui d. d mbde=0444
eui d. ksh npde=0444
gi d.d node=0444

gi d. ksh node=0444
pgi d. d node=0444

pi d.d node=0444
ppi d. d npde=0444
ppi d. ksh nmode=0444
projid.d node=0444
projid. ksh node=0444
qui te.d npbde=0444

si d. d node=0444

si d. ksh nbde=0444
stringmacro. ksh node=0444
taski d. d node=0444
taski d. ksh npde=0444
trace.d node=0444

ui d. d npde=0444

ui d. ksh node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ sdt/tst.sdtargs.d node=0444
pat h=opt / SUNWAt rt/t st/ common/ sdt/t st. sdt args. exe npbde=0555
pat h=opt / SUNWIt rt/t st/ cormon/ si zeof / err. D_| DENT_BADREF. Si zeof Assoc. d \

file path=opt/SUNWItrt/tst/comon/sizeof/err.D_| DENT_UNDEF. UnknownSynbol . d \

node=0444

file path=opt/SUNWitrt/tst/common/sizeof/err.D_SI ZEOF_TYPE. badstruct.d \

node=0444

file path=opt/SUNWItrt/tst/comon/sizeof/err.D Sl ZEOF_TYPE. d node=0444
file

pat h=opt / SUNWdt rt/ t st/ comon/ si
node=0444

zeof /err.

D_SYNTAX. Si zeof BadType. d \
Si zeof Array. d node=0444

node=0444

file path=opt/SUNWItrt/tst/comon/sizeof/tst.
file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof DataTypes. d npde=0444
file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof Expression.d node=0444
file path=opt/SUNWitrt/tst/comon/sizeof/tst.Sizeof NULL. d node=0444
file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof StrConst.d npbde=0444
file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof StrConst.d. out
file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof Stringl.d node=0444
file path=opt/SUNWitrt/tst/common/sizeof/tst.Sizeof Stringl.d.out node=0444
file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof String2.d node=0444
file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof String2.d.out node=0444
file path=opt/SUNWItrt/tst/comon/specul ation/err.Buf Si zeVariationsl.d \
node=0444
file path=opt/SUNWitrt/tst/comon/specul ati on/err.BufSizeVariations2.d \
node=0444
file\
pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hBr eakPo
node=0444
file\
pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D _ACT_SPEC. Specul ateWthChill.d
node=0444
file\

pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hCopyQut

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 26
1645 node=0444

1646 file \

1647 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hCopyQut
1648 node=0444

1649 file \

1650 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_ACT_SPEC. Specul at eWt hPani c. d
1651 node=0444

1652 file \

1653 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hRai se. d
1654 node=0444

1655 file \

1656 pat h=opt/ SUNWt rt/t st/ comon/ specul ati on/ err. D _ACT_SPEC. Specul at eWt hSt op. d
1657 node=0444

1658 file path=opt/SUNWItrt/tst/comon/specul ation/err.D AGG COW AggAftCommit.d \
1659 node=0444

1660 file \

1661 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG _SPEC. Specul at eWt hAvg.d \
1662 node=0444

1663 file \

1664 pat h=opt/ SUNWt rt/t st/ common/ specul ati on/ err. D_AGG SPEC. Specul at eW t hCount . d
1665 node=0444

1666 file \

1667 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D _AGG _SPEC. Specul at eW t hLquant .
1668 node=0444

1669 file \

1670 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D _AGG _SPEC. Specul at eWt hMax.d \
1671 nmode=0444

1672 file \

1673 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG _SPEC. Specul ateWthM n.d \
1674 node=0444

1675 file \

1676 pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_AGG SPEC. Specul at eWt hQuant . d
1677 node=0444

1678 file \

1679 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG_SPEC. Specul at eW t hSt ddev.
1680 node=0444

1681 file \

1682 pat h=opt/ SUNWit rt/t st/ comon/ specul ati on/ err. D_AGG _SPEC. Specul ateWthSumd \
1683 node=0444

1684 file \

1685 pat h=opt/ SUNWt rt/t st/ comron/ specul ati on/err. D_COVMM COW Commi t Aft Conmit.d \
1686 node=0444

1687 file path=opt/SUNWItrt/tst/comon/specul ation/err. D COM COW Di sjointCommit.d \
1688 node=0444

1689 file \

1690 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_COMM DREC. Conmi t Af t Dat aRec. d
1691 node=0444

1692 file \

1693 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_DREC_COWM Dat aRecAft Commi t. d
1694 node=0444

1695 file \

1696 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/err. D_ DREC COW ExitAfterConmit.d \
1697 node=0444

1698 file path=opt/SUNWItrt/tst/common/specul ation/err.D_EXI T_SPEC. Exi t Aft Spec.d \
1699 node=0444

1700 file path=opt/SUNWItrt/tst/comon/ specul ation/err. D PRAGVA MALFORM NspecExpr.d \
1701 node=0444

1702 file \

1703 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_PRAGVA_OPTSET. HugeNspecVal ue.
1704 node=0444

1705 file \

1706 pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_PRAGVA_OPTSET. | nval i dSpecSi ze
1707 node=0444

1708 file \

1709 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_PRAGVA OPTSET. NegSpecSi ze. d \
1710 node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 27 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 28
1711 file path=opt/ SUNWItrt/tst/common/ specul ation/err.D_PROTO LEN. SpecNold. d \ 1777 file path=opt/ SUNWItrt/tst/common/struct/err.D_ADDROF_VAR. StructPointer.d \
1712 node=0444 1778 node=0444

1713 file path=opt/ SUNWItrt/tst/common/ specul ation/err.D_SPEC COW SpecAftCommit.d \ 1779 file path=opt/SUNWItrt/tst/common/struct/err.D_DECL_COVBO. Struct Wt hout Col on. d \
1714 node=0444 1780 node=0444

1715 file path=opt/ SUNWItrt/tst/common/ specul ation/ err.D_SPEC DREC. SpecAftDataRec.d \ 1781 file \

1716 node=0444 1782 pat h=opt/ SUNWItrt/t st/ comron/ struct/err. D_DECL_COMBO. St ruct Wt hout Col onl1.d \
1717 file path=opt/ SUNWItrt/tst/common/ specul ation/err.D_SPEC SPEC. SpecAft Spec.d \ 1783 node=0444

1718 node=0444 1784 file path=opt/SUNWItrt/tst/common/struct/err.D_DECL_I NCOWLETE.circular.d \
1719 file path=opt/SUNWItrt/tst/common/ specul ation/err.NegativeBufSize.d npde=0444 1785 node=0444

1720 file path=opt/SUNWItrt/tst/comon/specul ation/err.NegativeNspec.d node=0444 1786 file path=opt/SUNWItrt/tst/common/struct/err.D DECL_| NCOWLETE. order.d \
1721 file path=opt/SUNWItrt/tst/comon/ specul ati on/err. NegativeSpecSi ze. d node=0444 1787 node=0444

1722 file path=opt/SUNWItrt/tst/comon/ specul ation/err. SpecSi zeVari ationsl.d \ 1788 file path=opt/SUNWItrt/tst/comon/struct/err.D DECL_| NCOVPLETE. order2.d \
1723 node=0444 1789 node=0444

1724 file path=opt/SUNWItrt/tst/comon/specul ation/err. SpecSi zeVari ations2.d \ 1790 file path=opt/SUNWAtrt/tst/comon/struct/err.D DECL_| NCOWPLETE. recursive.d \
1725 node=0444 1791 node=0444

1726 file path=opt/SUNWItrt/tst/comon/specul ation/tst.ConmmitAfterDiscard.d \ 1792 file path=opt/SUNWItrt/tst/comon/struct/err.D DECL_| NCOVPLETE. si nple.d \
1727 node=0444 1793 node=0444

1728 file path=opt/ SUNWItrt/tst/comon/ specul ation/tst.ComritWthZero.d node=0444 1794 file path=opt/SUNWItrt/tst/comon/struct/err.D DECL_VO DOBJ. baddec. d node=0444
1729 file path=opt/SUNWItrt/tst/comon/ specul ation/tst.DataRecAftDi scard.d \ 1795 file path=opt/SUNWitrt/tst/comron/struct/err. D _PROTO ARG DupStruct Assoc.d \
1730 node=0444 1796 node=0444

1731 file path=opt/SUNWItrt/tst/common/ specul ation/tst.Di scardAftConmit.d node=0444 1797 file path=opt/SUNWItrt/tst/common/struct/tst. Struct Assoc.d node=0444

1732 file path=opt/SUNWItrt/tst/comon/specul ation/tst.Di scardAftDataRec.d \ 1798 file path=opt/SUNWItrt/tst/comon/struct/tst. StructDataTypes.d node=0444
1733 node=0444 1799 file path=opt/SUNWItrt/tst/comon/struct/tst. Structlnside.d nbde=0444

1734 file path=opt/SUNWItrt/tst/common/ specul ation/tst.Di scardAftDiscard.d \ 1800 file path=opt/SUNWItrt/tst/common/struct/tst.clausel ocal.d npbde=0444

1735 node=0444 1801 file path=opt/SUNWItrt/tst/common/struct/tst.clausel ocal .d. out node=0444
1736 file path=opt/SUNWItrt/tst/common/ specul ation/tst.Di scardWthZero.d npde=0444 1802 file path=opt/SUNWItrt/tst/common/syscall/tst.args.d npode=0444

1737 file path=opt/SUNWItrt/tst/comon/ specul ation/tst.ExitAftDi scard.d node=0444 1803 file path=opt/SUNWItrt/tst/comon/syscall/tst.args. exe nbde=0555

1738 file path=opt/SUNWItrt/tst/common/ specul ation/tst. NoSpecBuffer.d node=0444 1804 file path=opt/SUNWItrt/tst/common/syscall/tst.openret.ksh node=0444

1739 file path=opt/SUNWItrt/tst/conmmon/ specul ation/tst.SpecSizeVariationsl.d \ 1805 file path=opt/SUNWItrt/tst/conmmon/sysevent/tst.post.d nbde=0444

1740 node=0444 1806 file path=opt/SUNWItrt/tst/common/sysevent/tst.post.exe node=0555

1741 file path=opt/SUNWItrt/tst/comon/ specul ation/tst. SpecSi zeVariations2.d \ 1807 file path=opt/SUNWItrt/tst/comon/sysevent/tst.post_chan.d node=0444

1742 node=0444 1808 file path=opt/SUNWItrt/tst/comon/sysevent/tst.post_chan. exe nbode=0555

1743 file path=opt/SUNWItrt/tst/conmmon/ specul ation/tst.SpecSi zeVariations3.d \ 1809 file path=opt/SUNWItrt/tst/common/tick-n/err.D _PDESC ZERO. tick.d node=0444
1744 node=0444 1810 file path=opt/SUNWItrt/tst/common/tick-n/err.D _PDESC ZEROonens. d node=0444
1745 file path=opt/SUNWItrt/tst/comon/ specul ation/tst. Specul ateWthRandomd \ 1811 file path=opt/SUNWItrt/tst/comon/tick-n/err. D PDESC ZERConensec.d node=0444
1746 node=0444 1812 file path=opt/SUNWItrt/tst/comon/tick-n/err. D PDESC ZEROConeus. d node=0444
1747 file path=opt/SUNWItrt/tst/comon/specul ation/tst. Specul ati onCommit.d \ 1813 file path=opt/SUNWItrt/tst/comon/tick-n/err. D_PDESC ZEROoneusec. d node=0444
1748 node=0444 1814 file path=opt/SUNWItrt/tst/common/tick-n/tst.tickarg0.d node=0444

1749 file path=opt/SUNWItrt/tst/comon/specul ation/tst. Specul ati onDi scard.d \ 1815 file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickns.d npode=0444

1750 node=0444 1816 file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickns.d.out nbde=0444

1751 file path=opt/SUNWItrt/tst/common/ specul ation/tst. Specul ati onl D. d nbode=0444 1817 file path=opt/SUNWItrt/tst/common/tick-n/tst.ticknsec.d node=0444

1752 file path=opt/SUNWItrt/tst/conmmon/ specul ation/tst. Specul ati onWthZero.d \ 1818 file path=opt/SUNWItrt/tst/common/tick-n/tst.ticknsec.d.out npbde=0444

1753 nmode=0444 1819 file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickns.d node=0444

1754 file path=opt/SUNWItrt/tst/comon/ specul ation/tst. TwoSpecBuffers.d node=0444 1820 file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickns.d.out nbde=0444

1755 file path=opt/SUNWItrt/tst/common/ specul ation/tst.negcommit.d node=0444 1821 file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticknsec.d node=0444

1756 file path=opt/SUNWItrt/tst/conmon/specul ation/tst.negspec.d node=0444 1822 file path=opt/SUNWItrt/tst/common/tick-n/tst.ticknsec.d.out nbde=0444

1757 file path=opt/ SUNWItrt/tst/common/ specul ation/tst.zerosize.d node=0444 1823 file path=opt/SUNWItrt/tst/common/tick-n/tst.ticks.d node=0444

1758 file path=opt/SUNWItrt/tst/comon/stability/err.D ATTR MN. M nAttributes.d \ 1824 file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticks.d.out node=0444

1759 node=0444 1825 file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticksec.d node=0444

1760 file path=opt/SUNWItrt/tst/common/stack/ err.D_STACK_PROTO bad.d npde=0444 1826 file path=opt/SUNWItrt/tst/common/tick-n/tst.ticksec.d.out node=0444

1761 file path=opt/SUNWItrt/tst/comon/ stack/err.D STACK S| ZE. d node=0444 1827 file path=opt/SUNWItrt/tst/common/tick-n/tst.tickus.d npde=0444

1762 file path=opt/SUNWAtrt/tst/comon/ stack/ err. D USTACK _FRAMES. bad. d node=0444 1828 file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickus.d.out nbde=0444

1763 file path=opt/SUNWItrt/tst/comon/stack/err.D USTACK_PROTO. bad. d node=0444 1829 file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickusec.d node=0444

1764 file path=opt/SUNWItrt/tst/comon/ stack/err.D_USTACK STRSI ZE. bad. d node=0444 1830 file path=opt/SUNWItrt/tst/common/tick-n/tst.tickusec.d.out npbde=0444

1765 file path=opt/SUNWItrt/tst/common/stack/tst.defaul t.d node=0444 1831 file path=opt/SUNWItrt/tst/common/trace/ err.D_PROTO LEN. bad.d npde=0444

1766 file path=opt/SUNWItrt/tst/comon/stackdepth/tst.default.d node=0444 1832 file path=opt/SUNWItrt/tst/comon/trace/err. D TRACE_AGG bad.d npbde=0444

1767 file path=opt/SUNWItrt/tst/comon/stop/tst.stopl.d node=0444 1833 file path=opt/SUNWItrt/tst/comon/trace/ err.D TRACE VO D. bad. d node=0444
1768 file path=opt/SUNWItrt/tst/conmmon/stop/tst.stopl. exe nbde=0555 1834 file path=opt/SUNWItrt/tst/common/trace/tst.dyn.d node=0444

1769 file path=opt/SUNWItrt/tst/conmmon/stop/tst.stop2.d node=0444 1835 file path=opt/SUNWItrt/tst/common/trace/tst. msc.d node=0444

1770 file path=opt/SUNWItrt/tst/comon/stop/tst.stop2. exe node=0555 1836 file path=opt/SUNWItrt/tst/comon/trace/tst.qstring.d node=0444

1771 file path=opt/SUNWItrt/tst/comon/strlen/tst.strlenl.d node=0444 1837 file path=opt/SUNWItrt/tst/comon/trace/tst.qstring.d.out nbde=0444

1772 file path=opt/SUNWItrt/tst/comon/strtoll/err.BaseTooLarge.d node=0444 1838 file path=opt/SUNWItrt/tst/comon/trace/tst.string.d node=0444

1773 file path=opt/SUNWItrt/tst/common/strtoll/err.BaseTooSnal|.d npde=0444 1839 file path=opt/SUNWItrt/tst/common/tracenmeni err. D PROTO ARG badsi ze. d node=0444
1774 file path=opt/SUNWItrt/tst/comon/strtoll/tst.strtoll.d npode=0444 1840 file path=opt/SUNWItrt/tst/comon/tracenem err.D PROTO LEN. t oof ew. d node=0444
1775 file path=opt/SUNWItrt/tst/comon/strtoll/tst.strtoll.d.out nbde=0444 1841 file path=opt/SUNWItrt/tst/comon/tracenem err. D TRACEMEM ADDR. badaddr.d \
1776 #endif /* ! codereview */ 1842 node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 29

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898 f
1899 f
1900
1901
1902
1903
1904
1905
1906
1907
1908

file path=opt/SUNWItrt/tst/common/tracenmeni err. D_TRACEMEM ARGS. d npde=0444

file path=opt/SUNWItrt/tst/common/tracemeni err. D TRACEMEM DYNSI ZE. d node=0444

file path=opt/SUNWItrt/tst/common/tracemeni err. D _TRACEMEM S| ZE. negsi ze. d \
node=0444

file path=opt/SUNWItrt/tst/comon/traceneni err. D_TRACEMEM SI ZE. zerosi ze.d \
node=0444

file path=opt/SUNWItrt/tst/comon/tracenenitst.dynsize.d npode=0444

file path=opt/SUNWItrt/tst/comon/tracenenitst.dynsize.d. out node=0444

file path=opt/SUNWItrt/tst/comon/tracenmenitst.rootvp.d npbde=0444

file path=opt/SUNWitrt/tst/comon/tracenmenitst.smallsize.d node=0444

file path=opt/SUNWitrt/tst/comon/tracenmenitst.smallsize.d.out node=0444

file\

pat h=opt/ SUNWitrt/tst/common/transl ators/err. D DECL_TYPERED. BadTransDecl .d \

node=0444

file\
pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D _OP_| NCOWPLETE. NonExi st ent | npu
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/err.D_SYNTAX. BadTransDecl 1.d \
node=0444

file path=opt/SUNWItrt/tst/comon/transl ators/err. D SYNTAX. BadTransDecl 3.d \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/err.D_SYNTAX. BadTransDecl 4.d \
node=0444

file\
pat h=opt/ SUNWitrt/tst/common/transl ators/err. D TYPE_MEMBER. NonExi st ent | nput 2
node=0444

file\
pat h=opt/ SUNWit rt/t st/ comon/ transl at ors/ err. D_XLATE_ | NCOVPAT. Badl nput Typel.
node=0444

file\
pat h=opt/ SUNWIt rt/t st/ comron/transl ators/ err. D_XLATE_MEMB. NonExi st ent Qut put 2
node=0444

file path= opt/SUl\N‘dtrt/tst/commn/transl ators/err. D _XLATE_NONE. BadTransDecl 6. d \
node=044

file\
pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D_XLATE_REDECL. Repeat Tr ansDecl .
node=0444

file path=opt/SUNWItrt/tst/comon/translators/err.D XLATE_SCU. BadTransDecl 8.d \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/err.D XLATE SOU. BadTransint.d \
node=0444

file\
pat h=opt/ SUNWItrt/t st/ comron/transl ators/ err. D_XLATE_SOU. NonExi st ent Qut put 1.
node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst.Crcul arTransDecl.d \
node=0444

file path=opt/SUNWItrt/tst/comon/transl ators/tst. EnptyTransDecl.d node=0444

file path=opt/SUNWitrt/tst/comon/translators/tst.ForwardTag.d node=0444

file path=opt/SUNWitrt/tst/common/translators/tst.|nputAliasTrans.d node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst.|nputlntTrans.d node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst. QutputAliasTrans.d npbde=0444

file path=opt/SUNWitrt/tst/common/translators/tst.Partial Dereferencing.d \
node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst. Partial Qutput TransDefn.d \
node=0444

ile path=opt/SUNWItrt/tst/comon/transl ators/tst.ProcMdel Trans. d node=0444
ile path=opt/SUNWItrt/tst/comon/transl ators/tst.RepeatDeclaration.d \

node=0444

file path=opt/SUNWIitrt/tst/comon/translators/tst.SinultaneousTranslators.d \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/tst. StructureAssignnent.d \
node=0444

file path=opt/SUNWItrt/tst/comon/transl ators/tst. Test TransStabilityl. ksh \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/tst. Test TransStabilityl. ksh. out \
node=0444

1973

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 30
1909 file path=opt/SUNWItrt/tst/common/translators/tst. TestTransStability2. ksh \
1910 node=0444
1911 file path=opt/SUNWItrt/tst/common/translators/tst. TestTransStability2. ksh.out \
1912 node=0444
1913 file path=opt/SUNWItrt/tst/common/translators/tst. TransNonPoi nter.d npde=0444
1914 file path=opt/SUNWItrt/tst/comon/transl ators/tst. TransQut put Pointer.d \
1915 node=0444
1916 file path=opt/SUNWItrt/tst/comon/translators/tst. TransPoi nter.d node=0444
1917 file path=opt/SUNWItrt/tst/common/translators/tst. Transl ateSel f.d npbde=0444
1918 file path=opt/SUNWItrt/tst/comon/transl ators/tst.UnionlnputTrans.d node=0444
1919 file path=opt/SUNWItrt/tst/comon/transl ators/tst.Uni onQut put Trans. d node=0444
1920 file path=opt/SUNWItrt/tst/comon/typedef/err.D DECL_| DRED. DupTypeDef.d \
1921 node=0444
1922 file path=opt/SUNWItrt/tst/comon/typedef/err.D SYNTAX. BadExi stingTypedef.d \
1923 node=0444
1924 file path=opt/SUNWItrt/tst/comon/typedef/err.D _SYNTAX. TypedeflnC ause.d \
1925 node=0444
1926 file path=opt/SUNWItrt/tst/comon/typedef/tst.Chai nTypedef.d node=0444
1927 file path=opt/SUNWItrt/tst/comon/typedef/tst. Typedef Dat aAssi gn.d node=0444
1928 file path=opt/SUNWItrt/tst/comon/types/err.D CAST_ | NVAL. badcast.d node=0444
1929 file path=opt/SUNWItrt/tst/comon/types/err.D CG DYN. Resul t DynType. d node=0444
1930 file path=opt/SUNWItrt/tst/comon/types/err.D CHR OFLOW charconst.d node=0444
1931 file path=opt/SUNWAtrt/tst/comon/types/err. D DECL_BADCLASS. bad. d node=0444
1932 file path=opt/SUNWitrt/tst/common/types/err.D DECL_CHARATTR. badtype3.d \
1933 node=0444
1934 file path=opt/SUNWItrt/tst/common/types/err.D_DECL_COVBO. badtype4.d npde=0444
1935 file path=opt/SUNWItrt/tst/comon/types/err. D DECL_COVBO. badt ype5. d node=0444
1936 file path=opt/SUNWItrt/tst/comon/types/err.D DECL_ENCONST. badeval . d node=0444
1937 file path=opt/SUNWItrt/tst/comon/types/err. D DECL_ENOFLOW enof | ow. d node=0444
1938 file path=opt/SUNWItrt/tst/comon/types/err. D DECL_ENOFLOW enuf | ow. d node=0444
1939 file path=opt/SUNWItrt/tst/comron/types/err.D DECL_SCOPE. scopeop. d node=0444
1940 file path=opt/SUNWItrt/tst/comon/types/err.D DECL_USELESS. baddec. d node=0444
1941 file path=opt/SUNWItrt/tst/comon/types/err.D_OP_ACT. badcond. d node=0444
1942 file path=opt/SUNWItrt/tst/comon/types/err.D _OP_ARI TH. badoperand. d node=0444
1943 file path=opt/SUNWAtrt/tst/comon/types/err. D _OP_| NCOVPAT. badassi gn.d \
1944 node=0444
1945 file path=opt/SUNWItrt/tst/comon/types/err.D OP_I NT. badbi t op. d nbde=0444
1946 file path=opt/SUNWItrt/tst/comon/types/err.D OP_| NT. badshift.d npode=0444
1947 file path=opt/SUNWItrt/tst/comon/types/err.D OP_SCALAR badcond.d node=0444
1948 file path=opt/SUNWItrt/tst/common/types/err.D OP_SCALAR badi ncop. d node=0444
1949 file path=opt/SUNWItrt/tst/common/types/err.D _OP_SCALAR badl ogop. d node=0444
1950 file path=opt/SUNWItrt/tst/comon/types/err.D _PROTO LEN. badcondl. d node=0444
1951 file path=opt/SUNWItrt/tst/comon/types/err. D _SYNTAX. badenum d node=0444
1952 file path=opt/SUNWItrt/tst/comon/types/err.D SYNTAX. badi d. d node=0444
1953 file path=opt/ SUNWItrt/tst/comon/types/err.D SYNTAX badstruct.d node=0444
1954 file path=opt/SUNWItrt/tst/common/types/err.D_UNKNOM. badtypel.d node=0444
1955 file path=opt/SUNWItrt/tst/common/types/err.D_UNKNOM. badt ype2.d node=0444
1956 file path=opt/SUNWItrt/tst/comon/types/err.D UNKNOM. dupenum d node=0444
1957 file path=opt/SUNWItrt/tst/comon/types/err. D _UNKNOM. dupstruct.d node=0444
1958 file path=opt/SUNWItrt/tst/comon/types/err.D XLATE REDECL. Resul t DynType.d \
1959 node=0444
1960 file path=opt/SUNWItrt/tst/comon/types/tst.assignops.d node=0444
1961 file path=opt/SUNWItrt/tst/comon/types/tst.badshiftops.d nbde=0444
1962 file path=opt/SUNWItrt/tst/common/types/tst.basics.d node=0444
1963 file path=opt/SUNWItrt/tst/common/types/tst.basics.d.out node=0444
1964 file path=opt/SUNWItrt/tst/comon/types/tst.bitops.d node=0444
1965 file path=opt/SUNWItrt/tst/comon/types/tst.charconstants.d nbde=0444
1966 file path=opt/SUNWItrt/tst/common/types/tst.conplex.d nbde=0444
1967 file path=opt/SUNWItrt/tst/common/types/tst.condexpr.d npde=0444
1968 file path=opt/SUNWItrt/tst/comon/types/tst.const.d npde=0444
1969 file path=opt/SUNWItrt/tst/comon/types/tst.constants.d nbde=0444
1970 file path=opt/SUNWItrt/tst/comon/types/tst.conv.d nbde=0444
1971 file path=opt/SUNWItrt/tst/conmmon/types/tst.enumd node=0444
1972 file path=opt/SUNWItrt/tst/comon/types/tst.intincop.d node=0444

file

file

1974

pat h=opt / SUNWIt rt/t st/ comon/types/tst.intops.d node=0444
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.inttypes.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040

©ODOD®D®MD®M®D®DDD

node=0444

file path=opt/SUNWitrt/tst/comon/union/err.

node=0444

file path=opt/SUNWitrt/tst/common/union/err.

node=0444

file path=opt/SUNWitrt/tst/comon/union/err.

node=0444

file path=opt/SUNWitrt/tst/conmmon/union/err.

node=0444

file path=opt/SUNWitrt/tst/comon/union/err.

node=0444

file path=opt/SUNWitrt/tst/conmmon/union/err.

node=0444

file path=opt/SUNWitrt/tst/comon/union/err.

node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWIt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ common/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdt rt/t st/ common/ usdt/t st.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ common/ usdt/t st .
pat h=opt / SUNWIt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ common/ usdt/t st .
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWIt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWtrt/t st/ common/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ common/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWIt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ common/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWIt rt/t st/ common/ usdt/t st.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWIt rt/t st/ common/ usdt/t st.

DPODODDDDDODDDDDDDDDODDDDDODDDDDDPDPDDDDDDDDDDDMDMDMD

pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt / SUNWAt rt/t st/ common/ uni on/ err.

pat h=opt/ SUNWdt rt/t st/ common/ uni on/ t st.
pat h=opt/ SUNWAt rt/ t st/ common/ uni on/ t st .
pat h=opt / SUNWAt rt/t st/ common/ uni on/ t st .

31

ptrincop.d node=0444
ptrops.d node=0444

rel enum d node=0444

rel string.d nbde=0444

shi ftops.d node=0444
stringconstants.d node=0444
struct.d nmpde=0444

typedef.d npde=0444
unaryop. d node=0444
D_ADDROF_VAR. Uni onPoi nter.d \

D_DECL_COMBO. Uni onW t hout Col on. d \
D _DECL_COVBO. Uni onW t hout Col onl. d \
D _DECL_I NCOWPLETE. circul ar.d \

D _DECL_| NCOVPLETE. order.d \

D _DECL_I| NCOWPLETE. recursive.d \

D DECL_| NCOWPLETE. si nple. d \
D_PROTO_ARG DupUni onAssoc.d \

Uni onAssoc. d node=0444
Uni onDat aTypes. d node=0444
Uni onl nsi de. d node=0444
andpi d. ksh npde=0444
argnmap. d node=0444

ar gmap. exe node=0555
args. d node=0444

ar gs. exe npde=0555
badguess. ksh npbde=0444
corruptenv. ksh node=0444
dl cl osel. ksh node=0444

dl cl osel. ksh. out npde=0444
dl cl ose2. ksh node=0444

dl cl ose2. ksh. out npde=0444
dl cl ose3. ksh npode=0444

el i m nate. ksh nbde=0444
enabl ed. ksh npde=0444
enabl ed. ksh. out npde=0444
enabl ed2. ksh node=0444
enabl ed2. ksh. out node=0444
entryreturn. ksh node=0444
entryreturn. ksh. out node=0444
fork. ksh node=0444

fork. ksh. out node=0444
forker.exe npbde=0555
forker. ksh npbde=0444
guess32. ksh node=0444
guess64. ksh node=0444
header . ksh node=0444

i ncl ude. ksh node=0444

| azypr obe. exe node=0555

| azyprobel. ksh node=0444

| azypr obe2. ksh node=0444
I'i nkpriv. ksh nbde=0444

I'i nkunpriv. ksh node=0444
mul tipl e. ksh node=0444

mul ti pl e. ksh. out node=0444
mul ti prov. ksh npde=0444
mul tiprov. ksh. out node=0444
nodt race. ksh node=0444
nopr obes. ksh node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

WODDODDDDDDDDDDDDDDDMDMDMDMDMDMDD

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
!
(
(
(
(

i 386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.

i 386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.

i 386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.

i 386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.

$(i386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.
node=0444

| egacy pkg=SUNWIt rt
desc="DTrace Test Suite Internal

cat egory=i nternal \

I'icense cr_Sun |icense=cr_Sun
license |ic_CDDL |icense=lic_CDDL
depend fnri=runtine/java type=require

pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWIt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ common/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWAt rt/ t st/ cormon/ ust ack/ t st . bi gst ack. d nbde=0444
pat h=opt/ SUNWdt rt/t st/ common/ ust ack/ t st. bi gst ack. exe nbde=0555
pat h=opt / SUNWAt rt/ t st/ comrmon/ ust ack/ t st . dept h. ksh node=0444
pat h=opt / SUNWAt rt/ t st/ cormon/ ust ack/ t st. spi n. exe nbde=0555

pat h=opt / SUNWdt rt/ t st/ cormon/ ust ack/ t st. spi n. ksh node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ vars/tst.
pat h=opt / SUNWAt rt/t st/ common/ vars/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ vars/tst.
pat h=opt/ SUNWIt rt/t st/ common/ vars/tst.
pat h=opt/ SUNWdtrt/t st/ common/ vars/tst.
pat h=opt/ SUNWIt rt/t st/ common/ vars/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ vars/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ version/tst.1.0.d npde=0444

32

nor eap. ksh node=0444

nor eapri ng. ksh node=0444
onl yenabl ed. ksh npde=0444
reap. ksh node=0444
reeval . ksh node=0444
static. ksh node=0444
static. ksh. out node=0444
static2. ksh node=0444
static2. ksh. out npde=0444
user. ksh node=0444

user. ksh. out node=0444

gi d.d node=0444

nul | assi gn. d node=0444
ppi d. d node=0444
ucal | er. ksh nbde=0444
ucal | er. ksh. out node=0444
ui d. d node=0444

wal | ti mestanp. d node=0444

basi c. ksh node=0444
hvmenabl e. ksh npde=0444
menenabl e. ksh node=0444
schedar gs. ksh node=0444
schedenabl e. ksh \

Di stribution" \
hot |l i ne="Contact the DTrace discussion forunf

nanme="DTrace Test Suite"

depend fnri=runtine/javal/runtine64 type=require

new usr/src/uts/comon/ dtrace/ dtrace. c

R R R R

435357 Tue Jan 14 16:49: 36 2014
new usr/src/uts/comon/ dtrace/ dtrace. c
4477 DTrace shoul d speak JSON

Revi ewed by: Bryan Cantrill

<bnt @ oyent . con>

LR R

1/*

*

® ok Sk Ok R OF Sk OF Sk ok Rk ok k% k%

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

N
~
E N

n
N
Ok K ok kK ok ok Kk kO kK ok R K O R Kk ok F K Ok R X ok Ok K Ok Ok kX

Copyright (c) 2012 by Del phix. Al
/

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and linmtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al
Copyright (c) 2013, Joyent, Inc. Al rights reserved.
rights reserved.

DTrace - Dynanmic Tracing for Solaris

This is the inplenentation of the Solaris Dynanic Tracing framework
(DTrace). The user-visible interface to Dirace is described at length in
the "Solaris Dynamic Tracing Guide". The interfaces between the |ibdtrace
library, the in-kernel DTrace franework, and the DTrace providers are
described in the block comments in the <sys/dtrace. h> header file. The
internal architecture of DlTrace is described in the block comments in the
<sys/dtrace_i npl . h> header file. The comments contained within the DTrace
inplementation very nuch assune nastery of all of these sources; if one has
?n unanswer ed question about the inplenentation, one should consult them
irst.

The functions here are ordered roughly as follows:

- Probe context functions

- Probe hashing functions

- Non-probe context utility functions
- Matching functions

- Provider-to-Framework APl functions
- Probe nanagenent functions

- DIF object functions

- Format functions

- Predicate functions

- ECB functions

- Buffer functions

- Enabling functions

- DOF functions

- Anonynous enabling functions

- Consuner state functions

- Hel per functions

- Hook functions

rights reserved.

new usr/src/uts/comon/ dtrace/ dtrace. c

*
*
*
*
*

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

- Driver cookbook functions

Each group of functions begins with a bl ock comment |abelled the "DTrace
[G oup] Functions", allowi ng one to find each bl ock by searching forward

on capital-f functions.
*/

ncl ude <sys/errno. h>

ncl ude <sys/stat.h>

ncl ude <sys/nodctl . h>

ncl ude <sys/conf. h>

ncl ude <sys/systm h>

ncl ude <sys/ddi. h>

ncl ude <sys/sunddi . h>

ncl ude <sys/cpuvar. h>

ncl ude <sys/kmem h>

ncl ude <sys/strsubr.h>
ncl ude <sys/sysnacros. h>
ncl ude <sys/dtrace_inpl.h>
ncl ude <sys/atom c. h>

ncl ude <sys/cmm_err. h>
ncl ude <sys/ mutex_inpl.h>
ncl ude <sys/rw ock_i npl . h>
ncl ude <sys/ctf_api.h>
ncl ude <sys/ panic. h>

ncl ude <sys/priv_inpl.h>
ncl ude <sys/ policy. h>

ncl ude <sys/cred_i npl.h>
ncl ude <sys/procfs_isa. h>
ncl ude <sys/taskq. h>

ncl ude <sys/ nmkdev. h>

ncl ude <sys/kdi.h>

ncl ude <sys/zone. h>

ncl ude <sys/socket. h>

ncl ude <netinet/in.h>

ncl ude "strtol ctype. h"

#endif /* | codereview */

/

¥ ok Sk ok Sk b Sk b R Ok R % Rk b % b ¥ O

DTrace Tunabl e Vari abl es

The followi ng variables may be tuned by adding a line to /etc/systemthat
includes both the name of the DTrace nodule ("dtrace") and the name of the
vari abl e. For exanple:

set dtrace:dtrace_destructive_disallow =1

In general, the only variables that one should be tuning this way are those
that affect systemw de DTrace behavior, and for which the default behavior
is undesirable. Mst of these variables are tunable on a per-consuner
basis using DTrace options, and need not be tuned on a systemw de basis.
When tuning these variabl es, avoid pathol ogi cal val ues; while sone attenpt
is made to verify the integrity of these variables, they are not considered
part of the supported interface to DIrace, and they are therefore not
checked conprehensively. Further, these variables should not be tuned
dynam cally via "nmdb -kw' or other neans; they should only be tuned via
/etc/system

*/

int dtrace_destructive_disall ow = 0;

dt
Si
dt
si
si
Si
dt
dt

race_optval _t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
ze_t dtrace_di fo_maxsi ze = (256 * 1024);
race_optval _t dtrace_dof _maxsize = (256 * 1024);

ze_t dtrace_gl obal _nmaxsize = (16 * 1024);

ze_t dtrace_actions_nmax = (16 * 1024);

ze_t dtrace_retai n_max = 1024;

race_optval _t dtrace_hel per_acti ons_max = 1024;
race_optval _t dtrace_hel per_provi ders_max = 32;

new usr/src/uts/comon/dtrace/ dtrace. c 3
127 dtrace_optval _t dtrace_dstate_defsize (1 * 1024 * 1024);

128 si ze_t dtrace_strsize_default = 256;

129 dtrace_optval _t dtrace_cleanrate_default = 9900990 /* 101 hz */
130 dtrace_optval _t dtrace_cleanrate_nmin = 200000 /* 5000 hz */
131 dtrace_optval _t dtrace_cleanrate_max = (uint 64_t)60 * NANOCSEC, /* 1/minute */
132 dtrace_optval _t dtrace_aggrate_default = NANOSEC, /* 1 hz */

133 dtrace_optval _t dtrace_statusrate_default = NANOSEC, /* 1 hz */

134 dtrace_optval _t dtrace_statusrate_max = (hrtime_t)10 * NANCSEC, /* 6/m nute */
135 dtrace_optval _t dtrace_sw tchrate_default = NANGCSEC; /* 1 hz */

136 dtrace_optval _t dtrace_nspec_default = 1;

137 dtrace_optval _t dtrace_specsize_default = 32 * 1024;

138 dtrace_optval _t dtrace_stackframes_default = 20;

139 dtrace_optval _t dtrace_ustackframes_default = 20;

140 dtrace_optval _t dtrace_j stackframes_default = 50;

141 dtrace_optval _t dtrace_j stackstrsi ze_def ault = 512;

142 int dtrace_nsgdsi ze_| mex = 128;

143 hrtinme_t dtrace_chill_max = 500 * (NAN(BEC/ M LLISEC); [/* 500 nms */
144 hrtime_t dtrace_chill_interval = NANOSEC, /* 1000 ns */
145 int dtrace_devdept h_max = 32;

146 int dtrace_err_verbose;

147 hrtinme_t dtrace_deadman_i nterval = NANOSEC,

148 hrtime_t dtrace_deadman_ti neout = (hrtime_t)10 * NANOSEC,

149 hrtime_t dtrace_deadman_user = (hrtl me t)30 * NANOSEC,

150 hrtinme_t dtrace_unregi ster_defunct_reap = (hrtinme_t)60 * NANOSEC,

152 /*

153 * Dlrace External Variables

154 *

155 * As dtrace(7D) is a kernel nodule, any DIrace variabl es are obviously

156 * available to DIrace consuners via the backtick (‘) syntax. One of these,
157 * dtrace_zero, is made deliberately so: it is provided as a source of

158 * well-known, zero-filled menmory. Wile this variable is not docunented,

159 */it is used by sone translators as an inplenentation detail.

160 *

161 const char dtrace_zero[256] ={ 0 }; /* zero-filled nmenory */

163 /*

164 * DTrace Internal Variables

165 */

166 static dev_info_t *dtrace_devi ; /* device info */

167 static vmemt *dtrace_arena; /* probe 1D arena */

168 static vnmem t *dtrace_m nor; /* m nor nunber arena */

169 static taskg_t *dtrace_t askq; /* task queue */

170 static dtrace_probe_t **dt race_probes; /* array of all probes */

171 static int dtrace_nprobes; /* nunber of probes */

172 static dtrace_provider_t *dtrace_provider; /* provider list */

173 static dtrace_neta_t *dtrace_neta_pid; /* user-land neta provider */
174 static int dtrace_opens; /* nunber of opens */

175 static int dtrace_hel pers; /* nunber of hel pers */

176 static int dtrace_getf; /* nunber of unpriv getf()s */
177 static void *dtrace_softstate; /* softstate pointer */

178 static dtrace_hash_t *dt race_bynod; /* probes hashed by nodule */
179 static dtrace_hash_t *dtrace_byf unc; /* probes hashed by function */
180 static dtrace_hash_t *dt race_bynaneg; /* probes hashed by name */
181 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */

182 static int dt race_t oxranges; /* nunber of toxic ranges */
183 static int dtrace_t oxr anges_nax; /* size of toxic range array */
184 static dtrace_anon_t dtrace_anon; /* anonynous enabling */

185 static kmem cache_t *dtrace_state_cache; /* cache for dynamc state */
186 static uint64_t dtrace_vtinme_references; /* nunber of vtinmestanp refs */
187 static kthread_t *dt race_pani cked; /* panicking thread */

188 static dtrace_echb_t *dtrace_ecb_create_cache; /* cached created ECB */

189 static dtrace_genid_t dtrace_probegen; /* current probe generation */
190 static dtrace_hel pers_t *dtrace_deferred_pid; /* deferred hel per list */

191 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
192 static dtrace_genid_t dtrace_retai ned_gen; /* current retained enab gen */

new usr/src/uts/comon/dtrace/ dtrace.c 4
193 static dtrace_dynvar_t dtrace_dynhash_si nk; /* end of dynam c hash chains */
194 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
196 /*

197 * DIrace Lockin

198 * DTrace is protected by three (relatively coarse-grained) |ocks:

199 *

200 * (1) dtrace_lock is required to manipul ate essentially any DTrace state,
201 * including enabling state, probes, ECBs, consumer state, helper state,
202 * etc. Inportantly, dtrace_lock is _not_ required when in probe context;
203 * probe context is |ock-free -- synchronization is handled via the

204 * dtrace_sync() cross call nechanism

205 *

206 * (2) dtrace_provider_lock is required when mani pul ati ng provi der state, or
207 * when provider state nust be held constant.

208 *

209 * (3) dtrace_neta_lock is required when manipul ating neta provider state, or
210 * when neta provider state nust be held constant.

211 *

212 * The |l ock ordering between these three |locks is dtrace_neta_l ock before
213 * dtrace_provider_|lock before dtrace_lock. (In particular, there are

214 * several places where dtrace_provider _lock is held by the framework as it
215 * calls into the providers -- which then call back into the framework,

216 * grabbing dtrace_l ock.)

217 *

218 * There are two other locks in the mix: nmpd_lock and cpu_lock. Wth respect
219 * to dtrace_provider_lock and dtrace_| ock, cpu_lock continues its historical
220 * role as a coarse-grained lock; it is acquired before both of these | ocks.
221 * Wth respect to dtrace_neta_|lock, its behavior is stranger: cpu_lock nust
222 * be acquired _between_ dtrace_neta_|l ock and any ot her DTrace | ocks.

223 * nmod_lock is simlar with respect to dtrace_provider_lock in that it nmust be
224 * acquired _between_ dtrace_provider_|lock and dtrace_| ock.

225 */

226 static kmutex_t dtrace_| ock; /* probe state |ock */

227 static kmutex_t dtrace_provi der_| ock; /* provider state |ock */

228 static knmutex_t dtrace_net a_| ock; /* neta-provider state |lock */
230 /*

231 * DTrace Provider Variables

232 *

233 * These are the variables relating to DIrace as a provider (that is, the
234 * provider of the BEG N, END, and ERROR probes).

235 */

236 stat|c dtrace_pattr_t dtrace_provider_attr = {

237 { DTRACE_STABI LI TY_STABLE, DTRACE_STABI LI TY_STABLE, DTRACE_CLASS COWMN },

238 { DTRACE_STABI LI TY_PRI VATE, DTRACE STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABI LI TY_PRI VATE, DTRACE STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
240 { DTRACE_STABI LI TY_STABLE, DTRACE STABI LI TY_STABLE, DTRACE _CLASS COVMN },

241 { DTRACE_STABI LI TY_STABLE, DTRACE_STABI LI TY_STABLE, DTRACE_CLASS COWMN },

242 };

244 static void

245 dtrace_nul | op(voi d)

246 {}

248 static int

249 dtrace_enabl e_nul | op(voi d)

250 {

251 return (0);

252 }

254 static dtrace_pops_t dtrace_provi der_ops = {

255 (void (*)(void *, const dtrace_probedesc_t *))dtrace_null op,

256 (void (*)(void *, struct nodctl *))dtrace_null op,

257 (int (*)(void *, dtrace_id_t, void *))dtrace_enabl e_nul | op,

258 (void (*)(void *, dtrace_id_t, void *))dtrace_null op,

new usr/src/uts/comon/ dtrace/ dtrace. c

259
260
261
262
263
264
265

267
268
269

271
272
273
274
275
276
277

279
280
281
282
283

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

301
302
303
304
305
306
307
308
309
310

312
313

315
316

318
319
320
322

324

1%

(void (*)(void *,
(void (*)(void *,
NULL,
NULL,
NULL,
(void (*)(void *,

dtrace_id_t, void *))dtrace_null op,
dtrace_id_t, void *))dtrace_null op,

dtrace_id_t, void *))dtrace_null op

static dtrace_id_t dt race_probei d_begi n; /* special BEG N probe */
static dtrace_id_t dtrace_probei d_end; /* special END probe */
ace_id_t dtrace_probeid_error; /* special ERROR probe */

dtr
/*

*
*/

DTrace Hel per Tracing Vari abl es

uint32_t dtrace_hel ptrace_next = 0;
uint32_t dtrace_hel ptrace_nl ocal s;

char

*dtrace_hel ptrace_buffer;

i nt dtrace_hel ptrace_bufsize = 512 * 1024;

#i f def DEBUG

i nt dtrace_hel ptrace_enabled = 1;

#el se

int dtrace_hel ptrace_enabl ed = 0;

#endi f

/*
* DTrace Error Hashing
*
* On DEBUG kernels, Dfrace will track the errors that has seen in a hash
* table. This is very useful for checking coverage of tests that are
* expected to induce DI F or DOF processing errors, and may be useful for
* debugging problens in the DIF code generator or in DOF generation . The
* error hash may be exanmined with the ::dtrace_errhash MDB dcnd.
*/

#i f def DEBUG

static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ] ;
static const char *dtrace_errl ast;

static kthread_t
static kmutex_t

*dtrace_errthread,
dtrace_errl ock;

#endi f

/

* Ok Ok ok % k¥

*/

DTrace Macros and Constants

These are various nmacros that are useful in various spots in the

inpl erentation, along with a few random constants that have no neani ng
outside of the inplenentation. There is no real structure to this cpp
m shnmash -- but is there ever?

#def i ne DTRACE_HASHSTR(hash, probe) \

dtrace_hash_str(* ((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))

#def i ne DTRACE_HASHNEXT(hash, probe) \

(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)

#def i ne DTRACE_HASHPREV(hash, probe) \

(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)

#def i ne DTRACE HASHEq hash, |hs, rhs)

(strenp(*((char **)((m ntptr

)(s) + (hash)->dth_stroffs)), \
*((char **)((uintptr_t)(rhs)

+ (hash)->dth_stroffs))) == 0)

#def i ne DTRACE_AGGHASHSI ZE_SLEW 17

#def i ne DTRACE_VAMAPPED_OFFSET

(sizeof (uint32_t) * 3)

new usr/src/uts/comon/dtrace/ dtrace. c

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

351
352
353
354

356

358
359

361
362
363
364
365
366
367
368
369
370

372
373
374
375
376
377
378
379
380
381

383
384
385
386
387
388
389
390

® ok Sk ok % Ok Ok Ok b 3k

*

The key for a thread-local variable consists of the lower 61 bits of the
t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
Vé add DI F_VARI ABLE_MAX to t_did to assure that the thread key is never
equal to a variable identifier. This is necessary (but not sufficient) to
assure that global associative arrays never collide with thread-Iocal
variables. To guarantee that they cannot collide, we nust also define the
order for keying dynamic variables. That order is:

[keyO] [keyn] [variable-key] [tls-key]
Because the variabl e-key and the tls-key are in orthogonal spaces, there is
no way for a global variable key signature to match a thread-1ocal key
signature.

#defl ne DTRACE_TLS THRKEY(V\,her e) {\

}

#def i ne DT_BSWAP_8(x) ((x
#define DT_BSWAP_16(x) ((
#define DI_BSWAP 32(x) ((D
#define DT_BSWAP 64(x) ((

uint_t intr = 0;
uint_t actv = CPU— >cpu_intr_actv >> (LOCK_LEVEL + 1); \
for (; actv; actv >>= 1) \
intr++; \
ASSERT(intr < (1 << 3)); \
(where) = ((curthread->t_did + DI F_VAR ABLE_MVAX) & \
(((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \

) & Oxff)

DT_BSWAP_8(x) << 8) |
T_BSWAP_16(x) << 16) |
DT_BSWAP_32(x) << 32) |

DT_BSWAP_8((x) >> 8))
DT_BSWAP_16((x) >> 16))
DT_BSWAP_32((x) >> 32))

#def i ne DT_MASK_LO 0x00000000FFFFFFFFULL

#def i ne DTRACE_STORE(t ype,

tomax, offset, what) \

*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);

#i f ndef

__Xx86
#def i ne DTRACE_ALI GNCHECK(addr ,

size, flags) \
if (addr & (size - 1)) \
*flags | = CPU_DTRACE_BADALI GN; \
cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_i I'lval = addr; \
return (0); \
#el se
#def i ne DTRACE_ALI GNCHECK(addr, si ze, fl ags)
#endi f
/*
* Test whether a range of nenory starting at testaddr of size testsz falls
* within the range of nmenory described by addr, sz. W take care to avoid
* probl ems with overflow and underflow of the unsigned quantities, and
* disallow all negative sizes. Ranges of size 0 are allowed.
*
#def i ne DTRACE_I NRANGE(t estaddr, testsz, baseaddr, basesz) \

/

*
*
*
*
*
*

*/

#def i ne DTRACE_| NSCRATCH(nst at e,

((testaddr) (uintptr_t)(baseaddr) < (basesz) &&\
(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
(testaddr) + (testsz) >= (testaddr))

Test whether alloc_sz bytes will fit in the scratch region. W isolate
alloc_sz on the righthand side of the conparison in order to avoid overflow
or underflow in the conparison with it. This is sinpler than the | NRANGE
check above, because we know that the dtns_scratch_ptr is valid in the
range. Allocations of size zero are all owed.

alloc_sz) \

new usr/src/uts/comon/ dtrace/ dtrace. c

391 ((nmstate)->dtns_scratch_base + (nstate)->dtnms_scratch_size - \
392 (mstate)->dtms_scratch_ptr >= (alloc_sz))

394 #define DTRACE_LOADFUNC(bi t s)

395 /*CSTYLED*/

396 ui nt ##bi t s##_t

397 dtrace_| oad##bi ts(uintptr_t addr)

398 {

399 size_t size = bits / NBBY;

400 | * CSTYLED*/

401 ui nt ##bi t s##_t rval;

402 int i;

403 volatile uint1l6_t *flags = (volatile uintl16_t *)

404 &cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_fl ags;

405

406 DTRACE_ALI| GNCHECK(addr, size, flags);

407

408 for (i = 0; i < dtrace_toxranges; i++) {

409 if (addr >= dtrace_toxrange[i].dtt_limt)

410 conti nue;

411

412 if (addr + size <= dtrace_toxrange[i].dtt_base)
413 cont i nue;

414

415 *

416 * This address falls within a toxic region; return O.
417 */

418 *flags | = CPU_DTRACE_BADADDR;

419 cpu_cor e[CPU->cpu_i d]. cpuc_dtrace_illval = addr;
420 return (0);

421 }

422

423 *flags | = CPU_DTRACE_NOFAULT;

424 | * CSTYLED*/

425 rval = *((vol atile uint##bits##_t *)addr);

426 *flags & ~CPU DTRACE NOFAULT;

427

428 return (!(*flags & CPU DTRACE_FAULT) ? rval : 0);

429 }

431 #ifdef _LP64

432 #define dtrace_l oadptr dtrace_| oad64

433 #el se

434 #define dtrace_|l oadptr dtrace_| oad32

435 #endi f

437 #define DTRACE_DYNHASH FREE 0

438 #define DTRACE_DYNHASH_ SI NK 1

439 #define DTRACE_DYNHASH VALI D 2

441 #define DTRACE_MATCH FAIL Sk

442 #defi ne DTRACE_MATCH NEXT 0

443 #define DTRACE_MATCH DONE 1

444 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0")
445 #define DTRACE_STATE_ALI GN 64

447 #define DTRACE FLAGS2FLT(f! ags)

448 (((flags) & CPU_DTRACE BADADDR) ? DTRACEFLT_BADADDR :
449 ((flags) & CPU DTRACE I'LLOP) ? DTRACEFLT_|LLOP :

450 ((flags) & CPU DTRACE DI VZERO ? DTRACEFLT DI VZERO :

451 ((flags) & CPU DTRACE KPRIV) ? DTRACEFLT KPRV :

452 ((flags) & CPU DTRACE_UPRIV) ? DTRACEFLT_UPRIV :

453 ((flags) & CPU DTRACE_TUPOFLOW ? DTRACEFLT_TUPOFLOW :
454 ((flags) & CPU DTRACE BADALIGN) ? DTRACEFLT_BADALI GN :
455 ((flags) & CPU DTRACE_NOSCRATCH) ? DTRACEFLT NOSCRATCH :
456 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_ BADSTACK :

P

P

new usr/src/uts/comon/ dtrace/ dtrace. c

457

459
460
461

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

DTRACEFLT_UNKNOWN)

#def i ne DTRACEACT_| SSTRI I\G(act) \
((act)->dta_kind == DTRACEACT_DI FEXPR && \
(act)->dta_difo- >dt do_rtype. dtdt_kind == DI F_TYPE_STRI NG

static size_t dtrace_strlen(const char *, size_t);

static dtrace_probe_t *dtrace _probe_| ookup_| |d(dtrace id_t id);

static void dirace_enabling_provi de(dtrace _provider _t *),

static int dtrace_enabli ng_mat ch(dtrace_ enabling_t *, int *);

static void dtrace_enabling_matchal | (void);

static void dtrace_enabling_reap(void);

static dtrace_state_t *dtrace_anon_gr ab(voi d);

static uint64_t dtrace_hel per(int, dtrace_nstate_t *,

dtrace_state_t *, uint64_t, uint64_t);

static dtrace_helpers_t *dtrace_hel pers._| create(proc t *);

static void dtrace_buffer_drop(dtrace_buffer_t

static int dtrace_buffer_consumed(dtrace_buffer t *, hrtime_t when);

static intptr_t dtrace_ buffer_reserve(dtrace buffer_t *, size_t, size_t,
dtrace_state t *, dtrace _nstate_t *);

static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
dtrace_optval _t);

static int dtrace_ecb_create_enabl e(dtrace_probe_t *, void *);

static void dtrace_hel per_provi der_destroy(dtrace_hel per_provider_t *);

static int dtrace_priv_proc(dtrace_state_t *, dtrace_nstate_t *);

482 static void dtrace_getf_barrier(void);

484 | *

485 * DTrace Probe Context Functions

486 *

487 * These functions are called from probe context. Because probe context is
488 * any context in which C may be called, arbitrarily | ocks may be held,

489 * interrupts nay be disabled, we nay be in arbitrary dispatched state, etc.
490 * As a result, functions called from probe context may only call other DIrace
491 * support functions -- they may not interact at all wth the systemat |arge.
492 * (Note that the ASSERT macro iIs nmade probe-context safe by redefining it in
493 * terns of dtrace_assfail (), a probe-context safe function.) If arbitrary
494 * |oads are to be performed from probe context, they _nust_ be in ternms of
495 * the safe dtrace_| oad*() variants.

496 *

497 * Sonme functions in this block are not actually called from probe context;
498 * for these functions, there will be a comment above the function reading
499 * "Note: not called from probe context."

500 */

501 void

502 dtrace_pani c(const char *format, ...)

503 {

504 va_list alist;

506 va_start(alist, format);

507 dtrace_vpanic(format, alist);

508 va_end(alist);

509 }

511 int

512 dtrace_assfail (const char *a, const char *f, int |)

513 {

514 dtrace_panic("assertion failed: %, file: %, line: %", a, f, |);
516 /*

517 * We just need sonething here that even the nost clever conpiler
518 * cannot optim ze away.

519 */

520 return (a[(uintptr_t)f]);

521 }

new usr/src/uts/comon/ dtrace/ dtrace. c

523 /[*

524 * Atomically increnment a specified error counter from probe context.

525 */

526 static void

527 dtrace_error(uint32_t *counter)

528 {

529 /*

530 * Most counters stored to in probe context are per-CPU counters.

531 * However, there are sone error conditions that are sufficiently

532 * arcane that they don't merit per-CPU storage. |f these counters
533 * are increnented concurrently on different CPUs, scalability will be
534 * adversely affected -- but we don’t expect themto be white-hot in a
535 * correctly constructed enabling...

536 */

537 uint32_t oval, nval;

539 do {

540 oval = *counter;

542 if ((nval = oval + 1) == 0) {

543 /*

544 * |f the counter would wap, set it to 1 -- assuring
545 * that the counter is never zero when we have seen
546 * errors. (The counter nust be 32-bits because we
547 * aren’t guaranteed a 64-bit conpare&swap operation.)
548 * To save this code both the infamy of being fingered
549 * by a priggish news story and the indignity of being
550 * the target of a neo-puritan witch trial, we're
551 * careful Iy avoiding any col orful description of the
552 * |ikelihood of this condition -- but suffice it to
553 * say that it is only slightly nore likely than the
554 * overflow of predicate cache |IDs, as discussed in
555 * dtrace_predicate_create().

556 */

557 nval = 1;

558 }

559 } while (dtrace_cas32(counter, oval, nval) != oval);

560 }

562 /*

563 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
564 * uint8_t, a uintl6_t, a uint32_t and a uint64_t.

565 */

566 DTRACE_LOADFUNC(8)

567 DTRACE_LOADFUNC(16)

568 DTRACE_LOADFUNC(32)

569 DTRACE_LOADFUNC(64)

571 static int

572 ?trace_i nscratch(uintptr_t dest, size_t size, dtrace_nstate_t *nstate)

573

574 if (dest < mstate->dtnms_scratch_base)

575 return (0);

577 if (dest + size < dest)

578 return (0);

580 if (dest + size > nmstate->dtms_scratch_ptr)

581 return (0);

583 return (1);

584 }

586 static int

587 dtrace_canstore_statvar(uint64_t addr, size_t sz,

588 dtrace_statvar_t **svars, int nsvars)

new usr/src/uts/comon/dtrace/ dtrace.c 10
589 {

590 int i;

592 for (i = 0; i < nsvars; i++)

593 dtrace_statvar_t *svar = svars[i];

595 if (svar == NULL || svar->dtsv_size == 0)

596 conti nue;

598 if (DTRACE_I NRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
599 return (1);

600 }

602 return (0);

603 }

605 /*

606 * Check to see if the address is within a menory region to which a store may
607 * be issued. This includes the DIrace scratch areas, and any DTrace variable
608 * region. The caller of dtrace_canstore() is responsible for performng any
609 * alignment checks that are needed before stores are actually executed.

610 */

611 static int

612 dtrace_canstore(uint64_t addr, size_t sz, dtrace_nstate_t *nstate,

613 dtrace_vstate_t *vstate)

614 {

615 /*

616 * First, check to see if the address is in scratch space...

617 *

618 i f (DTRACE_I NRANGE(addr, sz, nstate->dtns_scratch_base,

619 mst at e- >dt ms_scr at ch_si ze))

620 return (1);

622 /*

623 * Now check to see if it's a dynanmic variable. This check will pick
624 * up both thread-1ocal variables and any gl obal dynamically-all ocated
625 * vari abl es.

626 */

627 i f (DTRACE_I NRANGE(addr, sz, vstate->dtvs_dynvars. dtds_base,

628 vst at e->dt vs_dynvars. dtds_si ze)) {

629 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;

630 uintptr_t base = (uintptr_t)dstate->dtds_base +

631 (dst at e->dt ds_hashsi ze * sizeof (dtrace_dynhash_t));

632 uintptr_t chunkoffs;

634 /*

635 * Before we assune that we can store here, we need to nake
636 * sure that it isn't in our netadata -- storing to our

637 * dynam c variabl e netadata would corrupt our state. For
638 * the range to not include any dynam c variabl e netadata,
639 * it must:

640 *

641 * (1) Start above the hash table that is at the base of
642 * the dynam c vari abl e space

643 *

644 * (2) Have a starting chunk offset that is beyond the
645 * dtrace_dynvar__t that is at the base of every chunk
646 *

647 * (3) Not span a chunk boundary

648 *

649 */

650 if (addr < base)

651 return (0);

653 chunkof fs = (addr - base) % dstate->dtds_chunksi ze;

new usr/src/uts/comon/ dtrace/ dtrace. c

11

655 if (chunkoffs < sizeof (dtrace_dynvar_t))

656 return (0);

658 if (chunkoffs + sz > dstate->dtds_chunksize)

659 return (0);

661 return (1);

662 }

664 /*

665 * Finally, check the static |local and global variables. These checks
666 * take the | ongest, so we performthem]|ast.

667 *

668 if (dtrace_canstore_statvar(addr, sz,

669 vstate->dtvs_| ocal s, vstate->dtvs_nlocals))

670 return (1);

672 if (dtrace_canstore_statvar(addr, sz,

673 vst at e- >dt vs_gl obal s, vst at e->dt vs_ngl obal s))

674 return (1);

676 return (0);

677 }

680 /*

681 * Convenience routine to check to see if the address is within a nmenory
682 * region in which a |oad may be issued given the user’s privilege |evel;
683 * if not, it sets the appropriate error flags and |l oads "addr’ into the
684 * illegal value slot.

685 *

686 * DTrace subroutines (D F_SUBR *) should use this hel per to inplenent
687 * appropriate menory access protection.

688 *

689 static int

690 dtrace_canl oad(uint64_t addr, size_t sz, dtrace_nstate_t *nstate,

691 dtrace_vstate_t *vstate)

692 {

693 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
694 file_t *fp;

696 /*

697 * |If we hold the privilege to read from kernel menory, then
698 * everything is readable.

699 *

700 if ((mstate->dtns_access & DTRACE_ACCESS KERNEL) != 0)

701 return (1);

703 /*

704 * You can obviously read that which you can store.

705 */

706 if (dtrace_canstore(addr, sz, nstate, vstate))

707 return (1);

709 /*

710 * W're allowed to read fromour own string table.

711 */

712 i f (DTRACE_I NRANGE(addr, sz, nstate->dtns_difo->dtdo_strtab,
713 nst at e- >dt ms_di f o- >dt do_strl en))

714 return (1);

716 if (vstate->dtvs_state != NULL &&

717 dtrace_priv_proc(vstate->dtvs_state, nstate)) {

718 proc_t *p;

720 /*

new usr/src/uts/comon/ dtrace/ dtrace. c 12

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

739
740
741
742

744
745
746
747

749
750
751
752

754
755
756
757
758

760
761
762
763

765
766
767
768
769
770
771
772
773
774
775
776
777
778

780
781
782

784
785
786

}
if ((fp

* \Wen we have privileges to the current process, there are
* several context-related kernel structures that are safe to
* read, even absent the privilege to read fromkernel menory.
* These reads are safe because these structures contain only
* state that (1) we're permtted to read, (2) is harmess or
* (3) contains pointers to additional kernel state that we're
* not pernmitted to read (and as such, do not present an
* opportunity for privilege escalation). Finally (and
* critically), because of the nature of their relation with
* the current thread context, the nenory associated with these
* structures cannot change over the duration of probe context,
* and it is therefore inpossible for this nenory to be
* deal | ocated and real |l ocated as sonething else while it’'s
* bei ng operated upon.
*

/
f

(DTRACE_| NRANGE(addr, sz, curthread,
return (1);

sizeof (kthread_t)))

if ((p =curthread->t_procp) != NULL &% DTRACE_| NRANGE(addr ,
sz, curthread->t_procp, sizeof (proc_t))) {
return (1);

}

if (curthread->t_cred != NULL &% DTRACE | NRANGE(addr, sz,
curthread->t_cred, sizeof (cred_t))) {
return (1);
}

if (p!= NUL & p->p_pidp != NULL && DTRACE_| NRANGE(addr, sz,
&(p->p_pi dp->pid_id), sizeof (pid_t))) {
return (1);

}

if (curthread->t_cpu != NULL && DTRACE_| NRANGE(addr, sz,
curthread->t _cpu, offsetof(cpu_t, cpu_pause_thread))) {
return (1);

= mst at e- >dt ms getf) I'= NULL) {
uintptr_t psz = sizeof (void *);
vnode_t *vp;

vnodeops_t *op;

/
When getf() returns a file_t, the enabling is inplicitly
granted the (transient) right to read the returned file_t
as well as the v_path and v_op->vnop_nanme of the underlying
vnode. These accesses are allowed after a successful
getf() because the nmenbers that they refer to cannot change
once set -- and the barrier logic in the kernel’s closef()
path assures that the file_t and its referenced vode_t
cannot thensel ves be stale (that is, it inmpossible for
either dtms_getf itself or its f_vnode nenmber to reference
* freed nmenory).

*

* ok kR % ok Ok k¥ %

if (DTRACE_I NRANGE(addr, sz, fp, sizeof (file_t)))
return (1);

if ((vp = fp >f _vnode) != NULL) {

i f (DTRACE_I NRANGE(addr, sz,
return (1);

&vp->v_path, psz))

if (vp->v_path !'= NULL && DTRACE_| NRANGE(addr, sz,
vp->v_path, strlen(vp->v_path) + 1)) {
return (1);

new usr/src/uts/comon/ dtrace/ dtrace. c

787

789
790

792
793
794
795

797
798
799
800
801
802
803

805
806
807
808 }
810 /
811
812
813
814
815

*
*
*
*
*

*/

}

i f (DTRACE_I NRANGE(addr, sz, &p->v_op, psz))
return (1);

if ((op = vp->v_op) != NULL &&
RACE_I NRANGE(addr, sz, &op->vnop_nane, psz)) {
return (1);

}

if (op !'= NULL && op->vnop_nanme != NULL &&
DTRACE_| NRANGE(addr, sz, op->vnop_nane,
strl en(op->vnop_| nar're) + 1)) {

return (1);
}
}
}
DTRACE_CPUFLAG SET(CPU_DTRACE KPRI V) ;
*illval = addr;
return (0);

Conveni ence routine to check to see if a given strlng iswithin a nenory
region in which a |oad may be issued given the user’s privilege |evel;
this exists so that we don't need to issue unnecessary dtrace_strl en()
calls in the event that the user has all privileges.

816 static int
817 dtrace_strcanl oad(uint64_t addr, size_t sz, dtrace_nstate_t *nstate,

818
819 {
820

822
823
824
825
826
827

829
830
831

833
834 }

836 /
837
838
839

*
*
*

dtrace_vstate_t *vstate)
size_t strsz;
/*
* |f we hold the privilege to read fromkernel menory, then
* everything is readable.
*/

if ((mstate->dtnms_access & DTRACE_ACCESS_KERNEL) != 0)
return (1);

strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
if (dtrace_canl oad(addr, strsz, nstate, vstate))
return (1);

return (0);

Conveni ence routine to check to see if a given variable is within a nenory

region in which a | oad may be issued given the user’s privilege |evel.
*/

840 static int
841 dtrace_vcanl oad(void *src, dtrace_diftype_t *type, dtrace_nstate_t *nstate,

842
843 {
844
845

847
848
849
850
851
852

dtrace_vstate_t *vstate)

size_t sz;

ASSERT(type->dtdt _flags & DI F_TF_BYREF);

/*

* |f we hold the privilege to read fromkernel menory, then
* everything is readable.

*

if ((mstate->dtnms_access & DTRACE_ACCESS_KERNEL) != 0)
return (1);

13

new usr/src/uts/comon/ dtrace/ dtrace. c

854
855
856
857
858

860
861 }
863 /
864
865
866
867
868
869

*
*
*
*
*
*

*/

if (type->dtdt kind == DI F_TYPE_STRI NG
sz = dtrace_strlen(src,
vst at e- >dt vs_st at e- >dt s_opt i ons[DTRACEOPT_STRSI ZE]) + 1;
el se
sz = type->dtdt_size;

return (dtrace_canl oad((uintptr_t)src, sz, nstate, vstate));

Convert a string to a signed integer using safe |oads.

NOTE: This function uses various macros fromstrtol ctype. h to nani pul ate
digit values, etc -- these have all been checked to ensure they make
no additional function calls.

870 static int64_t
871 dtrace_strtoll (char *input, int base, size_t limt)

872 {
873
874
875
876
877
878

880
881
882
883
884

886
887
888
889
890
891
892
893

895
896
897
898
899
900
901
902
903

905
906
907
908
909
910

912
913 }

915 /

*

uintptr_t pos = (uintptr_t)input;
int64_t val = 0;

int x;

bool ean_t neg = B_FALSE;

char c, cc, ccc;

uintptr_t end = pos + limt;

/*

* Consume any whitespace preceding digits.

*/

while ((c = dtrace_load8(pos)) =="' " || ¢ == "\t")
pos++;

/*

* Handle an explicit sign if one is present.

*/

if (c=="-" || c=="+) {
if (c =="-"

neg = B_TRUE;
¢ = dtrace_| oad8(++pos);
}
/*
* Check for an explicit hexadecimal prefix ("Ox" or "OX") and skip it
* if present.
*/

if (base == 16 && ¢ == "0’ &&((dtraceload8(pos+1)) x|
cc == 'X) & isxdigit(ccc = dtrace _load8(pos + 2))) {
pos += 2;
c = ccgc;
}
/*

* Read in contiguous digits until the first non-digit character.
*/

for (; pos <end & c !'="\0" && lisalnumc) & & (x = DIA T(c)) < base;
c = dtrace_| oad8(++pos))
val = val * base + x;
return (neg ? -val : val);

916 #endif /* ! codereview */
* Conpare two strings using safe |oads.

917
918

*/

14

new usr/src/uts/comon/ dtrace/ dtrace. c

919
920
921
922
923

925
926

928

930
931
932
933
934
935

937
938
939
940
941

943
944
945

947
948

950
951
952
953
954
955

static int
dtrace_strncnp(char *si,

{

char *s2, size_t limt)
uint8 t cl, c2;
volatile uintl6_t *flags;

if (s1 ==s2 || limt == 0)
return (0);

flags = (volatile uintl16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;

do {
if (sl == NULL) {
cl ='\0";
} else {
) cl = dtrace_l oad8((uintptr_t)sl++);

if (s2 == NULL) {
c2 = '\0’;

} else {
c

}

if (cl!=c2)

return (cl - c2);
} while (--limt & cl !'="'"\0" && !(*flags & CPU _DTRACE_FAULT));

2 = dtrace_| oad8((uintptr_t)s2++);

return (0);
}
/*
* Conpute strlen(s) for a string using safe nenory accesses. The additional
:/I en paraneter is used to specify a maximumlength to ensure conpletion.

static size_t
dtrace_strlen(const char *s, size_t lim

956 {

957

959
960
961
962

964
965

967 /

968
969
970
971

uint_t len;
for (len =0; len!=1im len++) {
if (dtrace_l oad8((uintptr_t)s++)
break;

=="\0")
}

return (len);

}

*

* Check if an address falls within a toxic region.
*/

static int

dtrace_i stoxi c(uintptr_t kaddr, size_t size)

972 {

973
974

976
977
978

980
981
982
983
984

uintptr_t taddr, tsize;
int i;

for (i
dtrace_toxrange[i].dtt_base;

= 0; i < dtrace_toxranges; i++) {
= dtrace_toxrange[i].dtt_limt -

tsize t addr;

if (kaddr - taddr < tsize) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR) ;
cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_il |l val
return (1);

= kaddr;

15

16

new usr/src/uts/comon/dtrace/ dtrace.c

986 if (taddr - kaddr < size) {

987 DTRACE_CPUFLAG SET(CPU_DTRACE_BADADDR) ;

988 cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_illval = taddr;
989 return (1);

990 }

991 }

993 return (0);

994 }

996 /*

997 * Copy src to dst using safe nenory accesses. The src is assuned to be unsafe
998 * nmenory specified by the DIF program The dst is assunmed to be safe nmenory
999 * that we can store to directly because it is managed by DTrace. As wth
1000 */st andard bcopy, overl appi ng copies are handl ed properly.

1001 *

1002 static void

1003 dtrace_bcopy(const void *src, void *dst, size_t |en)

1004 {

1005 if (len!=0)

1006 uint8_t *sl1 = dst;

1007 const uint8_t *s2 = src;

1009 if (sl <=s2) {

1010 do {

1011 *sl++ = dtrace_l oad8((ui ntptr_t)s2++);

1012 } while (--len !'= 0);

1013 } else {

1014 s2 += len;

1015 sl += len;

1017 do {

1018 *--sl1l = dtrace_|l oad8((uintptr_t)--s2);

1019 } while (--len !'= 0);

1020 }

1021 }

1022 }

1024 /*

1025 * Copy src to dst using safe nenory accesses, up to either the specified
1026 * length, or the point that a nul byte is encountered. The src is assuned to
1027 * be unsafe menory specified by the DIF program The dst is assunmed to be
1028 * safe nmenory that we can store to directly because it is managed by DTrace.
1029 * Unlike dtrace_bcopy(), overlapping regions are not handl ed.

1030 *

1031 static void

1032 dtrace_strcpy(const void *src, void *dst, size_t |en)

1033 {

1034 if (len!=0)

1035 uint8_t *sl = dst, c;

1036 const uint8_t *s2 = src;

1038 do {

1039 *sl++ = ¢ = dtrace_l oad8((uintptr_t)s2++);

1040 } while (--len !=0 & c !'="\0");

1041 1

1042 }

1044 /*

1045 * Copy src to dst, deriving the size and type fromthe specified (BYREF)
1046 * variable type. The src is assuned to be unsafe nenory specified by the DIF
1047 * program The dst is assuned to be DTrace variable nenory that is of the
1048 * specified type; we assune that we can store to directly.

1049 */

1050 static void

new usr/src/uts/comon/ dtrace/ dtrace. c

1051 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)

1052 {

1053 ASSERT(type->dtdt _flags & DI F_TF_BYREF)

1055 if (type->dtdt_kind == DI F_TYPE_STRING ({

1056 dtrace_strcpy(src, dst, type->dtdt_size);

1057 } else {

1058 dtrace_bcopy(src, dst, type->dtdt_size);

1059

1060 }

1062 /*

1063 * Conpare sl to s2 using safe nemory accesses. The sl data is assunmed to be

1064

* unsafe nenory specified by the D F program

The s2 data is assuned to be

1065 * safe nmenory that we can access directly because it is managed by DTrace.
*/

1066
1067 static int
1068 dtrace_bcnp(const void *sl1, const void *s2, size_t |en)

1069 {

1070 volatile uint16_t *fl ags;

1072 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;
1074 if (sl == s2)

1075 return (0);

1077 if (sl == NULL || s2 == NULL)

1078 return (1);

1080 if (s1!=s2 &k len!=0) {

1081 const uint8_t *psl = si;

1082 const uint8_t *ps2 = s2;

1084 do {

1085 if (dtrace_l oad8((uintptr_t)psl++) != *ps2++)
1086 return (1);

1087 } while (--len != 0 && ! (*flags & CPU DTRACE_FAULT));
1088 }

1089 return (0);

1090 }

1092 /*

1093 * Zero the specified region using a sinple byte-by-byte |oop. Note that this

1094 * is for safe DTrace-nmanaged nenory only.
1095 */

1096 static void

1097 dtrace_bzero(void *dst, size_t |en)

1098 {

1099 uchar_t *cp;

1101 for (cp = dst; len !=0; len--)
1102 *cp++ = 0;

1103 }

1105 static void
1106 dtrace_add_128(ui nt64_t *addendl, uint64_t *addend2, uint64_t *sum
1107 {

1108 uint64_t result[2];

1110 result[0] = addendl[0] + addend2[O0];

1111 result[1] = addendl[1] + addend2[1] +

1112 (result[0] < addend1[O] || result[0] < addend2[0] ? 1 : 0);
1114 sunf 0] = result[0];

1115 sunf 1] = result[1];

1116 }

17

new usr/src/uts/comon/dtrace/ dtrace. c

1118 /*

1119 * shift the 128-bit value in a by b. If b is positive, shift left.
1120 * If b is negative, shift right.

1121 */

1122 static void

1123 dtrace_shift_128(uint64_t *a, int b)

1124 {

1125 ui nt64_t nask;

1127 if (b ==0)
1128 return;

1130 if (b<0) {

1131 b = -b;

1132 if (b >= 64)

1133 a[0] a[1] >> (b - 64);

1134 al 1] 0;

1135 } else {

1136 a[0] >>= b;

1137 mask = 1LL << (64 - b);

1138 mask -= 1;

1139 a[0] |= ((a[1l] & nask) << (64 - b));

1140 a[1] >>= b;

1141 }

1142 } else {

1143 i

1144 a[1] a[0] << (b - 64);

1145 a[0] 0;

1146 } else {

1147 a[1] <<= b;

1148 mask = a[0] >> (64 - b);

1149 a[1] | = mask;

1150 a[0] <<= b;

1151 }

1152 1

1153 }
/

I n—

=
—~
o

v

I
2525
A
E
e

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165 */

1166 static void

1167 dtrace_multiply_128(uint64_t factorl, uint64_t factor2, uint64_t *product)

The basic idea is to break the 2 64-bit values into 4 32-bit val ues,
use native multiplication on those, and then re-conbine into the
resulting 128-bit val ue.

(hil << 32 +101) * (hi2 << 32 +102) =
hil* hi2 << 64 +
hil* |02 << 32 +
hi2 * 1ol << 32 +
lol * |02

R B

1168 {

1169 uint64_t hil, hi2, lol, |o2;
1170 uint64_t tnp[2];

1172 hil = factorl >> 32;

1173 hi2 = factor2 >> 32;

1175 lol = factorl & DT_MASK_ LG
1176 lo2 = factor2 & DT_MASK _LO
1178 product[0] =101 * |02;
1179 product[1] = hil * hiZ2;
1181 tnp[0] = hil * |02

1182 tmp[1] = 0;

18

new usr/src/uts/comon/ dtrace/ dtrace. c

1183
1184

1186
1187
1188
1189
1190 }

1192 /*

dtrace_shift_128(tnp, 32);
dtrace_add_128(product, tnp, product);

tmp[0] = hi2 * |ol;
tnp[1] =0

dtrace_shift_128(tnp, 32);
dtrace_add_128(product, tnp, product);

1193 * This privilege check should be used by actions and subroutines to
1194 * verify that the user credentials of the process that enabled the
1195 * invoking ECB match the target credentials

*/

1196

1197 static int
1198 dtrace_priv_proc_comon_user(dtrace_state_t *state)

1199 {
1200

1202
1203
1204
1205
1206

1208
1209
1210
1211
1212
1213
1214
1215

1217
1218 }

1220 /*

cred_t *cr, *s_cr = state->dts_cred.dcr_cred;

/*

* We should al ways have a non-NULL state cred here, since if cred
* is null (anonynous tracing), we fast-path bypass this routine.
*/

ASSERT(s_cr != NULL);

if ((cr = CRED()) != NULL &%

s_cr->cr_uid == cr->cr_uid &&
s_cr->cr_uid == cr->cr_ruid &
s_cr->cr_uid == cr->cr_suid &&
s_cr->cr_gid == cr->cr_gid &&
s_cr->cr_gid == cr->cr_rgid &
s_cr->cr_gid == cr->cr_sgid)
return (1)
return (0)

1221 * This privilege check should be used by actions and subroutines to
1222 * verify that the zone of the process that enabled the invoking ECB
1223 * matches the target credentials

1224 */

1225 static int
1226 dtrace_priv_proc_common_zone(dtrace_state_t *state)

1227 {
1228

1230
1231
1232
1233
1234

1236
1237

1239
1240 }

1242 | *

cred_t *cr, *s_cr = state->dts_cred. dcr_cred;

/*

* We shoul d al ways have a non-NULL state cred here, since if cred
* is null (anonynous tracing), we fast-path bypass this routine.
*/

ASSERT(s_cr != NULL);

if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
return (1);

return (0);

1243 * This privilege check should be used by actions and subroutines to
1244 * verify that the process has not setuid or changed credentials.

1245 */

1246 static int
1247 dtrace_priv_proc_common_nocd()

1248 {

19

new usr/src/uts/comon/dtrace/ dtrace. c

1249

1251
1252
1253

1255
1256 }

proc_t *proc;
if ((proc = ttoproc(curthread)) != NULL &&
I'(proc->p_flag & SNOCD))
return (1);

return (0);

1258 static int

1259 dtrace_priv_proc_destructive(dtrace_state_t *state,

1260 {
1261

1263
1264

1266
1267
1268

1270
1271
1272

1274
1275
1276

1278

1280 bad:

1281

1283
1284 }

int action = state->dts_cred. dcr_action;

if (!(mstate->dtnms_access & DTRACE_ACCESS_PRQC))

got o bad;
if (((action & DTRACE_CRA PROC_DESTRUCTI VE_ALLZONE) == 0) &&
dtrace_priv_proc_comon_zone(state) == 0)
got o bad;
if (((action & DTRACE_CRA PROC_DESTRUCTI VE_ALLUSER) == 0) &&
dtrace_priv_proc_common_user (state) == 0)
got o bad;
if (((action & DTRACE_CRA PROC_DESTRUCTI VE_CREDCHG == 0) &&
dtrace_priv_proc_comon_nocd() == 0)
got o bad;
return (1);

cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_fl ags | = CPU_DTRACE_UPRI V;

return (0);

1286 static int
1287 dtrace_priv_proc_control (dtrace_state_t *state, dtrace_nstate_t *nstate)

1288 {
1289
1290
1291

1293
1294
1295
1296
1297

1299

1301
1302 }

if (mstate->dtns_access & DTRACE_ACCESS PROC) ({
if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
return (1);

if (dtrace_priv_proc_comon_zone(state) &&
dtrace_priv_proc_comon_user (state) &&
dtrace_priv_proc_common_nocd())
return (1);

}
cpu_core[CPU->cpu_i d] . cpuc_dtrace_flags | = CPU_DTRACE_UPRI V;

return (0);

1304 static int
1305 dtrace_priv_proc(dtrace_state_t *state, dtrace_nstate_t *nstate)

1306 {
1307
1308
1309

1311

1313
1314 }

if ((mstate->dtns_access & DTRACE_ACCESS PROC) &&
(state->dts_cred. dcr_acti on & DTRACE_CRA PROC))
return (1);
cpu_core[CPU->cpu_i d] . cpuc_dtrace_fl ags | = CPU_DTRACE_UPRI V;

return (0);

dtrace_nstate_t *nstate)

new usr/src/uts/comon/ dtrace/ dtrace. c 21

1316 static int

1317 dtrace_priv_kernel (dtrace_state_t *state)

1318 {

1319 if (state->dts_cred.dcr_action & DTRACE _CRA_KERNEL)

1320 return (1);

1322 cpu_core[CPU->cpu_i d] . cpuc_dtrace_fl ags | = CPU_DTRACE_KPRI V;

1324 return (0);

1325 }

1327 static int

1328 dtrace_priv_kernel _destructive(dtrace_state_t *state)

1329 {

1330 if (state->dts_cred.dcr_acti on & DTRACE_CRA_KERNEL_DESTRUCTI VE)
1331 return (1);

1333 cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_flags | = CPU_DTRACE KPR V;

1335 return (0);

1336 }

1338 /*

1339 * Determine if the dte_cond of the specified ECB allows for processing of
1340 * the current probe to continue. Note that this routine may allow continued
1341 * processing, but with access(es) stripped fromthe nstate’ s dtnms_access
1342 * field.

1343 */

1344 static int

1345 dtrace_priv_probe(dtrace_state_t *state, dtrace_nstate_t *nstate,

1346 dtrace_ecb_t *ecbh)

1347 {

1348 dtrace_probe_t *probe = ecbh->dt e_probe;

1349 dtrace_provi der _t prov = probe->dt pr_provider;

1350 dtrace_pops t *pops = &prov->dtpv_pops;

1351 int node = DTRACE_MODE_NOPRI V_DROCP;

1353 ASSERT(ecb- >dt e_cond) ;

1355 if (pops->dtps_node != NULL) {

1356 node = pops- >dt ps_node(prov- >dt pv_arg,

1357 probe->dtpr_id, probe->dtpr_arg);

1359 ASSERT(node & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)) ;
1360 ASSERT(mode & (DTRACE_MODE_NOPRI V_RESTRI CT

1361 DTRACE_MODE_NOPRI V_DROP)) ;

1362 1

1364 /*

1365 * |f the dte_cond bits indicate that this consumer is only allowed to
1366 * see user-node firings of this probe, check that the probe was fired
1367 * while in a user context. |If that’s not the case, use the policy
1368 * specified by the provider to determine if we drop the probe or
1369 * merely restrict operation.

1370 */

1371 if (ecb->dte_cond & DTRACE_COND_USERMODE) {

1372 ASSERT(nmode ! = DTRACE_MODE_NOPRI V_DROP) ;

1374 if (!(nmde & DTRACE_MODE_USER))

1375 if (mode & DTRACE_MODE_NOPRI V_DROP)

1376 return (0);

1378 net at e- >dt ms_access &= ~DTRACE_ACCESS_ARGS;

1379 }

1380 }

new usr/src/uts/comon/ dtrace/ dtrace. c

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394

1396

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1410
1411
1412

1414
1415
1416
1417
1418
1419
1420
1421
1422

1424

1426
1427
1428
1429

1431
1432
1433
1434

1436
1437
1438
1439
1440
1441
1442
1443

1445
1446 }

This is nore subtle than it | ooks. W have to be absol utely certain
that CRED() isn’'t going to change out fromunder us so it's only
legit to examne that structure if we're in constrained situations.
Currently, the only tines we’'ll this check is if a non-super-user
has enabled the profile or syscall providers -- providers that
allow visibility of all processes. For the profile case, the check
above will ensure that we’'re exam ning a user context.

R EEE R
-~

if (ecb->dte_cond & DTRACE_COND OMER) {
cred_t *cr;
cred_t *s_cr = state->dts_cred. dcr_cred;

proc_t *proc;
ASSERT(s_cr != NULL);

if ((cr = CRED()) == NULL ||

s_cr->cr_uid !'= cr->cr_uid ||
s_cr->cr_uid !'= cr->cr_ruid ||
s_cr->cr_uid !'= cr->cr_suid ||
s cr->cr_gid !'= cr->cr_gid ||
s_cr->cr_gid !=cr->cr_rgid ||
s_cr->cr_gid !'= cr->cr_sgid ||
(proc = ttoproc(curthread)) == NULL ||

(proc->p_flag &
if (nmode & DTRACE MODE_NOPRI V_DROP)

return (0);
nst at e- >dt ms_access &= ~DTRACE_ACCESS_PRCC;
}
}
/*
* |f our dte_cond is set to DTRACE _COND ZONEOMNER and we are not
* in our zone, check to see if our node policy is to restrict rather
* than to drop; if to restrict, strip away both DTRACE ACCESS PRCC
* and DTRACE_ACCESS_ARGS
*/
if (ecb->dte_cond & DTRACE_COND ZONEOMNER) {
cred_t *cr;
cred_t *s_cr = state->dts_cred. dcr_cred;
ASSERT(s_cr != NULL)
if ((cr = CRED()) == NULL ||
s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
if (nmode & DTRACE_MODE_NOPRI V_DROP)
return (0);
nst at e- >dt ns_access &=
~(DTRACE_ACCESS_PRCC | DTRACE_ACCESS_ARGS) ;
}
}
/*
* By nerits of being in this code path at all, we have limted
* privileges. |If the provider has indicated that limted privileges
* are to denote restricted operation, strip off the ability to access
* arguments.
*/

if (nmode & DTRACE_MODE_LI M TEDPRI V_RESTRI CT)
nst at e- >dt ns_access &= ~DTRACE_ACCESS_ARGS;

return (1);

new usr/src/uts/comon/dtrace/ dtrace. c 23 new usr/src/uts/comon/dtrace/ dtrace.c 24
1448 | * 1514 rinsep = &inser->dtdsc_rinsing;
1449 * Note: not called fromprobe context. This function is called 1515 br eak;
1450 * asynchronously (and at a regular interval) fromoutside of probe context to 1516 }
1451 * clean the dirty dynamic variable lists on all CPUs. Dynamc vari abl e
1452 * cleaning is explained in detail in <sys/dtrace_inpl. 1518 if (j == NCPU) {
1453 */ 1519 /*
1454 voi d 1520 * W& were unable to find another CPU that
1455 dtrace_dynvar_cl ean(dtrace_dstate_t *dstate) 1521 * could accept this dirty list -- we are
1456 { 1522 * therefore unable to clean it now
1457 dtrace_dynvar _t *dirty; 1523 */
1458 dtrace_dstate_percpu_t *dcpu; 1524 dtrace_dynvar _f ail cl ean++;
1459 dtrace_ _dynvar _t **rinsep; 1525 conti nue;
1460 int i, j, work = 0; 1526 }
1527 }
1462 for (i =0; i < NCPU;, i++) {
1463 dcpu = &dst ate->dtds_percpuli]; 1529 work =
1464 rinsep = &dcpu->dtdsc_ri nsing;
1531 /*
1466 /* 1532 * Atomcally nove the dirty list aside.
1467 * |f the dirty list is NULL, there is no dirty work to do. 1533 *
1468 */ 1534 do {
1469 if (dcpu->dtdsc_dirty == NULL) 1535 dirty = dcpu->dtdsc_dirty;
1470 conti nue;
1537 /*
1472 if (dcpu->dtdsc_rinsing !'= NULL) { 1538 * Before we zap the dirty list, set the rinsing list.
1473 /* 1539 * (This allows for a potential assertion in
1474 * If the rinsing list is non-NULL, then it is because 1540 * dtrace_dynvar(): if a free dynanmic variable appears
1475 * this CPU was sel ected to accept another CPU s 1541 * on a hash chain, either the dirty list or the
1476 * dirty list -- and since that time, dirty buffers 1542 * rinsing list for some CPU nmust be non- NULL.)
1477 * have accunul ated. This is a highly unlikely 1543 */
1478 * condition, but we choose to ignore the dirty 1544 *rinsep = dirty
1479 * buffers -- they Il be picked up a future cleanse. 1545 dt race_menbar producer()
1480 */ 1546 } while (dtrace_casptr (&cpu->dt dsc _dirty,
1481 conti nue; 1547 dirty, NULL) !=dirty);
1482 } 1548 1
1484 if (dcpu->dtdsc_clean != NULL) { 1550 if ('work) {
1485 /* 1551 /*
1486 * If the clean list is non-NULL, then we're in a 1552 * W have no work to do; we can sinply return.
1487 * situation where a CPU has done deal | ocati ons (we 1553 =[]
1488 * have a non-NULL dirty list) but no allocations (we 1554 return;
1489 * also have a non-NULL clean list). W can't sinply 1555 }
1490 * nove the dirty list into the clean list on this
1491 * CPU, yet we also don’'t want to allow this condition 1557 dtrace_sync();
1492 * to persist, lest a short clean |ist prevent a
1493 * massive dirty list frombeing cleaned (which in 1559 for (i = 0; i < NCPU;, i++)
1494 * turn could lead to otherw se avoi dabl e dynani c 1560 dcpu = &dstate->dtds_percpul[i];
1495 * drops). To deal with this, we |look for some CPU
1496 * with a NULL clean list, NULL dirty list, and NULL 1562 if (dcpu->dtdsc_rinsing == NULL)
1497 * rinsing list -- and then we borrow this CPU to 1563 conti nue;
1498 * rinse our dirty list.
1499 * 1565 /*
1500 for (j =0; j < NCPU, j++) { 1566 * We are now guaranteed that no hash chain contains a pointer
1501 dtrace_dstate_percpu_t *rinser; 1567 * into this dirty list; we can nmake it clean.
1568 */
1503 rinser = &dstate->dtds_percpul[j]; 1569 ASSERT(dcpu->dt dsc_cl ean == NULL);
1570 dcpu- >dtdsc_cl ean = dcpu->dtdsc_ri nsi ng;
1505 if (rinser->dtdsc_rinsing != NULL) 1571 dcpu- >dtdsc_rinsing = NULL;
1506 conti nue; 1572 }
1508 if (rinser->dtdsc_dirty != NULL) 1574 /*
1509 conti nue; 1575 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, nake
1576 * sure that all CPUs have seen all of the dtdsc_cl ean pointers.
1511 if (rinser->dtdsc_clean != NULL) 1577 * This prevents a race whereby a CPU incorrectly decides that
1512 conti nue; 1578 * the state should be sonething other than DTRACE_DSTATE_CLEAN

new usr/src/uts/comon/ dtrace/ dtrace. c

1579
1580
1581

1583
1584

1586
1587
1588
1589
1590
1591
1592
1593
1594
A595]
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

1609

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

1626
1627
1628

1630
1631
1632

1634
1635
1636

1638
1639
1640
1641
1642
1643
1644

}

/*

* Depending on the value of the op parameter, this function |ooks-up,

* allocates or deallocates an arbitrarily-keyed dynam c variable. If an

* allocation is requested, this function will return a pointer to a

* dtrace_dynvar _t corresponding to the allocated variable -- or NULL if no
* variable can be allocated. If NULL is returned, the appropriate counter
* will be increnmented.

*/

dtrace_dynvar _t *

dt

* after dtrace_dynvar_clean() has conpl eted.
*

/
dtrace_sync();

dst at e- >dt ds_state = DTRACE_DSTATE_CLEAN;

race_dynvar (dtrace_dstate_t *dstate, uint_t nkeys,
dtrace_key t *key, size_t dsize, dtrace_dynvar_op_t op,
dtrace_nstate_t *nstate, dtrace_vstate_t *vstate)

ui nt 64_t hashval = DTRACE_DYNHASH VALI D,
dtrace_dynhash_t *hash = dst at e->dt ds_hash;
dtrace_dynvar _t *free *new_free, *next, *dvar,
processorid_t ne CPU->cpu id, cpu = ma'
dtrace_dstate percpu t *dcpu = &dstat e->dtds_percpu[ne];
size_t bucket, ksize;

size_t chunksi ze = dst at e- >dt ds_chunksi ze;

uintptr_t kdata, lock, nstate;

uint_t i;

*start,

ASSERT(nkeys != 0);

/
Hash the key.
al gorithm

16-bit chunks (as opposed to 8-bit chunks).

better than pathol ogi cal hash distribution.

dtrace_dynstat MDB dcnd

*

*

*

*

*

*

* over each referenced byte.
*

*

* found by running the ::
*/

o]

for (i =0; i < nkeys; i++) {
if (key[i].dttk_size == 0)

uint64_t val = key[i].dttk_val ue;

hashval += (val >> 48) & Oxffff;
hashval += (hashval << 10);
hashval "= (hashval >> 6);

hashval += (val >> 32) & Oxffff;
hashval += (hashval << 10);
hashval ~= (hashval >> 6);

hashval += (val >> 16) & Oxffff;
hashval += (hashval << 10);
hashval ~= (hashval >> 6);

hashval += val & Oxffff;

hashval += (hashval << 10);

hashval "= (hashval >> 6);
} else {

/*

* This is incredibly painful, but it beats the hell

* out of the alternative.

*prev = NULL;

As with aggregations, we use Jenkins' "One-at-a-tine
For the by-value portions, we performthe algorithmin
This speeds things up a
bit, and seens to have only a minute effect on distribution.
the by-reference data, we perform"One-at-a-tinme" iterating (safely)
It’s painful to do this, but it’s much
The efficacy of the
hashi ng al gorithm (and a conparison with other algorithnms) nay be

new usr/src/uts/comon/dtrace/ dtrace.c 26
1645 */

1646 uint64_t j, size = key[i].dttk_size;

1647 uintptr_t base = (uintptr_t)k [|] dttk _val ue;

1649 if (!dtrace_canl oad(base, size, nstate, vstate))

1650 br eak;

1652 for (j =0; j < size; j++) {

1653 hashval += dtrace_| oad8(base + j);

1654 hashval += (hashval << 10);

1655 hashval ~= (hashval >> 6);

1656 }

1657 }

1658 }

1660 i f (DTRACE_CPUFLAG | SSET(CPU_DTRACE_FAULT))

1661 return (NULL);

1663 hashval += (hashval << 3);

1664 hashval "= (hashval >> 11);

1665 hashval += (hashval << 15);

1667 I*

1668 * There is a rempte chance (ideally, 1 in 2731) that our hashval
1669 * comes out to be one of our two sentinel hash values. |If this

1670 * actual |y happens, we set the hashval to be a value known to be a
1671 * non-sentinel val ue.

1672 */

1673 f (hashval == DTRACE_DYNHASH FREE | | hashval == DTRACE_DYNHASH_SI NK)
1674 hashval = DTRACE_DYNHASH_VALI

1676 I*

1677 * Yes, it’s painful to do a divide here. If the cycle count becomes
1678 * inmportant here, tricks can be pulled to reduce it. (However, it's
1679 * critical that hash collisions be kept to an absol ute m ni mum

1680 * they’'re nuch nore painful than a divide.) |It's better to have a
1681 * solution that generates few collisions and still keeps things

1682 * relatively sinple.

1683 */

1684 bucket = hashval % dst at e->dtds_hashsi ze;

1686 if (op == DTRACE_DYNVAR DEALLOC)

1687 volatile uintptr_t *lockp = &hash[bucket]. dtdh_| ock;

1689 for (55) {

1690 while ((lock = *lockp) & 1)

1691 conti nue;

1693 if (dtrace_casptr((void *)lo

1694 (void *)lock, (void *)(lo ck + 1)) == (void *)l ock)
1695 br eak;

1696 }

1698 dtrace_nenbar _producer();

1699 }

1701 top:

1702 prev = NULL;

1703 I ock = hash[bucket]. dtdh_l ock;

1705 dtrace_nenbar _consuner () ;

1707 start = hash[bucket].dtdh_chai n;

1708 ASSERT(start != NULL && (start- >dtdv_hashval == DTRACE_DYNHASH_SI NK | |
1709 start->dtdv_hashval != DTRACE DYNHASH FREE | |

1710 op ! = DTRACE_DYNVAR DEALLCQ));

new usr/src/uts/comon/ dtrace/ dtrace. c 27

1712
1713
1714

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

1749
1750

1752
1753

1755
1756
1757

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

1771
1772

1774
1775

(dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {

dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
dtrace_key_t *dkey = &dtuple->dtt_key[O];

if (dvar->dtdv_hashval != hashval) {
if (dvar->dtdv_hashval == DTRACE_DYNHASH SINK) {

/*
* W' ve reached the sink, and therefore the
* end of the hash chain; we can kick out of
* the | oop knowi ng that we have seen a valid
* snapshot of state.
*/
ASSERT(dvar - >dt dv_next == NULL);
ASSERT(dvar == &dtrace_dynhash_si nk);
br eak;

}
i f (dvar->dtdv_hashval == DTRACE_DYNHASH FREE) {
/

We’ve gone off the rails: somewhere al ong
the line, one of the nenbers of this hash
chain was deleted. Note that we could al so
detect this by sinply letting this |oop run
to conpletion, as we would eventually hit
the end of the dirty list. However, we
want to avoid running the |length of the
dirty list unnecessarily (it mght be quite
long), so we catch this as early as

possi bl e by detecting the hash marker. In
this case, we sinply set dvar to NULL and
break; the conditional after the loop wll
send us back to top.

* % ok k% R % ok kb F ok F %

*/
dvar = NULL;
br eak;

}

got o next;

}

if (dtuple->dtt_nkeys != nkeys)
goto next;

for (i =0; i < nkeys; i++, dkey++) {
if (dkey->dttk_size != key[i].dttk_size)
goto next; /* size or type mismatch */

if (dkey->dttk_size != 0) {
if (dtrace_bcnp(
(void *)(uintptr_t)key[i].dttk_val ue,
(void *)(uintptr_t)dkey->dttk_val ue,
dkey->dtt k_si ze))

goto next;
} else {
if (dkey->dttk_value != key[i].dttk_val ue)
got o next;
}

}

if (op != DTRACE_DYNVAR DEALLQOC)
return (dvar);

ASSERT(dvar - >dt dv_next == NULL | |
dvar - >dt dv_next - >dt dv_hashval != DTRACE_DYNHASH FREE);

new usr/src/uts/comon/ dtrace/ dtrace. c

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

1796

1798
1799
1800
1801
1802

1804

1806
1807
1808
1809
1810
1811
1812
1813

1815
1816
1817
1818
1819
1820

1822
1823
1824
1825
1826

1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839

1841
1842

next:

if (prev !'= NULL) {
ASSERT(hash[bucket] . dtdh_chain != dvar);
ASSERT(start != dvar);
ASSERT(pr ev- >dt dv_next == dvar);
prev->dtdv_next = dvar->dtdv_next;

} else {
if (dtrace_casptr(&hash[bucket].dtdh_chain,
start, dvar->dtdv_next) != start) {
/*
* W have failed to atom cally swi ng the
* hash tabl e head pointer, presumably because
* of a conflicting allocation on another CPU.
* We need to reread the hash chain and try
* again.
*/
goto top;
}
}

dtrace_nenbar _producer();

/ *
* Now set the hash value to indicate that it’s free.
*
/
ASSERT(hash[bucket] . dtdh_chain != dvar);
dvar - >dt dv_hashval = DTRACE_DYNHASH FREE;

dtrace_nenbar _producer();

/*

* Set the next pointer to point at the dirty Ilist, and

* atomcally swng the dirty pointer to the newy freed dvar.
*

do {
next = dcpu->dt dsc _di rty,
dvar - >dt dv_next = nex
} while (dtrace_casptr(&dcpu- >dtdsc _dirty, next, dvar) != next);

/*
* Finally, unlock this hash bucket.
*/
ASSERT(hash[bucket] . dtdh_l ock == | ock);

ASSERT(| ock & 1);
hash[bucket] . dt dh_| ock++;

return (NULL);

prev = dvar;

conti nue;

}

if (dvar == NULL) {
/*
* |f dvar is NULL, it is because we went off the rails:
* one of the elenents that we traversed in the hash chain
* was deleted while we were traversing it. In this case,
* we assert that we aren’t doing a dealloc (deallocs |ock
* the hash bucket to prevent thenselves fromracing with
* one another), and retry the hash chain traversal.
*/
ASSERT(op ! = DTRACE _DYNVAR DEALLOC);
goto top;

}

if (op!

= DTRACE_DYNVAR ALLOC) {
/ *

28

new usr/src/uts/comon/ dtrace/ dtrace. c 29

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856

1858
1859

1861
1862
1863
1864
1865
1866
1867
1868
1869

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885

1887

1889
1890
1891

1893
1894
1895

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

1908

retry:

* |f we are not to allocate a new variable, we want to

* return NULL now. Before we return, check that the val ue
* of the lock word hasn’t changed. |If it has, we nay have
* seen an inconsistent snapshot.

*

if (op == DTRACE_DYNVAR NOALLQOC) {
i f (hash[bucket].dtdh_l ock != 1ock)
goto top;
} else {
ASSERT(op == DTRACE_DYNVAR DEALLCC) ;
ASSERT(hash[bucket] . dt dh_I ock == | ock);

ASSERT(| ock & 1)
hash[bucket] . dtdh_| ock++;

return (NULL);

We need to allocate a new dynanmic variable. The size we need is the
size of dtrace_dynvar plus the size of nkeys dtrace_key_ t’'s plus the
size of any auxiliary key data (rounded up to 8-byte alignment) plus
the size of any referred-to data (dsize). W then round the final
size up to the chunksize for allocation.

O * * % ok * ok ¥
-

for (ksize = 0, i = 0; i < nkeys; i++)

ksi ze += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));

This should be pretty much inpossible, but could happen if, say,
strange DIF specified the tuple. Ideally, this should be an
assertion and not an error condition -- but that requires that the
chunksi ze cal cul ation in dtrace_difo_chunksize() be absolutely
bull et-proof. (That is, it nust not be able to be fool ed by
malicious DIF.) G ven the |ack of backwards branches in DI F,
solving this would presunably not anpunt to solving the Halting
*/Probl em-- but it still seenms awfully hard.
*
if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
ksi ze + dsize > chunksize) {

dcpu- >dt dsc_dr ops++;

return (NULL);

* ok K ok F ok F o

}
nst at e = DTRACE_DSTATE_EMPTY;
do {
free = dcpu->dtdsc_free;
if (free == NULL)
dtrace_dynvar_t *cl ean = dcpu->dtdsc_cl ean;
void *rval;
if (clean == NULL) {
/
We're out of dynami c variable space on

this CPU. Unless we have tried all CPUs,
we'll try to allocate froma different
CPU.

* ok F ok

*
*/
switch (dstate->dtds_state) {
case DTRACE_DSTATE_CLEAN:

void *sp = &dst at e->dt ds_st at e;

if (++cpu >= NCPU)

new usr/src/uts/comon/ dtrace/ dtrace. c

1909

1911
1912
1913

1915
1916

1918

1920
1921

1923
1924

1926
1927
1928
1929
1930
1931

1933
1934
1935

1937
1938
1939

1941
1942
1943
1944

1946
1947
1948

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

1972
1974

cpu = 0O;

if (dcpu->dtdsc_dirty != NULL &&
nstate == DTRACE_DSTATE_EMPTY)
nstate = DTRACE _DSTATE DI RTY;

if (dcpu->dtdsc_rinsing != NULL)
nstate = DTRACE_DSTATE_RI NSI NG

dcpu = &dstat e->dt ds_percpu[cpu] ;

if (cpu!= ne)
goto retry;

(void) dtrace_cas32(sp,
DTRACE_DSTATE_CLEAN, nstate);

/*

* To increnent the correct bean
* counter, take another Iap.

*/

goto retry;

}

case DTRACE_DSTATE_DI RTY:
dcpu- >dtdsc_dirty_drops++;
br eak;

case DTRACE_DSTATE_RI NSI NG
dcpu- >dtdsc_ri nsi ng_dr ops++;
br eak;

case DTRACE_DSTATE_EMPTY:
dcpu- >dt dsc_dr ops++;
br eak;

}

DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP) ;
return (NULL);

* The clean |list appears to be non-empty. W want to
* nove the clean list to the free list; we start by

* nmoving the clean pointer aside.

*/

if (dtrace_casptr(&dcpu->dtdsc_cl ean,

clean, NULL) != clean) {
/*
* We are in one of two situations:
*
* (a) The clean list was switched to the
* free list by another CPU.
*
* (b) The clean list was added to by the
* cl eansing cyclic.
*
* |In either of these situations, we can
* just reattenpt the free list allocation.
*

goto retry;

}
ASSERT(cl ean- >dt dv_hashval == DTRACE_DYNHASH FREE) ;
/ *

30

new usr/src/uts/comon/ dtrace/ dtrace. c

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

1994
1995
1996

1998
1999
2000
2001
2002
2003
2004
2005
2006

2008
2009
2010

2012
2013
2014
2015
2016
2017
2018
2019
2020

2022
2023

2025
2026
2027

2029
2030

2032
2033
2034
2035
2036
2037
2038
2039
2040

Now we' || nmove the clean list to our free |ist.
It's inpossible for this to fail: the only way
the free list can be updated is through this

*

*

*

* code path, and only one CPU can own the clean |ist.
* Thus, it would only be possible for this to fail i
* this code were racing with dtrace_dynvar_clean().
* (That is, if dtrace_dynvar_clean() updated the clean
*
*
*
*
*

list, and we ended up racing to update the free

list.) This race is prevented by the dtrace_sync()

in dtrace_dynvar_clean() -- which flushes the
owners of the clean lists out before resetting
the clean lists.

*/

dcpu = &dst at e- >dt ds_per cpu[ne] ;

rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
ASSERT(rval == NULL)
goto retry;

}

dvar = free;
new free = dvar->dtdv_next;

} while (dtrace_casptr(&cpu->dtdsc_free, free, new free) != free);

/*
* We have now al | ocated a new chunk.

*

tupI e array and copy any referenced key data into the data space
* following the tuple array. As we do this, we relocate dttk_val ue
* in the final tuple to point to the key data address in the chunk.
*/

kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
dvar->dtdv_data = (void *)(kdata + ksize);
dvar->dtdv_tupl e. dtt_nkeys = nkeys;

(i =0; i < nkeys; i++) {
dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
size_t kesize = key[i].dttk_size;

if (kesize = 0)
dtrace_bcopy(
(const void *)(uintptr_t)key[i].dttk_val ue,
(void *)kdata kesi ze) ;
dkey->dttk_val ue = kdat a;
kdata += P2ROUNDUP(kesi ze, sizeof (uint64_t));
} else {
dkey->dttk_val ue = key[i].dttk_val ue;

dkey->dttk_si ze = kesi ze;

}

ASSERT(dvar - >dt dv_hashval == DTRACE_DYNHASH FREE) ;
dvar - >dt dv_hashval = hashval ;
dvar->dtdv_next = start;

if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
return (dvar);

The cas has failed. Either another CPU is adding an el enent to
hash chain. The si npl est way to deal with both of these cases
(though not necessarily the npst efficient) is to free our

al |l ocated bl ock and tail-call ourselves. Note that the free is
to the dirty list and _not_ to the free |ist.
races with allocators, above.

* Ok ok ok kR Kk ok ¥

We copy the tuple keys into the

this hash chain, or another CPU is deleting an elenment fromthis

This is to prevent

new usr/src/uts/comon/ dtrace/ dtrace. c

2041
2043

2045
2046
2047
2048

2050
2051

2053
2054
2055

dvar - >dt dv_hashval = DTRACE_DYNHASH_FREE;
dt race_nenbar _producer () ;
do {

free = dcpu->dtdsc_dirty;
dvar->dtdv_next = free;

} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar)

return (dtrace_dynvar(dstate, nkeys, key, dsize, op,

}

| * ARGSUSED* /
static void
dtrace_aggregate_mi n(uint64_t *oval,

uint64_t nval, uint64_t

2056 {

2057
2058
2059

2061
2062
2063

if ((int64_t)nval < (int64_t)*oval)
*oval = nval;

}

/ * ARGSUSED* /
static void
dtrace_aggregat e_nax(ui nt 64_t *oval,

uint64_t nval, uint64_t

2064 {

2065
2066
2067

2069
2070

if ((int64_t)nval > (int64_t)*oval)
*oval = nval;

}

static void
dtrace_aggregate_quanti ze(ui nt64_t *quanta, uint64_t nval,

2071 {

2072
2073

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

2090
2091
2092

2094
2095

2097
2098

int i, zero
int64_t val

DTRACE_QUANTI ZE_ZEROBUCKET;
(int64_t)nval

if (val <0) {
for (I =0; i < zero; i++)

nst ate,

arg)

arg)

uint64_t i

if (val <= DTRACE_Q{JANTI ZE_BUCKETVAL(i)) {

quantal[i] += incr;
return;

} else {

for (i = zero + 1; i < DTRACE_QUANTI ZE _NBUCKETS; i ++)
if (val < DTRACE_QUANTI ZE_BUCKETVAL(i)) {

quantali - 1] += incr;
return;

}

quant a[DTRACE_QUANTI ZE_NBUCKETS - 1] += incr;

return;

}

: ASSERT(0)

static void
dtrace_aggregate_| quantize(uint64_t *lquanta, uint64_t nval,

2099 {

2100
2101
2102
2103
2104

2106

uint64_t arg = *| quant at+;

int32_t base = DTRACE_LQUANTI ZE_BASE(ar g) ;
uint16_t step = DTRACE_LQUANTI ZE_STEP(arQg);
uint16_t |evels = DTRACE_LQUANTI ZE_LEVELS(arg);
int32_t val = (int32_t)nval, |evel;

ASSERT(step != 0);

ui nt 64_t

1= free);

vstate));

ncr)

{

incr)

new usr/src/uts/comon/dtrace/ dtrace. c 33 new usr/src/uts/comon/dtrace/ dtrace.c
2107 ASSERT(| evel s 1= 0);
2174 base += nbuckets - (nbuckets / factor);
2109 if (val < base) { 2175 last = this;
2110 /* 2176 this = next;
2111 * This is an underfl ow 2177 }
2112 */
2113 I quanta[0] += incr; 2179 /*
2114 return; 2180 * Qur value is greater than or equal to our factor taken to the
2115 } 2181 * power of one plus the high magnitude -- return the top bucket.
2182 */
2117 level = (val - base) / step; 2183 return (base);
2184 }
2119 if (level < levels)
2120 | quanta[l evel + 1] += incr; 2186 static void
2121 return; 2187 dtrace_aggregate_ ||l quantize(uint64_t *Ilquanta, uint64_t nval, uint64_t incr)
2122 } 2188 {
2189 uint64_t arg = *l | quanta++;
2124 /* 2190 uint16_t factor = DTRACE_LLQUANTI ZE_FACTOR(arg);
2125 * This is an overflow 2191 uint16_t | ow = DTRACE_LLQUANTI ZE_LOWN ar g) ;
2126 */ 2192 uint16_t hi gh = DTRACE_LLQUANTI ZE_HI GH(ar g) ;
2127 I quanta[l evels + 1] += incr; 2193 uint16_t nsteps = DTRACE_LLQUANTI ZE_NSTEP(arg);
2128 }
2195 Il quanta[dtrace_aggregate_| | quanti ze_bucket (factor,
2130 static int 2196 low, high, nsteps, nval)] += incr;
2131 dtrace_aggregate_| | quanti ze_bucket (uint16_t factor, uint1l6_t |ow, 2197 }
2132 uint16_t high, uintl6_t nsteps, int64_t val ue)
2133 { 2199 /* ARGSUSED*/
2134 inté4_t this = 1, last, next; 2200 static void
2135 int base = 1, order; 2201 ?trace_aggregat e_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2202
2137 ASSERT(factor <= nsteps); 2203 dat a[0] ++;
2138 ASSERT(nsteps % factor == 0); 2204 data[1] += nval;
2205 }
2140 for (order = 0; order < |low, order++)
2141 this *= factor; 2207 | * ARGSUSED*/
2208 static void
2143 7% 2209 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2144 * |f our value is less than our factor taken to the power of the 2210 {
2145 * | ow order of nmgnitude, it goes into the zeroth bucket. 2211 int64_t snval = (int64_t)nval;
2146 */ 2212 uint64 t tnp[2];
2147 if (value < (last = this))
2148 return (0); 2214 dat a[0] ++;
2215 data[1] += nval;
2150 for (this *= factor; order <= high; order++)
2151 int nbuckets = this > nsteps ? nsteps : this; 2217 /*
2218 * What we want to say here is:
2153 if ((next =this * factor) < this) { 2219 *
2154 /* 2220 * data[2] += nval * nval;
2155 * We should not generally get |log/linear quantizations 2221 *
2156 * with a high magnitude that allows 64-bits to 2222 * But given that nval is 64-bit, we could easily overflow, so
2157 * overflow, but we nonethel ess protect against this 2223 * we do this as 128-bit arithnetic.
2158 * by explicitly checking for overflow, and clanping 2224 *
2159 * our val ue accordingly. 2225 if (snval < 0)
2160 & 2226 snval = -snval;
2161 value = this - 1;
2162 } 2228 dtrace_nul tiply_128((uint64_t)snval, (uint64_t)snval, tnp);
2229 dtrace_add_128(data + 2, tnp, data + 2);
2164 if (value < this) { 2230 }
2165 /*
2166 * If our value lies within this order of magnitude, 2232 | * ARGSUSED*/
2167 * determine its position by taking the offset within 2233 static void
2168 * the order of mmgnitude, dividing by the bucket 2234 dtrace_aggregate_count (uint64_t *oval, uint64_t nval, uint64_t arg)
2169 * width, and adding to our (accunul ated) base. 2235 {
2170 &7/ 2236 *oval = *oval + 1;
2171 return (base + (value - last) / (this / nbuckets)); 2237 }
2172 }

new usr/src/uts/comon/dtrace/ dtrace. c

2239 /* ARGSUSED*/

2240 static void

2241 dtrace_aggregate_sun(uint64_t *oval, uint64_t nval, uint64_t arg)

2242 {

2243 *oval += nval;

2244 }

2246 | *

2247 * Aggregate given the tuple in the principal data buffer, and the aggregating
2248 * action denoted by the specified dtrace_aggregation_t. The aggregation
2249 * bpuffer is specified as the buf parameter. This routine does not return
2250 * failure; if there is no space in the aggregation buffer, the data will be
2251 * dropped, and a correspondi ng counter increnented.

2252 */

2253 static void

2254 dtrace_aggregat e(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,

2255 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2256 {

2257 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;

2258 uint32_t i, ndx, size, fsize

2259 uint32_t align = sizeof (uint64_t)

2260 dtrace_aggbuffer_t *agb;

2261 dtrace_aggkey_t *key;

2262 uint32_t hashval =0, limt, isstr;

2263 caddr _t tomax, data, kdata;

2264 dtrace_actkind_t action;

2265 dtrace_action_t *act;

2266 uintptr_t offs;

2268 if (buf == NULL)

2269 return;

2271 if (!agg->dtag_hasarg) {

2272 /*

2273 * Currently, only quantize() and | quantize() take additional
2274 * argunents, and they have the sane semantics: an increnent
2275 * value that defaults to 1 when not present. |f additional
2276 * aggregating actions take argunents, the setting of the
2277 * default argunent value will presumably have to beconme nore
2278 * sophisticated...

2279 */

2280 arg = 1;

2281 }

2283 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATI ON;

2284 size = rec->dtrd_of fset - agg->dtag_base;

2285 fsize = size + rec->dtrd_size;

2287 ASSERT(dbuf - >dt b_t omax != NULL);

2288 data = dbuf->dtb_tomax + offset + agg->dtag_base;

2290 if ((tomax = buf->dtb_tomax) == NULL) {

2291 dtrace_buf f er _drop(buf)

2292 return;

2293 }

2295 I*

2296 */The netastructure is always at the bottom of the buffer.

2297 *

2298 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -

2299 si zeof (dtrace_aggbuffer _t));

2301 if (buf->dtb_offset == 0) {

2302 /*

2303 * We just kludge up approximately 1/8th of the size to be
2304 * buckets. If this guess ends up being routinely

35

new usr/src/uts/comon/ dtrace/ dtrace. c

2305
2306
2307
2308

2310
2311
2312
2313
2314
2315
2316
2317
2318

2320
2321
2322
2323
2324
2325

2327
2328
2329
2330

2332
2333
2334

2336
2337

2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

2354
2355
2356
2357

2359
2360
2361
2362

2364
2365
2366

2368
2369
2370

* of f-the-mark, we may need to dynamically readjust this
* based on past perfornance.
*

/

uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);

if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_ t *) <
(uintptr_t)tomax || hashsize == 0) {
*
/*
*
*

W' ve been given a ludicrously small buffer;
increment our drop count and | eave.
/
dtrace_buffer_drop(buf);
return;

}

/*

* And now, a pathetic attenpt to try to get a an odd (or

* perchance, a prine) hash size for better hash distribution.
*

if (hashsize > (DTRACE_AGGHASHSI ZE_SLEW << 3))
hashsi ze -= DTRACE_AGGHASHSI ZE_SLEW

agb- >dt agb_hashsi ze = hashsi ze;

agb- >dt agb_hash = (dtrace aggkey t **)((uintptr t)agb -
agb- >dt agb_hashsi ze * sizeof (dtrace_aggkey_t *));

agb->dtagb_free = (uintptr_t)agb->dtagb_hash;

for (i = 0; i < agb->dtagb_hashsi ze; i++)
) agb->dt agb_hash[i] = NULL;

ASSERT(agg->dtag_first != NULL);
ASSERT(agg- >dtag_first->dta_int upl e);

/*

* Cal cul ate the hash val ue based on the key. Note that we _don’t

* include the aggid in the hashing (but we will store it as part of

* the key). The hashing algorithmis Bob Jenkins’ "One-at-a-tine"

* algorithm a sinple, quick algorithmthat has no known funnels, and
* gets good distribution in practice. The efficacy of the hashing

* algorithm (and a conparison with other algorithnms) may be found by
* running the ::dtrace_aggstat MDB dcnd.
*

/

s}

for (act = agg->dtag _first; act->dta_intuple; act = act->dta_next) {
i = act->dta_rec. dtrd of fset - agg->dtag_base;

limt =i + act->dta_rec.dtrd_size;

ASSERT(linmit <= size);

isstr = DTRACEACT_I SSTRI NG act) ;

for (; i <limt; i++) {
hashval += data[i]
hashval += (hashval << 10);
hashval "= (hashval >> 6);

if (isstr & data[i] == "'\0")
br eak;

}

hashval += (hashval << 3);
hashval ~= (hashval >> 11);
hashval += (hashval << 15);

/*
* Yes, the divide here is expensive -- but it’'s generally the |east
* of the performance issues given the anount of data that we iterate

new usr/src/uts/comon/dtrace/ dtrace. c 37 new usr/src/uts/comon/dtrace/ dtrace.c
2371 * over to conpute hash val ues, conpare data, etc. 2437 if ((uintptr_t)tomax + offs + fsize >
2372 */ 2438 agb->dtagb_free - sizeof (dtrace_aggkey_ t)) {
2373 ndx = hashval % agb->dtagb_hashsi ze; 2439 dtrace_buf fer_drop(buf);
2440 return;
2375 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2441 }
2376 ASSERT((caddr _t) key >= tomax);
2377 ASSERT((caddr _t)key < tomax + buf->dtb_size); 2443 / * CONSTCOND* /
2444 ASSERT(! (si zeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2379 if (hashval != key->dtak_hashval || key->dtak_size != size) 2445 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2380 conti nue; 2446 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2382 kdata = key->dt ak_dat a; 2448 key->dtak_data = kdata = tomax + offs;
2383 ASSERT(kdata >= tomax & kdata < tomax + buf->dtb_size); 2449 buf->dtb_offset = offs + fsize;
2385 for (act = agg->dtag_first; act->dta_intuple; 2451 /*
2386 act = ct >dt a_next) { 2452 * Now copy the data across.
2387 i = act->dta_rec.dtrd_offset - agg- >dt ag_base; 2453 */
2388 limit =i + act->dta_rec.dtrd_si ze; 2454 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2389 ASS RT(I imt <= size);
2390 str = DTRACEACT ISSTRING(act); 2456 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2457 kdata[i] = datali];
2392 for (; i <i i++) {
2393 if (data[l] = datafil]) 2459 I*
2394 got 0 next; 2460 * Because strings are not zeroed out by default, we need to iterate
2461 * |l ooking for actions that store strings, and we need to explicitly
2396 if (isstr & data[i] == '\0") 2462 * pad these strings out with zeroes.
2397 br eak; 2463 e
2398 } 2464 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2399 } 2465 int nul;
2401 if (action != key->dtak_action) { 2467 if (!DTRACEACT_I SSTRI NG act))
2402 s 2468 cont i nue;
2403 * W are aggregating on the same value in the same
2404 * aggregation with two different aggregating actions. 2470 i = act->dta_rec.dtrd_of fset - agg->dtag_base;
2405 * (This should have been picked up in the conpiler, 2471 limt =i + act->dta_rec.dtrd_size;
2406 * so we nay be dealing with errant or devious DI F.) 2472 ASSERT(limt <= size);
2407 * This is an error condition; we indicate as nuch,
2408 * and return. 2474 for (nul =0; i <limt; i++) {
2409 */ 2475 if (nul) {
2410 DTRACE_CPUFLAG SET(CPU DTRACE | LLOP) ; 2476 kdata[i] = '\0";
2411 return; 2477 conti nue;
2412 } 2478 }
2414 /* 2480 if (data[i] !="'\0")
2415 * This is a hit: we need to apply the aggregator to 2481 conti nue;
2416 * the value at this key.
2417 2] 2483 nul = 1;
2418 agg- >dt ag_aggregate((uint64_t *)(kdata + size), expr, arg); 2484 }
2419 return; 2485 }
2420 next:
2421 conti nue; 2487 for (i = size; i < fsize; i++)
2422 } 2488 kdata[i] = O;
2424 e 2490 key- >dt ak_hashval = hashval ;
2425 * W didn’t find it. W need to allocate sone zero-filled space, 2491 key->dt ak_si ze = si ze;
2426 * link it into the hash table appropriately, and apply the aggregator 2492 key->dt ak_act i on = actio
2427 * to the (zero-filled) val ue. 2493 key->dt ak_next = agb- >dt agb hash[ndx] ;
2428 */ 2494 agb- >dt agb_hash[ndx] = key;
2429 of fs = buf->dtb_of fset;
2430 while (offs &(allgn - 1)) 2496 /*
2431 offs += sizeof (uint32_t); 2497 * Finally, apply the aggregator.
2498 */
2433 /* 2499 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2434 * |f we don’t have enough roomto both allocate a new key _and_ 2500 agg- >dt ag_aggregate((ui nt64_t *)(key->dtak_data + size), expr, arg);
2435 * its associated data, increment the drop count and return. 2501 }
2436 */

new usr/src/uts/comon/ dtrace/ dtrace. c

2503 /*

2504 * G ven consuner state, this routine finds a speculation in the | NACTIVE
2505 * state and transitions it into the ACTIVE state. If there is no speculation
2506 * in the INACTIVE state, O is returned. In this case, no error counter is
2507 * increnmented -- it is up to the caller to take appropriate action.

2508 */

2509 static int

2510 dtrace_specul ation(dtrace_state_t *state)

2511 {

2512 int i =0;

2513 dtrace_specul ation_state_t current;

2514 uint32_t *stat = &state->dts_specul ati ons_unavail, count;

2516 while (i < state->dts_nspecul ations) {

2517 dtrace_specul ation_t *spec = &state->dts_specul ations[i];
2519 current = spec->dtsp_state;

2521 if (current != DTRACESPEC | NACTI VE)

2522 if (current == DTRACESPEC_COWM TTI NGVANY |

2523 current == DTRACESPEC_COWM TTI NG | |

2524 current == DTRACESPEC DI SCARDI NG

2525 stat = &state->dts_specul ati ons_busy;

2526 i ++;

2527 conti nue;

2528 }

2530 if (dtrace_cas32((uint32_t *)&spec >dt sp_st at e,

2531 current, DTRACESPEC ACTIVE) == current)

2532 return(l + 1);

2533 }

2535 /*

2536 * We couldn't find a speculation. |f we found as nuch as a single
2537 * busy specul ation buffer, we'll attribute this failure as "busy"
2538 * instead of "unavail"

2539

2540 do {

2541 count = *stat;

2542 } while (dtrace_cas32(stat, count, count + 1) != count);

2544 return (0);

2545 }

2547 | *

2548 * This routine conmmits an active speculation. |f the specified specul ation
2549 * is not in a valid state to performa commt(), this routine will silently d
2550 * nothing. The state of the specified speculation is transitioned according
2551 * to the state transition diagramoutlined in <sys/dtrace_inpl.h>

2552 */

2553 static void

2554 dtrace_specul ation comnt(dtrace state_t *state, processorid_t cpu,

2555 dtrace_speci d_t which)

2556 {

2557 dtrace_specul ati on_t *spec;

2558 dtrace_buffer_t *src, *dest;

2559 uintptr_t daddr, saddr, dlimt, slimt;

2560 dtrace_specul ation_state_t current, new

2561 intptr_t offs;

2562 uint64_t timestanp;

2564 if (which == 0)

2565 return;

2567 if (which > state->dts_nspecul ations) {

2568 cpu_core[cpu].cpuc_dtrace_flags | = CPU_DTRACE_| LLOP;

39

(0]

new usr/src/uts/comon/ dtrace/ dtrace. c

2569
2570

2572
2573
2574

2576
2577

2579
2580

2582
2583
2584
2585

2587
2588
2589
2590
2591
2592
2593
2594
2595
2596

2598
2599
2600

2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614

2616
2617
2618

2620
2621
2622
2623
2624

2626
2627
2628
2629
2630
2631
2632
2633
2634

return;

}

spec = &state->dts_specul ati ons[which - 1];
src = &spec->dtsp_buffer[cpu];
dest = &state->dts_buffer[cpu];

do {
current = spec->dtsp_state;

if (current == DTRACESPEC COWM TTI NGVANY)
br eak;

switch (current) {

case DTRACESPEC_| NACTI VE:

case DTRACESPEC_DI SCARDI NG
return;

case DTRACESPEC_COW TTI NG
/ *

* This is only possible if we are (a) commit()’in

* without having done a prior speculate() on this CPU
* and (b) racing with another commt() on a different
* CPU. There's nothing to do -- we just assert that
* our offset is 0.

*/

ASSERT(src->dtb_of fset == 0);

return;

case DTRACESPEC_ACTI VE:
new = DTRACESPEC _COW TTI NG
break;

case DTRACESPEC_ACT | VEONE:
/*

* This speculation is active on one CPU. |f our
* buffer offset is non-zero, we know that the one CPU
* must be us. Oherwise, we are conmitting on a
* different CPU fromthe specul ate(), and we nust
* rely on being asynchronously cl eaned.
*
if (src->dtb_offset != 0) {
new = DTRACESPEC_COW TTI NG
break;

}
I * FALLTHROUGH* /

case DTRACESPEC_ACTI VENVANY:
new = DTRACESPEC_COWM TTI NGVANY;
br eak;

defaul t:
ASSERT(0) ;

}
} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
current, new) != current);

*
* We have set the state to indicate that we are conmitting this
* specul ation. Now reserve the necessary space in the destination
* buffer.
*/
if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
sizeof (uint64_t), state, NULL)) < 0) {
dtrace_buffer_drop(dest);
goto out;

40

new usr/src/uts/comon/ dtrace/ dtrace. c 41

2635

2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649

2651
2652
2653
2654
2655
2656

2658
2659
2660

2662

2664
2665

2667
2668
2669
2670
2671
2672
2673
2674
2675

2677
2678
2679
2680
2681

2683
2684
2685

2687
2688
2689
2690
2691

2693
2694
2695
2696

2698
2699
2700

out :

We have sufficient space to copy the speculative buffer into the
primary buffer. First, nodify the specul ative buffer, filling
inthe timestanp of all entries with the current tine. The data
nust have the commt() time rather than the tine it was traced,
so that all entries in the primary buffer are in tinmestanp order.

EE A
-~

tinestanp = dtrace_gethrtime();
saddr = (uintptr_t)src->dtb_tonax;
slimt = saddr + src->dtb_of fset;
while (saddr < slinit)
size_t size;
dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;

if (dtrh >dtrh_epi d == DTRACE_EPI DNONE) {
addr += sizeof (dtrace epid_t);
contlnue

}
ASSERT3U(dtr h->dtrh_epid, <=, state->dts_necbs);
size = state->dts_ecbs[dtrh->dtrh_epid - 1] ->dte_si ze;

ASSERT3U(saddr + size, <=, slimt);

ASSERT3U(si ze, >=, si zeof (dtrace rechdr _t));

ASSERT3U(DTRACE_RECORD _LOAD_TI MESTAMP(dtTh), ==, U NT64_MAX):
DTRACE_RECORD STORE_TI MESTAMP(dtrh, tinestanp);

saddr += size;

}

/*

* Copy the buffer across. (Note that this is a

* highly subobtimal bcopy(); in the unlikely event that this becones
* a serious perfornmance issue, a high-performnce DTrace-specific

* bcopy() shoul d obviously be invented.)

*/

daddr = (uintptr_t)dest->dtb_tomax + offs;
dlimt = daddr + src->dtb_of fset;
saddr = (uintptr_t)src->dtb_tonax;

/*
* First, the aligned portion.
*

while (dlimt - daddr >= sizeof (uint64_t))
*((uint64_t *)daddr) = *((uint64_t *)saddr);

daddr += sizeof (uint64_t);
saddr += sizeof (uint64_t);
}
/*
* Now any left-over bit...
*/
while (dlimt - daddr)
*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
/*
* Finally, commit the reserved space in the destination buffer.
*
/

dest->dtb_offset = offs + src->dtb_offset;

/*
* |f we're lucky enough to be the only active CPU on this specul ation

new usr/src/uts/comon/dtrace/ dtrace.c 42
2701 * buffer, we can just set the state back to DTRACESPEC | NACTI VE.

2702 */

2703 if (current == DTRACESPEC_ACTI VE | |

2704 (current == DTRACESPEC_ACTI VEONE && new == DTRACESPEC_COWM TTING)) {
2705 uint32_t rval = dtrace_cas32((uint32_t *)&spec >dtsp_state,

2706 DTRACESPEC COMM TTING, DTRACESPEC | NACTI VE) ;

2708 ASSERT(rval == DTRACESPEC_COWMM TTI NG ;

2709

2711 src->dtb_of fset = O;

2712 src->dt b_xanot drops += src->dtb_drops;

2713 src->dtb_drops = 0;

2714 }

2716 /*

2717 * This routine discards an active speculation. |f the specified speculation
2718 * is not in a valid state to performa discard(), this routine will silently
2719 * do nothing. The state of the specified specul ation is transitioned

2720 * according to the state transition diagramoutlined in <sys/dtrace_inpl.h>
2721 */

2722 static void

2723
2724

dtrace_specul ati on_di scard(dtrace_state_t *state, processorid_t cpu,

2725 {

2726
2727
2728

2730
2731

2733
2734
2735
2736

2738
2739

2741
2742

2744
2745
2746
2747
2748
2749

2751
2752
2753
2754

2756
2757
2758
2759
2760
2761
2762

2764
2765
2766

dtrace_speci d_t which)

dtrace_specul ati on_t *spec;
dtrace_specul ation_state_t current, new,
dtrace_buffer_t *buf;

if (which == 0)
return;

if (which > state->dts_nspecul ations) {
cpu_core[cpu].cpuc_dtrace_flags | = CPU_DTRACE_| LLOP;
return;

}

spec = &state->dts_specul ati ons[which - 1];
buf = &spec->dtsp_buffer[cpu];

do {
current = spec->dtsp_state;

switch (current) {

case DTRACESPEC | NACTI VE

case DTRACESPEC_COWM TTI NGVANY:

case DTRACESPEC COW TTI NG

case DTRACESPEC DI SCARDI NG
return;

case DTRACESPEC_ACTI VE:

case DTRACESPEC_ACTI VENVANY:
new = DTRACESPEC_DI SCARDI NG
br eak;

case DTRACESPEC_ACTI VEONE:
if (buf->dtb_offset != 0) {
new = DTRACESPEC_| NACTI VE
} else {
new = DTRACESPEC DI SCARDI NG

br eak;

defaul t:
ASSERT(0) ;
}

new usr/src/uts/comon/ dtrace/ dtrace. c 43

2767 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,

2768 current, new) != current);

2770 buf->dtb_of fset = 0;

2771 buf - >dt b_drops = 0;

2772 }

2774 | *

2775 * Note: not called fromprobe context. This function is called

2776 * asynchronously fromcross call context to clean any specul ations that are
2777 * in the COW TTI NGVANY or DI SCARDI NG states. These specul ati ons may not be
2778 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2779 * specul ation.

2780 */

2781 static void
2782 dtrace_specul ation_cl ean_here(dtrace_state_t *state)

2783 {

2784 dtrace_i cooki e_t cooki e;

2785 processorid_t cpu = CPU >cpu_id;

2786 dtrace_buffer_t *dest = &state->dts_buffer[cpu];

2787 dtrace_specid_t i;

2789 cooki e = dtrace_i nterrupt _di sabl e();

2791 if (dest->dtb_tomax == NULL) {

2792 dtrace_i nterrupt _enabl e(cooki e);

2793 return;

2794 }

2796 for (i =0; i < state->dts_nspecul ations; i++)

2797 dtrace_specul ation_t *spec = &state->dts_specul ations[i];
2798 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];

2800 if (src->dtb_tomax == NULL)

2801 cont i nue;

2803 if (spec->dtsp_state == DTRACESPEC DI SCARDI NG {

2804 src->dtb_offset = O;

2805 conti nue;

2806 }

2808 if (spec->dtsp_state != DTRACESPEC_COWM TTI NGVANY)

2809 conti nue;

2811 if (src->dtb_offset == 0)

2812 conti nue;

2814 dtrace_specul ati on_comm t(state, cpu, i + 1);

2815 }

2817 dtrace_i nterrupt_enabl e(cooki e);

2818 }

2820 /*

2821 * Note: not called fromprobe context. This function is called

2822 * asynchronously (and at a regular interval) to clean any specul ations that
2823 * are in the COW TTI NGVANY or DI SCARDI NG states. If it discovers that there
2824 * is work to be done, it cross calls all CPUs to performthat work;
2825 * COWM TMANY and DI SCARDI NG specul ati ons may not be transitioned back to the
2826 * INACTIVE state until they have been cleaned by all CPUs.

2827 */

2828 static void

2829 dtrace_specul ation_cl ean(dtrace_state_t *state)
2830 {

2831 int work =0, rv;

2832 dtrace_specid_t i;

new usr/src/uts/comon/ dtrace/ dtrace. c

2834
2835

2837

2839
2840
2841

2843
2844
2845

2847
2848

2850
2851

2853
2854
2855
2856
2857
2858
2859
2860

2862
2863

2865
2866
2867

2869

2871
2872
2873
2874
2875

2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890

2892
2893

2895
2896
2897
2898

* ok % bk Ok
-~

for (i = 0; i < state->dts_nspecul ations; i++)
dtrace_specul ation_t *spec = &state->dts_speculations[i];

ASSERT(! spec->dt sp_cl eani ng) ;

if (spec->dtsp_state != DTRACESPEC DI SCARDI NG &&
spec- >dt sp_state ! = DTRACESPEC_COWM TTI NGVANY)
conti nue;

wor K++;
spec->dtsp_cleaning = 1,

}

if (!work)
return;

dtrace_xcal | (DTRACE_CPUALL,
(dtrace_xcal |l _t)dtrace_specul ati on_cl ean_here, state);

/*

* We now know that all CPUs have committed or discarded their

* specul ation buffers, as appropriate. W can now set the state

* to inactive.

*

for (i = 0; i < state->dts_nspecul ations; i++)
dtrace_specul ation_t *spec = &state->dts_specul ations[i];
dtrace_specul ation_state_t current, new

if (!spec->dtsp_cleaning)
conti nue;

current = spec->dtsp_state;
ASSERT(current == DTRACESPEC DI SCARDI NG | |
current == DTRACESPEC_COWM TTI NGVANY) ;

new = DTRACESPEC | NACTI VE;
rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);

ASSERT(rv == current);
spec->dt sp_cl eaning = 0;

ed as part of a speculate() to get the specul ative buffer associated
a given speculation. Returns NULL if the specified speculation is not

in an ACTIVE state. |If the speculation is in the ACTI VEONE state -- and
the active CPU is not the specified CPU -- the speculation will be
atomically transitioned into the ACTI VEMANY state.

static dtrace_buffer_t *
dtrace_specul ati on_buffer(dtrace_state_t *state, processorid_t cpuid,

{

dtrace_speci d_t which)

dtrace_specul ation_t *spec;
dtrace_specul ation_state_t current, new,
dtrace_buffer_t *buf;

if (which == 0)
return (NULL);

if (which > state->dts_nspecul ations)
cpu_core[cpui d].cpuc_dtrace_flags | = CPU_DTRACE_| LLOP;
return (NULL);

44

new usr/src/uts/comon/dtrace/ dtrace. c 45 new usr/src/uts/comon/dtrace/ dtrace.c 46
2965 * The easy case: this probe is allowed to read all of nmenory, so
2900 spec = &state->dts_specul ations[which - 1]; 2966 * we can just return this as a vanilla pointer.
2901 buf = &spec->dtsp_buffer[cpuid]; 2967 */
2968 if ((mstate->dtns_access & DTRACE_ACCESS KERNEL) != 0)
2903 do { 2969 return (addr);
2904 current = spec->dtsp_state;
2971 /*
2906 switch (current) { 2972 * This is the tougher case: we copy the string in question from
2907 case DTRACESPEC | NACTI VE: 2973 * kernel menory into scratch nmenory and return it that way: this
2908 case DTRACESPEC _COWM TTI NGVANY: 2974 * ensures that we won't trip up when access checking tests the
2909 case DTRACESPEC_DI SCARDI NG 2975 * BYREF return val ue.
2910 return (NULL); 2976 “f
2977 strsz = dtrace_strlen((char *)addr, size) + 1;
2912 case DTRACESPEC COW TTI NG
2913 ASSERT(buf - >dt b_of fset == 0); 2979 if (mstate->dtnms_scratch_ptr + strsz >
2914 return (NULL); 2980 nst at e- >dt ms_scrat ch_base + nstate->dtns_scratch_size) {
2981 DTRACE_CPUFLAG_SET(CPU_DTRACE_NGCSCRATCH) ;
2916 case DTRACESPEC_ACTI VEONE: 2982 return (NULL);
2917 /* 2983 }
2918 * This speculation is currently active on one CPU.
2919 * Check the offset in the buffer; if it’'s non-zero, 2985 dtrace_strcpy((const void *)addr, (void *)nstate->dtnms_scratch_ptr,
2920 * that CPU nust be us (and we | eave the state al one). 2986 strsz);
2921 * If it's zero, assune that we're starting on a new 2987 ret = mstate->dtnms_scratch_ptr;
2922 * CPU -- and change the state to indicate that the 2988 nst at e- >dt ms_scrat ch_ptr += strsz;
2923 * specul ation is active on nore than one CPU. 2989 return (ret);
2924 */ 2990 }
2925 if (buf->dtb_offset != 0)
2926 return (buf); 2992 /*
2993 * This function inplements the DIF enulator’s variable | ookups. The enul ator
2928 new = DTRACESPEC_ACTI VEMANY; 2994 * passes a reserved variable identifier and optional built-in array index.
2929 break; 2995 */
2996 static uint64_t
2931 case DTRACESPEC ACTI VENVANY: 2997 dtrace_dif_variabl e(dtrace_nstate_t *nstate, dtrace_state_t *state, uint64_t v,
2932 return (buf); 2998 ui nt 64_t ndx)
2999 {
2934 case DTRACESPEC_ACTI VE: 3000 /*
2935 new = DTRACESPEC_ACTI VEONE; 3001 * |f we’'re accessing one of the uncached argunents, we’ll turn this
2936 br eak; 3002 * into a reference in the args array.
3003 */
2938 defaul t: 3004 if (v > DIF_VAR ARX && v <= DI F_VAR AR®) {
2939 ASSERT(0) ; 3005 ndx = v - DIF_VAR ARQD;
2940 } 3006 v = DI F_VAR_ARGS;
2941 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3007 }
2942 current, new) != current);
3009 switch (v) {
2944 ASSERT(new == DTRACESPEC_ACTI VEONE || new == DTRACESPEC_ACTI VENANY) ; 3010 case DI F_VAR _ARGS:
2945 return (buf); 3011 if (!'(mstate->dtns_access & DTRACE_ACCESS_ARGS)) {
2946 } 3012 cpu_core[CPU->cpu_i d].cpuc_dtrace_flags | =
3013 CPU_DTRACE_KPR! V;
2948 | * 3014 return (0);
2949 * Return a string. In the event that the user lacks the privilege to access 3015 }
2950 * arbitrary kernel nenory, we copy the string out to scratch menory so that we
2951 * don’t fail access checking. 3017 ASSERT(nst at e- >dt ns_present & DTRACE_MSTATE_ARGS) ;
2952 * 3018 if (ndx >= sizeof (nstate->dtns_arg) /
2953 * dtrace_dif_variable() uses this routine as a hel per for various 3019 si zeof (mstate->dtns_arg[0])) {
2954 * builtin values such as 'execnane’ and ’probefunc.’ 3020 int aframes = nstate->dt ms_probe->dtpr_afranes + 2;
2955 */ 3021 dtrace_provider_t *pv;
2956 uintptr_t 3022 uint64_t val;
2957 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2958 dtrace_nstate_t *nstate) 3024 pv = mst at e- >dt ms_pr obe- >dt pr _pr ovi der;
2959 { 3025 i f (pv->dtpv_pops. dt ps_getargval != NULL)
2960 uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZF] ; 3026 val = pv->dt pv_pops. dt ps_get argval (pv->dt pv_arg,
2961 uintptr_t ret; 3027 nst at e- >dt ms_pr obe- >dt pr_i d,
2962 size_t strsz; 3028 st at e- >dt ms_pr obe- >dt pr _arg, ndx, afranes);
3029 el se
2964 0% 3030 val = dtrace_getarg(ndx, afranes);

new usr/src/uts/comon/ dtrace/ dtrace. c

3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042

3044
3045

3047

3049
3050

3052
3053

3055
3056
3057
3058
3059

3061
3062

3064
3065

3067
3068

3070

3072
3073

3075

3077
3078

3080
3081
3082
3083

3085
3086
3087
3088
3089
3090

3092
3093
3094

3096

*

* This is regrettably required to keep the conpiler
* fromtail-optimzing the call to dtrace getarg()
* The condition always evaluates to true, but th
*
*
*
*

conpil er has no way of figuring that out a prlorl.

(None of this would be necessary if the conpiler
could be relied upon to _always_ tail-optimze
the call to dtrace_getarg() -- but it can't.)

*/

if (mstate->dtnms_probe != NULL)
return (val);

: ASSERT(0) ;

return (nstate->dtnms_arg[ndx]);

case DI F_VAR UREGS: {
klwp_t *1 wp;

if (!dtrace_priv_proc(state, nstate))
return (0);

if ((pr = curthread->t_|wp) == NULL)
DTRACE_CPUFLAG_SET(CPU DTRACE_BADADDR) ;
cpu_core[CPU->cpu_i d] . cpuc_dtrace_il | val = NULL;
return (0);

}

return (dtrace_getreg(lwp->l wp_regs, ndx));
}

case DI F_VAR VMREGS: {
uint64_t rval;

if (!dtrace_priv_kernel (state))
return (0);

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

rval = dtrace_getvnreg(ndx,
&cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_fl ags);

DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;

return (rval);

case DI F_VAR CURTHREAD:
if (!dtrace_priv_proc(state, nstate))
return (0);
return ((uint64_t)(uintptr_t)curthread);

case DI F_VAR TI MESTAWP:
if (T(nmstate->dtnms_present & DTRACE_MSTATE_TI MESTAMP)) {
mst at e->dt ms_ti mestanp = dtrace_gethrtinme();
nst at e- >dt ms_present | = DTRACE_MSTATE_TI I\/ESTANP;

}

return (nstate->dtns_tinestanp);
case DI F_VAR VTI MESTAWP:

ASSERT(dtrace_vtime_references != 0);

return (curthread->t_dtrace_vtine);

case DI F_VAR WALLTI MESTAVP:

47

new usr/src/uts/comon/dtrace/ dtrace.c 48
3097 if (!(mstate->dtns_present & DTRACE_MSTATE_WALLTI MESTAMP)) {
3098 nstate->dtms_wal | ti mestanp = dtrace_gethrestine();
3099 nst at e- >dt ms_present | = DTRACE_MSTATE_WALLTI MESTAMP;
3100 }

3101 return (nstate->dtnms_wal | ti nestanp);

3103 case DIF_VAR | PL:

3104 if (Tdtrace_priv_kernel (state))

3105 return (0);

3106 if (!(mstate->dtnms_pr esent & DTRACE _MSTATE_ I PL)) {

3107 nst at e- >dt ms_i pl dtrace_getipl ();

3108 nst at e- >dt ns_pr esent | = DTRACE_| NSTATE 1 PL;

3109

3110 return (nmstate->dtns_ipl);

3112 case DI F_VAR EPI D:

3113 ASSERT(st at e- >dt ns_present & DTRACE_MSTATE_EPI D) ;

3114 return (nstate->dtnms_epid);

3116 case DIF_VAR I D:

3117 ASSERT(st at e- >dt ms_pr esent & DTRACE_MSTATE_PROBE) ;

3118 return (mstate->dtms_probe->dtpr_id);

3120 case DI F_VAR STACKDEPTH:

3121 if (Tdtrace_priv_kernel (state))

3122 return (0);

3123 if (!'(mstate->dtns_present & DTRACE_MSTATE_STACKDEPTH)) {
3124 int aframes = nstat e->dt ms_probe->dt pr_afranes + 2;
3126 nst at e- >dt ms_st ackdept h = dtrace_get st ackdept h(af ranes);
3127 net at e- >dt ms_present | = DTRACE_MSTATE_STACKDEPTH,;
3128 }

3129 return (nstate->dtnms_stackdepth);

3131 case DI F_VAR_USTACKDEPTH:

3132 if (Tdtrace priv_proc(state, nstate))

3133 return (0);

3134 if (!(mstate->dtns_present & DTRACE_MSTATE_USTACKDEPTH)) {
3135 /*

3136 * See comment in DI F_VAR PID.

3137 *

3138 i f (DTRACE_ANCHORED(nst at e- >dt ms_pr obe) &&

3139 CPU_ON_I NTR(CPU))

3140 nst at e- >dt ms_ust ackdepth = 0;

3141 } else {

3142 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
3143 nst at e- >dt ms_ust ackdepth =

3144 dtrace_get ust ackdept h();

3145 DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;
3146 }

3147 nst at e- >dt ms_present | = DTRACE_MSTATE_USTACKDEPTH;
3148 }

3149 return (nstate->dtns_ustackdepth);

3151 case DI F_VAR CALLER:

3152 if (Tdtrace_priv_kernel (state))

3153 return (0);

3154 if (!(mstate->dtns_present & DTRACE_MSTATE_CALLER)) {

3155 int afranmes = nstate->dtns_probe->dtpr_aframes + 2;
3157 i f (! DTRACE_ANCHORED(nst at e- >dt ms_pr obe)) {

3158 /*

3159 * |f this is an unanchored probe, we are
3160 * required to go through the slow path:
3161 * dtrace_caller() only guarantees correct
3162 * results for anchored probes.

new usr/src/uts/comon/ dtrace/ dtrace. c 49

3163
3164

3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176

3178
3179
3180

3182
3183
3184

3186
3187
3188

3190
3191

3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206

3208

3210
3211
3212
3213
3214

3216
3217
3218
3219
3220

3222
3223
3224
3225
3226

3228

*

pc_t caller[2];

dtrace_get pcstack(cal ler, 2, aframes,
(uint32_t *)(uintptr_t)nstate- >dt ms _arg[0]);
nmst at e->dtms_cal ler = caller[1];
} else if ((rrstate->dtr'rs_cal|er =
dtra/ce_caller(afrar'res)) == -1) {
*

* W have failed to do this the quick way;
* we nust resort to the slower approach of
* calling dtrace_getpcstack().

*

pc_t caller;

dtrace_get pcstack(&cal ler, 1, afranes, NULL);
nstate->dtns_caller = caller;

}
nst at e- >dt ms_present | = DTRACE_MSTATE_CALLER;

return (nmstate->dtnms_caller);

case DI F_VAR UCALLER:
if (Tdtrace_priv_proc(state, nstate))
return (0);

if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
ui nt64_t ustack[3];

/
dtrace_getupcstack() fills in the first uint64_t
with the current PID. The second uint64_t will
be the program counter at user-level. The third
uint64_t wll contain the caller, which is what
we're after.

* Ok % R % F

ustack[2] = NULL;

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

dtrace_get upcstack(ustack, 3);

DTRACE_CPUFLAG_CLEAR(OPU DTRACE_NCFAULT) ;

mst at e- >dt ms_ucal | er = ustack[2];

net at e- >dt ms_present | = DTRACE_NSTATE_UCALLER;
}

return (nstate->dtnms_ucaller);

case DI F_VAR PROBEPROV:
ASSERT(nst at e- >dt ns_present & DTRACE_NMSTATE_PROBE) ;
return (dtrace_dif_varstr(
(ui ntptr_t)nstate->dtns_probe->dt pr_provi der->dt pv_nane,
state, nstate));

case DI F_VAR PROBEMOD:
ASSERT(st at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;
return (dtrace_dif_varstr(
(ui ntptr_t) st ate->dt ns_probe->dt pr_nod
state, nstate));

case DI F_VAR_PROBEFUNC:
ASSERT(nst at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;
return (dtrace_dif_varstr(
(ui ntptr_t)nstate->dtns_probe->dt pr_func,
state, nmstate));

case DI F_VAR PROBENAME:

new usr/src/uts/comon/ dtrace/ dtrace. c

3229
3230
3231
3232

3234
3235
3236

3238
3239
3240
3241
3242
3243
3244

3246
3247
3248
3249
3250
3251
3252
3253
3254

3256
3257
3258

3260
3261
3262
3263
3264

3266
3267
3268
3269
3270
3271
3272

3274
3275
3276
3277
3278
3279

3281

3283
3284
3285

3287
3288
3289
3290
3291

3293
3294

ASSERT(st at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;
return (dtrace_dif_varstr(

(ui ntptr_t)mstate->dtns_probe->dt pr_nane,

state, nstate));

case DIF_VAR PID:
if (Tdtrace_priv_proc(state, nstate))
return (0);

/*

* Note that we are assuming that an unanchored probe is

* always due to a high-level interrupt. (And we're assuning
* that there is only a single high level interrupt.)

*/

i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_| NTR(CPU))
return (pid0.pid_id);

It is always safe to dereference one’s own t_procp pointer:
it always points to a valid, allocated proc structure.
Further, it is always safe to dereference the p_pi dp nenber
of one’s own proc structure. (These are truisnms becuase
threads and processes don’'t clean up their own state --
they | eave that task to whonever reaps them)

return ((uint64_t)curthread->t_procp->p_pidp->pid_id);

case DI F_VAR PPI D
if (Tdtrace_priv_proc(state, nstate))
return (0);

/ *
* See comment in DI F_VAR PID.
*

i f (DTRACE_ANCHORED(nst at e- >dt ns_probe) && CPU_ON_| NTR(CPU))
return (pid0.pid_id);

It is always safe to dereference one’s own t_procp pointer:
it always points to a valid, allocated proc structure.
(This is true because threads don't clean up their own
state -- they leave that task to whonever reaps them)

* ok % k%

*
/
return ((uint64_t)curthread->t_procp->p_ppid);

case DIF_VAR TI D
/ *
* See comrent in DI F_VAR PID.
*

i f (DTRACE_ANCHORED(nst at e- >dt ms_pr obe) && CPU_ON_I NTR(CPU))
return (0);

return ((uint64_t)curthread->t_tid);
case DI F_VAR EXECNAME:
if (Tdtrace_priv_proc(state, nstate))
return (0);

/*
* See comment in DI F_VAR PID.
*
/
i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_| NTR(CPU))
return ((uint64_t)(uintptr_t)p0.p_user.u_com;
/*
* 1t is always safe to dereference one’s own t_procp pointer:

new usr/src/uts/comon/ dtrace/ dtrace. c

3295
3296
3297
3298
3299
3300
3301

3303
3304
3305

3307
3308
3309
3310
3311

3313
3314
3315
3316
3317
3318
3319
3320
3321

3323
3324
3325

3327
3328
3329
3330
3331

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342

3344
3345
3346

3348
3349
3350
3351
3352

3354
3355
3356
3357
3358
3359
3360

* it always points to a valid, allocated proc structure.
* (This is true because threads don’t clean up their own
*/state -- they leave that task to whonever reaps them)
*
return (dtrace_dif_varstr(
(uintptr_t)curthread->t_procp->p_user.u_conm
state, nstate));

case DI F_VAR ZONENAME:
if (Tdtrace priv_proc(state,
return (0);

nmst ate))
/*

* See comment in DI F_VAR PID.

*/

i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_| NTR(CPU))
return ((uint64_t)(uintptr_t)p0.p_zone->zone_nane);

/*
* It is always safe to dereference one’s own t_procp pointer:
* it always points to a valid, allocated proc structure.
* (This is true because threads don’t clean up their own
* state -- they leave that task to whonever reaps them)
*
/

return (dtrace_dif_varstr(
(uintptr_t)curthread->t_procp->p_zone->zone_nane,
state, nstate));

case DI F_VAR U D
if (Tdtrace_priv_proc(state,
return (0);

nstate))

/ *
* See comment in DI F_VAR PID.
)

i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_| NTR(CPU))
return ((uint64_t)p0.p_cred->cr_uid);

It

it always points to a valid, allocated proc structure.
(This is true because threads don't clean up their own
state -- they leave that task to whonever reaps them)

* Additionally, it is safe to dereference one’s own process
* credential, since this is never NULL after process birth.
*/
return ((uint64_t)curthread->t_procp->p_cred->cr_uid);

case DIF_VAR G D

if (!'dtrace_priv_proc(state,
return (0);

nstate))

/ *
* See comment in DI F_VAR PID.
*

/
i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_| NTR(CPU))
return ((uint64_t)p0.p_cred->cr_gid);

it always points to a valid, allocated proc structure.
(This is true because threads don't clean up their own
state -- they leave that task to whonever reaps them)

* ok ok ok F ok F

Additionally, it is safe to dereference one’s own process

is always safe to dereference one’s own t_procp pointer:

It is always safe to dereference one’s own t_procp pointer:

51

new usr/src/uts/comon/dtrace/ dtrace.c 52
3361 * credential, since this is never NULL after process birth.
3362 */

3363 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);

3365 case DI F_VAR ERRNO {

3366 kKl wp_t *1 wp;

3367 if (Idtrace_priv_proc(state, nstate))

3368 return (0);

3370 /*

3371 * See coment in DI F_VAR PID.

3372 */

3373 i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_|I NTR(CPU))
3374 return (0);

3376 /*

3377 * It is always safe to dereference one’s own t_|wp pointer in
3378 * the event that this pointer is non-NULL. (This is true
3379 * because threads and |wps don’t clean up their own state --
3380 * they | eave that task to whonever reaps them)

3381 *

3382 f ((Iwp = curthread->t_|wp) == NULL)

3383 return (0);

3385 return ((uint64_t)lwp->lwp_errno);

3386 }

3387 defaul t:

3388 DTRACE_CPUFLAG_SET(CPU_DTRACE_I LLOP) ;

3389 return (0);

3390 }

3391 }

3394 typedef enumdtrace_json_state {

3395 DTRACE_JSON REST = 1

3396 DTRACE_JSON_OBJECT,

3397 DTRACE_JSON_STRI NG,

3398 DTRACE_JSON_STRI NG_ESCAPE,

3399 DTRACE_JSON_STRI NG_ESCAPE_UNI CODE,

3400 DTRACE_JSON_COLQON,

3401 DTRACE_JSON_COWVA,

3402 DTRACE_JSON_VALUE,

3403 DTRACE_JSON_| DENTI FI ER,

3404 DTRACE_JSON_NUMBER,

3405 DTRACE_JSON_NUMBER_FRAC,

3406 DTRACE_JSON_NUMBER_EXP,

3407 DTRACE_JSON_COLLECT_OBJECT

3408 } dtrace_json_state_t;

3410 /*

3411 * This function possesses just enough know edge about JSON to extract a single
3412 * value froma JSON string and store it in the scratch buffer. It is able
3413 * to extract nested object values, and nmenbers of arrays by index.

3414 *

3415 * elenlist is a list of JSON keys, stored as packed NUL-term nated strings, to
3416 * be | ooked up as we descend into the object tree. e.g.

3417 *

3418 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar"™ NUL "baz" NUL "32" NUL
3419 * with nelens = 5.

3420 *

3421 * The run tine of this function nust be bounded above by strsize to limt the
3422 * anount of work done in probe context. As such, it is inplenmented as a
3423 * sinple state machine, reading one character at a tinme using safe |oads
3424 * until we find the requested element, hit a parsing error or run off the
3425 * end of the object or string.

3426 *

new usr/src/uts/comon/ dtrace/ dtrace. c

53

to return an error without interrupting
NULL in the event of a m ssing key or any
eturn in this function is commented with
- parsing or otherw se.

hine closely matches the JSON

bj ect,
ray, noving to DTRACE_JSON_VALUE.

nmovi ng

Sets a flag to denote
and noves to DTRACE_JSON_STRI NG

he col on that separates key Strings
nove to DTRACE_JSON VALUE.

Nunber, ldentifier, Object
Here we al so

list if we are requested to traverse down

he comma that separates key-val ue pairs
JSON_OBJECT) or values in Arrays

Al following literal value processing
unl ess ot herw se

includi ng any exponent
Nunbers are returned as strings,
n integer is required.

whi ch

in the JSON

Handl es al | escape sequences
ncl udi ng four-digit unicode characters,

he String is flagged as a key, we
COWMVA.

correctly handling

el enent selector list natches this nested
If not, we use this
and continue processing.

cros fromstrtol ctype. h to nanipul ate
been checked to ensure they make

3427 * As there is no way for a subroutine

3428 * clause execution, we sinply return

3429 * other error condition. Each NULL r

3430 * the error condition it represents -

3431 *

3432 * The set of states for the state mac

3433 * specification (http://json.org/). Briefly:

3434 *

3435 * DTRACE_JSON_REST:

3436 * Ski p whitespace until we find either a top-Ievel
3437 * to DTRACE_JSON _OBJECT; or an Ar

3438 *

3439 * DTRACE_JSON_OBJECT:

3440 * Locate the next key String in an bject.

3441 * the next String as a key string

3442 *

3443 * DTRACE_JSON_COLON:

3444 * Ski p whitespace until we find t

3445 * fromtheir values. Once found,

3446 *

3447 * DTRACE_JSON_VALUE:

3448 * Detects the type of the next value (String,

3449 * or Array) and routes to the states that process that type.
3450 * deal with the el enent selector

3451 * into the object tree.

3452 *

3453 * DTRACE_JSON_COWA

3454 * Skip whitespace until we find t

3455 * in Qbjects (returning to DTRACE..

3456 * (simlarly DTRACE_JSON VALUE).

3457 * states return to this state at the end of their val ue,
3458 * not ed.

3459 *

3460 * DTRACE_JSON_NUMBER, DTRACE_JSON _NUMBER FRAC, DTRACE_JSON_NUMBER_EXP:
3461 * Processes a Nunber literal fromthe JSON,

3462 * conponent that may be present.

3463 * may be passed to strtoll() if a

3464 *

3465 * DTRACE_JSON_| DENTI FI ER:

3466 * Processes a "true", "false" or "null" literal
3467 *

3468 * DTRACE_JSON_STRI NG, DTRACE_JSON_STRI NG_ESCAPE,

3469 * DTRACE_JSON_STRI NG_ESCAPE_UNI CODE:

3470 * Processes a String literal fromthe JSON, whether the String denotes
3471 * a key, a value or part of a larger Object.

3472 * present in the specification, i

3473 * but merely includes the escape sequence without converting it to the
3474 * actual escaped character. |If t

3475 * nove to DTRACE_JSON COLON rat her than DTRACE_JSON_
3476 *

3477 * DTRACE_JSON_COLLECT_OBJECT:

3478 * This state col lects an entire Cbject (or Array),
3479 * enbedded strings. If the full

3480 * object, we return the Cbject in full as a string.
3481 * state to skip to the next value at this |evel
3482 *

3483 * NOTE: This function uses various ma

3484 * digit values, etc -- these have all

3485 * no additional function calls.

3486 *

3487 static char *
3488 dtrace_j son(uint64_t size,

3489 char *dest)

3490 {

3491 dtrace_json_state_t state = DT
3492 int64_t array_elem = | NT64_|

uintptr_t json,

char *elenlist, int nelens,

RACE_JSON_REST!

new usr/src/uts/comon/dtrace/ dtrace.c 54
3493 inté4_t array_pos = 0;

3494 uint8_t escape_uni count = O;

3495 bool ean_t string_is_key = B FALSE;

3496 bool ean_t col | ect Obj ect = B_FALSE;

3497 bool ean_t found_key = B_FALSE

3498 bool ean_t in _array = B_FALSE;

3499 uint32_t braces = 0, br ackets = 0;

3500 char *elem = elenlist;

3501 char *dd = dest;

3502 uintptr_t cur;

3504 for (cur = json; cur < json + size; cur++) {

3505 char cc = dtrace Ioad8(cur)

3506 if (cc =="\0¢

3507 return (NULL);

3509 switch (state) {

3510 case DTRACE_JSON_REST:

3511 if (isspace(cc))

3512 br eak;

3514 if (cc=="{") {

3515 state = DTRACE_JSON OBJECT;

3516 br eak;

3517 }

3519 if (cc =="1") {

3520 in_array = B_TRUE;

3521 array_pos = O;

3522 array_elem = dtrace_strtoll (elem 10, size);
3523 found_key = array_elem== 0 ? B TRUE : B_FALSE;
3524 state = DTRACE_JSON_VALUE;

3525 br eak;

3526 }

3528 /*

3529 * ERROR expected to find a top-1evel object or array.
3530 */

3531 return (NULL);

3532 case DTRACE_JSON (BJECT

3533 if (isspace(cc))

3534 br eak;

3536 if (cc ==""") {

3537 state = DTRACE_JSON_STRI NG

3538 string_is_key = B TRUE;

3539 br eak;

3540 }

3542 /*

3543 * ERROR either the object did not start with a key
3544 * string, or we've run off the end of the object
3545 * wi thout finding the requested key.

3546 */

3547 return (NULL);

3548 case DTRACE_JSON STRI NG

3549 if (cc =="\\") {

3550 *dd++ = "\ ;

3551 state = DTRACE_JSON_STRI NG_ESCAPE;

3552 br eak;

3553 }

3555 if (cc ==""

3556 if (collect_object) {

3557 /*

3558 * W don’t reset the dest here, as

new usr/src/uts/comon/ dtrace/ dtrace. c

3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587

3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607

3609
3610
3611
3612
3613
3614
3615

3617
3618
3619
3620

3622
3623
3624

* the string is part of a |arger
* obj ect being collected.
*/

*dd++ = cc;
col I ect Obj ect = B_FALSE;

state = DTRACE_JSON COLLECT_OBJECT;

br eak;

}
*dd = '\ 0O’
dd = dest; /* reset string buffer */
if (string_is_key)
if (dtrace_strncnp(dest, elem
size) == 0
found_key = B_TRUE;
} else if (found_key) {
if (nelens > 1) {
/*

* W expected an object,
* this string.

*/

return (NULL);

}
return (dest);

not

}
state = strlng is_key ? DTRACE_JSON COLON :
ON_COWVA;

DTRACE_J
strlng is key = B_FALSE;
br eak;
}
*dd++ = cc;
break;

case DTRACE_JSON_STRI NG_ESCAPE:
*dd++ = cc;
if (cc =="u")
escape_uni count = O;
el {state = DTRACE_ JSCN STRI NG_ESCAPE_UNI CODE;
el se
state = DTRACE_JSON_STRI NG

br eak;
case DTRACE_JSON_STRI NG_ESCAPE_UNI CODE:
if (lisxdigit(cc)) {
/*

* ERROR invalid unicode escape, expected
* four valid hexideciml digits.
&/

return (NULL);
}

*dd++ = cc;
if (++escape_uni count == 4)
state = DTRACE_JSON_STRI NG
br eak;
case DTRACE_JSON_COLON:
if (i sspace(cc))

br eak;
if (cc==":
state = DTRACE_JSON_VALUE;
br eak;
}
/*
* ERROR expected a col on.
*/

55

new usr/src/uts/comon/ dtrace/ dtrace. c 56

3625
3626
3627
3628

3630
3631
3632
3633
3634
3635
3636
3637
3638
3639

3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651

3653
3654

3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673

3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685

3687
3688
3689
3690

return (NULL);

case DTRACE JSON COMVA:

if (isspace(cc))
br eak;

if (cc ==","){
|f (|n array) {
state = DTRACE_JSON_VALUE;
if (++array_pos == array_el em
found_key = B_TRUE;
} else {
state = DTRACE_JSON_OBJECT;

br eak;
}
/*
* ERROR either we hit an unexpected character, or

* we reached the end of the object or array without
* finding the requested key.
*/

return (NULL);

case DTRACE_JSON | DENTI FI ER

if (|slower(cc)) {
*dd++ = cc;
br eak;

}

*dd = '\0
dd = dest /* reset string buffer */

if (dtrace_strncnp(dest, "true", 5) == 0 ||
dtrace_strncnp(dest, "false", 6) == 0 ||
dtrace_strncnp(dest, "null", 5) == 0) {
if (found_key)
if (nel ems > 1) {

* ERROR. We expected an object,
* not this identifier.

*/

return (NULL);

Eeturn (dest);
} else {

u)
state = DTRACE_JSON COMVA;

}

/*
* ERROR we did not recognise the identifier as one
* of those in the JSON specification.
*/
return (NULL);

case DTRACE_JSON | NUNBER

if (cc =="
*dd++ = cc;
state = DTRACEfJSO\LNUNBERﬁFRAC;
br eak;

}
if (cc =/=’x’ || cc =="X) {

* ERROR specification explicitly excludes
* hexi deci mal or octal nunbers.

new usr/src/uts/comon/ dtrace/ dtrace. c 57

3691
3692
3693

3695
3696
3697
3698
3699
3700
3701

3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714

3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727

3729
3730
3731
3732
3733
3734

3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756

*/
return (NULL);
}

/* FALLTHRU */
case DTRACE_JSON_NUMBER_FRAC:

if (cc=='e |] cc =="F) {
*dd++ = cc;
state = DTRACE_JSON_NUMBER_EXP;
br eak;
}
if (cc =="+ || cc =="-") {
/*

* ERROR expect sign as part of exponent only.

*/
return (NULL);

}
/* FALLTHRU */
case DTRACE_JSON_NUMBER_EXP:

if (isdigit(cc) [| cc =="+ || cc =="-") {
*dd++ = cc;
br eak;

}

*dd = '\0';

dd = dest;yl* reset string buffer */
if (found_key) {
if (nelems > 1) {
/*
* ERROR W expected an object, not
* this nunber.
*

return (NULL);

}
return (dest);

}

cur--;
state = DTRACE_JSON COMA;

br eak;
case DTRACE_JSON_VALUE:
if (isspace(cc))
br ;

’

if (cc =="{" || cc =="01") {

if (nelenms > 1 && found_key) {
in_array = cc == '[' ? B_TRUE : B _FALSE;
/*
* |f our element selector directs us
* to descend into this nested object,
* then nove to the next sel ector
* element in the list and restart the
* state machine.
*/
while (*elem!="\0")

el em++;

elemt+; /* skip the inter-elenment NUL */
nel ens- -;
dd = dest;

if (in_array) {
state = DTRACE_JSON_VALUE;
array_pos = O;
array_elem = dtrace_strtol I (
elem 10, size);
found_key = array_elem==0 ?

new usr/src/uts/comon/ dtrace/ dtrace. c

3757
3758
3759
3760
3761
3762
3763

3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776

3778
3779
3780
3781

3783
3784
3785
3786
3787
3788
3789
3790

3792
3793
3794
3795
3796

3798
3799
3800
3801
3802
3803
3804
3805
3806
3807

3809
3810
3811
3812
3813
3814

3816
3817
3818
3819
3820
3821
3822

B _TRUE : B_FALSE;
} else {
found_key = B_FALSE;
state = DTRACE_JSON_OBJECT;

br eak;

}

/*
* Otherwise, we wish to either skip this
* nested object or return it in full.
*
if (cc=="["
brackets = 1;

el se
braces = 1;
*dd++ = cc;
state = DTRACE_JSON_COLLECT_OBJECT;
break;
}
if (cc==""")
state = DTRACE JSON STRI NG
br eak;
}

if (iSlO\/I\Br(CC)) {

* Here we deal with true, false and null.
&/

*dd++ = cc;
state = DTRACE_JSON_| DENTI FI ER
br eak;
}
if (cc =="'-"]| isdigit(cc)) {
*dd++ = cc;
state = DTRACE_JSON_NUMBER;
br eak;
}
/*
* ERROR unexpected character at start of val ue.
*
/

return (NULL);
case DTRACE_JSON_COLLECT_OBJECT:

if (cc ==*’\0’)
/: ERROR: unexpected end of input.
re{urn (NULL) ;

*dd++ = cc;

if (cc ==""

col | ect _object = B_TRUE;
state = DTRACE_JSON_STRI NG
br eak;

}

if (cc=="1") {
if (braclﬁts-- == 0) {

* ERROR: unbal anced brackets.
*/
return (NULL);

new usr/src/uts/comon/ dtrace/ dtrace. c

3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848

3850

} else if (
if

1}
} elseif (

Cgrzze;’—):{: 0) {

/: ERROR: unbal anced braces.
re{urn (NULL) ;

) o

e ==

braces++;

} else if (

cc =="[")

bracket s++;

}

if (bracket
if

}
dd

s == 0 && braces == 0) {
(found key) {

*dd = '\0’;

return (dest);

= dest; /* reset string buffer */

state = DTRACE JSON_COMVA,

break;

}

) Eeturn (NULL) ;

#endif /* | codereview */

3851 /*

3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865

3867
3868
3869
3870

3872
3873
3874
3875

3877
3878
3879
3880

3882
3883
3884
3885
3886
3887

* Enul ate the execution of DTrace
* Notice that we don’t bother vali
* their types in the tuple stack.

I D subroutines invoked by the call opcode.
dating the proper nunber of argunents or
This isn't needed because all argunent

* interpretation is safe because of our |oad safety -- the worst that can
* happen is that a bogus program can obtain bogus results.
*/

static void

dtrace_di f _subr(uint_t subr, uint_t

rd, uint64_t *regs,

dtrace_key_t *tupregs, int nargs,

dtrace_nstate_t *nstate,
volatile uint16_t *flags =
volatile uintptr_t *illval

uni on {
mutex_inpl _t m;
uint64_t nx;

P m

uni on {
krwl ock_t ri;
uintptr_t rw

o

switch (subr) {
case DI F_SUBR_RAND:

regs[rd] = (dtrace_

br eak;
case DI F_SUBR MJTEX_OWNED:

if (!dtrace_canl oad(tupregs[0].dttk_val ue,

nmetate, vstate)
regs[rd] =
break;

dtrace_state_t *state)

&cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_fI ags;

59

= &cpu_core[CPU->cpu_i d] . cpuc_dtrace_illval;
dtrace_vstate_t *vstate = &state->dts_vstate;

gethrtine() * 2416 + 374441) % 1771875;

si zeof (krmutex_t),

) {
NULL;

new usr/src/uts/comon/ dtrace/ dtrace. c

3889
3890
3891
3892
3893
3894

3896
3897
3898
3899
3900
3901

3903
3904
3905
3906
3907
3908
3909

3911
3912
3913
3914
3915
3916

3918
3919
3920

3922
3923
3924
3925
3926
3927

3929
3930
3931

3933
3934

3936
3937
3938
3939
3940

3942
3943
3944
3945

3947
3948
3949
3950
3951
3952

3954

mnx = dtrace_| oad64(tupr egs[O] dttk_val ue);
i f (MJTEX TYPE_ADAPTI VE(&m mi))
regs[rd] = MJTEX_ OWNER(&m ni) != MJTEX_NO OWNER,

regs[rd] = LOCK_HELD(&m mi . m spi n. m spinl ock);

case DI F_SUBR MJUTEX_OMNER:
if (!dtrace_canl oad(t upregs[0] .dttk_val ue,
metate, vstate)) {
regs[rd] = NULL;
br eak;

si zeof (knutex_t),

}
mnx = dtrace_| oad64(t upr egs[0] . dttk_val ue);
if (MUTEX_TYPE_ADAPTI VE(&m m) &&
MUTEX_OWNER(&m m) !'= MJTEX_NO OMER)

regs[rd] = (uintptr_t)MITEX OMNER(&m mi) ;
el se

regs[rd] = 0;
br eak

case DI F_SUBR MUTEX_TYPE_ADAPTI VE:

if (!dtrace_canl oad(tupregs[0].dttk_val ue, sizeof (knutex_t),

netate, vstate)) {
regs[rd] = NULL;
break;

}

mnx = dtrace_| oad64(tupregs[0].dttk_val ue);
regs[rd] = MJTEX_TYPE_ADAPTI VE(&m mi) ;
br eak;

case DI F_SUBR MUTEX_TYPE_SPI N:

if (!dtrace_canl oad(tupregs[O].dttk_val ue, sizeof (knutex_t),

nstate, vstate)) {
regs[rd] = NULL;
br eak;

}

mnx = dtrace_| oad64(tupregs[0].dttk_val ue);
regs[rd] = MJUTEX_TYPE_SPI N(&m mi) ;
br eak;

case DI F_SUBR_RW READ _HELD: {
uintptr_t tnp;

if (!dtrace_canl oad(tupregs[O].dttk_value, sizeof (uintptr_t),

nstate, vstate)) {
regs[rd] = NULL;
br eak;
}
r.rw = dtrace_| oadptr (t upr gs[O] dttk_val ue);
regs[rd] = R\NREA HELD(& tmp);
br eak;

}

case DI F_SUBR RWWRI TE_HELD:

if (!dtrace_canl oad(tupregs[0].dttk_val ue, sizeof (krw ock_t),

mstate, vstate)) {
regs[rd] = NULL;
br eak;

}
r.rw = dtrace_| oadptr(tupregs[0].dttk_val ue);

new usr/src/uts/comon/ dtrace/ dtrace. c

3955
3956

3958
3959
3960
3961
3962
3963

3965
3966
3967

3969
3970
3971
3972
3973
3974
3975
3976

3978
3979
3980
3981
3982

3984
3985
3986
3987

3989
3990
3991

3993
3994
3995
3996
3997
3998

4000
4001
4002
4003
4004

4006
4007
4008
4009
4010
4011
4012
4013
4014
4015

4017
4018
4019
4020

regs[rd] = _RWWRI TE_ HELD(&r.ri);
br eak;

case DI F_SUBR RW.| SWRI TER:
if (!dtrace_canl oad(t upregs[0].dttk_val ue, sizeof (krw ock_t),
metate, vstate)) {
regs[rd] = NULL;

br eak;
}
r.rw = dtrace_| oadptr(tupregs[0].dttk_val ue);
regs[rd] = _RWISWRI TER(& .ri);
br eak;

case DI F_SUBR BCOPY: {
/ *

* We need to be sure that the destination is in the scratch
* region -- no other region is allowed.
*/

uintptr_t src = tupregs[0].dttk_val ue;
uintptr_t dest = tupregs[1].dttk_val ue;
size_t size = tupregs[2].dttk_val ue;

if (!dtrace_inscratch(dest, size, nstate)) {
*flags | = CPU_ DTRACE BADADDR,;
*|IIvaI = regs[rd];
br eak;

}

if (!dtrace_canl oad(src, size, nstate, vstate)) {
regs[rd] = NULL;
break;

}

dtrace_bcopy((void *)src, (void *)dest, size);
r ;

}

case DI F_SUBR_ALLOCCA:
case DI F_SUBR_COPYIN: {
uintptr_t dest = P2ROUNDUP(st at e->dtms_scratch_ptr, 8);
uint64_t size =
tupregs[subr == DIF_SUBR ALLOCA ? 0 : 1].dttk_val ue;
size_t scratch_size = (dest - nstate->dtnms_scratch_ptr) + size;

/*

* This action doesn’t require any credential checks since
* probes will not activate in user contexts to which the
* enabling user does not have perm ssions.

*/

/*

* Rounding up the user allocation size could have overfl owed

*/a | arge, bogus allocation (like -1ULL) to O.

*

if (scratch_size < size ||

| DTRACE_| NSCRATCH(nst at e, scratch_size)) {

DTRACE_CPUFLAG_SET((JDU DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
break;

}

if (subr == DI F_SUBR CCPYI N)
DTRACE_CPUFLAG SET(CPU_DTRACE_NCFAULT) ;

dtrace_copyi n(tupregs[0].dttk_val ue, dest, size, flags);

DTRACE_CPUFLAG_CLEAR(CPU_DTRACE NG:AULT)

61

new usr/src/uts/comon/dtrace/ dtrace.c 62
4021 }

4023 nmet at e- >dt ms_scratch_ptr += scratch_si ze;

4024 regs[rd] = dest;

4025 br eak;

4026 }

4028 case DI F_SUBR_COPYI NTO

4029 uint64_t size = tupregs[1].dttk_val ue;

4030 uintptr_t dest = tupregs[2].dttk val ue;

4032 /*

4033 * This action doesn’t require any credential checks since
4034 * probes will not activate in user contexts to which the
4035 * enabl i ng user does not have perm ssions.

4036 *

4037 if (!dtrace inscratch(dest, size, nstate)) {

4038 flags | = CPU DTRACE BADADDR;

4039 *illval = regs[rd];

4040 br eak;

4041 }

4043 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

4044 dtrace_copyi n(tupregs[0].dttk_val ue, dest, size, flags);
4045 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NO:AULT) :

4046 br eak;

4047 1

4049 case DI F_SUBR_COPYI NSTR:

4050 uintptr_t dest = nstate->dtns_scratch_ptr;

4051 uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;
4053 if (nargs > 1 && tupregs[1].dttk_value < size)

4054 size = tupregs[1].dttk_value + 1;

4056 /*

4057 * This action doesn’t require any credential checks since
4058 * probes will not activate in user contexts to which the
4059 * enabl i ng user does not have perm ssions.

4060

4061 |f (! DTRACE_| NSCRATCH(nst at e, size)) {

4062 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;

4063 regs[rd] = NULL;

4064 break;

4065 }

4067 DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;

4068 dtrace_copyinstr(tupregs[0].dttk_val ue, dest, size, flags);
4069 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;

4071 ((char *)dest)[size - 1] ="'\0";

4072 nmet at e- >dt ms_scratch_ptr += size;

4073 regs[rd] = dest;

4074 br eak;

4075 }

4077 case DI F_SUBR MSGCSI ZE:

4078 case DI F_SUBR_MSGDSI ZE: {

4079 uintptr_t baddr = tupregs[O0].dttk_value, daddr;

4080 uintptr_t wptr, rptr;

4081 size_t count = 0;

4082 int cont = O;

4084 while (baddr !'= NULL && !(*flags & CPU_DTRACE_FAULT)) {
4086 if (!dtrace_canl oad(baddr, sizeof (mblk_t), nstate,

new usr/src/uts/comon/ dtrace/ dtrace. c

4087
4088
4089
4090

4092
4093

4095
4096

4098
4099
4100
4101
4102

4104
4105

4107
4108

4110
4111
4112
4113
4114
4115
4116
4117
4118

4120
4121
4122
4123
4124

4126
4127

4129
4130

4132
4133

4135
4136
4137
4138

4140

4142
4143
4144
4145
4146
4147

4149

4151
4152

vstate)) {
regs[rd] = NULL;
br eak;

}

wptr = dtrace_| oadptr (baddr +
of fsetof (nbl k_t, b_wptr));

rptr = dtrace_| oadptr(baddr +
of fsetof (mbl k_t, b_rptr));

if (wptr < rptr) {
lags | = CPU_DTRACE_BADADDR;
*|IIvaI = tupregs[0].dttk_val ue;
br eak;

}

daddr = dtrace_| oad tr(baddr +
of fsetof (mbl k_t, b_datap));

baddr = dtrace_| oadptr(baddr +
of fsetof (mbl k_t, b_cont));

*
* W want to prevent against denial-of-service here,
* so we're only going to search the list for

* dtrace_nsgdsi ze_max nbl ks.

|f (cont++ > dtrace_nsgdsi ze_max) {
lags | = CPU_DTRACE_I LLOP;
break

}

if (subr == DI F_SUBR MSCDSI ZE) {
if (dtrace_l oad8(daddr +
of fsetof (dbl k_t, db_type)) != M DATA)
conti nue;

}

count += wptr - rptr;
}

if (!(*flags & CPU_DTRACE_FAULT))
regs[rd] = count;

br eak;
}
case DI F_SUBR_PROGENYOF: {
pid_t pid = tupregs[O0].dttk_val ue;
proc_t *p;
int rval = 0;

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
if (p->p_pidp->pid_id == pid) {
rval = 1;
br eak;

}
DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;

regs[rd] = rval;
br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

4153

4155
4156
4157

4159
4160
4161
4162

4164
4165
4166
4167
4168
4169
4170
4171
4172

4174
4175
4176
4177

4179
4180
4181
4182
4183
4184
4185
4186
4187

4189
4190
4191
4192
4193

4195
4196
4197
4198

4200

4202
4203

4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217

}

case DI F_SUBR_SPECULATI ON:
regs[rd] = dtrace_specul ation(state);
br eak;

case DI F_SUBR COPYOUT:

uintptr_t kaddr = tupregs[O0].dttk_val ue;
uintptr_t uaddr = tupregs[1].dttk_val ue;
uint64_t size = tupregs[2] . dttk_val ue;

if (!dtrace_destructive_disallow &
dtrace_priv_proc_ control(state nstate) &&
Idtrace_i stoxi c(kaddr, size))
DTRACE_CPUFLAG SET(CPU_DTRACE NG:AULT)
dtrace_copyout (kaddr, uaddr, size, fl ags) ;
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NG:AULT) :

}
br eak;
}

case DI F_SUBR COPYOUTSTR: {
uintptr_t kaddr tupregs[0] .dttk_val ue;
uintptr_t uaddr tupregs[1].dttk_val ue;
uint64_t size = tupregs[2].dttk_val ue;

if (!dtrace_destructive_disallow &
dtrace_priv_proc_control (state, nstate) &&
Idtrace_i stoxi c(kaddr, size)) {
DTRACE_CPUFLAG SET(CPU DTRACE_NOFAULT) ;
dtrace_copyout str(kaddr, uaddr, size, fl ags) ;
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT)

}
br eak;
}
case DI F_SUBR_STRLEN: {
size_t sz;
uintptr_t addr = (uintptr_t)tupregs[O].dttk_val ue;
sz = dtrace_strlen((char *)addr,
st at e- >dt s_opt i ons[DTRACEOPT_STRSI ZF]) ;
if (!dtrace_canl oad(addr, sz + 1, nstate, vstate)) {
regs[rd] = NULL;
br eak;
}
regs[rd] = sz;
br eak;
}

case DI F_SUBR _STRCHR:
case DI F/_SUBR STRRCHR: {
We're going to iterate over the string | ooking for the
specified character. We will iterate until we have reached
the string length or we have found the character. |If this
is DIF_SUBR _STRRCHR, we will look for the |ast occurrence
of the specified character instead of the first.

* ok % ok % ok %
-

uintptr_t saddr = tupregs[O0].dttk_val ue;

uintptr_t addr = tupregs[O0].dttk_val ue;

uintptr_t limt = addr + state->dts_options[DTRACEOPT_STRSI ZE] ;
char ¢, target = (char)tupregs[1].dttk_val ue;

new usr/src/uts/comon/ dtrace/ dtrace. c 65

4219
4220
4221

4223
4224
4225

4227
4228
4229

4231
4232
4233
4234

4236
4237

4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258

4260

4262
4263
4264
4265

4267
4268
4269
4270
4271

4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284

for (regs[rd] = NULL; addr < limt; addr++) {
if ((c = dtrace Ioad8(addr)) == target) {
regs[rd] = addr;

if (subr == DI F_SUBR_STRCHR)
br eak;

}

if (c =="\0")
br eak;

}

if (!dtrace_canl oad(saddr, addr - saddr, nstate, vstate)) {
regs[rd] = NULL;
break;

}

br eak;

case DI F_SUBR STRSTR:
case DI F_SUBR | NDEX:
case DI F_SUBR_RI NDEX: {

that the string we're searching for is likely to be
relatively short, the conplexity of Rabin-Karp or simlar
* hardly seems nerited.)

*

/
char *addr (char *)(uintptr_t)tupregs[0].dttk_val ue;
char *substr = (char *)(uintptr_t)tupregs[1].dttk_val ue;
uint64_t size = state->dts_options[DTRACEOPT_ STRSI ZE] ;
size_t len = dtrace_strlen(addr, size);
size_t sublen = dtrace_strl en(substr, si ze);
char *limt = addr + len, *orig = addr;
int notfound = subr == DIF_SUBR STRSTR ? 0 : -1;
int inc = 1;

/*

* We're going to iterate over the string |looking for the

* specified string. We will iterate until we have reached

* the string length or we have found the string. (Yes, this
* is done in the nobst naive way possible -- but considering
*

*

regs[rd] = notfound;

if (!dtrace_canload((uintptr_t)addr, len + 1, nmstate, vstate)) {
regs[rd] = NULL;

br eak;
}
if (!dtrace_canload((uintptr_t)substr, sublen + 1, nstate,

vstate))

regs[rd] = NULL;

break;
}
/*
* strstr() and index()/rindex() have simlar semantics if
* both strings are the enpty string: strstr() returns a
* pointer to the (enpty) string, and index() and rindex()
* poth return index 0 (regardl ess of any position argunent).
*

if (sublen == 0 & len == 0) {
if (subr == DI F_SUBR STRSTR)
regs[rd] = (uintptr_t)addr;

regs[rd] = 0;

new usr/src/uts/comon/dtrace/ dtrace.c 66
4285 }

4287 if (subr !'= DIF_SUBR _STRSTR) {

4288 if (subr == DI F_SUBR_RI NDEX) {

4289 limt =orig - 1;

4290 addr += | en;

4291 inc = -1;

4292 }

4294 /*

4295 * Both index() and rindex() take an optional position
4296 * argunent that denotes the starting position.

4297 *

4298 if (nargs == 3) {

4299 int64_t pos = (int64_t)tupregs[2].dttk_val ue;
4301 /*

4302 * |f the position argunent to index() is
4303 * negative, Perl inplicitly clanmps it at
4304 * zero. This semantic is a little surprising
4305 * given the special nmeaning of negative

4306 * positions to simlar Perl functions |ike
4307 * substr(), but it appears to reflect a

4308 * notion that index() can start froma

4309 * negative index and increment its way up to
4310 * the string. Gven this notion, Perl’s
4311 * rindex() is at |east self-consistent in
4312 * that it inplicitly clanps positions greater
4313 * than the string length to be the string
4314 * length. \here Perl conpletely |oses

4315 * coherence, however, is when the specified
4316 * substring is the enpty string (""). In
4317 * this case, even if the positionis

4318 * negative, rindex() returns 0 -- and even if
4319 * the position is greater than the |ength,
4320 * index() returns the string length. These
4321 * semantics violate the notion that index()
4322 * shoul d never return a value less than the
4323 * specified position and that rindex() shoul d
4324 * never return a value greater than the

4325 * specified position. (One assunes that
4326 * these semantics are artifacts of Perl’s
4327 * inplenentation and not the results of

4328 * deliberate design -- it beggars belief that
4329 * even Larry Wall could desire such oddness.)
4330 * While in the abstract one woul d wish for
4331 * consistent position senmantics across

4332 * substr(), index() and rindex() -- or at the
4333 * very |east self-consistent position

4334 * semantics for index() and rindex() -- we
4335 * instead opt to keep with the extant Perl
4336 * semantics, in all their broken glory. (Do
4337 * we have nore desire to naintain Perl’s
4338 * semantics than Perl does? Probably.)

4339 */

4340 if (subr == DI F_SUBR RI NDEX) {

4341 if (pos < 0)

4342 if (sublen == 0)

4343 regs[rd] = 0;

4344 break;

4345 }

4347 if (pos > len)

4348 pos = len;

4349 } else {

4350 if (pos < 0)

new usr/src/uts/comon/ dtrace/ dtrace. c 67

4351

4353
4354
4355
4356
4357
4358

4360
4361
4362

4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378

4380
4381
4382
4383
4384

4386
4387

4389
4390
4391
4392
4393
4394
4395
4396

4398
4399
4400
4401
4402
4403
4404
4405

4407
4408
4409
4410
4411

4413
4414
4415
4416

}

pos = 0;
if (pos >= len)
if (sublen ==
regs[rd] = len;
break;
}
}
addr = orig + pos;
}
}
for (regs[rd] = notfound; addr !=1limt; addr += inc) {
if (dtrace_strncnp(addr, substr, sublen) == 0)
if (subr !'= DI F_SUBR_STRSTR) {
/*
* As D index() and rindex() are
* nodel ed on Perl (and not on awk),
* we return a zero-based (and not a
* one-based) index. (For you Perl
* weenies: no, we're not going to add
* $[-- and shouldn’t you be at a con
* or sonet hing?)
*
regs[rd] = (uintptr_t)(addr - orig);
br eak;
}
ASSERT(subr == DI F_SUBR STRSTR) ;
regs[rd] = (uintptr_t)addr;
br eak;
}
}
br eak;

case DI F_SUBR_STRTCK:

uintptr_t addr = tupregs[o] dttk_val ue;

uintptr_t tokaddr = tupregs[1].dttk val ue

uint64_t size = state->dts optlons[DTRACE(PT STRSI ZE] ;
uintptr_t limt, toklimt = tokaddr + size;

uint8_t c, tokrmp[32]; /* 256 | 8 */

char *dest = (char *)nstate->dtns_scratch_ptr;

int i;

*

* Check both the token buffer and (later) the input buffer,
* since both could be non-scratch addresses.
*
/
if (!dtrace_strcanl oad(tokaddr, size, nstate, vstate)) {
regs[rd] = NULL;
br eak;

}

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ;
regs[rd] = NULL;
break;

}
if (addr/== NULL) {

* |f the address specified is NULL, we use our saved
* strtok pointer fromthe nstate. Note that this

new usr/src/uts/comon/ dtrace/ dtrace. c 68

4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435

4437
4438
4439
4440
4441
4442
4443

4445
4446
4447

4449
4450
4451

4453
4454
4455
4456
4457
4458
4459

4461
4462
4463

4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475

4477
4478
4479
4480
4481
4482

* means that the saved strtok pointer is _only_
* valid within multiple enablings of the sane probe --
* it behaves like an inplicit clause-local variable.
*
/
addr = nstate->dtns_strtok;
} else {
/*
* If the user-specified address is non-NULL we nust
* access check it. This is the only time we have
* a chance to do so, since this address may reside
* in the string table of this clause-- future calls
* (when we fetch addr from nstate->dtns_strt ok)
* would fail this access check.
*
/

if (!dtrace_strcanl oad(addr, size, nstate, vstate)) {
regs[rd] = NULL;

br eak;
}
}
/*
* First, zero the token map, and then process the token
* string -- setting a bit in the map for every character
* found in the token string.
*
for (i =0; i < sizeof (tokmap); i++)
tokmap[i] = O;
for (; tokaddr < toklimt; tokaddr++) {
f ((c = dtrace Ioad8(tokaddr)) = '\0")
br eak;

ASSERT((c >> 3) < sizeof (tokmap));
tokmap[c >> 3] |= (1 << (c & 0x7));
}
for (limt = addr + size; addr < limt; addr++) {
/*
* W're |ooking for a character that is _not_ contained
* in the token string.
*/
if ((c = dtrace_load8(addr)) == "'\0")
br eak;
if (!'(tokmap[c >> 3] & (1 << (¢ & 0x7))))
br eak;
}

if (c =='\0) {
/*

* W reached the end of the string wthout finding
* any character that was not in the token string.

* We return NULL in this case, and we set the saved
*/address to NULL as well.

*

regs[rd] = NULL;

nst at e- >dt ns strtok = NULL;

br eak;

}

/*
* From here on, we’'re copying into the destination string.
*/
for (i =0; addr < limt & i < size - 1; addr++) {
if ((c = dtrace_load8(addr)) =="'\0")
br eak;

new usr/src/uts/comon/dtrace/ dtrace. c 69 new usr/src/uts/comon/dtrace/ dtrace.c 70
4549 }
4484 if (tokmap[c >> 3] & (1 << (¢ & 0x7)))
4485 br eak; 4551 case DI F_SUBR _JSON: {
4552 uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;
4487 ASSERT(i < size); 4553 uintptr_t json = tupregs[O].dttk_val ue;
4488 dest[i++] = c; 4554 size_t jsonlen = dtrace_strlen((char *)json, size);
4489 } 4555 uintptr_t el em= tupregs[1].dttk_val ue;
4556 size_t elenmen = dtrace_strlen((char *)elem size);
4491 ASSERT(i < size);
4492 dest[i] ="'\0"; 4558 char *dest = (char *)nstate->dtns_scratch_ptr;
4493 regs[rd] = (uintptr_t)dest; 4559 char *elemist = (char *)nstate->dtnms_scratch_ptr + jsonlen + 1;
4494 net at e- >dt ms_scratch_ptr += size; 4560 char *ee = el en1 ist;
4495 net at e- >dt ns_strt ok = addr; 4561 int nelenms = 1;
4496 br eak; 4562 uintptr_t cur,
4497 }
4564 if (!dtrace_canl oad(json, jsonlen + 1, nstate, vstate) ||
4499 case DI F_SUBR . SUBSTR { 4565 Idtrace_canl oad(elem elemen + 1, nstate, vstate)) {
4500 uintptr_t s = tupregs[0].dttk_val ue; 4566 regs[rd] = NULL;
4501 ui nt 64_ size = state->dts_options[DTRACEODT_STRSI ZE] ; 4567 br eak;
4502 char *d = (char *)nstate->dtns_scratch_ptr; 4568 }
4503 int64_t index = (int64_t)tupregs[1].dttk_val ue;
4504 int64_t remaining = (int64_t)tupregs[2].dttk_val ue; 4570 if (!DTRACE_I NSCRATCH(nstate, jsonlen + 1 + elemen + 1)) {
4505 size_t len = dtrace_strlen((char *)s, size); 4571 DTRACE_CPUFLAG_SET(CPU DTRACE_NGCSCRATCH) ;
4506 intéd_t i; 4572 regs[rd] = NULL;
4573 br eak;
4508 if (!dtrace_canload(s, len + 1, nstate, vstate)) { 4574 }
4509 regs[rd] = NULL;
4510 br eak; 4576 /*
4511 } 4577 * Read the el ement selector and split it up into a packed |ist
4578 * of strings.
4513 if (!DTRACE_I NSCRATCH(nstate, size)) { 4579 */
4514 DTRACE_CPUFLAG_SET(CPU DTRACE_NOSCRATCH) ; 4580 for (cur = elem cur < elem+ elemen; cur++) {
4515 regs[rd] = NULL; 4581 char cc = dtrace_l oad8(cur);
4516 br eak;
4517 } 4583 if (cur == elem&& cc =="[") {
4584 I*
4519 if (nargs <= 2) 4585 * |f the first elenent selector key is
4520 remaining = (int64_t)size; 4586 * actually an array index then ignore the
4587 * bracket.
4522 if (index < 0) { 4588 @l
4523 i ndex += len; 4589 conti nue;
4590 }
4525 if (index < 0 & index + remaining > 0) {
4526 remai ni ing += i ndex; 4592 if (cc=="]")
4527 index = 0; 4593 conti nue;
4528 }
4529 } 4595 if (cc=="." || cc =="1") {
4596 nel ems++
4531 if (index >=1len || index < 0) { 4597 cc = '\0';
4532 remai ning = 0; 4598 }
4533 } else if (remmining < 0)
4534 remai ning += len - index; 4600 *ee++ = ccC;
4535 } else if (index + remaining > size) { 4601
4536 remai ning = size - Index; 4602 *ee++ = '\0’;
4537 }
4604 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elenlist,
4539 for (i =0; i <remaining; i++) { 4605 nel ens, dest)) I'= NULL)
4540 if ((d[i] = dtrace_load8(s + index +i)) =="'\0") 4606 nst at e- >dtns_scratch_ptr += jsonlen + 1;
4541 br eak; 4607 br eak;
4542 } 4608 }
4544 d[i] ='\0"; 4610 #endif /* ! codereview */
4611 case DI F_SUBR _TOUPPER:
4546 st at e- >dtm5 scratch_ptr += size; 4612 case DI F_SUBR TOLOVER:
4547 regs[rd] = (uintptr_t)d; 4613 uintptr_t s = tupregs[0].dttk_val ue;
4548 br eak; 4614 uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZF] ;

new usr/src/uts/comon/dtrace/ dtrace. c 71 new usr/src/uts/comon/dtrace/ dtrace.c 72
4615 char *dest = (char *)nstate->dtnms_scratch_ptr, c; 4681 uintptr_t dest = nstate->dtns_scratch_ptr;
4616 size_t len = dtrace_strlen((char *)s, size); 4682 uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZE] ;
4617 char |ower, upper, convert; 4683 char *start = (char *)dest, *end = start + size - 1;
4618 intéd_t i; 4684 uintptr_t daddr = tupregs[O0].dttk_val ue;
4685 int64_t mnor = (int64_t)tupregs[1].dttk_val ue;
4620 if (subr == DI F_SUBR_TOUPPER) { 4686 char *s;
4621 lower ='a’'; 4687 int i, len, depth = O;
4622 upper ="'z,
4623 convert = 'A'; 4689 /*
4624 } else { 4690 * Due to all the pointer junping we do and context we mnust
4625 lower = "A; 4691 * rely upon, we just nandate that the user nust have kernel
4626 upper ='2Z"; 4692 * read privileges to use this routine.
4627 convert ='a’; 4693 *
4628 } 4694 if ((nmstate->dtnms_access & DTRACE_ACCESS _KERNEL) == 0) {
4695 *f|lags | = CPU DTRACE KPRl V;
4630 if (!dtrace_canload(s, len + 1, nstate, vstate)) { 4696 *illval = daddr;
4631 regs[rd] = NULL; 4697 regs[rd] = NULL;
4632 break; 4698 }
4633 }
4700 if (! DTRACE_I NSCRATCH(nstate, size)) {
4635 if (!DTRACE_I NSCRATCH(nstate, size)) { 4701 DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ;
4636 DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ; 4702 regs[rd] = NULL;
4637 regs[rd] = NULL; 4703 br eak;
4638 br eak; 4704 }
4639 }
4706 *end = '\0";
4641 for (i =0; i <size - 1; i++)
4642 if ((c = dtrace_load8(s +i)) =="'\0") 4708 /*
4643 br eak; 4709 * W want to have a name for the minor. In order to do this,
4710 * we need to walk the minor list fromthe devinfo. W want
4645 if (c > lower &% c <= upper) 4711 * to be sure that we don't infinitely walk a circular Iist,
4646 c = convert + (c - lower); 4712 * so we check for circularity by sending a scout pointer
4713 * ahead two el enents for every elenment that we iterate over;
4648 dest[i] = c; 4714 * if the list is circular, these will ultinmately point to the
4649 } 4715 * sanme elenent. You nmay recognize this little trick as the
4716 * answer to a stupid interview question -- one that always
4651 ASSERT(i < size); 4717 * seenms to be asked by those who had to have it |aboriously
4652 dest[i] = "\0"; 4718 * explained to them and who can’t even concisely describe
4653 regs[rd] = (uintptr_t)dest; 4719 * the conditions under which one would be forced to resort to
4654 met at e- >dt ms_scratch_ptr += si ze; 4720 * this technique. Needless to say, those conditions are
4655 br eak; 4721 * found here -- and probably only here. |Is this the only use
4656 } 4722 * of this infambus trick in shipping, production code? If it
4723 * isn't, it probably should be...
4658 case DI F_SUBR GETMAJOR: 4724 */
4659 #ifdef _LP64 4725 if (mnor I=-1)
4660 regs[rd] = (tupregs[O0].dttk_value >> NBI TSM NOR64) & MAXMAJ64; 4726 uintptr_t maddr = dtrace_| oadptr(daddr +
4661 t#el se 4727 of fsetof (struct dev_info, devi_minor));
4662 regs[rd] = (tupregs[O].dttk_value >> NBI TSM NOR) & MAXMAJ;
4663 #endi f 4729 uintptr_t next = offsetof(struct ddi _m nor_data, next);
4664 br eak; 4730 uintptr_t name = offsetof(struct ddi_m nor_data,
4731 d_m nor) + offsetof(struct ddi _m nor, nane);
4666 case DI F_SUBR_GETM NOR: 4732 uintptr_t dev = offsetof(struct ddi _m nor_data,
4667 #ifdef _LP64 4733 d_mnor) + offsetof(struct ddi_m nor, dev);
4668 regs[rd] = tupregs[O0].dttk_value & MAXM N64; 4734 uintptr_t scout;
4669 t#el se
4670 regs[rd] = tupregs[O].dttk_value & MAXM N, 4736 if (maddr != NULL)
4671 #endif 4737 scout = dtrace_| oadptr(naddr + next);
4672 br eak;
4739 while (maddr !'= NULL && ! (*flags & CPU_DTRACE_FAULT)) ({
4674 case DI F_SUBR DDI _PATHNAME: { 4740 uint64_t m
4675 /* 4741 #ifdef _LP64
4676 * This one is a galactic ness. W are going to roughly 4742 m = dtrace_| oad64(maddr + dev) & MAXM N64;
4677 * enul ate ddi _pathnanme(), but it’'s nade nore conplicated 4743 tel se
4678 * by the fact that we (a) want to include the m nor name and 4744 m = dtrace_| oad32(maddr + dev) & MAXM N,
4679 * (b) nust proceed iteratively instead of recursively. 4745 #endi f
4680 */ 4746 if (m!= mnor) {

new usr/src/uts/comon/ dtrace/ dtrace. c

4747

4749
4750

4752

4754
4755

4757

4759
4760

4762
4763
4764
4765

4767
4768

4770
4771
4772
4773
4774
4775
4776

4778
4779

4781
4782
4783

4785
4786

4788
4789
4790
4791
4792

4794
4795

4797
4798

4800
4801

4803
4804
4805
4806

4808
4809

4811
4812

}

maddr = dtrace_| oadptr (nmaddr + next);

if (scout == NULL)
conti nue;

scout = dtrace_| oadptr(scout + next);

if (scout == NULL)
conti nue;

scout = dtrace_| oadptr(scout + next);

if (scout == NULL)
conti nue;

if (scout == maddr) {
*flags | = CPU_DTRACE_I LLOP;
break;

}

conti nue;

*
* We have the minor data. Now we need to

* copy the minor’s name into the end of the
* pat hnane.

*

(char *)dtrace_| oadptr(maddr + name);

s
len = dtrace_strlen(s, size);

if (*flags & CPU DTRACE_FAULT)

br eak;
if (len!=0)

if ((end -= (len + 1)) < start)

br eak;

*end = "7
}
for (i =1; i <=len; i++)

end[i] = dtrace_l oad8((uintptr_t)s++);
br eak;

while (daddr !'= NULL && ! (*flags & CPU DTRACE FAULT)) {

ddi _node_state_t devi_state;

devi _state = dtrace_| oad32(daddr +
of fsetof (struct dev_info, devi_node_state));

if (*flags & CPU_DTRACE_FAULT)
br eak;

if (devi_state >= DS_IN TIALI ZED) {
s = (char *)dtrace_| oadptr(daddr +
of fsetof (struct dev_info, devi_addr));
len = dtrace_strlen(s, size);

if (*flags & CPU_DTRACE_FAULT)
br eak;

if (len !=0)
if ((end -= (len + 1)) < start)

73

new usr/src/uts/comon/ dtrace/ dtrace. c

4813

4815
4816

4818
4819
4820

4822
4823
4824
4825
4826

4828
4829

4831
4832
4833
4834
4835
4836
4837

4839
4840
4841

4843
4844

4846
4847
4848

4850
4851
4852
4853
4854

4856
4857

4859
4860
4861
4862

4864
4865

4867
4868
4869
4870
4871
4872

4874
4875
4876
4877
4878

}

br eak;
*end = ' @;
}
for (i =1; i <= len; i++)
end[i] = dtrace_load8((uintptr_t)s++);
}
/*
* Now for the node nane...
*/

s = (char *)dtrace_| oadptr(daddr +
of f setof (struct dev_info, devi_node_nane));

daddr = dtrace_| oadptr(daddr +
of fsetof (struct dev_info, devi_parent));

/*

* If our parent is NULL (that is, if we're the

* node), we're going to use the special path
* "devi ces".
*/
if (daddr == NULL)
s = "devices";

len = dtrace_strlen(s, size);
if (*flags & CPU_DTRACE_FAULT)

br eak;
if ((end -= (len + 1)) < start)

br eak;
for (i =1; i <=len; i++)

end[i] = dtrace_l oad8((uintptr_t)s++);
*end = '/’

if (depth++ > dtrace_devdept h_max) {
*flags | = CPU_DTRACE_I LLOP;
br eak;

}

if (end < start)
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;

if (daddr == NULL)
regs[rd] = (uintptr_t)end;
nst at e- >dt ms_scratch_ptr += si ze;

}

br eak;

case DI F_SUBR STRJO N:

char *d = (char *)nstate->dtnms_scratch_ptr;
uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;
uintptr_t sl = tupregs[O0].dttk_val ue;

uintptr_t s2 = tupregs[1].dttk_va
int i =0;

if (!dtrace_strcanl oad(sl, size,

Idtrace_strcanl oad(s2, size,
regs[rd] = NULL;

break;

| ue;

nst at e,
et at e,

vstate) ||
vstate)) {

root

new usr/src/uts/comon/dtrace/ dtrace. c 75 new usr/src/uts/comon/dtrace/ dtrace.c 76
4945 char *end = (char *)nstate->dtns_scratch_ptr + size - 1;
4880 if (!DTRACE_I NSCRATCH(nstate, size)) { 4946 int base = 10;
4881 DTRACE_CPUFLAG_SET(OPU DTRACE_NOSCRATCH) ;
4882 regs[rd] = NULL; 4948 if (nargs > 1) {
4883 br eak 4949 ((base = tupregs[1].dttk_value) <=1 ||
4884 } 4950 base > ('z' - 'a +1) + ("9 -0 + 1)) {
4951 *flags | = CPU_DTRACE_| LLOP;
4886 for (;;) { 4952 br eak;
4887 if (i >= size) { 4953 }
4888 DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ; 4954 }
4889 regs[rd] = NULL;
4890 br eak; 4956 val = (base == 10 && i < 0) ? i * -1 : i;
4891 }
4958 if (!DTRACE_I NSCRATCH(nstate, size)) {
4893 if ((d[i++ = dtrace_|load8(sl++)) =="'\0") { 4959 DTRACE_CPUFLAG SET(CPU_DTRACE NOSCRATCH) ;
4894 i--; 4960 regs[rd] = NULL;
4895 br eak; 4961 br eak
4896 } 4962 }
4897 }
4964 for (*end-- = '\0"; val; val /= base) {
4899 for () { 4965 if ((dlglt —val % base) <='9" - '0") {
4900 if (i >=size) { 4966 end- - "0 + digit;
4901 DTRACE_CPUFLAG SET(CPU_DTRACE NOSCRATCH) ; 4967 } else {
4902 regs[rd] = NULL; 4968 *end-- ='a + (digit - ("9 - '0) - 1);
4903 br eak; 4969 }
4904 } 4970 }
4906 if ((d[i++] = dtrace_|l oad8(s2++)) == '\0") 4972 if (i ==0 & base == 16)
4907 br eak; 4973 *end-- ='0;
4908 }
4975 if (base == 16)
4910 if (i <size) { 4976 *end-- = 'Xx';
4911 nst at e- >dt ms_scratch_ptr += i;
4912 regs[rd] = (uintptr_t)d; 4978 if (i == 0 || base == 8 || base == 16)
4913 } 4979 *end-- ='0";
4915 br eak; 4981 if (i < 0 && base == 10)
4916 } 4982 end-- = "'-";
4918 case DI F_SUBR_ STRT(]_L { 4984 regs[rd] = (uintptr_t)end + 1;
4919 uintptr_t s = tupregs[O] dttk_val ue; 4985 nst at e- >dt ms_scratch_ptr += si ze;
4920 uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZE] ; 4986 br eak;
4921 int base = 10; 4987 }
4923 if (nargs > 1) { 4989 case DI F_SUBR_HTONS:
4924 if ((base = tupregs[1].dttk val ue) <=1 || 4990 case DI F_SUBR_NTOHS:
4925 base > ('z' - 'a + 1) + ("9 -0 + 1)) { 4991 #ifdef _BlI G_ENDI AN
4926 *flags | = CPU_DTRACE_I LLOP; 4992 regs[rd] = (uint16_t)tupregs[O0].dttk_val ue;
4927 br eak; 4993 #el se
4928 } 4994 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[O0].dttk_val ue);
4929 } 4995 #endi f
4996 br eak;
4931 if (!dtrace_strcanl oad(s, size, nstate, vstate)) {
4932 regs[rd] = INT64_M N,
4933 br eak; 4999 case DI F_SUBR_HTONL:
4934 } 5000 case DI F_SUBR _NTOHL:
5001 #ifdef Bl G ENDI AN
4936 regs[rd] = dtrace_strtoll ((char *)s, base, size); 5002 regs[rd] = (uint32_t)tupregs[O0].dttk_val ue;
4937 br eak; 5003 t#el se
4938 } 5004 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[O0].dttk_val ue);
5005 #endi f
4940 #endif /* | codereview */ 5006 br eak;
4941 case DIF_SUBR LLTCSTR:
4942 int64_t i = (int64_t)tupregs[0].dttk_val ue;
4943 ui nt 64_t val digit; 5009 case DI F_SUBR HTONLL:
4944 uint64_t si ze = 65; /* enough room for 2764 in binary */ 5010 case DI F_SUBR_NTOHLL:

new usr/src/uts/comon/ dtrace/ dtrace. c

5011
5012
5013
5014
5015
5016

5019
5020
5021
5022
5023
5024
5025
5026

5028
5029
5030
5031

5033
5034
5035
5036
5037

5039
5040
5041
5042
5043
5044
5045
5046

5048
5049
5050
5051
5052
5053
5054
5055
5056

5058
5059

5061
5062
5063
5064
5065
5066
5067
5068
5069
5070

5072
5073

5075
5076

#i f def
#el se

#endi f

_BI G_ENDI AN

regs[rd] = (uint64_t)tupregs[O0].dttk_val ue;

regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_val ue);

br eak;

case DI F_SUBR DI RNAME:

case DI F_SUBR_ BASENANE
char *dest = (char *)nstate->dtms_scratch_ptr;
uint64_t size st at e- >dt s_opt i ons[DTRACEOPT_STRSI ZE] ;
uintptr_t src = tupregs[0].dttk_val ue;
int 1, J, Ien dtrace_strlen((char *)src, size);
int |astbase = -1, firstbase = -1, lastdir = -1;
int start, end;

if (!dtrace_canload(src, len + 1, nstate, vstate)) {
regs[rd] = NULL;
br eak;

}

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

}

*

* The basenanme and dirnane for a zero-length string is
* defined to be "
*

/
if (len r= O) {

src = (UI ntptr_t)"

}
| *

* Start fromthe back of the string, noving back toward the

* front until we see a character that isn't a slash.
* character is the last character in the basenane.
*/

for (i =len - 1; i >=0; i--) {
if (dtrace_load8(src + 1) !="/")
br eak;
}
if (i >=0)
| astbase = i;

towards the front until we find a slash.

That

*

* Starting fromthe last character in the basename, nove
* The char act er
*

that we processed i nmediately before that is the first

* character in the basenane.

*/
for (; i >=0; i--) {
if (dtrace_load8(src + i) =="/")
br eak;
}
if (i >=0)
firstbase =i + 1;
/*

* Now keep going until we find a non-slash character.

That

7

new usr/src/uts/comon/ dtrace/ dtrace. c

5077
5078
5079
5080
5081
5082

5084
5085

5087
5088

5090
5091
5092
5093
5094
5095
5096
5097
5098
5099

5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116

5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130

5132
5133
5134
5135
5136
5137
5138
5139

5141
5142

* character is the |ast character in the dirnane.
=

for (; i >=0; i--) {
if (dtrace load8(src +i) !="1/1")
br eak;
}
if (i >=0)
lastdir =i;
ASSERT(! (| astbase == -1 && firstbase != -1));
ASSERT(! (firstbase == -1 && lastdir != -1));
if (lastbase == -1) {
/*
* We didn’t find a non-slash character. W know that
* the length is non-zero, so the whole string nust be
* slashes. In either the dirname or the basenane
* case, we return '/’
*/
ASSERT(flrstbase == —1)
firstbase = | astbhase = Iastdlr = 0;
}
if (firstbase == -1) {
/*
* The entire string consists only of a basenane
* conponent. If we’'re |ooking for dirnane, we need
* to change our string to be just "."; if we're
* | ooking for a basenanme, we'll just set the first
* character of the basenane to be 0.
*
/
if (subr == DIF_SUBR DI RNAME) {
ASSERT(l astdir == —1)
src = (uintptr_t)"
Iastd|r = 0;
} else {
firstbase = 0;
}
}
if (subr == DI F_SUBR DI RNAME) {
if (lastdir == -1) {
/*
* We know that we have a slash in the name --
* or lastdir would be set to 0, above. And
* because lastdir is -1, we know that this
* slash nust be the first character. (That
* is, the full string nmust be of the form
* "/basenane".) In this case, the |ast
* character of the directory nane is 0.
*
/
lastdir = 0O;
}
start = O;
end = lastdir;
} else {
ASSERT(subr == DI F_SUBR_BASENAME)
ASSERT(firstbase !'= -1 & |l astbase != -1);
start = firstbase;
end = | ast base;
}
for (i = start, j =0; i <=end & j < size - 1; i++ |++)

dest[j] = dtrace_l oad8(src + i);

new usr/src/uts/comon/ dtrace/ dtrace. c

5144
5145
5146
5147
5148

5150
St5il3
5152
5153

5155
5156
5157
5158

5160
5161
5162
5163
5164
5165
5166

5168
5169
5170
5171

5173
5174
5175
5176
5177
5178

5180
5181
5182
5183

5185
5186
5187
5188
5189

5191
5192
5193
5194
5195
5196
5197
5198

5200
5201
5202
5203

5205

5207
5208

next:

}

dest[j] ="'\0";

regs[rd] = (uintptr_t)dest;

net at e- >dt ns_scratch_ptr += size;
br eak;

case DI F_SUBR GETF:

}

uintptr_t fd = tupregs[0].dttk_val ue;
uf _info_t *finfo = &curthread->t_procp->p_user.u_finfo;
fiTe t *fp;

if (!dtrace_priv_proc(state, nstate)) {
regs[rd] = NULL;
br eak;

-

* ok kb ko

This is safe because fi_nfiles only increases, and the
fi_list array is not freed when the array size doubles.
(See the coment in flist_grow() for details on the
managenment of the u_finfo structure.)

fp =fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;

nst at e- >dt ns_get f fp;
regs[rd] = (uint pt _t)fp;
br eak;

case DIF_SUBR CLEANPATH

char *dest (char *)mstate->dtns_scratch_ptr, c;
uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZE] ;
ui nt ptr t src = tupregs[0].dttk_val ue;

int 1 =0,] =0;

zone_t *z

if (!dtrace_strcanl oad(src, size, nstate, vstate)) {
regs[rd] = NULL;
break;

}

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;

br eak;
}
* Move forward, |oading each character.
*/
do {

¢ = dtrace_l oad8(src + i++);

if (j +5 >= size) /* 5 = strlen("/..c\0") */
br ;

if (C | = ’/’)
dest[j++] = c;
conti nue;
= dtrace_| oad8(src + i++);

if (c=='/") {
/*

79

new usr/src/uts/comon/ dtrace/ dtrace. c 80
5209 * W& have two slashes -- we can just advance
5210 * to the next character.

5211 */

5212 got o next;

5213 }

5215 if (ct!="."){

5216 /*

5217 * This is not "." and it’s not ".." -- we can
5218 * just store the "/" and this character and
5219 * drive on.

5220 */

5221 dest[j++] ="/";

5222 dest[] ++] = c;

5223 cont i nue;

5224 }

5226 c = dtrace_l oad8(src + i++);

5228 if (c=="/1") {

5229 /*

5230 * This is a "/./" conponent. W' re not going
5231 * to store anything in the destination buffer;
5232 * we're just going to go to the next conponent.
5233 */

5234 got o next;

5235 }

5237 if(c!=’.’){

5238

5239 * This is not ." -- we can just store the
5240 * "/." and this character and continue

5241 * processing.

5242 */

5243 dest[j++] ="/";

5244 dest[j++ ='.":

5245 dest[] ++] = c;

5246 conti nue;

5247 }

5249 c = dtrace_l oad8(src + i++);

5251 if (ct!="/1" & c !="\0") {

5252 /*

5253 * This is not ".." -- it's "..[munble]".
5254 * W' || store the "/.." and this character
5255 * and continue proceSS| ng.

5256 */

5257 dest[j++] ="/";

5258 dest[j++] ="'.";

5259 dest[]++] = "."

5260 dest[] ++] = c;

5261 conti nue;

5262 }

5264 /*

5265 * This is "/../" or "/..\0". W need to back up
5266 * our destination pointer until we find a "/".

5267 */

5268 i--;

5269 \Ah|le(j 1= 0 & dest[--j] !="/")

5270 conti nue;

5272 if (c =="\0")

5273 dest[++] ="'/";

5274 } while (c !'="\0");

new usr/src/uts/comon/ dtrace/ dtrace. c 81

5276

5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292

5294
5295
5296
5297

5299
5300
5301
5302
5303
5304

5306
5307
5308
5309
5310
5311
5312

5314
5315
5316

5318
5319
5320
5321

5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333

5335
5336
5337
5338
5339
5340

dest[j] ="'\0";

if (mstate->dtns_getf != NULL &&
I (st at e->dt n5_access & DTRACE_ACCESS KERNEL) &&
(z = state->dts_cred. dcr_cred->cr_zone) != kcred->cr_zone) {
/*
* |f we’ve done a getf() as a part of this ECB and we
* don’t have kernel access (and we’'re not in the global
* zone), check if the path we cleaned up begins wth
* the zone’'s root path, and trimit off if so. Note
* that this is an output cleanliness issue, not a
* security issue: knowing one’'s zone root path does
* not enable privilege escal ation.
*
/
if (strstr(dest, z->zone_rootpath) == dest)
dest += strlen(z->zone_rootpath) - 1;

}

regs[rd] = (uintptr_t)dest;
net at e- >dt ns_scratch_ptr += size;
br eak;

}

case DI F_SUBR | NET_NTQA:
case DI F_SUBR_| NET_NTQA6:
case DI F_SUBR_ | NET_NTOP: {
size_t size;
int af, argi, i;
char *base, *end;

if (subr == DIF_SUBR | NET_NTOP) {
af = (int)tupregs[0].dttk_val ue;
i ilg

argi =
} else {
af = subr == DIF_SUBR | NET_NTOA ? AF_| NET: AF_| NET6;
argi =0
}
if (af == AF_INET) {
i paddr _t i p4;

uint8_t *ptr8, val;

/*

* Safely load the |IPv4 address.
*

/

ip4 = dtrace_|l oad32(tupregs[argi].dttk_value);

/*

*/Check an | Pv4 string will fit in scratch.

*

si ze = | NET_ADDRSTRLEN;

if (!DTRACE_|I NSCRATCH(st ate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

base = (char *)nstate->dtns_scratch_ptr;
end = (char *)nstate->dtns_scratch_ptr + size - 1;

/*

* Stringify as a dotted deci mal quad.
*/

*end-- = '\0’;

ptr8 = (uint8_t *)& p4;

for (i =3; i >=0; i--) {

new usr/src/uts/comon/ dtrace/ dtrace. c

5341

5343
5344
5345
5346
5347
5348
5349

5351
5352
5353
5354

5356
5357
5358
5359
5360

5362
5363
5364
5365
5366
5367
5368
5369

5371
5372
5373
5374
5375
5376

5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389

5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403

5405
5406

} else i

val = ptr8[i];

if (val == 0) {
*end-- ='0;
} else {
for (; val; val /= 10) {
*end-- ='0 + (val %10);
}
}
if (i >0)
*end-- ="'.";

}
ASSERT(end + 1 >= base);

f (af == AF_INET6) {

struct in6_addr ip6;

int firstzero, tryzero, nunzero, v6end;
uint16_t val;

const char digits[] = "0123456789%9abcdef";

/*
* Stringify using RFC 1884 convention 2 - 16 bit
* hexadeci mal values with a zero-run conpression.
* Lower case hexadecimal digits are used.
R eg, fe80::214:4fff:fe0b: 76c8.
* The | Pv4 enbedded formis returned for inet_ntop,
* just the IPv4 string is returned for inet_ntoa6.
*
/

/*
* Safely load the | Pv6 address.
*/

dtrace_bcopy(
(void *)(uintptr_t)tupregs[argi].dttk_val ue,
(void *)(uintptr_t)& p6, sizeof (struct in6_addr));

/*

* Check an IPv6 string will fit in scratch.
*/

size = | NET6_ADDRSTRLEN,

i f (! DTRACE_|I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ;
regs[rd] = NULL;
br eak;

base = (char *)nstate->dtns_scratch_ptr;
end = (char *)nstate->dtns_scratch_ptr + size - 1;
*end-- = '\0";

/*

* Find the longest run of 16 bit zero val ues

* for the single allowed zero conpression - "::"
*/

firstzero = -1;
tryzero = -1;
nunzero = 1;
for (i =0; i < sizeof (struct in6_addr); i++) {
if (ip6._S6_un._S6_u8[i] == 0 &&
tryzero == -1 && I %2 == 0) {
tryzero = i;
conti nue;
}
if (tryzero != -1 &&

(ip6._S6_un._S6_u8[i] !'=0 ||

82

new usr/src/uts/comon/ dtrace/ dtrace. c

5407

5409
5410
5411
5412

5414
5415
5416

5418
5419
5420
5421
5422
5423

5425
5426
5427
5428
5429
5430
5431
5432
5433

5435

5437
5438
5439
5440
5441
5442
5443

5445
5446
5447

5449
5450

5452
5453
5454
5455
5456
5457

5459
5460
5461
5462
5463
5464

5466
5467
5468
5469
5470
5471

i == sizeof (struct in6_addr) - 1)) {

if (i - tryzero <= nunzero) {
tryzero = -1,
conti nue;
}
firstzero = tryzero;
nunzero =i - I %2 - tryzero;
tryzero = -1;
if (ip6._S6_un._S6_u8[i] ==
i == sizeof (struct |n6 addr)
nunzero += 2;

83

1)

% 10;

}
}
ASSERT(firstzero + nunzero <= sizeof (struct in6_addr));
/*
* Check for an | Pv4 enbedded address.
*/
véend = sizeof (struct in6_addr) - 2;
if (IN6_I'S ADDR VANAPPED(& p6) | |
IN6_I S_ADDR _VACOMPAT(&i p6))
“for (i = sizeof (struct in6_addr) - 1;
i >= DITRACE_VAMAPPED OFFSET; i--) {
ASSERT(end >= base);
val = ip6._S6_un._S6_u8[i];
if (val == 0) {
*end-- =0 ;
} else {
for (; val; val /= 10) {
*end-- ='0 + val
}
}
if (i > DTRACE_ V4NAPPED) OFFSET)
*end-- ="'.";
}
if (subr == DI F_SUBR_| NET_NTOAG)
goto inetout;
/*
* Set v6end to skip the |Pv4 address that
* we have already stringified.
*
véend = 10;
}

*

* Build the IPv6 string by working through the
* address in reverse.

*/
for (i =v6end; i >=0; i -=2) {
ASSERT(end >= base);
if (i ==f|rstzero + _Nunzero - 2) {
*end-- =
*end-- = ":";
i -= nunzero - 2;
conti nue;
}

new usr/src/uts/comon/ dtrace/ dtrace. c

5473
5474

5476
5477

5479
5480
5481
5482
5483
5484
5485
5486
5487

5489
5490
5491
5492
5493
5494
5495
5496

5498
5499
5500
5501

5503
5504

5506
5507
5508
5509
5510
5511
5512
5513

i netout:

}
/*
* Enu
* DI F
* the
*/

static

if (i <14 & i !=firstzero - 2)
*end-- = ':";

val = (ip6._S6_un._S6_u8[i] << 8) +
ip6._S6_un._S6_u8[i + 1];

for (; val; val /= 16) {
*end-- = digits[val % 16];

ASSERT(end + 1 >= base);
} else {
/*

* The user didn't use AH | NET or AH | NET6.
*/

DTRACE_CPUFLAG_SET(CPU_DTRACE_| LLCP) ;

regs[rd] = NULL;

br eak;
}
regs[rd] = (uintptr_t)end + 1;
met at e- >dt ms_scratch_ptr += si ze;
br eak;
}
}

ate the execution of DTrace IR instructions specified by the given
object. This function is deliberately void of assertions as all of
necessary checks are handled by a call to dtrace_difo_validate().

ui nt 64_t

dtrace_dif_emul ate(dtrace_difo_t *difo, dtrace _mstate_t *mstate,
dtrace_vstate_t *vstate, dtrace_state_t *state)

5514 {

5515
5516
5517
5518

5520
5521
5522
5523
5524
5525

5527
5528
5529

5531
5532
5533
5534
5535
5536

5538

const dif_instr_t *text = difo->dtdo_buf;
const uint_t textlen = difo->dtdo_| en;
const char *strtab = difo->dtdo_strtab;
const uint64_t *inttab = difo->dtdo_inttab;

uint64_t rval = 0;
dtrace_statvar_t *svar;
dtrace_dstate_t *dstate
dtrace_difv_t *v;
volatile uint16_t *flags = &pu_core[CPU->cpu_i d].cpuc_dtrace_fl ags;
volatile uintptr_t *illval = &pu_core[CPU->cpu_id].cpuc_dtrace_illval;

= &vstate->dtvs_dynvars;

dtrace_key_t tu p egs[DI F_DTR NREGS + 2]; /* +2 for thread and id */
uint64_t regs[Dl F_DI R_NREGS];
uint64_t *tnp;

cn=0 cc_z=0, cc.v=0 cc_c=0;

new usr/src/uts/comon/ dtrace/ dtrace. c 85

5539
5540
5541
5542

5544

5546
5547

5549
5550
5551
5552

5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587

5589
5590
5591
5592
5593
5594
5595
5596

5598
5599
5600
5601
5602
5603
5604

* We stash the current DIF object into the machine state: we need it
* for subsequent access checking.

*/

nmstate->dtns_difo = difo;

regs[Dl F_REG RO] = O; /* %0 is fixed at zero */

while (pc < textlen && ! (*flags & CPU_DTRACE _FAULT)) ({

opc = pc;

instr = text[pc++];

rl = DIF_I NSTR Rl(lnstr)

r2 = DIF_INSTR_R2(instr);

rd = DIF_INSTR_RD(instr);

switch (DI F_INSTR OP(instr)) {

case DIF_OP_OR
regs[rd] = regs[rl] | regs[r2];
break;

case DI F_OP_XOR
regs[rd] = regs[rl] ~ regs[r2];
br eak;

case DI F_OP_AND:
regs[rd] = regs[rl] & regs[r2];

case DIF_OP_SLL:
regs[rd] = regs[rl] << regs[r2];

case DIF_OP_SRL:
regs[rd] = regs[rl] >> regs[r2];

case DI F_OP_SuUB:
regs[rd] = regs[rl] - regs[r2];

case DI F_OP_ADD:
regs[rd] = regs[rl] + regs[r2];

case DIF_OP_MJL:
regs[rd] = regs[rl] * regs[r2];

case DIF_OP_SDIV:
if (regs[r2] == 0) {
regs[rd] = O;
*flags | = CPU DTRACE DI VZERO,

} else {

regs[rd] = (int64_t)regs[r1] /
(int64_t)regs[r2];

}break;

case DIF_OP_UDIV:
if (regs[r2] == O) {

regs[rd] = 0;
*flags |— CPU_DTRACE_DI VZERQ,
} else {
regs[rd] = regs[rl] / regs[r2];
br eak;
case DI F_OP_SREM
if (regs[r2] == 0) {
regs[rd] = 0;
*flags | = CPU_DTRACE_DI VZERQ,
} else {
regs[rd] nt64_t)regs[rl] %

(intGZ_gl)regs[r2];

new usr/src/uts/comon/dtrace/ dtrace.c 86
5605

5606 break;

5608 case DI F_OP_UREM

5609 if (regs[r2] == 0) {

5610 regs[rd] =

5611 *flags | = CPU DTRACE_DI VZERQ,
5612 } else {

5613 regs[rd] = regs[rl] %regs[r2];
5614

5615 break;

5617 case DI F_OP_NOT:

5618 regs[rd] = ~regs[ri1];

5619 break;

5620 case DI F_OP_MV.

5621 regs[rd] = regs[ri];

5622 break;

5623 case DI F_OP_CWP:

5624 cc_r = regs[rl] - regs[r2];

5625 cc_n =cc_r < 0;

5626 cc_z = cc_r ==

5627 cc_v = 0;

5628 cc_c =regs[rl] < regs[r2];

5629 br eak;

5630 case DI F_OP_TST:

5631 cc_n = cc_v = cc_c = O;

5632 cc_z =regs[rl] == 0;

5633 br eak;

5634 case DI F_OP_BA:

5635 pc = DI F_I NSTR_LABEL(instr);

5636 br eak

5637 case DIF_OP_| BE:

5638 if (cc_z)

5639 pc = DIF_I NSTR_LABEL(i nstr);
5640 break;

5641 case DI F_OP_BNE:

5642 if (cc_z == 0)

5643 pc = DIF_I NSTR_LABEL(i nstr);
5644 break;

5645 case DI F_OP_BG

5646 if ((cc_z | (cc n ~ cc_v)) == 0)
5647 pc = DIF_I NSTR_LABEL(i nstr);
5648 break;

5649 case DI F_OP_BGU:

5650 if ((cc_c| cc_z) ==0

5651 pc = DI F_I NSTR_LABEL(instr);
5652 br eak;

5653 case DIF_OP_| BGE:

5654 if ((cc_n ~ cc_v) == 0)

5655 pc = DI F_I NSTR_LABEL(i nstr);
5656 break;

5657 case DI F_OP_BGEU:

5658 if (cc_c == 0)

5659 pc = DI F_I NSTR_LABEL(i nstr);
5660 br eak;

5661 case DIF_OP BL

5662 if (ccn"cc V)

5663 pc = DI F_I NSTR_LABEL(i nstr);
5664 br eak;

5665 case DIF_OP BLU

5666 if (cc_c)

5667 pc = DI F_I NSTR_LABEL(i nstr);
5668 br eak;

5669 case DIF_OP BLE

5670 if (cc_z | (cc_n ” cc_v))

new usr/src/uts/comon/dtrace/ dtrace. c 87 new usr/src/uts/comon/dtrace/ dtrace.c 88
5671 pc = DI F_I NSTR_LABEL(i nstr); 5737 br eak;

5672 break; 5738 case DIF OP ULDUB

5673 case DI F_OP_BLEU: 5739 regs[rd] =

5674 if (cc_c | cc_z) 5740 dtrace_fuword8((void *)(uintptr_t)regs[ri]);
5675 pc = DIF_I NSTR_LABEL(instr); 5741 br eak;

5676 br eak; 5742 case DI F_OP_ULDUH:

5677 case DI F_OP_RLDSB: 5743 regs[rd] =

5678 if (!dtrace_canload(regs[rl], 1, nstate, vstate)) 5744 dtrace_fuwordl6((void *)(uintptr_t)regs[ri]);
5679 br eak; 5745 br eak;

5680 [* FALLTHROUGH* / 5746 case DI F_OP_ULDUW

5681 case DI F_OP_LDSB: 5747 regs[rd] =

5682 regs[rd] = (int8_t)dtrace_l oad8(regs[r1]); 5748 dtrace_fuword32((void *)(uintptr_t)regs[ri1]);
5683 br eak 5749 br eak;

5684 case DI F_OD_RLDSH: 5750 case DI F_OP_ULDX:

5685 if (!dtrace_canl oad(regs[rl], 2, nstate, vstate)) 5751 regs[rd] =

5686 br eak; 5752 dtrace_f uword64((void *)(uintptr_t)regs[ri]);
5687 / * FALLTHROUGH* / 5753 br eak;

5688 case DI F_OP_LDSH: 5754 case DI F_OP_RET:

5689 regs[rd] = (intl6_t)dtrace_|l oadl6(regs[r1]); 5755 rval = regs[rd];

5690 br eak; 5756 pc = textlen;

5691 case DI F_OP_RLDSW 5757 br eak;

5692 if (!dtrace_canl oad(regs[rl], 4, nstate, vstate)) 5758 case DI F_OP_NOP:

5693 br eak; 5759 break;

5694 / * FALLTHROUGH* / 5760 case DI F_OP_SETX:

5695 case DI F_OP_LDSW 5761 regs[rd] = inttab[DI F_I NSTR_I NTEGER(i nstr)];

5696 regs[rd] = (int32_t)dtrace_|l oad32(regs[ri]); 5762 br eak

5697 br eak; 5763 case DI F_OP SETS:

5698 case DI F_CP_RLDUB: 5764 regs[rd] = (uint64_t)(uintptr_t)

5699 if (!dtrace_canload(regs[r1], 1, nstate, vstate)) 5765 (strt ab + DI F_INSTR_STRING(I nstr));

5700 br eak; 5766 br eak;

5701 / * FALLTHROUGH* / 5767 case DI F_OD_SCNP:

5702 case DI F_OP_LDUB: 5768 size_t sz = state->dts_options[DTRACEOPT_STRSI ZE] ;
5703 regs[rd] = dtrace_|l oad8(regs[r1]); 5769 uintptr_t sl = regs[ri];

5704 br eak 5770 uintptr_t s2 = regs[r2];

5705 case DIF_OP RLDUH;

5706 if (!dtrace_canl oad(regs[r1], 2, nstate, vstate)) 5772 if (sl != NULL &&

5707 br eak; 5773 Idtrace_strcanl oad(sl, sz, nstate, vstate))
5708 | * FALLTHROUGH* / 5774 br eak;

5709 case DI F_OP_LDUH: 5775 if (s2 != NULL &&

5710 regs[rd] = dtrace_l oadl16(regs[r1]); 5776 Idtrace_strcanl oad(s2, sz, nstate, vstate))
5711 br eak; 5777 br eak;

5712 case DI F_OP_RLDUW

5713 if (!dtrace_canl oad(regs[rl], 4, nstate, vstate)) 5779 cc_r = dtrace_strncnp((char *)sl1, (char *)s2, sz);
5714 break;

5715 / * FALLTHROUGH* / 5781 cc_n =cc_r < 0;

5716 case DI F_OP_LDUW 5782 cc_z =cc_r == 0;

5717 regs[rd] = dtrace_|l oad32(regs[r1]); 5783 cc_v = cc_c = 0;

5718 break; 5784 break;

5719 case DI F_OP_RLDX: 5785 }

5720 if (!dtrace_canload(regs[rl], 8, nstate, vstate)) 5786 case DI F_OP_LDGA:

5721 br eak; 5787 regs[rd] = dtrace_dif_variable(nstate, state,
5722 / * FALLTHROUGH* / 5788 rl, regs[r2]);

5723 case DI F_OP_LDX: 5789 br eak

5724 regs[rd] = dtrace_l oad64(regs[ril]); 5790 case DIF_OP_| LDGS:

5725 br eak; 5791 id = DIF_INSTR_VAR(instr);

5726 case DIF_COP ULDSB

5727 regs[rd] = (int8_t) 5793 if (id >= DIF_VAR OTHER UBASE) {

5728 dtrace_fuword8((void *)(uintptr_t)regs[ri]); 5794 uintptr_t a;

5729 br eak;

5730 case DIF_OP ULDSH 5796 id -= DI F_VAR_OTHER_UBASE;

5731 regs[rd] = (int16_t) 5797 svar = vstate->dtvs gl obal s[id];

5732 dtrace_fuwordl6((void *)(uintptr_t)regs[ri]); 5798 ASSERT(svar != NULL);

5733 br eak; 5799 v = &svar->dtsv_var;

5734 case DIF_COP ULDSW

5735 regs[rd] (int32_t) 5801 if (!(v->dtdv_type.dtdt_flags & DI F_TF_BYREF)) {
5736 dtrace _fuword32((void *)(uintptr_t)regs[ri]); 5802 regs[rd] = svar->dtsv_data;

new usr/src/uts/comon/ dtrace/ dtrace. c

5803
5804

5806

5808
5809
5810
5811
5812
5813
5814
5815
5816
5817

5819
5820

5822
5823

5825
5826

5828
5829

5831
5832
5833

5835
5836

5838
5839

5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851

5853
5854
5855
5856

5858
5859

5861
5862
5863
5864
5865
5866
5867
5868

br eak;

= (uintptr_t)svar->dtsv_dat a;
if (*(uint8_t *)a == U NT8_MAX) {
/*

* |f the Oth byte is set to U NT8_MAX
* then this is to be treated as a

* reference to a NULL vari abl e.

*/

regs[rd] = NULL;
} else {

regs[rd] = a + sizeof (uint64_t);
}

br eak;
}
regs[rd] = dtrace_dif_variable(nstate, state, id, 0);
br eak;

case DI F_OP_STGS:
Td = DI F_I NSTR_VAR(instr);

ASSERT(id >= DI F_VAR OTHER UBASE) ;
id -= D F_VAR OTHER UBASE;

svar = vstate->dtvs_global s[id];
ASSERT(svar 1= NULL);
\Y &svar - >dt sv_var;

if (v->dtdv_type. dtdt_flags & DIF_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;

ASSERT(a != NULL);
ASSERT(svar - >dtsv_size ! = 0);

if (regs[rd] == NULL)
*(uint8_t *)a = U NT8_MAX;
br eak;
} else {
*(uint8_t *)a = 0;
a += sizeof (uint64_t);

}
if (!dtrace_vcanl oad(

(void *)(uintptr_t)regs[rd], &v->dtdv_type,

nmstate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],
(void *)a, &->dtdv_type);

br eak;
}
svar->dtsv_data = regs[rd];
break;

case DI F_OP_LDTA:
/ *

* There are no DIrace built-in thread-1ocal arrays at
* present. This opcode is saved for future work.
*/

*flags | = CPU DTRACE | LLOP;
regs[rd] = 0;
br eak;

89

new usr/src/uts/comon/ dtrace/ dtrace. c

5870
5871

5873
5874
5875
5876
5877
5878
5879

5881

5883
5884

5886
5887
5888

5890
5891
5892

5894
5895
5896

5898
5899
5900
5901
5902
5903
5904
5905
5906
5907

5909
5910

5912
5913
5914
5915

5917
5918

5920
5921
5922

5924
5925
5926
5927

5929
5930
5931

5933
5934

case DIF_OP_LDLS:
Td = DIF_INSTR VAR(instr);

if (id < DIF_VAR OTHER UBASE) {
/*

* For now, this has no neaning.
*

regs[rd] = 0;

br eak

}
id -= DI F_VAR OTHER UBASE;

ASSERT(id < vstate->dtvs_nlocal s);
ASSERT(vstate->dtvs_|locals ! = NULL);

svar = vstate->dtvs_| ocal s[id];
ASSERT(svar != NULL);
v = &svar->dtsv_var;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;
size_t sz = v->dtdv_type. dtdt_size;

sz += sizeof (uint64_t);
ASSERT(svar - >dt sv_si ze == NCPU * sz);
a += CPU->cpu_id * sz;

if (*(ui?t8_t *)a == U NT8_MAX) {

* |f the Oth byte is set to U NT8_MAX
* then this is to be treated as a

* reference to a NULL vari able.

*/

regs[rd] = NULL;
} else {

regs[rd] = a + sizeof (uint64_t);
}

br eak;

}

ASSERT(svar >dt sv_si ze == NCPU * sizeof (uint64_t));
tnp = (ui nt64 t *)(ui ntptr _t)svar->dtsv_data;
regs[rd] = tnp[CPU->cpu_id];

br eak;

case DI F_OP_STLS:
id = DIF_INSTR_VAR(instr);

ASSERT(i d >= DI F_VAR OTHER UBASE) ;
id -= DI F_VAR OTHER UBASE;
ASSERT(i d < vstate->dtvs_nl ocal s);

ASSERT(vst ate->dtvs_|l ocal s ! = NULL);
svar = vstate->dtvs_|l ocal s[id];
ASSERT(svar != NULL)

v = &svar->dtsv_var;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;
size_t sz = v->dtdv_type.dtdt_size;

sz += sizeof (uint64_t);
ASSERT(svar - >dt sv_si ze == NCPU * sz);

90

new usr/src/uts/comon/ dtrace/ dtrace. c 91

5935

5937
5938
5939
5940
5941
5942
5943

5945
5946
5947
5948

5950
5951
5952
5953

5955
5956
5957
5958

5960
5961
5962

5964
5965
5966
5967

5969
5970
5971
5972
5973

5975
5976
5977

5979
5980
5981
5982

5984
5985
5986
5987
5988

5990
5991

5993
5994
5995

5997
5998
5999

a += CPU->cpu_id * sz;

if (regs[rd] == NULL) {
*(uint8_t *)a = U NT8_MAX;
br eak;
} else {
*(uint8_t *)a = 0;
a += sizeof (uint64_t);

}

if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd], &v->dtdv_type,
nstate, vstate))
br eak;

dtrace vcopy((v0| d *)(uintptr_t)regs[rd],
(void *)a, &->dtdv_type);
br eak;

}

ASSERT(svar - >dt sv_si ze == NCPU * sizeof (uint64_t));
tnp = (uint64_t *)(uintptr_t)svar->dtsv_data;

tnp[CPU->cpu_id] = regs[rd];

br eak;

case DIF_OP_LDTS: {

}

dtrace_dynvar _t *dvar;
dtrace_key_t *key;

id =D F_INSTR VAR(instr);
ASSERT(id >= DIF_VAR_ OTHER _UBASE) ;
|d -= DI F_VAR _OTHER UBASE;

v = &state->dtvs_tTocal S[I d];

key = &t upregs[Dl F_DTR_NRECS] ;
key[0] . dt t k value (uint64_t)im
key[0].dttk_size = O;

DTRACE_TLS THRKEY(key[1] . dttk_val ue);
key[1] .dttk_size = 0;

dvar = dtrace_dynvar(dstate, 2, key,
sizeof (uint64_t), DTRACE_DYNVAR NOALLCC,
nstate, vstate);

if (dvar == NULL) {
regs[rd] = 0;
br eak;

}

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {

regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
} else {
) regs[rd] = *((uint64_t *)dvar->dtdv_data);

break;

case DI F_OP_STTS:

dtrace_dynvar _t *dvar;
dtrace_key_t *key;

id = D F_INSTR VAR(instr);
ASSERT(ld >= DI F_VAR | OTHER _UBASE) ;
id -= DI F_VAR OTHER UBASE;

new usr/src/uts/comon/ dtrace/ dtrace. c

6001
6002
6003
6004
6005
6006

6008
6009
6010
6011
6012

6014
6015
6016
6017
6018

6020
6021

6023
6024
6025
6026
6027

6029
6030
6031
6032
6033

6035
6036

6038
6039
6040

6042
6043
6044
6045

6047
6048
6049
6050
6051

6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066

}

key = &tupregs[Dl F_DTR_NREGS] ;
key[0] . dttk_val ue = (uint64_t)id;
key[0] . dttk_size = O;

DTRACE_TLS THRKEY(key[1] . dttk_val ue);
key[l] Tdttk_size =

v = &state->dtvs tI ocal s[id];

dvar = dtrace_dynvar(dstate, 2, key,
v>dtdvtype dtdt _size > sizeof (uint64_t) ?
v->dtdv_t ype. dtdt_size : sizeof (uint64_t),
regs[rd] ? DTRACE_DYNVAR ALLCC :
DTRACE_DYNVAR DEALLOC, nstate, vstate);

/*

* Gven that we're storing to thread-1ocal data,
* we need to flush our predicate cache.

*

curthread->t _predcache = NULL;

if (dvar == NULL)
br eak;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd],
&->dtdv_type, nstate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],

dvar->dt dv_data, &v->dtdv_type);
} else

}

break;

{
*((uint64_t *)dvar->dtdv_data) = regs[rd];

case DI F_OP_SRA

regs[rd] = (int64_t)regs[rl] >> regs[r2];
break;

case DIF_OP_CALL:

dtrace_di f _subr (DI F_I NSTR_SUBR(i nstr), rd,
regs, tupregs, ttop, nstate, state);
br eak;

case DIF_OP PUSHTR

if (ttop == DI F_DTR NREGS) {
l ags | = CPU_DTRACE_TUPOFLOW
break;

}
if (r1 == DIF_TYPE_STRING {
/

If this is a string type and the size is O,
we' |l use the systemw de default string
size. Note that we are _not_ | ooking at
the val ue of the DTRACEOPT_STRSI ZE opti on;
had this been set, we woul d expect to have
a non-zero size value in the "pushtr"

* ok K ok F ok ko
-

tupregs[ttop].dttk_size =
dtrace_strlen((char *)(U| ntptr_t)regs[rd],
regs[r2] ? regs[r2]
dtrace_strsize default) + 1;
} else {

new usr/src/uts/comon/ dtrace/ dtrace. c

6067
6068

6070
6071

6073
6074
6075
6076
6077

6079
6080
6081

6083
6084
6085
6086

6088
6089
6090

6092
6093
6094
6095
6096

6098
6099
6100

6102
6103

6105
6106
6107
6108
6109
6110
6111

6113
6114
6115
6116

6118
6119
6120
6121

6123
6124
6125
6126
6127

6129
6130

6132

case

case

case

case
case

}

tupregs[ttop].dttk_size = regs[r2];
}

tupregs[ttop++].dttk_value = regs[rd];
br eak;

DI F_OP_PUSHTV:

if (ttop == DI F_DTR_NREGS) {
*flags | = CPU_DTRACE_TUPOFLOW
br eak;

}

tupregs[ttop].dttk_value = regs[rd];
tupregs[ttop++].dttk_size = 0;
break;

Dl F_OP_FLUSHTS:

ttop = 0;
br eak;

DI F_OP_LDGAA:
DI F_OP_LDTAA:

dtrace_dynvar _t *dvar;
dtrace_key_t *key = tupregs;
uint_t nkeys = ttop;

id = DIF_INSTR VAR(instr);
ASSERT(id >= DIF_VAR OTHER UBASE);
id -= DI F_VAR OTHER UBASE;

key[nkeys] . dttk_value = (uint64_t)id;
key[nkeys++] . dttk_size = 0;

if (DIF_INSTR OP(instr) == DIF_OP_LDTAA) {
DTRACE_TLS THRKEY(key[nkeys] . dttk_val ue);
key[nkeys++] . dttk_size = 0;
v = &state->dtvs_tlocal s[id];
} else {
v = &vstate->dtvs_gl obal s[id]->dtsv_var;
}

dvar = dtrace_dynvar (dstate, nkeys, key,
v->dtdv_type. dtdt_size > sizeof (uint64_t) ?
v->dtdv_type.dtdt_size : sizeof (uint64_t),
DTRACE_DYNVAR NOALLOC, nstate, vstate);
if (dvar == NULL) {
regs[rd] = 0;
br eak;

}

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {

regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
} else {

regs[rd] = *((uint64_t *)dvar->dtdv_data);
}

br eak;

case DI F_OP_STGAA:

93

new usr/src/uts/comon/ dtrace/ dtrace. c

6133
6134
6135
6136

6138
6139
6140

6142
6143

6145
6146
6147
6148
6149
6150
6151

6153
6154
6155
6156
6157

6159
6160

6162
6163
6164
6165
6166

6168
6169
6170
6171
6172

6174
6175

6177
6178
6179

6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191

6193
6194
6195
6196
6197

94

case DI F_OP_STTAA

}

dtrace_dynvar _t *dvar;
dtrace_key_t *key = tupregs;
uint_t nkeys = ttop;

id = DIF_INSTR_VAR(i nstr);
ASSERT(id >= DI F_VAR OTHER UBASE) ;
id-= D F_VAR OTHER UBASE;

key[nkeys] . dttk_val ue = (uint64_t)id;
key[nkeys++] . dttk_si ze = 0;

if (DIF_INSTR OP(instr) == DI F_OP_STTAA) {
DTRACE_TLS THRKEY(key[nkeys] . dttk_val ue);
key[nkeys++] . dttk_si ze = 0;
v = &state->dtvs_tlocal s[id];
} else {
v = &state->dtvs_gl obal s[id]->dtsv_var;
}

dvar = dtrace_dynvar (dstate, nkeys, key,
v->dtdv_type. dtdt_size > sizeof (uint64_t) ?
v->dtdv_type.dtdt_size : sizeof (uint64_t),
regs[rd] ? DTRACE_DYNVAR ALLCC :
DTRACE_DYNVAR DEALLCC, nstate, vstate);

if (dvar == NULL)
br eak;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd], &v->dtdv_type,
nstate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],
dvar->dtdv_data, &v->dtdv_type);
} else {
*((uint64_t *)dvar->dtdv_data) = regs[rd];
}

br eak;

case DI F_OP_ALLCCS:

{
uintptr_t ptr = P2ROUNDUP(nst at e- >dt ms_scratch_ptr, 8);
size_t size = ptr - nstate->dtns_scratch_ptr + regs[r1];

/
Roundi ng up the user allocation size could have
overfl owed | arge, bogus allocations (like -1ULL) to
0

* ok Ok ok

*
/
if (size <regs[ri1] |
! DTRACE_I NSCRATCH(nst at e, size)) {
DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

}

dtrace_bzero((void *) nstate->dtns_scratch_ptr, size);
nst at e- >dt ms_scratch_ptr += si ze;

regs[rd] = ptr;

break;

new usr/src/uts/comon/ dtrace/ dtrace. c 95

6199
6200
6201
6202
6203
6204
6205

6207
6208

6210
6211
6212

6214
6215
6216
6217
6218
6219
6220
6221

6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235

6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249

6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264

case DI F_OP_COPYS:
if (!dtrace_canstore(regs[rd], regs[r2],
mstate, vstate)) {
*fi ags | = CPU_DTRACE_BADADDR;

*illval = regs[rd];
br eak;

}

if (!dtrace_canload(regs[rl], regs[r2], nstate, vstate))
br eak;

dtrace_bcopy((void *)(uintptr_t)regs[r
(void *)(uintptr_t)regs[rd], (size_ t)regs[r2])
break;

case DI F_OP_STB:
if (!dtrace_canstore(regs[rd], 1, nstate, vstate)) {
*flags | = CPU_DTRACE_BADADDR;

*illval = regs[rd];
) br eak;
*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[ri];
br eak;

case DI F_OP_STH:
if (!dtrace_canstore(regs[rd], 2, nstate, vstate)) {
*flags | = CPU_DTRACE_BADADDR;
*illval = regs[rd];
br eak;

|}f (regs[rd] & 1) {

ags | = CPU_DTRACE_BADALI GN\;
*| I Ival = regs[rd];
br eak;

l((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[ri];
br eak;

case DI F_OP_STW
if (ldtrace canstore(regs[rd], 4, nstate, vstate)) {
*flags | = CPU_DTRACE_| BADADDR

*illval = regs[rd];
br eak;
}
i f (regs[rd] & 3) {
*flags | = CPU_DTRACE_BADALI G\
*illval = regs[rd];
br eak;
}
’;((U|nt32t *)(uintptr_t)regs[rd]) = (uint32_t)regs[ri];
rea

case DI F CP_STX
f (!'dtrace_canstore(regs[rd], 8, nstate, vstate)) {
*flags | = CPU_DTRACE_BADADDR;
*illval = regs[rd];
br eak;

}
if (regs[rd] & 7) {
ags | = CPU_DTRACE_BADALI GN;
*| I lval = regs[rd];
br eak;

—

*((uint64_t *)(uintptr_t)regs[rd]) = regs[ri];
break;

new usr/src/uts/comon/dtrace/ dtrace.c 96
6265 }

6267 if (1(*flags & CPU DTRACE FAULT))

6268 return (rval);

6270 metate->dtnms_fltoffs = opc * sizeof (dif_instr_t);

6271 mst at e- >dt ms_present | = DTRACE_MSTATE_FLTOFFS;

6273 return (0);

6274 }

6276 static void

6277 dtrace_action_breakpoint(dtrace_ecb_t *ech)

6278 {

6279 dtrace_probe_t *probe = ecbh->dte_probe;

6280 dtrace_provider_t *prov = probe->dtpr_provider;

6281 char c[DTRACE_FULLNAMELEN + 80], *str;

6282 char *msg = "dtrace: breakpoint action at probe ";

6283 char *ecbnsg = " (ecb ";

6284 uintptr_t mask = (Oxf << (sizeof (uintptr_t) * NBBY / 4));

6285 uintptr_t val = (uintptr_t)ech;

6286 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;

6288 if (dtrace_destructive_disallow)

6289 return;

6291 /*

6292 * |t’s inpossible to be taking action on the NULL probe.

6293 *

6294 ASSERT(probe != NULL);

6296 I*

6297 * This is a poor man’'s (destitute man’'s?) sprintf(): we want to
6298 * print the provider nane, nodule nane, function nane and nanme of
6299 * the probe, along with the hex address of the ECB with the breakpoint
6300 * action -- all of which we nust place in the character buffer by
6301 * hand.

6302 */

6303 while (*msg !'="\0")

6304 c[i++] = *msg++

6306 for (str = prov->dtpv_nane; *str !="'\0"; str++)

6307 c[i++] = *str;

6308 cli++] =":";

6310 for (str = probe->dtpr_nod; *str !="'\0"; str++)

6311 cl[i++] = *str;

6312 cli++] =":";

6314 for (str = probe->dtpr_func; *str !="'\0"; str++)

6315 cl[i++] = *str;

6316 cli++] =":";

6318 for (str = probe->dtpr_nane; *str !="'\0"; str++)

6319 cl[i++] = *str;

6321 while (*ecbnsg !'= "\0")

6322 c[i++] = *ecbmsg++;

6324 whi | e (shlft >= 0) {

6325 k = (uintptr_t)Oxf << shift;

6327 if (val >= ((uintptr_t)1 << shift))

6328 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6329 shift -= 4;

6330 }

new usr/src/uts/comon/dtrace/ dtrace. c 97 new usr/src/uts/comon/dtrace/ dtrace.c
6397 curthread->t_sig_check = 1;
6332 cli++] =")"; 6398 aston(curthread);
6333 c[i] ="\0"; 6399 }
6400 }
6335 debug_enter(c);
6336 } 6402 static void
6403 dtrace_action_chill(dtrace_nstate_t *nstate, hrtime_t val)
6338 static void 6404 {
6339 dtrace_action_panic(dtrace_ech_t *ech) 6405 hrtime_t now,
6340 { 6406 volatile uint16_t *fl ags;
6341 dtrace_probe_t *probe = ecbh->dte_probe; 6407 cpu_t *cpu = CPU;
6343 /* 6409 if (dtrace_destructive_disallow)
6344 * It’'s inpossible to be taking action on the NULL probe. 6410 return;
6345 */
6346 ASSERT(probe != NULL); 6412 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_fl ags;
6348 if (dtrace_destructive_disallow) 6414 now = dtrace_gethrtinme();
6349 return;
6416 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6351 if (dtrace_panicked != NULL) 6417 /*
6352 return; 6418 * W need to advance the mark to the current tine.
6419 */
6354 if (dtrace_casptr(&dtrace_pani cked, NULL, curthread) != NULL) 6420 cpu->cpu_dtrace_chill mark = now,
6355 return; 6421 cpu->cpu_dtrace_chilled = 0;
6422 }
6357 /*
6358 * W won the right to panic. (W want to be sure that only one 6424 I*
6359 * thread calls panic() fromdtrace_probe(), and that panic() is 6425 * Now check to see if the requested chill tine would take us over
6360 * called exactly once.) 6426 * the maxi num amount of tinme allowed in the chill interval. (O
6361 e 6427 * worse, if the calculation itself induces overflow)
6362 dtrace_pani c("dtrace: panic action at probe %:%: %: % (ecb %)", 6428 */
6363 probe- >dt pr _provi der - >dt pv_nane, probe->dtpr_nod, 6429 if (cpu->cpu_dtrace_chilled + val > dtrace_chill _max ||
6364 probe- >dt pr_func, probe->dtpr_nanme, (void *)ech); 6430 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6365 } 6431 *flags | = CPU_DTRACE_| LLOP;
6432 return;
6367 static void 6433 }
6368 dtrace_action_raise(uint64_t sig)
6369 { 6435 while (dtrace_gethrtime() - now < val)
6370 if (dtrace_destructive_disallow) 6436 conti nue;
6371 return;
6438 /*
6373 if (sig>= NsSIQ { 6439 * Normally, we assure that the value of the variable "tinestanp" does
6374 DTRACE_CPUFLAG_SET(CPU_DTRACE | LLOP) ; 6440 * not change within an ECB. The presence of chill() represents an
6375 return; 6441 * exception to this rule, however.
6376 } 6442 */
6443 nst at e- >dt ms_present &= ~DTRACE_MSTATE_TI MESTAMP;
6378 I* 6444 cpu->cpu_dtrace_chilled += val;
6379 * raise() has a queue depth of 1 -- we ignore all subsequent 6445 }
6380 * invocations of the raise() action.
6381 */ 6447 static void
6382 if (curthread->t_dtrace_sig == 0) 6448 dtrace_action_ustack(dtrace_nstate_t *nstate, dtrace_state_t *state,
6383 curthread->t_dtrace_sig = (uint8_t)siag; 6449 (uint64_t *buf, uint64_t arg)
6450
6385 curthread->t_sig_check = 1; 6451 int nframes = DTRACE_USTACK_NFRAMES(ar g);
6386 aston(curthread); 6452 int strsize = DTRACE_USTACK_STRSI ZE(ar g) ;
6387 } 6453 uint64_t *pcs = &uf[1], *fps;
6454 char *str = (char *)&pcs[nfranes];
6389 static void 6455 int size, offs =0, i, j;
6390 dtrace_action_stop(void) 6456 uintptr_t old = nstate->dtns_scratch_ptr, saved,
6391 { 6457 uintl6_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;
6392 if (dtrace_destructive_disallow) 6458 char *sym
6393 return;
6460 /*
6395 if (lcurthread->t_dtrace_stop) { 6461 * Shoul d be taking a faster path if string space has not been
6396 curthread->t_dtrace_stop = 1; 6462 * all ocat ed.

new usr/src/uts/comon/ dtrace/ dtrace. c 99 new usr/src/uts/comon/ dtrace/ dtrace. c 100

6463 */ 6529 /*
6464 ASSERT(strsize !'= 0); 6530 * Now copy in the string that the hel per returned to us.
6531 */
6466 /* 6532 for (j =0; offs + | < strsize; j++) {
6467 * W will first allocate some tenporary space for the frane pointers. 6533 if ((str[offs +j] =synj]) =="'\0")
6468 e 6534 br eak;
6469 fps = (uint64_t *)P2ROUNDUP(st at e->dt ns_scratch_ptr, 8); 6535 }
6470 size = (uintptr_t)fps - nstate->dtnms_scratch_ptr +
6471 (nframes * sizeof (uint64_t)); 6537 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;
6473 i f (! DTRACE | NSCRATCH(nstate, size)) { 6539 offs +=j + 1;
6474 [6540 }
6475 * Not enough room for our frane pointers -- need to indicate
6476 * that we ran out of scratch space. 6542 if (offs >= strsize) {
6477 */ 6543 /*
6478 DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ; 6544 * If we didn’'t have roomfor all of the strings, we don't
6479 return; 6545 * abort processing -- this needn't be a fatal error -- but we
6480 } 6546 * still want to increnent a counter (dts_stkstroverflows) to
6547 * allow this condition to be warned about. (If this is from
6482 nst at e- >dt ms_scrat ch_ptr += size; 6548 * a jstack() action, it is easily tuned via jstackstrsize.)
6483 saved = nstate->dtns_scratch_ptr; 6549 i
6550 dtrace_error(&state->dts_stkstroverflows);
6485 I* 6551 }
6486 * Now get a stack with both program counters and frame pointers.
6487 */ 6553 while (offs < strsize)
6488 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ; 6554 strioffs++] = '\0";
6489 dtrace_get uf pstack(buf, fps, nframes + 1);
6490 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ; 6556 out:
6557 nst at e- >dt ms_scratch_ptr = ol d;
6492 /* 6558 }
6493 * |f that faulted, we’'re cooked.
6494 */ 6560 /*
6495 if (*flags & CPU_DTRACE_FAULT) 6561 * If you're looking for the epicenter of DTrace, you just found it. This
6496 goto out; 6562 * is the function called by the provider to fire a probe -- fromwhich all
6563 * subsequent probe-context DIrace activity emanates.
6498 I* 6564 */
6499 * Now we want to wal k up the stack, calling the USTACK hel per. For 6565 void
6500 * each iteration, we restore the scratch pointer. 6566 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t argl,
6501 */ 6567 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6502 for (i =0; i < nfranes; i++) { 6568 {
6503 st at e- >dt ms_scratch_ptr = saved; 6569 processorid_t cpuid;
6570 dtrace_i cooki e_t cooki e;
6505 if (offs >= strsize) 6571 dtrace_probe_t *probe;
6506 break; 6572 dtrace_nstate_t nstate;
6573 dtrace_ecb_t *ecb;
6508 sym = (char *)(uintptr_t)dtrace_hel per(6574 dtrace_action_t *act;
6509 DTRACE_HELPER_ACTI ON_USTACK, 6575 intptr_t offs;
6510 nstate, state, pcs[i], fps[i]); 6576 size_t size;
6577 int vtine, onintr;
6512 /* 6578 volatile uint16_t *flags;
6513 * |f we faulted while running the hel per, we're going to 6579 hrtime_t now, end;
6514 * clear the fault and null out the corresponding string.
6515 * 6581 /*
6516 if (*flags & CPU DTRACE_FAULT) { 6582 * Kick out inmediately if this CPUis still being born (in which case
6517 *flags & ~CPU_DTRACE_FAULT; 6583 * curthread will be set to -1) or the current thread can't allow
6518 str[offs++] = "\0"; 6584 * probes in its current context.
6519 cont i nue; 6585 B
6520 } 6586 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6587 return;
6522 if (sym == NULL)
6523 stroffs++] ='\0"; 6589 cookie = dtrace_interrupt_disable();
6524 conti nue; 6590 probe = dtrace_probes[id - 1];
6525 } 6591 cpuid = CPU->cpu_id;
6592 onintr = CPU_ON_I NTR(CPU) ;
6527 DTRACE_CPUFLAG SET(CPU DTRACE NOFAULT) ;

6594 CPU- >cpu_dtrace_probes++;

new usr/src/uts/comon/ dtrace/ dtrace. c 101

6596
6597
6598
6599
6600
6601
6602
6603
6604

6606
6607
6608
6609
6610
6611
6612

6614
6615

6617
6618

6620
6621
6622
6623
6624
6625
6626
6627

6629

6631
6632
6633
6634
6635
6636
6637
6638
6639
6640

6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656

6658
6659
6660

#i f def
#el se

#endi f

if (lonintr & probe->dtpr_predcache ! = DTRACE_CACHEI DNONE &&
probe- >dt pr _predcache == curthread->t _predcache) {
/*

* We have hit in the predicate cache; we know that
* this predicate would evaluate to be fal se.

*/

dtrace_i nterrupt _enabl e(cooki e);

return;

}
if (pani ;:_qui esce) {

* W don’t trace anything if we’re panicking.

2/
dtrace_i nterrupt _enabl e(cooki e) ;
return;
}
now = dtrace_gethrtinme();
vtinme = dtrace_vtine_references != 0;

if (vtime & curthread->t_dtrace_start)
curthread->t_dtrace_vtinme += now - curthread->t_dtrace_start;

nstate.dtns_di fo = NULL;
nmst at e. dt ms_pr obe = probe;

nmstate. dt ms_strtok = NULL;
nstate.dtns_arg[0] = argO;
nstate.dtns_arg[1l] = argil;
mstate. dtnms_arg[2] = arg2;
mstate.dtnms_arg[3] = arg3;
nstate.dtns_arg[4] = arg4;

flags = (volatile uintl6_t *)&cpu_core[cpuid].cpuc_dtrace_fl ags;

for (ecb = probe->dtpr_ech; ecb != NULL; ecb = ecb->dte_next) {
dtrace_predicate_t *pred = ecb->dte_predicate;
dtrace_state_t *state = ecbh->dte_state;
dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
dtrace_buffer_t *aggbuf &st at e- >dt s_aggbuf f er [cpui d] ;
dtrace_vstate_t *vstate &st at e- >dt s_vst at e;
dtrace_provider_t *prov pr obe- >dt pr _provi der;
uint64_t tracenensize =
int coomitted = 0;
caddr _t tomax;

/

ol nn

Alittle subtlety with the follow ng (seem ngly innocuous)
decl aration of the automatic 'val’: by looking at the
code, you might think that it could be declared in the
action processing |oop, below (That is, it’s only used in
the action processing |oop.) However, it nmust be declared
out of that scope because in the case of DIF expression
argunents to aggregating actions, one iteration of the
action loop will use the last iteration’s value.

/

* ok % ok % ok F ok ok

lint
uint64_t val = 0;

uint64_t val;
nmet at e. dt ms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;

nst at e. dt ms_access = DTRACE_ACCESS ARGS | DTRACE ACCESS PRCC,
nmetate. dt ms_getf = NULL;

new usr/src/uts/comon/ dtrace/ dtrace. c

6662

6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674

6676
6677
6678
6679
6680
6681
6682

6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697

6699
6700

6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715

6717
6718
6719
6720

6722
6723
6724

6726

*flags & ~CPU_DTRACE_ERROR;
if (prov == dtrace_provider) {
/*

* |f dtrace itself is the provider of this probe,

* we're only going to continue processing the ECB if
* arg0 (the dtrace_state_t) is equal to the ECB s

* creating state. (This prevents disjoint consuners
* from seeing one anot her’s netaprobes.)

*/
if (arg0 !'= (uint64_t)(uintptr_t)state)
conti nue;
}
if (state->dts_activity != DTRACE_ACTI VI TY_ACTI VE) {
/*
* W're not currently active. |f our provider isn't
* the dtrace pseudo provider, we're not interested.
*/
if (prov !'= dtrace_provider)
conti nue;
/*
* Now we nust further check if we are in the BEGN
* probe. If we are, we will only continue processing
* 1 f we're still in WARMJP -- if one BEG N enabling
* has invoked the exit() action, we don't want to
* eval uate subsequent BEG N enabl i ngs.
*

if (probe->dtpr_id == dtrace_probei d_begin &
state->dts_activity != DTRACE_ACTI VI TY_WARMUP) {
ASSERT(state->dts_activity ==
DTRACE_ACTI VI TY_DRAI NI NG) ;

conti nue;
}
}
if (ecb->dte_cond && !dtrace_priv_probe(state, &nstate, ecb))
cont i nue;

if (now - state->dts_alive > dtrace_deadman_ti meout) {
/

*
* W seemto be dead. Unless we (a) have kernel
* destructive perm ssions (b) have explicitly enabl ed
* destructive actions and (c) destructive actions have
* not been disabled, we're going to transition into
* the KILLED state, from which no further processing
* on this state will be perforned.
*
/
if (!dtrace_priv_kernel _destructive(state) ||
Istate->dts_cred. dcr_destructive ||
dtrace_destructive_disallow {
void *activity = &state->dts_activity;
dtrace_activity_t current;

do {
current = state->dts_activity;
} while (dtrace_cas32(activity, current,
DTRACE_ACTI VI TY_KI LLED) != current);
conti nue;

}

if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,

new usr/src/uts/comon/ dtrace/ dtrace. c 103

6727
6728

6730
6731

6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744

6746
6747

6749
6750

6752
6753
6754

6756

6758
6759

6761
6762
6763
6764
6765
6766
6767

6769
6770
6771

6773
6774
6775
6776
6777

6779
6780

6782
6783
6784
6786
6788
6789
6790

6792

ecb->dte_al i gnnent, state, &nstate)) < 0)
cont i nue;

tomax = buf->dt b_t onax;
ASSERT(t omax != NULL);

if (ecb->dte_size != 0)
dtrace_rechdr_t dtrh;
if (!(mstate.dtnms_present & DTRACE_MSTATE_TI MESTAMP)) {
mstate. dtns_timestanp = dtrace_gethrtime();
mst at e. dt ms_present | = DTRACE_MSTATE_TI I\/ESTANP;

}
ASSERT3U(ecb- >dt e_si ze, >=, sizeof (dtrace_rechdr_t));
dtrh.dtrh_epid = ecbh->dte epld
DTRACE_RECORD_STORE_TI MESTAMP(&dt r h,
metat e. dt ms_t i mest anp) ;
*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
}

nstate. dt ms_epi d = ecb->dte_epid;
net at e. dt ns_present | = DTRACE_MSTATE_EPI D,

if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
mst at e. dt ms_access | = DTRACE_ACCESS KERNEL;

if (pred !'= NULL) {
dtrace_difo_t *dp = pred->dtp_difo;
int rval;
rval = dtrace_dif_enul ate(dp, &rmstate, vstate, state);

if (!(*flags & CPU DTRACE ERROR) && !rval)
dtrace_cacheid_t cid = probe->dtpr_predcache;

if (cid != DTRACE_CACHEI DNONE && !onintr) {
/*
* Update the predicate cache...
*
/

ASSERT(cid == pred->dtp_cachei d);
curthread->t_predcache = cid;

}
conti nue;
}
}
for (act = ecb->dte_action; !(*flags & CPU DTRACE ERROR) &&
act != NULL; act = act->dta_next) {

size_t val offs;
dtrace_difo_t *dp;
dtrace_recdesc_t *rec = &act->dta_rec;

size = rec->dtrd_si ze;
valof fs = offs + rec->dtrd_of fset;

i f (DTRACEACT_ ISAGG(act >dta_ki nd)) {
uint64_t v = Oxbad;
dtrace_aggregati on_t *agg;
agg = (dtrace_aggregation_t *)act;
if ((dp = act->dta_difo) != NULL)
v = dtrace_dif_emul at e(dp,
&rstate, vstate, state);

if (*flags & CPU DTRACE ERROR)

new usr/src/uts/comon/dtrace/ dtrace.c 104
6793 conti nue;

6795 /*

6796 * Note that we always pass the expression
6797 * value fromthe previous iteration of the
6798 * action loop. This value will only be used
6799 * if there is an expression argunent to the
6800 * aggregating action, denoted by the

6801 * dtag_hasarg field

6802 */

6803 dtrace_aggregat e(agg, buf,

6804 of fs, aggbuf, v, val);

6805 conti nue;

6806 }

6808 switch (act->dta_kind) {

6809 case DTRACEACT_STOP:

6810 if (dtrace_priv_proc_destructive(state,

6811 &nrstate))

6812 dtrace_action_stop();

6813 continue;

6815 case DTRACEACT_BREAKPO NT:

6816 if (dtrace_priv_kernel _destructive(state))
6817 dtrace_acti on_breakpoi nt (ech);

6818 conti nue;

6820 case DTRACEACT_PAN C:

6821 if (dtrace_priv_kernel _destructive(state))
6822 dtrace_acti on_pani c(ech);

6823 cont i nue;

6825 case DTRACEACT_STACK:

6826 if (!dtrace_priv_kernel (state))

6827 cont i nue;

6829 dtrace_get pcstack((pc_t *)(tomax + val offs),
6830 size | sizeof (pc_t), probe->dtpr_afranes,
6831 DTRACE_ ANCHORED(pr obe) ? NULL :

6832 (uint32_t *)arg0);

6834 continue;

6836 case DTRACEACT_JSTACK:

6837 case DTRACEACT_USTACK:

6838 if (!dtrace_priv_proc(state, &rstate))

6839 cont i nue;

6841 /*

6842 * See comment in DI F_VAR PID.

6843 */

6844 i f (DTRACE_ANCHORED(nst at e. dt ns_pr obe) &&
6845 CPU_ON_I NTR(CPU))

6846 int depth = DTRACE_USTACK_NFRAMES(
6847 rec->dtrd_arg) + 1;

6849 dtrace_bzero((void *)(tomax + valoffs),
6850 DTRACE_USTACK_STRSI ZE(r ec->dtrd_ar g)
6851 + depth * sizeof (uint64_t));
6853 conti nue;

6854 }

6856 i f (DTRACE_USTACK_STRSI ZE(rec->dtrd_arg) != 0 &&
6857 curproc->p_dtrace_hel pers != NULL) {

6858 /*

new usr/src/uts/comon/ dtrace/ dtrace. c 105

6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869

6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882

6884
6885
6886

6888
6889
6890
6891
6892
6893

6895
6896
6897

6899
6900

6902

6904
6905

6907
6908
6909

6911
6912
6913

6915
6916
6917
6918

6920
6921
6922

6924

This is the slow path -- we have
all ocated string space, and we're
getting the stack of a process that
has helpers. Call into a separate
routine to performthis processing.

* ok ok ok

*

/

dtrace_action_ustack(&state, state,
(uint64_t *)(tomax + valoffs),
rec->dtrd_arg);

conti nue;

}

/*
* Clear the string space, since there’s no
* helper to do it for us.
*
i f (DTRACE_USTACK_STRSI ZE(rec->dtrd_arg) != 0) {
int depth = DTRACE_USTACK_NFRAMES(
rec- >dtrd_arg)
size_t strsize = DTRACE = USTACK_STRSI ZE(
rec->dtrd_arg);
uint64_t *buf = (UI nt64_t *)(tomax +
val of fs);
void *strspace = &buf[depth + 1];

dtrace_bzero(strspace,
M N(dept h, strsize));
}

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
dt race_get upcstack((uint64_t ¥)

(tomax + val offs),

DTRACE_USTACK NFRANES(rec >dtrd_arg) + 1);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;
continue;

defaul t:
br eak;
}

dp = act->dta_difo;
ASSERT(dp != NULL);

val = dtrace_dif_enul ate(dp, &rstate, vstate, state);
if (*flags & CPU_DTRACE_ERROR)
conti nue;

switch (act->dta_kind) {
case DTRACEACT_SPECULATE: {
dtrace_rechdr_t *dtrh;

ASSERT(buf == &state->dts_buffer[cpuid]);
buf = dtrace_specul ati on_buffer(state,
cpuid, val);

if (buf == NULL) {
*f1 ags |_ CPU_DTRACE_DROP;
cont i nue;

}

of fs = dtrace_buffer_reserve(buf,
ech->dt e_needed, ecb->dte_alignnent,
state, NULL);

if (offs <0) {

new usr/src/uts/comon/dtrace/ dtrace.c 106
6925 *flags | = CPU_DTRACE_DROP;

6926 cont i nue;

6927 }

6929 tomax = buf->dtb_t onmax;

6930 ASSERT(tomax != NULL);

6932 if (ecb->dte_size == 0)

6933 conti nue;

6935 ASSERT3U(ech- >dt e_si ze, >=,

6936 si zeof (dtrace_| r echdr t))

6937 dtrh—((vmd*)(tomix +offs))

6938 dtrh->dtrh_epid = ecb->dte_epi d;

6939 I*

6940 * Wen the speculation is committed, all of
6941 * the records in the specul ative buffer will
6942 * have their tinestanps set to the conmt
6943 * tine. Until then, it is set to a sentinel
6944 * val ue, for debugabi lity.

6945 */

6946 DTRACE_RECORD STORE_TI MESTAMP(dtrh, Ul NT64_MAX) ;
6947 conti nue;

6948 }

6950 case DTRACEACT_CHI LL:

6951 if (dtrace_priv_kernel _destructive(state))
6952 dtrace_action_chill (&state, val);
6953 conti nue;

6955 case DTRACEACT_RAI SE:

6956 if (dtrace_priv_proc_destructive(state,

6957 &rstate))

6958 dtrace_action_raise(val);

6959 conti nue;

6961 case DTRACEACT_COWM T:

6962 ASSERT(! conmi t t ed) ;

6964 /*

6965 * We need to commit our buffer state.

6966 */

6967 if (ech->dte_size)

6968 buf->dtb_of fset = offs + ecb->dte_size;
6969 buf = &state->dts _buffer[cpuid];

6970 dt race_specul ation_conmt(state, cpuid, val);
6971 committed = 1;

6972 conti nue;

6974 case DTRACEACT_DI SCARD:

6975 dtrace_specul ati on_di scard(state, cpuid, val);
6976 conti nue;

6978 case DTRACEACT_DI FEXPR:

6979 case DTRACEACT_LI BACT:

6980 case DTRACEACT_PRI NTF:

6981 case DTRACEACT_PRI NTA:

6982 case DTRACEACT_SYSTEM

6983 case DTRACEACT_FREOPEN:

6984 case DTRACEACT_TRACEMEM

6985 br eak;

6987 case DTRACEACT_TRACEMEM DYNSI ZE:

6988 tracenensi ze = val;

6989 br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c 107

6991
6992
6993
6994
6995

6997
6998
6999
7000

7002
7003

7005
7006
7007
7008

7010
7011

7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030

7032
7033

7035
7036

7038
7039
7040
7041
7042

7044
7045

7047
7048
7049

7051
7052

7054
7055
7056

case DTRACEACT_SYM
case DTRACEACT_MOD:
if (!dtrace_priv_kernel (state))
conti nue;
br eak;

case DTRACEACT_USYM
case DTRACEACT_UMOD:
case DTRACEACT_UADDR: {
struct pid *pid = curthread->t_procp->p_pidp;

if (!dtrace_priv_proc(state, &nmstate))
cont i nue;

DTRACE_STORE(ui nt 64_t, tonax

val of fs, (uint64_t)pid->pid_id)
DTRACE_STORE(ui nt64_t, tomax,

val of fs + sizeof (uint64_t), val);

conti nue;

}
case DTRACEACT_EXIT: {
*

For the exit action, we are going to attenpt
to atomically set our activity to be
draining. |If this fails (either because
anot her CPU has beat us to the exit action,
or because our current activity is sonething
ot her than ACTIVE or WARMUP), we will
continue. This assures that the exit action
can be successfully recorded at npbst once
when we're in the ACTIVE state. If we're
encountering the exit() action while in
COOLDOWN, however, we want to honor the new
status code. (We know that we're the only
thread in COOLDOMW, so there is no race.)

* % ok ok % Rk ok ok ok % ok ¥

*/
void *activity = &tate->dts_activity;
dtrace_activity_t current = state->dts_activity;

if (current == DTRACE_ACTI VI TY_COOLDOMN)
br eak;

if (current != DTRACE_ACTI VI TY_WARMUP)
current = DTRACE_ACTI VI TY_ACTI VE;

if (dtrace_cas32(activity, current,
DTRACE_ACTIVITY_DRAINING != current) {
*flags | = CPU_DTRACE_DROP;

cont i nue;
}
br eak;
}
defaul t:
ASSERT(0) ;
}

if (dp->dtdo_rtype.dtdt_flags & DI F_TF_BYREF) {
uintptr_t end = val offs + size;

if (tracemensize != 0 &&
val of fs + tracenensi ze < end) {
end = val offs + tracenensi ze;

new usr/src/uts/comon/ dtrace/ dtrace. c 108

7057
7058

7060
7061
7062

7064
7065
7066
7067
7068
7069
7070
7071
7072
7073

7075
7076
7077

7079
7080

7082
7083
7084

7086
7087

7089
7090
7091
7092

7094
7095

7097
7098
7099

7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121

tracenensi ze = 0;

}

if (!dtrace_vcanl oad((void *)(uintptr_t)val,
&dp->dtdo_rtype, &nstate, vstate))
conti nue;

If this is a string, we're going to only
load until we find the zero byte -- after
which we' Il store zero bytes.

* ok ok ok ¥

if (dp->dtdo_rtype.dtdt_kind ==
D F_TYPE_STRING {
char ¢ =’'\0" + 1;
int intuple = act->dta_intuple;
size_t s;

for (s = 0;
i f

< size; s++) {
i =

N0)
c = dtrace_| oad8(val ++);

s
(c

DTRACE_STORE(ui nt8_t, tomax,
val of fs++, c);

if (c =='\0 && intuple)
br eak;

}

conti nue;

}

while (valoffs < end) {
DTRACE_STORE(ui nt 8_t, tomax, val offs++,
dtrace_| oad8(val ++));

}

conti nue;

}

switch (size) {
case 0:
br eak;

case sizeof (uint8_t):
DTRACE_STORE(ui nt8_t, tomax, valoffs, val);
br eak;

case sizeof (uintl6_t):
DTRACE_STORE(ui nt 16_t, tomax, valoffs, val);
br eak;

case sizeof (uint32_t):
DTRACE_STORE(ui nt 32_t, tomax, valoffs, val);
br eak;

case sizeof (uint64_t):
DTRACE_STORE(ui nt64_t, tomax, valoffs, val);
br eak;

defaul t:

* Any other size should have been returned by
* reference, not by val ue.
*
/
ASSERT(0) ;
br eak;

new usr/src/uts/comon/dtrace/ dtrace. c 109 new usr/src/uts/comon/dtrace/ dtrace.c 110
7123 if (*flags & CPU_DTRACE_DROP) 7189 * The functions in this section (and indeed, the functions in remaining
7124 conti nue; 7190 * sections) are not _called_ from probe context. (Any exceptions to this are
7191 * marked with a "Note:".) Rather, they are called fromelsewhere in the
7126 if (*flags & CPU_DTRACE_FAULT) { 7192 * Dirace framework to | ook-up probes in, add probes to and renpve probes from
7127 I nt ndx; 7193 * the DTrace probe hashes. (Each probe is hashed by each el enent of the
7128 dtrace_action_t *err; 7194 * probe tuple -- allowing for fast |ookups, regardl ess of what was
7195 * specified.)
7130 buf - >dt b_error s++; 7196 */
7197 static uint_t
7132 if (probe->dtpr_id == dtrace_probeid_error) { 7198 dtrace_hash_str(char *p)
7133 /* 7199 {
7134 * There's nothing we can do -- we had an 7200 unsi gned int g;
7135 * error on the error probe. W bunmp an 7201 uint_t hval = 0;
7136 * error counter to at |east indicate that
7137 * this condition happened. 7203 while (*p) {
7138 */ 7204 hval (hval << 4) + *ptt;
7139 dtrace_error(&state->dts_dblerrors); 7205 if ((g (hvaI & 0xf 0000000)) != 0)
7140 conti nue; 7206 A= g >> 24;
7141 } 7207 hval &= ~g;
7208 }
7143 if (vtine) { 7209 return (hval);
7144 l* 7210 }
7145 * Before recursing on dtrace_probe(), we
7146 * need to explicitly clear out our start 7212 static dtrace_hash_t *
7147 * tine to prevent it from being accumul ated 7213 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7148 * into t_dtrace_vtine. 7214 {
7149 */ 7215 dtrace_hash_t *hash = knem zal | oc(si zeof (dtrace_hash_t), KM SLEEP);
7150 curthread->t _dtrace_start = 0;
7151 } 7217 hash->dth_stroffs = stroffs;
7218 hash->dt h_nextoffs = nextoffs;
7153 /* 7219 hash->dt h_prevoffs = prevoffs;
7154 * Iterate over the actions to figure out which action
7155 * we were processing when we experienced the error. 7221 hash->dth_si ze = 1;
7156 * Note that act points _past_ the faulting action; if 7222 hash- >dt h_mask = hash->dth_size - 1;
7157 * act is ech->dte_action, the fault was in the
7158 * predicate, if it’s ecb->dte_action->dta_next it’'s 7224 hash->dth_tab = kmem zal | oc(hash->dth_si ze *
7159 */i n action #1, and so on. 7225 si zeof (dtrace_hashbucket _t *), KM SLEEP);
7160 *
7161 for (err = ecb->dte_action, ndx = 0; 7227 return (hash);
7162 err = act; err = err->dta next, ndx++) 7228 }
7163 continue;
7230 static void
7165 dtrace_probe_error(state, ecb->dte_epid, ndx, 7231 dtrace_hash_destroy(dtrace_hash_t *hash)
7166 (mstate. dt ms_present & DTRACE NSTATE FLTG:FS) ? 7232 {
7167 metate.dtns_fltoffs : -1, DTRACE_FLAGS2FLT(*fl ags), 7233 #ifdef DEBUG
7168 cpu_core[cpuid].cpuc_dtrace_illval); 7234 int i;
7170 conti nue; 7236 for (i = 0; i < hash->dth_size; i++)
7171 } 7237 ASSERT(hash->dth tab[i] == NULL);
7238 #endi f
7173 if (!commtted)
7174 buf->dtb_offset = offs + ech->dte_size; 7240 kmem f ree(hash->dt h_t ab,
7175 } 7241 hash->dth_si ze * sizeof (dtrace_hashbucket_t *));
7242 kmem f ree(hash, sizeof (dtrace_hash_t));
7177 end = dtrace_gethrtinme(); 7243 }
7178 if (vtine)
7179 curthread->t_dtrace_start = end; 7245 static void
7246 dtrace_hash_resize(dtrace_hash_t *hash)
7181 CPU->cpu_dtrace_nsec += end - now, 7247 {
7248 int size = hash— >dt h_si ze, i, ndx;
7183 dtrace_i nterrupt _enabl e(cooki e); 7249 int new size = hash->dth_size << 1;
7184 } 7250 int new nask = new_ size - 1;
7251 dtrace_hashbucket _t **new tab, *bucket, *next;
7186 [*
7187 * DIrace Probe Hashing Functions 7253 ASSERT((new_si ze & new_mask) == 0);
7188 *

new usr/src/uts/comon/dtrace/ dtrace. c 111 new usr/src/uts/comon/dtrace/ dtrace.c
7255 new_tab = kmem zal | oc(new_size * sizeof (void *), KM SLEEP);
7322 for (; bucket !'= NULL; bucket = bucket->dthb_next) {
7257 for (i =0; i <size; i++) { 7323 if (DTRACE_HASHEQ hash, bucket->dthb_chain, tenplate))
7258 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7324 return (bucket->dthb_chain);
7259 dtrace_probe_t *probe = bucket->dthb_chai n; 7325 }
7261 ASSERT(probe != NULL); 7327 return (NULL)
7262 ndx = DTRACE_HASHSTR(hash, probe) & new nask; 7328 }
7264 next = bucket - >dt hb_next; 7330 static int
7265 bucket - >dt hb_next = new_t ab[ndx] ; 7331 dtrace_hash_col | isions(dtrace_hash_t *hash, dtrace_probe_t *tenplate)
7266 new_t ab[ndx] = bucket; 7332 {
7267 } 7333 int hashval = DTRACE_HASHSTR(hash, tenplate);
7268 } 7334 int ndx = hashval & hash- >dth nask
7335 dtrace_hashbucket _t *bucket = hash->dth_t ab[ndx];
7270 kmem f ree(hash->dt h_t ab, hash->dth_size * sizeof (void *));
7271 hash->dt h_tab = new_t ab; 7337 for (; bucket !'= NULL; bucket = bucket->dthb_next) {
7272 hash->dt h_si ze = new_si ze; 7338 if (DTRACE_HASHEQ hash, bucket->dt hb_chain, tenplate))
7273 hash->dt h_mask = new_nask; 7339 return (bucket->dthb_|en);
7274 } 7340 }
7276 static void 7342 return (NULL);
7277 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7343 }
7278 {
7279 int hashval = DTRACE_HASHSTR(hash, new); 7345 static void
7280 int ndx = hashval & hash->dth_mask; 7346 dtrace_hash_renmove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7281 dtrace_hashbucket _t *bucket = hash->dth_t ab[ndx]; 7347 {
7282 dtrace_probe_t **nextp, **prevp; 7348 int ndx = DTRACE_HASHSTR(hash probe) & hash->dt h_mask;
7349 dtrace_hashbucket _t *bucket = hash->dth_t ab[ndx];
7284 for (; bucket !'= NULL; bucket = bucket->dthb_next) {
7285 if (DTRACE_HASHEQ hash bucket - >dt hb_chai n, new)) 7351 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7286 got o add; 7352 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7287 }
7354 /*
7289 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7355 * Find the bucket that we’'re renoving this probe from
7290 dtrace_hash_resi ze(hash); 7356 */
7291 dtrace_hash_add(hash, new); 7357 for (; bucket !'= NULL; bucket = bucket->dthb_next) {
7292 return; 7358 if (DTRACE_ HASHEQ(hash, bucket->dt hb_chai n, probe))
7293 } 7359 br eak;
7360 }
7295 bucket = krmem zal | oc(sizeof (dtrace_hashbucket_t), KM SLEEP);
7296 bucket - >dt hb_next = hash->dt h_t ab[ndx] ; 7362 ASSERT(bucket != NULL);
7297 hash- >dt h_t ab[ndx] = bucket;
7298 hash- >dt h_nbucket s++; 7364 if (* prevp LL) {
7365 (* nextp == NULL) {
7300 add: 7366 /*
7301 nextp = DTRACE HASHNEXT(hash, new); 7367 * The renpved probe was the only probe on this
7302 ASSERT(*nextp == NULL && *(DTRACE HASHPREV(hash, new)) == NULL); 7368 * bucket; we need to renopve the bucket.
7303 *nextp = bucket - >dt hb_chai n; 7369 *
7370 dtrace_hashbucket _t *b = hash->dth_t ab[ndx];
7305 if (bucket->dthb_chain !'= NULL)
7306 prevp = DTRACE HASHPREV(hash, bucket->dthb_chain); 7372 ASSERT(bucket - >dt hb_chai n == probe);
7307 ASSERT(*prevp == NULL); 7373 ASSERT(b !'= NULL)
7308 *prevp = new,
7309 } 7375 if (b == bucket) ({
7376 hash->dt h_t ab[ndx] = bucket - >dt hb_next;
7311 bucket - >dt hb_chai n = new, 7377 } else {
7312 bucket - >dt hb_| en++; 7378 whi l e (b->dthb_next != bucket)
7313 } 7379 b = b->dthb_next;
7380 b- >dt hb_next = bucket - >dt hb_next;
7315 static dtrace_probe_t * 7381 }
7316 dtrace_hash_I| ookup(dtrace_hash_t *hash, dtrace_probe_t *tenplate)
7317 { 7383 ASSERT(hash- >dt h_nbuckets > 0);
7318 int hashval = DTRACE_HASHSTR(hash, tenplate); 7384 hash- >dt h_nbucket s- - ;
7319 int ndx = hashval & hash- >dth mask; 7385 kmem f ree(bucket, sizeof (dtrace_hashbucket_t));
7320 dtrace_hashbucket _t *bucket = hash->dth_t ab[ndx]; 7386 return;

new usr/src/uts/comon/dtrace/ dtrace. c 113 new usr/src/uts/comon/dtrace/ dtrace.c 114
7387 }
7454 if (cr == NULL || PRIV_POLICY ONLY(cr, PRIV_ALL, B FALSE)) {
7389 bucket - >dt hb_chai n = *next p; 7455 /*
7390 } else { 7456 * For DTRACE_PRIV_ALL, the uid and zoneid don’t matter.
7391 * (DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7457 */
7392 1 7458 priv = DTRACE PRI V_ALL;
7459 } else {
7394 if (*nextp I'= NULL) 7460 *uidp = crgetw d(cr);
7395 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7461 *zonei dp = crgetzoneid(cr);
7396 }
7463 priv = 0;
7398 /* 7464 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE KERNEL, B FALSE))
7399 * Dflrace UWility Functions 7465 priv | = DTRACE PRI V_KERNEL | DTRACE_PRIV_USER
7400 * 7466 else if (PRIV POLI CY_ONLY(cr, PRIV_DTRACE USER, B FALSE))
7401 * These are randomutility functions that are _not_ called from probe context. 7467 priv | = DTRACE_PRI V_USER;
7402 */ 7468 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE PROC, B_FALSE))
7403 static int 7469 priv | = DTRACE_PRI V_PRCC,
7404 dtrace_badattr(const dtrace_attribute_t *a) 7470 if (PRIV_POLICY_ONLY(cr, PRIV_PROC OMNER, B_FALSE))
7405 { 7471 priv | = DTRACE_PRI V_OWNER,
7406 return (a->dtat_name > DTRACE_STABI LI TY_MAX || 7472 if (PRIV_POLICY_ONLY(cr, PRIV_PROC ZONE, B _FALSE))
7407 a->dtat _data > DTRACE_STABI LI TY_MAX | | 7473 priv | = DTRACE_PRI V_ZONEOARER
7408 a->dtat _cl ass > DTRACE_CLASS MAX); 7474 }
7409 }
7476 *privp = priv;
7411 [* 7477 }
7412 * Return a duplicate copy of a string. |If the specified string is NULL,
7413 * this function returns a zero-length string. 7479 #ifdef DTRACE_ERRDEBUG
7414 x| 7480 static void
7415 static char * 7481 dtrace_errdebug(const char *str)
7416 dtrace_strdup(const char *str) 7482 {
7417 { 7483 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7418 char *new = knem zal loc((str != NULL ? strlen(str) : 0) + 1, KM SLEEP); 7484 int occupied = 0O;
7420 if (str !'= NULL) 7486 mut ex_ent er (&trace_errl ock);
7421 (void) strcpy(new, str); 7487 dtrace_errlast = str;
7488 dtrace_errthread = curthread;
7423 return (new;
7424 } 7490 whi | e (occupi ed++ < DTRACE_ERRHASHSZ) {
7491 if (dtrace_errhash[hval].dter_nsg == str) {
7426 #define DTRACE_I SALPHA(c) \ 7492 dtrace_errhash[hval].dter_count ++;
7427 (((c) >="a && (c) <='2") || ((c) >="A && (c) <='27)) 7493 goto out;
7494 }
7429 static int
7430 dtrace_badnane(const char *s) 7496 if (dtrace_ errhash[hval] dter_msg != NULL) {
7431 { 7497 hval (hval + 1) % DTRACE_ERRHASHSZ;
7432 char c; 7498 conti nue;
7499 }
7434 if (s == NULL || (c = *s++) == "\0")
7435 return (0); 7501 dtrace_errhash[hval].dter_nmsg = str;
7502 dtrace_errhash[hval] .dter_count = 1;
7437 if (!DTRACE_I SALPHA(c) && c !'="-" && c !="'"_" && c !=".") 7503 goto out;
7438 return (1); 7504 }
7440 while ((c = *s++) 1= "\0") { 7506 pani c("dtrace: undersized error hash");
7441 if (!DTRACE ISALPHA(C) && (c < 0’ || ¢ >'9) && 7507 out:
7442 c!l="-" cl="_ =77 & c !=""") 7508 mut ex_exit (&dtrace_errl ock);
7443 return (1) 7509 }
7444 } 7510 #endi f
7446 return (0); 7512 [*
7447 } 7513 * Dlrace Matching Functions
7514 *
7449 static void 7515 * These functions are used to match groups of probes, given sone el enents of
7450 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7516 * a probe tuple, or sone gl obbed expressions for elenments of a probe tuple.
7451 { 7517 */
7452 uint32_t priv; 7518 static int

new usr/src/uts/comon/ dtrace/ dtrace. c

7519 dtrace_mat ch_priv(const dtrace_probe_t

*prp, uint32_t priv, uid_t uid,

7520 zonei d_t ~ zonei d)

7521 {

7522 if (priv !'= DTRACE_PRIV_ALL) {

7523 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7524 uint32_t match = priv & ppriv;

7526 /*

7527 * No PRIV_DTRACE_* privileges...

7528 */

7529 if ((priv & (DTRACE PRIV_PROC | DTRACE PRI V_USER

7530 DTRACE_PRI V_KERNEL)) == 0)

7531 return (0);

7533 /*

7534 * No matching bits, but there were bits to match...

7535 */

7536 if (mtch == 0 & ppriv = 0)

7537 return (0);

7539 /*

7540 * Need to have pernmissions to the process, but don't...
7541 */

7542 if (((ppriv & ~match) & DTRACE_PRIV_OMER) != 0 &&

7543 uid !'= prp->dtpr_provider->dtpv_priv.dtpp_uid) {

7544 return (0);

7545 }

7547 *

7548 * Need to be in the sane zone unl ess we possess the

7549 * privilege to exami ne all zones.

7550 *

7551 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOMER) != 0 &&
7552 zonei d ! = prp->dtpr_provider->dtpv_priv. dt pp_zoneid) {
7553 return (0);

7554 }

7555 }

7557 return (1);

7558 }

7560 /*

7561 * dtrace_natch_probe conpares a dtrace_probe_t to a pre-conpiled key, which
7562 * consists of input pattern strings and an ops-vector to eval uate them
7563 */This function returns >0 for match, 0 for no match, and <0 for error.
7564 *

7565 static int

7566 dtrace_natch_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7567 uint32_t priv, uid_t uid, zoneid_t zoneid)

7568 {

7569 dtrace_provider_t *pvp = prp->dtpr_provider;

7570 int rv;

7572 if (pvp->dtpv_defunct)

7573 return (0);

7575 if ((rv = pkp->dtpk_pmat ch(pvp->dt pv_nane, pkp->dtpk_prov, 0)) <= 0)
7576 return (rv)

7578 if ((rv = pkp->dtpk_mmat ch(prp->dtpr_nod, pkp->dtpk_nod, 0)) <= 0)
7579 return (rv);

7581 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7582 return (rv);

7584 if ((rv = pkp->dtpk_nmatch(prp->dtpr_nane, pkp->dtpk_nane, 0)) <= 0)

new usr/src/uts/comon/ dtrace/ dtrace. c

7585

7587
7588

7590
7591

7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603

* Ok Ok ok E R % O

S
sta
dtr

7604 {

7605
7606
7607

7609
7610

7612
7613

7615
7616
7617

7619
7620

7622
7623

7625
7626
7627
7628

7630
7631

7633
7634
7635
7636

7638
7639

7641
7642
7643
7644
7645
7646

7648
7649
7650

return (rv);

if (dtrace_match_priv(prp,
return (0);

priv, uid, zoneid) == 0)

return (rv);

dtrace_match_glob() is a safe kernel inplenentation of the gmatch(3GEN)
interface for matching a glob pattern 'p’ to an input string 's Unl i ke
libc's version, the kernel version only applies to 8-bit ASCI | strings.

In addition, all of the recursion cases except for '*’ matching have been
unwound. For '*’, we still inplenent recursive evaluation, but a depth
counter is maintained and matching is aborted if we recurse too deep.

The function returns 0 if no match, >0 if match, and <0 if recursion error.

tic int

ace_mat ch_gl ob(const char *s, const char *p, int depth)

const char *ol ds;
char sl1, c;
int gs;

if (depth > DTRACE_PROBEKEY_NMAXDEPTH)
return (-1);

if (s == NULU

; /* treat NULL as enpty string */

top:

olds = s;
sl = *s++;

if (p == NULL)

return (0);
if ((c =*p+t+) =="'\0")
return (s1 =="'\0");
switch (c) {
case '[': {
int ok =0, notflag =
char Ic ="'\0;
if (s1 =="\0")
return (0);
if (*p=="1") {
notflag = 1;
p++;
}
if ((c = *p+t+) =="\0")
return (0);
do {
if (c=="-" & lc !="\0 && *p !="]") {
if ((c =*p++) =="'\0")
return (0);
if (c =="\\" && (c = *p++) == '\0")
return (0);
if (notflag) {
if (sl <lc || s1>c¢c)
ok++;

new usr/src/uts/comon/dtrace/ dtrace. c 117 new usr/src/uts/comon/dtrace/ dtrace.c 118
7651 el se
7652 return (0); 7718 | * ARGSUSED*/
7653 } elseif (lc <= sl & sl <= c) 7719 static int
7654 ok++; 7720 ?trace_natch_nul(const char *s, const char *p, int depth)
7721
7656 } elseif (c =="\\" & (c = *p++) == "'\0") 7722 return (1); /* always match the enpty pattern */
7657 return (0); 7723 }
7659 lc =c; /* save left-hand "¢’ for next iteration */ 7725 | * ARGSUSED*/
7726 static int
7661 if (notflag) { 7727 dtrace_nat ch_nonzero(const char *s, const char *p, int depth)
7662 if (sl!=c) 7728 {
7663 ok++; 7729 return (s !'= NULL && s[0] !'="\0");
7664 el se 7730 }
7665 return (0);
7666 } else if (sl == ¢) 7732 static int
7667 ok++; 7733 dtrace_match(const dtrace probekey t *pkp, uint32_t priv, uid_t uid,
7734 zoneid_t zoneid, int (*matched)(dtrace_probe t *, void *), void *arg)
7669 if ((c = *p++) =="'\0") 7735 {
7670 return (0); 7736 dtrace_probe_t tenplate, *probe;
7737 dtrace_hash_t *hash = NULL;
7672 } while (c!="1"); 7738 int len, rc, best = INT_MAX, nnatched = O;
7739 dtrace_id_t i;
7674 if (ok)
7675 goto top; 7741 ASSERT(MUTEX_HELD(&t race_| ock));
7677 return (0); 7743 /*
7678 } 7744 * If the probe IDis specified in the key, just |ookup by ID and
7745 * invoke the match call back once if a nmatching probe is found.
7680 case "\\': 7746 */
7681 if ((c =*p++) == '\0") 7747 if (pkp->dtpk_id != DTRACE_| DNONE)
7682 return (0); 7748 if ((probe = dtrace_probe_| ookup_ i d(pkp->dtpk_id)) != NULL &&
7683 [* FALLTHRU*/ 7749 dtrace_mat ch_probe(probe, pkp, priv, uid, zoneid) > 0) {
7750 i f((*mat ched) (probe, arg) == DTRACE_MATCH FAI L)
7685 defaul t: 7751 return (DTRACE_MATCH FAIL);
7686 if (c!= sl) 7752 nmat ched++;
7687 return (0); 7753 }
7688 [* FALLTHRU*/ 7754 return (nnmatched);
7755 }
7690 case '?':
7691 if (s1!="\0") 7757 tenpl ate.dtpr_nod = (char *)pkp->dt pk_nod;
7692 goto top; 7758 tenpl ate. dtpr_func = (char *)pkp->dtpk_func;
7693 return (0); 7759 tenpl ate. dt pr_name = (char *)pkp->dt pk_nane;
7695 case '*': 7761 /*
7696 while (*p == "*") 7762 * W want to find the nobst distinct of the npdul e nane, function
7697 p++; /* consecutive *'s are identical to a single one */ 7763 * nane, and name. So for each one that is not a glob pattern or
7764 * enpty string, we performa |lookup in the correspondi ng hash and
7699 if (*p =="\0") 7765 * use the hash table with the fewest collisions to do our search.
7700 return (1); 7766 */
7767 if (pkp- >dt pk_mmatch == &dtrace_match_string &&
7702 for (s = olds; *s !'="\0"; s++) { 7768 (len dtrace_hash_col | i si ons(dtrace_bynod, & enplate)) < best) {
7703 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7769 best = len;
7704 return (gs); 7770 hash = dtrace_bym)d;
7705 } 7771 }
7707 return (0); 7773 if (pkp->dtpk_frmatch == &trace_natch_string &&
7708 } 7774 (len = dtrace_hash_col i sions(dtrace_byfunc, & enplate)) < best) {
7709 } 7775 best = len;
7776 hash = dtrace_byfunc;
7711 | * ARGSUSED*/ 7777 }
7712 static int
7713 dtrace_match_string(const char *s, const char *p, int depth) 7779 if (pkp->dtpk_nmatch == &dtrace_match_string &&
7714 { 7780 (len = dtrace_hash coI |isions(dtrace_byname, &t enplate)) < best) {
7715 return (s !'= NULL && strcnp(s, p) == 0); 7781 best = len;
7716 } 7782 hash = dtrace_bynama;

new usr/src/uts/comon/dtrace/ dtrace. c 119 new usr/src/uts/comon/dtrace/ dtrace.c 120
7783 } 7849 }
7785 /* 7851 return (&trace_match_string);
7786 * If we did not select a hash table, iterate over every probe and 7852 }
7787 * invoke our callback for each one that matches our i nput probe key.
7788 */ 7854 [*
7789 f (hash == NULL) { 7855 * Build a probe conparison key for use with dtrace_natch_probe() fromthe
7790 for (i = 0; i < dtrace_nprobes; i++) { 7856 * given probe description. By convention, a null key only matches anchored
7791 if ((probe = dtrace_probes[i]) == NULL || 7857 * probes: if each field is the enpty string, reset dtpk_fmatch to
7792 dt race_mat ch_pr obe(pr obe, pkp, priv, uid, 7858 * dtrace_natch_nonzero().
7793 zonei d) <= 0) 7859 */
7794 conti nue; 7860 static void
7861 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7796 nmat ched++; 7862 {
7863 pkp- >dt pk_prov = pdp->dt pd_provi der;
7798 if ((rc = (*matched)(probe, arg)) != 7864 pkp- >dt pk_prmat ch = dtrace_probekey_f unc(pdp->dt pd_provi der);
7799 DTRACE_MATCH_NEXT) {
7800 if (rc == DTRACE_MATCH FAI L) 7866 pkp- >dt pk_nod = pdp >dt pd_nod;
7801 return (DTRACE_MATCH FAIL); 7867 pkp- >dt pk_mmat ch = dtrace probekey f unc(pdp->dt pd_nod) ;
7802 br eak;
7803 } 7869 pkp- >dt pk_func = pdp->dt pd_func;
7804 } 7870 pkp- >dt pk_f mat ch = dtrace_probekey_func(pdp->dtpd_func);
7806 return (nmatched); 7872 pkp- >dt pk_nanme = pdp >dt pd_nane;
7807 } 7873 pkp- >dt pk_nmatch = dtrace probekey f unc(pdp- >dt pd_nane) ;
7809 /* 7875 pkp->dt pk_i d = pdp->dtpd_i d;
7810 * |f we selected a hash table, iterate over each probe of the sane key
7811 * nane and invoke the callback for every probe that matches the other 7877 if (pkp->dtpk_id == DTRACE_| DNONE &&
7812 * attributes of our input probe key. 7878 pkp- >dt pk_pmat ch == &dtrace_match_nul &&
7813 */ 7879 pkp- >dt pk_mmat ch == &dtrace_match_nul &&
7814 for (probe = dtrace_hash_| ookup(hash, & enplate); probe != NULL; 7880 pkp- >dt pk_fmatch == &dtrace_match_nul &&
7815 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7881 pkp->dt pk_nmat ch == &dtrace_nat ch_nul)
7882 pkp- >dt pk_f match = &dtrace_mat ch_nonzer o;
7817 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7883 }
7818 cont i nue;
7885 [*
7820 nmat ched++; 7886 * DTrace Provider-to-Framework APl Functions
7887 *
7822 if ((rc = (* matched)(probe arg)) != DTRACE_MATCH_NEXT) { 7888 * These functions inplenent nmuch of the Provider-to-Framework APl, as
7823 if (rc == DTRACE_MATCH FAI L) 7889 * described in <sys/dtrace.h> The parts of the APl not in this section are
7824 return (DTRACE_MATCH FAIL); 7890 * the functions in the APl for probe nmanagenent (found bel ow), and
7825 br eak; 7891 * dtrace_probe() itself (found above).
7826 1 7892 */
7827 }
7894 [*
7829 return (nmatched); 7895 * Register the calling provider with the Dirace framework. This should
7830 } 7896 * generally be called by DIrace providers in their attach(9E) entry point.
7897 */
7832 [* 7898 int
7833 * Return the function pointer dtrace_probecnp() should use to conpare the 7899 dtrace_register(const char *nane, const dtrace_pattr_t *pap, uint32_t priv,
7834 * specified pattern with a string. For NULL or enpty patterns, we select 7900 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7835 * dtrace_match_nul (). For glob pattern strings, we use dtrace_natch_glob(). 7901 {
7836 */For non-enpty non-glob strings, we use dtrace_natch_string(). 7902 dtrace_provider_t *provider;
7837 *
7838 static dtrace_probekey f * 7904 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7839 dtrace_probekey_func(const char *p) 7905 cm err(CE V\ARN, "failed to register provider '%’: invalid "
7840 { 7906 "arguments", nane ? nane : "<NULL>");
7841 char c; 7907 return (EINVAL);
7908 }
7843 if (p==NULL || *p == '\0")
7844 return (&Jtrace_match_nul); 7910 if (name[0] == '\0" || dtrace_badnane(nane)) {
7911 com_err (CE_WARN, “"failed to register provider "%’': invalid "
7846 while ((c = *p++) 1="\0") { 7912 "provi der name", nane);
7847 if (c="["1]] c="2 || c="% || c=="\\") 7913 return (EINVAL);
7848 return (&dtrace_match_gl ob); 7914 }

new usr/src/uts/comon/ dtrace/ dtrace. c 121

7916
7917
7918
7919
7920
7921
7922
7923

7925
7926
7927
7928
7929
7930
7931
7932
7933

7935
7936
7937
7938
7939

7941
7942
7943
7944
7945
7946
7947

7949
7950
7951

7953
7954
7955
7956
7957
7958
7959

7961
7962
7963
7964
7965

7967
7968
7969
7970
7971

7973
7974
7975
7976
7977
7978
7979

if ((pops->dtps_provide == NULL && pops->dt ps_provi de_npdul e == NULL) ||
pops- >dt ps_enabl e == NULL || pops->dtps_disable == NULL ||
pops- >dt ps_destroy == NULL ||

((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
crm_err (CE_WARN, "failed to register provider ’ %;’ :invalid "
"provi der ops", nane);
return (EINVAL);
}
if (dtrace_badattr(&pap->dtpa_provider) ||
dtrace_badat t r (&pap- >dt pa_nod) ||
dtrace_badat tr (&pap- >dt pa_func) ||
dtrace_badat t r (&pap- >dt pa_nane) | |
dtrace_badat tr (&ap->dt pa_args)) {
crm_err (CE_WARN, "failed to register provider "%’ : invalid "
"provider attributes", nane);
return (EINVAL);
}
if (priv & ~DTRACE_PRI V_ALL) {
com_err (CE_WARN, “"failed to register provider "%': invalid "

privilege attributes", nane);
return (EINVAL);
}

if ((priv & DTRACE_PRIV_KERNEL) &&
(priv & (DTRACE PRIV_USER | DTRACE_PRIV_OMER)) &%
pops- >dt ps_node == NULL)
cm err(WARN, “failed to register provider '%’': need "
"dt ps_mode() op for given privilege attributes", nane);
return (EINVAL);
}

provider = kmem zal | oc(sizeof (dtrace_provider_t), KM SLEEP);
provi der - >dt pv_name = krmem al l oc(strlen(nane) + 1, KM SLEEP);
(voi d) strcpy(provider->dtpv_nanme, nane);

provi der->dtpv_attr = *pap;
provi der->dtpv_priv.dtpp_flags = priv;
1f (cr !'= NULL) {
provi der->dtpv_priv.dtpp_uid = crgetuid(cr);
provi der->dt pv_priv. dt pp_zoneid = crgetzoneid(cr);

}
provi der - >dt pv_pops = *pops;

if (pops->dtps_provide == NULL)
ASSERT(pops- >dt ps_provi de_npdul e ! = NULL);
provi der - >dt pv_pops. dt ps_provi de =
(void (*)(void *, const dtrace_probedesc_t *))dtrace_null op;

}

if (pops->dtps_provide_nodul e == NULL) {
ASSERT(pops- >dtps_provide != NULL) ;
provi der - >dt pv_pops. dt ps_provi de_nodul e =
(void (*)(void *, struct nodctl *))dtrace_null op;

}

if (pops->dtps_suspend == NULL) {
ASSERT(pops->dt ps_resune == NULL);
provi der - >dt pv_pops. dt ps_suspend =
(void (*)(void *, dtrace_id_t, void *))dtrace_null op;
provi der - >dt pv_pops. dt ps_resune =
(void (*)(void *, dtrace_id_t, void *))dtrace_null op;

new usr/src/uts/comon/ dtrace/ dtrace. c

7981 prOV| der >dtpv_arg = arg;

7982 *idp = (dtrace_provider_id_t)provider;

7984 if (pops == &dtrace_provider_ops) {

7985 ASSERT(MUTEX_HELD(&t r ace_pr ovi der _| ock)) ;

7986 ASSERT(MUTEX_HELD(&dt r ace_| ock));

7987 ASSERT(dt race_anon. dt a_enabl i ng == NULL);

7989 /*

7990 * We make sure that the DIrace provider is at the head of
7991 * the provider chain.

7992 */

7993 provi der->dt pv_next = dtrace_provider;

7994 dtrace_provi der = provider;

7995 return (0);

7996 }

7998 mut ex_ent er (&t race_provi der _| ock);

7999 mut ex_ent er (&Jtrace_| ock);

8001 *

8002 * If there is at |east one provider registered, we'll add this
8003 * provider after the first provider.

8004 *

8005 if (dtrace_provider != NULL) {

8006 provi der->dt pv_next = dtrace_provider->dtpv_next;

8007 dtrace_provi der->dt pv_next = provider;

8008 } else {

8009 dtrace_provi der = provider;

8010

8012 if (dtrace_retained != NULL) {

8013 dtrace_enabl i ng_provi de(provider);

8015 /*

8016 * Now we need to call dtrace_enabling_matchall () -- which
8017 * will acquire cpu_lock and dtrace_| ock. W therefore need
8018 * to drop all of our locks before calling intoit...
8019

8020 mut ex_exi t (&dtrace_l ock);

8021 nmut ex_exi t (&t race_provider _| ock);

8022 dtrace_enabling_matchal I ();

8024 return (0);

8025 }

8027 mut ex_exi t (&dtrace_| ock);

8028 mut ex_exi t (&dtrace_provi der _| ock);

8030 return (0);

8031 }

8033 /*

8034 * Unregister the specified provider fromthe DTrace framework. This shoul d
8035 * generally be called by Dfrace providers in their detach(9E) entry point.
8036 */

8037 int

8038 dtrace_unregister(dtrace_provider_id_t id)

8039 {

8040 dtrace_provider _t *ol d = (dtrace_provider_t *)id;

8041 dtrace_provider_t *prev = NULL;

8042 int i, self = O, noreap = 0;

8043 dtrace_probe_t *probe, *first = NULL;

8045 if (ol d->dtpv_pops.dtps_enable ==

8046 (int (*)(void *, dtrace_id_t, void *))dtrace_enabl e_nullop) {

new usr/src/uts/comon/ dtrace/ dtrace. c 123

8047
8048
8049
8050
8051
8052
8053
8054
8055

8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067

8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083

8085
8086
8087
8088
8089
8090

8092
8093

8095
8096

8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109

8111
8112

} else {

pr obe

| *

*

If Dirace itself is the provider, we're called with | ocks

* already hel d.

*

/

ASSERT(ol d == dtrace_provider);
ASSERT(dtrace_devi != NULL);

ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _| ock)) ;
ASSERT(MUTEX_HELD(&t r ace_l ock)) ;

sel f

=1;

if (dtrace_provider->dtpv_next != NULL) {
/*

* There's another provider here; return failure.
&/

return (EBUSY);

mut ex_ent er (&Jtrace_provi der _| ock) ;
mut ex_ent er (&rod_| ock) ;
mut ex_ent er (&Jtrace_| ock);

S

*

* If anyone has /dev/dtrace open, or if there are anonymous enabl ed
* we refuse to let providers slither away, unless this

*

provi der has already been explicitly invalidated.

if (!old->dtpv_defunct &&

(dtrace_opens || (dtrace_anon.dta_state !
dtrace_anon. dta_state->dts_necbs > 0))) {

}
/*

= NULL &&

if (Iself)

mut ex_exi t (&dtrace_l ock);
nut ex_exi t (&md_| ock) ;
nut ex_exi t (&dtrace_provi der _| ock);

}
return (EBUSY);

* Attenpt to destroy the probes associated with this provider.
*

(i =

0

if

if

* ok % k% ok *

*

*/

i < dtrace_nprobes; i++)

{
((probe = dtrace_probes[i]) == NULL)

cont i nue;

(probe->dt pr_provider != old)

conti nue;

(probe->dtpr_ecb == NULL)

conti nue;

If we are trying to unregister a defunct provider, and the
provi der was made defunct within the interval dictated by
dtrace_unregi ster_defunct _reap, we'll (asynchronously)
attenpt to reap our enablings.
shoul d reattenpt to unregister itself at some point in the
future, we will return a differentiable error code (EAGAIN
instead of EBUSY) in this case.

To denote that the provider

if (dtrace_gethrtime() - ol d->dtpv_defunct >

dtrace_unregi st er _defunct _reap)
noreap =

if (Iself) {

mut ex_exit (&dtrace_l ock);

new usr/src/uts/comon/ dtrace/ dtrace. c

8113
8114
8115

8117
8118

8120
8121

8123
8124

8126
8127
8128
8129
8130
8131
8132

8134
8135

8137

8139
8140
8141

8143
8144
8145
8146
8147
8148
8149
8150

8152
8153
8154
8155
8156
8157

8159
8160

8162
8163
8164
8165
8166
8167
8168
8169

8171
8172
8173
8174
8175
8176
8177

nut ex_exi t (&md_| ock) ;
mut ex_exi t (&dtrace_provi der _| ock);

}

if (noreap)
return (EBUSY);

(voi d) taskq_dispatch(dtrace_taskq,
(task_func_t *)dtrace_enabling_reap, NULL, TQ SLEEP);

return (EAGAIN);
}
/*
* Al of the probes for this provider are disabled; we can safely

* renpve all of themfromtheir hash chains and fromthe probe array.
*

for (i = 0; i < dtrace_nprobes; i++) {
if ((probe = dtrace_probes[i]) == NULL)
conti nue;

if (probe->dtpr_provider != old)
cont i nue;

dtrace_probes[i] = NULL;

dtrace_hash_renove(dtrace_bynod, probe);
dtrace_hash_renove(dtrace_byfunc, pr obe)
dtrace_hash_r enove(dtrace_byname, probe);

if (first == NULL) {
first = probe;
probe- >dt pr_next mod = NULL;
} else {
pr obe- >dt pr_nextmod = first;
first = probe;

}

/*

* The provider’s probes have been renpved fromthe hash chains and
* fromthe probe array. Now issue a dtrace_sync() to be sure that
* everyone has cleared out from any probe array processing.

*

dtrace_sync();

(probe = first; probe != NULL; probe
first = probe->dtpr_nextnod;

= first) {

ol d- >dt pv_pops. dt ps_destroy(ol d->dt pv_arg, probe->dtpr_id,
probe->dt pr_arg);

kmem f ree(probe->dt pr_nod, strlen(probe->dtpr_nod) + 1);

kmem_f r ee(pr obe- >dt pr _ func strlen(probe->dtpr_func) + 1);

kmem f r ee(pr obe- >dt pr _nane, strlen(probe->dtpr_nanme) + 1)

virem free(dtrace_arena, (v0| d *)(uintptr_t)(probe->dtpr_i d)

kmem free(probe, sizeof (dtrace_probe_t));

}
if ((prev = dtrace_provider) == old) {
ASSERT(sel f || dtrace_devi == NULL);
ASSERT(ol d->dt pv_next == NULL || dtrace devi == NULL);
dtrace_provi der = ol d->dtpv_next;
} else {
while (prev != NULL && prev->dtpv_next != old)

prev prev->dt pv_next;

1);

new usr/src/uts/comon/ dtrace/ dtrace. c

8179 if (prev == NULL)

8180 pani c("attenpt to unregi ster non-existent
8181 "dtrace provider 9%\n", (void *)id);

8182 }

8184 prev->dt pv_next = ol d->dt pv_next;

8185 }

8187 if (!self) {

8188 mut ex_exi t (&Jtrace_| ock);

8189 mut ex_exi t (&mod_l ock) ;

8190 nmut ex_exi t (&t race_provider _| ock);

8191 }

8193 kmem f ree(ol d- >dt pv_nane, strlen(ol d->dtpv_nane) + 1);

8194 kmem free(ol d, sizeof (dtrace_provider_t));

8196 return (0);

8197 }

8199 /*

8200 * Invalidate the specified provider. Al subsequent probe |ookups for the
8201 * specified provider will fail, but its probes will not be renopved.
8202 */

8203 void

8204 dtrace_invalidate(dtrace_provider_id_t id)

8205 {

8206 dtrace_provider_t *pvp = (dtrace_provider_t *)id;

8208 ASSERT(pvp- >dt pv_pops. dt ps_enabl e ! =

8209 (int (*)(void *, dtrace_id_t, void *))dtrace_enabl e_nullop);
8211 nmut ex_ent er (&dtrace_provi der _| ock);

8212 mut ex_ent er (&dtrace_| ock) ;

8214 pvp- >dt pv_defunct = dtrace_gethrtinme();

8216 mut ex_exi t (&dtrace_| ock);

8217 mut ex_exi t (&dtrace_provi der _| ock);

8218 }

8220 /*

8221 * |Indicate whether or not DTrace has attached.

8222 */

8223 int

8224 dtrace_attached(void)

8225 {

8226 I*

8227 * dtrace_provider will be non-NULL iff the DIrace driver has
8228 * attached. (It’s non-NULL because DTrace is always itself a
8229 * provider.)

8230 */

8231 return (dtrace_provider !'= NULL);

8232 }

8234 [*

8235 * Renove all the unenabl ed probes for the given provider. This function is
8236 * not unlike dtrace_unregister(), except that it doesn’t renove the provider
8237 * -- just as mmny of its associated probes as it can.

8238 *

8239 int

8240 dtrace_condense(dtrace_provider_id_t id)

8241 {

8242 dtrace_provider_t *prov = (dtrace_provider_t *)id;

8243 int i;

8244 dtrace_probe_t *probe;

new usr/src/uts/comon/dtrace/ dtrace.c 126
8246 /*

8247 * Make sure this isn't the dtrace provider itself.

8248 */

8249 ASSERT(pr ov- >dt pv_pops. dt ps_enabl e ! =

8250 (int (*)(void *, dtrace_id_t, void *))dtrace_enabl e_nullop);
8252 nmut ex_ent er (&dtrace_provi der _| ock);

8253 mut ex_ent er (&dtrace_| ock) ;

8255 I*

8256 * Attenpt to destroy the probes associated with this provider.
8257 *

8258 for (i = 0; i < dtrace_nprobes; i++) {

8259 if ((probe = dtrace_probes[i]) == NULL)

8260 conti nue;

8262 if (probe->dtpr_provider !'= prov)

8263 cont i nue;

8265 if (probe->dtpr_ecb != NULL)

8266 conti nue;

8268 dtrace_probes[i] = NULL;

8270 dtrace_hash_renpve(dtrace_bynod, probe);

8271 dtrace_hash_renove(dtrace_byfunc, probe);

8272 dtrace_hash_renove(dtrace_bynane, probe);

8274 prov->dt pv_pops. dt ps_destroy(prov->dtpv_arg, i + 1,

8275 probe->dt pr_arg);

8276 kmem f ree(probe->dt pr_nod, strlen(probe->dtpr_nod) + 1);
8277 kmem free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8278 knmem f ree(probe->dt pr_nanme, strlen(probe->dtpr_nane) + 1);
8279 kmem free(probe, sizeof (dtrace_probe_t));

8280 viem free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8281 }

8283 mut ex_exit (&dtrace_l ock);

8284 mut ex_exi t (&dtrace_provi der _| ock);

8286 return (0);

8287 }

8289 /*

8290 * DTrace Probe Managenent Functions

8291 *

8292 * The functions in this section performthe DIrace probe managenent,
8293 * including functions to create probes, |ook-up probes, and call into the
8294 * providers to request that probes be provided. Sone of these functions are
8295 * in the Provider-to-Framework API; these functions can be identified by the
8296 * fact that they are not declared "static".

8297 */

8299 /*

8300 * Create a probe with the specified nodul e name, function nanme, and nane.
8301 *

8302 dtrace_id_t

8303 dtrace_probe_create(dtrace_provider_id_t prov, const char *nod,

8304 const char *func, const char *nane, int afranes, void *arg)

8305 {

8306 dtrace_probe_t *probe, **probes;

8307 dtrace_provider_t *provider = (dtrace_provider_t *)prov;

8308 dtrace_id_t id;

8310 if (provider == dtrace_provider) {

new usr/src/uts/comon/ dtrace/ dtrace. c 127

8311
8312
8313
8314

8316
8317
8318

8320
8321
8322
8323
8324
8325
8326
8327

8329
8330
8331

8333
8334
8335

8337
8338
8339
8340
8341

8343

8345
8346
8347
8348
8349
8350

8352
8353
8354

8356

8358
8359
8360
8361
8362
8363
8364

8366
8367

8369
8370

8372
8373

8375
8376 }

ASSERT(MUTEX_HELD(&dt r ace_| ock));
} else {

mut ex_ent er (&Jtrace_| ock);
}

id = (dtrace_id_t)(uintptr_t)vnemalloc(dtrace_arena, 1,
VM BESTFI T | VM SLEEP);

probe = knem zal | oc(si zeof (dtrace_probe_t), KM SLEEP);

probe->dtpr_id = id;

probe->dt pr_gen = dtrace_probegen++;

probe->dt pr_nod = dtrace st rdup(nod);

probe->dt pr_func = dtrace strdup(func)

probe->dt pr_name = dtrace_strdup(nane);

probe->dtpr_arg = arg;

probe- >dt pr_afranmes = afranes;

probe- >dt pr _provi der = provider;

dtrace_hash_add(dtrace_bynod, probe);
dtrace_hash_add(dtrace_byfunc, probe);
dtrace_hash_add(dtrace_bynanme, probe);

if (id - 1 >= dtrace nprobes)
size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
size_t nsize = osize << 1;

if (nsize == 0) {
ASSERT(osi ze == 0);
ASSERT(dtrace probes == NULL);
nsize = sizeof (dtrace_probe_t *);

}

probes = knem zal | oc(nsize, KM SLEEP);
if (dtrace_probes == NULL) {
ASSERT(0si ze ==
dtrace_probes = pr obes
dtrace_nprobes = 1;
} else {
dtrace_probe_t **oprobes = dtrace_probes;
bcopy(oprobes, probes, osize);
dtrace_nenbar producer()
dtrace_probes probes;

dtrace_sync();

/*

* All CPUs are now seeing the new probes array; we can
* safely free the old array.

*/

kmem f ree(oprobes, osize);

dtrace_nprobes <<= 1;

}

ASSERT(id - 1 < dtrace_nprobes);
}

ASSERT(dtrace_probes[id - 1] == NULL);
dtrace_probes[id - 1] = probe;

if (provider != dtrace_provider)
mut ex_exi t (&dtrace_l ock);

return (id);

new usr/src/uts/comon/dtrace/ dtrace. c

8378 static dtrace_probe_t *
8379 dtrace_probe_Tookup_id(dtrace_id_t id)

8380 {

8381 ASSERT(MUTEX_HELD(&t race_| ock));
8383 if (id==01]] id > dtrace_nprobes)
8384 return (NULL);

8386 return (dtrace_probes[id - 1]);
8387 }

8389 static int

8390 dtrace_probe_| ookup_nat ch(dtrace_probe_t *probe, void *arg)

8391 {

8392 *((dtrace_id_t *)arg) = probe->dtpr_id;
8394 return (DTRACE_MATCH_DONE) ;

8395 }

8397 /*

8398 * Look up a probe based on provider and one or nore of nodul e nane,

8399 * npane and probe nane.
8400 */

8401 dtrace_id_t

8402 dtrace_probe_| ookup(dtrace_provider_id_t prid, const char *nod,

function

8403 const char *func, const char *nane)

8404 {

8405 dtrace_probekey_t pkey;

8406 dtrace_id_t id;

8407 int match;

8409 pkey. dt pk_prov = ((dtrace_provi der _t *)prid)->dtpv_nang;

8410 pkey. dt pk_pmatch = &dtrace_natch_string;

8411 pkey. dt pk_nod = m)d

8412 pkey. dt pk_| mmtch = rmd ? &Jtrace_match_string : &dtrace_natch_nul;
8413 pkey. dt pk_func = func

8414 pkey. dt pk_fmatch = func ? &Jtrace_match_string : &dtrace_nmatch_nul ;
8415 pkey. dt pk_name = nane;

8416 pkey. dt pk_nmatch = name ? &trace_match_string : &dtrace_match_nul;
8417 pkey. dt pk_i d = DTRACE_| DNONE;

8419 nmut ex_ent er (&dtrace_| ock);

8420 mat ch dtrace_mat ch(&key, DTRACE PRI V_ALL, 0, O,

8421 dtrace _probe_| ookup_match, & d);

8422 mut ex_exi t (&t race_| ock);

8424 ASSERT(match == 1 || match == 0);

8425 return (match ? id : 0);

8426 }

8428 [*

8429 * Returns the probe argunent associated with the specified probe.
8430 */

8431 void *

8432 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)

8433 {

8434 dtrace_pr obe t pr obe;

8435 void *rval = NULL

8437 mut ex_ent er (&Jtrace_| ock);

8439 if ((probe = dtrace_probe_| ookup_id(pid)) != NULL &&
8440 probe->dt pr_provi der == (dtrace_provider_t *)id)
8441 rval = probe->dtpr_arg;

128

new usr/src/uts/comon/ dtrace/ dtrace. c 129 new usr/src/uts/comon/ dtrace/ dtrace. c 130

8443 mut ex_exi t (&dtrace_| ock); 8509 if (ctl->mod_busy || ctl->npd_np == NULL)
8510 continue;
8445 return (rval);
8446 } 8512 prv->dt pv_pops. dt ps_provi de_nodul e(prv->dtpv_arg, ctl);
8448 | * 8514 } while ((ctl = ctl->npd_next) != &odul es);
8449 * Copy a probe into a probe description.
8450 */ 8516 mut ex_exi t (&rod_I ock) ;
8451 static void 8517 } while (all && (prv = prv->dtpv_next) != NULL);
8452 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8518 }
8453 {
8454 bzero(pdp, sizeof (dtrace_probedesc_t)); 8520 /*
8455 pdp->dtpd_i d = prp->dtpr_id; 8521 * |terate over each probe, and call the Franework-to-Provider APl function
8522 * denoted by offs.
8457 (voi d) strncpy(pdp->dtpd_provider, 8523 */
8458 pr p- >dt pr _provi der - >dt pv_nanme, DTRACE_PROVNAMELEN - 1); 8524 static void
8525 dtrace_probe_foreach(uintptr_t offs)
8460 (voi d) strncpy(pdp->dtpd_nod, prp->dtpr_nod, DTRACE_MODNAMELEN - 1); 8526 {
8461 (voi d) strncpy(pdp->dtpd_ func pr p- >dt pr _ func DTRACE_FUNCNAMELEN - 1); 8527 dtrace_provider_t *prov;
8462 (voi d) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8528 void (*func)(void *, dtrace_id_t, void *);
8463 } 8529 dtrace_probe_t *probe;
8530 dtrace_i cooki e_t cooki e;
8465 /* 8531 int i;
8466 * Called to indicate that a probe -- or probes -- should be provided by a
8467 * specfied provider. |f the specified description is NULL, the provider wll 8533 /*
8468 * be told to provide all of its probes. (This is done whenever a new 8534 * We disable interrupts to wal k through the probe array. This is
8469 * consuner cones along, or whenever a retained enabling is to be natched.) If 8535 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8470 * the specified description is non-NULL, the provider is given the 8536 * won't see stale data.
8471 * opportunity to dynamcally provide the specified probe, allow ng providers 8537 */
8472 * to support the creation of probes on-the-fly. (So-cal ied _autocreated 8538 cookie = dtrace_interrupt_disable();
8473 * probes.) |If the provider is NULL, the operations will be applied to all
8474 * providers; if the provider is non-NULL the operations will only be applied 8540 for (i = 0; i < dtrace_nprobes; i++)
8475 * to the specified provider. The dtrace_provider_|lock nmust be held, and the 8541 if ((probe = dtrace probes[l]) == NULL)
8476 * dtrace_lock nmust _not_ be held -- the provider’s dtps_provide() operation 8542 conti nue
8477 * will need to grab the dtrace_|l ock when it reenters the framework through
8478 * dtrace_probe_l ookup(), dtrace_probe_create(), etc. 8544 if (probe->dtpr_ecb == NULL) {
8479 */ 8545 /*
8480 static void 8546 * This probe isn't enabled -- don’t call the function.
8481 dtrace_probe_provi de(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8547 */
8482 { 8548 cont i nue;
8483 struct nodctl *ctl; 8549 }
8484 int all = 0;
8551 prov = probe >dt pr_provi der;
8486 ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _| ock)) ; 8552 func = *((void(**)(void *, dtrace id t void *))
8553 ((uintptr_t)&prov->dtpv_pops + offs));
8488 if (prv == NULL) {
8489 all = 8555 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8490 prv = dtrace _provider; 8556 }
8491 }
8558 dtrace_i nterrupt_enabl e(cooki e);
8493 do { 8559 }
8494 /*
8495 * First, call the blanket provide operation. 8561 static int
8496 =[] 8562 dtrace_probe_enabl e(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8497 prv->dt pv_pops. dt ps_provi de(prv->dtpv_arg, desc); 8563 {
8564 dtrace_probekey_t pkey;
8499 /* 8565 uint32_t priv;
8500 * Now cal |l the per-nodul e provide operation. We will grab 8566 uid_t uid;
8501 * nod_l ock to prevent the list frombeing nodified. Note 8567 zonei d_t zonei d;
8502 * that this also prevents the nod_busy bits from changing.
8503 * (mod_busy can only be changed with nod_|l ock held.) 8569 ASSERT(MUTEX_HELD(&dt r ace_| ock));
8504 =[] 8570 dtrace_ecb_create_cache = NULL;
8505 mut ex_ent er (&md_| ock) ;
8572 if (desc == NULL) {
8507 ctl = &nodul es; 8573 /&

8508 do { 8574 * | f we're passed a NULL description, we're being asked to

new usr/src/uts/comon/ dtrace/ dtrace. c 131 new usr/src/uts/comon/ dtrace/ dtrace. c 132

8575 * create an ECB with a NULL probe. 8641 provi der - >dof pv_prargs * dof->dof h_secsi ze);
8576 */ 8642 of f_sec = (dof _sec_t *)(uintptr_t)(daddr + dof->dof h_secoff +
8577 (void) dtrace_ecb_create_enabl e(NULL, enab); 8643 provi der - >dof pv_proffs * dof - >dof h_secsi ze) ;
8578 return (0);
8579 } 8645 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8646 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs offset)
8581 dtrace_probekey(desc, &pkey); 8647 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8582 dtrace_cred2priv(enab->dt en_vstate->dtvs_state->dts_cred. dcr_cred, 8648 enof f = NULL;
8583 &priv, &uid, &zoneid);
8650 /*
8585 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8651 * See dtrace_hel per_provider_validate().
8586 enab)); 8652 “f
8587 } 8653 if (dof->dofh_ident[DOF_|ID VERSION] != DOF_VERSION 1 &&
8654 provi der - >dof pv_prenof fs | = DOF_SECT_NONE) {
8589 /* 8655 enof f_sec = (dof _sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8590 * DTrace Hel per Provider Functions 8656 pr OVI der - >dof pv_prenoffs * dof - >dof h_secsi ze) ;
8591 */ 8657 enof f = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8592 static void 8658 }
8593 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8594 { 8660 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsi ze;
8595 attr->dtat_name = DOF_ATTR _NAME(dofattr);
8596 attr->dtat _data = DOF_ATTR DATA(dofattr); 8662 l*
8597 attr->dtat _class = DOF_ATTR CLASS(dofattr); 8663 * Create the provider.
8598 } 8664 *
8665 dtrace_dof prov2hprov(&dlhpv, provider, strtab);
8600 static void
8601 dtrace_dof prov2hprov(dtrace_hel per_provdesc_t *hprov, 8667 if ((parg = nops->dtns_provide_pid(neta->dtm arg, &dhpv, pid)) == NULL)
8602{ const dof _provider_t *dofprov, char *strtab) 8668 return;
8603
8604 hprov- >dt hpv_provnanme = strtab + dof prov->dof pv_nane; 8670 nmet a- >dt m_count ++;
8605 dtrace_dof attr2attr (&hprov->dthpv_pattr.dtpa_provider,
8606 dof pr ov- >dof pv_provattr); 8672 /*
8607 dtrace_dof attr2attr(&hprov->dthpv_pattr.dtpa_nod, 8673 * Create the probes.
8608 dof prov- >dof pv_nodat tr); 8674 */
8609 dtrace_dof attr2attr (&prov- >dthpv pattr.dtpa_func, 8675 for (i = 0; i < nprobes; i++) {
8610 dof prov->dof pv_funcattr); 8676 probe = (dof _probe_t *)(uintptr_t)(daddr +
8611 dtrace_dof attr2attr(&hprov- >dthpv_pattr.dt pa_nane, 8677 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8612 dof prov- >dof pv_naneattr);
8613 dtrace_dof attr2attr(&hprov->dthpv_pattr.dtpa_args, 8679 dhpb. dt hpb_nmod = dhp- >dof hp_nod;
8614 dof prov->dof pv_argsattr); 8680 dhpb. dt hpb_func = strtab + probe->dof pr_func;
8615 } 8681 dhpb. dt hpb_name = strtab + probe->dof pr_nane;
8682 dhpb. dt hpb_base = probe->dof pr_addr;
8617 static void 8683 dhpb. dt hpb_of fs = of f + probe->dof pr_of fi dx;
8618 dtrace_hel per _provi de_one(dof _hel per_t *dhp, dof_sec_t *sec, pid_t pid) 8684 dhpb. dt hpb_nof fs = probe->dof pr _nof fs;
8619 { 8685 if (enoff = NULL) {
8620 uintptr_t daddr = (uintptr_t)dhp->dof hp_dof; 8686 dhpb. dt hpb_enoffs = enoff + probe->dof pr_enof fi dx;
8621 dof _hdr_t *dof = (dof_hdr_t *)daddr; 8687 dhpb. dt hpb_nenof fs = probe- >dof pr_nenoffs;
8622 dof “sec_t *str sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8688 } else {
8623 dof _provider_t *provider; 8689 dhpb. dt hpb_enof fs = NULL;
8624 dof _probe_t *probe; 8690 dhpb. dt hpb_nenoffs = 0;
8625 uint32_t *off, *enoff; 8691 }
8626 uint8_t *arg; 8692 dhpb. dt hpb_args = arg + probe->dof pr_ar gi dx;
8627 char *strtab; 8693 dhpb. dt hpb_nargc = probe->dof pr _nar gc;
8628 uint_t i, nprobes; 8694 dhpb. dt hpb_xargc = probe- >dof pr _xargc;
8629 dtrace_hel per _provdesc_t dhpv; 8695 dhpb. dt hpb_ntypes = strtab + probe->dof pr_nargv;
8630 dt race_hel per _probedesc_t dhpb; 8696 dhpb. dt hpb_xtypes = strtab + probe->dof pr_xargv;
8631 dtrace _neta_t *neta = dirace_neta_pid,;
8632 dtrace_nops_t *nops = &neta->dt m nops; 8698 nops- >dt ns_cr eat e_probe(neta->dtmarg, parg, &dhpb);
8633 voi d *parg; 8699 }
8700 }
8635 provi der = (dof _provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8636 str_sec = (dof _sec_t *)(uintptr_t)(daddr + dof->dof h_secoff + 8702 static void
8637 prow der - >dof pv_strtab * dof->dof h_secsi ze); 8703 dtrace_hel per _provi de(dof _hel per _t *dhp, pid_t pid)
8638 prb_sec = (dof _sec_t *)(uintptr_t)(daddr + dof- >dof h _secof f + 8704 {
8639 prow der->dof pv_probes * dof - >dof h_secsi ze); 8705 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;

8640 arg_sec (dof _sec_t *)(uintptr_t)(daddr + dof- >dof h _secoff + 8706 dof _hdr_t *dof = (dof _hdr_t *)daddr;

new usr/src/uts/comon/dtrace/ dtrace. c 133
8707 int i;

8709 ASSERT(MUTEX_HELD(&dt race_net a_| ock));

8711 (i =0; i < dof- >dofh _secnuny i ++) {

8712 dof _sec_t *sec = (dof _sec_t *)(uintptr_t)(daddr +

8713 “dof ->dof h_secoff + i * dof->dofh_secsi ze);

8715 if (sec->dofs_type != DOF_SECT_PROVI DER)

8716 conti nue;

8718 dtrace_hel per_provi de_one(dhp, sec, pid);

8719 }

8721 I*

8722 * W may have just created probes, so we nust now renmatch agai nst
8723 * any retained enablings. Note that this call will acquire both
8724 * cpu_l ock and dtrace_| ock; the fact that we are hol di ng

8725 * dtrace_neta_l ock now is what defines the ordering with respect to
8726 * these three | ocks.

8727 *

8728 dtrace_enabl i ng_matchal | ();

8729 }

8731 static void

8732 dtrace_hel per _provider_renove_one(dof _hel per_t *dhp, dof_sec_t *sec, pid_t pid)
8733 {

8734 uintptr_t daddr (UI ntptr t)dhp >dof hp_dof;

8735 dof _hdr_t *dof -(of _hdr_t *)daddr;

8736 dof _sec_t *str_sec;

8737 dof _provider_t *provider;

8738 char *strtab;

8739 dtrace_hel per _provdesc_t dhpyv;

8740 dtrace_neta_t *meta = dtrace_neta_pid;

8741 dtrace_nops_t *nops = &neta- >dt m nops;

8743 provider = (dof _provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8744 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8745 provi der - >dof pv_strtab * dof - >dof h_secsi ze);

8747 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

8749 /*

8750 * Create the provider.

8751 hd

8752 dtrace_dof prov2hprov(&dlhpv, provider, strtab);

8754 nmops- >dt ms_r enove_pi d(et a- >dt m arg, &dhpv, pid);

8756 met a- >dt m count - - ;

8757 }

8759 static void

8760 dtrace_hel per _provider_renove(dof _hel per_t *dhp, pid_t pid)

8761 {

8762 uintptr_t daddr = (uintptr t)dhp >dof hp_dof ;

8763 dof _hdr _t *dof (do hdr _t *)daddr;

8764 int i;

8766 ASSERT(MUTEX_HELD(&dt r ace_net a_| ock)) ;

8768 for (i = 0; i < dof->dofh_secnum i++) {

8769 dof _sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +

8770 dof - >dof h_secof f + i * dof ->dof h_secsi ze);

8772 if (sec->dofs_type != DOF_SECT_PROVI DER)

new usr/src/uts/comon/ dtrace/ dtrace. c

8773

8775
8776
8777

8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791

8793

8795
8796
8797
8798
8799
8800
8801
8802
8803

8805
8806
8807
8808
8809
8810
8811
8812

8814
8815
8816
8817
8818

8820
8821

8823
8824
8825
8826
8827
8828
8829
8830
8831

8833
8834

8836
8837
8838

* Ok ok k% ok

int
dtr

{

conti nue;

dtrace_hel per_provi der _renove_one(dhp, sec, pid);

DTrace Meta Provider-to-Framework APl Functions

These functions inplenent the Meta Provider-to-Framework APlI, as descri bed

in <sys/dtrace. h>.

ace_neta_regi ster(const
dtrace_neta_provider_id_t

char *nane,
*i dp)

const dtrace_nops_t *nobps, void *arg,

dtrace_neta_t *neta;
dtrace_hel pers_t *hel p,
int i;

*next ;

*i dp = DTRACE_METAPROVNONE;

/*
* We strictly don't need the name, but we hold onto it for
* debuggability. Al hail error queues!
*
/

if (name == NULL) {
crm_err (CE_WARN, "failed to register neta-provider:
"invalid name");
return (EINVAL);

}
if (nmops == NULL ||
nops- >dt ns_cr eat e_probe == NULL ||
nmops- >dt ms_provi de_pi d == NULL ||
nmops- >dt ms_r enove_pi d == NULL)
crm_err (CE_WARN, "failed to register neta-register %: "
"invalid ops", nane);
return (EINVAL);
}

nmeta = knmem zal | oc(si zeof (dtrace_neta_t),
met a- >dt m_nops = *nops;

met a- >dt m name = knmem al | oc(strl en(nane) + 1,
(voi d) strcpy(mat a- >dt m nane, nane);
neta->dtmarg = arg;

KM_SLEEP) ;
KM SLEEP) ;

mut ex_enter (&Jtrace_neta_l ock);
mut ex_ent er (&Jtrace_| ock);

if (dtrace_meta_pid != NULL)
mut ex_exi t (&Jtrace_| ock);
mut ex_exi t (&t race_nmet a Iock)
crm_err (CE_WARN, “"failed to regi ster nmeta-register %:
"user-land neta-provider exists", nane);
kmem free(et a- >dt m_nane, strlen(neta->dtmnane) + 1);
kmem free(nmeta, sizeof (dtrace_neta_t));
return (EINVAL);

}

dtrace_neta_pid = neta;

*idp = (dtrace_neta_provider_id_t)neta;

/*

* |If there are providers and probes ready to go,
* off to the new neta provider now.

pass them

new usr/src/uts/comon/dtrace/ dtrace. c 135
8839 */

8841 hel p = dtrace_deferred_pi d;

8842 dtrace_deferred_pid = NULL;

8844 mut ex_exit (&dtrace_l ock);

8846 while (help != NULL) {

8847 for (i 0; i < help->dthps_nprovs; i++) {

8848 dtrace hel per _provi de(&el p->dt hps_provs[i]->dthp_prov,
8849 hel p- >dt hps_pi d) ;

8850 }

8852 next = hel p->dt hps_next;

8853 hel p- >dt hps_next = NULL;

8854 hel p->dt hps_prev = NULL;

8855 hel p- >dt hps_deferred = 0

8856 hel p = next;

8857 1

8859 mut ex_exi t (&Jtrace_neta_| ock);

8861 return (0);

8862 }

8864 int

8865 dtrace_neta_unregi ster(dtrace_neta_provider_id_t id)
8866 {

8867 dtrace_nmeta_t **pp, *old = (dtrace_neta_t *)id;
8869 mut ex_enter (&Jtrace_neta_l ock);

8870 mut ex_ent er (&Jtrace_| ock);

8872 if (old == dtrace_neta_pid) {

8873 pp = &dtrace_neta_pid;

8874 } else {

8875 pani c("attenpt to unregister non-existent "
8876 "dtrace neta-provider %\n", (void *)old);
8877 }

8879 if (old->dtmcount !'= 0) {

8880 mut ex_exi t (&dtrace_l ock);

8881 mut ex_exi t (&Jtrace_neta_l ock);

8882 return (EBUSY);

8883 }

8885 *pp = NULL;

8887 mut ex_exi t (&dJtrace_l ock);

8888 mut ex_exi t (&dtrace_neta_| ock);

8890 kmem free(ol d->dt m nanme, strlen(ol d->dtmnane) + 1);
8891 kmem free(ol d, sizeof (dtrace meta_t));

8893 return (0);

8894 }

8897 /*

8898 * Dlrace DI F Object Functions

8899 */

8900 static int

8901 dtrace_difo_err(uint_t pc, const char *format, ...)

8902

8903 if (dtrace_err_verbose) {

8904 va_list alist;

new usr/src/uts/comon/dtrace/ dtrace.c 136
8906 (void) uprintf("dtrace DIF object error: [%]: ", pc);

8907 va_start(alist, format);

8908 (void) vuprintf(format, alist);

8909 va_end(al i st);

8910 }

8912 #ifdef DTRACE_ERRDEBUG

8913 dtrace_errdebug(format);

8914 #endi f

8915 return (1);

8916 }

8918 /*

8919 * Validate a Dirace DI F object by checking the IR instructions. The follow ng
8920 * rules are currently enforced by dtrace_difo_validate():

8921 *

8922 * 1. Each instruction nust have a valid opcode

8923 * 2. Each register, string, variable, or subroutine reference nust be valid
8924 * 3. No instruction can nodify register %0 (nust be zero)

8925 * 4. Al instruction reserved bits nust be set to zero

8926 * 5. The last instruction nmust be a "ret" instruction

8927 * 6. Al branch targets nust reference a valid instruction _after_
8928 */
8929 static int

the branch

8930 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,

8931 cred_t *cr)

8932 {

8933 int err =0, i;

8934 int (*efunc)(w nt_t pc, const char *, ...) = dtrace_difo_err;
8935 int kcheckl oad;

8936 uint_t pc;

8938 kcheckl oad = cr == NULL ||

8939 (vstate->dtvs_state->dts_cred. dcr _vi si bl e & DTRACE_CRV_KERNEL) == 0;
8941 dp- >dt do_destructive = 0;

8943 for (pc = 0; pc < dp->dtdo_len & err == 0; pc++) {
8944 dif _instr_t instr = dp->dtdo_buf[pc];
8946 uint_t rl = DIF_INSTR R1(instr);

8947 uint_t r2 = DIF_INSTR_R2(instr);

8948 uint_t rd = DIF_INSTR_RD(instr);

8949 uint_t rs = DIF_INSTR RS(instr);

8950 uint_t label = DI F_I NSTR LABEL(l nstr);
8951 uint_t v = DIF_INSTR VAR(i nstr);

8952 uint _t subr = DI F_I NSTR_SUBR(i nstr)
8953 uint_t type = DIF_INSTR TYPE(instr);
8954 uint_t op = DIF_INSTR OP(instr);

8956 switch (op) {

8957 case DIF_OP_OR

8958 case DI F_OP_XOR

8959 case DI F_OP_AND:

8960 case DIF_OP_SLL:

8961 case DI F_OP_SRL:

8962 case DI F_OP_SRA:

8963 case DI F_OP_SUB:

8964 case DI F_OP_ADD:

8965 case DI F_OP_MJL:

8966 case DIF_OP_SDI V:

8967 case DI F_OP_UDI V:

8968 case DI F_OP_SREM

8969 case DI F_OP_UREM

8970 case DI F_OP_CCOPYS:

new usr/src/uts/comon/ dtrace/ dtrace. c

8971 if (rl1 >= nregs)

8972 err += efunc(pc,
8973 if (r2 >= nregs)

8974 err += efunc(pc,
8975 if (rd >= nregs)

8976 err += efunc(pc,
8977 if (rd == 0)

8978 err += efunc(pc,
8979 br eak;

8980 case DIF_OP_| NOT:

8981 case DI F_OP_MOV:

8982 case DI F OP_ALLCCS:

8983 if (r1 >= nregs)

8984 err += efunc(pc,
8985 if (r21=0)

8986 err += efunc(pc,
8987 if (rd >= nregs)

8988 err += efunc(pc,
8989 if (rd == 0)

8990 err += efunc(pc,
8991 br eak;

8992 case DI F_OP_LDSB:

8993 case DI F_OP_LDSH:

8994 case DI F_OP_LDSW

8995 case DI F_OP_LDUB:

8996 case DI F_OP_LDUH

8997 case DI F_OP_LDUW

8998 case DI F_CP LDX:

8999 if (rl >= nregs)

9000 err += efunc(pc,
9001 if (r21=0)

9002 err += efunc(pc,
9003 if (rd >= nregs)

9004 err += efunc(pc,
9005 if (rd == 0)

9006 err += efunc(pc,
9007 i f (kcheckl oad)

9008 dp- >dt do_buf [pc]
9009 DI F_OP_RLDSB -
9010 br eak;

9011 case DI F_OP_RLDSB:

9012 case DI F_OP_RLDSH:

9013 case DI F_OP_RLDSW

9014 case DI F_OP_RLDUB:

9015 case DI F_OP_RLDUH:

9016 case DI F_OP_RLDUW

9017 case DI F_OP_RLDX:

9018 if (rl >= nregs)

9019 err += efunc(pc,
9020 if (r21=0)

9021 err += efunc(pc,
9022 if (rd >= nregs)

9023 err += efunc(pc,
9024 if (rd == 0)

9025 err += efunc(pc,
9026 break;

9027 case DI F_OP_ULDSB

9028 case DI F_OP_ULDSH:

9029 case DI F_OP_ULDSW

9030 case DI F_OP_ULDUB:

9031 case DI F_OP_ULDUH

9032 case DI F_OP_ULDUW

9033 case DI F_OP_ULDX:

9034 if (rl >= nregs)

9035 err += efunc(pc,

9036 if (r21=0)

137

"invalid register %\n", ri);
"invalid register %\n", r2);
"invalid register %\n", rd);

"cannot wite to %0\n");

“invalid register %\n", ri);
"non-zero reserved bits\n");
“invalid register %\n", rd);

"cannot wite to %0\n");

"invalid register %\n", ri);
"non-zero reserved bits\n");
"“invalid register %\n", rd);
"cannot wite to %0\n");

= DI F_I NSTR_LOAD(op +
DI F_OP_LDSB, r1, rd);

"invalid register %\n", ri);
"non-zero reserved bits\n");
"invalid register %\n", rd);

"cannot wite to %0\n");

"invalid register %\n", ri);

new usr/src/uts/comon/ dtrace/ dtrace. c

138

"non-zero reserved bits\n");
"invalid register %\n", rd);

"cannot wite to %0\n");

"invalid register %u\n", ri);
"non-zero reserved bits\n");
"invalid register %\n", rd);

"cannot wite to 0 address\n");

"invalid register %\n", ri);
"invalid register %\n", r2);

"non-zero reserved bits\n");

“invalid register %\n", ri);

"non-zero reserved bits\n");

"invalid branch target %\n",

"backward branch to %\n",

"non-zero reserved bits\n");

"“invalid register %\n", rd);

=0] r2'=0]| rd!= 0)
"non-zero reserved bits\n");

9037 err += efunc(pc,
9038 if (rd >= nregs)

9039 err += efunc(pc,
9040 if (rd == 0)

9041 err += efunc(pc,
9042 break;

9043 case DI F_OP_STB:

9044 case DI F_OP_STH:

9045 case DI F_OP_STW

9046 case DI F_OP_STX:

9047 if (rl >= nregs)

9048 err += efunc(pc,
9049 if (r21=0)

9050 err += efunc(pc,
9051 if (rd >= nregs)

9052 err += efunc(pc,
9053 if (rd =0

9054 err += efunc(pc,
9055 break;

9056 case DI F_OP_CWP:

9057 case DI F_OP_SCWP:

9058 if (r1 >= nregs)

9059 err += efunc(pc,
9060 if (r2 >= nregs)

9061 err += efunc(pc,
9062 if (rd !=0)

9063 err += efunc(pc,
9064 br eak;

9065 case DIF_OP_TST:

9066 if (rl >= nregs)

9067 err += efunc(pc,
9068 if (r21=01| rd !=0)
9069 err += efunc(pc,
9070 br eak;

9071 case DI F_OP_BA:

9072 case DI F_OP_BE:

9073 case DI F_OP_BNE:

9074 case DI F_OP_BG

9075 case DI F_OP_BGU:

9076 case D F_OP_BGE:

9077 case DI F_OP_BGEU:

9078 case DI F_OP_BL:

9079 case DI F_OP_BLU:

9080 case DI F_OP_BLE:

9081 case DI F_OP_BLEU:

9082 if (label >= dp->dtdo_len) {
9083 err += efunc(pc,
9084 | abel) ;

9085 }

9086 if (label <= pc)

9087 err += efunc(pc,
9088 | abel) ;

9089 }

9090 br eak;

9091 case DI F_OP_RET:

9092 if (ri!'=01]] r21!=0)
9093 err += efunc(pc,
9094 if (rd >= nregs)

9095 err += efunc(pc,
9096 break;

9097 case DI F_OP_NOP:

9098 case DI F_OP_POPTS

9099 case DI F_OP_FLUSHTS

9100 if (rl

9101 err += efunc(pc,
9102 br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162

9164
9165
9166
9167

case DI F_OP_SETX:

case

case
case

case

D

D
D

D

if (D F_INSTR INTEGER(lnstr) >= dp->dtdo_intlen) {
err += efunc(pc, "invalid integer ref %\ n",
DI F_I NSTR_I NTECER(i nstr));

}
if (rd >= nregs)

err += efunc(pc, "invalid register %\n", rd);
if (rd ==
err += efunc(pc, "cannot wite to %0\n");
br eak;
F_OP_SETS:
if (DI F_INSTR STRIMXlnstr) >= dp->dtdo_strlen) {

err += efunc(pc, "invalid string ref %w\n",
DI F_I NSTR_STRI NG(i nstr));

}
if (rd >= nregs)

err += efunc(pc, "invalid register %\n", rd);
if (rd == 0)
err += efunc(pc, "cannot wite to %0\n");
br eak;
F_OP_LDGA:
F_OP_LDTA:
it (r1 > DIF_VAR ARRAY_MAX)
err += efunc(pc, "invalid array %\n", ri);
if (r2 >= nregs)
err += efunc(pc, "invalid register %\n", r2);
if (rd >= nregs)
err += efunc(pc, "invalid register %\n", rd);
if (rd==0
err += efunc(pc, "cannot wite to %0\n");
break;
F_OP_LDGS:
F_OP_LDTS:
F_OP_LDLS:
F_OP_LDGAA:
F_OP_LDTAA:
if (v<DFVAROHER MN || v > DI F_VAR OTHER
err += efunc(pc, "invalid variable %\n", v);
if (rd >= nregs)
err += efunc(pc, "invalid register %\n", rd);
if (rd ==0
err += efunc(pc, "cannot wite to %0\n");
break;
F_OP_STGS:
F_OP_STTS:
F_OP_STLS:
F_OP_STGAA:
F_OP_STTAA:
if (v < DIF_VAR OTHER UBASE || v > DIF_VAR OTHER I\/AX)
err += efunc(pc, "invalid variable %\n", v);
if (rs >= nregs)
err += efunc(pc, "invalid register %\n", rd);
br eak;
F_OP_CALL:
if (subr > DI F_SUBR_MAX)
err += efunc(pc, "invalid subr %\n", subr);

if (rd >= nregs)

err += efunc(pc, "invalid register %\n", rd)

if (rd ==
err += efunc(pc, "cannot wite to %0\n");

if (subr == DI F_SUBR COPYQUT | |
subr == DI F_SUBR CCPYCUTST@ {
dp >dt do destructive = 1;

new usr/src/uts/comon/ dtrace/ dtrace. c

9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180

9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203

9205
9206
9207
9208
9209

9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222

9224
9225
9226
9227

9229
9230
9231
9232

9234

if (subr == DI F_SUBR CGETF) {
/*

If we have a getf() we

140

need to record that

in our state. Note that our state can be

NULL if this is a hel pe
case, the call to getf(

r -- but in that
) is itself illegal,
ghtly later) when

the hel per is validated.

*
*
*
*
* and will be caught (sli
*
*
f

(vstate->dtvs_state ! =

vst at e- >dt vs_st at e-

}

break;
case DI F_OP_PUSHTR:
if (type != DIF_TYPE STRING&&typ

err += efunc(pc, "invalid
if (r2 >= nregs)

err += efunc(pc, "invalid
if (rs >= nregs)

err += efunc(pc, "invalid
br eak;
case DIF_OP PUSHTV
it (type != DIF_TYPE CTF)

NULL)
>dts_getf ++;

e != DI F_TYPE_CTF)
ref type %\n", type);

register %u\n", r2);

register %\n", rs);

err += efunc(pc, "invalid val type %\n", type);
if (r2 >= nregs)
err += efunc(pc, "invalid register %\n", r2);
if (rs >= nregs)
err += efunc(pc, "invalid register %\n", rs);
br eak;
defaul t:
err += efunc(pc, "invalid opcode %u\n",
DI F_I NSTR_OP(instr));
}

if (dp->dtdo_len !'= 0 &&
Dl F_I NSTR_OP(dp- >dt do_buf [dp->dtdo_l en - 1]) !
err += efunc(dp >dtdo_len - 1,
"expected 'ret’ as last DIF instructio

if (!(dp->dtdo_rtype.dtdt_flags & DI F_TF_BYREF)) {
/*

* If we're not returning by reference, th
*/0 or the size of one of the base types.
*
switch (dp->dtdo_rtype.dtdt_size) {
case 0:
case sizeof (uint8_t):
case sizeof (uintl6_t):
case sizeof (uint32_t):
case sizeof (uint64_t):
br eak;

defaul t:

= DIF_OP_RET) {

n\n");

e size nmust be either

err += efunc(dp->dtdo_len - 1, "bad return size\n");

}
}

for (i =0; i < dp->dtdo_varlen & err == 0; i++)
dtrace_difv_t *v = &Ip->dtdo_vartab[i], *e
dtrace_diftype_t *vt, *et;
uint_t id, ndx;

if (v->dtdv_scope != DI FV_SCOPE_GLOBAL &&

{
Xi sting = NULL;

new usr/src/uts/comon/dtrace/ dtrace. c 141 new usr/src/uts/comon/dtrace/ dtrace.c 142
9235 v->dtdv_scope != DI FV_SCOPE_THREAD && 9301 err += efunc(i, "oversized by-ref global\n");
9236 v->dtdv_scope != DI FV_SCOPE_LOCAL) { 9302 br eak;
9237 err += efunc(i, "unrecognized variabl e scope %\ n", 9303 }
9238 v->dt dv_scope); 9304 }
9239 br eak;
9240 } 9306 if (existing == NULL || existing->dtdv_id == 0)
9307 conti nue;
9242 if (v->dtdv_kind !'= DI FV_KI ND_ARRAY &&
9243 v->dtdv_kind != DI FV_KI ND_SCALAR) { 9309 ASSERT(exi sting->dtdv_id == v->dtdv_id);
9244 err += efunc(i, "unrecognized variable type %\ n", 9310 ASSERT(exi sti ng->dt dv_scope == v->dtdv_scope);
9245 v->dt dv_ki nd) ;
9246 br eak; 9312 if (existing->dtdv_kind != v->dtdv_kind)
9247 } 9313 err += efunc(i, "% changed variable kind\n", id);
9249 if ((id = v->dtdv_id) > DI F_VAR ABLE_MAX) { 9315 et = &existing->dtdv_type;
9250 err += efunc(i, "% exceeds variable id limt\n", id);
9251 br eak; 9317 if (vt->dtdt_flags != et->dtdt_flags) {
9252 } 9318 err += efunc(i, "% changed variable type flags\n", id);
9319 break;
9254 if (id < DIF_VAR OTHER UBASE) 9320 }
9255 conti nue;
9322 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9257 /* 9323 err += efunc(i, "% changed variable type size\n", id);
9258 * For user-defined variables, we need to check that this 9324 br eak;
9259 * definition is identical to any previous definition that we 9325 }
9260 * encount er ed. 9326 }
9261 */
9262 ndx = id - DI F_VAR OTHER UBASE; 9328 return (err);
9329 }
9264 switch (v->dtdv_scope) {
9265 case DI FV_SCOPE_GLOBAL: 9331 /*
9266 if (ndx < vstate->dtvs_ngl obals) { 9332 * Validate a Dirace DIF object that it is to be used as a helper. Helpers
9267 dtrace_statvar_t *svar; 9333 * are nuch nore constrained than normal DI FOs. Specifically, they may
9334 * not:
9269 if ((svar = vstate->dtvs_gl obal s[ndx]) != NULL) 9335 *
9270 exi sting = &svar->dtsv_var; 9336 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9271 } 9337 * m scel | aneous string routines
9338 * 2. Access DTrace variables other than the args[] array, and the
9273 break; 9339 * curthread, pid, ppid, tid, execnane, zonenane, uid and gid variabl es.
9340 * 3. Have thread-local variables.
9275 case DI FV_SCOPE_THREAD: 9341 * 4. Have dynami c vari abl es.
9276 if (ndx < vstate->dtvs_ntlocals) 9342 */
9277 exi sting = &vstate->dtvs_tl ocal s[ndx] ; 9343 static int
9278 br eak; 9344 dtrace_difo_validate_hel per(dtrace_difo_t *dp)
9345 {
9280 case DI FV_SCOPE_LOCAL: 9346 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9281 if (ndx < vstate->dtvs_nlocals) { 9347 int err = 0;
9282 dtrace_statvar_t *svar; 9348 uint_t pc;
9284 if ((svar = vstate->dtvs_local s[ndx]) != NULL) 9350 for (pc = 0; pc < dp->dtdo_| en; pc++) {
9285 exi sting = &svar->dtsv_var; 9351 dif_instr_t instr = dp->dtdo_buf[pc];
9286 }
9353 uint_t v = DIF_INSTR_VAR(instr);
9288 br eak; 9354 uint _t subr = DI F_I NSTR SUBR(i nstr);
9289 } 9355 uint_t op = DIF_INSTR OP(instr);
9291 vt = &v->dtdv_type; 9357 switch (op) {
9358 case DIF_OP_OR
9293 if (vt->dtdt_flags & DI F_TF_BYREF) { 9359 case DI F_OP_XOR
9294 if (vt->dtdt_size == 0) { 9360 case DI F_OP_AND:
9295 err += efunc(i, "zero-sized variable\n"); 9361 case DIF_OP_SLL:
9296 br eak; 9362 case DIF_OP_SRL:
9297 } 9363 case DI F_OP_SRA:
9364 case DI F_OP_SUB:
9299 if (v->dtdv_scope == DI FV_SCOPE_GLOBAL && 9365 case DI F_OP_ADD:
9300 vt ->dtdt _si ze > dtrace_gl obal _maxsi ze) { 9366 case DI F_OP_MJL:

new usr/src/uts/comon/dtrace/ dtrace. c 143 new usr/src/uts/comon/dtrace/ dtrace.c 144
9367 case DIF_OP_SDIV:
9368 case DI F_OP_UDIV: 9434 err += efunc(pc, "illegal variable %\n", v);
9369 case DI F_OP_SREM 9435 br eak;
9370 case DI F_OP_UREM
9371 case DI F_OP_COPYS: 9437 case DI F_OP_LDTA:
9372 case DI F_OP_NOT: 9438 case DI F_OP_LDTS:
9373 case DI F_OP_MOV: 9439 case DI F_OP_LDGAA:
9374 case DI F_OP_RLDSB: 9440 case DI F_OP_LDTAA:
9375 case DI F_OP_RLDSH: 9441 err += efunc(pc, "illegal dynam c variable [oad\n");
9376 case DI F_OP_RLDSW 9442 br eak;
9377 case DI F_OP_RLDUB:
9378 case DI F_OP_RLDUH: 9444 case DIF_OP_STTS
9379 case DI F_OP_RLDUW 9445 case DI F_OP_STGAA:
9380 case DI F_OP_RLDX: 9446 case DI F_OP_STTAA
9381 case DI F_OP_ULDSB: 9447 err += efunc(pc, "illegal dynamic variable store\n");
9382 case DI F_OP_ULDSH: 9448 br eak;
9383 case DI F_OP_ULDSW
9384 case DI F_OP_ULDUB: 9450 case DI F_OP_CALL:
9385 case DI F_OP_ULDUH: 9451 if (subr == DIF_SUBR ALLOCA ||
9386 case DI F_OP_ULDUW 9452 subr == DI F_SUBR_BCCPY | |
9387 case DI F_OP_ULDX: 9453 subr == DI F_SUBR_COPYIN | |
9388 case DI F_OP_STB: 9454 subr == DI F_SUBR_COPYI NTO | |
9389 case DI F_OP_STH: 9455 subr == DI F_SUBR_COPYI NSTR | |
9390 case DI F_OP_STW 9456 subr == DI F_SUBR_| NDEX | |
9391 case DI F_OP_STX: 9457 subr == DI F_SUBR_| NET_NTQA | |
9392 case DIF_OP_ALLCCS: 9458 subr == DI F_SUBR_| NET_NTQA6 ||
9393 case DI F_OP_CWMP: 9459 subr == DI F_SUBR_I NET_NTCP | |
9394 case DI F_OP_SCWP: 9460 subr == DI F_SUBR_JSON | |
9395 case DI F_OP_TST: 9461 #endif /* ! codereview */
9396 case DI F_OP_BA: 9462 subr == DI F_SUBR_LLTOSTR ||
9397 case DI F_OP_BE: 9463 subr == DI F_SUBR_STRTOLL | |
9398 case DI F_OP_BNE: 9464 #endif /* | codereview */
9399 case DI F_OP_BG 9465 subr == DI F_SUBR_RI NDEX | |
9400 case DI F_OP_BGU: 9466 subr == DI F_SUBR_STRCHR | |
9401 case DI F_OP_BCE: 9467 subr == DI F_SUBR_STRIO N | |
9402 case DI F_OP_BGCEU: 9468 subr == DI F_SUBR_STRRCHR | |
9403 case DIF_OP_BL: 9469 subr == DI F_SUBR_STRSTR | |
9404 case DIF_OP_BLU: 9470 subr == DI F_SUBR_HTONS | |
9405 case DI F_OP_BLE: 9471 subr == DI F_SUBR _HTONL ||
9406 case DI F_OP_BLEU: 9472 subr == DI F_SUBR HTONLL ||
9407 case DI F_OP_RET: 9473 subr == DI F_SUBR_NTOHS |
9408 case DI F_OP_NOP: 9474 subr == DI F_SUBR_NTCOHL ||
9409 case DI F_OP_POPTS: 9475 subr == DI F_SUBR_NTOHLL)
9410 case DI F_OP_FLUSHTS: 9476 break
9411 case DI F_OP_SETX:
9412 case DI F_OP_SETS: 9478 err += efunc(pc, "invalid subr %\n", subr);
9413 case DI F_OP_LDGA: 9479 br eak;
9414 case DIF_OP_LDLS:
9415 case DI F_OP_STGS: 9481 defaul t:
9416 case DI F_OP_STLS: 9482 err += efunc(pc, "invalid opcode %\n",
9417 case DI F_OP_PUSHTR: 9483 DI F_I NSTR_OP(instr));
9418 case DI F_OP_PUSHTV: 9484 }
9419 br eak; 9485 }
9421 case DI F_OP_LDGS: 9487 return (err);
9422 if (v >= DI F_VAR OTHER UBASE) 9488 }
9423 br eak;
9490 /*
9425 if (v > DIF_VAR AR && v <= DI F_VAR _AR®X) 9491 * Returns 1 if the expression in the D F object can be cached on a per-thread
9426 br eak; 9492 * basis; 0 if not.
9493 */
9428 if (v == DIFVAR(JJRTHREADH v == DIF_VAR PID || 9494 static int
9429 == DIF_VAR PPID || v == DIF_VAR TID || 9495 dtrace_di fo_cacheabl e(dtrace_difo_t *dp)
9430 v == DI F_VAR EXECNAME || v == DI F_VAR ZONENAME | | 9496 {
9431 v ==DFVARUD]|| v ==D F_VAR_GI D) 9497 int i
9432 br eak;

new usr/src/uts/comon/dtrace/ dtrace. c 145 new usr/src/uts/comon/dtrace/ dtrace.c 146
9499 if (dp == NULL) 9565 * This routine calculates the dynanmic variable chunksize for a given D F
9500 return (0); 9566 * object. The calculation is not fool-proof, and can probably be tricked by
9567 * malicious DIF -- but it works for all conpiler-generated DIF. Because this
9502 for (i =0; i < dp->dtdo_varlen; i++) { 9568 * calculation is likely inperfect, dtrace_dynvar() is able to gracefully fail
9503 dtrace_difv_t *v = &JIp->dtdo_vartab[i]; 9569 * if a dynamic variable size exceeds the chunksize.
9570 *
9505 if (v->dtdv_scope != DI FV_SCOPE_GLOBAL) 9571 static void
9506 conti nue; 9572 ?t race_di fo_chunksi ze(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9573
9508 switch (v->dtdv_id) { 9574 uint64_t sval;
9509 case DI F_VAR_CURTHREAD: 9575 dtrace_key_ t tupregs[D F_DTR NREGS + 2]; /* +2 for thread and id */
9510 case DI F_VAR PID: 9576 const dif_instr_t *text = dp->dtdo_buf;
9511 case DIF_VAR TID: 9577 uint_t pc, srd = 0;
9512 case DI F_VAR_EXECNAME: 9578 uint_t ttop = 0;
9513 case DI F_VAR_ZONENAME: 9579 size_t size, ksize;
9514 br eak; 9580 uint_t id, i;
9516 defaul t: 9582 for (pc = 0; pc < dp->dtdo_l en; pc++) {
9517 return (0); 9583 dif _instr_t instr = text[pc];
9518 } 9584 uint_t op = DIF_INSTR OP(instr);
9519 } 9585 uint_t rd = DIF_INSTR RD(i nstr);
9586 uint_t rl = DIF_INSTR_RL(instr);
9521 I* 9587 uint _t nkeys = 0;
9522 * This DI F object may be cacheable. Now we need to | ook for any 9588 uchar _t scope;
9523 * array |oading instructions, any nmenory | oading instructions, or
9524 * any stores to thread-local variables. 9590 dtrace_key_t *key = tupregs;
9525 */
9526 for (i =0; i < dp->dtdo_len; i++) { 9592 switch (op) {
9527 uint_t op = DI F_INSTR OP(dp->dtdo_buf[i]); 9593 case DI F_OP_SETX:
9594 sval = dp->dtdo_inttab[DI F_I NSTR_| NTEGER(i nstr)];
9529 if ((op > DIF_OP_LDSB && op <= DIF_COP_LDX) || 9595 srd = rd;
9530 (op >= DIF_OP_ULDSB &% op <= DIF_OP_ULDX) || 9596 conti nue;
9531 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9532 op == DIF_OP_LDGA || op == DI F_OP_STTS) 9598 case DI F_OP_STTS:
9533 return (0); 9599 key = &t upregs[Dl F_DTR_NREGCS] ;
9534 1 9600 key[0] . dttk_size = 0;
9601 key[1] .dttk_size = 0;
9536 return (1); 9602 nkeys = 2;
9537 } 9603 scope = DI FV_SCOPE_THREAD;
9604 break;
9539 static void
9540 dtrace_difo_hol d(dtrace_difo_t *dp) 9606 case DI F_OP_STGAA
9541 { 9607 case DI F_OP_STTAA
9542 int i; 9608 nkeys = ttop;
9544 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ; 9610 if (DIF_INSTR OP(instr) == DI F_OP_STTAA)
9611 key[nkeys++] . dttk_size = 0;
9546 dp- >dt do_r ef cnt ++;
9547 ASSERT(dp->dtdo_refcnt != 0); 9613 key[nkeys++] . dttk_si ze = 0;
9549 /* 9615 if (op == DI F_OP_STTAA)
9550 * W need to check this DI F object for references to the variable 9616 scope = DI FV_SCOPE_THREAD;
9551 * DI F_VAR VTI MESTAWP. 9617 } else {
9552 */ 9618 scope = DI FV_SCOPE_GLOBAL;
9553 for (i =0; i < dp->dtdo_varlen; i++) { 9619 }
9554 dtrace_difv_t *v = &Jp->dtdo_vartab[i];
9621 break;
9556 if (v->dtdv_id !'= DI F_VAR VTI MESTAMP)
9557 conti nue; 9623 case DI F_OP_PUSHTR:
9624 if (ttop == DI F_DTR_NREGS)
9559 if (dtrace_vtinme_references++ == 0) 9625 return;
9560 dtrace_vti nme_enabl e();
9561 } 9627 if ((srd ==0 || sval == 0) & r1l == DI F_TYPE_STRING {
9562 } 9628 /*
9629 * If the register for the size of the "pushtr"
9564 /* 9630 * is %0 (or the value is 0) and the type is

new usr/src/uts/comon/ dtrace/ dtrace. c 147 new usr/src/uts/comon/ dtrace/ dtrace. c 148

9631 * astring, we'll use the systemw de default 9697 * for our dynanmic variable state, reset the chunk size.
9632 * string size. 9698 */
9633 */ 9699 size = P2ROUNDUP(si ze, sizeof (uint64_t));
9634 tupregs[ttop++].dttk_size =
9635 dtrace_strsize_defaul t; 9701 if (size > vstate->dtvs_dynvars. dtds_chunksi ze)
9636 } else { 9702 vst at e- >dt vs_dynvar s. dt ds_chunksi ze = si ze;
9637 if (srd == 0) 9703 }
9638 return; 9704 }
9640 tupregs[ttop++].dttk_size = sval; 9706 static void
9641 } 9707 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9708 {
9643 br eak; 9709 int i, oldsvars, osz, nsz, otlocals, ntlocals;
9710 uint_t id;
9645 case DI F_OP_PUSHTV:
9646 if (ttop == DI F_DTR_NREGS) 9712 ASSERT(MUTEX_HELD(&dt race_| ock));
9647 return; 9713 ASSERT(dp- >dtdo_buf != NULL && dp >dtdo_len !'= 0);
9649 tupregs[ttop++].dttk_size = 0; 9715 for (i =0; i < dp->dtdo_varlen; i++)
9650 br eak; 9716 dtrace_difv_t *v = &Jp->dtdo_vartab[i];
9717 dtrace_statvar_t *svar, ***svarp;
9652 case DI F_OP_FLUSHTS: 9718 size_t dsize = 0;
9653 ttop = O; 9719 uint8_t scope = v->dtdv_scope;
9654 br eak; 9720 int *np;
9656 case DI F_OP_POPTS: 9722 if ((id = v->dtdv_id) < DI F_VAR OTHER UBASE)
9657 if (ttop 1= 0) 9723 conti nue;
9658 op--;
9659 br eak; 9725 id -= D F_VAR_OTHER_UBASE;
9660 }
9727 switch (scope) {
9662 sval = 0; 9728 case DI FV_SCOPE_THREAD:
9663 srd = 0O; 9729 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9730 dtrace_difv_t *tlocals;
9665 if (nkeys == 0)
9666 conti nue; 9732 if ((ntlocals = (otlocals << 1)) == 0)
9733 ntl ocal s = 1;
9668 /*
9669 * We have a dynanmic variable allocation; calculate its size. 9735 osz = otlocals * sizeof (dtrace_difv_t);
9670 */ 9736 nsz = ntlocals * sizeof (dtrace_difv_t);
9671 for (ksize =0, i =0; i < nkeys; i++)
9672 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9738 tlocals = knmem zal | oc(nsz, KM SLEEP);
9674 size = sizeof (dtrace_dynvar_t); 9740 if (osz !'=0) {
9675 size += sizeof (dtrace_key_t) * (nkeys - 1); 9741 bcopy(vstate->dtvs_tlocal s,
9676 size += ksi ze; 9742 tlocals, 0sz);
9743 kmem free(vstate->dtvs_tl ocals, o0sz);
9678 /* 9744 }
9679 * Now we need to determne the size of the stored data.
9680 =[] 9746 vstate->dtvs_tlocals = tlocals;
9681 id = DIF_INSTR_VAR(instr); 9747 vstate->dtvs_ntlocals = ntlocals;
9748 }
9683 for (i =0; i < dp->dtdo_varlen; i++)
9684 dtrace_difv_t *v = &Jp->dtdo_vartab[i]; 9750 vstate->dtvs_tlocal s[id] = *v;
9751 conti nue;
9686 if (v->dtdv_id == id & v->dtdv_scope == scope) {
9687 size += v->dtdv_type. dtdt_size; 9753 case DI FV_SCOPE_LOCAL:
9688 br eak; 9754 np = &vstate->dtvs_nl ocal s;
9689 } 9755 svarp = &state->dtvs_| ocal S;
9690 }
9757 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF)
9692 if (i == dp->dtdo_varl en) 9758 dsize = NCPU * (v->dtdv_type.dtdt_size +
9693 return; 9759 Si zeof (uint64_t));
9760 el se
9695 /* 9761 dsize = NCPU * sizeof (uint64_t);

9696 * W& have the size. |If this is larger than the chunk size

new usr/src/uts/comon/dtrace/ dtrace. c 149 new usr/src/uts/comon/dtrace/ dtrace.c
9763 br eak;
9830 ASSERT(dp- >dt do_buf != NULL);
9765 case DI FV_SCOPE_GLOBAL: 9831 sz = dp->dtdo_| Ien * sizeof (dif_instr_t);
9766 np = &vstat e->dt vs_ngl obal s; 9832 new >dt do_buf kmem al | oc(sz, KM SLEEP);
9767 svarp = &vstate->dtvs_gl obal s; 9833 bcopy (dp- >dt do buf, new >dt do_buf, sz);
9834 new >dtdo_| en = dp->dtdo_| en;
9769 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF)
9770 dsize = v->dtdv_type. dtdt_size + 9836 if (dp->dtdo_strtab != NULL) {
9771 sizeof (uint64_t); 9837 ASSERT(dp->dtdo_strien != 0);
9838 new >dt do_strtab = kmem al | oc(dp >dtdo_strlen, KM SLEEP);
9773 br eak; 9839 bcopy (dp->dt do_ strtab new >dt do_strtab, dp- >dtdo_str| en);
9840 new >dt do_strlen = dp->dtdo_strlen;
9775 defaul t: 9841 }
9776 ASSERT(0) ;
9777 } 9843 if (dp->dtdo_inttab !'= NULL) {
9844 ASSERT(dp- >dtdo_intlen !'= 0);
9779 while (id >= (oldsvars = *np)) { 9845 sz = dp->dtdo_intlen * sizeof (uint64_t);
9780 dtrace_statvar_t **statics; 9846 new >dtdo_inttab = knem al | oc(sz, KM SLEEP);
9781 int newsvars, oldsize, newsize; 9847 bcopy(dp->dtdo_i nttab new >dt do_| nttab, sz);
9848 new >dtdo_i ntlen = dp->dtdo_intlen;
9783 if ((newsvars = (oldsvars << 1)) == 0) 9849 }
9784 newsvars = 1;
9851 if (dp->dtdo_vartab != NULL) {
9786 ol dsi ze = oldsvars * sizeof (dtrace_statvar_t *); 9852 ASSERT(dp- >dtdo_varlen = 0);
9787 newsi ze = newsvars * sizeof (dtrace_statvar_t *); 9853 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9854 new >dt do_vartab = knem al | oc(sz, KM SLEEP);
9789 statics = kmem zal | oc(newsi ze, KM SLEEP); 9855 bcopy(dp->dt do vartab new >dt do_vartab, sz);
9856 new- >dt do_varl en = dp->dtdo_varl en;
9791 if (oldsize !'=0) { 9857 }
9792 bcopy(*svarp, statics, oldsize);
9793 kmem free(*svarp, ol dsize); 9859 dtrace_difo_init(new, vstate);
9794 } 9860 return (new);
9861 }
9796 *svarp = statics;
9797 *np = newsvars; 9863 static void
9798 } 9864 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9865 {
9800 if ((svar = (*svar p)[id]) == NULL) { 9866 int i;
9801 svar = kmem zal | oc(si zeof (dtrace_statvar_t), KM SLEEP);
9802 svar->dtsv_var = *v; 9868 ASSERT(dp->dtdo_refcnt == 0);
9804 if ((svar->dtsv_size = dsize) != 0) { 9870 for (i =0; i < dp->dtdo_varlen; i++)
9805 svar->dtsv_data = (uint64_t)(uintptr_t) 9871 dtrace_difv_t *v = &p->dtdo_vartab[i];
9806 kmem zal | oc(dsi ze, KM SLEEP); 9872 dtrace_statvar _t *svar, **svarp;
9807 } 9873 uint_tid;
9874 uint8_t scope = v->dtdv_scope;
9809 (*svarp)[id] = svar; 9875 int *np;
9810 }
9877 switch (scope) {
9812 svar - >dt sv_r ef cnt ++; 9878 case DI FV_SCOPE_THREAD:
9813 } 9879 conti nue;
9815 dtrace_di f o_chunksi ze(dp, vstate); 9881 case DI FV_SCOPE_LOCAL:
9816 dtrace_di fo_hol d(dp); 9882 np = &vstate->dtvs_nl ocal s;
9817 } 9883 svarp = vstate->dtvs_| ocal s;
9884 break;
9819 static dtrace_difo_t *
9820 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9886 case DI FV_SCOPE_GLOBAL:
9821 { 9887 np = &vstat e- >dt vs_ngl obal s;
9822 dtrace_difo_t *new, 9888 svarp = vstate->dtvs_gl obal s;
9823 size_t sz; 9889 break;
9825 ASSERT(dp- >dt do_buf != NULL); 9891 defaul t:
9826 ASSERT(dp->dtdo_refcnt != 0); 9892 ASSERT(0) ;
9893 }
9828 new = knem zal | oc(si zeof (dtrace_difo_t), KM SLEEP);

new usr/src/uts/comon/ dtrace/ dtrace. c

9895
9896

9898
9899

9901
9902
9903

9905
9906

9908
9909
9910
9911
9912

9914
9915
9916

9918
9919
9920
9921

9923
9924

9926
9927

9929

9931
9932

9934
9935

9937
9938

9940
9941
9942
9943

9945
9946
9947

9949
9950
9951
9952
9953

9955
9956

9958
9959

}

if ((id = v->dtdv_id) < DI F_VAR OTHER UBASE)
cont i nue;

id -= DI F_VAR OTHER_UBASE;
ASSERT(id < *np);

svar = svarp[id];
ASSERT(svar != NULL);
ASSERT(svar->dtsv_refcnt > 0);

if (--svar->dtsv_refcnt > 0)
conti nue;

if (svar->dtsv_size = 0) {
ASSERT(svar->dtsv_data != NULL);
kmem free((void *)(w ntptr t)svar->dtsv dat a,
svar - >dt sv_si ze);

}

kmem free(svar, sizeof (dtrace_statvar_t));
svarp[id] = NULL;

}

kmem f ree(dp->dt do_buf, dp->dtdo_len * sizeof (dif_instr_t));
kmem f r ee(dp- >dt do_ |nttab dp->dtdo_intlen * sizeof (uint64 t))
kmem free(dp->dtdo_strtab, dp->dtdo_strlen);

kmem free(dp- >dt do_vartab, dp->dtdo_varlen * si zeof (dtrace_difv_t));

kmem free(dp, sizeof (dtrace_difo_t));

static void
dtrace_difo_rel ease(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9928 {

}

/*

int i;
ASSERT(MUTEX_HELD(&t race_| ock));
ASSERT(dp- >dtdo_refcnt != 0);

for (i =0; i < dp->dtdo_varlen; i++) {
dtrace_difv_t *v = &Ip->dtdo_vartab[i];

if (v->dtdv_id != DI F_VAR VTl MESTAWP)
cont i nue;

ASSERT(dtrace_vtine_references > 0);
if (--dtrace_vtine_references == 0)
dtrace_vtime_disabl e();

}

if (--dp->dtdo_refcnt == 0)
dtrace_di fo_destroy(dp, vstate);

DTrace Format Functions

static uintl6_t
dtrace_fornmat_add(dtrace_state_t *state, char *str)
9954 {

char *fnmt, **new,
uintl6_t ndx, len = strlen(str) + 1;

fm = knem zal |l oc(l en, KM SLEEP);
bcopy(str, fnt, len);

new usr/src/uts/comon/dtrace/ dtrace.c 152
9961 (ndx = 0; ndx < state->dts_nformats; ndx++) {

9962 if (state->dts_formats[ndx] == NULL) {

9963 state->dts_formats[ndx] = fnt;

9964 return (ndx + 1);

9965 }

9966 }

9968 if (state->dts_nformats == USHRT_MAX) {

9969 /*

9970 * This is only likely if a denial-of-service attack is being
9971 * attenpted. As such, it’s okay to fail silently here.
9972 */

9973 knemfree(fm len);

9974 return (O

9975 }

9977 /*

9978 * For sinplicity, we always resize the formats array to be exactly the
9979 * nunber of formats.

9980 */

9981 ndx = state->dts_nformats++;

9982 new = kmem al | oc((ndx + 1) * sizeof (char *), KM SLEEP);
9984 if (state->dts_formats != NULL) {

9985 ASSERT(ndx != 0);

9986 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9987 kmem free(state->dts formats ndx * sizeof (char *));
9988 }

9990 state->dts_formats = new,

9991 state->dts_formats[ndx] = fnt;

9993 return (ndx + 1);

9994 }

9996 static void

9997 dtrace_format _renove(dtrace_state t *state, uintl6_t format)

9998

9999 char *fnt;

10001 ASSERT(state->dts_formats != NULL);

10002 ASSERT(format <= state->dts_nfornats);

10003 ASSERT(state->dts_formats[format - 1] != NULL);

10005 fm = state->dts_formats[format - 1];

10006 kmem free(fnt, strlien(fnt) + 1);

10007 state->dts_formats[format - 1] = NULL;

10008 }

10010 static void

10011 dtrace_format_destroy(dtrace_state_t *state)

10012 {

10013 int i;

10015 if (state->dts_nformats == 0) {

10016 ASSERT(st ate->dts_formats == NULL);

10017 return;

10018 }

10020 ASSERT(state->dts_formats != NULL);

10022 for (i =0; i < state->dts_nformats; i++) {

10023 char *fm = state->dts_formats[i];

10025 if (fnmt == NULL)

10026 conti nue;

new usr/src/uts/comon/dtrace/ dtrace. c 153 new usr/src/uts/comon/dtrace/ dtrace. c
10093 }
10028 kmem free(fnt, strlen(fnm) + 1); 10094 }
10029 }
10096 /*
10031 kmem free(state->dts for mats, state->dts_nformats * sizeof (char *)); 10097 * DTrace Action Description Functions
10032 state->dts nformats = 0; 10098 */
10033 state->dts_formats = NULL; 10099 static dtrace_actdesc_t *
10034 } 10100 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10101 uint64_t uarg, uint64_t arg)
10036 /* 10102 {
10037 * DTrace Predicate Functions 10103 dtrace_actdesc_t *act;
10038 */
10039 static dtrace_predicate_t * 10105 ASSERT(! DTRACEACT_| SPRI NTFLI KE(kind) || (arg !'= NULL &&
10040 dtrace_predi cate_create(dtrace_difo_t *dp) 10106 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRI NTA));
10041 {
10042 dtrace_predicate_t *pred; 10108 act = kmem zal | OC(SI zeof (dtrace_actdesc_t), KM SLEEP);
10109 act->dt ad_ki nd = ki nd;
10044 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ; 10110 act->dtad_ntuple = nt upl e;
10045 ASSERT(dp->dtdo_refcnt !="0); 10111 act->dtad_uarg = uarg;
10112 act->dtad_arg = arg;
10047 pred = knem zal | oc(si zeof (dtrace_predicate_t), KM SLEEP); 10113 act->dtad_refcnt = 1;
10048 pred->dtp_difo = dp;
10049 pred->dtp_refcnt = 1; 10115 return (act);
10116 }
10051 if (!dtrace_difo_cacheabl e(dp))
10052 return (pred); 10118 static void
10119 dtrace_actdesc_hol d(dtrace_actdesc_t *act)
10054 if (dtrace_predcache_id == DTRACE_CACHEI DNONE) { 10120 {
10055 /* 10121 ASSERT(act->dtad_refcnt >= 1);
10056 * This is only theoretically possible -- we have had 2732 10122 act - >dt ad_r ef cnt ++;
10057 * cacheabl e predicates on this machine. W cannot allow any 10123 }
10058 * nore predicates to becone cacheable: as unlikely as it is,
10059 * there may be a thread caching a (now stale) predicate cache 10125 static void
10060 * |D. (N.B.: the tenptation is being successfully resisted to 10126 dtrace_actdesc_rel ease(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10061 * have this com_err() "Holy shit -- we executed this code!") 10127 {
10062 */ 10128 dtrace_actkind_t kind = act->dtad_kind;
10063 return (pred); 10129 dtrace_difo_t *dp;
10064 }
10131 ASSERT(act ->dtad_refcnt >= 1);
10066 pred->dt p_cacheid = dtrace_predcache_i d++;
10133 if (--act->dtad_refcnt !'= 0)
10068 return (pred); 10134 return;
10069 }
10136 if ((dp = act->dtad_difo) != NULL)
10071 static void 10137 dtrace_difo_rel ease(dp, vstate);
10072 dtrace_predi cate_hol d(dtrace_predi cate_t *pred)
10073 { 10139 i f (DTRACEACT | SPRI NTFLI KE(ki nd))
10074 ASSERT(MUTEX_HELD(&dt r ace_| ock)) 10140 char *str = (char *)(uintptr_t)act->dtad_arg;
10075 ASSERT(pred->dtp_difo !'= NULL && pred->dtp_difo->dtdo_refcnt != 0);
10076 ASSERT(pred->dtp_refcnt > 0); 10142 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10143 (str == NULL && act->dtad_ki nd == DTRACEACT_PRI NTA));
10078 pred->dt p_r ef cnt ++;
10079 } 10145 if (str !'= NULL)
10146 kmem free(str, strlen(str) + 1);
10081 static void 10147 }
10082 dtrace_predi cate_rel ease(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10083 { 10149 kmem free(act, sizeof (dtrace_actdesc_t));
10084 dtrace_difo_t *dp = pred->dtp_difo; 10150 }
10086 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ; 10152 /*
10087 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10153 * DTrace ECB Functions
10088 ASSERT(pred->dtp_refcnt > 0); 10154 */
10155 static dtrace_ech_t *
10090 if (--pred->dtp_refcnt == 0) { 10156 dtrace_ech_add(dtrace state t *state, dtrace_probe_t *probe)
10091 dtrace_difo_rel ease(pred->dtp_difo, vstate); 10157 {
10092 kmem free(pred, sizeof (dtrace_predicate_t)); 10158 dtrace_ecb_t *ech;

new usr/src/uts/comon/ dtrace/ dtrace. c

10159
10161

10163
10164
10165

10167
10168
10169
10170
10171
10172

10174

10176
10177
10178

10180

10182
10183
10184
10185

10187

10189
10190

10192
10193

10195
10196
10197
10198
10199
10200
10201
10202
10203
10204

10206
10207

10209
10210
10211

10213
10215
10216
10217

10219
10220 }

dtrace_epid_t epid;
ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

ecb = kmem zal | oc(si zeof (dtrace_ecb_t), KM SLEEP);
ech->dte_predi cate = NULL;
ecb->dt e_probe = probe;

/*

* The default size is the size of the default action: recording
* the header.

*/

ecb->dte_size = ech->dte_needed = sizeof (dtrace_rechdr_t);
ech->dte_al i gnnment = sizeof (dtrace_epid_t);

epid = state->dts_epi d++;

if (epid - 1 >= state->dts_necbs) {
dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
int necbs = state->dts_necbs << 1;

ASSERT(epid == state->dts_nechs + 1);

if (necbs == {
ASSERT(oecbs == NULL);
nechs = 1;

}

ecbs = kmem zal | oc(necbs * sizeof (*ecbs), KM SLEEP);

if (oechs != NULL)

bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*echs));

dtrace_nenbar producer()
state->dts_ecbs = ecbs;

if (oecb/s I'= NULL) {

* If this state is active, we nust dtrace_sync()

* before we can free the old dts_ecbhs array: we're
* comng in hot, and there may be active ring

* buffer processing (which indexes into the dts_echs
* array) on anot her CPU.

*

f

(state->dts_activity ! = DTRACE_ACTI VI TY_I NACTI VE)
dtrace_sync();

kmem free(oecbs, state->dts_necbs * sizeof (*ecbs));

}

dt race_nenbar _producer () ;
st at e- >dt s_necbs = necbs;

}

ecbh->dte_state = state;

ASSERT(st at e->dts_ecbs[epid - 1] == NULL);

dt race_nenbar _producer () ;
state->dts_echs[(ech->dte_epid = epid) - 1] = ecb;

return (ech);

10222 static int
10223 dtrace_ech_enabl e(dtrace_ecb_t *ech)

10224 {

new usr/src/uts/comon/dtrace/ dtrace.c 156
10225 dtrace_probe_t *probe = ech->dte_probe;

10227 ASSERT(MUTEX_HELD(&pu_l ock)) ;

10228 ASSERT(MUTEX_HELD(&dt r ace_| ock))

10229 ASSERT(ech- >dt e_next == NULL);

10231 if (probe == NULL) {

10232 /*

10233 * This is the NULL probe -- there's nothing to do.

10234 */

10235 return (0);

10236 }

10238 if (probe->dtpr_ecb == NULL) {

10239 dtrace_provider_t *prov = probe->dtpr_provider;

10241 /*

10242 * W're the first ECB on this probe.

10243 */

10244 probe- >dt pr_ecb = probe->dtpr_ecb_| ast = ecb;

10246 if (echb->dte_predicate != NULL)

10247 probe- >dt pr_predcache = ecb->dte_predi cat e->dt p_cachei d;
10249 return (prov->dtpv_pops. dt ps_enabl e(prov->dtpv_arg,

10250 probe->dtpr_id, probe->dtpr_arg));

10251 } else {

10252 /*

10253 * This probe is already active. Swing the |ast pointer to
10254 * point to the new ECB, and issue a dtrace_sync() to assure
10255 * that all CPUs have seen the change.

10256 */

10257 ASSERT(probe->dtpr_ecb_l ast != NULL)

10258 probe->dt pr_ech_| ast->dt e_next = ecb;

10259 probe->dt pr_ecb_| ast = ech;

10260 pr obe- >dt pr_predcache = 0;

10262 dtrace_sync();

10263 return (0);

10264 }

10265 }

10267 static void

10268 dtrace_ech_resi ze(dtrace_ecb_t *ech)

10269 {

10270 dtrace_action_t *act;

10271 ui nt 32_t curneeded = Ul NT32_MAX;

10272 ui nt 32_t aggbase = Ul NT32_MAX;

10274 /*

10275 * |f we record anything, we always record the dtrace_rechdr_t. (And
10276 * we always record it first.)

10277 */

10278 ecb->dte_size = sizeof (dtrace_rechdr_t);

10279 ecb->dte_al i gnment = sizeof (dtrace_epid_t);

10281 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10282 dtrace_recdesc_t *rec = &act->dta_rec;

10283 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignnent == 1);
10285 ecb->dte_al i gnment = MAX(ecb->dte_alignment,

10286 rec->dtrd_al i gnnment);

10288 i f (DTRACEACT_| SAGH act ->dta_ki nd)) {

10289 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;

new usr/src/uts/comon/ dtrace/ dtrace. c 157

10291
10292
10293
10294
10295

10297

10299
10300
10301
10302

10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317

10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329

10331
10332
10333
10334
10335
10336
10337

10339
10340
10341
10342
10343
10344
10345
10346
10347

10349
10350
10351
10352
10353 }

ASSERT(rec->dtrd_size !'= 0);
ASSERT(agg->dtag_first != NULL);
ASSERT(act - >dt a_prev->dta_i ntupl e);
ASSERT(aggbase ! = Ul NT32_MAX) ;
ASSERT(cur needed != Ul NT32_MAX) ;

agg- >dt ag_base = aggbase;

curneeded = P2ROUNDUP(cur needed, rec->dtrd_alignnent);
rec->dtrd_of fset = curneeded;

curneeded += rec->dtrd_si ze;

ecb->dt e_needed = MAX(ech->dte_needed, curneeded);

aggbase = Ul NT32_MAX;
curneeded = Ul NT32_MAX;
} else if (act->dta_intuple) {
if (curneeded == Ul NT32_MAX) {
/*

* This is the first record in a tuple. Align
* curneeded to be at offset 4 in an 8-byte

* aligned bl ock.

*/

ASSERT(act ->dta_prev == NULL ||
lact->dta_prev->dta_i ntuple);

ASSERT3U(aggbase, ==, U NT32_MAX);

curneeded = P2PHASEUP(ecbh- >dt e_si ze,

si zeof (uint64_t), sizeof (dtrace_aggid_t));

aggbase = curneeded - sizeof (dtrace_aggid_t);
ASSERT(| S_P2ALI GNED(aggbase,
sizeof (uint64_t)));

}
curneeded = P2ROUNDUP(cur needed, rec->dtrd_alignnment);
rec->dtrd_of f set = curneeded;
curneeded += rec->dtrd_si ze;

} else {
/* tuples nust be foll owed by an aggregation */
ASSERT(act->dta_prev == NULL ||

lact->dta_prev->dta_intuple);

ech->dte_si ze = P2ROUNDUP(ech- >dt e_si ze,
rec->dtrd_al i gnnent);
rec->dtrd_of fset = ech->dte_size;
ech->dte_size += rec->dtrd_si ze;
ecb->dt e_needed = MAX(ech->dte_needed, ecb->dte_size);

}

if ((act = ecb->dte_action) != NULL &&
I (act->dta_ki nd == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
ecbh->dte_size == sizeof (dtrace_rechdr_t)) {
*

* If the size is still sizeof (dtrace_rechdr_t), then all
* actions store no data; set the size to 0

*/

ech->dte_size = 0;

}

ech->dte_si ze = P2ROUNDUP(ech- >dt e_si ze, sizeof (dtrace_epid_t));
ech- >dt e_needed = PZROJNDUP(ech->dt e_needed, (sizeof (dtrace_epi d | t)));
ech->dte_stat e- >dts needed = MAX(ecb->dte_ state- >dt s_needed,

ech->dt e_needed);

10355 static dtrace_action_t *
10356 dtrace_ech_aggregati on_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)

new usr/src/uts/comon/dtrace/ dtrace.c 158
10357 {

10358 dtrace_aggregati on_t *agg;

10359 size_t size = sizeof (uint64_t);

10360 int ntuple = desc->dtad_ntuple;

10361 dtrace_action_t *act;

10362 dtrace_recdesc_t *frec;

10363 dtrace_aggi d_t aggid;

10364 dtrace_state_t *state = ecbh->dte_state;

10366 agg = kmem zal | oc(si zeof (dtrace_aggregation_t), KM SLEEP);

10367 agg- >dt ag_ecb = echb;

10369 ASSERT(DTRACEACT_| SAGE desc- >dt ad_ki nd)) ;

10371 switch (desc->dt ad ki nd) {

10372 case DTRACEAGG M N:

10373 agg- >dt. ag_l nitial = | NT64_MAX;

10374 agg- >dt ag_aggr egat e = dtrace_aggregate_min;

10375 break;

10377 case DTRACEAGG MAX:

10378 agg->dtag_initial = INT64_M N,

10379 agg- >dt ag_aggregate = dtrace_aggregat e_nmax;

10380 br eak;

10382 case DTRACEAGG _COUNT:

10383 agg- >dt ag_aggregate = dtrace_aggregat e_count;

10384 br eak;

10386 case DTRACEAGG QUANTI ZE:

10387 agg- >dt ag_aggregat e = dtrace_aggregat e_quanti ze;

10388 size = (((sizeof (uin6 t) * NBBY) - 1) * 2 + 1) *
10389 sizeof (uint64_t);

10390 br eak;

10392 case DTRACEAGG LQUANTI ZE: {

10393 uint16_t step = DTRACE_LQUANTI ZE_STEP(desc->dt ad_arg);
10394 uint16_t levels = DTRACE_LQUANTI ZE LEVELS(desc->dtad_arg);
10396 agg->dtag_initial = desc->dtad_arg;

10397 agg- >dt ag_ aggregate = dtrace_aggregate_| quanti ze;

10399 if (step == 0 || levels == 0)

10400 goto err;

10402 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10403 br eak;

10404 }

10406 case DTRACEAGG LLQUANTI ZE: {

10407 uint16_t factor = DITRACE_LLQUANTI ZE_FACTOR(desc->dtad_arg);
10408 uint16_t | ow = DTRACE_LLQUANTI ZE_LON desc- >dt ad_arg) ;
10409 uint16_t high = DTRACE LLQUANTI ZE_HI GH(desc- >dt ad_arg) ;
10410 uint16_t nsteps = DTRACE_LLQUANTI ZE_NSTEP(desc- >dt ad arg)
10411 inté4_t v;

10413 agg->dtag_initial = desc->dtad_arg;

10414 agg- >dt ag_aggregate = dtrace_aggregate_| | quanti ze;

10416 if (factor < 2 || low >= high || nsteps < factor)

10417 goto err;

10419 /*

10420 * Now check that the nunmber of steps evenly divides a power
10421 * of the factor. (This assures both integer bucket size and
10422 * linearity within each nagnitude.)

new usr/src/uts/comon/ dtrace/ dtrace. c

10423
10424
10425

10427
10428

10430
10431
10432
10433

10435
10436
10437
10438

10440
10441
10442
10443

10445
10446
10447

10449
10450
10451

10453

10455
10456

10458
10459
10460
10461
10462
10463

10465
10466
10467
10468
10469
10470
10471
10472

10474
10475
10476
10477
10478
10479
10480

10482
10483
10484
10485
10486
10487
10488

err:

success:

*/

for (v = factor; v < nsteps; v *= factor)
continue;

if ((v %nsteps) || (nsteps %factor))
goto err;

size = (dtrace_aggregate_| | quanti ze_bucket (factor,
low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
br eak;

}

case DTRACEAGG AVG
agg- >dt ag_aggregate = dtrace_aggregate_avg;
size = sizeof (uint64_t) * 2;
br eak;

case DTRACEAGG STDDEV:
agg- >dt ag_aggregate = dtrace_aggregat e_st ddev;
size = sizeof (uint64_t) * 4;
br eak;

case DTRACEAGG _SUM
agg- >dt ag_aggregate =
br eak;

dtrace_aggr egat e_sum

defaul t:
goto err;
}

agg- >dtag_action.dta_rec.dtrd_size = size;

if (ntuple == 0)

goto err;
/*
* We nust neke sure that we have enough actions for the n-tuple.
*
for (act = ecb->dte_action_|last; act != NULL; act = act->dta_prev) {
i f (DTRACEACT_I| SAGH act - >dt a_ki nd))
br eak;

if (--ntuple == 0) {
/*
* This is the action wi th which our n-tuple begins.
*
/

agg->dtag_first = act;
goto success;

}

| *

* This n-tuple is short by ntuple elenents. Return failure.
*/

ASSERT(ntuple !'= 0);
kmem free(agg, sizeof (dtrace_aggregation_t));
return (NULL);

/*

* |f the last action in the tuple has a size of zero, it’'s actually
* an expression argunment for the aggregating action.

=

ASSERT(ecb->dte_action_l ast != NULL);
act = ech->dte_action_last;

new usr/src/uts/comon/ dtrace/ dtrace. c

10490
10491

10493
10494
10495

10497
10498
10499
10500
10501

10503
10504
10505
10506
10507

10509

10511
10512
10513
10514

10516

10518
10519
10520
10521

10523
10524
10525

10527
10528

10530
10531
10532

10534
10535
10536
10537

10539
10540 }

if (act->dta_kind == DTRACEACT_DI FEXPR) {
ASSERT(act->dta_difo ! = NULL)

if (act->dta_difo->dtdo rtype dtdt _size == 0)
agg- >dt ag_hasarg =
}

/*
* W need to allocate an id for this aggregation.
*
/
aggid = (dtrace_aggid_t)(uintptr_t)vmem all oc(state->dts_aggi d_arena,
VM BESTFI T | VM SLEEP);

if (aggid - 1 >= state->dts_naggregations) {
dtrace_aggregation_t **oaggs = state->dts_aggregations;
dtrace_aggregation_t **aggs;
int naggs = state->dts_naggregations << 1;
int onaggs = state->dts_naggregations;

ASSERT(aggi d == state->dts_naggregations + 1);

if (naggs == 0) {
ASSERT(0oaggs == NULL);
naggs = 1;

}

aggs = kmem zal | oc(naggs * sizeof (*aggs), KM SLEEP);
if (oaggs != NULL) {
bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
kmem free(oaggs, onaggs * sizeof (*aggs));

}

st at e- >dt s_aggr egati ons = aggs;
st at e- >dt s_naggr egat i ons = naggs;

}

ASSERT(st at e- >dt s_aggregati ons[aggid - 1] == NULL);
st at e- >dt s_aggregati ons[(agg->dtag_id = aggid) - 1] = agg;

frec = &gg->dtag_first->dta_rec;
if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
frec->dtrd_alignnent = sizeof (dtrace_aggid_t);

(act = agg->dtag_first; act != NULL; act = act->dta_next) {
ASSERT(! act->dta_i ntupl e);
act->dta_intuple = 1;

}
return (&agg->dtag_action);

10542 static void
10543 dtrace_ech_aggregati on_destroy(dtrace_ech_t *ecb, dtrace_action_t *act)

10544 {
10545
10546
10547

10549
10550

10552
10553

dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
dtrace_state_t *state = ecbh->dte_state;
dtrace_aggi d_t aggi d = agg->dtag_i d;

ASSERT(DTRACEACT | SAGH act - >dt a_ki nd)) ;
viem free(state->dts_aggi d_arena, (v0|d *)(uintptr_t)aggid, 1);

ASSERT(st at e- >dt s aggregatlons[aggl d - 1] == agg);
state->dts_aggregations[aggid - 1] = NULL;

160

1,

new usr/src/uts/comon/dtrace/ dtrace. c 161 new usr/src/uts/comon/dtrace/ dtrace.c 162
10555 kmem free(agg, sizeof (dtrace_aggregation_t)); 10621 case DTRACEACT_LI BACT:
10556 } 10622 case DTRACEACT_TRACEMEM
10623 case DTRACEACT_TRACEMEM DYNSI ZE:
10558 static int 10624 if (dp == NULL)
10559 dtrace_ecbh_action_add(dtrace_ecb_t *ech, dtrace_actdesc_t *desc) 10625 return (EI NVAL);
10560 {
10561 dtrace_action_t *action, *last; 10627 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10562 dtrace_difo_t *dp = desc->dtad_difo; 10628 br eak;
10563 uint32_t size = 0, align = sizeof (uint8_t), mask;
10564 uintl6_t format = O; 10630 if (dp->dtdo_rtype.dtdt_kind == DI F TYPE STRI NG
10565 dtrace_recdesc_t *rec; 10631 if (T(dp->dtdo_rtype.dtdt_flags & DI F_TF_BYREF))
10566 dtrace_state_t *state = ecbh->dte_state; 10632 return (ElINVAL);
10567 dtrace_optval _t *opt = state->dts_options, nfranes, strsize;
10568 uint64_t arg = desc->dtad_arg; 10634 si ze = opt [DTRACEOPT_STRSI ZE] ;
10635 }
10570 ASSERT(MUTEX_HELD(&dtrace I ock));
10571 ASSERT(ecb->dte_action == NULL | | ech->dte_action->dta_refcnt == 1); 10637 br eak;
10573 i f (DTRACEACT | SAGH desc->dt ad_ki nd)) { 10639 case DTRACEACT_STACK:
10574 | * 10640 if ((nframes = arg) == 0) {
10575 * |f this is an aggregating action, there nust be neither 10641 nframes = opt [DTRACEOPT_STACKFRAMES] ;
10576 * a speculate nor a conmit on the action chain. 10642 ASSERT(nfranes > 0);
10577 Bl 10643 arg = nfranes;
10578 dtrace_action_t *act; 10644 }
10580 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10646 size = nframes * sizeof (pc_t);
10581 if (act->dta_ki nd == DTRACEACT_COW T) 10647 br eak;
10582 return (EI NVAL);
10649 case DTRACEACT_JSTACK:
10584 if (act->dta_kind == DTRACEACT_SPECULATE) 10650 if ((strsize = DTRACE_USTACK_STRSI ZE(arg)) ==
10585 return (ElINVAL); 10651 strsize = opt [DTRACEOPT_JSTACKSTRSI ZE]
10586 1
10653 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10588 action = dtrace_ecb_aggregati on_create(ech, desc); 10654 nframes = opt [DTRACEOPT_JSTACKFRAMES] ;
10590 if (action == NULL) 10656 arg = DTRACE_USTACK_ARG nfranes, strsize);
10591 return (EINVAL);
10592 } else { 10658 [* FALLTHROUGH* /
10593 i f (DTRACEACT_| SDESTRUCTI VE(desc->dt ad_ki nd) || 10659 case DTRACEACT_USTACK:
10594 (desc- >dt ad_ki nd == DTRACEACT_DI FEXPR && 10660 if (desc->dtad_kind ! = DTRACEACT_JSTACK &&
10595 dp !'= NULL & dp->dtdo_destructive)) { 10661 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10596 state->dts_destructive = 1; 10662 strsize = DTRACE_USTACK_STRSI ZE(arg)
10597 } 10663 nframes = opt|[DTRACEODT_USTACKFRAI\/ES]
10664 ASSERT(nfranes > 0);
10599 switch (desc->dtad_kind) { 10665 arg = DTRACE_USTACK_ARGQ nfranes, strsize);
10600 case DTRACEACT_ PRI NTF: 10666 }
10601 case DTRACEACT_PRI NTA:
10602 case DTRACEACT_SYSTEM 10668 I*
10603 case DTRACEACT_FREOPEN: 10669 * Save a slot for the pid.
10604 case DTRACEACT_DI FEXPR: 10670 */
10605 1* 10671 size = (nframes + 1) * sizeof (uint64_t);
10606 * We know that our arg is a string -- turnit into a 10672 si ze += DTRACE_USTACK_STRSI ZE(ar g) ;
10607 * format. 10673 size = P2ROUNDUP(si ze, (uint 32_t)(5| zeof (uintptr_t)));
10608 */
10609 if (arg == NULL) { 10675 br eak;
10610 ASSERT(desc- >dt ad_ki nd == DTRACEACT_PRI NTA | |
10611 desc->dt ad_ki nd == DTRACEACT_DI FEXPR) ; 10677 case DTRACEACT_SYM
10612 format = O; 10678 case DTRACEACT_MOD:
10613 } else { 10679 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10614 ASSERT(arg != NULL); 10680 sizeof (uint64_t)) ||
10615 ASSERT(arg > KERNELBASE) ; 10681 (dp->dtdo_rtype.dtdt_flags & DI F_TF_BYREF))
10616 format = dtrace_fornmat_add(state, 10682 return (ElNVAL);
10617 (char *)(uintptr_t)arg); 10683 br eak;
10618 }
10685 case DTRACEACT_USYM
10620 [* FALLTHROUGH* / 10686 case DTRACEACT_UMOD:

new usr/src/uts/comon/ dtrace/ dtrace. c 163

10687
10688
10689
10690
10691

10693
10694
10695
10696
10697
10698
10699
10700

10702
10703
10704
10705

10707
10708
10709
10710
10711
10712

10714
10715
10716
10717
10718
10719

10721
10722
10723

10725
10726

10728
10729

10731
10732

10734
10735
10736
10737

10739
10740
10741
10742

10744
10745
10746

10748
10749
10750
10751
10752

case

case

case

case

}

DTRACEACT_UADDR:
if (dp == NULL ||
(dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
(dp->dtdo_rtype.dtdt_flags & D F_TF_BYREF))
return (EI NVAL);

/*

* We have a slot for the pid, plus a slot for the

* argunment. To keep things sinple (aligned with

* bitness-neutral sizing), we store each as a 64-bit
* quantity.

*

/

size = 2 * sizeof (uint64_t);
br eak;

DTRACEACT_STOP:
DTRACEACT_BREAKPQO NT:
DTRACEACT_PANI C:

br eak;

DTRACEACT_CHI LL:
DTRACEACT_DI SCARD:
DTRACEACT_RAI SE:
if (dp == NULL)
return (EI NVAL);
br eak;

DTRACEACT_EXI T:
if (dp == NULL ||
(size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
(dp->dtdo_rtype. dtdt_flags & DI F_TF_BYREF))
return (ElNVAL);
br eak;

DTRACEACT_SPECULATE:
if (ecb->dte_size > sizeof (dtrace_rechdr_t))
return (EI NVAL);

if (dp == NULL)
return (ElINVAL);

state->dts_specul ates = 1;
br eak;

DTRACEACT_COW T: {
dtrace_action_t *act = ecb->dte_action;

for (; act != NULL; act = act->dta_next) {
if (act->dta_kind == DTRACEACT_COW T)
return (EI NVAL);
}

if (dp == NULL)
return (EINVAL);
br eak;

defaul t:

}

return (El NVAL);

if (size !=0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
/*

* If this is a data-storing action or a specul ate,
* we nmust be sure that there isn't a coonmt on the
* action chain.

new usr/src/uts/comon/dtrace/ dtrace.c 164
10753 */

10754 dtrace_action_t *act = ecb->dte_action;

10756 for (; act != NULL; act = act->dta_next) {
10757 if (act->dta_kind == DTRACEACT_COWM T)
10758 return (EINVAL);

10759 }

10760 }

10762 action = knmem zal | oc(si zeof (dtrace_action_t), KM SLEEP);
10763 action->dta_rec.dtrd_size = size;

10764 }

10766 action->dta_refcnt = 1;

10767 rec = &action->dta_rec;

10768 size = rec->dtrd_si ze;

10770 for (mask = sizeof (uint64_t) - 1, size != 0 & mask > 0; nmask >>= 1) {
10771 if (!(size & mask)) {

10772 align = mask + 1;

10773 br eak;

10774 }

10775 }

10777 action->dta_ki nd = desc->dt ad_ki nd;

10779 if ((action->dta_difo = dp) != NULL)

10780 dtrace_di fo_hol d(dp);

10782 rec->dtrd_action = action->dta_kind;

10783 rec->dtrd_arg = arg;

10784 rec->dtrd_uarg = desc->dtad_uarg;

10785 rec->dtrd_al i gnnment = (uint16_t)align;

10786 rec->dtrd_format = format;

10788 if ((last = ecb->dte_action_last) != NULL) {

10789 ASSERT(ecbh->dte_action ! = NULL);

10790 action->dta_prev = | ast;

10791 | ast->dta_next = action;

10792 } else {

10793 ASSERT(ecb->dte_acti on == NULL);

10794 ecb->dte_action = action;

10795 }

10797 ecb->dte_action_l ast = action;

10799 return (0);

10800 }

10802 static void

10803 dtrace_ech_action_renpve(dtrace_ecbh_t *ecbh)

10804 {

10805 dtrace_action_t *act = ecb->dte_action, *next;

10806 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;

10807 dtrace_difo_t *dp;

10808 uint16_t format;

10810 if (act !'= NULL && act->dta_refcnt > 1)

10811 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10812 act->dta_refcnt--;

10813 } else {

10814 for (; act !'= NULL; act = next) {

10815 next = act->dta_next;

10816 ASSERT(next != NULL || act == ecb->dte_action_|ast);
10817 ASSERT(act->dta_refcnt == ;

new usr/src/uts/comon/ dtrace/ dtrace. c

10819
10820

10822
10823

10825
10826
10827
10828
10829
10830
10831

10833
10834
10835
10836

10838
10839

10841
10842
10843
10844
10845

10847

10849
10850
10851
10852
10853
10854

10856
10857
10858
10859
10860

10862

10864
10865
10866
10867
10868

10870
10871
10872
10873

10875
10876
10877
10878
10879

10881
10882
10883
10884

}

if ((format = act->dta_rec.dtrd_format) != 0)
dtrace_f ormat _renove(ech->dte_state,

if ((dp = act->dta_difo) != NULL)
dtrace_di fo_rel ease(dp, vstate);
i f (DTRACEACT_I SAGH act ->dta_kind)) {
dtrace_ecb_aggregati on_destroy(ech, act);
} else {

kmem free(act, sizeof (dtrace_action_t));
}

}

ech->dte_acti on = NULL;
ecb->dte_action_l ast = NULL;
ecb->dte_si ze = 0;

static void
dtrace_ech_di sabl e(dtrace_echb_t *ech)
10840 {

/*

* We disable the ECB by renmoving it fromits probe.
*

/

dtrace_ecb_t *pecb, *prev = NULL;
dtrace_probe_t *probe = ecb->dte_probe;

ASSERT(MUTEX_HELD(&t r ace_| ock)) ;
if (probe == NULL) {
/*

* This is the NULL probe; there is nothing to disable.

*/
return;
}
for (pecb = probe->dtpr_ecb; pecb !'= NULL; pecb = pecbh->dte_next) {
if (pecb == ech)
br eak;
prev = pecb;
}

ASSERT(pecb != NULL);

if (prev == NULL) {

probe- >dt pr _ecb = ecb->dte_next;

} else {
prev->dte_next = ecb->dte_next;

}

if (ecb == probe->dtpr_ecb_last) {
ASSERT(ecb->dt e_next == NULL);
probe->dt pr_ecb_l ast = prey;

}

/*

* The ECB has been di sconnected fromthe probe; now sync to assure
* that all CPUs have seen the change before returning.
*/
dtrace_sync();
if (probe->dtpr_ecb == NULL) {
/*
* That was the | ast ECB on the probe; clear the predicate
* cache ID for the probe, disable it and sync one nore tine

165

format);

new usr/src/uts/comon/ dtrace/ dtrace. c

10885
10886
10887

10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902

10904
10905

10907

10909
10910
10911

10913
10914
10915

10917
10918

10920
10921
10922
10923

10925
10926
10927

10929
10930

10932

10934
10935

10937
10938

10940
10941
10942
10943
10944
10945
10946
10947
10948

10950

}

* to assure that we'll never hit
S

dtrace_provider_t *prov = probe->dtpr_pr

ASSERT(ecbh- >dt e_next == NULL);
ASSERT(pr obe- >dt pr _ecb_| ast == NULL);

it again.

ovi der;

probe- >dt pr _predcache = DTRACE_CACHEI DNONE;

prov- >dt pv_pops. dt ps_di sabl e(pr ov- >dt pv
probe->dtpr_id, probe->dtpr_arg);
dtrace_sync();
} else {
/*

* There is at |east
* is _exactly_ one,
* the predicate cache ID of the remaini
*/

ASSERT(pr obe->dt pr_ecb_l ast !'= NULL);

_arg,

one ECB renmining on the probe.
set the probe’s predicate cache ID to be

ng ECB.

ASSERT(pr obe- >dt pr _predcache == DTRACE CACHEI DNONE) ;

if (probe->dtpr_ech ==
dtrace_predicate_t *p

probe->dt pr_echb_|

ASSERT(pr obe- >dt pr _ecbh- >dt e_next
if (p !'= NULL)
pr obe- >dt pr _predcache =
}

ecb->dt e_next = NULL;

static void
dtrace_ech_destroy(dtrace_ech_t *ech)
10919 {

}

dtrace_state_t *state = ecb->dte_state;
dtrace_vstate_t *vstate = &state->dts_vstate;
dtrace_predicate_t *pred;

dtrace_epid_t epid = ecb->dte_epid;

ASSERT(MUTEX_HELD(&t r ace_| ock)) ;
ASSERT(ech- >dt e_next == NULL)
ASSERT(ech- >dt e_probe == NULL ||

if ((pred = ecb->dte_predicate) != NULL)

dtrace_predicate_rel ease(pred, vstate);
dtrace_ecb_action_renove(ech);
ASSERT(st at e- >dt s_ecbs[epi d - 1] == ech);

state->dts_ecbs[epid - 1] = NULL

kmem free(ech, sizeof (dtrace_ecb_t));

static dtrace_ecb_t *

dtrace_ech_creat e(dtrace state_t

{

*state, dtrace_probe_t

dtrace_enabl i ng_t *enab)

dtrace_ecb_t *ecb;

dtrace_predicate_t *pred;

dtrace_actdesc_t *act;

dtrace_provider_t *prov;

dtrace_echdesc_t *desc = enab->dten_current;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

ast)

== NULL);

If there

{
= probe->dt pr_ecbh->dte_predicate;

p- >dt p_cachei d;

*pr obe,

ech->dt e_probe->dtpr_ecb != ecb);

new usr/src/uts/comon/dtrace/ dtrace. c 167
10951 ASSERT(state != NULL)

10953 ecb = dtrace_ecb_add(state, probe);

10954 ecb->dte_uarg = desc->dted_uarg;

10956 if ((pred = desc->dted_pred. dtpdd_predicate) != NULL) {

10957 dtrace_predicate_hol d(pred);

10958 ech->dte_predi cate = pred;

10959 }

10961 if (probe !'= NULL) {

10962 /*

10963 * |f the provider shows nore leg than the consunmer is old
10964 * enough to see, we need to enable the appropriate inplicit
10965 * predicate bits to prevent the ecb fromactivating at
10966 * revealing tines.

10967 *

10968 * Providers specifying DTRACE_PRI V_USER at register tinme
10969 * are stating that they need the /proc-style privilege
10970 * model to be enforced, and this is what DTRACE_COND OANER
10971 * and DTRACE_COND ZONEOWNER wi I | then do at probe tine.
10972 */

10973 prov = probe->dtpr_provider;

10974 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10975 (prov->dtpv_priv.dtpp_flags & DTRACE_PRI V_USER))

10976 ecb->dte_cond | = DTRACE_COND OM\ER;

10978 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10979 (prov->dtpv_priv.dtpp_flags & DTRACE_PRI V_USER))

10980 ech->dte_cond | = DTRACE_COND_ZONEOWNER;

10982 /*

10983 * |If the provider shows us kernel innards and the user
10984 * is lacking sufficient privilege, enable the

10985 * DTRACE_COND_USERMODE i nplicit predicate.

10986 */

10987 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10988 (prov->dtpv_priv.dtpp_flags & DTRACE_PRI V_KERNEL))
10989 ech->dte_cond | = DTRACE_COND_USERMODE;

10990 }

10992 if (dtrace_ecb_create_cache != NULL) {

10993 /*

10994 * |f we have a cached ecbh, we’'ll use its action |list instead
10995 * of creating our own (saving both time and space).

10996 */

10997 dtrace_ecb_t *cached = dtrace_ecb_create_cache;

10998 dtrace_action_t *act = cached->dte_action;

11000 if (act !'= NULL)

11001 ASSERT(act->dta_refcnt > 0);

11002 act->dt a_refcnt ++;

11003 ecb->dte_action = act;

11004 ecb->dte_action_l ast = cached->dte_action_| ast;
11005 ech->dt e_needed = cached->dt e_needed;

11006 ech->dte_si ze = cached- >dte_si ze;

11007 ech->dte_al i gnment = cached->dte_al i gnnent;

11008 }

11010 return (ech);

11011 }

11013 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11014 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0)
11015 dtrace_ecb_destroy(ecb);

11016 return (NULL);

{

new usr/src/uts/comon/dtrace/ dtrace.c 168
11017 }

11018 }

11020 dtrace_ecb_resize(ech);

11022 return (dtrace_ech_create_cache = ech);

11023 }

11025 static int

11026 dtrace_ech_create_enabl e(dtrace_probe_t *probe, void *arg)

11027 {

11028 dtrace_ecbh_t *ech;

11029 dtrace_enabling_t *enab = arg;

11030 dtrace_state_t *state = enab->dten_vstate->dtvs_state;

11032 ASSERT(state != NULL)

11034 if (probe !'= NULL && probe->dtpr_gen < enab->dten_probegen) {
11035 I *

11036 * This probe was created in a generation for which this
11037 * enabling has previously created ECBs; we don’t want to
11038 * enable it again, so just kick out.

11039 */

11040 return (DTRACE_MATCH_NEXT)

11041 }

11043 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)

11044 return (DTRACE_MATCH DONE) ;

11046 if (dtrace_ecb_enabl e(ech) < 0)

11047 return (DTRACE_MATCH FAIL);

11049 return (DTRACE_MATCH_NEXT) ;

11050 }

11052 static dtrace_ecb_t *

11053 dtrace_epi d2ecb(dtrace_state_t *state, dtrace_epid_t id)

11054 {

11055 dtrace_ecb_t *ecb;

11057 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

11059 if (id==0]| id > state->dts_necbs)

11060 return (NULL);

11062 ASSERT(st at e->dts_necbs > 0 &% state->dts_ecbs != NULL);

11063 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb- Sdte _epid == id);
11065 return (state->dts_ecbs[id - 1]);

11066 }

11068 static dtrace_aggregation_t *

11069 dtrace_aggi d2agg(dtrace_state t *state, dtrace_aggid_t id)

11070 {

11071 dtrace_aggregation_t *agg;

11073 ASSERT(MUTEX_HELD(&dt r ace_| ock));

11075 if (id==0]| id > state->dts_naggregations)

11076 return (NULL);

11078 ASSERT(st at e- >dt s_naggregati ons > 0 & state->dts_aggregati ons != NULL);
11079 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||

11080 agg->dtag_id == id);

11082 return (state->dts_aggregations[id - 1]);

new usr/src/uts/comon/dtrace/ dtrace. c 169 new usr/src/uts/comon/dtrace/ dtrace. c

11083 } 11149 buf ->dtb_flags & ~DTRACEBUF_| NACTI VE;
11150 }

11085 /*

11086 * DTrace Buffer Functions 11152 dtrace_i nterrupt _enabl e(cooki e);

11087 * 11153 }

11088 * The foll ow ng functions mani pul ate DIrace buffers. Mst of these functions

11089 * are called in the context of establishing or processing consumer state; 11155 static int

11090 * exceptions are explicitly noted. 11156 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,

11091 */ 11157 processorid_t cpu, int *factor)
11158 {

11093 /* 11159 cpu_t *cp;

11094 * Note: <called fromcross call context. This function switches the two 11160 dtrace_buffer_t *buf;

11095 * buffers on a given CPU. The atomicity of this operation is assured by 11161 int allTocated = 0, desired = 0;

11096 * disabling interrupts while the actual switch takes place; the disabling of

11097 * interrupts serializes the execution with any execution of dtrace_probe() on 11163 ASSERT(MUTEX_HELD(&pu_I ock)) ;

11098 */the same CPU. 11164 ASSERT(MUTEX_HELD(&dt r ace_l ock)) ;

11099 *

11100 static void 11166 *factor = 1;

11101 dtrace_buffer_swi tch(dtrace_buffer_t *buf)

11102 { 11168 if (size > dtrace_nonroot_naxsize &&

11103 caddr _t tonmax = buf->dtb_t omax; 11169 I PRI V_PCLI CY_CHO CE(CRED(), PRIV_ALL, B _FALSE))

11104 caddr _t xanot = buf->dtb_xanot; 11170 return (EFBI G);

11105 dtrace_i cooki e_t cooki e;

11106 hrti nme_t now, 11172 cp = cpu_list;

11108 ASSERT(! (buf->dtb_flags & DTRACEBUF_NOSW TCH)) ; 11174 do {

11109 ASSERT(! (buf ->dtb_fl ags & DTRACEBUF_RI NG)) ; 11175 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11176 conti nue;

11111 cooki e = dtrace_interrupt_disable();

11112 now = dtrace_gethrtine(); 11178 buf = &buf s[cp->cpu_id];

11113 buf ->dtb_t omax = xam)t

11114 buf - >dt b_xamot = t omax 11180 /*

11115 buf - >dt b_xanot drops = buf - >dt b _drops; 11181 * |If there is already a buffer allocated for this CPU, it

11116 buf - >dt b_xanot _of f set = buf->dtb_of f set ; 11182 * is only possible that this is a DR event. In this case,

11117 buf - >dt b_xanot _errors = buf->dtb_errors; 11183 * the buffer size nust match our specified size.

11118 buf - >dt b_xamot _fl ags = buf ->dt b_f| ags; 11184 */

11119 buf ->dtb_of fset = 0; 11185 if (buf->dtb_tomax != NULL) {

11120 buf - >dt b_drops = 0; 11186 ASSERT(buf - >dt b_si ze == size);

11121 buf->dtb _errors = 0; 11187 conti nue;

11122 buf->dtb_flags & ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED) ; 11188 }

11123 buf ->dtb_i nterval = now - buf->dtb_switched;

11124 buf ->dtb_swi t ched = now, 11190 ASSERT(buf - >dt b_xanpt == NULL);

11125 dtrace_i nterrupt _enabl e(cooki e);

11126 } 11192 if ((buf->dtb_tomax = kmem zal | oc(si ze,
11193 KM NOSLEEP | KM NORMALPRI)) == NULL)

11128 /* 11194 goto err;

11129 * Note: called fromcross call context. This function activates a buffer

11130 * on a CPU. As with dtrace_buffer_switch(), the atomcity of the operation 11196 buf - >dt b_si ze = si ze;

11131 * is guaranteed by the disabling of interrupts. 11197 buf ->dtb_flags = fl ags;

11132 */ 11198 buf - >dtb_of f set = 0;

11133 static void 11199 buf - >dtb_drops = 0

11134 dtrace_buffer_activate(dtrace_state_t *state)

11135 { 11201 if (flags & DTRACEBUF_NOSW TCH)

11136 dtrace_buffer_t *buf; 11202 conti nue;

11137 dtrace_i cooki e_t cookie = dtrace_interrupt_disable();
11204 if ((buf->dtb_xanmot = kmem zal |l oc(si ze,

11139 buf = &state->dts_buffer[CPU->cpu_id]; 11205 KM _NOSLEEP | KM NORMALPRI)) == NULL)
11206 goto err;

11141 if (buf->dtb_tomax != NULL) { 11207 } while ((cp = cp->cpu_next) != cpu_list);

11142 /*

11143 * W might like to assert that the buffer is marked inactive, 11209 return (0);

11144 * but this isn't necessarily true: the buffer for the CPU

11145 * that processes the BEG N probe has its buffer activated 11211 err:

11146 * manual ly. In this case, we take the (harm ess) action 11212 cp = cpu_list;

11147 * re-clearing the bit I NACTIVE bit.

11148 */ 11214 do {

new usr/src/uts/comon/ dtrace/ dtrace. c 171

11215
11216

11218
11219

11221
11222
11223
11224
11225
11226

11228
11229
11230
11231
11232

11234
11235
11236
11237

11239

11241
11242

11244
11245
11246
11247
11248
11249
11250
11251
11252

11254

* ok % ok * o

*/

if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
conti nue;

buf &bufs[cp >cpu_id];
desi red += 2;

if (buf->dtb_xanot != NULL) {
ASSERT(buf - >dt b_t omax != NULL);
ASSERT(buf - >dt b_si ze == size);
kmem f ree(buf - >dt b_xanot, size);
al | ocat ed++;

}

if (buf->dtb_tomax != NULL) {
ASSERT(buf - >dt b_si ze == si ze);
kmem free(buf->dtb_t omax, size);
al | ocat ed++;

}
buf - >dt b_t omax = NULL;
buf - >dt b_xanot = NULL;

buf - >dt b_si ze = 0;
} while ((cp = cp->cpu_next) != cpu_list);

*factor = desired / (allocated > 0 ? allocated : 1);

return (ENOVEM ;

Note: called fromprobe context. This function just increments the drop
count on a buffer. It has been made a function to allow for the
possibility of understanding the source of nysterious drop counts. (A
probl em for which one may be particul arly di sappointed that DIrace cannot
be used to understand DTrace.)

static void
dtrace_buffer_drop(dtrace_buffer_t *buf)
11253 {

11255 }

11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270

11272
11273

11275
11276
11277
11278

11280

/

*
*

*

*
*

*/

buf - >dt b_dr ops++;

Note: called fromprobe context. This function is called to reserve space
inabuffer. |If nmstate is non-NULL, sets the scratch base and size in the
metate. Returns the new offset in the buffer, or a negative value if an
error has occurred.

static intptr_t

dtrace_buffer_reserve(dtrace_buffer_t *buf,

{

si ze_t needed,
*met at e)

size_t align,
dtrace_state_t *state, dtrace_nstate_t
intptr_t offs = buf->dtb_offset,
intptr_t woffs;

caddr _t tomex;

size_t total;

sof fs;

if (buf->dtb_flags & DTRACEBUF_I NACTI VE)
return (-1);

if ((tomax = buf->dtb_tonmax) == NULL) {
dtrace_buffer drop(buf)
return (-1);

}
if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {

new usr/src/uts/comon/dtrace/ dtrace.c 172
11281 while (offs & (align - 1)) {

11282 /*

11283 * Assert that our alignment is off by a nunber which
11284 * is itself sizeof (uint32_t) aligned.

11285 */

11286 ASSERT(! ((align - (offs&(align— 1)) &

11287 (sizeof (uint32_t) - 1)

11288 DTRACE_STORE(ui nt 32_t, tonax, offs, DTRACE_EPI DNONE) ;
11289 of fs += sizeof (uint32_t);

11290 }

11292 if ((soffs = offs + needed) > buf->dtb_size) {

11293 dtrace_buffer_drop(buf);

11294 return (-1);

11295 }

11297 if (nmstate == NULL)

11298 return (offs);

11300 nst at e- >dt ns_scrat ch_base = (uintptr_t)tomax + soffs;

11301 nst at e- >dt ns_scrat ch_si ze = buf->dtb_size - soffs;

11302 nmst at e- >dt ms_scratch_ptr = nstate->dtns_scratch_base;

11304 return (offs);

11305 }

11307 if (buf->dtb flags & DTRACEBUF_FILL) {

11308 if (state->dts_activity !'= DTRACE_ACTI VI TY_COOLDOM &&

11309 (buf->dtb_flags & DTRACEBUF_FULL))

11310 return (-1);

11311 goto out;

11312 }

11314 total = needed + (offs & (align - 1));

11316 /*

11317 * For aring buffer, life is quite a bit nore conplicated. Before
11318 * we can store any padding, we need to adjust our w apping offset.
11319 * (If we've never before wapped or we're not about to, no adjustnent
11320 * is required.)

11321 *

11322 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) | |

11323 offs + total > buf->dtb_size) {

11324 wof fs = buf->dtb_xanot _of f set;

11326 if (offs + total > buf->dtb_size) {

11327 1=

11328 * W can’t fit in the end of the buffer. First, a
11329 * sanity check that we can fit in the buffer at all.
11330 */

11331 if (total > buf->dtb_size) {

11332 dtrace_buf fer_drop(buf);

11333 return (-1);

11334 }

11336 /*

11337 * W're going to be storing at the top of the buffer,
11338 * so now we need to deal with the wapped offset. W
11339 * only reset our wapped offset to O If it is

11340 * currently greater than the current offset. |If it
11341 * is less than the current offset, it is because a
11342 * previous allocation induced a wap -- but the
11343 * allocation didn't subsequently take the space due
11344 * to an error or false predicate evaluation. |In this
11345 * case, we'll just l|eave the wapped offset alone: if
11346 * the wapped offset hasn’t been advanced far enough

new usr/src/uts/comon/dtrace/ dtrace. c 173 new usr/src/uts/comon/dtrace/ dtrace.c 174
11347 * for this allocation, it will be adjusted in the 11413 ASSERT(wof fs + size <= buf->dtb_size);
11348 * | ower | oop. 11414 ASSERT(si ze !'= 0);
11349 */
11350 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11416 if (woffs + size == buf->dtb_size) {
11351 if (woffs >= offs) 11417 /*
11352 woffs = O; 11418 * W’ ve reached the end of the buffer; we want
11353 } else { 11419 * to set the wapped offset to 0 and break
11354 woffs = 0; 11420 * out. However, if the offs is 0, then we're
11355 } 11421 * in a strange edge-condition: the anount of
11422 * space that we want to reserve plus the size
11357 /* 11423 * of the record that we're overwiting is
11358 * Now we know that we're going to be storing to the 11424 * greater than the size of the buffer. This
11359 * top of the buffer and that there is roomfor us 11425 * |s problenmatic because if we reserve the
11360 * there. W need to clear the buffer fromthe current 11426 * space but subsequently don’t consune it (due
11361 * offset to the end (there nay be old gunk there). 11427 * to a failed predicate or error) the w apped
11362 =Y 11428 * offset will be O -- yet the EPID at offset 0O
11363 while (offs < buf->dtb_size) 11429 * will not be conmitted. This situation is
11364 tomax[of fs++] = O; 11430 * relatively easy to deal with: if we're in
11431 * this case, the buffer is indistinguishable
11366 /* 11432 * fromone that hasn’'t w apped; we need only
11367 * We need to set our offset to zero. And because we 11433 * finish the job by clearing the wapped bit,
11368 * are wapping, we need to set the bit indicating as 11434 * explicitly setting the offset to be 0, and
11369 * much. W can al so adjust our needed space back 11435 * zero'ing out the old data in the buffer.
11370 * down to the space required by the ECB -- we know 11436 *
11371 * that the top of the buffer is aligned. 11437 f (offs == 0) {
11372 */ 11438 buf - >dt b_f | ags &— ~DTRACEBUF_WRAPPED;
11373 offs = 0; 11439 buf - >dt b_of f set = 0;
11374 total = needed 11440 woffs = total;
11375 buf - >dt b flags | = DTRACEBUF_WRAPPED;
11376 } else { 11442 while (woffs < buf->dtb_size)
11377 /* 11443 t omax[wof f s++] = O;
11378 * There is roomfor us in the buffer, so we sinply 11444 }
11379 * need to check the w apped of fset.
11380 */ 11446 woffs = 0O;
11381 if (woffs < offs) { 11447 br eak;
11382 /* 11448 }
11383 * The wapped offset is less than the offset.
11384 * This can happen if we allocated buffer space 11450 wof fs += si ze;
11385 * that induced a wap, but then we didn't 11451 }
11386 * subsequently take the space due to an error
11387 * or false predicate evaluation. This is 11453 7%
11388 * okay; we know that _this_ allocation isn't 11454 * W& have a wapped offset. |t nmay be that the w apped offset
11389 * going to induce a wap. W still can't 11455 * has becone zero -- that’s okay.
11390 * reset the wapped offset to be zero, 11456 */
11391 * however: the space may have been trashed in 11457 buf - >dt b_xanot _of fset = woffs;
11392 * the previous failed probe attenpt. But at 11458 }
11393 * | east the wapped of fset doesn't need to
11394 * be adjusted at all... 11460 out:
11395 */ 11461 /*
11396 goto out; 11462 * Now we can plow the buffer with any necessary padding.
11397 } 11463 */
11398 } 11464 while (offs & (align - 1)) {
11465 /*
11400 while (offs + total > woffs) { 11466 * Assert that our alignment is off by a number which
11401 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11467 * is itself sizeof (uint32_t) aligned.
11402 size_t size; 11468 i
11469 ASSERT(! ((align - (offs & (align - 1))) &
11404 if (epid == DTRACE_EPI DNONE) { 11470 (sizeof (uint32_t) - 1)));
11405 size = sizeof (uint32_t); 11471 DTRACE_STORE(ui nt32_t, tomax, offs, DTRACE_EPI DNONE);
11406 } else { 11472 of fs += sizeof (uint32_t);
11407 ASSERT3U(epi d, <=, state->dts_nechs); 11473 }
11408 ASSERT(st at e->dts_echs[epid - 1] != NULL) ;
11475 if (buf->dtb_flags & DTRACEBUF_FI LL) {
11410 size = state->dts_ecbs[epid - 1]->dte_size; 11476 if (offs + needed > buf->dth_size - state->dts_reserve) {
11411 } 11477 buf ->dtb_flags | = DTRACEBUF_FULL;
11478 return (-1);

new usr/src/uts/comon/dtrace/ dtrace. c 175 new usr/src/uts/comon/dtrace/ dtrace.c
11479 } 11545 * if an ECB on a defunct probe (but for an active enabling) can be safely
11480 } 11546 * disabl ed and destroyed.
11547 */
11482 if (nmstate == NULL) 11548 static int
11483 return (offs); 11549 dtrace_buffer_consunmed(dtrace_buffer_t *bufs, hrtime_t when)
11550 {
11485 /* 11551 int i;
11486 * For ring buffers and fill buffers, the scratch space is al ways
11487 * the inactive buffer. 11553 for (i =0; i < NCPU, i++) {
11488 */ 11554 dtrace_buffer_t *buf = &bufs[i];
11489 nst at e- >dt ms_scrat ch_base = (ui ntptr_t)buf->dtb_xanot;
11490 nst at e- >dt ns_scrat ch_si ze = buf->dtb_si ze; 11556 if (buf->dtb_size == 0)
11491 nst at e- >dt ns_scrat ch_ptr = nstate->dtms_scratch_base; 11557 conti nue;
11493 return (offs); 11559 if (buf->dtb_flags & DTRACEBUF_RI NG
11494 } 11560 return (0);
11496 static void 11562 if (!buf->dtb_sw tched & buf->dtb_offset != 0)
11497 dtrace_buffer_polish(dtrace_buffer_t *buf) 11563 return (0);
11498 {
11499 ASSERT(buf - >dtb_f | ags & DTRACEBUF_RI NG) ; 11565 if (buf->dtb_switched - buf->dtb_interval < when)
11500 ASSERT(MUTEX_HELD(&dt r ace_| ock)); 11566 return (0);
11567 }
11502 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11503 return; 11569 return (1);
11570 }
11505 /*
11506 * W need to polish the ring buffer. There are three cases: 11572 static void
11507 i 11573 dtrace_buffer_free(dtrace_buffer_t *bufs)
11508 * - The first (and presunmably npst common) is that there is no gap 11574 {
11509 X between the buffer offset and the wapped offset. |In this case, 11575 int i;
11510 X there is nothing in the buffer that isn't valid data; we can
11511 * mark the buffer as polished and return. 11577 for (i =0; i < NCPU; i++) {
11512 * 11578 dtrace_buffer_t *buf = &bufs[i];
11513 * - The second (|l ess common than the first but still nore common
11514 * than the third) is that there is a gap between the buffer offset 11580 if (buf->dtb_tomax == NULL) {
11515 * and the wapped of fset, and the w apped offset is larger than the 11581 ASSERT(buf - >dt b_xanot == NULL);
11516 * buffer offset. This can happen because of an alignment issue, or 11582 ASSERT(buf - >dt b_si ze == 0);
11517 * can happen because of a call to dtrace_buffer_reserve() that 11583 conti nue;
11518 * didn’t subsequently consune the buffer space. In this case, 11584 }
11519 * we need to zero the data fromthe buffer offset to the w apped
11520 * of fset. 11586 if (buf->dtb_xanot != NULL) {
11521 * 11587 ASSERT(! (buf->dtb_flags & DTRACEBUF_NOSW TCH))
11522 * - The third (and | east coombn) is that there is a gap between the 11588 kmem f ree(buf - >dt b_xanot, buf->dtb_size);
11523 * buffer offset and the wapped of fset, but the w apped offset is 11589 }
11524 * _less_ than the buffer offset. This can only happen because a
11525 * call to dtrace_buffer_reserve() induced a wap, but the space 11591 kmem f ree(buf - >dt b_t omax, buf->dtb_si ze);
11526 * was not subsequently consunmed. In this case, we need to zero the 11592 buf - >dt b_si ze = 0;
11527 * space fromthe offset to the end of the buffer _and_ fromthe 11593 buf - >dt b_t omax = NULL;
11528 * top of the buffer to the wapped offset. 11594 buf - >dt b_xanmot = NULL;
11529 */ 11595
11530 if (buf->dtb_offset < buf->dtb_xanot_offset) { 11596 }
11531 bzero(buf->dtb_t omax + buf->dtb_of f set,
11532 buf - >dt b_xanot _of f set - buf->dtb_offset); 11598 /*
11533 } 11599 * DTrace Enabling Functions
11600 */
11535 if (buf->dtb_offset > buf->dtb_xanot_offset) { 11601 static dtrace_enabling_t *
11536 bzero(buf->dtb_tomax + buf->dtb_offset, 11602 dtrace_enabling_create(dtrace_vstate_t *vstate)
11537 buf - >dt b_si ze - buf->dtb_offset); 11603 {
11538 bzer o(buf - >dt b_t omax, buf->dtb_xanot _of fset); 11604 dtrace_enabling_t *enab;
11539 }
11540 } 11606 enab = knem zal | oc(sizeof (dtrace_enabling_t), KM SLEEP);
11607 enab- >dt en_vstate = vstate;
11542 [*
11543 * This routine determnes if data generated at the specified time has |likely 11609 return (enab);
11544 * been entirely consuned at user-level. This routine is called to determ ne 11610 }

new usr/src/uts/comon/dtrace/ dtrace. c 177 new usr/src/uts/comon/dtrace/ dtrace.c 178
11677 static void
11612 static void 11678 dtrace_enabl i ng_dunp(dtrace_enabling_t *enab)
11613 dtrace_enabl i ng_add(dtrace_enabling_t *enab, dtrace_ecbhdesc_t *ech) 11679 {
11614 { 11680 int i;
11615 dtrace_echdesc_t **ndesc;
11616 size_t osize, nsize; 11682 for (i = 0; i < enab->dten_ndesc; i++)
, 11683 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11618 *
11619 * W can’t add to enablings after we've enabled them or after we've 11685 cmm_err (CE_NOTE, "enabling probe % (%:%:%:%)", i,
11620 * retained them 11686 desc->dt pd_provi der, desc->dtpd_nod,
11621 */ 11687 desc->dt pd_f unc, desc- >dt pd_nane) ;
11622 ASSERT(enab- >dt en probegen == 0); 11688 }
11623 ASSERT(enab- >dt en_next == NULL && enab- >dt en _prev == NULL); 11689 }
11625 if (enab->dten_ndesc < enab->dten_naxdesc) { 11691 static void
11626 enab- >dt en_desc[enab- >dt en_ndesc++] = ecb; 11692 dtrace_enabl i ng_destroy(dtrace_enabling_t *enab)
11627 return; 11693 {
11628 } 11694 int i;
11695 dtrace_echdesc_t *ep;
11630 osi ze = enab->dten_naxdesc * sizeof (dtrace_enabling_t *); 11696 dtrace_vstate_t *vstate = enab->dten_vstate;
11632 if (enab->dten_maxdesc == 0) { 11698 ASSERT(MUTEX_HELD(&dt r ace_| ock));
11633 enab- >dt en_maxdesc = 1;
11634 } else { 11700 for (i =0; i < enab->dten_ndesc; i++) {
11635 enab- >dt en_nmaxdesc <<= 1; 11701 dtrace_actdesc_t *act, *next;
11636 } 11702 dtrace_predicate_t *pred;
11638 ASSERT(enab- >dt en_ndesc < enab- >dt en_naxdesc) ; 11704 ep = enab->dten_desc[i];
11640 nsi ze = enab->dten_naxdesc * sizeof (dtrace_enabling_t *); 11706 if ((pred = ep->dted_pred. dtpdd_predicate) != NULL)
11641 ndesc = kmem zal | oc(nsi ze, KM SLEEP); 11707 dtrace_predicate_rel ease(pred, vstate);
11642 bcopy(enab->dt en_desc, ndesc, osize);
11643 kmem f r ee(enab- >dt en desc osi ze); 11709 for (act = ep->dted_action; act != NULL; act = next) {
11710 next = act->dtad_next;
11645 enab- >dt en_desc = ndesc; 11711 dtrace_actdesc_rel ease(act, vstate);
11646 enab- >dt en_desc[enab- >dt en_ndesc++] = ecb; 11712 }
11647 }
11714 kmem free(ep, sizeof (dtrace_echdesc_t));
11649 static void 11715 }
11650 dtrace_enabl i ng_addl i ke(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ech,
11651 dtrace_probedesc_t *pd) 11717 kmem f r ee(enab- >dt en_desc,
11652 { 11718 enab- >dt en_nmaxdesc * sizeof (dtrace_enabling_t *));
11653 dtrace_echdesc_t *new,
11654 dtrace_predicate_t *pred; 11720 /*
11655 dtrace_actdesc_t *act; 11721 * |f this was a retained enabling, decrement the dts_nretained count
11722 * and take it off of the dtrace retained |ist.
11657 /* 11723 */
11658 * W're going to create a new ECB description that matches the 11724 if (enab->dten_prev !'= NULL || enab->dten_next != NULL ||
11659 * specified ECB in every way, but has the specified probe description. 11725 dtrace_retai ned == enab) {
11660 */ 11726 ASSERT(enab- >dt en_vst at e->dtvs_state != NULL);
11661 new = kmem zal | oc(si zeof (dtrace_ecbdesc_t), KM SLEEP); 11727 ASSERT(enab- >dt en_vst at e- >dt vs_st at e- >dt s_nretai ned > 0);
11728 enab- >dt en_vst at e- >dt vs_st at e- >dt s_nr et ai ned- - ;
11663 if ((pred = ecb->dted_pred. dt pdd_predicate) != NULL) 11729 dtrace_retai ned_gen++;
11664 dtrace_predicate_hol d(pred); 11730 }
11666 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11732 if (enab->dten_prev == NULL) {
11667 dtrace_actdesc_hol d(act); 11733 if (dtrace_retained == enab) {
11734 dtrace_retained = enab->dten_next;
11669 new >dt ed_acti on = ecbh->dted_acti on;
11670 new >dt ed_pred = ech->dted_pred; 11736 if (dtrace_retained != NULL)
11671 new >dt ed_probe = *pd; 11737 dtrace_retai ned->dten_prev = NULL;
11672 new >dt ed_uarg = ech->dted_uarg; 11738 }
11739 } else {
11674 dtrace_enabl i ng_add(enab, new); 11740 ASSERT(enab != dtrace_retained);
11675 } 11741 ASSERT(dtrace_retai ned ! = NULL);
11742 enab- >dt en_prev->dt en_next = enab->dt en_next;

new usr/src/uts/comon/ dtrace/ dtrace. c 179

11743 }

11745 if (enab->dten_next != NULL) {

11746 ASSERT(dtrace_retai ned ! = NULL);

11747 enab- >dt en_next - >dt en_prev = enab- >dt en_prev;
11748 }

11750 kmem free(enab, sizeof (dtrace_enabling_t));

11751 }

11753 static int

11754 dtrace_enabling_retain(dtrace_enabling_t *enab)

11755 {

11756 dtrace_state_t *state;

11758 ASSERT(MUTEX_HELD(&dt r ace_ I ock));

11759 ASSERT(enab- >dt en_next == NULL && enab- >dt en _prev == NULL);
11760 ASSERT(enab- >dt en_vstate != NULL);

11762 state = enab->dten_vstate->dtvs_state;

11763 ASSERT(state != NULL);

11765 /*

11766 * W only allow each state to retain dtrace_retai n_nmax enablings.
11767

11768 |f (state->dts_nretained >= dtrace_retain_nmax)

11769 return (ENOSPO);

11771 st at e- >dt s_nr et ai ned++;

11772 dtrace_retai ned_gen++;

11774 if (dtrace_retained == NULL) {

11775 dtrace_retai ned = enab;

11776 return (0);

11777 }

11779 enab- >dt en_next = dtrace_retai ned;

11780 dtrace_retai ned->dten_prev = enab;

11781 dtrace_retai ned = enab;

11783 return (0);

11784 }

11786 static int

11787 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11788 dtrace_probedesc_t *create)

11789 {

11790 dtrace_enabling_t *new, *enab;

11791 int found = 0, err = ENOCENT,;

11793 ASSERT(MUTEX_HELD(&dt race_l ock)) ;

11794 ASSERT(st r| en(mat ch- >dt pd_pr ovi der) < DTRACE_PROVNAMELEN) ;
11795 ASSERT(st r | en(mat ch- >dt pd_nod) < DTRACE_MODNANELEN) ;

11796 ASSERT(st rl en(mat ch->dt pd_f unc) < DTRACE FUNCNANELEN)
11797 ASSERT(st rl en(mat ch- >dt pd_name) < DTRACE_NAMELEN) ;

11799 new = dtrace_enabling_create(&state->dts_vstate);

11801 /*

11802 * |terate over all retained enablings, |ooking for enablings that
11803 * match the specified state.

11804 */

11805 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11806 int i;

11808 /*

new usr/src/uts/comon/dtrace/ dtrace. c 180
11809 * dtvs_state can only be NULL for hel per enablings -- and
11810 * hel per enablings can’t be retained.

11811 */

11812 ASSERT(enab- >dt en_vst at e->dtvs_state != NULL);

11814 if (enab->dten_vstate->dtvs_state != state)

11815 conti nue;

11817 /*

11818 * Now iterate over each probe description; we' re |ooking for
11819 * an exact match to the specified probe description.
11820 */

11821 for (i = 0; i < enab->dten_ndesc; i++) {

11822 dtrace_ecbdesc_t *ep = enab->dten_desc[i];

11823 dtrace_probedesc_t *pd = &ep->dted_probe;

11825 if (strcnp(pd >dt pd_provi der, natch->dtpd_provider))
11826 conti nue;

11828 if (strcnp(pd->dtpd_nod, natch->dtpd_nod))

11829 conti nue;

11831 if (strcnp(pd->dtpd_func, natch->dtpd_func))
11832 conti nue;

11834 if (strcnp(pd->dtpd_nanme, match->dtpd_nane))
11835 conti nue;

11837 /*

11838 * We have a winning probe! Add it to our grow ng
11839 * enabl i ng.

11840 */

11841 found = 1;

11842 dtrace_| enabl i ng_addl i ke(new, ep, create);

11843 }

11844 }

11846 if (!found || (err = dtrace_enabling_retain(new)) !=0) {

11847 dtrace_enabl i ng_destroy(new);

11848 return (err);

11849 }

11851 return (0);

11852 }

11854 static void

11855 dtrace_enabling_retract(dtrace_state_t *state)

11856 {

11857 dtrace_enabling_t *enab, *next;

11859 ASSERT(MUTEX_HELD(&t r ace_| ock));

11861 /*

11862 * |terate over all retained enablings, destroy the enablings retained
11863 * for the specified state.

11864 */

11865 for (enab = dtrace_retained; enab != NULL; enab = next) {

11866 next = enab- >dten_next;

11868 /*

11869 * dtvs_state can only be NULL for hel per enablings -- and
11870 * hel per enablings can’t be retained.

11871 */

11872 ASSERT(enab- >dt en_vstate- >dtvs_state ! = NULL);

11874 if (enab->dten_vstate->dtvs_state == state) {

new usr/src/uts/comon/ dtrace/ dtrace. c 181

11875
11876
11877
11878

11880
11881 }

ASSERT(st at e->dts_nretai ned > 0);
dtrace_enabl i ng_destroy(enab);

}
ASSERT(st at e->dts_nretai ned == 0);

11883 static int
11884 dtrace_enabl i ng_match(dtrace_enabling_t *enab, int *nnmatched)

11885 {
11886
11887

11889
11890

11892
11893

11895
11896

11898
11899
11900
11901
11902
11903

11905

11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925

11927
11928
11929

11931
11932
11933

11935
11936 }

int i
int tot al matched = 0, matched = 0;

ASSERT(MUTEX_HELD(&pu_l ock)) ;
ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

for (i = 0; i < enab->dten_ndesc; i++)
dtrace_ecbdesc_t *ep = enab->dten_desc[i];

enab->dten_current = ep;
enab->dten_error = O;

/*

* |f a provider failed to enable a probe then get out and

* |let the consunmer know we faile

S

if ((matched = dtrace_probe_enabl e(&p- >dt ed_probe, enab)) < 0)
return (EBUSY);

total _mat ched += mat ched;
if (enab->dten_error = 0) {
/*

* | f we get an error hal f-way through enabling the
probes, we kick out -- perhaps with sone nunber of
them enabl ed. Leavi ng enabl ed probes enabl ed may
be slightly confusing for user-level, but we expect
that no one will attenpt to actually drive on in
the face of such errors. [If this is an anonynous
enabling (indicated with a NULL nmatched pointer),
we crm_err () a nmessage. We aren’t expecting to
get such an error -- such as it can exist at all,
it would be a result of corrupted DOF in the driver
properties.

* ok Ok ok % Ok Ok ok ok

*
/
if (nmatched == NULL) {
crm_err (CE_WARN, "dtrace_enabling_natch()
"error on %: %", (void *)ep,
enab->dten_error);

}
return (enab->dten_error);
}
enab- >dt en_pr obegen = dtrace_probegen;
if (nmatched != NULL)
*nmat ched = total _nmatched;

return (0);

11938 static void
11939 dtrace_enabl i ng_mat chal | (voi d)

11940 {

new usr/src/uts/comon/dtrace/ dtrace.c 182
11941 dtrace_enabling_t *enab;

11943 nut ex_ent er (&cpu_l ock) ;

11944 nut ex_ent er (&dtrace_| ock) ;

11946 /*

11947 * Iterate over all retained enablings to see if any probes match
11948 * against them W only performthis operation on enablings for which
11949 * we have sufficient permssions by virtue of being in the gl obal zone
11950 * or in the same zone as the DIrace client. Because we can be called
11951 * after dtrace_detach() has been called, we cannot assert that there
11952 * are retained enablings. W can safely |load fromdtrace_retained,
11953 * however: the taskg_destroy() at the end of dtrace_detach() will
11954 * bl ock pendi ng our conpletion.

11955 */

11956 for (enab = dtrace_retai ned; enab != NULL; enab = enab->dten_next) {
11957 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11958 cred_t *cr = dcr->dcr_cred;

11959 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : O;

11961 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr !'= NULL &&
11962 (zone == GLOBAL_ZONEI D || getzoneid() == zone)))

11963 (void) dtrace_enabling_mat ch(enab, NULL);

11964 }

11966 nut ex_exi t (&dtrace_| ock);

11967 mut ex_exi t (&cpu_l ock) ;

11968 }

11970 /*

11971 * If an enabling is to be enabled without having matched probes (that is, if
11972 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11973 * enabling nust be _primed_ by creating an ECB for every ECB description.
11974 * This nust be done to assure that we know the number of specul ations, the
11975 * nunber of aggregations, the mini num buffer size needed, etc. before we
11976 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this wthout actually
11977 * enabling any probes, we create ECBs for every ECB decription, but with a
11978 * NULL probe -- which is exactly what this function does.

11979 */

11980 static void

11981 dtrace_enabling_prinme(dtrace_state_t *state)

11982 {

11983 dtrace_enabling_t *enab;

11984 int i;

11986 (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11987 ASSERT(enab- >dt en_vst at e->dtvs_state != NULL);

11989 if (enab->dten_vstate->dtvs_state != state)

11990 conti nue;

11992 /*

11993 * W don’t want to prinme an enabling nore than once, |est
11994 * we allow a malicious user to induce resource exhaustion.
11995 * (The ECBs that result fromprimng an enabling aren’t
11996 * | eaked -- but they also aren't deallocated until the

11997 * consuner state is destroyed.)

11998 *

11999 i f (enab->dten_prinmed)

12000 conti nue;

12002 for (i = 0; i < enab->dten_ndesc; i++)

12003 enab->dt en_current = enab->dten_desc[i];

12004 (voi d) dtrace_probe_enabl e(NULL, enab);

12005 }

new usr/src/uts/comon/ dtrace/ dtrace. c

12007
12008
12009

12011
12012
12013
12014
12015
12016
12017
12018

enab->dten_primed = 1;

*
* Called to indicate that probes should be provided due to retained
* enablings. This is inplemented in terms of dtrace_probe_provide(), but it
* nmust take an initial lap through the enabling calling the dtps_provide()
* entry point explicitly to allow for autocreated probes.
*

/

static void
dtrace_enabl i ng_provi de(dtrace_provider_t *prv)

12019 {

12020
12021
12022

12024
12025

12027
12028
12029
12030

12032
12033
12034

12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054

12056
12057
12058
12059

12061
12062
12063
12064
12065

int i, all = 0;
dtrace_probedesc_t desc;
dtrace_geni d_t gen;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _| ock)) ;

if (prv == NULL) {
all = 1;

prv = dtrace_provider;

do {
dtrace_enabling_t *enab;
void *parg = prv->dtpv_arg;

retry:
gen = dtrace_retai ned_gen;
for (enab = dtrace_retained; enab != NULL;
enab = enab->dten_next)
for (i = 0; i < enab->dten_ndesc; i++)
desc = enab->dten_desc[i]->dted_probe;
mut ex_exi t (&dtrace_| ock) ;
prv->dt pv_pops. dt ps_provi de(parg, &desc);
nut ex_ent er (&dtrace_| ock);
/*
* Process the retained enablings again if
* they have changed while we weren't hol di ng
* dtrace_l ock.
*/
if (gen != dtrace_retained_gen)
goto retry;

}
}
} while (all &% (prv = prv->dtpv_next) != NULL);

nut ex_exi t (&dtrace_| ock) ;
dtrace_probe_provide(NULL, all ? NULL : prv);
mut ex_ent er (&t race_| ock) ;

}

/*
* Called to reap ECBs that are attached to probes from defunct providers.
*/

static void
dtrace_enabl i ng_reap(voi d)

12066 {

12067
12068
12069
12070
12071

dtrace_provider_t *prov;
dtrace_probe_t *probe;
dtrace_ecb_t *ech;

hrti me_t when;

int i;

183

new usr/src/uts/comon/dtrace/ dtrace.c 184
12073 nmut ex_ent er (&cpu_l ock) ;

12074 mut ex_ent er (&dtrace_| ock) ;

12076 for (i = 0; i < dtrace_nprobes; i++) {

12077 if ((probe = dtrace_probes[i]) == NULL)

12078 conti nue;

12080 if (probe->dtpr_ecb == NULL)

12081 conti nue;

12083 prov = probe->dtpr_provider;

12085 if ((when = prov->dtpv_defunct) == 0)

12086 cont i nue;

12088 /*

12089 * W& have ECBs on a defunct provider: we want to reap these
12090 * ECBs to allow the provider to unregister. The destruction
12091 * of these ECBs nust be done carefully: if we destroy the ECB
12092 * and the consuner |ater w shes to consune an EPID that

12093 * corresponds to the destroyed ECB (and if the EPI D netadata
12094 * has not been previously consumed), the consumer will abort
12095 * processing on the unknown EPID. To reduce (but not, sadly,
12096 * elimnate) the possibility of this, we will only destroy an
12097 * ECB for a defunct provider if, for the state that

12098 * corresponds to the ECB:

12099 *

12100 * (a) There is no specul ative tracing (which can effectively
12101 * cache an EPID for an arbitrary amount of tine).

12102 *

12103 * (b) The principal buffers have been sw tched tw ce since the
12104 * provi der becane defunct.

12105 *

12106 * (c) The aggregation buffers are of zero size or have been
12107 * switched twi ce since the provider becanme defunct.
12108 *

12109 * W use dts_speculates to deternmine (a) and call a function
12110 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12111 * that as soon as we’ve been unable to destroy one of the ECBs
12112 * associated with the probe, we quit trying -- reaping is only
12113 * fruitful in as nuch as we can destroy all ECBs associ ated
12114 * with the defunct provider’s probes.

12115 *

12116 while ((ecb = probe->dtpr_ecbh) != NULL)

12117 dtrace_state_t *state = ecb->dte_state;

12118 dtrace_buffer_t *buf = state->dts_buffer;

12119 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;

12121 if (state->dts_specul ates)

12122 br eak;

12124 if (!dtrace_buffer_consumed(buf, when))

12125 br eak;

12127 if (!dtrace_buffer_consunmed(aggbuf, when))

12128 break;

12130 dtrace_ech_di sabl e(ech);

12131 ASSERT(pr obe- >dt pr _ecb != ech);

12132 dtrace_ecb_destroy(ecb);

12133 1

12134 }

12136 mut ex_exi t (&dt race_| ock);

12137 mut ex_exi t (&cpu_l ock) ;

12138 }

new usr/src/uts/comon/dtrace/ dtrace. c 185
12140 /*

12141 * DTrace DOF Functions

12142 */

12143 / * ARGSUSED*/

12144 static void

12145 dtrace_dof _error(dof _hdr_t *dof, const char *str)

12146 {

12147 if (dtrace_err_verbose)

12148 crm_err (CE_WARN, "failed to process DOF: %", str);
12150 #i f def DTRACE_ERRDEBUG

12151 dtrace_errdebug(str);

12152 #endi f

12153 }

12155 /*

12156 * Create DOF out of a currently enabled state. Right now, we only create
12157 * DOF containing the run-tinme options -- but this could be expanded to create
12158 * conplete DOF representing the enabled state.

12159 */

12160 static dof _hdr_t *

12161 dtrace_dof _create(dtrace_state_t *state)

12162 {

12163 dof _hdr_t *dof;

12164 dof _sec_t *sec;

12165 dof _opt desc_t *opt ;

12166 int i, len = sizeof (dof_hdr_t) +

12167 roundup(si zeof (dof_sec t) si zeof (UI nt 64_t)) +
12168 si zeof (dof _optdesc_t) * DTRACEO3

12170 ASSERT(MUTEX_HELD(&dt r ace_| ock));

12172 dof = kmem zal | oc(l en, KM SLEEP)

12173 dof - >dof h_i dent [DOF_| D MAGD] = DCF_MAG_MACD;

12174 dof - >dof h_i dent [DOF_| D_MAGL] = DOF_MAG MAGL;

12175 dof - >dof h_i dent [DOF_| D_MAGR] = DOF_MAG MAR;

12176 dof - >dof h_i dent [DOF_| D_MAG3] = DOF_MAG MAGB;

12178 dof - >dof h_i dent [DOF_| D MODEL] = DOF_MODEL_NATI VE;
12179 dof - >dof h_i dent [DOF_| D_ENCODI NG = DOF_ENCODE_NATI VE;
12180 dof - >dof h_i dent [DOF_I| D_VERSI ON] = DOF_VERSI ON;

12181 dof - >dof h_i dent [DOF_| D_DI FVERS] = DI F_VERSI ON;

12182 dof - >dof h_i dent [DOF_| D_DI FIREG = DI F_DI R NREGS;
12183 dof - >dof h_i dent [DOF_I D_DI FTREG = DI F_DTR_NREGS;
12185 dof - >dof h_fl ags = O;

12186 dof - >dof h_ hdrS|ze = sizeof (dof_hdr_t);

12187 dof - >dof h_secsi ze = sizeof (dof_sec_t);

12188 dof - >dof h_secnum = 1; /* only DOF_SECT_OPTDESC */
12189 dof - >dof h_secof f = sizeof (dof_hdr_t);

12190 dof - >dof h_| oadsz = | en;

12191 dof - >dof h_filesz = |l en;

12192 dof - >dof h_pad = O;

12194 *

12195 * Fill in the option section header...

12196 */

12197 sec = (dof _sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12198 sec->dof s_type = DOF_SECT_OPTDESC,

12199 sec->dofs_al i gn = sizeof (uint64_t);

12200 sec->dofs _fl ags = DOF_SECF_LQAD,

12201 sec- >dof s_ent si ze = sizeof (dof_optdesc_t);

12203 opt = (dof _optdesc_t *)((uintptr_t)sec +

12204 roundup(si zeof (dof_sec_t), sizeof (uint64_t)));

new usr/src/uts/comon/ dtrace/ dtrace. c

12206
12207

12209
12210
12211
12212
12213

12215
12216

12218
12219

12221
12223

12225
12226
12227
12228
12229
12230
12231
12232

12234
12235
12236
12237
12238
12239
12240
12241
12242

12244
12245
12246
12247
12248

12250

12252
12253
12254
12255
12256
12257

12259
12260

12262
12263

12265
12266
12267
12268

12270

}

sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
sec- >dof s_si ze = sizeof (dof_optdesc_t) * DTRACECPT_MAX;

(i = 0; i < DIRACECPT_MAX; i++) {
opt[i].dofo optlon—l
opt[i].dofo_strtab = DCF_SECI DX_NONE;
opt[i].dofo_val ue = state->dts_options[i];

}

return (dof);

static dof _hdr_t *
dtrace_dof _copyi n(uintptr_t uarg, int *errp)
12220 {

}

dof _hdr_t hdr, *dof;
ASSERT(! MUTEX_HELD(&dt r ace_l ock)) ;

/*
* First, we're going to copyin() the sizeof (dof_hdr_t).
*/
if (copyl n((v0|d *)uarg, &hdr, sizeof (hdr)) !=0) {
trace_dof _error(NULL, "failed to copyin DOF header");
*errp = EFAULT,;
return (NULL);

}

/*

* Now we' Il allocate the entire DOF and copy it in -- provided
* that the length isn’t outrageous.

*

if (hdr.dofh_l oadsz >= dtrace_dof _maxsi ze) {
dtrace_dof _error(&hdr, "load size exceeds maxi mun');
*errp = E2BI G
return (NULL);

}

if (hdr.dofh_l oadsz < sizeof (hdr)) {
dtrace_dof _error(&hdr, "invalid | oad size");
*errp = EINVAL;
return (NULL);

}

dof = kmem al | oc(hdr. dof h_| oadsz, KM SLEEP);

if (copyl n((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
dof ->dof h_| oadsz != hdr. dof h _loadsz) {
kmem free(dof, hdr.dofh_Toadsz);
*errp = EFAULT,
return (NULL);
}

return (dof);

static dof _hdr_t *
dtrace_dof _property(const char *nane)
12264 {

uchar _t *buf;
uint64_t | oadsz;
unsigned int len, i;
dof _hdr_t *dof;

/| *

new usr/src/uts/comon/dtrace/ dtrace. c

12271 * Unfortunately, array of values in .conf files are always (and
12272 * only) interpreted to be integer arrays. W nust read our DOF
12273 * as an integer array, and then squeeze it into a byte array.
12274 */

12275 if (ddi_prop_l ookup_int_array(DDI _DEV_T_ANY, dtrace_devi, O,

12276 (char *)name, (int **)&buf, & en) !|= DDl _PROP SUCEESS)

12277 return (NULL);

12279 (i =0; i <len; i++)

12280 buf[i] = (uchar_t)(((int *)buf)[i]);

12282 if (len < sizeof (dof_hdr_t)) {

12283 ddi _prop_free(buf);

12284 dtrace_dof error(NULL, "truncated header");

12285 return (NULL);

12286 }

12288 if (len < (loadsz = ((dof _hdr_t *)buf)->dof h_| oadsz)) {

12289 ddi _prop_free(buf);

12290 dtrace_dof _error (NULL, "truncated DOF");

12291 return (NULL);

12292 }

12294 if (loadsz >= dtrace_dof _nmaxsize) {

12295 ddi _prop_free(buf);

12296 dtrace_dof _error (NULL, "oversized DOF");

12297 return (NULL);

12298 }

12300 dof = kmem al | oc(| oadsz, KM SLEEP);

12301 bcopy(buf, dof, |oadsz);

12302 ddi _prop_free(buf);

12304 return (dof);

12305 }

12307 static void

12308 dtrace_dof _destroy(dof _hdr_t *dof)

12309 {

12310 kmem f ree(dof, dof->dof h_| oadsz);

12311 }

12313 /*

12314 * Return the dof _sec_t pointer corresponding to a given section index. If the
12315 * index is not valid, dtrace_dof _error() is called and NULL is returned. |f
12316 * a type other than DOF_SECT_NONE is specified, the header is checked agai nst
12317 * this type and NULL is returned if the types do not match.

12318 *

12319 static dof_sec_t *

12320 ?trace dof _sect (dof _hdr _t *dof, uint32_t type, dof_secidx_t i)

12321

12322 dof _sec_t *sec = (dof_sec_t *)(uintptr_t)

12323 “((uintptr t)dof + dof ->dof h_secof f + i * dof - >dof h_secsi ze);
12325 if (i >= dof->dof h_secnum

12326 dtrace_dof _error(dof, "referenced section index is invalid");
12327 return (NULL);

12328 }

12330 if (!(sec->dofs_flags & DOF SECF - LOAD))

12331 dtrace_dof _error(dof, "referenced section is not |oadable");
12332 return (NULL);

12333 }

12335 if (type !'= DOF_SECT_NONE && type !I'= sec->dofs_type) {

12336 dtrace_dof _error(dof, "referenced section is the wong type");

new usr/src/uts/comon/ dtrace/ dtrace. c

12337
12338

12340
12341

12343

188

return (NULL);
}
return (sec);
}
static dtrace_probedesc_t *

12344 dtrace_dof _probedesc(dof _hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12345 {

12346 dof _probedesc_t *probe;

12347 dof _sec_t *strtab;

12348 uintptr_t daddr = (uintptr_t)dof;

12349 uintptr_t str;

12350 size_t size;

12352 if (sec->dofs_type != DOF SECT _PROBEDESC) {

12353 dtrace_dof _error(dof, "invalid probe section");

12354 return (NULL);

12355 }

12357 if (sec->dofs_align != sizeof (dof_secidx_t)) {

12358 dtrace_dof _error(dof, "bad alignnment in probe description");
12359 return (NULL);

12360 }

12362 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_| oadsz) {
12363 dtrace_dof _error(dof, "truncated probe description");
12364 return (NULL);

12365 }

12367 probe = (dof _probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12368 strtab = dtrace_dof _sect (dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12370 if (strtab == NULL)

12371 return (NULL);

12373 str = daddr + strtab->dofs_of fset;

12374 size = strtab->dofs_si ze;

12376 if (probe->dof p_provider >= strtab->dofs_size)

12377 dtrace_dof _error(dof, "corrupt probe provider");

12378 return (NULL);

12379 }

12381 (voi d) strncpy(desc->dtpd_provider,

12382 (char *)(str + probe->dof p_provider),

12383 M N(DTRACE_PROVNAMELEN - 1, size - probe->dof p_provider));
12385 if (probe->dof p_nod >= strtab->dofs_size) {

12386 dtrace_dof _error(dof, "corrupt probe nodule");

12387 return (NULL);

12388 }

12390 (void) strncpy(desc->dtpd_nod, (char *)(str + probe->dofp_nod),
12391 M N(DTRACE_MODNAMELEN - 1, size - probe->dofp_nod));

12393 if (probe->dofp_func >= strtab->dofs_size) {

12394 dtrace_dof _error(dof, "corrupt probe function");

12395 return (NULL);

12396 }

12398 (voi d) strncpy(desc->dt pd_func, (char *)(str + probe->dofp_func),
12399 M N(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));

12401 if (probe->dof p_nane >= strtab->dofs_size) {

12402 dtrace_dof _error(dof, "corrupt probe nanme");

new usr/src/uts/comon/ dtrace/ dtrace. c

12403
12404

12406
12407

12409
12410

12412
12413

return (NULL);
}
(voi d) strncpy(desc->dt pd_name, (char *)(str + probe->dofp_nane),
M N(DTRACE_NAMELEN - 1, size - probe->dofp_nane));
return (desc);
}
static dtrace_difo_t *

dtrace_dof _di fo(dof _hdr_t *dof, dof_sec_t *sec, dtrace_vstate_ t *vstate,

12414 cred_t *cr)

12415 {

12416 dtrace_difo_t *dp;

12417 size t ttl = 0;

12418 dof _di fohdr _t *dofd;

12419 uintptr_t daddr = (uintptr_t)dof;

12420 size_t max = dtrace_difo_naxsize;

12421 int i, |, n

12423 static const struct {

12424 int section;

12425 int bufoffs;

12426 int lenoffs;

12427 int entsize;

12428 int align;

12429 const char *nsg;

12430 } difo[] = {

12431 DOF_SECT_DI F, offsetof (dtrace_difo_t, dtdo_buf),

12432 of fsetof (dtrace_difo_t, dtdo_|en), si zeof (dlf instr_t),
12433 sizeof (dif_instr_t), "l ti ple D F sections" T,

12435 DOF_SECT_I| NTTAB, of fsetof (dtrace_difo_t, dtdo_inttab),
12436 of f setof (dtrace_ di fo t, dtdo_intlen), si T zeof (uint64_t),
12437 si zeof (uint64_t), "l ti pl e integer tables" },

12439 DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12440 of fsetof (dtrace_difo_t, dtdo_strlen), O,

12441 si zeof (char), "nultiple string tables" },

12443 DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12444 of fsetof (dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12445 sizeof (uint_t), "nultiple variable tables" },

12447 { DOF_SECT_NONE, 0, 0, O, NULL }

12448 b

12450 if (sec->dofs_type != DOF SECT DI FOHDR) {

12451 dtrace_dof _error(dof, "invalid D FO header section");
12452 return (NULL);

12453 }

12455 if (sec->dofs_align != sizeof (dof_secidx_t)) {

12456 dtrace_dof _error(dof, "bad alignment in D FO header");
12457 return (NULL);

12458 }

12460 if (sec->dofs_size < sizeof (dof_difohdr_t) ||

12461 sec->dof s_si ze % si zeof (dof_secidx_t))

12462 dtrace_dof _error(dof, "bad size in D FO header");

12463 return (NULL);

12464 }

12466 dofd = (dof _difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12467 (sec >dof s_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;

new usr/src/uts/comon/dtrace/ dtrace.c

12469 dp = kmem zal | oc(si zeof (dtrace_difo_t), KM SLEEP);

12470 dp->dtdo_rtype = dofd->dofd_rtype;

12472 for (I =0; I <n; I++) {

12473 dof _sec_t *subsec;

12474 voi d **buf p;

12475 uint32_t *lenp;

12477 if ((subsec = dtrace_dof _sect(dof, DOF_SECT_NONE,

12478 dof d->dofd_links[1])) == NULL)

12479 goto err; /* invalid section link */

12481 if (ttl + subsec->dofs_size > max) {

12482 dtrace_dof _error(dof, "exceeds maxi mum size");

12483 goto err;

12484 }

12486 ttl += subsec->dofs_si ze;

12488 for (i = 0; difo[i].section = DOF_SECT_NONE; i++) {

12489 |f (subsec->dofs_type != difo[i].section)

12490 conti nue;

12492 if (!(subsec->dofs_flags & DG: SECF_LQAD)) {

12493 dtrace_dof _error(dof, "section not I|oaded");
12494 goto err

12495 }

12497 if (subsec->dofs_align !=difo[i].align) {

12498 dtrace_dof _error(dof, "bad alignment");

12499 goto err;

12500 }

12502 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12503 lenp = (uint32_t *)((uintptr_t)dp + difo[i]. Ienoffs);
12505 if (*bufp !'= NULL) {

12506 dtrace_dof _error(dof, difo[i].nsg);

12507 goto err;

12508 }

12510 if (difo[i].entsize != subsec->dofs_entsize) {

12511 dtrace_dof _error(dof, "entry size m snmatch");
12512 goto err;

12513 }

12515 if (subsec->dofs_entsize != 0 &&

12516 (subsec->dofs_si ze %subsec >dof s_entsize) = 0) {
12517 dtrace_dof _error(dof, "corrupt entry size");
12518 goto err;

12519 }

12521 *| enp = subsec->dof s_si ze;

12522 *pbuf p = kmem al | oc(subsec->dof s_si ze, KM SLEEP);
12523 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12524 *buf p, subsec->dofs_size);

12526 if (subsec->dofs_entsize ! = 0)

12527 *| enp /= subsec- >dof s_entsi ze;

12529 br eak;

12530 }

12532 /*

12533 * |f we encounter a |oadable DI FO sub-section that is not
12534 * known to us, assunme this is a broken programand fail.

190

new usr/src/uts/comon/ dtrace/ dtrace. c 191

12535 *

12536 if (difo[i].section == DOF_SECT_NONE &&

12537 (subsec->dof s_fl ags & DOF_SECF_LQAD))

12538 dtrace_dof _error(dof, "unrecognized DI FO subsection");
12539 goto err;

12540 }

12541 }

12543 if (dp->dtdo_buf == NULL) {

12544 I *

12545 * W can’'t have a DI F object without DIF text.

12546 */

12547 dtrace_dof _error(dof, "missing DIF text");

12548 goto err;

12549 }

12551 /*

12552 * Before we validate the DI F object, run through the variable table
12553 * | ooking for the strings -- if any of their size are under, we'll set
12554 * their size to be the systemw de default string size. Note that
12555 * this should _not_ happen if the "strsize" option has been set --
12556 * in this case, the conpiler should have set the size to reflect the
12557 * setting of the option.

12558 *

12559 for (i =0; i < dp->dtdo_varlen; i++) {

12560 dtrace_difv_t *v = &Jp->dtdo_vartab[i];

12561 dtrace_diftype_t *t = &->dtdv_type;

12563 if (v->dtdv_id < DI F_VAR _OTHER_UBASE)

12564 conti nue;

12566 if (t->dtdt_kind == DI F_TYPE_STRI NG && t->dtdt_size == 0)
12567 t->dtdt_size = dtrace_strsize_default;

12568 }

12570 if (dtrace_difo_validate(dp, vstate, DIF_D R NREGS, cr) != 0)

12571 goto err;

12573 dtrace_difo_init(dp, vstate);

12574 return (dp);

12576 err:

12577 kmem f ree(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));

12578 kmem free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12579 kmem free(dp->dtdo_strtab, dp->dtdo_strlen);

12580 kmem free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12582 kmem free(dp, sizeof (dtrace_difo_t));

12583 return (NULL);

12584 }

12586 static dtrace_predicate_t *

12587 dtrace_dof _predi cate(dof _hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12588 cred_t *cr)

12589 {

12590 dtrace_difo_t *dp;

12592 if ((dp = dtrace_dof _difo(dof, sec, vstate, cr)) == NULL)

12593 return (NULL);

12595 return (dtrace_predi cate_create(dp));

12596 }

12598 static dtrace_actdesc_t *

12599
12600

dtrace_dof _actdesc(dof _hdr _t *dof, dof_sec_t *sec, dtrace vstate t *vstate,
cred_t *cr)

new usr/src/uts/comon/dtrace/ dtrace.c 192
12601 {

12602 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;

12603 dof _actdesc_t *desc;

12604 dof _sec_t *difosec;

12605 size_t offs;

12606 uintptr_t daddr = (uintptr_t)dof;

12607 uint64_t arg;

12608 dtrace_actki nd_t ki nd;

12610 if (sec->dofs_type != DOF_SECT_ACTDESC) {

12611 dtrace_dof _error(dof, "invalid action section");

12612 return (NULL);

12613 }

12615 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_| oadsz) {
12616 dtrace_dof _error(dof, "truncated action description");

12617 return (NULL);

12618 }

12620 if (sec->dofs_align != sizeof (uint64_t)) {

12621 dtrace_dof _error(dof, "bad alignment in action description");
12622 return (NULL);

12623 }

12625 if (sec->dofs_size < sec->dofs_entsize)

12626 dtrace_dof _error(dof, "section entry size exceeds total size");
12627 return (NULL);

12628 }

12630 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {

12631 dtrace_dof _error(dof, "bad entry size in action description");
12632 return (NULL);

12633 }

12635 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {

12636 dtrace_dof _error(dof, "actions exceed dtrace_actions_max");
12637 return (NULL);

12638 }

12640 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12641 desc = (dof _actdesc_t *)(daddr +

12642 (uintptr_t)sec->dofs_offset + offs);

12643 kind = (dtrace_actki nd_t)desc->dof a_ki nd;

12645 i f ((DTRACEACT_I SPRI NTFLI KE(ki nd) &&

12646 (kind ! = DTRACEACT_PRI NTA | |

12647 desc->dofa_strtab != DOF_SECI DX_NONE)) ||

12648 (ki nd == DTRACEACT_DI FEXPR &&

12649 desc->dofa_strtab !'= DOF_SECI DX NONE)) {

12650 dof _sec_t *strtab;

12651 char *str, *fnt;

12652 uint64_t i;

12654 I*

12655 * The argunment to these actions is an index into the
12656 * DOF string table. For printf()-like actions, this
12657 * is the format string. For print(), this is the
12658 * CTF type of the expression result.

12659 */

12660 if ((strtab = dtrace_dof _sect (dof,

12661 DOF_SECT _STRTAB, desc->dofa_strtab)) == NULL)
12662 goto err;

12664 str = (char *)((uintptr_t)dof +

12665 (uintptr_t)strtab->dofs_offset);

new usr/src/uts/comon/ dtrace/ dtrace. c 193 new usr/src/uts/comon/ dtrace/ dtrace. c 194

12667 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12733 cred_t *cr)
12668 if (str[i] == "\0") 12734 {
12669 br eak; 12735 dtrace_echdesc_t *ep;
12670 } 12736 dof _ecbdesc_t *ech;
12737 dtrace_probedesc_t *desc;
12672 if (i >= strtab->dofs_size) { 12738 dtrace_predicate_t *pred = NULL;
12673 dtrace_dof _error(dof, "bogus format string");
12674 goto err; 12740 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12675 } 12741 dtrace_dof _error(dof, "truncated ECB description");
12742 return (NULL);
12677 if (i == desc->dofa_arg) { 12743 }
12678 dtrace_dof _error(dof, "enpty format string");
12679 goto err; 12745 if (sec->dofs_align != sizeof (uint64_t)) {
12680 } 12746 dtrace_dof _error(dof, "bad alignnment in ECB description");
12747 return (NULL);
12682 i -= desc->dofa_arg; 12748 }
12683 fm = kmemalloc(i + 1, KM SLEEP);
12684 bcopy(&str[desc->dofa_arg], fnt, i + 1); 12750 ecb = (dof _ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12685 arg = (uint64_t)(uintptr_t)fnt; 12751 sec = dtrace_dof _sect (dof, DOF_SECT_PROBEDESC, ecbh->dofe_probes);
12686 } else {
12687 if (kind == DTRACEACT_PRI NTA) { 12753 if (sec == NULL)
12688 ASSERT(desc->dof a_strtab == DOF_SECI DX_NONE) ; 12754 return (NULL);
12689 arg = 0;
12690 } else { 12756 ep = kmem zal | oc(si zeof (dtrace_echdesc_t), KM SLEEP);
12691 arg = desc->dofa_arg; 12757 ep->dted_uarg = ech->dof e_uarg;
12692 } 12758 desc = &ep->dted_probe;
12693 }
12760 if (dtrace_dof _probedesc(dof, sec, desc) == NULL)
12695 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12761 goto err;
12696 desc->dofa_uarg, arg);
12763 if (ecb->dofe_pred ! = DOF_SECI DX_NONE) {
12698 if (last !'= NULL) { 12764 if ((sec = dtrace_dof_sect (dof,
12699 | ast - >dt ad_next = act; 12765 DOF_SECT_DI FOHDR, ech->dof e_pred)) == NULL)
12700 } else { 12766 goto err;
12701 first = act;
12702 } 12768 if ((pred = dtrace_dof _predicate(dof, sec, vstate, cr)) == NULL)
12769 goto err;
12704 last = act;
12771 ep- >dt ed_pr ed. dt pdd_pr edi cate = pred,;
12706 if (desc->dofa_di fo == DOF_SECI DX_NONE) 12772 }
12707 conti nue;
12774 if (ecb->dofe_actions != DOF_SECI DX _NONE) {
12709 if ((difosec = dtrace_dof_sect (dof, 12775 if ((sec = dtrace_dof _sect (dof,
12710 DOF_SECT DI FOHDR, ~desc- >dofa_di fo)) == NULL) 12776 DOF_SECT_ACTDESC, ~—ech- >dof e_actions)) == NULL)
12711 goto err; 12777 goto err;
12713 act->dtad_difo = dtrace_dof _di fo(dof, difosec, vstate, cr); 12779 ep->dted_action = dtrace_dof _actdesc(dof, sec, vstate, cr);
12715 if (act->dtad_difo == NULL) 12781 if (ep->dted_action == NULL)
12716 goto err; 12782 goto err;
12717 } 12783 }
12719 ASSERT(first != NULL); 12785 return (ep);
12720 return (first);
12787 err:
12722 err: 12788 if (pred !'= NULL)
12723 for (act = first; act != NULL; act = next) { 12789 dtrace_predicate_rel ease(pred, vstate);
12724 next = act->dtad_next; 12790 kmem free(ep, sizeof (dtrace_echdesc_t));
12725 dtrace_actdesc_rel ease(act, vstate); 12791 return (NULL);
12726 } 12792 }
12728 return (NULL); 12794 | *
12729 } 12795 * Apply the relocations fromthe specified 'sec’ (a DOF_SECT_URELHDR) to the
12796 * specified DOF. At present, this anpunts to sinply adding 'ubase’ to the
12731 static dtrace_ecbdesc_t * 12797 * site of any user SETX relocations to account for |oad object base address.
*

12732 dtrace_dof _ecbdesc(dof _hdr _t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12798 In the future, if we need other relocations, this function can be extended.

new usr/src/uts/comon/dtrace/ dtrace. c 195 new usr/src/uts/comon/dtrace/ dtrace.c 196
12799 */ 12865 * header: it should be at the front of a menory region that is at |east
12800 static int 12866 * sizeof (dof_hdr_t) in size -- and then at |east dof_hdr.dof h_l oadsz in
12801 dtrace_dof _rel ocate(dof _hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12867 * size. It need not be validated in any other way.
12802 { 12868 */
12803 uintptr_t daddr = (uintptr_t)dof; 12869 static int
12804 dof _rel ohdr _t *dofr = 12870 dtrace_dof _slurp(dof _hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12805 “(dof _| rel ohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12871 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12806 dof _sec_t *ss, *rs, *ts; 12872 {
12807 dof _rel odesc_t *r; 12873 uint64_t |en = dof->dof h_| oadsz, seclen;
12808 uint_t i, n; 12874 uintptr_t daddr = (uintptr_t)dof;
12875 dtrace_echdesc_t *ep;
12810 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12876 dtrace_enabl i ng_t *enab;
12811 sec->dofs_align != sizeof (dof_secidx_t)) { 12877 uint_t i;
12812 dtrace_dof _error(dof, "invalid relocation header");
12813 return (-1); 12879 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
12814 } 12880 ASSERT(dof - >dof h_| oadsz >= si zeof (dof_hdr_t));
12816 ss = dtrace_dof _sect (dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12882 /*
12817 rs = dtrace_dof _sect (dof, DOF_SECT_RELTAB, dofr->dofr _rel sec); 12883 * Check the DOF header identification bytes. |In addition to checking
12818 ts = dtrace_dof _sect (dof, DOF_SECT_NONE, dofr- >dofr_tgtsec); 12884 * valid settings, we also verify that unused bits/bytes are zeroed so
12885 * we can use themlater without fear of regressing existing binaries.
12820 if (ss == NULL || rs == NULL || ts == NULL) 12886 */
12821 return (-1); /* dtrace_dof _error() has been called already */ 12887 if (bcnp(&dof->dof h_i dent [DOF_I D_VAQD] ,
12888 DOF_MAG_STRI NG DOF_MAG STRLEN) 1= 0)
12823 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12889 “dtrace_dof _error(dof, "DOF magic string nismatch");
12824 rs->dofs_align ! = sizeof (u| nt64_t)) { 12890 return (-1);
12825 dtrace_dof _error(dof, "invalid relocation section"); 12891 }
12826 return (-1);
12827 } 12893 if (dof->dofh_ident[DOF_| D MODEL] != DOF_MODEL_I LP32 &&
12894 dof - >dof h_i dent [DOF_| D_ MJDEL] = DOF_MODEL_LP64) {
12829 r = (dof _relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12895 dtrace_dof _error(dof, "DOF has invalid data nodel");
12830 n = rs->dofs_size / rs->dofs_entsize; 12896 return (-1);
12897 }
12832 for (i =0; i <n; i++)
12833 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12899 if (dof->dofh_ident[DOF_I D ENCCDI NG != DOF_ENCODE NATIVE) {
12900 dtrace_dof _error(dof, "DOF encodi ng mi smatch");
12835 switch (r- >dofr _type) { 12901 return (-1);
12836 case DOF_RELO _NONE: 12902 }
12837 break;
12838 case DOF RELO SETX: 12904 if (dof->dofh_ident[DOF_I D VERSION] != DOF_VERSION 1 &&
12839 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12905 dof - >dof h_i dent [DOF_I D_VERSI ON] ! = DOF_VERSI ON_2) {
12840 sizeof (uint64_t) > ts->dofs_size) { 12906 dtrace_dof _error(dof, "DOF version m smatch");
12841 dtrace_dof _error(dof, "bad rel ocation offset"); 12907 return (-1);
12842 return (-1); 12908 }
12843 }
12910 if (dof->dofh_ident[DOF_|I D DI FVERS] != DI F_VERSION 2) {
12845 if (!I'S_P2ALI GNED(t addr, sizeof (uint64_t))) { 12911 dtrace_dof _error(dof, "DOF uses unsupported instruction set");
12846 dtrace_dof _error(dof, "misaligned setx relo"); 12912 return (-1);
12847 return (-1); 12913 }
12848 }
12915 i f (dof->dofh_ident[DOF_I D_DI FIREG > DI F_Dl R_NREGS)
12850 *(uint64_t *)taddr += ubase; 12916 dtrace_dof _error(dof, "DOF uses too many integer registers");
12851 br eak; 12917 return (-1);
12852 defaul t: 12918 }
12853 dtrace_dof _error(dof, "invalid relocation type");
12854 return (-1); 12920 if (dof->dofh_ident[DOF_I D DI FTREG > DI F_DTR NREGS) {
12855 } 12921 dtrace_dof _error(dof, "DOF uses too many tuple registers");
12922 return (-1);
12857 r = (dof _relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12923 }
12858 }
12925 for (i = DOF_ID PAD, i < DOF_ID SIZE;, i++) {
12860 return (0); 12926 if (dof->dofh_ident[i] T= 0)
12861 } 12927 dtrace_dof _error(dof, "DOF has invalid ident byte set");
12928 return (-1);
12863 /* 12929 }
12864 * The dof _hdr_t passed to dtrace_dof _slurp() should be a partially validated 12930 }

new usr/src/uts/comon/ dtrace/ dtrace. c

12932
12933
12934
12935

12937
12938
12939
12940

12942
12943
12944
12945
12946
12947

12949
12950
12951
12952
12953

12955
12956
12957
12958

12960
12961
12962
12963

12965
12966
12967
12968
12969
12970
12971
12972

12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984

12986
12987
12988
12989
12990
12991

12993
12994

12996

if (dof->dofh_flags & ~DOF_FL VALID) {
dtrace_dof _error(dof, "DOF has invalid flag bits set");
return (-1);

}

if (dof->dof h_secsize == {
dtrace_dof _error(dof, "zero section header size");
return (-1);

}

/*

* Check that the section headers don't exceed the anpunt of DOF

* data. Note that we cast the section size and nunber of sections
* to uint64_t’'s to prevent possible overflowin the nmultiplication.
*/

seclen = (uint64_t)dof->dof h_secnum * (uint64_t)dof->dof h_secsi ze;

if (dof->dofh_secoff > len || seclen > len ||
dof - >dof h_secof f + seclen > len)
dtrace_dof _error(dof, "truncated section headers");
return (-1);

}

if (!IS_P2ALI GNED(dof - >dof h secoff sizeof (uint64_t))) {
dtrace_dof _error(dof, “misal i gned section headers");
return (-1);

}
if (!IS_P2ALI GNED(dof - >dof h_secsi ze, sizeof (uint64 t))) {
dtrace_dof _error(dof, "misaligned section size");
return (-1);
}
/*
* Take an initial pass through the section headers to be sure that
* the headers don't have stray offsets. |If the 'noprobes’ flag is
* set, do not permit sections relating to providers, probes, or args.
*/
for (i =0; i < dof- >dofh _secnuny i ++)

{
dof _sec_t *sec = (dof _sec_t *)(daddr +
“(uintptr_t)dof->dofh_secoff + i * dof->dof h_secsize);

if (noprobes) {
switch (sec->dofs_type) {

case DOF_SECT_PROVI DER:

case DOF_SECT_PROBES:

case DOF_SECT_PRARGS!

case DOF_SECT_PROFFS:
dtrace_dof _error(dof, "illegal sections

"for enabling");

return (-1);

}

i f (DOF_SEC_| SLOADABLE(sec->dofs_type) &&
| (sec->dofs_flags & DOF_SECF_LOAD)) {
dtrace_dof _error(dof, "loadable section with |oad "
"flag unset");
return (-1);

}

if (!(sec->dofs_flags & DOF_SECF_LOAD))
continue; /* just ignore non-loadable sections */

if (sec->dofs_align & (sec->dofs_align - 1)) {

new usr/src/uts/comon/ dtrace/ dtrace. c

12997
12998
12999

13001
13002
13003
13004

13006
13007
13008
13009
13010

13012
13013
13014
13015
13016
13017

13019
13020
13021
13022
13023
13024
13025
13026

13028
13029

13031
13032
13033
13034
13035
13036
13037

13039
13040

13042
13043
13044

13046
13047

13049
13050
13051
13052
13053

13055
13056

13058
13059 }

13061 /*

198

dtrace_dof _error(dof, "bad section alignment");
return (-1);

}

if (sec->dofs_offset & (sec- >dofs _align - 1)) {
dtrace_dof _error(dof, "msaligned section");
return (-1);

}
if (sec->dofs_offset > len || sec->dofs_size > len ||
sec->dof s_of fset + sec->dofs_size > |en)
dtrace_dof _error(dof, "corrupt section header");
return (-1);
}

if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
sec->dof s_of fset + sec- >dofs _size - 1) '="\0
dtrace_dof _error(dof, "non-terminating string table");
return (-1);

}

/*

* Take a second pass through the sections and | ocate and perform any
* relocations that are present. W do this after the first pass to
* be sure that all sections have had their headers validated.

*

/
for (i =0; i < dof- >dofh _secnum i ++)

dof _sec_t *sec = (dof_sec_t *) (daddr +
“(uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

if (!(sec->dofs_flags & DOF_SECF_LQAD))
continue; /* skip sections that are not |oadable */

switch (sec->dofs_type) {
case DOF_SECT URELHDR:
if (dtrace_dof _rel ocate(dof sec, ubase) != 0)
return (-1
br eak;

}

if ((enab = *enabp) == NULL)
enab = *enabp = dtrace_enabling_create(vstate);

(i =0; i < dof->dofh_secnum i++) {
dof _sec_t *sec = (dof_sec_t *) (daddr +
“(uintptr t)dof >dof h_secoff + i * dof->dof h_secsi ze);

if (sec->dofs_type != DOF_SECT_ECBDESC)
conti nue;

if ((ep = dtrace_dof _ecbdesc(dof, sec, vstate, cr)) == NULL) {
dtrace_enabl i ng_destroy(enab);
*enabp = NULL;
return (-1);

}

dtrace_enabl i ng_add(enab, ep);
}
return (0);

13062 * Process DOF for any options. This routine assunes that the DOF has been

new usr/src/uts/comon/ dtrace/ dtrace. c 199

13063 * at

13064 */

| east processed by dtrace_dof _slurp().

13065 static int
13066 dtrace_dof _options(dof_hdr_t *dof, dtrace_state_t *state)

13067 {
13068
13069
13070
13071

13073
13074
13075

13077
13078

13080
13081
13082
13083
13084

13086
13087
13088
13089

13091
13092
13093
13094

13096
13097
13098

13100
13101
13102
13103

13105
13106
13107
13108

13110
13111
13112
13113
13114
13115
13116

13118
13119 }

13121 /*

int i, rval;

ui nt 32_t entsi ze;
size_t offs;

dof _optdesc_t *desc;

for (i = 0; i < dof->dofh_secnum i++) {
dof _sec_t *sec = (dof _sec_t *)((uintptr_t)dof +
(uintptr_t)dof->dof h_secoff + i * dof->dofh_secsize);

if (sec->dofs_type != DOF_SECT_OPTDESC)
conti nue;

if (sec->dofs_align != sizeof (uint64_t)) {
dtrace_dof _error(dof, "bad alignment in "
"option description");
return (EI NVAL);
}

if ((entsize = sec->dofs_entsize) == 0) {
dtrace_dof _error(dof, "zeroed option entry size");
return (EINVAL);

}

if (entsize < sizeof (dof_optdesc_t)) {
dtrace_dof _error(dof, "bad option entry size");
return (EINVAL);

}

for (offs = 0; offs < sec->dofs_size; offs += entsize) {
desc = (dof _optdesc_t *)((uintptr_t)dof +
(uintptr_t)sec->dofs_offset + offs);

if (desc->dofo_strtab != DOF_SECI DX_NONE) {
dtrace_dof _error(dof, "non-zero option string");
return (ElINVAL);

}

if (desc->dof o_val ue == DTRACEOPT_UNSET) {
dtrace_dof _error(dof, "unset option");
return (EI NVAL);

}
if ((rval = dtrace_state_option(state,
desc- >dof o_option, desc->dofo_value)) != 0) {
dtrace_dof _error(dof, "rejected option");
return (rval);
}
}
}
return (0);

13122 * DTrace Consuner State Functions
*/

13123
13124 int

13125 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)

13126 {
13127
13128

si ze_t hashsi ze, maxper, min, chunksize = dstate->dtds_chunksi ze;
voi d *base;

new usr/src/uts/comon/ dtrace/ dtrace. c

13129
13130
13131

13133
13134

13136

13138
13139

13141
13142

13144
13145

13147
13148
13149
13150

13152

13154
13155

13157
13158

13160
13161
13162
13163
13164
13165
13166
13167
13168

13170
13171

13173
13174
13175
13176
13177
13178
13179

13181
13182

13184
13185

13187
13188
13189
13190
13191
13192
13193
13194

200

uintptr_t limt;
dtrace_dynvar_t *dvar, *next, *start;
int i;

ASSERT(MUTEX_HELD(&t r ace_| ock));
ASSERT(dst at e- >dt ds_base == NULL && dst at e->dt ds_percpu == NULL);

bzero(dstate, sizeof (dtrace_dstate_t));

if ((dstate->dtds_chunksize = chunksize) == 0)
dst at e- >dt ds_chunksi ze = DTRACE_DYNVAR_CHUNKSI ZE;

if (size < (mn = dstate->dtds_chunksi ze + sizeof (dtrace_dynhash_t)))
size = mn;

if ((base = kmem zal | oc(size, KM NOSLEEP | KM NORMALPRI)) == NULL)
return (ENOVEM ;

dst at e- >dt ds_si ze = si ze;

dst at e- >dt ds_base = base;

dst at e- >dt ds_percpu = knem cache_al | oc(dtrace_state_cache, KM SLEEP);
bzero(dst at e->dt ds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));

hashsi ze = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));

if (hashsize != 1 & (hashsize & 1))
hashsi ze--;

dst at e- >dt ds_hashsi ze = hashsi ze;
dst at e- >dt ds_hash = dst at e- >dt ds_base;

/
Set all of our hash buckets to point to the single sink, and (if
it hasn't already been set), set the sink’s hash value to be the
sink sentinel value. The sink is needed for dynam c variable

| ookups to know that they have iterated over an entire, valid hash
* chain.

* ok Ok ok 3k

*/
for (i = 0; i < hashsize; i++)
dst at e- >dt ds_hash[i].dtdh_chai n = &dtrace_dynhash_si nk;
if (dtrace_dynhash_sink. dtdv_hashval != DTRACE_DYNHASH_ SI NK)
dtrace_dynhash_si nk. dt dv_hashval = DTRACE_DYNHASH_ S| NK;
/*

* Determ ne nunber of active CPUs. Divide free |list evenly anbng
* active CPUs.
*/
start = (dtrace_dynvar_t *)

((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
limt = (uintptr_t)base + size;

maxper = (limt - (uintptr_t)start) / NCPy;
maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksi ze;
for (i =0; i < NCPU, i++

) {
dst ate->dtds_percpu[i].dtdsc_free = dvar = start;

/*

* |f we don’t even have enough chunks to make it once through
* NCPUs, we're just going to allocate everything to the first
* CPU. And if we're on the last CPU, we're going to allocate
* whatever is left over. In either case, we set the linmt to
* pbe the limt of the dynam c variabl e space.

*

/

if (maxper == 0 || i == NCPU - 1) {

new usr/src/uts/comon/dtrace/ dtrace. c 201 new usr/src/uts/comon/dtrace/ dtrace.c 202
13195 limt = (uintptr_t)base + size; 13261 dtrace_state_clean(dtrace_state_t *state)
13196 start = NULL; 13262 {
13197 } else { 13263 if (state->dts_activity == DTRACE_ACTI VI TY_I NACTI VE)
13198 limt = (uintptr_t)start + nmaxper; 13264 return;
13199 start = (dtrace_dynvar_t *)limt;
13200 } 13266 dtrace_dynvar _cl ean(&st at e- >dt s_vst at e. dt vs_dynvars) ;
13267 dtrace_specul ati on_cl ean(state);
13202 ASSERT(limt <= (uintptr_t)base + size); 13268 }
13204 for (;;) { 13270 static void
13205 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13271 dtrace_state_deadman(dtrace_state_t *state)
13206 dst at e- >dt ds_chunksi ze) ; 13272 {
13273 hrti ne_t now,
13208 if ((uintptr_t)next + dstate->dtds_chunksize >= linit)
13209 br eak; 13275 dtrace_sync();
13211 dvar - >dt dv_next = next; 13277 now = dtrace_gethrtine();
13212 dvar = next;
13213 } 13279 if (state != dtrace_anon.dta_state &&
13280 now - state->dts_l aststatus >= dtrace_deadman_user)
13215 if (maxper == 0) 13281 return;
13216 br eak;
13217 } 13283 /*
13284 * W nust be sure that dts_alive never appears to be |less than the
13219 return (0); 13285 * value upon entry to dtrace_state_deadman(), and because we |ack a
13220 } 13286 * dtrace_cas64(), we cannot store to it atomically. W thus instead
13287 * store INT64_MAX to it, followed by a menory barrier, foll owed by
13222 void 13288 * the new value. This assures that dts_alive never appears to be
13223 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13289 * |less than its true value, regardl ess of the order in which the
13224 { 13290 * stores to the underlying storage are issued.
13225 ASSERT(MUTEX_HELD(& pu_| ock)) ; 13291 */
13292 state->dts_alive = | NT64_NAX;
13227 if (dstate->dtds_base == NULL) 13293 dtrace_nenbar _producer ();
13228 return; 13294 state->dts_alive = now;
13295 }
13230 kmem free(dst at e- >dt ds_base, dstate->dtds_si ze);
13231 kmem cache_free(dtrace_state_cache, dstate->dtds_percpu); 13297 dtrace_state_t *
13232 } 13298 dtrace_state_create(dev_t *devp, cred_t *cr)
13299 {
13234 static void 13300 m nor _t mnor;
13235 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13301 maj or _t maj or;
13236 { 13302 char c[30];
13237 /* 13303 dtrace_state_t *state;
13238 * Logical XOR, where are you? 13304 dtrace_optval _t *opt;
13239 */ 13305 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13240 ASSERT((vst at e->dtvs_ngl obal s == 0) ~ (vstate->dtvs_globals !'= NULL));
13307 ASSERT(MUTEX_HELD(&t r ace_| ock));
13242 if (vstate->dtvs_nglobals > 0) { 13308 ASSERT(MUTEX_HELD(& pu_|l ock)) ;
13243 kmem free(vst at e->dt vs_gl obal s, vstate->dtvs_ngl obal s *
13244 si zeof (dtrace_statvar_t *)); 13310 mnor = (mnor_t)(uintptr_t)vremalloc(dtrace_minor, 1,
13245 } 13311 VM BESTFI T |~ VM _SLEEP);
13247 if (vstate->dtvs_ntlocals > 0) { 13313 if (ddi _soft_state_zalloc(dtrace_softstate, minor) != DDl _SUCCESS) {
13248 kmem free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13314 veem free(dtrace_mnor, (void *)(uintptr_t)mnor, 1);
13249 sizeof (dtrace_difv_t)); 13315 return (NULL);
13250 } 13316 }
13252 ASSERT((vstate->dtvs_nlocals == 0) " (vstate->dtvs_locals != NULL)); 13318 state = ddi _get_soft_state(dtrace_softstate, mnor);
13319 state->dts_epid = DTRACE_EPI DNONE + 1;
13254 if (vstate->dtvs_nlocals > 0)
13255 kmem free(vstate->dtvs_| ocal s, vstate->dtvs_nlocals * 13321 (void) snprintf(c, sizeof (c), "dtrace_aggid_%", mnor);
13256 sizeof (dtrace_statvar_t *)); 13322 state->dts_aggi d_arena = vnemcreate(c, (void *)1, U NT32_MAX, 1,
13257 } 13323 NULL, NULL, NULL, 0, VM SLEEP | VMC_|IDENTIFIER);
13258 }
13325 if (devp !'= NULL) {
13260 static void 13326 mej or = getemsj or (*devp);

new usr/src/uts/comon/ dtrace/ dtrace. c 203

13327
13328
13329

13331

13333
13334

13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346

13348
13349

13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368

13370

13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390

13392

} else {
maj or = ddi _driver_mmjor(dtrace_devi);
}

stat e- >dts_dev = nmkedevi ce(ngjor, mnor);

if (devp != NULL)
*devp = state->dts_dev;

We allocate NCPU buffers. On the one hand, this can be quite

a bit of nenory per instance (nearly 36K on a Starcat). On the
other hand, it saves an additional nenory reference in the probe
path

* Ok kb %
-~

state->dts_buffer = knmem zal | oc(bufsize, KM SLEEP);
state->dts aggbuffer = kmem zal | oc(buf5| ze, KM SLEEP)
st at e->dt s_cl eaner CYCLI C_ ,_NONE;

st at e->dt s_deadman = CYCLI C_NONE;
state->dts_vstate.dtvs_state = state;

for (i = 0; i < DTRACECPT_MAX; i ++)
state->dts_options[i] = DTRACEOPT_UNSET;

*

* Set the default options.
*
/
opt = state->dts_options;
opt [DTRACEOPT_BUFPQOLI CY] DTRACEOPT_BUFPQOLI CY_SW TCH,;
opt [DTRACEOPT_ BUFRESIZE = DTRACEOPT_BUFRESI ZE_AUTQ
opt [DTRACEOPT_NSPEC] = dtrace _nspec_defaul t;
opt [DTRACEOPT_SPECSI ZE] dtrace_specsi ze_def aul t;
opt [DTRACECPT_CPU] (dtrace optval _t) DTRACE_CPUALL;
opt [DTRACECPT_STRSI ZE] = dtrace_strsize_defaul t;
opt [DTRACEOPT_STACKFRAMES] = dtrace_st ackfranes_def aul t;
opt [DTRACECPT USTACKFRANES] = dtrace_ust ackfranes_defaul t;
opt [DTRACECPT O_EANRATE] = dtrace_cl eanrate_defaul t;
opt [DTRACEOPT_AGGRATE] = dtrace aggrate defaul t;
opt [DTRACEOPT_SW TCHRATE] = dtrace_swi tchrate def aul t;
opt [DTRACEOPT_STATUSRATE] = dtrace statusrate_defaul t;
opt [DTRACEOPT_JSTACKFRAMES] = dtrace_j st ackfranmes_def aul t;
opt [DTRACEOPT_JSTACKSTRSI ZE] = dtrace_j stackstrsize_defaul t;

state->dts_activity = DTRACE_ACTI VI TY_I NACTI VE;

/
Dependi ng on the user credentials, we set flag bits which alter probe
visibility or the anpunt of destructiveness allowed. |In the case of

actual anonynous tracing, or the possession of all privileges, all of
the normal checks are bypassed.

* Ok % k%

*

/

if (cr == NULL || PRIV_POLICY ONLY(cr, PRIV ALL, B FALSE)) {
state >dts_cred. der _visi bl e = DTRACE_ ORV
state->dts_cred. dcr _acti on = DTRACE_CRA | ALL

} else {
/*

* Set up the credentials for this instantiation. W take a

* hold on the credential to prevent it from disappearing on

* us; this in turn prevents the zone_t referenced by this

* credential from di sappearing. This neans that we can

* exami ne the credential and the zone from probe context.

*

/

crhol d(cr)

state->dts_cred. dcr_cred = cr;

| *

new usr/src/uts/comon/ dtrace/ dtrace. c 204

13393
13394
13395
13396
13397
13398
13399

13401
13402
13403
13404
13405
13406
13407
13408
13409
13410

13412
13413
13414

13416
13417
13418

13420
13421
13422

13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434

13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449

13451
13452
13453
13454
13455
13456
13457
13458

* CRA_PROC neans "we have *sonme* privilege for dtrace" and
* unl ocks the use of variables |ike pid, zonenane, etc.
*
/
if (PRIV_POLICY_ONLY(cr, PRI V_DTRACE_USER, B_FALSE) ||
PRI V_POLI CY_ONLY(cr, PRIV_DTRACE PROC, B _FALSE)) ({
state->dts_cred. dcr_action | = DTRACE_CRA_PRCC;
}
/*
* dtrace_user allows use of syscall and profile providers.
* |f the user also has proc_owner and/or proc_zone, we
* extend the scope to include additional visibility and
* destructive power.
*
/
if (PRIV_POLICY ONLY(cr, PRIV _DTRACE USER, B FALSE)) {
if (PRIV_PCOLICY_ONLY(cr, PRIV_PROC_ OMNER, B_FALSE)) {
state->dts_cred.dcr_visible | =
DTRACE_CRV_ALLPRCC;

state->dts_cred. dcr_action | =
DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER;
}

if (PRIV_POLICY_ONLY(cr, PRIV_PROC ZONE, B _FALSE)) {
state->dts_cred.dcr_visible | =
DTRACE_CRV_ALLZONE;

state->dts_cred.dcr_action | =
DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE;

*
* If we have all privs in whatever zone this is,
* we can do destructive things to processes which
* have altered credentials.

*

/

if (priv_isequal set(priv_getset(cr, PRI V_EFFECTI VE)

cr->cr_zone->zone_privset)) {
state->dts_cred. dcr_action | =
DTRACE_CRA PROC_DESTRUCTI VE_CREDCHG,

}
/*
* Hol ding the dtrace_kernel privilege also inplies that

* the user has the dtrace_user privilege froma visibility
*

*

*

perspective. But w thout further privileges, sone
destructive actions are not avail abl e.

if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE KERNEL, B FALSE)) {
/*

* Make all probes in all zones visible. However,

* this doesn’t nean that all actions become avail able

* to all zones.

*/

state->dts_cred. dcr_vi sible | = DTRACE_CRV_KERNEL |
DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;

state->dts_cred. dcr_action | = DTRACE_CRA_KERNEL |
DTRACE_CRA PRCC,

/ *

* Hol di ng proc_owner neans that destructive actions

* for *this* zone are allowed.

*/
if (PRIV_PCLICY_ONLY(cr, PRIV_PROC OMNER, B_FALSE))
state->dts_cred.dcr_action |=

new usr/src/uts/comon/ dtrace/ dtrace. c

13459 DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER;
13461 /*

13462 * Hol di ng proc_zone neans that destructive actions
13463 * for this user/group IDin all zones is allowed.
13464 */

13465 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13466 state->dts_cred. dcr_action | =

13467 DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE;
13469 /*

13470 * |If we have all privs in whatever zone this is,
13471 * we can do destructive things to processes which
13472 * have altered credentials.

13473 */

13474 if (priv_isequal set(priv_getset(cr, PRI V_EFFECTIVE),
13475 cr->cr_zone->zone_privset))

13476 state->dts_cred. dcr_action |=

13477 DTRACE_CRA_PROC_DESTRUCTI VE_CREDCHG,
13478 }

13479 }

13481 /*

13482 * Hol ding the dtrace_proc privilege gives control over fasttrap
13483 * and pid providers. W need to grant wider destructive
13484 * privileges in the event that the user has proc_owner and/or
13485 * proc_zone.

13486 *

13487 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PRCC, B FALSE)) {
13488 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ OMNER, B_FALSE))
13489 State->dts_cred. dcr_action |=

13490 DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER,
13492 if (PRIV_POLICY_ONLY(cr, PRIV_PROC ZONE, B_FALSE))
13493 state->dts_cred.dcr_action | =

13494 DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE;
13495 }

13496 }

13498 return (state);

13499

13501 static int

13502 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13503 {

13504 dtrace_optval _t *opt = state->dts_options, size;

13505 processorid_t cpu;

13506 int flags = 0, rval, factor, divisor = 1,

13508 ASSERT(MUTEX_HELD(&t r ace_| ock)) ;

13509 ASSERT(MUTEX_HELD(& pu_| ock)) ;

13510 ASSERT(whi ch < DTRACECPT_NAX) ;

13511 ASSERT(st at e- >dt s_act i vi Ty == DTRACE_ACTI VI TY_I NACTI VE | |

13512 (state == dtrace_anon.dta_state &%

13513 state->dts_activity == DTRACE_ACTI VI TY_ACTI VE)) ;

13515 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)

13516 return (0);

13518 if (opt[DTRACECOPT_CPU] != DTRACEOPT_UNSET)

13519 cpu = opt [DTRACEOPT CPU] ;

13521 if (which == DTRACEOPT_SPECSI ZE)

13522 flags | = DTRACEBUF_NOSW TCH;

13524 if (which == DTRACEOPT_BUFSI ZE) {

new usr/src/uts/comon/ dtrace/ dtrace. c

13525 i f (opt[DTRACEODT BUFPOLI CY] == DTRACEOPT_BUFPOLI CY_RI NG)
13526 flags | = DTRACEBUF_RI NG

13528 i f (opt[DTRACEOPT_BUFPOLI CY] == DTRACEOPT_BUFPOLI CY_FI LL)
13529 flags | = DTRACEBUF_FI LL;

13531 if (state != dtrace_anon.dta_state ||

13532 state->dts_activity ! = DTRACE_ACTI VI TY_ACTI VE)

13533 flags | = DTRACEBUF_I NACTI VE;

13534 }

13536 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13537 /*

13538 * The size nust be 8-byte aligned. |If the size is not 8-byte
13539 * aligned, drop it down by the difference.

13540

13541 |f (size & (sizeof (uint64_t) - 1))

13542 size -= size & (sizeof (uint64_t) - 1);

13544 if (size < state->dts_reserve) {

13545 /*

13546 * Buffers always nust be | arge enough to acconmodat e
13547 * their prereserved space. W return E2BI G instead
13548 * of ENOVEMin this case to allow for user-Ievel
13549 * software to differentiate the cases.

13550 */

13551 return (E2BI G ;

13552 }

13554 rval = dtrace_buffer_alloc(buf, size, flags, cpu, & actor);
13556 if (rval != ENOVEM {

13557 opt [whi ch] = si ze;

13558 return (rval);

13559 }

13561 i f (opt[DTRACEOPT BUFRESI ZE] == DTRACEOPT BUFRESI ZE_MANUAL)
13562 return (rval);

13564 for (divisor = 2; divisor < factor; divisor <<= 1)

13565 conti nue;

13566 }

13568 return (ENOVEM ;

13569

13571 static int

13572 dtrace_state_buffers(dtrace_state_t *state)

13573 {

13574 dtrace_specul ati on_t *spec = state->dts_specul ati ons;

13575 int rval, i;

13577 if ((rval = dtrace_state_buffer(state, state->dts_buffer,

13578 DTRACEOPT_BUFSI ZE)) = 0)

13579 return (rval);

13581 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,

13582 DTRACEOPT_AGGSI ZE)) T= 0)

13583 return (rval);

13585 for (i = 0; i < state->dts_nspecul ations; i++) {

13586 if ((rval = dtrace_state_buffer(state,

13587 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)

13588 return (rval);

13589 }

new usr/src/uts/comon/ dtrace/ dtrace. c 207

13591
13592

return (0);

13594 static void

13595 dtrace_state_prereserve(dtrace_state_t *state)

13596 {

13597 dtrace_ecb_t *ech;

13598 dtrace_probe_t *probe;

13600 state->dts_reserve = O;

13602 if (state->dts_options[DTRACEOPT BUFPOLI CY] != DTRACEOPT BUFPOLI CY_FILL)
13603 return;

13605 /*

13606 * If our buffer policy is a "fill" buffer policy, we need to set the
13607 * prereserved space to be the space required by the END probes.
13608 */

13609 probe = dtrace_probes[dtrace_probeid_end - 1];

13610 ASSERT(probe != NULL);

13612 for (ecb = probe->dtpr_ech; ecb !'= NULL; ecb = ecb->dte_next) {
13613 if (ecb->dte_state != state)

13614 continue;

13616 state->dts_reserve += ecb->dte_needed + ecb->dte_alignnent;
13617 }

13618

13620 static int

13621 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)

13622 {

13623 dtrace_optval _t *opt = state->dts_options, sz, nspec;

13624 dtrace_specul ati on_t *spec;

13625 dtrace_buffer_t *buf;

13626 cyc_handl er_t hdlr;

13627 cyc_time_t when;

13628 int rval =0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13629 dtrace_i cooki e_t cooki e;

13631 nmut ex_ent er (&cpu_|l ock) ;

13632 nut ex_ent er (&dtrace_| ock) ;

13634 if (state->dts_activity !'= DTRACE ACTI VI TY_I NACTI VE) {

13635 rval = EBUSY;

13636 goto out;

13637 }

13639 /*

13640 * Before we can performany checks, we nmust prinme all of the
13641 * retained enablings that correspond to this state.

13642 */

13643 dtrace_enabl i ng_prinme(state);

13645 if (state->dts_destructive & !state->dts_cred. dcr_destructive) {
13646 rval = EACCES;

13647 goto out;

13648 }

13650 dtrace_state_prereserve(state);

13652 /*

13653 * Now we want to do is try to allocate our specul ations.

13654 * W do not autonmtically resize the nunber of specul ations; if
13655 * this fails, we will fail the operation.

13656 */

new usr/src/uts/comon/ dtrace/ dtrace. c

13657
13658

13660
13661
13662
13663

13665
13666

13668
13669
13670
13671

13673
13674

13676
13677
13678
13679
13680
13681

13683
13684

13686
13687
13688
13689
13690

13692
13693
13694
13695

13697
13698
13699

13701
13702
13703
13704
13705
13706
13707

13709

13711
13712
13713
13714
13715
13716
13717
13718
13719

13721
13722

nspec = opt [DTRACEOPT_NSPEC] ;
ASSERT(nspec ! = DTRACEOPT _UNSET) :

if (nspec > INT_MAX) {
rval = ENOVEM
goto out;

}

spec = knem zal | oc(nspec * SI zeof (dtrace_specul ation_t),
KM _NOSLEEP | KM _NORMALPI

if (spec == NULL) {
rval = ENOVEM
goto out;

}

st at e- >dt s_specul ati ons = spec;
st at e- >dt s_nspecul ati ons = (i nt)nspec;

for (i = 0; i < nspec; i++)
if ((buf = kmem zal | oc(buf si ze,
KM NOSLEEP | KM NORMALPRI)) == NULL) {
rval = ENOVEM
goto err;

}

spec[i].dtsp_buffer = buf;
}

if (opt[DTRACEOPT_GRABANON] != DTRACECPT_UNSET) {
if (dtrace_anon.dta_state == NULL) {
rval = ENOCENT;
goto out;

}

if (state->dts_necbs != 0) {
rval = EALREADY;
goto out;

}

state->dts_anon = dtrace_anon_grab();
ASSERT(state >dts _anon !'= NULL);
state = state->dts_anon;

/*
* W& want "grabanon" to be set in the grabbed state, so we'll

* copy that option value fromthe grabbing state into the
* grabbed state.
*

/

st at e- >dt s_opt i ons[DTRACEOPT_GRABANON] =
opt [DTRACEOPT_GRABANON| ;

*cpu = dtrace_anon. dt a_beganon;

* |f the anonynous state is active (as it alnost certainly
* is if the anonynpus enabling ultimately matched anything),

* we don’t allow any further option processing -- but we
* don't return failure.
*/
if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE)
goto out;

}

if (opt[DTRACEOPT AGGSI ZE] != DTRACECPT_UNSET &&
opt [DTRACEOPT_AGGSI ZE] != 0) {

208

new usr/src/uts/comon/ dtrace/ dtrace. c 209

13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740

13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752

13754
13755
13756
13757
13758

13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772

13774
13775

13777
13778

13780
13781

13783
13784

13786
13787
13788

if (state->dts_aggregations == NULL) {
/*

* We're not going to create an aggregation buffer
* because we don’t have any ECBs that contain

* aggregations -- set this option to O.

)

opt [DTRACEOPT_AGGSI ZE] = 0;
} else {
*

* If we have an aggregation buffer, we nmust also have
* a buffer to use as scratch.
*

if (opt[DTRACEOPT_BUFSI ZE] == DTRACECPT_UNSET | |
opt [DTRACEOPT_BUFSI ZE] < st at e->dts_needed) {
opt [DTRACEOPT_BUFSI ZE] = state->dts_needed;

}

if (opt[DTRACEOPT_SPECSI ZE] ! = DTRACEOPT_UNSET &&
opt [DTRACEOPT_SPECSI ZE] != 0
if (!state->dts_specul ates) {
/*
* We're not going to create specul ation buffers
* because we don’t have any ECBs that actually
* specul ate -- set the specul ation size to 0.
*
/

opt [DTRACEOPT_SPECSI ZE] = 0;

}

/*

* The bare mininmumsize for any buffer that we’'re actually going to
* do anything to is sizeof (uint64_t).

*/

sz = sizeof (uint64_t);

if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSI ZE] < sz) ||
(state->dts_specul ates && opt[DTRACEOPT_SPECSI ZE] < sz) ||
(state->dts_aggregati ons != NULL && opt [DTRACEOPT_AGGSI ZE] < sz)) {
/*

* A buffer size has been explicitly set to 0 (or to a size

* that will be adjusted to 0) and we need the space -- we

* need to return failure. W return ENOSPC to differentiate
* it fromfailing to allocate a buffer due to failure to neet
*/the reserve (for which we return E2BI G

*

rval = ENGCSPC;

goto out;

}

if ((rval = dtrace_state_buffers(state)) != 0)
goto err;

if ((sz = opt[DTRACEOPT_DYNVARSI ZE]) == DTRACEOPT_UNSET)
sz = dtrace_dst at e_def si ze;

do {
rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
if (rval == 0)
br eak;

i f (opt[DTRACEOPT BUFRESI ZE] == DTRACEOPT_BUFRESI ZE_NANUAL)
goto err;
} while (sz >>=1);

new usr/src/uts/comon/ dtrace/ dtrace. c

13790

13792
13793

13795
13796

13798
13799

13801
13802

13804
13805

13807
13808
13809

13811
13812

13814

13816
13817
13818

13820
13821

13823
13824

13826

13828
13829
13830
13831
13832
13833
13834
13835
13836

13838
13839
13840
13841
13842

13844
13845
13846
13847
13848
13849
13850
13851
13852
13853

210

opt [DTRACECPT_DYNVARSI ZE] = sz;

if (rval !'=0)
goto err;

if (opt[DTRACEOPT_STATUSRATE] > dtrace_st atusrate_nax)
opt [DTRACEOPT_STATUSRATE] = dtrace_st at usrat e_max;

if (opt[DTRACEOPT_CLEANRATE] == 0)
opt [DTRACEOPT_CLEANRATE] = dtrace_cl eanrat e_max;

if (opt[DTRACEOPT_CLEANRATE] < dtrace_cl eanrate_nin)
opt [DTRACEOPT_CLEANRATE] = dtrace_cl eanrate_mi n;

if (opt[DTRACEOPT_CLEANRATE] > dtrace cl eanr at e_nax)
opt [DTRACEOPT_CLEANRATE] = dtrace_cl eanr at e_nax;

hdl r. cyh_func (cyc func_t)dtrace_state_cl ean;
hdlr.cyh_arg = sta
hdl r.cyh_| evel CY LON LEVEL;

when. cyt _when = 0;
when. cyt _i nterval = opt[DTRACEOPT_CLEANRATE] ;

state->dts_cl eaner = cyclic_add(&hdlr, &when);

hdl r. cyh_func (cyc func_t)dtrace_state_deadman;
hdlr.cyh_arg = sta
hdl r.cyh_| evel CY LON LEVEL;

when. cyt _when = 0;
when. cyt _interval = dtrace_deadnan_interval;

state->dts_alive = state->dts_| aststatus = dtrace_gethrtime();
st at e->dt s_deadman = cyclic_add(&hdlr, &when);

state->dts_activity = DTRACE_ACTI VI TY_WARMUP;

if (state->dts_getf != 0 &&
I (state->dts_cred. dcr_visible & DTRACE_CRV_KERNEL)) {
/*

* W don't have kernel privs but we have at |east one call
* to getf(); we need to bunp our zone's count, and (if

* this is the first enabling to have an unpnwleged cal |
*/to getf()) we need to hook into closef()

*

state->dts_cred. dcr _cred->cr_zone->zone_dtrace_get f ++;

if (dtrace_getf++ == 0) {
ASSERT(dtrace_cl osef == NULL);
dtrace_cl osef = dtrace_getf_barrier;

Now it's time to actually fire the BEG N probe. W need to disable
interrupts here both to record the CPU on which we fired the BEG N
probe (the data fromthis CPU will be processed first at user
level) and to manual ly activate the buffer for this CPU.

* Ok Ok ok F %
-

cooki e = dtrace_i nterrupt _disabl e();

*cpu = CPU >cpu_i d;

ASSERT(st at e- >dt s buf f er [*cpu] .dtb_fl ags & DTRACEBUF_I| NACTI VE) ;
state->dts_buffer[*cpu].dtb_flags & ~DTRACEBUF_| NACTI VE;

new usr/src/uts/comon/ dtrace/ dtrace. c 211

13855 dtrace_probe(dtrace_probei d_begin,

13856 (uint64_t) (uintptr _t)state, 0, 0, 0, 0);

13857 dtrace_i nterrupt _enabl e(cooki e) ;

13858 /*

13859 * We may have had an exit action froma BEG N probe; only change our
13860 * state to ACTIVE if we're still in WARMUP.

13861 */

13862 ASSERT(st at e->dts_acti vi ty == DTRACE_ACTI VI TY_WARMUP | |

13863 state->dts_activity == DTRACE_ACTI VI TY_DRAI NI NG ;

13865 if (state->dts_activity == DTRACE_ACTI VI TY_WARMUP)

13866 state->dts_activity = DTRACE_ACTI VI TY_ACTI VE;

13868 /*

13869 * Regardl ess of whether or not now we're in ACTIVE or DRAINI NG we
13870 * want each CPU to transition its principal buffer out of the
13871 * | NACTI VE state. Doing this assures that no CPU will suddenly begl n
13872 * processing an ECB hal fway down a probe’s ECB chain; all CPUs w |
13873 * atomcally transition from processing none of a state’s ECBs to
13874 * processing all of them

13875 *

13876 dtrace_xcal | (DTRACE_CPUALL,

13877 (dtrace_xcal | _t)dtrace_buffer_activate, state);

13878 goto out;

13880 err:

13881 dtrace_buffer_free(state->dts_buffer);

13882 dtrace_buffer_free(state->dts aggbuffer)

13884 if ((nspec = state->dts_nspecul ations) == 0) {

13885 ASSERT(st at e- >dt s_specul ati ons == NULL);

13886 goto out;

13887 }

13889 spec = state->dts_specul ations;

13890 ASSERT(spec != NULL);

13892 (i =0; i < state->dts_nspecul ations; i++) {

13893 if ((buf = spec[i].dtsp_buffer) == NULL)

13894 br eak;

13896 dtrace_buffer_free(buf);

13897 kmem free(buf, bufsize);

13898 }

13900 kmem free(spec, nspec * sizeof (dtrace_speculation_t));

13901 st at e- >dt s_nspecul ati ons = 0;

13902 st at e- >dt s_specul ati ons = NULL;

13904 out:

13905 nut ex_exi t (&dtrace_| ock);

13906 mut ex_exi t (&pu_l ock) ;

13908 return (rval);

13909 }

13911 static int

13912 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)

13913 {

13914 dtrace_i cooki e_t cooki e;

13916 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

13918 if (state->dts_activity != DITRACE_ACTI VI TY_ACTI VE &&

13919 state->dts_activity ! = DTRACE_ACTI VI TY_DRAI Nl NG)

13920 return (EI NVAL);

new usr/src/uts/comon/dtrace/ dtrace. c 212
13922 /*

13923 * W'll set the activity to DTRACE_ACTI VI TY_DRAI NING and issue a sync
13924 * to be sure that every CPU has seen it. See below for the details
13925 * on why this is done.

13926

13927 state->dts_activity = DTRACE_ACTI VI TY_DRAI NI NG

13928 dtrace_sync();

13930 /*

13931 * By this point, it is inpossible for any CPU to be still processing
13932 * with DTRACE_ACTI VI TY_ACTIVE. W can thus set our activity to
13933 * DTRACE_ACTI VI TY_COOLDOWN and know that we’'re not racing wth any
13934 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13935 * and callees to know that the activity i s DTRACE_ACTI VI TY_COOLDOMNN
13936 * iff we're in the END probe.

13937 */

13938 state->dts_activity = DTRACE_ACTI VI TY_COOLDOW,

13939 dtrace_sync();

13940 ASSERT(stat e->dts_activity == DTRACE_ACTI VI TY_COOLDOVW) ;

13942 /*

13943 * Finally, we can release the reserve and call the END probe. W
13944 * disable interrupts across calling the END probe to allow us to
13945 * return the CPU on which we actually called the END probe. This
13946 * allows user-land to be sure that this CPU s principal buffer is
13947 * processed | ast.

13948 */

13949 state->dts_reserve = 0;

13951 cooki e = dtrace_i nterrupt _disabl e();

13952 *cpu = CPU->cpu_i d;

13953 dtrace_probe(dtrace_probei d_end,

13954 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);

13955 dtrace_i nterrupt _enabl e(cooki e);

13957 state->dts_activity = DTRACE_ACTI VI TY_STOPPED,

13958 dtrace_sync();

13960 if (state->dts_getf != 0 &&

13961 ! (state->dts_cred. dcr_visible & DTRACE_CRV_KERNEL)) {

13962 /*

13963 * W don’t have kernel privs but we have at |east one call
13964 * to getf(); we need to |ower our zone's count, and (if
13965 * this is the last enabling to have an unprivi i eged cal |
13966 * to getf()) we need to clear the closef() hook.

13967 */

13968 ASSERT(st at e- >dt s cred dcr cred->cr_zone->zone_dtrace_getf > 0);
13969 ASSERT(dtrace_cl osef == dtrace_getf barrier);

13970 ASSERT(dtrace_getf > 0);

13972 state->dts_cred. dcr _cred->cr_zone->zone_dtrace_getf--;

13974 if (--dtrace_getf ==

13975 dtrace_cl osef = NULL;

13976 }

13978 return (0);

13979

13981 static int

13982 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,

13983 dtrace_optval _t val)

13984

13985

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

new usr/src/uts/comon/ dtrace/ dtrace. c

13987 if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE)

13988 return (EBUSY);

13990 if (option >= DTRACEOPT_MAX)

13991 return (EI NVAL);

13993 if (option != DTRACEOPT_CPU && val < 0)

13994 return (ElINVAL)

13996 switch (option) {

13997 case DTRACEOPT_DESTRUCTI VE

13998 if (dtrace_destructive_disallow)

13999 return (EACCES);

14001 state->dts_cred. dcr_destructive = 1;

14002 br eak;

14004 case DTRACECPT_BUFSI ZE

14005 case DTRACEOPT_DYNVARSI ZE:

14006 case DTRACEOPT_AGGSI ZE:

14007 case DTRACECPT_SPECSI ZE:

14008 case DTRACECPT_STRSI ZE:

14009 if (val < 0)

14010 return (EINVAL);

14012 if (val >= LONG MAX) {

14013 /*

14014 * |f this is an otherw se negative value, set it to
14015 * the highest nmultiple of 128m|ess than LONG MAX.
14016 * Technically, we're adjusting the size w thout
14017 * regard to the buffer resizing policy, but in fact,
14018 * this has no effect -- if we set the buffer size to
14019 * ~LONG_MAX and the buffer policy is ultimately set to
14020 * be "manual ", the buffer allocation is guaranteed to
14021 * fail, if only because the allocation requires two
14022 * puffers. (We set the the size to the highest
14023 * multiple of 128m because it ensures that the size
14024 *will remain a multiple of a nmegabyte when

14025 * repeatedly halved -- all the way down to 15m)
14026 */

14027 val = LONG MAX - (1 << 27) + 1;

14028 }

14029 }

14031 state->dts_options[option] = val;

14033 return (0);

14034 }

14036 static void

14037 dtrace_state_destroy(dtrace_state_t *state)

14038 {

14039 dtrace_ecb_t *ech;

14040 dtrace_vstate_t *vstate = &state->dts_vstate;

14041 m nor_t mnor = getm nor(state->dts_dev);

14042 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);

14043 dtrace_specul ation_t *spec = state->dts_specul ati ons;

14044 int nspec = state->dts_nspecul ati ons;

14045 uint32_t match;

14047 ASSERT(MUTEX_HELD(&dt r ace_| ock));

14048 ASSERT(MUTEX_HELD(&pu_l ock)) ;

14050 /*

14051 * First, retract any retained enablings for this state.

14052 */

new usr/src/uts/comon/ dtrace/ dtrace. c

14053
14054

14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069

14071
14072
14073
14074
14075

14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087

14089
14090
14091

14093
14094
14095

14097
14098
14099

14101
14102
14103

14105
14106
14107
14108
14109

14111
14112

14114
14115

14117
14118

dtrace_enabling_retract(state);
ASSERT(st at e->dts_nretai ned == 0);

if (state->dts_activity == DTRACE_ACTI VI TY_ACTI VE | |
state->dts_activity == DTRACE_ACTI VI TY_DRAI NI NG {
/*
* W& have managed to cone into dtrace_state_destroy() on a
* hot enabling -- alnpbst certainly because of a disorderly
* shutdown of a consunmer. (That is, a consuner that is
* exiting without having called dtrace_stop().) In this case,
* we're going to set our activity to be KILLED, and then
* issue a sync to be sure that everyone is out of probe
* context before we start bl owi ng away ECBs.
*
/
state->dts_activity = DTRACE_ACTI VI TY_KI LLED;
dtrace_sync();

}

/*
* Rel ease the credential hold we took in dtrace_state_create().
*
if (state->dts_cred.dcr_cred != NULL)
crfree(state->dts_cred. dcr_cred);

Now we can safely disable and destroy any enabl ed probes. Because
any DTRACE_PRI V_KERNEL probes may actual |y be sl ow ng our progress
(especially if they're all enabled), we take two passes through the
ECBs: in the first, we disable just DTRACE PRI V_KERNEL probes, and
* in the second we di sable whatever is |eft over.

* Ok Ok k%

*
/
for (match = DTRACE_PRI V_KERNEL; ; match = 0)
for (i =0; i < state->dts_necbs; i++) {
if ((ecb = state->dts_ecbs[i]) == NULL)
conti nue;
if (match && ecb->dte_probe != NULL) {
dtrace_probe_t *probe = ech->dte_probe;
dtrace_provider_t *prov = probe->dtpr_provider;
if (!(prov->dtpv_priv.dtpp_flags & match))
conti nue;
}
dtrace_ecb_di sabl e(ecb);
dtrace_ech_destroy(ech);
}
if (!'match)
br eak;
}

*

* Before we free the buffers, performone nore sync to assure that
* every CPU is out of probe context.
*

dtrace_sync();

dtrace_buffer_free(state->dts_buffer);
dtrace_buffer_free(state->dts_aggbuffer);

for (i = 0; i < nspec; i++)
dtrace_buffer_free(spec[i].dtsp_buffer);

if (state->dts_cl eaner != CYCLI C_NONE)
cyclic_renove(state->dts_cl eaner);

new usr/src/uts/comon/ dtrace/ dtrace. c 215

14120
14121

14123
14124
14125

14127
14128
14129
14130
14131
14132
14133
14134
14135

14137
14138

14140
14141

14143
14145

14147
14148
14149
14150

14152
14153
14154
14155
14156

14158
14160

14162
14163
14164
14165

14167
14168

14170
14171
14172

14174
14175

14177
14178

14180
14181
14182
14183

if (state->dts_deadman != CYCLI C_NONE)
cyclic_renove(state->dts_deadman);

dtrace_dstate_fini(&state->dtvs_dynvars);
dtrace_vstate_fini(vstate);
knmem free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));

if (state->dts_aggregations != NULL) {

#i f def DEBUG

#endi f

}

/*
* DTrace Anonynous Enabling Functions
*/

for (i =0; i < state->dts_naggregations; i++)
ASSERT(st ate->dts_aggregations[i] == NULL);

ASSERT(st at e- >dt s_naggr egati ons > 0);
kmem f ree(st at e- >dt s_aggr egat i ons,
st at e- >dt s_naggregati ons * sizeof (dtrace_aggregation_t *));

}

kmem free(state->dts_buffer, bufsize);
kmem free(state->dts_aggbuffer, bufsize);

for (i = 0; i < nspec; i++)
kmem free(spec[i].dtsp_buffer, bufsize);

kmem free(spec, nspec * sizeof (dtrace_speculation_t));
dtrace_format_destroy(state);
virem dest roy(st at e->dt s_aggi d_arena);

ddi _soft_state_free(dtrace_softstate, mnor);
vem free(dtrace_m nor, (void *)(uintptr_t)mnor, 1);

static dtrace_state t *
dt race_anon_gr ab(voi d)
14157 {

}

dtrace_state_t *state;
ASSERT(MUTEX_HELD(&t r ace_| ock));

if ((state = dtrace_anon.dta_state) == NULL) {
ASSERT(dt race_anon. dta_enabl i ng == NULL);
return (NULL);

}

ASSERT(dt race_anon. dta_enabling != NULL);
ASSERT(dtrace_retai ned != NULL);

dtrace_enabl i ng_destroy(dtrace_anon. dta_enabl i ng);
dtrace_anon. dta_enabl i ng = NULL;
dtrace_anon. dta_state = NULL;

return (state);

static void
dtrace_anon_property(voi d)
14179 {

int i, rv;
dtrace_state_t *state;
dof hdr t *dof;

char ¢[32]; /* enough for "dof-data-" + digits */

new usr/src/uts/comon/dtrace/ dtrace.c 216
14185 ASSERT(MUTEX_HELD(&t r ace_| ock));

14186 ASSERT(MUTEX_HELD(&pu_I ock)) ;

14188 (i =0; ; i+ {

14189 (void) snprintf(c, sizeof (c), "dof-data-%", i);

14191 dtrace_err_verbose = 1;

14193 if ((dof = dtrace_dof property(c)) == NULL) {

14194 dtrace_err_verbose = 0;

14195 br eak;

14196 }

14198 /*

14199 * W want to create anonynous state, so we need to transition
14200 * the kernel debugger to indicate that DIrace is active. |If
14201 * this fails (e.g. because the debugger has nodified text in
14202 * some way), we won’'t continue with the processing.

14203

14204 if (kdi _dtrace_set (KDl _DTSET_DTRACE_ACTI VATE) != 0)

14205 “cm_err (CE_NOTE, "kernel debugger active; anonymous "
14206 "enabl ing ignored.");

14207 dtrace_dof _destroy(dof);

14208 br eak;

14209 }

14211 /*

14212 * |If we haven't allocated an anonynous state, we'll do so now.
14213 *

14214 if ((state = dtrace_anon.dta_state) == NULL)

14215 state = dtrace_state_create(NULL, NULL);

14216 dtrace_anon.dta_state = state;

14218 if (state == NULL) {

14219 /*

14220 * This basically shouldn’t happen: the only
14221 * failure node fromdtrace_state _create() is a
14222 * failure of ddi_soft_state_zalloc() that
14223 * jtself should never happen. Still, the
14224 * interface allows for a failure node, and
14225 * we want to fail as gracefully as possible:
14226 * we'll emt an error nessage and cease
14227 * processing anonynous state in this case.
14228 */

14229 crm_err (CE_WARN, "failed to create "

14230 "anonynous state");

14231 dtrace_dof _destroy(dof);

14232 br eak;

14233 }

14234 }

14236 rv = dtrace_dof _slurp(dof, &state->dts_vstate, CRED(),

14237 &dtrace anon. dt a_ enabl ing, 0, B TRUE);

14239 if (rv == 0)

14240 rv = dtrace_dof _options(dof, state);

14242 dtrace_err_verbose = 0;

14243 dtrace_dof _destroy(dof);

14245 if (rv1=0) {

14246 /*

14247 * This is mal formed DOF; chuck any anonynous state
14248 * that we created.

14249 */

14250 ASSERT(dt race_anon. dt a_enabl i ng == NULL);

new usr/src/uts/comon/dtrace/ dtrace. c 217 new usr/src/uts/comon/dtrace/ dtrace. c 218
14251 dtrace_state_destroy(state);
14252 dtrace_anon.dta_state = NULL; 14318 ent = (dtrace_hel ptrace_t *) &t race_hel ptrace_buffer[next];
14253 br eak; 14319 ent - >dt ht _hel per hel per;
14254 } 14320 ent - >dt ht _where = Wner
14321 ent->dtht_nl ocal s = vst ate->dt vs _nlocals;
14256 ASSERT(dt race_anon. dta_enabling != NULL);
14257 } 14323 ent->dtht _fltoffs = (nstate->dtnms_present & DTRACE_MSTATE_FLTOFFS) ?
14324 nstate->dtns_fltoffs : -1;
14259 if (dtrace_anon.dta_enabling != NULL) { 14325 ent->dtht _fault = DTRACE_FLAGS2FLT(fI ags);
14260 int rval; 14326 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14262 g% 14328 for (i =0; i < vstate->dtvs_nlocals; i++) {
14263 * dtrace_enabling_retain() can only fail because we are 14329 dtrace_statvar_t *svar;
14264 * trying to retain nore enablings than are allowed -- but
14265 * we only have one anonynopus enabling, and we are guaranteed 14331 if ((svar = vstate->dtvs_local s[i]) == NULL)
14266 * to be allowed at |east one retained enabling; we assert 14332 conti nue;
14267 * that dtrace_enabling_retain() returns success.
14268 */ 14334 ASSERT(svar - >dt sv_si ze >= NCPU * sizeof (uint64_t));
14269 rval = dtrace enabl ing_retain(dtrace_anon. dta_enabling); 14335 ent->dtht _local s[i] =
14270 ASSERT(rval == 0); 14336) ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14337
14272 dtrace_enabl i ng_dunp(dtrace_anon. dt a_enabl i ng) ; 14338 }
14273 }
14274 } 14340 static uint64_t
14341 dtrace_hel per (i nt which, dtrace_nstate_t *nstate,
14276 [* 14342 dtrace_state_t *state, uint64_t arg0, uint64_t argl)
14277 * DTrace Hel per Functions 14343 {
14278 */ 14344 uint16_t *flags = &cpu_core[CPU- >cpu id].cpuc_dtrace_fl ags;
14279 static void 14345 uint64_t sarg0 = n'st ate->dtns_arg[0
14280 dtrace_hel per_trace(dtrace_hel per_action_t *hel per, 14346 uint64_t sargl = nstate->dt ms_arg[l]
14281 dtrace_nstate_t *nstate, dtrace_vstate_t *vstate, int where) 14347 uint64_t rval;
14282 { 14348 dtrace_hel pers_t *hel pers = curproc->p_dtrace_hel pers;
14283 uint32_t size, next, nnext, i; 14349 dtrace_hel per_action_t *hel per;
14284 dtrace_hel ptrace t *ent 14350 dtrace_vstate_t *vstate;
14285 uint16_t flags = cpu_core[CPU->cpu_i d].cpuc_dtrace_fl ags; 14351 dtrace_difo_t *pred;
14352 int i, trace = dtrace_hel ptrace_enabl ed;
14287 if (!dtrace_hel ptrace_enabl ed)
14288 return; 14354 ASSERT(whi ch >= 0 && whi ch < DTRACE_NHELPER_ACTI ONS) ;
14290 ASSERT(vst at e->dt vs_nl ocal s <= dtrace_hel ptrace_nl ocal s); 14356 if (hel pers == NULL)
14357 return (0);
14292 /*
14293 * What would a tracing framework be without its own tracing 14359 if ((hel per = hel pers->dthps_actions[which]) == NULL)
14294 * framework? (Well, a hell of a lot sinpler, for starters...) 14360 return (0);
14295 */
14296 size = sizeof (dtrace_helptrace_t) + dtrace_hel ptrace_nlocals * 14362 vstate = &hel pers->dthps_vstate;
14297 sizeof (uint64_t) - sizeof (uint64_t); 14363 nst at e->dt ns_arg[0] = arg0;
14364 nstate->dtnms_arg[1] = argl;
14299 /*
14300 * Iterate until we can allocate a slot in the trace buffer. 14366 /*
14301 */ 14367 * Now iterate over each helper. |If its predicate evaluates to 'true’,
14302 do { 14368 * we'll call the corresponding actions. Note that the bel ow calls
14303 next = dtrace_hel ptrace_next; 14369 * to dtrace_dif_enulate() may set faults in nachine state. This is
14370 * okay: our caller (the outer dtrace_dif_enulate()) will sinply plow
14305 if (next + size < dtrace_hel ptrace_bufsize) { 14371 * the stored DIF offset with its own (which is the desired behavior).
14306 nnext = next + size; 14372 * Also, note the calls to dtrace_dif_enulate() may all ocate scratch
14307 } else { 14373 * from nmachine state; this is okay, too.
14308 nnext = size; 14374 */
14309 } 14375 for (; helper !'= NULL; hel per = hel per->dtha_next) {
14310 } while (dtrace_cas32(&dtrace_hel ptrace_next, next, nnext) != next); 14376 if ((pred = hel per->dtha_predicate) !'= NULL) {
14377 if (trace)
14312 /* 14378 dtrace_hel per_trace(hel per, nstate, vstate, 0);
14313 * We have our slot; fill it in.
14314 */ 14380 if (!dtrace_dif_emnul ate(pred, nstate, vstate, state))
14315 if (nnext == size) 14381 got o next;
14316 next = 0;

new usr/src/uts/comon/ dtrace/ dtrace. c

14383
14384
14385

14387
14388
14389
14390

14392
14393

14395
14396
14397

if (*flags & CPU _DTRACE_FAULT)

14399 next:

14400
14401
14402
14403

14405
14406
14407

14409
14410
14411
14412
14413

14415

14417 err:

14418
14419
14420

14422
14423
14424
14425
14426

14428
14429 }

goto err;
}
for (i = 0; i < helper->dtha_nactions; i++) {
if (trace)
dtrace_hel per_trace(hel per,
nstate, vstate, i + 1);
rval = dtrace_dif_enul at e(hel per->dt ha_actions[i],
nmstate, vstate, state);
if (*flags & CPU_DTRACE_FAULT)
goto err;
}
if (trace)
dtrace_hel per _trace(hel per, nstate, vstate,
DTRACE_HELPTRACE_NEXT) ;
}
if (trace)
dtrace_hel per _trace(hel per, nstate, vstate,
DTRACE_HELPTRACE_DONE) ;
/*
* Restore the arg0 that we saved upon entry.
*
/

nst at e->dt ms_arg[0] = sargO;
netate->dt ms_arg[1] = sargil;

return (rval)
if (trace)
dtrace_hel per _trace(hel per, nstate, vstate,
DTRACE_HELPTRACE_ERR) ;

/*
* Restore the arg0 that we saved upon entry.
*/

net at e- >dt ms_arg[0] = sargo0;
netate->dt ms_arg[1] = sargil;

return (NULL);

14431 static void
14432 dtrace_hel per_acti on_destroy(dtrace_hel per _action_t *hel per,

14433
14434 {
14435

14437
14438

14440
14441
14442
14443

14445
14446
14447
14448 }

dtrace_vstate_t *vstate)
int i;

if (hel per->dtha_predicate != NULL)
dtrace_di fo_rel ease(hel per->dt ha_predi cate, vstate);

for (i = 0; i < helper->dtha_nactions; i++)
ASSERT(hel per->dtha_actions[i] != NULL);
dtrace_di fo_rel ease(hel per->dtha_actions[i], vstate);

}

kmem f r ee(hel per->dtha_acti ons,
hel per - >dt ha_nacti ons * sizeof (dtrace_difo_t *));
kmem free(hel per, sizeof (dtrace_hel per_action_t));

new usr/src/uts/comon/ dtrace/ dtrace. c 220

14450 static int
14451 dtrace_hel per_destroygen(int gen)

14452 {
14453
14454
14455
14456

14458

14460
14461

14463

14465
14466

14468
14469

14471
14472
14473
14474
14475
14476

14478
14479
14480
14481
14482
14483

14485
14486
14487
14488
14489
14490

14492
14493
14494
14495
14496
14497
14498
14499

14501
14502
14503

14505
14506
14507
14508
14509

14511
14512
14513
14514

proc_t *p = curproc;

dtrace_hel pers_t *help = p->p_dtrace_hel pers;
dtrace_vstate_t *vstate;

int i;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

if (help == NULL || gen > hel p->dt hps_generati on)
return (ElNVAL);

vstate = &hel p->dt hps_vst at e;

for (i = 0; i < DTRACE_NHELPER _ACTIONS; i ++)
dtrace_hel per_action_t *last = NULL, *h, *next;

for (h = help->dthps_actions[i]; h !'= NULL; h = next) {
next = h->dtha_next;

if (h->dtha_generation == gen) {
if (last !'= NULL)
| ast - >dt ha_next = next;

} else {
hel p- >dt hps_actions[i] = next;
}
dtrace_hel per_action_destroy(h, vstate);
} else {
last = h;
}
}
}
/*

* Interate until we’'ve cleared out all helper providers with the
* given generation nunber.
*

for (;5) {
dtrace_hel per _provider_t *prov;

/*

* Look for a helper provider with the right generation. W

* have to start back at the beginning of the list each tine

* because we drop dtrace_lock. It’'s unlikely that we'll nake

* nore than two passes.

*

for (i = 0; i < help->dthps_nprovs; i++) {
prov = hel p->dthps_provs[i];

if (prov->dthp_generation == gen)
br eak;
}
/*
* |f there were no matches, we're done.
*/
if (i == hel p->dthps_nprovs)
br eak;
/*
* Move the | ast hel per provider into this slot.
*
/

hel p- >dt hps_nprovs- - ;

new usr/src/uts/comon/ dtrace/ dtrace. c 221 new usr/src/uts/comon/ dtrace/ dtrace. c 222

14515 hel p- >dt hps_provs[i] = hel p->dt hps_provs| hel p >dt hps_nprovs] ; 14581 if (count >= dtrace_hel per_actions_nax)
14516 hel p- >dt hps_pr ovs] hel p >dt hps_nprovs] = NULL 14582 return (ENGSPC);
14518 nmut ex_exi t (&dtrace_| ock); 14584 hel per = kmem zal | oc(si zeof (dtrace_hel per_action_t), KM SLEEP);
14585 hel per - >dt ha_generation = hel p->dt hps_generati on;
14520 /*
14521 * |f we have a nmeta provider, renove this hel per provider. 14587 if ((pred = ep->dted_pred. dtpdd_predicate) != NULL) {
14522 */ 14588 ASSERT(pred->dtp_difo !'= NULL);
14523 nut ex_ent er (&dtrace_neta_| ock); 14589 dtrace_di fo_hol d(pred->dt p_di fo)
14524 if (dtrace_neta_pid !'= NULL) { 14590 hel per->dt ha_predi cate = pred- >dt p_di fo;
14525 ASSERT(dtrace_deferred_pid == NULL); 14591 }
14526 dtrace_hel per _provi der _renove(&prov->dt hp_prov,
14527 p->p_pi d); 14593 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14528 } 14594 if (act->dtad_kind ! = DTRACEACT DI FEXPR)
14529 mut ex_exit (&dtrace_neta_l ock); 14595 goto err;
14531 dtrace_hel per _provi der_destroy(prov); 14597 if (act->dtad_difo == NULL)
14598 goto err;
14533 mut ex_ent er (&Jtrace_| ock);
14534 } 14600 nacti ons++;
14601 }
14536 return (0);
14537 } 14603 hel per - >dt ha_acti ons = knmem zal | oc(si zeof (dtrace_difo_t *) *
14604 (hel per->dt ha_nactions = nactions), KM SLEEP);
14539 static int
14540 dtrace_hel per_validate(dtrace_hel per _action_t *hel per) 14606 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14541 { 14607 dtrace_di fo_hol d(act ->dtad_di fo);
14542 int err = 14608 hel per->dtha_acti ons[i ++] = act- Sdt ad_di fo;
14543 dtrace_| dlfo t *dp, 14609 }
14545 if ((dp = hel per->dtha_predicate) != NULL) 14611 if (!dtrace_hel per_vali date(hel per))
14546 err += dtrace_difo_val i date_hel per(dp); 14612 goto err;
14548 for (i = 0; i < helper->dtha_nactions; i++) 14614 if (last == NULL)
14549 err += dtrace_difo_validate_| hel per (hel per->dtha_actions[i]); 14615 hel p- >dt hps_acti ons[whi ch] = hel per;
14616 } else {
14551 return (err == 0); 14617 | ast - >dt ha_next = hel per;
14552 } 14618 }
14554 static int 14620 if (vstate->dtvs_nlocals > dtrace_hel ptrace_nl ocal s) {
14555 dtrace_hel per_acti on_add(i nt which, dtrace_ecbdesc_t *ep) 14621 dtrace_hel ptrace_nl ocal s = vstate->dtvs_nl ocal s;
14556 { 14622 dtrace_hel ptrace_next = 0;
14557 dtrace_hel pers_t *hel p; 14623 }
14558 dtrace_hel per_action_t *hel per, *last;
14559 dtrace_actdesc_t *act; 14625 return (0);
14560 dtrace_vstate_t *vst ate; 14626 err:
14561 dtrace_predicate_t *pred; 14627 dtrace_hel per _acti on_destroy(hel per, vstate);
14562 int count = 0, nactions = 0, i; 14628 return (ElNVAL);
14629 }
14564 if (which < 0 || which >= DTRACE_NHELPER_ACTI ONS)
14565 return (EI NVAL); 14631 static void
14632 dtrace_hel per_provi der_regi ster(proc_t *p, dtrace_hel pers_t *hel p,
14567 hel p = curproc->p_dtrace_hel pers; 14633 dof _hel per _t *dof hp)
14568 | ast = hel p->dt hps_acti ons[whi ch]; 14634 {
14569 vstate = &hel p->dt hps_vstate; 14635 ASSERT(MUTEX_NOT_HELD(&t race_| ock));
14571 for (count = 0; last !'= NULL; last = last->dtha_next) { 14637 nut ex_ent er (&dtrace_neta_| ock) ;
14572 count ++; 14638 mut ex_ent er (&dtrace_| ock);
14573 if (last->dtha_next == NULL)
14574 br eak; 14640 if (!dtrace_attached() || dtrace_neta_pid == NULL) {
14575 } 14641 /*
14642 * |f the dtrace npdule is | oaded but not attached, or if
14577 /* 14643 * there aren’t isn't a neta provider registered to deal with
14578 * |If we already have dtrace_hel per_acti ons_max hel per actions for this 14644 * these provider descriptions, we need to postpone creating
14579 * hel per action type, we'll refuse to add a new one. 14645 * the actual providers until later.
*

14580 */ 14646 /

new usr/src/uts/comon/ dtrace/ dtrace. c 223

14648 if (hel p->dthps_next == NULL && hel p->dt hps_prev == NULL &&
14649 dtrace_deferred_pid ! = hel p) {

14650 hel p- >dt hps_deferred =

14651 hel p->dt hps_pid = p->p_| p' id;

14652 hel p->dt hps_next = dtrace_ deferred _pid;

14653 hel p- >dt hps_prev = NULL;

14654 if (dtrace_deferred_pid != NULL)

14655 dtrace_def erred_pi d- >dt hps_prev = hel p;
14656 dtrace_deferred_pid = hel p;

14657 1

14659 nut ex_exi t (&dtrace_| ock);

14661 } else if (dofhp !'= NULL) {

14662 /*

14663 * |f the dtrace npdule is | oaded and we have a particul ar
14664 * hel per provider description, pass that off to the
14665 * meta provider.

14666 */

14668 mut ex_exi t (&dtrace_| ock);

14670 dtrace_hel per _provi de(dof hp, p->p_pid);

14672 } else {

14673 /*

14674 * Otherw se, just pass all the hel per provider descriptions
14675 * off to the nmeta provider.

14676 */

14678 int i;

14679 nut ex_exi t (&dtrace_| ock);

14681 for (i = 0; i < hel p->dthps_nprovs; i++)

14682 dtrace_hel per _provi de(&el p->dt hps_provs[i]->dthp_prov,
14683 p->p_pid);

14684 }

14685 }

14687 mut ex_exit (&dtrace_neta_l ock);

14688 }

14690 static int

14691 dtrace_hel per _provi der _add(dof _hel per _t *dof hp, int gen)

14692 {

14693 dtrace_hel pers_t *hel p;

14694 dtrace_hel per_provider_t *hprov, **tnp_provs;

14695 uint_t tnp_maxprovs, i;

14697 ASSERT(MUTEX_HELD(&t r ace_| ock));

14699 hel p = curproc->p_dtrace_hel pers;

14700 ASSERT(hel p !'= NULL)

14702 /*

14703 * If we already have dtrace_hel per_provi ders_max hel per providers,
14704 * we're refuse to add a new one.

14705 */

14706 if (hel p->dthps_nprovs >= dtrace_hel per_provi ders_max)

14707 return (ENGSPC);

14709 /*

14710 * Check to nake sure this isn't a duplicate.

14711 */

14712 for (i = 0; i < hel p->dthps_nprovs; i++) {

new usr/src/uts/comon/ dtrace/ dtrace. c

14713 i f (dof hp->dof hp_dof ==

14714 hel p- >dt hps_| provs[l] >dt hp_pr ov. dof hp_dof)

14715 return (EALREADY);

14716 }

14718 hprov = kmem zal | oc(si zeof (dtrace_hel per_provider_t), KM SLEEP);
14719 hpr ov- >dt hp_prov = *dof hp;

14720 hprov->dthp_ref = 1;

14721 hpr ov- >dt hp_generati on = gen;

14723 /*

14724 * Allocate a bigger table for helper providers if it’'s already full.
14725 *

14726 if (hel p->dt hps_maxprovs == hel p->dt hps_nprovs) {

14727 t np_maxprovs = hel p- >dt hps_naxpr ovs;

14728 tnp_provs = hel p->dt hps_provs;

14730 i f (hel p->dthps_maxprovs == O)

14731 hel p- >dt hps_maxprovs = 2;

14732 el se

14733 hel p- >dt hps_maxprovs *= 2;

14734 i f (hel p->dt hps_maxprovs > dtrace hel per _provi der s_max)
14735 hel p- >dt hps_maxprovs = dtrace_hel per _provi ders_max;
14737 ASSERT(t mp_naxprovs < hel p->dt hps_maxprovs);

14739 hel p- >dt hps_provs = kmem zal | oc(hel p- >dt hps_naxprovs *
14740 si zeof (dtrace_hel per_provider_t *), KM SLEEP);
14742 if (tmp_provs != NULL) {

14743 bcopy(tnp_provs, hel p->dthps_provs, tnp_naxprovs *
14744 si zeof (dtrace_hel per_provider_t *));

14745 kmem free(tnp_provs, tnp_nmaxprovs *

14746 si zeof (dtrace_hel per_provider_t *));

14747 }

14748 }

14750 hel p- >dt hps_provs|[hel p- >dt hps_nprovs] = hprov;

14751 hel p- >dt hps_npr ovs++;

14753 return (0);

14754 }

14756 static void

14757 dtrace_hel per_provi der _destroy(dtrace_hel per_provider_t *hprov)

14758 {

14759 nut ex_ent er (&dtrace_| ock);

14761 if (--hprov->dthp_ref == 0) {

14762 dof _hdr_t *dof;

14763 nmut ex _exit(&dtrace_| ock);

14764 dof = (dof _hdr_t *)(uintptr_t)hprov->dthp_prov. dof hp_dof;
14765 dtrace dof destroy(do);

14766 kmem free(hprov, sizeof (dtrace_hel per_provider_t));
14767 } else {

14768 mut ex_exi t (&dtrace_l ock);

14769 }

14770 }

14772 static int

14773 dtrace_hel per_provi der _val i dat e(dof _hdr _t *dof, dof_sec_t *sec)

14774 {

14775 uintptr_t daddr = (u| ntptr_t)dof;

14776 dof _sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14777 dof _provi der _t ™ *provi der;

14778 dof _probe_t *probe;

new usr/src/uts/comon/ dtrace/ dtrace. c 225

14779
14780
14781
14782
14783

14785

14787
14788
14789
14790

14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802

14804
14805
14806
14807
14808

14810
14811
14812

14814

14816
14817
14818
14819
14820

14822

14824
14825
14826
14827
14828

14830
14831
14832
14833
14834

14836
14837
14838
14839

14841
14842
14843
14844

uint8_t *arg;

char *strtab, *typestr;
dof _stridx_t typeidx;
size_t typesz;

uint _t nprobes, j, k;

ASSERT(sec- >dof s_t ype == DOF_SECT_PROVI DER) ;

if (sec->dofs_offset &(S|zeof (uint_t) - 1)) {
dtrace_dof _error(dof, "msaligned section offset");
return (-1);

}

/*
* The section needs to be | arge enough to contain the DOF provider
* structure appropriate for the given version.
*
if (sec->dofs_size <
((dof - >dof h_i dent [DOF_I D_VERSI ON] == DOF_VERSI ON_1) ?
of f set of (dof _provi der _t, dof pv_prenoffs)
si zeof (dof _provi der_t)))
dtrace_dof _error(dof, "provider section too small");
return (-1);

}

provi der = (dof _provider *)(uintptr_t)(daddr + sec->dofs_offset);
str_sec

prb_sec - dt race_dof _sect (dof, DOF_SECT_PROBES, provi der->dof pv_probes);
arg_sec = dtrace_dof _sect (dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
of f_sec = dtrace_dof _sect (dof, DOF_SECT_PROFFS, provider->dofpv_proffs);

if (str_sec == NULL || prb_sec == NULL ||
arg_sec == NULL || off_sec == NULL)
return (-1);

enof f _sec = NULL;

if (dof->dofh_ident[DOF_|ID_VERSION] != DOF_VERSION 1 &%
provi der - >dof pv_prenof fs ! = DOF_SECT_NONE &&
(enoff_sec = dtrace_dof sect(dof DCOF_SECT_PRENCFFS,
provi der - >dof pv_prenoffs)) == NULH
return (-1);

strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

if (provider->dofpv_nane >= str_sec->dofs_size ||
strlen(strtab + provider- >dof pv_nane) >= DTRACE PROJNAIVELEN) {
dtrace_dof _error(dof, "invalid provider nane");
return (-1);

}

if (prb_sec->dofs_entsize == |
prb_sec->dof s_entsize > prb_sec->dofs_size) {
dtrace_dof _error(dof, "invalid entry size");
return (-1);

}

if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
dtrace_dof _error(dof, "misaligned entry size");
return (-1);

}

if (off_sec->dofs_entsize != sizeof (uint32_t)) {
dtrace_dof error(dof, "invalid entry size");
return (-1);

dtrace dof sect(dof DOF_SECT_STRTAB, provi der - >dof pv_strtab);

new usr/src/uts/comon/ dtrace/ dtrace. c

14846
14847
14848
14849

14851
14852
14853
14854

14856
14858

14860
14861
14862
14863
14864
14865

14867
14868
14869
14870

14872
14873
14874
14875

14877
14878
14879
14880
14881

14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893

14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910

if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
dtrace_dof _error(dof, "msaligned section offset");
return (-1);

}

if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
dtrace_dof _error(dof, "invalid entry size");
return (-1);

}

arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

/*
* Take a pass through the probes to check for errors.
&/

for (j =0; j < nprobes; j++) {
probe = (dof _probe_t *)(uintptr_t)(daddr +
prb_sec->dofs_offset + j * prb_sec->dofs_entsize);

if (probe->dofpr_func >= str _sec- >dof s_si ze)
dtrace_dof _error(dof, "invalid function nane");
return (-1);

}

if (strlen(strtab + probe->dof pr_func) >= DTRACE_FUNCNAMELEN) {
dtrace_dof _error(dof, "function name too |long");
return (-1);

}

if (probe->dofpr_name >= str_sec->dofs_size ||
strlen(strtab + probe->dof pr_nane) >= DTRACE_NAMELEN) {
dtrace_dof _error(dof, "invalid probe name");
return (-1);

}

/*

* The of fset count nust not wrap the index, and the offsets
* must al so not overflow the section’ s data.

*/

if (probe->dofpr_offidx + probe->dofpr_noffs <
probe->dof pr_of fidx ||
(probe->dof pr_of fi dx + probe->dof pr_noffs) *
of f _sec->dof s_entsize > of f_sec->dof s_size) {
dtrace_dof _error(dof, "invalid probe offset");
return (-1);

}
i f (dof->dof h_i dent [DOF_I D_VERSI ON] ! = DOF_VERSI ON 1) {
/'k

* |If there’s no is-enabled offset section, nmake sure
* there aren’t any is-enabled offsets. Oherwi se
* performthe same checks as for probe offsets
* (imredi ately above).
*
/

if (enoff_sec == NULL)
i f (probe->dofpr_enoffidx !'= 0 ||
probe- >dof pr_nenoffs I = 0)
dtrace dof _error(dof, "is-enabled "
"offsets with nuII section");
return (-1);

}
} else if (probe->dofpr_enoffidx +
probe- >dof pr _nenof fs < probe->dof pr_enof fidx ||

new usr/src/uts/comon/ dtrace/ dtrace. c 227

14911
14912
14913
14914
14915
14916

14918
14919
14920
14921
14922
14923
14924
14925
14926

14928
14929
14930
14931
14932
14933
14934

14936
14937
14938
14939
14940
14941
14942
14943

14945
14946
14947
14948
14949
14950
14951
14952
14953

14955
14956
14957
14958
14959
14960
14961
14962

14964
14965
14966
14967
14968

14970
14971
14972
14973
14974
14975

(probe- >dof pr_enof fi dx + probe->dof pr_nenoffs)
enof f _sec->dof s_entsize > enof f _sec->dofs_si ze) {
dtrace_dof _error(dof, "invalid is-enabled "
"of fset");
return (-1);

}

if (probe->dofpr_noffs + probe- >dof pr_nenoffs == 0) {
dtrace dof _error(dof, "zero probe and "
"is-enabl ed of fsets")
return (-1);

}

} else if (probe->dofpr_noffs == 0) {
dtrace_dof _error(dof, "zero probe offsets");
return (-1);

}

if (probe->dofpr_argidx + probe->dofpr_xargc <
probe- >dof pr_argi dx ||
(probe- >dof pr_argi dx + probe->dof pr_xargc) *
arg_sec- >dof s_ent si ze > arg_sec- >dof s S|ze) {
dtrace_dof error(dof, "invalid args");
return (-1);

}

typei dx = probe->dof pr_nargv;
typestr = strtab + probe->dof pr_nargv;
for (k = 0; k < probe->dofpr_nargc; k++) {
if (typeidx >= str_sec->dofs_size) {
dtrace_dof _error(dof, "bad "
"native argunent type");
return (-1);

}

typesz = strlen(typestr) + 1,
if (typesz > DTRACE ARGTYPELEN) {
dtrace_dof _error(dof, "native
"argunment type too |ong");
return (-1);

}
typei dx += typesz;
typestr += typesz;

typei dx = probe->dof pr_xargv;
typestr = strtab + probe->dof pr_xargv;
for (k = 0; k < probe->dof pr_xargc; k++)
if (arg[probe >dof pr_argi dx + k] > probe->dofpr_nargc) {
tra ace_ dof _error(dof, "bad "
"native argunent index");
return (-1);

}

if (typeidx >= str_sec->dofs_size) {
dtrace_dof _error(dof, "bad "
"transl ated argunent type");
return (-1);

}

typesz = strlen(typestr) + 1,
if (typesz > DTRACE ARGTYPELEN) {
dtrace_dof _error(dof, "translated argunent
"type too long");
return (-1);

new usr/src/uts/comon/dtrace/ dtrace.c

14977 typei dx += typesz;

14978 typestr += typesz;

14979 }

14980 }

14982 return (0);

14983 }

14985 static int

14986 dtrace_hel per_sl urp(dof _hdr_t *dof, dof _hel per_t *dhp)

14987 {

14988 dtrace_hel pers_t *hel p;

14989 dtrace_vstate_t *vstate;

14990 dtrace_enabling_t *enab = NULL;

14991 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14992 uintptr_t daddr = (uintptr_t)dof;

14994 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

14996 if ((help = curproc->p_dtrace_hel pers) == NULL)

14997 hel p = dtrace_hel pers_create(curproc);

14999 vstate = &hel p->dt hps_vst at e;

15001 if ((rv = dtrace_dof _slurp(dof, vstate, NULL, &enab,
15002 dhp !'= NULL ? dhp->dof hp_addr : 0, B_FALSE)) != 0) {
15003 dtrace_dof _destroy(dof);

15004 return (rv);

15005 }

15007 /*

15008 * Look for hel per providers and validate their descriptions.
15009 *

15010 if (dhp != NULL) {

15011 for (i =0; i < dof- >d0fh _secnuny i ++)

15012 dof sec_t *sec (dof _sec_t *)(uintptr_t)(daddr +
15013 “dof ->dof h secoff + i * dof->dof h_secsi ze);
15015 if (sec->dofs_type != DOF_SECT_PROVI DER)
15016 cont i nue;

15018 if (dtrace_hel per_provider_validate(dof, sec) != 0) {
15019 dtrace_enabl i ng_dest roy(enab);
15020 dtrace_dof _destroy(dof);

15021 return (-1);

15022 }

15024 npr ovs++;

15025 }

15026 }

15028 /*

15029 * Now we need to wal k through the ECB descriptions in the enabling.
15030 */

15031 for (i = 0; i < enab->dten_ndesc; i++) {

15032 dtrace_ecbdesc_t *ep = enab->dten_desc[i];

15033 dtrace_probedesc_t *desc = &ep->dted_probe;
15035 if (strcnp(desc->dtpd_provider, "dtrace") != 0)
15036 cont i nue;

15038 if (strcnp(desc->dtpd_nod, "helper") != 0)

15039 conti nue;

15041 if (strcnp(desc->dtpd_func, "ustack") != 0)

15042

conti nue;

228

new usr/src/uts/comon/ dtrace/ dtrace. c 229

15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054

15056
15057

15059
15060

15062
15063

15065
15066
15067
15068
15069
15070

15072
15073
15074

15076
15077

15079
15080

15082
15083

15085

15087
15088

15090
15091
15092

15094
15095

15097
15098

15100
15101

15103
15104
15105
15106

15108

}

if ((rv = dtrace_hel per_acti on_add(DTRACE_HELPER ACTI ON_USTACK,
ep) 1= 0) {

* Adding this hel per action failed -- we are now goi ng
* torip out the entire generation and return failure.
*/

(voi d) dtrace_hel per_destroygen(hel p->dt hps_generation);
dtrace_enabl i ng_destroy(enab);

dtrace_dof _destroy(dof);

return (-1);

}

nhel per s++;

}

if (nhel pers < enab->dten_ndesc)
dtrace_dof _error(dof, "unnatched hel pers");

gen = hel p->dt hps_gener ati on++;
dtrace_enabl i ng_dest roy(enab);

if (dhp !'= NULL && nprovs > 0) {
dhp->dof hp_dof = (uint64_t) (uintptr_t)dof;
if (dtrace_hel per_provider_add(dhp, gen) == 0) {
mut ex_exi t (&t race_l ock);
dtrace_hel per _provider_register(curproc, help, dhp);
mut ex_ent er (&Jtrace_| ock);

destroy = 0;
}

if (destroy)
dtrace_dof _destroy(dof);

return (gen);

static dtrace_hel pers_t *
dtrace_hel pers_create(proc_t *p)
15084 {

}

dtrace_hel pers_t *hel p;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
ASSERT(p- >p_dtrace_hel pers == NULL);

hel p = kmem zal | oc(si zeof (dtrace_hel pers_t), KM SLEEP);
hel p- >dt hps_acti ons = kmem zal | oc(si zeof (dtrace_hel per_action_t *) *
DTRACE_NHELPER_ACTI ONS, KM SLEEP) ;

p->p_dtrace_hel pers = hel p;
dtrace_hel per s++;

return (help);

static void
dtrace_hel pers_destroy(void)
15102 {

dtrace_hel pers_t *hel p;
dtrace_vstate_t *vstate;
proc_t *p = curproc;

int i;

mut ex_ent er (&t race_| ock) ;

new usr/src/uts/comon/dtrace/ dtrace.c 230
15110 ASSERT(p->p_dtrace_hel pers != NULL);

15111 ASSERT(dtrace_hel pers > 0);

15113 hel p = p->p_dtrace_hel pers;

15114 vstate = &hel p->dt hps_vst at e;

15116 /*

15117 * W're now going to lose the help fromthis process.

15118 */

15119 p->p_dtrace_hel pers = NULL;

15120 dtrace_sync();

15122 /*

15123 * Destory the hel per actions.

15124 *

15125 for (i = 0; i < DTRACE_NHELPER ACTIONS; i++) {

15126 dtrace_hel per_action_t *h, *next;

15128 for (h = help->dthps_actions[i]; h !'= NULL; h = next) {
15129 next = h->dtha_next;

15130 dtrace_hel per _action_destroy(h, vstate);

15131 h = next;

15132 }

15133 }

15135 mut ex_exi t (&dt race_| ock) ;

15137 /*

15138 * Destroy the hel per providers.

15139 */

15140 if (hel p->dthps_maxprovs > 0) {

15141 nut ex_ent er (&trace_neta_| ock);

15142 if (dtrace_nmeta_pid !'= NULL) {

15143 ASSERT(dtrace_deferred_pid == NULL);

15145 for (i = 0; i < help->dthps_nprovs; i++) {
15146 dtrace_hel per_provi der _renove(

15147 &hel p->dt hps_provs[i]->dt hp_prov, p->p_pid);
15148

15149 } else {

15150 nmut ex_ent er (&Jtrace_| ock);

15151 ASSERT(hel p->dt hps_deferred == 0 ||

15152 hel p->dt hps_next != NULL ||

15153 hel p->dt hps_prev != NULL ||

15154 hel p == dtrace_deferred_pi d);

15156 I*

15157 * Renpve the helper fromthe deferred list.
15158 */

15159 if (hel p->dthps_next != NULL)

15160 hel p- >dt hps_next - >dt hps_prev = hel p->dt hps_prev;
15161 if (hel p->dthps_prev != NULL)

15162 hel p- >dt hps_prev->dt hps_next = hel p->dt hps_next;
15163 if (dtrace_deferred_pid == hel p)

15164 dtrace_deferred_pid = hel p->dt hps_next;
15165 ASSERT(hel p->dt hps_prev == NULL);

15166 }

15168 mut ex_exi t (&dJtrace_| ock);

15169 1

15171 nut ex_exi t (&dtrace_neta_| ock);

15173 for (i = 0; i < help->dthps_nprovs; i++) {

15174 dtrace_hel per _provi der _destroy(hel p->dthps_provs[i]);

new usr/src/uts/comon/dtrace/ dtrace. c 231 new usr/src/uts/comon/dtrace/ dtrace.c 232
15175 } 15241 if (last !'= NULL)
15242 | ast - >dt ha_next = new,
15177 kmem f ree(hel p->dt hps_provs, hel p->dt hps_naxprovs * 15243 } else {
15178 si zeof (dtrace_hel per_provider_t *)); 15244 newhel p->dt hps_actions[i] = new,
15179 } 15245 }
15181 mut ex_ent er (&t race_| ock) ; 15247 last = new,
15248 }
15183 dtrace_vstate_fini(&hel p->dthps_vstate); 15249 }
15184 kmem f ree(hel p- >dt hps_acti ons,
15185 si zeof (dtrace_hel per_action_t *) * DTRACE_NHELPER_ACTI ONS) ; 15251 /*
15186 kmem free(hel p, sizeof (dtrace_helpers_t)); 15252 * Duplicate the hel per providers and register themw th the
15253 * DTrace framework
15188 --dtrace_hel pers; 15254 */
15189 mut ex_exi t (&t race_| ock); 15255 if (hel p->dthps_nprovs > 0)
15190 } 15256 newhel p- >dt hps_nprovs = hel p->dt hps_nprovs;
15257 newhel p->dt hps_| MBxprovs = hel p- >dt hps_nprovs;
15192 static void 15258 newhel p- >dt hps_provs = knmem al | oc(newhel p->dt hps_nprovs *
15193 dtrace_hel pers_duplicate(proc_t *from proc_t *to) 15259 si zeof (dtrace_hel per_provider_t *), KM SLEEP);
15194 { 15260 for (i = 0; i < newhel p->dt hps_nprovs; i++) {
15195 dtrace_hel pers_t *hel p, *newhel p; 15261 newhel p- >dt hps_provs[i] = hel p->dthps_provs[i];
15196 dtrace_hel per _action_t *hel per, *new, *last; 15262 newhel p- >dt hps_provs[i]->dt hp_ref ++;
15197 dtrace_difo_t *dp; 15263 }
15198 dtrace_vstate_t *vstate;
15199 int i, j, sz, hasprovs = 0; 15265 hasprovs = 1;
15266 }
15201 mut ex_ent er (&dtrace_| ock) ;
15202 ASSERT(from >p_dtrace_hel pers != NULL); 15268 nut ex_exi t (&dtrace_| ock);
15203 ASSERT(dt race_hel pers > 0);
15270 if (hasprovs)
15205 hel p = from >p_dtrace_hel pers; 15271 dtrace_hel per _provider_register(to, newhel p, NULL);
15206 newhel p = dtrace_hel pers_create(to); 15272 }
15207 ASSERT(t o->p_dtrace_hel pers !'= NULL);
15274 | *
15209 newhel p- >dt hps_gener ati on = hel p- >dt hps_generati on; 15275 * DTrace Hook Functions
15210 vstate = &newhel p- >dt hps_vst at e; 15276 */
15277 static void
15212 /* 15278 dtrace_nodul e_| oaded(struct nodctl *ctl)
15213 * Duplicate the hel per actions. 15279 {
15214 */ 15280 dtrace_provider_t *prv;
15215 for (i =0; i < DTRACE NHELPER_ACTI ONS; i ++)
15216 if ((hel per hel p- >dt hps_acti ons[i]) == NULL) 15282 nut ex_ent er (&dt race_provi der _| ock) ;
15217 contl nue; 15283 nmut ex_ent er (&rod_| ock) ;
15219 for (last = NULL; helper != NULL; hel per = hel per->dtha_next) { 15285 ASSERT(ct | - >nod_busy) ;
15220 new = kmam zal | oc(si zeof (dtrace_hel per_action_t),
15221 KM SLEEP) ; 15287 /*
15222 new >dt ha_generati on = hel per->dt ha_generati on; 15288 * W're going to call each providers per-nodul e provi de operation
15289 * specifying only this nodule.
15224 if ((dp = hel per->dtha_predicate) != NULL) { 15290 */
15225 dp = dtrace_di fo_duplicate(dp, vstate); 15291 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15226 new >dt ha_predi cate = dp; 15292 prv->dt pv_pops. dt ps_provi de_nodul e(prv->dtpv_arg, ctl);
15227 }
15294 nut ex_exi t (&od_| ock) ;
15229 new >dt ha_nacti ons = hel per->dtha_nacti ons; 15295 nut ex_exi t (&dtrace_provi der _| ock);
15230 sz = sizeof (dtrace_difo_t *) * new >dtha_nactions;
15231 new >dt ha_acti ons = kmem al | oc(sz, KM SLEEP); 15297 I
15298 * |f we have any retained enablings, we need to match agai nst them
15233 for (j =0; j < new>dtha_nactions; j++) { 15299 * Enabling probes requires that cpu_|l ock be held, and we cannot hol d
15234 dtrace_difo_t *dp = hel per->dtha_actions[j]; 15300 * cpu_l ock here -- it is legal for cpu_lock to be held when | oading a
15301 * module. (In particular, this happens when | oadi ng schedul i ng
15236 ASSERT(dp != NULL); 15302 * classes.) So if we have any retained enablings, we need to dispatch
15237 dp = dtrace_difo_duplicate(dp, vstate); 15303 * our task queue to do the match for us.
15238 new >dt ha_actions[j] = dp; 15304 */
15239 } 15305 mut ex_ent er (&t race_| ock);

new usr/src/uts/comon/ dtrace/ dtrace. c

15307
15308
15309
15310

15312
15313

15315

15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327

15328 }

15330
15331

15333
15334

15336

15338
15339
15340

15342
15343
15344
15345
15346
15347
15348
15349
15350
15351

15353
15354
15355
15356
15357
15358

15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372

if (dtrace_retai ned == NULL) {
mut ex_exit (&dtrace_l ock);
return;

}

(voi d) taskq_di spatch(dtrace_taskq,
(task_func_t *)dtrace_enabling_matchall, NULL, TQ SLEEP);

nut ex_exi t (&dtrace_| ock);

/*

* And now, for a little heuristic sleaze: in general, we want to

* match nodul es as soon as they |oad. However, we cannot guarantee

* this, because it would lead us to the | ock ordering violation

* outlined above. The commpn case, of course, is that cpu_lock is

* not_ held -- so we delay here for a clock tick, hoping that that’'s
* long enough for the task queue to do its work. If it’s not, it's

* not a serious problem-- it just nmeans that the nodul e that we

*

*

just | oaded may not be immedi ately instrunentable.

del ay(1);

static void
dt race_nodul e_unl oaded(struct nodctl *ctl)
15332 {

dtrace_probe_t tenplate, *probe, *first, *next;
dtrace_provider_t *prov;

tenmpl ate. dtpr_nmod = ctl->npd_nodnane;

mut ex_ent er (&dt race_provi der _| ock) ;
nut ex_ent er (&od_| ock) ;
nut ex_ent er (&dtrace_| ock);

if (dtrace_bynmod == NULL) {
/*

* The DTrace nodul e is | oaded (obviously) but not attached;
* we don't have any work to do.
*
/
mut ex_exi t (&dtrace_provi der _| ock);
nmut ex_exi t (&md_| ock) ;
mut ex_exit (&dtrace_| ock);
return;

for (probe = first = dtrace_hash_| ookup(dtrace_bynod, &tenplate);
probe !'= NULL; probe = probe->dtpr_nextnod)
if (probe->dtpr_ecb != NULL)
mut ex_exi t (&t race_provi der _| ock);
mut ex_exi t (&mod_I ock) ;
mut ex_exi t (&dtrace_| ock);

/*

* This shouldn't _actually_ be possible -- we're

* unl oadi ng a nodul e that has an enabl ed probe in it.
* (It’s normally up to the provider to nake sure that
* this can’t happen.) However, because dtps_enabl e()
* doesn’t have a failure node, there can be an

* enabl e/unl oad race. Upshot: we don't want to

* assert, but we’'re not going to disable the

*/probe, ei ther.

*

if (dtrace_err_verbose)
cmrm_err (CE_WARN, "unl oaded nodule '%’ had "
"enabl ed probes", ctl->npd_nodnane);

233

new usr/src/uts/comon/ dtrace/ dtrace. c

15373

15375
15376
15377

15379

15381
15382

15384

15386
15387
15388
15389

15391
15392
15393
15394
15395
15396
15397
15398

15400
15401
15402
15403
15404
15405

15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417

15419
15420
15421
15422 }

15424 void

}

return;

}
probe = first;

for (first = NULL; probe != NULL; probe = next) {
ASSERT(dt r ace_probes[probe->dtpr_id - 1] == probe);

dtrace_probes[probe->dtpr_id - 1] = NULL;

next = probe->dt pr_next nod;
dtrace_hash_renove(dtrace_bynod, probe);
dtrace_hash_renove(dtrace_byfunc, probe);
dtrace_hash_renove(dtrace_bynane, probe);

if (first == NULL) {
first = probe;
probe- >dt pr _next nod = NULL;
} else {
probe->dt pr_nextnod = first;
first = probe;

}

/*

* W’ ve renpved all of the nodule’s probes fromthe hash chains and
* fromthe probe array. Now issue a dtrace_sync() to be sure that
* everyone has cleared out from any probe array processing.

*

dtrace_sync();

for (probe = first; probe != NULL; probe = first) {
first = probe->dtpr_nextnod;
prov = probe->dtpr_provider;
prov- >dt pv_pops. dt ps_dest roy(prov->dtpv_arg, probe->dtpr_id,

probe->dt pr_arg);

kmem f ree(probe->dt pr_nod, strlen(probe->dtpr_nod) + 1);
kmem f ree(probe->dt pr_func, strlen(probe->dtpr_func) + 1);
kmem f ree(pr obe->dt pr_nanme, strlen(probe->dtpr_nanme) + 1);
vimem free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
kmem free(probe, sizeof (dtrace_probe_t));

}

nut ex_exi t (&dtrace_| ock);
mut ex_exi t (&rod_| ock) ;
nmut ex_exi t (&dt race_provi der _| ock);

15425 dtrace_suspend(voi d)

15426 {
15427
15428 }

15430 void

dtrace_probe_f oreach(of fsetof (dtrace_pops_t, dtps_suspend));

15431 dtrace_resune(void)

15432 {
15433
15434 }

dtrace_probe_foreach(of fsetof (dtrace_pops_t, dtps_resune));

15436 static int
15437 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)

15438 {

new usr/src/uts/comon/ dtrace/ dtrace. c 235 new usr/src/uts/comon/ dtrace/ dtrace. c 236

15439 ASSERT(MUTEX_HELD(&pu_| ock)); 15505 int osize, nsize;
15440 mut ex_ent er (&t race_| ock); 15506 dtrace_t oxrange_t *range;
15442 switch (what) { 15508 osi ze = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15443 case CPU_CONFI G
15444 dtrace_state_t *state; 15510 if (osize == 0)
15445 dtrace_optval _t *opt, rs, c; 15511 ASSERT(dt race_t oxrange == NULL);
15512 ASSERT(dt race_t oxr anges_max == 0);
15447 /* 15513 dtrace_t oxranges_max = 1,
15448 * For now, we only allocate a new buffer for anonynous state. 15514 } else {
15449 */ 15515 dtrace_t oxranges_nax <<= 1;
15450 if ((state = dtrace_anon.dta_state) == NULL) 15516 }
15451 br eak;
15518 nsize = dtrace_t oxranges_max * sizeof (dtrace_toxrange_t);
15453 if (state->dts_activity != DTRACE_ACTI VI TY_ACTI VE) 15519 range = kmem zal | oc(nsize, KM SLEEP);
15454 br eak;
15521 if (dtrace_toxrange != NULL) {
15456 opt = state->dts_options; 15522 ASSERT(0osi ze != 0);
15457 c = opt [DTRACEOPT_CPU] ; 15523 bcopy(dtrace_t oxrange, range, o0size);
15524 kmem free(dtrace_t oxrange, osize);
15459 if (c !'= DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15525 }
15460 br eak;
15527 dtrace_t oxrange = range;
15462 /* 15528 }
15463 * Regardl ess of what the actual policy is, we're going to
15464 * tenporarily set our resize policy to be manual. W're 15530 ASSERT(dt race_t oxrange[dtrace_t oxranges].dtt_base == NULL);
15465 * also going to tenporarily set our CPU option to denote 15531 ASSERT(dtrace_t oxrange[dtrace_t oxranges].dtt_limt == NULL);
15466 * the newly configured CPU.
15467 */ 15533 dtrace_t oxrange[dtrace_t oxranges].dtt_base = base
15468 rs = opt [DTRACEOPT_BUFRESI ZE] ; 15534 dtrace_toxrange[dtrace_toxranges].dtt_limt =1limt;
15469 opt [DTRACEOPT BUFRESI ZE] = DTRACECPT_BLFRESI ZE_NMANUAL; 15535 dtrace_t oxranges++;
15470 opt [DTRACEOPT_CPU] = (dtrace_optval _t)cpu; 15536 }
15472 (void) dtrace_state_buffers(state); 15538 static void
15539 dtrace_getf_barrier()
15474 opt [DTRACEOPT BUFRESI ZE] = rs; 15540 {
15475 opt [DTRACEOPT_CPU] = c; 15541 /*
15542 * \WWhen we have unprivileged (that is, non- DTRACE CRV_KERNEL) enablings
15477 br eak; 15543 * that contain calls to getf(), this routine will be called on every
15478 } 15544 * closef() before either the underlying vnode is rel eased or the
15545 * file_t itself is freed. By the tine we are here, it is essential
15480 case CPU_UNCONFI G 15546 * that the file_t can no | onger be accessed froma call to getf()
15481 I* 15547 * in probe context -- that assures that a dtrace_sync() can be used
15482 * W don't free the buffer in the CPU UNCONFI G case. (The 15548 * to clear out any enablings referring to the old structures.
15483 * buffer will be freed when the consuner exits.) 15549 */
15484 */ 15550 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15485 br eak; 15551 kcred->cr _zone->zone_dtrace_getf != 0)
15552 dtrace_sync();
15487 defaul t: 15553 }
15488 br eak;
15489 } 15555 /*
15556 * DTrace Driver Cookbook Functions
15491 mut ex_exi t (&dtrace_| ock) ; 15557 *
15492 return (0); 15558 / * ARGSUSED* /
15493 } 15559 static int
15560 dtrace_attach(dev_info_t *devi, ddi_attach_cnd_t cnd)
15495 static void 15561 {
15496 dtrace_cpu_setup_initial (processorid_t cpu) 15562 dtrace_provider_id_t id;
15497 { 15563 dtrace_state_t *state = NULL;
15498 (void) dtrace_cpu_setup(CPU_CONFI G cpu); 15564 dtrace_enabl i ng_t *enab,
15499 }
15566 mut ex_ent er (&cpu_|l ock) ;
15501 static void 15567 nut ex_ent er (&dt race_provi der _| ock);
15502 dtrace_t oxrange_add(uintptr_t base, uintptr_t limt) 15568 mut ex_ent er (&dtrace_| ock) ;
15503 {

15504 if (dtrace_toxranges >= dtrace_toxranges_nmax) { 15570 if (ddi_soft_state_init(&dtrace_softstate,

new usr/src/uts/comon/ dtrace/ dtrace. c

15571
15572
15573
15574
15575
15576
15577

15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590

15592
15593

15595
15596
15597
15598
15599
15600
15601
15602
15603

15605
15607

15609
15610
15611
15612
15613
15614
15615

15617
15618
15619

15621
15622
15623
15624

15626
15627
15628

15630
15631
15632

15634
15635
15636

si zeof (dtrace_state t) 0) '=0) {
cmm_er r (CE_NOTE, "I dev/dtrace failed to initialize soft state")
mut ex_exi t (&pu_l ock) ;
nut ex_exi t (&dtrace_pr ovi der _I ock);
nmut ex_exi t (&dtrace_| ock);
return (DDl _FAI LURE);
}

if (ddi_create_m nor_node(devi, DTRACEMNR DTRACE, S_| FCHR

DTRACEMNRN_DTRACE, DDI PSEUDO NULL) == DDI _FAILURE |
ddi _create_m nor node(devi , DTRACEIVNR HELPER S | FCHR,
DTRACEMNRN_HELPER, DDI _PSEUDO, NULL) == DDI _FAl LURE) {

cnm_err (CE_NOTE, "7dev/dtrace couldn’'t create m nor nodes");

ddi _renove_ni nor _node(devi, NULL);

ddi _soft_state_fini(&dt race_softst ate);

mut ex_exi t (&cpu_l ock);

nut ex_exi t (&dtrace_provi der _| ock);

mut ex_exi t (&dtrace_| ock) ;

return (DDl _FAI LURE);

}
ddi _report_dev(devi);
dtrace_devi = devi;

dtrace_nodl oad = dtrace_nodul e_| oaded;
dtrace_nodunl oad = dtrace_nodul e_unl oaded;
dtrace_cpu_init = dtrace_cpu_setup_initial;
dtrace_hel pers_cl eanup = dtrace_hel pers_destroy;
dtrace_hel pers_fork = dtrace_hel pers_duplicate;
dtrace_cpustart_init dtrace_suspend;
dtrace_cpustart_fini dtrace_resune;
dtrace_debugger_ini t dtrace_suspend;
dtrace_debugger _fi ni dtrace_resune;

regi ster_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
ASSERT(MUTEX_HELD(& pu_| ock)) ;

dtrace_arena = vnemcreate("dtrace", (void *)1, U NT32_MAX, 1,
NULL, NULL NULL, 0, VM SLEEP | VN[LIDENTIFIE@;
dtrace_m nor = vrrem_create("dtrace_minor", (void *)DTRACEMNRN CLONE,
U NT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, O
VM _SLEEP | VMC IDENTIFIER
dtrace_taskq = taskq_create(" dtrace _taskq", 1, maxclsyspri,
1, INT_MAX, 0);

dtrace_state_cache = knem cache_create("dtrace_state_cache",
sizeof (dtrace_dstate percpu_t) * NCPU, DTRACE_STATE . AL GN,
NULL, NULL, NULL, NULL, NULL, 0);

ASSERT(MUTEX_HELD(&pu_| ock));

dtrace_bynod = dtrace_hash_creat e(of f set of (dtrace_probe_t, dtpr_nod),
of fset of (dtrace_probe_t, dtpr_nextnod),
of fset of (dtrace_probe_t, dtpr_prevnod));

dtrace_byfunc = dtrace_hash_creat e(of f set of (dtrace_probe_t, dtpr_func),
of fset of (dtrace_probe_t, dtpr_nextfunc),
of f set of (dtrace_probe_t, dtpr_prevfunc));

dtrace_byname = dtrace_hash_creat e(of f set of (dtrace_probe_t, dtpr_nane),
of fset of (dtrace_probe_t, dtpr_nextnane),
of f set of (dtrace_probe_t, dtpr_prevnane));

if (dtrace_retain_nmax < 1
crm_err (CE_WARN, "illegal value (%u) for dtrace_retain_max;
"setting to 1", dtrace_retai n_nax);

237

new usr/src/uts/comon/ dtrace/ dtrace. c

15637
15638

15640
15641
15642
15643

15645
15646
15647
15648
15649
15650
15651
15652
15653

15655
15656

15658
15659
15660
15661
15662
15663

15665
15666

15668
15669
15670
15671
15672
15673
15674
15675
15676
15677

15679
15680
15681
15682
15683
15684
15685
15686
15687

15689
15690

15692
15693
15694
15695
15696
15697
15698
15699
15700

15702

dtrace_retain_max = 1;

}

/*
* Now di scover our toxic ranges.

*/

dtrace_t oxi c_ranges(dtrace_t oxrange_add);

/*
* Before we register ourselves as a provider to our own framework,

* we would like to assert that dtrace_provider is NULL -- but that’'s
* not true if we were |oaded as a dependency of a DTrace provi der.

* Once we've registered, we can assert that dtrace_provider is our

* pseudo provider.

*

/

\

(void) dtrace_register("dtrace", &dtrace_provider_attr,
DTRACE_PRI V_NONE, 0, &dtrace_provider_ops, NULL, & d);

ASSERT(dtrace_provider != NULL);

ASSERT((dtrace_provider_id_t)dtrace_provider == id);

dtrace_probei d_begin = dtrace_probe_create((dtrace_provider_id_t)
dtrace_provider, NULL, NULL, "BEGA N', 0, NULL);

dtrace_probei d_end = dtrace_probe_create((dtrace_provider_id_t)
dtrace_provider, NULL, NULL, "END', O, NULL);

dtrace_probei d_error = dtrace_probe_create((dtrace_provider_id_t)
dtrace_provider, NULL, NULL, "ERROR', 1, NULL);

dtrace_anon_property();
nmut ex_exi t (&cpu_l ock) ;

/*
* |f DTrace helper tracing is enabled, we need to allocate the
* trace buffer and initialize the val ues.
*/
if (dtrace_hel ptrace_enabl ed) {

ASSERT(dtrace_hel ptrace_buffer == NULL);

dtrace_hel ptrace_buffer =

knem zal | oc(dtrace_hel ptrace_bufsi ze, KM SLEEP);

dtrace_hel ptrace_next = 0;
}
/*
* |f there are already providers, we nust ask themto provide their
* probes, and then match any anonynous enabling against them Note
* that there should be no other retained enablings at this tine:
* the only retained enablings at this tinme should be the anonynous
* enabl i ng.
*
if

(dtrace_anon. dta_enabling != NULL) {
ASSERT(dtrace_retai ned == dtrace_anon. dt a_enabl i ng);

dtrace_enabl i ng_provi de(NULL) ;
state = dtrace_anon. dta_st at e;

/*
* W couldn’t hold cpu_l ock across the above call to

* dtrace_enabling_provide(), but we nust hold it to actually
* enabl e the probes. W have to drop all of our Iocks, pick
* up cpu_l ock, and regain our |ocks before matching the

* retai ned anonynous enabl i ng.

*

/

mut ex_exi t (&dtrace_| ock);

mut ex_exi t (&dtrace_provi der _lock);

mut ex_ent er (&cpu_l ock) ;

238

new usr/src/uts/comon/ dtrace/ dtrace. c 239 new usr/src/uts/comon/ dtrace/ dtrace. c 240

15703 nut ex_ent er (&dt race_provi der _| ock); 15769 dtrace_opens--;
15704 mut ex_ent er (&Jtrace_| ock); 15770 mut ex_exi t (&cpu_l ock) ;
15771 mut ex_exi t (&dtrace_| ock);
15706 if ((enab = dtrace_anon.dta_enabling) != NULL) 15772 return (EBUSY);
15707 (voi d) dtrace_enabling_match(enab, NULL); 15773 }
15709 mut ex_exi t (&cpu_l ock); 15775 state = dtrace_state_create(devp, cred_p);
15710 } 15776 nut ex_exi t (&pu_l ock) ;
15712 mut ex_exi t (&dt race_| ock) ; 15778 if (state == NULL) {
15713 mut ex_exi t (&dt race_provi der _| ock); 15779 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15780 (voi d) kdi _dtrace_set (KDl _DTSET_DTRACE_DEACTI VATE) ;
15715 if (state !'= NULL) { 15781 nut ex_exi t (&Jtrace_| ock);
15716 /* 15782 return (EAGAIN);
15717 * |If we created any anonynous state, set it going now. 15783 }
15718 */
15719 (void) dtrace_state_go(state, &dtrace_anon. dta_beganon); 15785 nut ex_exi t (&dtrace_| ock);
15720 }
15787 return (0);
15722 return (DDl _SUCCESS); 15788 }
15723 }
15790 / * ARGSUSED*/
15725 [* ARGSUSED*/ 15791 static int
15726 static int 15792 dtrace_cl ose(dev_t dev, int flag, int otyp, cred_t *cred_p)
15727 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15793 {
15728 { 15794 m nor_t mnor = getm nor(dev);
15729 dtrace_state_t *state; 15795 dtrace_state_t *state;
15730 uint32_t priv;
15731 uid_t uid; 15797 if (mnor == DTRACEMNRN_HELPER)
15732 zonei d_t zonei d; 15798 return (0);
15734 if (getm nor(*devp) == DTRACEMNRN_ HELPER) 15800 state = ddi _get_soft_state(dtrace_softstate, mnor);
15735 return (0);
15802 nut ex_ent er (&cpu_l ock) ;
15737 /* 15803 mut ex_ent er (&dtrace_| ock) ;
15738 * If this wasn’t an open with the "hel per" mnor, then it nust be
15739 * the "dtrace" mnor. 15805 if (state->dts_anon) {
15740 */ 15806 /*
15741 if (getm nor(*devp) != DTRACEMNRN DTRACE) 15807 * There is anonynous state. Destroy that first.
15742 return (ENXI O); 15808 */
15809 ASSERT(dtrace_anon. dta_state == NULL);
15744 /* 15810 dtrace_state_destroy(state->dts_anon);
15745 * |If no DTRACE_PRIV_* bits are set in the credential, then the 15811 }
15746 * caller lacks sufficient perm ssion to do anything with DTrace.
15747 * 15813 dtrace_state_destroy(state);
15748 dtrace_cred2priv(cred_p, &priv, &uid, &oneid); 15814 ASSERT(dt race_opens > 0);
15749 if (priv == DTRACE_PRI V_NONE)
15750 return (EACCES); 15816 /*
15817 * Only relinquish control of the kernel debugger interface when there
15752 /* 15818 * are no consunmers and no anonynous enablings.
15753 * Ask all providers to provide all their probes. 15819 */
15754 */ 15820 if (--dtrace_opens == 0 && dtrace_anon. dta_enabling == NULL)
15755 nut ex_ent er (&dt race_provi der _| ock) ; 15821 (voi d) kdi _dtrace_set (KDl _DTSET_DTRACE_DEACTI VATE) ;
15756 dtrace_probe_provi de(NULL, NULL);
15757 nut ex_exi t (&t race_provi der _| ock); 15823 nut ex_exi t (&dtrace_| ock);
15824 mut ex_exi t (& pu_l ock) ;
15759 mut ex_ent er (&cpu_l ock) ;
15760 nut ex_ent er (&dtrace_| ock) ; 15826 return (0);
15761 dtrace_opens++; 15827 }
15762 dtrace_menbar _producer();
15829 /* ARGSUSED*/
15764 /* 15830 static int
15765 * |f the kernel debugger is active (that is, if the kernel debugger 15831 dtrace_ioctl_helper(int cnd, intptr_t arg, int *rv)
15766 * nodified text in sone way), we won't allow the open. 15832 {
15767 */ 15833 int rval;

15768 if (kdi_dtrace_set (KDl _DTSET_DTRACE_ACTI VATE) != 0) { 15834 dof _hel per_t help, *dhp = NULL;

new usr/src/uts/comon/ dtrace/ dtrace. c

241

he dof --
later.

int *rv)

15836 switch (crmd) {

15837 case DTRACEH OC_ADDDCF:

15838 if (copyin((void *)arg, &help, sizeof (help)) !=0) {
15839 dtrace_dof _error (NULL, "failed to copyin DOF hel per");
15840 return (EFAULT);

15841 }

15843 dhp = &hel p;

15844 arg = (intptr t)hel p. dof hp_dof ;

15845 | * FALLTHROUGH* /

15847 case DTRACEH OC_ADD: {

15848 dof _hdr_t *dof = dtrace_dof _copyin(arg, &val);
15850 if (dof == NULL)

15851 return (rval);

15853 mut ex_ent er (&Jtrace_| ock);

15855 /*

15856 * dtrace_hel per_slurp() takes responsibility for t
15857 * it may free it nowor it may save it and free it
15858 *

15859 if ((rval = dtrace_hel per_slurp(dof, dhp)) !=-1) {
15860 *rv = rval;

15861 rval = 0;

15862 } else {

15863 rval = EI NVAL;

15864 }

15866 mut ex_exit (&dtrace_l ock);

15867 return (rval);

15868 }

15870 case DTRACEH OC_REMOVE: {

15871 mut ex_ent er (&Jtrace_| ock);

15872 rval = dtrace_hel per_destroygen(arg);

15873 mut ex_exit (&dtrace_| ock);

15875 return (rval);

15876 }

15878 defaul t:

15879 br eak;

15880 }

15882 return (ENOTTY);

15883 }

15885 / * ARGSUSED*/

15886 static int

15887 dtrace_ioctl (dev_t dev, int cnd, intptr_t arg, int nd, cred_t *cr,
15888 {

15889 m nor_t mnor = getm nor(dev);

15890 dtrace_state_t *state;

15891 int rval;

15893 if (mnor == DTRACEMNRN_HELPER)

15894 return (dtrace_ioctl_hel per(cnd, arg, rv));

15896 state = ddi _get_soft_state(dtrace_softstate, mnor);

15898 if (state->dts_anon) {

15899 ASSERT(dtrace_anon. dta_state == NULL);

15900 state = state->dts_anon;

new usr/src/uts/comon/dtrace/ dtrace. c 242
15901 }

15903 switch (crmd) {

15904 case DTRACEI OC_PROVI DER:

15905 dtrace_provi derdesc_t pvd;

15906 dtrace_provider_t *pvp;

15908 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)

15909 return (EFAULT);

15911 pvd. dt vd_nane[DTRACE_PROVNAMELEN - 1] = '\0’;

15912 mut ex_ent er (&t race_provi der _| ock);

15914 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15915 if (strcnp(pvp->dtpv_nane, pvd. dtvd _name) == 0)

15916 br eak;

15917 }

15919 mut ex_exit (&dtrace_provi der _| ock);

15921 if (pvp == NULL)

15922 ret urn (ESRCH);

15924 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15925 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15926 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)

15927 return (EFAULT);

15929 return (0);

15930 }

15932 case DTRACEI OC_EPROBE:

15933 dtrace_eprobedesc_t epdesc;

15934 dtrace_ecb_t *ecb;

15935 dtrace_action_t *act;

15936 voi d *buf;

15937 size_t size;

15938 uintptr_t dest;

15939 int nrecs;

15941 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)

15942 return (EFAULT);

15944 mut ex_ent er (&Jtrace_| ock);

15946 if ((ecb = dtrace_epi d2ecb(state, epdesc.dtepd_epid)) == NULL) {
15947 mut ex_exi t (&t race_l ock);

15948 return (EINVAL);

15949 }

15951 if (ecb->dte_probe == NULL)

15952 mut ex_exi t (&dtrace_| ock);

15953 return (EINVAL);

15954 }

15956 epdesc. dt epd_probei d = ecb->dt e_probe->dtpr_id;

15957 epdesc. dt epd_uarg = ecb->dte_uarg;

15958 epdesc. dt epd_si ze = ecb->dte_si ze;

15960 nrecs = epdesc. dt epd nrecs;

15961 epdesc. dt epd nrecs = 0;

15962 for (act = ech->dte_action; act != NULL; act = act->dta_next) {
15963 i f (DTRACEACT_I SAGG(act->dta_kind) || act->dta_intuple)
15964 conti nue;

15966 epdesc. dt epd_nr ecs++;

new usr/src/uts/comon/ dtrace/ dtrace. c 243

15967

15969
15970
15971
15972
15973
15974
15975
15976

15978
15979

15981
15982

15984
15985
15986

15988
15989

15991
15992
15993
15994

15996

15998
15999
16000
16001

16003
16004
16005

16007
16008
16009
16010
16011
16012
16013
16014
16015
16016

16018
16019

16021
16023
16024
16025
16026
16028

16030
16031

}

}

/*
* Now that we have the size, we need to allocate a tenporary
* buffer in which to store the conplete description. W need
* the tenporary buffer to be able to drop dtrace_| ock()
*/across the copyout (), bel ow.
*
size = sizeof (dtrace_eprobedesc_t) +

(epdesc. dtepd_nrecs * sizeof (dtrace_recdesc_t));

buf = knem al | oc(si ze, KM SLEEP);
dest = (uintptr_t)buf;

bcopy(&epdesc, (void *)dest, sizeof (epdesc));
dest += of f set of (dtrace_eprobedesc_t, dtepd_rec[0]);

for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
if (DTRACEACT_I SAGH act->dta_kind) || act->dta_intuple)
conti nue;
if (nrecs-- == 0)
br eak;

bcopy(&act->dta_rec, (void *)dest,
si zeof (dtrace_recdesc_t));
dest += sizeof (dtrace_recdesc_t);

}
nut ex_exi t (&dtrace_| ock);

if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) !'=0) {
kmem free(buf, size);
return (EFAULT);

}

kmem f ree(buf, size);
return (0);

case DTRACEI OC_AGGDESC:

dtrace_aggdesc_t aggdesc;
dtrace_action_t *act;
dtrace_aggregation_t *agg;
int nrecs;

uint32_t offs;
dtrace_recdesc_t *lrec;
voi d *buf;

size_t size;

uintptr_t dest;

if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
return (EFAULT);

nut ex_ent er (&dtrace_| ock) ;
if ((agg = dtrace_aggi d2agg(state, aggdesc.dtagd_id)) == NULL) {
mut ex_exi t (&t race_l ock);

return (EI NVAL);
}

aggdesc. dt agd_epi d = agg- >dt ag_ecbh- >dt e_epi d;

nrecs = aggdesc. dtagd_nrecs;
aggdesc. dtagd_nrecs = O;

new usr/src/uts/comon/dtrace/ dtrace.c 244
16033 of fs = agg->dt ag_base;

16034 I rec = &agg->dtag_action.dta_rec;

16035 aggdesc. dtagd_size = Irec->dtrd_offset + Irec->dtrd_size - offs;
16037 for (act = agg->dtag_first; ; act = act->dta_next) {

16038 ASSERT(act->dta_intuple ||

16039 DTRACEACT_I SAGH act - >dt a_ki nd)) ;

16041 /*

16042 * |f this action has a record size of zero, it
16043 * denotes an argunent to the aggregating action.
16044 * Because the presence of this record doesn’t (or
16045 * shouldn’t) affect the way the data is interpreted,
16046 * we don’t copy it out to save user-level the
16047 * confusion of dealing with a zero-length record.
16048 *

16049 if (act->dta_rec.dtrd_size == 0) {

16050 ASSERT(agg- >dt ag_hasar g) ;

16051 cont i nue;

16052 }

16054 aggdesc. dt agd_nr ecs++;

16056 if (act == &agg->dtag_action)

16057 br eak;

16058 }

16060 /*

16061 * Now that we have the size, we need to allocate a tenporary
16062 * buffer in which to store the conplete description. W need
16063 * the tenporary buffer to be able to drop dtrace_| ock()
16064 * across the copyout (), bel ow

16065 */

16066 size = sizeof (dtrace_aggdesc_t) +

16067 (aggdesc. dtagd_nrecs * sizeof (dtrace_recdesc_t));

16069 buf = knem al | oc(si ze, KM SLEEP);

16070 dest = (uintptr_t)buf;

16072 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));

16073 dest += of fsetof (dtrace_aggdesc_t, dtagd_rec[0]);

16075 for (act = agg->dtag_first; ; act = act->dta_next) {

16076 dtrace_recdesc_t rec = act->dta_rec;

16078 /*

16079 * See the comment in the above | oop for why we pass
16080 * over zero-length records.

16081 *

16082 if (rec.dtrd_size == 0) {

16083 ASSERT(agg- >dt ag_hasar g) ;

16084 conti nue;

16085 }

16087 if (nrecs-- == 0)

16088 break;

16090 rec.dtrd_offset -= offs;

16091 bcopy(&ec, (void *)dest, sizeof (rec));

16092 dest += sizeof (dtrace_recdesc_t);

16094 if (act == &agg->dtag_action)

16095 br eak;

16096 }

16098 mut ex_exit (&dtrace_l ock);

new usr/src/uts/comon/ dtrace/ dtrace. c

16100
16101
16102
16103

16105
16106
16107

16109
16110
16111
16112
16113

16115

16117
16118
16119
16120
16121
16122

16124
16125

16127
16128

16130
16131
16132

16134
16135
16136
16137
16138
16139

16141
16142
16143
16144
16145
16146

16148
16149
16150
16151
16152
16153
16154

16156
16157
16158
16159
16160

16162
16163
16164

i f (copyout (buf,

(void *)arg, dest

kmem f ree(buf,

si ze);

- (uintptr_t)buf)

}

return (EFAULT);
}

kmem f ree(buf, size);
return (0);

case DTRACEI OC_ENABLE: {

dof _hdr_t *dof;
dtrace_enabling_t *enab = NULL;
dtrace_vstate_t *vstate;

int err = 0;

*rv = 0;

/*

245

1= 0) {

* |f a NULL argunment has been passed, we take this as our

* cue to reeval uate our enablings.
*/

if (arg == NULL) {
dtrace_enabl i ng_matchal | ();

return (0);

}

if ((dof = dtrace_dof_copyin(arg, &v
return (rval);

mut ex_ent er (&cpu_l ock) ;
nut ex_ent er (&dtrace_| ock) ;
vstate = &state->dts_vstate;

al)) == NULL)

if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE) {

mut ex_exit (&dJtrace_l ock);
mut ex_exi t (& pu_I ock);
dtrace_dof _destroy(dof);
return (EBUSY);

}

if (dtrace_dof_slurp(dof, vstate, cr,
mut ex_exi t (&dtrace_l ock);

&enab, 0, B_TRUE) != 0) {

mut ex_exi t (& pu_l ock);
dtrace_dof _destroy(dof);
return (EINVAL);

}
if ((rval = dtrace_dof _options(dof, state)) != 0) {
dtrace_enabl i ng_destroy(enab);
mut ex_exi t (&dtrace_| ock);
mut ex_exi t (& pu_l ock);
dtrace_dof _destroy(dof);
return (rval);
}
if ((err = dtrace_enabling_natch(enab, rv)) == 0) {
err = dtrace_enabling_retain(enab);
} else {
dtrace_enabl i ng_destroy(enab);
}

mut ex_exi t (&cpu_l ock) ;
mut ex_exit (&dtrace_| Iock)
dtrace_dof _destroy(dof);

new usr/src/uts/comon/ dtrace/ dtrace. c

16166
16167

16169
16170
16171
16172
16173

16175
16176

16178
16179
16180
16181

16183
16184
16185
16186

16188
16189
16190

16192
16193

16195
16196
16197
16198
16199
16200
16201
16202
16203
16204

16206
16207

16209
16210
16211
16212

16214
16215
16216
16217
16218
16219
16220
16221
16222
16223

16225
16226
16227
16228

16230

return (err);

}

case DTRACEI OC_REPLI CATE: {

}

dtrace_repl desc_t desc;
dtrace_probedesc_t *match
dtrace_probedesc_t *create =
int err;

if (copyin((void *)arg, &desc,
return (EFAULT)

mat ch- >dt pd_pr ovi der [DTRACE_PROVNAMELEN -
mat ch- >dt pd_nod[DTRACE_ MODNAMELEN - 1] ="
mat ch- >dt pd_f unc[DTRACE_FUNCNAMELEN - 1]

mat ch- >dt pd_name[DTRACE_NAMELEN - 1] = *\0';

creat e- >dt pd_pr ovi der [DTRACE_PROVNAMELEN -
cr eat e- >dt pd_nod[DTRACE_MODNAMELEN - 1] =
creat e- >dt pd_f unc[DTRACE_FUNCNAMELEN - 1]
cr eat e- >dt pd_nane[DTRACE_NAMELEN - 1] ="

mut ex_ent er (&Jtrace_| ock);
err = dtrace_enabling_replicate(state, mat
nmut ex_exi t (&dtrace_| ock);

return (err);

case DTRACElI OC_PROBENVATCH:
case DTRACEI OC_PROBES:

dtrace_probe_t *probe = NULL;
dtrace probedesc t desc;
dtrace_pr obekey pkey;
dtrace_id_t i;

int m= 0;

ui nt32_t pri v;

uid_t uid;

zonei d_t zoneid;

if (copyin((void *)arg, &desc,
return (EFAULT);

= &desc. dtrpd_match;
&desc. dtrpd_create;

si zeof (desc)) !=

0)
1] ="'\0
\0";
O
1] =
o
= \0

ch, create);

si zeof (desc)) !=

0)

='\0

'"\NO";

desc. dt pd_pr ovi der [DTRACE_PROVNAMELEN - 1]
desc. dt pd_nod[DTRACE_MODNAMELEN - 1] = "\ 0’ ;
desc. dt pd_f unc[DTRACE_FUNCNAMELEN - 1] =
desc. dt pd_nane[DTRACE_NAMELEN - 1] = '\0’;

| *

* Before we attenpt to match this probe,
| providers the opportunity to provide it.

if (desc.dtpd_id == DTRACE_| DNONE) {
nmut ex_ent er (&Jtrace_provi der _| ock);
dtrace_probe_provi de(&esc, NULL);
mut ex_exi t (&t race_provi der _| ock);

* al
*

desc. dt pd_i d++;

if (cnd == DTRACEI OC_PROBEMATCH) {

}

dtrace_cred2priv(cr,

dtrace_probekey(&desc &pkey)
pkey. dt pk_i d = DTRACE_| DNONE;

we want to give

&riv, &uid, &zoneid);

new usr/src/uts/comon/dtrace/ dtrace. c 247 new usr/src/uts/comon/dtrace/ dtrace.c 248
16297 mut ex_exi t (&t race_provi der _| ock);
16232 mut ex_ent er (&Jtrace_| ock); 16298 return (EINVAL);
16299 }
16234 if (cmd == DTRACEI OC_PROBEVATCH) {
16235 for (i = desc.dtpd_id; I <= dtrace_nprobes; i++) { 16301 nmut ex_exi t (&dtrace_| ock);
16236 if ((probe = dtrace_probes[i - 1]) != NULL &&
16237 (m = dtrace_mat ch_probe(probe, &pkey, 16303 prov = probe->dtpr_provider;
16238 priv, uid, zoneid)) != 0)
16239 br eak; 16305 if (prov->dtpv_pops. dtps_getargdesc == NULL) {
16240 } 16306 /*
16307 * There isn’t any typed information for this probe.
16242 if (m<0) { 16308 * Set the argunent nunber to DTRACE_ARGNONE.
16243 nut ex_exi t (&trace_| ock); 16309 */
16244 return (ElINVAL); 16310 desc. dt argd_ndx = DTRACE_ARGNONE;
16245 } 16311 } else {
16312 desc.dtargd_native[0] = '\0";
16247 } else { 16313 desc.dtargd_xlate[0] = "\0";
16248 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16314 desc. dt argd_nappi ng = desc. dt ar gd_ndx;
16249 if ((probe = dtrace_probes[i - 1]) != NULL &&
16250 dtrace_match_priv(probe, priv, uid, zoneid)) 16316 prov->dt pv_pops. dt ps_get ar gdesc(pr ov- >dt pv_ar g,
16251 br eak; 16317 probe->dtpr_id, probe->dtpr_arg, &desc);
16252 } 16318 }
16253 }
16320 mut ex_exi t (&mod_l ock) ;
16255 if (probe == NULL) { 16321 nut ex_exi t (&dtrace_provi der _| ock);
16256 mut ex_exi t (&t race_l ock);
16257 return (ESRCH); 16323 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16258 } 16324 return (EFAULT);
16260 dtrace_probe_descri ption(probe, &desc); 16326 return (0);
16261 mut ex_exi t (&dtrace_l ock); 16327 }
16263 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16329 case DTRACEI OC_ GO {
16264 return (EFAULT); 16330 processorid_t cpuid;
16331 rval = dtrace_state_go(state, &cpuid);
16266 return (0);
16267 } 16333 if (rval = 0)
16334 return (rval);
16269 case DTRACElI OC_PROBEARG
16270 dtrace_argdesc_t desc; 16336 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16271 dtrace_probe_t *probe; 16337 return (EFAULT);
16272 dtrace_provider_t *prov;
16339 return (0);
16274 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16340 }
16275 return (EFAULT);
16342 case DTRACEI OC_STOP: {
16277 if (desc.dtargd_i d == DTRACE_| DNONE) 16343 processorid_t cpuid;
16278 return (EINVAL);
16345 mut ex_ent er (&Jtrace_| ock);
16280 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16346 rval = dtrace_state_stop(state, &cpuid);
16281 return (EI NVAL); 16347 nmut ex_exi t (&dtrace_| ock);
16283 nmut ex_ent er (&dtrace_provi der _| ock); 16349 if (rval 1= 0)
16284 nut ex_ent er (&od_| ock) ; 16350 return (rval);
16285 nut ex_ent er (&dtrace_| ock) ;
16352 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16287 if (desc.dtargd_id > dtrace_nprobes) { 16353 return (EFAULT);
16288 mut ex_exi t (&t race_l ock);
16289 mut ex_exi t (&mod_I ock); 16355 return (0);
16290 mut ex_exi t (&Jtrace_provi der _| ock); 16356 }
16291 return (EINVAL);
16292 } 16358 case DTRACEI OC_DOFGET:
16359 dof _hdr _t hdr, *dof;
16294 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16360 uint64_t |en;
16295 mut ex_exi t (&dJtrace_l ock);
16296 mut ex_exi t (&od_I ock) ; 16362 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)

new usr/src/uts/comon/dtrace/ dtrace. c 249 new usr/src/uts/comon/dtrace/ dtrace.c 250
16363 return (EFAULT); 16429 dtrace_buffer_polish(buf);
16430 sz = buf->dtb_size;
16365 mut ex_ent er (&Jtrace_| ock); 16431 }
16366 dof = dtrace_dof _create(state);
16367 nut ex_exi t (&dtrace_| ock); 16433 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16434 nmut ex_exit (&t race_| ock);
16369 len = M N(hdr. dof h_| oadsz, dof->dofh_| oadsz); 16435 return (EFAULT);
16370 rval = copyout (dof, (void *)arg, len); 16436 }
16371 dtrace_dof _destroy(dof);
16438 desc. dt bd_si ze = sz;
16373 return (rval == 0 ? 0 : EFAULT); 16439 desc. dt bd_drops = buf->dtb_drops;
16374 } 16440 desc.dtbd_errors = buf->dtb_errors;
16441 desc. dt bd_ol dest = buf->dtb_xanot of f set;
16376 case DTRACElI OC_AGGSNAP: 16442 desc. dtbd_tinestanp = dtrace_gethrtinme();
16377 case DTRACEI OC_BUFSNAP: {
16378 dtrace_buf desc_t desc; 16444 mut ex_exit (&dtrace_l ock);
16379 caddr _t cached;
16380 dtrace_buffer_t *buf; 16446 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16447 return (EFAULT);
16382 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16383 return (EFAULT); 16449 buf ->dtb_flags | = DTRACEBUF_CONSUMED,
16385 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16451 return (0);
16386 return (EINVAL); 16452 }
16388 nmut ex_ent er (&dtrace_| ock) ; 16454 if (buf->dtb_tomax == NULL) {
16455 ASSERT(buf - >dt b_xanmpt == NULL);
16390 if (cmd == DTRACEI OC_BUFSNAP) { 16456 mut ex_exi t (&t race_l ock);
16391 buf = &state->dts_buffer[desc.dtbd_cpu]; 16457 return (ENCENT);
16392 } else { 16458 }
16393 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16394 } 16460 cached = buf->dt b_t onax;
16461 ASSERT(! (buf->dtb_fl ags & DTRACEBUF_NOSW TCH)) ;
16396 if (buf->dtb_flags & (DTRACEBUF_RI NG | DTRACEBUF_FILL)) {
16397 size_t sz = buf->dtb_offset; 16463 dtrace_xcal | (desc. dt bd_cpu,
16464 (dtrace_xcal |l _t)dtrace_buffer_sw tch, buf);
16399 if (state->dts_activity != DTRACE_ACTI VI TY_STOPPED) {
16400 nut ex_exi t (&dtrace_| ock); 16466 state->dts_errors += buf->dtb_xanot _errors;
16401 return (EBUSY);
16402 } 16468 /*
16469 * |f the buffers did not actually switch, then the cross call
16404 I* 16470 * did not take place -- presumably because the given CPU is
16405 * |f this buffer has already been consunmed, we're 16471 * not in the ready set. |If this is the case, we'll return
16406 * going to indicate that there’s nothing left here 16472 * ENCENT.
16407 * to consune. 16473 */
16408 */ 16474 if (buf->dtb_tonmax == cached) {
16409 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16475 ASSERT(buf - >dt b_xanot != cached);
16410 mut ex_exit (&dtrace_| ock) ; 16476 mut ex_exi t (&dJtrace_l ock);
16477 return (ENCENT);
16412 desc. dt bd_si ze = O; 16478 }
16413 desc. dtbd_drops = 0;
16414 desc.dtbd_errors = 0; 16480 ASSERT(cached == buf->dtb_xanot);
16415 desc. dt bd_ol dest = 0;
16416 sz = sizeof (desc); 16482 /*
16483 * We have our snapshot; now copy it out.
16418 i f (copyout(&desc, (void *)arg, sz) != 0) 16484 */
16419 return (EFAULT); 16485 if (copyout (buf->dtb_xanmpt, desc.dtbd_data,
16486 buf - >dt b_xanot _offset) != 0) {
16421 return (0); 16487 mut ex_exi t (&t race_l ock);
16422 } 16488 return (EFAULT);
16489 1
16424 /*
16425 * If thisis aring buffer that has w apped, we want 16491 desc. dt bd_si ze = buf->dtb_xanot _of f set;
16426 * to copy the whole thing out. 16492 desc. dt bd_drops = buf->dtb_xanot _dr ops;
16427 */ 16493 desc. dtbd_errors = buf->dtb_xanot _errors;
16428 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16494 desc. dt bd_ol dest = 0;

new usr/src/uts/comon/ dtrace/ dtrace. c 251

16495
16497

16499
16500
16501
16502
16503

16505
16506

16508
16509

16511
16512
16513
16514
16515

16517
16518

16520
16521

16523
16524
16525
16526
16527

16529
16530
16531
16532
16533
16534
16535
16536

16538
16540
16542
16543
16544
16545

16547
16548

16550
16551

16553
16554

16556
16557
16558

16560

desc. dtbd_tinmestanp = buf->dtb_sw tched;
mut ex_exit (&dtrace_l ock);

/*

* Finally, copy out the buffer description.
*

/

if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
return (EFAULT);

return (0);

case DTRACEI OC_CONF:

dtrace_conf_t conf;

bzero(&conf, sizeof (conf))
conf.dtc_difversion = DI F_VERSI ON,
conf.dtc_difintregs = DI F_D R NREGS;
conf.dtc_diftupregs = DI F_DTR NREGS;

conf.dtc_ctfrodel = CTF_MODEL_NATI VE;

if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
return (EFAULT);

return (0);

case DTRACEI OC_STATUS: {

dtrace_status_t stat;
dtrace_dstate_t *dstate;
int i, j;

uint64_t nerrs;

/*

* See the comment in dtrace_state_deadman() for the reason
* for setting dts_laststatus to | NT64_MAX before setting

* it to the correct value.

*/

state->dts_l aststatus = | NT64_MAX;

dt race_nenbar _producer () ;

state->dts_| aststatus = dtrace_gethrtinme();

bzero(&stat, sizeof (stat));

nut ex_ent er (&dtrace_| ock) ;

if (state->dts_activity == DTRACE_ACTI VI TY_I NACTI VE) {
mut ex_exi t(&dtrace | ock);

return (ENCENT);
}

if (state->dts_activity == DTRACE_ACTI VI TY_DRAI NI NG
stat.dtst_exiting = 1;

nerrs = state->dts_errors;
dstate = &state->dts_vstate.dtvs_dynvars;
(i =0; i < NCPU, i++)
dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpuli];

stat.dtst_dyndrops += dcpu->dtdsc_drops;
stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;

stat. dtst_dyndrops_rinsing += dcpu->dtdsc_ri nsi ng_drops;

if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)

new usr/src/uts/comon/ dtrace/ dtrace. c

16561
16563

16565
16566
16567

16569
16570
16571
16572
16573

16575
16576
16577
16578
16579
16580
16581

16583

16585
16586

16588
16589

16591
16592
16593
16594

16596
16597

16599

16601
16602
16603
16604
16605

16607
16608
16609
16610
16611
16612
16613
16614
16615

16617

16619
16620

16622
16623
16624
16625
16626

}

stat.dtst_filled++;
nerrs += state->dts_buffer[i].dtb_errors;

for (j = 0; j < state->dts_nspecul ations; j++) {
dtrace_specul ati on_t *spec;
dtrace_buffer_t *buf;

spec = = &state->dts_specul atl ons[j];
buf &spec->dt sp_buffer[i
stat. dt st _specdrops += buf- Sdt b_xanot _dr ops;

}
}
stat. dtst_specdrops_busy = state->dts_specul ati ons_busy;
stat. dtst_specdrops_unavail = state->dts_specul ati ons_unavail ;

stat.dtst_stkstroverflows = state->dts_stkstroverfl ows;
stat.dtst_dblerrors = state->dts_dblerrors;
stat.dtst _killed =

(state- >dts_act|vity == DTRACE_ACTI VI TY_KI LLED) ;
stat.dtst_errors = nerrs;

mut ex_exit (&dtrace_l ock);

if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
return (EFAULT);

return (0);

case DTRACEI OC_FORMAT: {

dtrace_fntdesc_t fnt;
char *str;
int |en;

if (copyin((void *)arg, & nt, sizeof (fnt)) != 0)
return (EFAULT);

mut ex_ent er (&Jtrace_| ock);

if (fmt.dtfd_format == 0 ||
fmt.dtfd_format > state->dts_nformats) {
mut ex_exi t (&dtrace_| ock);
return (EINVAL);

= oo

never freed; if a format index is less than the nunber

of formats, we can assert that the format map i s non- NULL
* and that the format for the specified index I's non-NULL.
*/
ASSERT(state->dts_formats != NULL);
str = state->dts_formats[fnt.dtfd_format - 1];
ASSERT(str != NULL);

*
* Format strings are allocated contiguously and they are
*
*

len = strlen(str) + 1;

if (len > fnt.dtfd_length) {
fomt.dtfd_length = | en;

if (copyout(&nt, (void *)arg, sizeof (fnt)) !'= 0) {
nut ex_exi t (&dtrace_| ock);
return (ElINVAL);

} else {

new usr/src/uts/comon/ dtrace/ dtrace. c

16627 if (copyout(str, fnt.dtfd_string, len) !'=0) {
16628 mut ex_exi t (&dtrace_| ock);
16629 return (EINVAL);
16630 }

16631 }

16633 mut ex_exi t (&dtrace_l ock);

16634 return (0);

16635 }

16637 defaul t:

16638 br eak;

16639 }

16641 return (ENOTTY);

16642 }

16644 [/ * ARGSUSED*/

16645 static int

16646 dtrace_detach(dev_info_t *dip, ddi_detach_cnd_t cnd)
16647 {

16648 dtrace_state_t *state;

16650 switch (crmd) {

16651 case DDl _DETACH:

16652 br eak;

16654 case DDl _SUSPEND:

16655 return (DDI _SUCCESS);

16657 defaul t:

16658 return (DDl _FAI LURE);

16659 }

16661 mut ex_ent er (&cpu_| ock) ;

16662 nmut ex_ent er (&dt race_provi der _| ock) ;

16663 mut ex_ent er (&t race_| ock);

16665 ASSERT(dtrace_opens == 0);

16667 if (dtrace_hel pers > 0) {

16668 nut ex_exi t (&dtrace_provi der _| ock);
16669 mut ex_exit (&dtrace_| ock);

16670 mut ex_exi t (&cpu_l ock) ;

16671 return (DDI _FAI LURE);

16672 }

16674 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16675 mut ex_exi t (&dJtrace_provi der _| ock);
16676 nmut ex_exi t (&dtrace_| ock);

16677 nmut ex_exi t (&cpu_I ock);

16678 return (DDl _FAI LURE);

16679 }

16681 dtrace_provi der = NULL;

16683 if ((state = dtrace_anon_grab()) != NULL) {
16684 /*

16685 * |f there were ECBs on this state, the provider shoul d
16686 * have not been allowed to detach; assert that there is
16687 * none.

16688 */

16689 ASSERT(st at e->dt s_necbhs ==

16690 dtrace_state_destroy(stat e)

16692 /*

253

new usr/src/uts/comon/ dtrace/ dtrace. c

16693
16694
16695
16696
16697

16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709

16711
16712

16714

16716
16717
16718
16719

16721
16722
16723

16725
16726
16727
16728
16729
16730

16732
16733
16734

16736
16737
16738
16739
16740
16741
16742

16744
16745

16747

16749
16750
16751

16753
16754

16756
16757
16758

254

* |f we're being detached with anonynous state, we need to
* indicate to the kernel debugger that DTrace is now inactive.
*
/
(voi d) kdi _dtrace_set (KDl _DTSET_DTRACE_DEACTI VATE) ;
}

bzero(&dtrace_anon, sizeof (dtrace_anon_t));

unregi ster_cpu_ setup func((cpu setup_func_t *)dtrace_cpu_setup, NULL);
dtrace_cpu_init = NUL

dtrace_hel pers_cl eanup NULL;

dtrace_hel pers_fork = NULL;

dtrace_cpustart_init = NULL;
dtrace_cpustart_fini = NULL;
dtrace_debugger _i nit = NULL;
dtrace_debugger _fini = NULL;

dtrace_nodl oad = NULL;
dtrace_nodunl oad = NULL;

ASSERT(dtrace_getf == 0);
ASSERT(dtrace_cl osef == NULL);

mut ex_exi t (&cpu_l ock) ;
if (dtrace_hel ptrace_enabl ed)

{
kmem free(dtrace_hel ptrace_buffer,
dtrace_hel ptrace_buffer = NULL;

dtrace_hel ptrace_bufsi ze);

}

kmem free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
dtrace_probes = NULL;
dtrace_nprobes = 0;

dtrace_hash_destroy(dtrace_bynod);
dtrace_hash_destroy(dtrace_ byfunc)
dtrace_hash_destroy(dtrace_bynane);
dtrace_bymod = NULL;

dtrace_byfunc = NULL;
dtrace_byname = NULL;
kmem cache_destroy(dtrace_state_cache);
virem dest roy(dtrace_mi nor);

vrem dest roy(dt race_ar ena) ;

if (dtrace_toxrange != NULL)
kmem f ree(dtrace_t oxrange,
dtrace_t oxranges_nmax * sizeof (dtrace_toxrange_t));
dtrace_t oxrange = NULL;
dtrace_t oxranges = 0;
dtrace_t oxranges_nax = O;

}

ddi _renove_m nor _node(dtrace_devi, NULL);
dtrace_devi = NULL;

ddi _soft_state_fini(&Jtrace_softstate);
ASSERT(dtrace_vtine_references == 0);
ASSERT(dt race_opens == 0);

ASSERT(dtrace_retai ned == NULL);

mut ex_exi t (&dt race_| ock) ;
mut ex_exi t (&t race_provi der _| ock);

/

EE

We don’'t destroy the task queue until after we have dropped our
l ocks (taskqg_destroy() may bl ock on running tasks). To prevent

new usr/src/uts/comon/ dtrace/ dtrace. c 255

16759 * attenpting to do work after we have effectively detached but before
16760 * the task queue has been destroyed, all tasks dispatched via the
16761 * task queue nmust check that DIrace is still attached before
16762 * performng any operation.

16763 *

16764 taskq_destroy(dtrace_taskq);

16765 dtrace_taskq = NULL;

16767 return (DDl _SUCCESS);

16768 }

16770 /* ARGSUSED*/

16771 static int

16772 dtrace_i nfo(dev_info_t *dip, ddi_info_cnd_t infocnd, void *arg, void **result)
16773 {

16774 int error;

16776 switch (infocrmd) {

16777 case DDI _| NFO_DEVT2DEVI NFO

16778 *result = (void *)dtrace_devi;

16779 error = DDl _SUCCESS;

16780 br eak;

16781 case DDl _| NFO _DEVT2] NSTANCE:

16782 *result = (void *)O0;

16783 error = DDl _SUCCESS;

16784 br eak;

16785 defaul t:

16786 error = DDl _FAI LURE;

16787

16788 return (error);

16789 }

16791 static struct cb_ops dtrace_cb_ops =

16792 dtrace_open, /* open */

16793 dtrace_cl ose, /* close */

16794 nul | dev, /* strategy */

16795 nul | dev, /* print */

16796 nodev, /* dunp */

16797 nodev, /* read */

16798 nodev, /* wite */

16799 dtrace_ioctl, /* ioctl */

16800 nodev, /* devmap */

16801 nodev, /* mmap */

16802 nodev, /* segmap */

16803 nochpol |, /* poll */

16804 ddi _prop_op, /* cb_prop_op */

16805 0, /* streantab */

16806 D NEW| D MP /* Driver conpatibility flag */
16807 };

16809 static struct dev_ops dtrace_ops = {

16810 DEVO_REV, /* devo_rev */

16811 0, /* refcnt */

16812 dtrace_info, /* get_dev_info */
16813 nul | dev, /* identify */

16814 nul | dev, /* probe */

16815 dtrace_attach, /* attach */

16816 dtrace_det ach, /* detach */

16817 nodev, /* reset */

16818 &dtrace_ch_ops, /* driver operations */
16819 NULL, /* bus operations */
16820 nodev, /* dev power */

16821 ddi _qui esce_not _needed, /* quiesce */
16822 };

16824 static struct nodldrv nodldrv = {

new usr/src/uts/comon/ dtrace/ dtrace. c

16825
16826
16827
16828 }

&nmod_dri ver ops,
"Dynam ¢ Traci ng",
&dtrace_ops,

/* modul e type (this is a pseudo driver) */
/* nanme of nodule */
/* driver ops */

16830 static struct nodlinkage nodlinkage = {
MODREV

16831
16832
16833
16834 }

16836 i

i,
(void *)&nodl drv,
NULL

int
16837 _init(void)

16839

16838 |
16840 }

16842 int

return (nod_install (&odlinkage));

16843 _info(struct nodi nfo *nodi nfop)

16844 |
16845
16846 }
16848 i nt

16850

return (nod_i nfo(&mdl i nkage, nodi nfop));

16849 {_fi ni (voi d)

16851
16852 }

return (nmod_renove(&odl i nkage));

new usr/src/uts/comon/sys/dtrace. h 1 new usr/src/uts/comon/sys/dtrace. h 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 155 #defl ne u F O:) LDTA 43 /* Idta Vaf, fl, rd */
101984 Tue Jan 14 16:49: 37 2014 156 #define DIF_OP_LDTS 44 /* Idts var, rd */
new usr/src/uts/comon/sys/dtrace. h 157 #define DI F_OP_STTS 45 /* stts var, rs */
4477 DTrace shoul d speak JSON 158 #define DI F_OP_SRA 46 /[* sra rl, r2, rd */
Revi ewed by: Bryan Cantrill <bnc@ oyent.con» 159 #define DIF_OP_CALL 47 /* call subr, rd */
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE] 160 #defl ne uF O:) PUS'_”’R 48 /* pushtr typeY rS, rr */
__unchanged_portion_omtted_ 161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 #define DI F_OP_POPTS 50 [* popts */
97 /* 163 #define DI F_OP_FLUSHTS 51 [* flushts */
98 * Dfrace Internediate Format (Dl F) 164 #define DI F_OP_LDGAA 52 /* ldgaa var, rd */
99 * 165 #define DI F_OP_LDTAA 53 /* Idtaa var, rd */
100 * The follow ng definitions describe the Dirace Internediate Format (DI F), a 166 #define DI F_OP_STGAA 54 /* stgaa var, rs */
101 * a RISC-like instruction set and program encodi ng used to represent 167 #define DI F_OP_STTAA 55 /* sttaa var, rs */
102 * predicates and actions that can be bound to DIrace probes. The constants 168 #define DIF_OP_LDLS 56 /* Idls var, rd */
103 * bel ow defining the nunber of available registers are suggested mni munms; the 169 #define DIF_OP_STLS 57 /* stls var, rs */
104 * conpiler should use DTRACEI OC_CONF to dynam cally obtain the nunber of 170 #define DIF_OP_ALLOCS 58 /* allocs rl, rd */
105 * registers provided by the current DTrace inplenentation. 171 #define DI F_OP_COPYS 59 /* copys rl, r2, rd */
106 */ 172 #define DI F_OP_STB 60 [* stb r1, [rd] */
107 #define DI F_VERSI ON_1 1 /* DIF version 1. Solaris 10 Beta */ 173 #define D F_OP_STH 61 /* sth r1, [rd] */
108 #define DI F_VERSI ON 2 2 /* DIF version 2: Solaris 10 FCS */ 174 #define D F_OP_STW 62 /* stw rl, [rd] */
109 #define DI F_VERSI ON_ DI F_VERSI ON_2 /* latest DIF instruction set version */ 175 #define DI F_OP_STX 63 /* stx rl, [rd] */
110 #define DIF_DIR NREGS 8 /* nunber of DIF integer registers */ 176 #define DI F_OP_ULDSB 64 /* uldsb [r1], rd */
111 #define DIF_DTR_NREGS 8 /* nunber of DIF tuple registers */ 177 #define DI F_OP_ULDSH 65 /* uldsh [r1], rd */
178 #define DI F_OP_ULDSW 66 /[* uldsw [r1], rd */
113 #define DIF_OP_OR 1 /* or rl, r2, rd */ 179 #define DI F_OP_ULDUB 67 /* uldub [r1], rd */
114 #define D F_OP_XOR 2 /* xor rl1, r2, rd */ 180 #define DI F_OP_ULDUH 68 /* ulduh [r1], rd */
115 #define D F_OP_AND 3 /* and r1, r2, rd */ 181 #define D F_OP_ULDUW 69 /* ulduw [r1], rd */
116 #define DIF_OP_SLL 4 /* sll rl, r2, rd */ 182 #define DI F_OP_ULDX 70 /* ul dx ri], rd */
117 #define DIF_OP_SRL 5 /* srl rl, r2, rd */ 183 #define DI F_OP_RLDSB 71 /* rldsb [r1], rd */
118 #define D F_OP_SUB 6 /* sub r1, r2, rd */ 184 #define D F_OP_RLDSH 72 /* rldsh [r1], rd */
119 #define D F_OP_ADD 7 /* add r1, r2, rd */ 185 #define DI F_OP_RLDSW 73 /* rldsw [r1], rd */
120 #define DI F_OP_MJL 8 /* mul r1, r2, rd */ 186 #define DI F_OP_RLDUB 74 /* rldub [r1], rd */
121 #define D F_OP_SDI V 9 [* sdiv rl, r2, rd */ 187 #define DI F_OP_RLDUH 75 /* rlduh [r1], rd */
122 #define D F_OP_UD V 10 /* udiv rl, r2, rd */ 188 #define DI F_OP_RLDUW 76 /* rlduw [r1], rd */
123 #define DI F_OP_SREM 11 /* sremrl, r2, rd */ 189 #define DI F_OP_RLDX 77 /* rldx rl], rd */
124 #define DI F_OP_UREM 12 /* uremrl, r2, rd */ 190 #define DI F_OP_XLATE 78 /* xlate xlrindex, rd */
125 #define DI F_OP_NOT 13 /* not rl, rd */ 191 #define DI F_OP_XLARG 79 /* xlarg xlrindex, rd */
126 #define D F_OP_MOV 14 /* mov rl, rd */
127 #define D F_OP_CWP 15 /* cnp rl, r2 */ 193 #define DI F_| NTOFF_MAX oxffff /* highest integer table offset */
128 #define DI F_OP_TST 16 /* tst rl */ 194 #define DI F_STROFF_MAX oxffff /* highest string table offset */
129 #define D F_OP_BA 17 /* ba |abel */ 195 #define DI F_REG STER MAX Oxf f /* highest register nunber */
130 #define DI F_OP_BE 18 /* be | abel */ 196 #define DI F_VARI ABLE_MAX oxffff /* highest variable identifier */
131 #define DI F_OP_BNE 19 /* bne |abel */ 197 #define DI F_SUBROUTI NE_MAX oxffff /* highest subroutine code */
132 #define DI F_OP_BG 20 /* bg | abel */
133 #define D F_OP_BGQUJ 21 /* bgu |abel */ 199 #define D F_VAR ARRAY_M N 0x0000 /* |owest nunmbered array variable */
134 #define D F_OP_BGE 22 /* bge |abel */ 200 #define DI F_VAR_ARRAY_UBASE 0x0080 /* |owest user-defined array */
135 #define DI F_OP_BGEU 23 /* bgeu | abel */ 201 #define DI F_VAR_ARRAY_NAX 0x00ff /* highest nunbered array variable */
136 #define DIF_OP_BL 24 /* bl | abel */
137 #define D F_OP_BLU 25 /[* blu |abel */ 203 #define DI F_VAR OTHER_ M N 0x0100 /* |owest nunbered scalar or assc */
138 #define DI F_OP_BLE 26 [* ble |abel */ 204 #define DI F_VAR OTHER_UBASE 0x0500 /* |owest user-defined scalar or assc */
139 #define DI F_OP_BLEU 27 /* bleu | abel */ 205 #define DI F_VAR_OTHER_MAX oxffff /* highest nunmbered scalar or assc */
140 #define DI F_OP_LDSB 28 [* ldsb [r1], rd */
141 #define DI F_OP_LDSH 29 /* ldsh [r1], rd */ 207 #define DI F_VAR _ARGS 0x0000 /* argunments array */
142 #define DI F_OP_LDSW 30 /* ldsw [r1], rd */ 208 #define DI F_VAR REGS 0x0001 /* registers array */
143 #define D F_OP_LDUB 31 /* ldub [r1], rd */ 209 #define DI F_VAR UREGS 0x0002 /* user registers array */
144 #define DI F_OP_LDUH 32 /* Iduh [r1], rd */ 210 #define DI F_VAR VMREGS 0x0003 /* virtual nachine registers array */
145 #define DI F_OP_LDUW 33 /* Iduw [r1], rd */ 211 #define DI F_VAR_CURTHREAD 0x0100 /* thread pointer */
146 #define DI F_OP_LDX 34 /* 1dx [r1], rd */ 212 #define DI F_VAR TI MESTAMP 0x0101 /* timestanp */
147 #define DIF_OP_RET 35 /* ret rd */ 213 #define DI F_VAR VTI MESTAMP 0x0102 /* virtual timestamp */
148 #define DI F_OP_NOP 36 /* nop */ 214 #define DI F_VAR | PL 0x0103 /* interrupt priority level */
149 #define DI F_OP_SETX 37 /* setx intindex, rd */ 215 #define DI F_VAR EPID 0x0104 /* enabl ed probe 1D */
150 #define DI F_OP_SETS 38 /* sets strindex, rd */ 216 #define DI F_VAR ID 0x0105 /* probe ID */
151 #define DI F_OP_SCMP 39 /* scnp rl, r2 */ 217 #define DI F_VAR_ARQ) 0x0106 /* first argument */
152 #define DI F_OP_LDGA 40 /* ldga var, ri, rd */ 218 #define DI F_VAR_ARGL 0x0107 /* second argunent */
153 #define DI F_OP_LDGS 41 /* ldgs var, rd */ 219 #define DI F_VAR_AR® 0x0108 /* third argunent */
154 #define DI F_OP_STGS 42 /* stgs var, rs */ 220 #define DI F_VAR_ARG3 0x0109 /* fourth argunent */

new usr/src/uts/comon/sys/dtrace. h

221 #define D F_VAR AR 0x010a
222 #define DI F_VAR ARG5S 0x010b
223 #define DI F_VAR_ARGS 0x010c
224 #define DI F_VAR_ARG/ 0x010d
225 #define Dl F_VAR_ARG8 0x010e
226 #define DI F_VAR_AR® 0x010f
227 #define DI F_VAR_STACKDEPTH 0x0110
228 #define DI F_VAR CALLER 0x0111
229 #define Dl F_VAR_PROBEPROV 0x0112
230 #define DI F_VAR_PROBEMOD 0x0113
231 #define DI F_VAR PROBEFUNC 0x0114
232 #define DI F_VAR PROBENAVE 0x0115
233 #define DI F_VAR PID 0x0116
234 #define DIF_VAR TID 0x0117
235 #define DI F_VAR_EXECNAME 0x0118
236 #define DI F_VAR_ZONENAMVE 0x0119
237 #define DI F_VAR WALLTI MESTAMP 0x0lla
238 #define DI F_VAR_USTACKDEPTH 0x011b
239 #define DI F_VAR UCALLER 0x011c
240 #define DI F_VAR PPID 0x011d
241 #define DIF_VAR U D 0x011le
242 #define DIF_VAR G D 0x011f
243 #define DI F_VAR_ERRNO 0x0120
245 #define DI F_SUBR_RAND

246 #define DI F_SUBR_MJTEX_OWNED

247 #define D F_SUBR_MUTEX_OWNER

248 #define DI F_SUBR_MJTEX_TYPE_ADAPTI VE
249 #define DI F_SUBR _MJTEX TYPE_SPI N

250 #define DI F_SUBR RW READ HELD

251 #define DI F_SUBR_ RWWRI TE_HELD

252 #define DI F_SUBR RW | SWRI TER

253 #define DI F_SUBR_COPYI N

254 #define DI F_SUBR _COPYI NSTR

255 #define DI F_SUBR_SPECULATI ON

256 #define DI F_SUBR_PROGENYOF

257 #define DI F_SUBR _STRLEN

258 #define DI F_SUBR_COPYOUT

259 #define DI F_SUBR_COPYOUTSTR

260 #define DI F_SUBR_ALLOCA

261 #define DI F_SUBR_BCOPY

262 #define DI F_SUBR _COPYI NTO

263 #define DI F_SUBR MSGDSI ZE

264 #define DI F_SUBR_MSGSI ZE

265 #define DI F_SUBR_GETMAJOR

266 #define DI F_SUBR _GETM NOR

267 #define DI F_SUBR DDl _PATHNAME

268 #define DI F_SUBR_STRJO N

269 #define DI F_SUBR_LLTOSTR

270 #define DI F_SUBR_BASENAME

271 #define DI F_SUBR DI RNAME

272 #define DI F_SUBR_CLEANPATH

273 #define DI F_SUBR_STRCHR

274 #define DI F_SUBR_STRRCHR

275 #define DI F_SUBR STRSTR

276 #define D F_SUBR _STRTCK

277 #define DI F_SUBR _SUBSTR

278 #define DI F_SUBR | NDEX

279 #define DI F_SUBR_RI NDEX

280 #define DI F_SUBR HTONS

281 #define DI F_SUBR_HTONL

282 #define DI F_SUBR _HTONLL

283 #define DI F_SUBR_NTOHS

284 #define DI F_SUBR_NTCHL

285 #define DI F_SUBR NTOHLL

286 #define DI F_SUBR_| NET_NTOP

® Ok ok ok ok b ok o 3k ok R b ok % ok % ok Ok ok kb F %

— e e e e e —

CoO~NOUIRhWNEO

fifth argument */

sixth argument */
seventh argument */

ei ghth argunent */

ni nth argument */

tenth argunent */

stack depth */

caller */

probe provider */

probe nodul e */

probe function */

probe name */

process ID */
(per-process) thread ID */
nane of executable */
zone nane associated with process */
wal | -cl ock tinestanp */
user -l and stack depth */
user-level caller */
parent process ID */
process user |D */
process group |ID */
thread errno */

new usr/src/uts/comon/sys/dtrace. h

287 #define DI F_SUBR | NET_NTOA 42

288 #define DI F_SUBR | NET_NTOAG6 43

289 #define DI F_SUBR _TOUPPER 44

290 #define DI F_SUBR TOLOWNER 45

291 #define DI F_SUBR GETF 46

292 #define DI F_SUBR JSON 47

293 #define DI F_SUBR_STRTOLL 48

294 #endif /* | codereview */

296 #define DI F_SUBR_MAX 48 /* max subroutine val ue */

292 #define DI F_SUBR_MAX 46 /* max subroutine val ue */

298 typedef uint32_t dif_instr_t;

300 #define DIF_INSTR OP(i) (((i) >> 24) & Oxff)

301 #define DI F_I NSTR_RL(i) (((i) >> 16) & Oxff)

302 #define DI F_I NSTR R2(i) (((i) > 8) & Oxff)

303 #define DI F_I NSTR RD(i) ((i) & Oxff)

304 #define DI F_I NSTR_RS(i) ((i) & Oxff)

305 #define DI F_I NSTR_LABEL(i) ((i) & Oxffffff)

306 #define DI F_I NSTR_VAR(i) (((1) > 8) & Oxffff)

307 #define DI F_I NSTR | NTEGER(i) (((i) > 8) & Oxffff)

308 #define DI F_I NSTR STRI NG(i) (((i) > 8) & Oxffff)

309 #define DI F_I NSTR_SUBR(i) (((i) > 8) & Oxffff)

310 #define DI F_I NSTR_TYPE(i) (((i) >> 16) & Oxff)

311 #define DI F_I NSTR_XLREF(i) (((i) > 8) & Oxffff)

313 #define DIF_INSTR FMI(op, r1, r2, d) \

314 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))

316 #define DI F_I NSTR_ NOT(r1, d) (DI F_INSTR_FMI(DI F_OP_NOT, r1, 0, d))
317 #define DIF_INSTR MOV(r1, d) (DIF_INSTR_FMI(DIF_OP_MV, r1, 0, d))
318 #define DI F_INSTR CMP(op, rl, r2) (DI F_INSTR FMI(op, r1, r2, 0))

319 #define DI F_I NSTR TST(r 1) (DI F_INSTR_FMI(DI F_OP_TST, rl1, 0, 0))
320 #define DI F_I NSTR_BRANCH(op, | abel) (((op) << 24) | (label))

321 #define DI F_INSTR LOAD(op, r1, d) (DIF_INSTR FMI(op, ri1, 0, d))

322 #define DI F_I NSTR_STORE(op, r1, d) (DI F_INSTR_FMI(op, r1, 0, d))

323 #define DI F_I NSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
324 #define DI F_I NSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
325 #define DI F_I NSTR RET(d) (DIF_TNSTR FMI(DI F_OP_RET, 0, 0, d))
326 #define DI F_I NSTR_NOP (DI F_OP_NOP << 24)

327 #define DI F_INSTR LDA(op, v, r, d) (DI F_INSTR_FMI(op, v, r, d))

328 #define DI F_I NSTR LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))

329 #define DI F_INSTR STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))

330 #define DI F_INSTR CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
331 #define DI F_I NSTR PUSHTS(op, t, r2, rs) (DIF_INSTR FMI(op, t, r2, rs))

332 #define DI F_I NSTR_POPTS (DI F_OP_POPTS << 24)

333 #define DI F_I NSTR_FLUSHTS (DI F_OP_FLUSHTS << 24)

334 #define DIF_INSTR_ALLOCS(r1, d) (DI F_INSTR FMI(DIF_OP_ALLOCS, r1, 0, d))
335 #define DI F_I NSTR_ COPYS(r1, r2, d) (DI F_INSTR_FMI(DI F_OP_COPYS, rl1, r2, d))
336 #define DI F_I NSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))

338 #define DIF_REG RO 0 /* %0 is always set to zero */

340 /*

341 * A DTrace Internediate Fornat Type (DI F Type) is used to represent the types
342 * of variables, function and associative array argunents, and the return type
343 * for each DI F object (shown below). It contains a description of the type,
344 * its size in bytes, and a nodule identifier.

345 *

346 typedef struct dtrace_diftype {

347 uint8_t dtdt_kind; /* type kind (see below */

348 ui nt8_t dtdt_ckind; /* type kind in CTF */

349 uint8_t dtdt_flags; /* type flags (see below) */

350 uint8_t dtdt_pad; /* reserved for future use */

351 uint32_t dtdt_size; /* type size in bytes (unless string) */

new usr/src/uts/comon/sys/dtrace. h

352 } dtrace_diftype_t;
____unchanged_portion_onitted_

new usr/src/uts/intel/dtrace/ Makefile 1 new usr/src/uts/intel/dtrace/ Makefile

R R R R

31 ROOTMODULE
32 CONF_SRCDI R

$(ROOT_DRV._DI R) / $(MODULE)
$(UTSBASE) / comrmon/ dt r ace

2206 Tue Jan 14 16:49: 38 2014 62 . KEEP_STATE:
new usr/src/uts/intel/dtrace/ Makefile
4477 DTrace shoul d speak JSON 64 def: $(DEF_DEPS)
Revi ewed by: Bryan Cantrill <bnc@ oyent.con»
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE] 66 all $(ALL_[EPS)
1#
2 # CDDL HEADER START 68 cl ean: $(CLEAN_DEPS)
3 #
4 # The contents of this file are subject to the ternms of the 70 cl obber: $(CLOBBER_DEPS)
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License. 72 lint: $(LI NT_DEPS)
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 nodlintlib: $(MODLI NTLI B_DEPS)
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing pernissions 76 clean.lint: $(CLEAN_LI NT_DEPS)
11 # and limtations under the License.
12 # 78 install: $(1 NSTALL_DEPS)
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 $(BI NARY): $(ASSYM H)
15 # |f applicable, add the follow ng below this CDDL HEADER with the
16 # fields enclosed by brackets "[]" replaced with your own identifying 82 include $(UTSBASE)/intel/Makefile.targ
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.
23 # Use is subject to license terns.
24 #
26 UTSBASE = ../..
28 MODULE = dtrace
29 OBJECTS = $(DTRACE_OBJS: %=$(OBJS DI R)/ %
30 LINTS = $(DTRACE_OBJS: % 0=$(LI NTS_DI R)/ % | n)

34 include $(UTSBASE)/intel/Makefile.intel

36 #
37 # For now, disable these lint checks; mmintainers should endeavor
38 # to investigate and renpve these for maxi mumlint coverage.
39 # Please do not carry these forward to new Makefiles.
#

40

41 LI NTTAGS += -errof f =E_SUSPI Cl OQUS_COVPARI SON
42 LI NTTAGS += -errof f=E_BAD PTR CAST ALI GN

43 LI NTTAGS += -errof f=E_SUPPRESSI ON_DI RECTI VE_UNUSED
44 LI NTTAGS += -errof f =E_STATI C_UNUSED

45 LI NTTAGS += -errof f=E_PTRDI FF_OVERFLOW

46 LI NTTAGS += -errof f =E_ASSI GN_NARROW CONV
48 CERRWARN += - _gcc=- Who- par ent heses

49 CERRWARN += -_gcc=-Wio-type-linmts

50 CERRWARN += -_gcc=-Who-uninitialized

52 CPPFLAGS += -1 $(SRC)/ conmon/ ut i |

54 #endif /* | codereview */

55 ALL_TARGET = $(BI NARY) $(SRC_CONFI LE)

56 LI NT_TARCET $(MODULE) . I'i nt

57 | NSTALL_TARGET $(Bl NARY) $(ROOTMODULE) $(ROOT_CONFFI LE)
58 AS_I NC_PATH = -1$(DSF_DI R)/$(OBIS D R

$(DSF_DIR)/ $(0BJS_DI R)/assym h

+ 01

60 ASSYM H

new usr/src/uts/sparc/dtrace/ Makefile

R R R R

2550 Tue Jan 14 16:49:39 2014
new usr/src/uts/sparc/dtrace/ Makefile
4477 DTrace shoul d speak JSON

32 ROOTMODULE
33 CONF_SRCDI R

$(ROOT_DRV_DI R) / $(MODULE)
$(UTSBASE) / comrmon/ dt r ace

Revi ewed by: Bryan Cantrill <bnt@ oyent.conp
LEEEEEEEEEEREEEEEEESEEEEEEEEEEEEEEEEREEEEEERERERERERESRESESESSE]
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the ternms of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing pernissions
11 # and limtations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun M crosystems, Inc. Al rights reserved.
23 # Use is subject to |license terns.
24 #
26 UTSBASE = .. /..
28 PLATFORM = sunédu
29 MODULE = dtrace
30 OBJECTS = $(DTRACE_OBJS: %$(0BJS_DIR)/ %
31 LINTS = $(DTRACE_OBJS: % 0=$(LI NTS_DI R)/ % | n)

35 include $(UTSBASE)/ sparc/ Makefile.sparc

37 #

38 # Redefi ne DSF_DI R

39 #

40 DSF_DIR = $(UTSBASE) / $(PLATFORM) / genassym
42 CERRWARN += _gcc--v\ho par ent heses

43 CERRWARN += -_gcc=-Wo-type-linits

44 CERRWARN += _gcc——W\o uninitialized

46 ALL_TARGET
47 LI NT_TARCET
48 | NSTALL_TARGET

$(BI NARY) $(SRC_CONFI LE)
$(MODULE) . | i nt
$(BI NARY) $(ROOTMODULE) $(ROOT_CONFFI LE)

-1 $(UTSBASE) / spar c/ v7
-1 $(UTSBASE) / spar c/ v9

53 CFLAGS += $(CCVERBOSE)

54 CPPFLAGS += $(DTRACE | NC_$(CLASS))
55 CPPFLAGS += - | $(SRC)7common/ uti |
56 #endif /* | codereview */

50 DTRACE | NC_32
51 DTRACE_| NC_64

58 DTRACE_XAS_32 = -xar ch=v8pl us
59 DTRACE_XAS_64 = -xarch=v9

new usr/src/uts/sparc/dtrace/ Makefile

61 AS_CPPFLAGS += $(DTRACE_| NC_64)

62 ASFLAGS $(DTRACE_XAS_$(CLASS))

63 AS_| NC_PATH . = -1 $(DSF_DI R) 7$(OBJS DI R)

65 ASSYM H = $(DSF_DIR)/$(0BJS DI R)/assym h
67 #

68 # For now, disable these |lint checks; maintainers should endeavor
69 # to investigate and renove these for maxinum | int cover age.
70 # Please do not carry these forward to new Makefil es.

#

72 LI NTTAGS += -errof f =E_SUSPI Cl OQUS_COVPARI SON

73 LI NTTAGS += -errof f =E_BAD_PTR_CAST_ALI G\

74 LI NTTAGS += -errof f =E_SUPPRESS| ON_DI RECTI VE_UNUSED
75 LI NTTAGS += -errof f =E_STATI C_UNUSED

76 LI NTTAGS += -errof f =E_PTRDI FF_OVERFLOW

77 LI NTTAGS += -errof f =E_ASSI GN_NARROW CONV

79 . KEEP_STATE:

81 def: $(DEF_DEPS)

83 all: $(ALL_DEPS)

85 cl ean: $(CLEAN_DEPS)

87 cl obber: $(CLOBBER_DEPS)

89 lint: $(LI NT_DEPS)

91 nodlintlib: $(MODLI NTLI B_DEPS)
93 clean. lint: $(CLEAN_LI NT_DEPS)
95 install: $(1 NSTALL_DEPS)

97 $(BI NARY) : $(ASSYM H)

99 include $(UTSBASE)/sparc/ Makefile.targ

