1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2012 by Delphix. All rights reserved. 30 */ 31 32 #ifndef _SYS_DTRACE_H 33 #define _SYS_DTRACE_H 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * DTrace Dynamic Tracing Software: Kernel Interfaces 41 * 42 * Note: The contents of this file are private to the implementation of the 43 * Solaris system and DTrace subsystem and are subject to change at any time 44 * without notice. Applications and drivers using these interfaces will fail 45 * to run on future releases. These interfaces should not be used for any 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 48 */ 49 50 #ifndef _ASM 51 52 #include <sys/types.h> 53 #include <sys/modctl.h> 54 #include <sys/processor.h> 55 #include <sys/systm.h> 56 #include <sys/ctf_api.h> 57 #include <sys/cyclic.h> 58 #include <sys/int_limits.h> 59 60 /* 61 * DTrace Universal Constants and Typedefs 62 */ 63 #define DTRACE_CPUALL -1 /* all CPUs */ 64 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 71 #define DTRACE_ARGNONE -1 /* invalid argument index */ 72 73 #define DTRACE_PROVNAMELEN 64 74 #define DTRACE_MODNAMELEN 64 75 #define DTRACE_FUNCNAMELEN 128 76 #define DTRACE_NAMELEN 64 77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 79 #define DTRACE_ARGTYPELEN 128 80 81 typedef uint32_t dtrace_id_t; /* probe identifier */ 82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 85 typedef uint16_t dtrace_actkind_t; /* action kind */ 86 typedef int64_t dtrace_optval_t; /* option value */ 87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 88 89 typedef enum dtrace_probespec { 90 DTRACE_PROBESPEC_NONE = -1, 91 DTRACE_PROBESPEC_PROVIDER = 0, 92 DTRACE_PROBESPEC_MOD, 93 DTRACE_PROBESPEC_FUNC, 94 DTRACE_PROBESPEC_NAME 95 } dtrace_probespec_t; 96 97 /* 98 * DTrace Intermediate Format (DIF) 99 * 100 * The following definitions describe the DTrace Intermediate Format (DIF), a 101 * a RISC-like instruction set and program encoding used to represent 102 * predicates and actions that can be bound to DTrace probes. The constants 103 * below defining the number of available registers are suggested minimums; the 104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 105 * registers provided by the current DTrace implementation. 106 */ 107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 112 113 #define DIF_OP_OR 1 /* or r1, r2, rd */ 114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 115 #define DIF_OP_AND 3 /* and r1, r2, rd */ 116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 119 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 125 #define DIF_OP_NOT 13 /* not r1, rd */ 126 #define DIF_OP_MOV 14 /* mov r1, rd */ 127 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 128 #define DIF_OP_TST 16 /* tst r1 */ 129 #define DIF_OP_BA 17 /* ba label */ 130 #define DIF_OP_BE 18 /* be label */ 131 #define DIF_OP_BNE 19 /* bne label */ 132 #define DIF_OP_BG 20 /* bg label */ 133 #define DIF_OP_BGU 21 /* bgu label */ 134 #define DIF_OP_BGE 22 /* bge label */ 135 #define DIF_OP_BGEU 23 /* bgeu label */ 136 #define DIF_OP_BL 24 /* bl label */ 137 #define DIF_OP_BLU 25 /* blu label */ 138 #define DIF_OP_BLE 26 /* ble label */ 139 #define DIF_OP_BLEU 27 /* bleu label */ 140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 146 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 147 #define DIF_OP_RET 35 /* ret rd */ 148 #define DIF_OP_NOP 36 /* nop */ 149 #define DIF_OP_SETX 37 /* setx intindex, rd */ 150 #define DIF_OP_SETS 38 /* sets strindex, rd */ 151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 153 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 154 #define DIF_OP_STGS 42 /* stgs var, rs */ 155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 156 #define DIF_OP_LDTS 44 /* ldts var, rd */ 157 #define DIF_OP_STTS 45 /* stts var, rs */ 158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 159 #define DIF_OP_CALL 47 /* call subr, rd */ 160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 162 #define DIF_OP_POPTS 50 /* popts */ 163 #define DIF_OP_FLUSHTS 51 /* flushts */ 164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 166 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 167 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 168 #define DIF_OP_LDLS 56 /* ldls var, rd */ 169 #define DIF_OP_STLS 57 /* stls var, rs */ 170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 172 #define DIF_OP_STB 60 /* stb r1, [rd] */ 173 #define DIF_OP_STH 61 /* sth r1, [rd] */ 174 #define DIF_OP_STW 62 /* stw r1, [rd] */ 175 #define DIF_OP_STX 63 /* stx r1, [rd] */ 176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 192 193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 195 #define DIF_REGISTER_MAX 0xff /* highest register number */ 196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 198 199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 202 203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 206 207 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 208 #define DIF_VAR_REGS 0x0001 /* registers array */ 209 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */ 211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 216 #define DIF_VAR_ID 0x0105 /* probe ID */ 217 #define DIF_VAR_ARG0 0x0106 /* first argument */ 218 #define DIF_VAR_ARG1 0x0107 /* second argument */ 219 #define DIF_VAR_ARG2 0x0108 /* third argument */ 220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 221 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 222 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 223 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 224 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 225 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 226 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 228 #define DIF_VAR_CALLER 0x0111 /* caller */ 229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 233 #define DIF_VAR_PID 0x0116 /* process ID */ 234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 240 #define DIF_VAR_PPID 0x011d /* parent process ID */ 241 #define DIF_VAR_UID 0x011e /* process user ID */ 242 #define DIF_VAR_GID 0x011f /* process group ID */ 243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 244 245 #define DIF_SUBR_RAND 0 246 #define DIF_SUBR_MUTEX_OWNED 1 247 #define DIF_SUBR_MUTEX_OWNER 2 248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 250 #define DIF_SUBR_RW_READ_HELD 5 251 #define DIF_SUBR_RW_WRITE_HELD 6 252 #define DIF_SUBR_RW_ISWRITER 7 253 #define DIF_SUBR_COPYIN 8 254 #define DIF_SUBR_COPYINSTR 9 255 #define DIF_SUBR_SPECULATION 10 256 #define DIF_SUBR_PROGENYOF 11 257 #define DIF_SUBR_STRLEN 12 258 #define DIF_SUBR_COPYOUT 13 259 #define DIF_SUBR_COPYOUTSTR 14 260 #define DIF_SUBR_ALLOCA 15 261 #define DIF_SUBR_BCOPY 16 262 #define DIF_SUBR_COPYINTO 17 263 #define DIF_SUBR_MSGDSIZE 18 264 #define DIF_SUBR_MSGSIZE 19 265 #define DIF_SUBR_GETMAJOR 20 266 #define DIF_SUBR_GETMINOR 21 267 #define DIF_SUBR_DDI_PATHNAME 22 268 #define DIF_SUBR_STRJOIN 23 269 #define DIF_SUBR_LLTOSTR 24 270 #define DIF_SUBR_BASENAME 25 271 #define DIF_SUBR_DIRNAME 26 272 #define DIF_SUBR_CLEANPATH 27 273 #define DIF_SUBR_STRCHR 28 274 #define DIF_SUBR_STRRCHR 29 275 #define DIF_SUBR_STRSTR 30 276 #define DIF_SUBR_STRTOK 31 277 #define DIF_SUBR_SUBSTR 32 278 #define DIF_SUBR_INDEX 33 279 #define DIF_SUBR_RINDEX 34 280 #define DIF_SUBR_HTONS 35 281 #define DIF_SUBR_HTONL 36 282 #define DIF_SUBR_HTONLL 37 283 #define DIF_SUBR_NTOHS 38 284 #define DIF_SUBR_NTOHL 39 285 #define DIF_SUBR_NTOHLL 40 286 #define DIF_SUBR_INET_NTOP 41 287 #define DIF_SUBR_INET_NTOA 42 288 #define DIF_SUBR_INET_NTOA6 43 289 #define DIF_SUBR_TOUPPER 44 290 #define DIF_SUBR_TOLOWER 45 291 #define DIF_SUBR_GETF 46 292 293 #define DIF_SUBR_MAX 46 /* max subroutine value */ 294 295 typedef uint32_t dif_instr_t; 296 297 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 298 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 299 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 300 #define DIF_INSTR_RD(i) ((i) & 0xff) 301 #define DIF_INSTR_RS(i) ((i) & 0xff) 302 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 303 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 304 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 305 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 306 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 307 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 308 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 309 310 #define DIF_INSTR_FMT(op, r1, r2, d) \ 311 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 312 313 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 314 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 315 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 316 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 317 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 318 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 319 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 320 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 321 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 322 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 323 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 324 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 325 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 326 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 327 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 328 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 329 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 330 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 331 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 332 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 333 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 334 335 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 336 337 /* 338 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 339 * of variables, function and associative array arguments, and the return type 340 * for each DIF object (shown below). It contains a description of the type, 341 * its size in bytes, and a module identifier. 342 */ 343 typedef struct dtrace_diftype { 344 uint8_t dtdt_kind; /* type kind (see below) */ 345 uint8_t dtdt_ckind; /* type kind in CTF */ 346 uint8_t dtdt_flags; /* type flags (see below) */ 347 uint8_t dtdt_pad; /* reserved for future use */ 348 uint32_t dtdt_size; /* type size in bytes (unless string) */ 349 } dtrace_diftype_t; 350 351 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 352 #define DIF_TYPE_STRING 1 /* type is a D string */ 353 354 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 355 356 /* 357 * A DTrace Intermediate Format variable record is used to describe each of the 358 * variables referenced by a given DIF object. It contains an integer variable 359 * identifier along with variable scope and properties, as shown below. The 360 * size of this structure must be sizeof (int) aligned. 361 */ 362 typedef struct dtrace_difv { 363 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 364 uint32_t dtdv_id; /* variable reference identifier */ 365 uint8_t dtdv_kind; /* variable kind (see below) */ 366 uint8_t dtdv_scope; /* variable scope (see below) */ 367 uint16_t dtdv_flags; /* variable flags (see below) */ 368 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 369 } dtrace_difv_t; 370 371 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 372 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 373 374 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 375 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 376 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 377 378 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 379 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 380 381 /* 382 * DTrace Actions 383 * 384 * The upper byte determines the class of the action; the low bytes determines 385 * the specific action within that class. The classes of actions are as 386 * follows: 387 * 388 * [ no class ] <= May record process- or kernel-related data 389 * DTRACEACT_PROC <= Only records process-related data 390 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 391 * DTRACEACT_KERNEL <= Only records kernel-related data 392 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 393 * DTRACEACT_SPECULATIVE <= Speculation-related action 394 * DTRACEACT_AGGREGATION <= Aggregating action 395 */ 396 #define DTRACEACT_NONE 0 /* no action */ 397 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 398 #define DTRACEACT_EXIT 2 /* exit() action */ 399 #define DTRACEACT_PRINTF 3 /* printf() action */ 400 #define DTRACEACT_PRINTA 4 /* printa() action */ 401 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 402 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */ 403 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */ 404 405 #define DTRACEACT_PROC 0x0100 406 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 407 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 408 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 409 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 410 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 411 412 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 413 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 414 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 415 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 416 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 417 418 #define DTRACEACT_PROC_CONTROL 0x0300 419 420 #define DTRACEACT_KERNEL 0x0400 421 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 422 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 423 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 424 425 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 426 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 427 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 428 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 429 430 #define DTRACEACT_SPECULATIVE 0x0600 431 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 432 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 433 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 434 435 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 436 437 #define DTRACEACT_ISDESTRUCTIVE(x) \ 438 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 439 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 440 441 #define DTRACEACT_ISSPECULATIVE(x) \ 442 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 443 444 #define DTRACEACT_ISPRINTFLIKE(x) \ 445 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 446 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 447 448 /* 449 * DTrace Aggregating Actions 450 * 451 * These are functions f(x) for which the following is true: 452 * 453 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 454 * 455 * where x_n is a set of arbitrary data. Aggregating actions are in their own 456 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 457 * for easier processing of the aggregation argument and data payload for a few 458 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 459 */ 460 #define DTRACEACT_AGGREGATION 0x0700 461 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 462 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 463 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 464 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 465 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 466 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 467 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 468 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 469 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) 470 471 #define DTRACEACT_ISAGG(x) \ 472 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 473 474 #define DTRACE_QUANTIZE_NBUCKETS \ 475 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 476 477 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 478 479 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 480 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 481 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 482 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 483 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 484 485 #define DTRACE_LQUANTIZE_STEPSHIFT 48 486 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 487 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 488 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 489 #define DTRACE_LQUANTIZE_BASESHIFT 0 490 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 491 492 #define DTRACE_LQUANTIZE_STEP(x) \ 493 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 494 DTRACE_LQUANTIZE_STEPSHIFT) 495 496 #define DTRACE_LQUANTIZE_LEVELS(x) \ 497 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 498 DTRACE_LQUANTIZE_LEVELSHIFT) 499 500 #define DTRACE_LQUANTIZE_BASE(x) \ 501 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 502 DTRACE_LQUANTIZE_BASESHIFT) 503 504 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 505 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) 506 #define DTRACE_LLQUANTIZE_LOWSHIFT 32 507 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) 508 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 509 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) 510 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 511 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX 512 513 #define DTRACE_LLQUANTIZE_FACTOR(x) \ 514 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ 515 DTRACE_LLQUANTIZE_FACTORSHIFT) 516 517 #define DTRACE_LLQUANTIZE_LOW(x) \ 518 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ 519 DTRACE_LLQUANTIZE_LOWSHIFT) 520 521 #define DTRACE_LLQUANTIZE_HIGH(x) \ 522 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ 523 DTRACE_LLQUANTIZE_HIGHSHIFT) 524 525 #define DTRACE_LLQUANTIZE_NSTEP(x) \ 526 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ 527 DTRACE_LLQUANTIZE_NSTEPSHIFT) 528 529 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 530 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 531 #define DTRACE_USTACK_ARG(x, y) \ 532 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 533 534 #ifndef _LP64 535 #ifndef _LITTLE_ENDIAN 536 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 537 #else 538 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 539 #endif 540 #else 541 #define DTRACE_PTR(type, name) type *name 542 #endif 543 544 /* 545 * DTrace Object Format (DOF) 546 * 547 * DTrace programs can be persistently encoded in the DOF format so that they 548 * may be embedded in other programs (for example, in an ELF file) or in the 549 * dtrace driver configuration file for use in anonymous tracing. The DOF 550 * format is versioned and extensible so that it can be revised and so that 551 * internal data structures can be modified or extended compatibly. All DOF 552 * structures use fixed-size types, so the 32-bit and 64-bit representations 553 * are identical and consumers can use either data model transparently. 554 * 555 * The file layout is structured as follows: 556 * 557 * +---------------+-------------------+----- ... ----+---- ... ------+ 558 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 559 * | (file header) | (section headers) | section data | section data | 560 * +---------------+-------------------+----- ... ----+---- ... ------+ 561 * |<------------ dof_hdr.dofh_loadsz --------------->| | 562 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 563 * 564 * The file header stores meta-data including a magic number, data model for 565 * the instrumentation, data encoding, and properties of the DIF code within. 566 * The header describes its own size and the size of the section headers. By 567 * convention, an array of section headers follows the file header, and then 568 * the data for all loadable sections and unloadable sections. This permits 569 * consumer code to easily download the headers and all loadable data into the 570 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 571 * 572 * The section headers describe the size, offset, alignment, and section type 573 * for each section. Sections are described using a set of #defines that tell 574 * the consumer what kind of data is expected. Sections can contain links to 575 * other sections by storing a dof_secidx_t, an index into the section header 576 * array, inside of the section data structures. The section header includes 577 * an entry size so that sections with data arrays can grow their structures. 578 * 579 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 580 * are represented themselves as a collection of related DOF sections. This 581 * permits us to change the set of sections associated with a DIFO over time, 582 * and also permits us to encode DIFOs that contain different sets of sections. 583 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 584 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 585 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 586 * 587 * This loose coupling of the file structure (header and sections) to the 588 * structure of the DTrace program itself (ECB descriptions, action 589 * descriptions, and DIFOs) permits activities such as relocation processing 590 * to occur in a single pass without having to understand D program structure. 591 * 592 * Finally, strings are always stored in ELF-style string tables along with a 593 * string table section index and string table offset. Therefore strings in 594 * DOF are always arbitrary-length and not bound to the current implementation. 595 */ 596 597 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 598 599 typedef struct dof_hdr { 600 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 601 uint32_t dofh_flags; /* file attribute flags (if any) */ 602 uint32_t dofh_hdrsize; /* size of file header in bytes */ 603 uint32_t dofh_secsize; /* size of section header in bytes */ 604 uint32_t dofh_secnum; /* number of section headers */ 605 uint64_t dofh_secoff; /* file offset of section headers */ 606 uint64_t dofh_loadsz; /* file size of loadable portion */ 607 uint64_t dofh_filesz; /* file size of entire DOF file */ 608 uint64_t dofh_pad; /* reserved for future use */ 609 } dof_hdr_t; 610 611 #define DOF_ID_MAG0 0 /* first byte of magic number */ 612 #define DOF_ID_MAG1 1 /* second byte of magic number */ 613 #define DOF_ID_MAG2 2 /* third byte of magic number */ 614 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 615 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 616 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 617 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 618 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 619 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 620 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 621 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 622 623 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 624 #define DOF_MAG_MAG1 'D' 625 #define DOF_MAG_MAG2 'O' 626 #define DOF_MAG_MAG3 'F' 627 628 #define DOF_MAG_STRING "\177DOF" 629 #define DOF_MAG_STRLEN 4 630 631 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 632 #define DOF_MODEL_ILP32 1 633 #define DOF_MODEL_LP64 2 634 635 #ifdef _LP64 636 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 637 #else 638 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 639 #endif 640 641 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 642 #define DOF_ENCODE_LSB 1 643 #define DOF_ENCODE_MSB 2 644 645 #ifdef _BIG_ENDIAN 646 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 647 #else 648 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 649 #endif 650 651 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 652 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 653 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 654 655 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 656 657 typedef uint32_t dof_secidx_t; /* section header table index type */ 658 typedef uint32_t dof_stridx_t; /* string table index type */ 659 660 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 661 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 662 663 typedef struct dof_sec { 664 uint32_t dofs_type; /* section type (see below) */ 665 uint32_t dofs_align; /* section data memory alignment */ 666 uint32_t dofs_flags; /* section flags (if any) */ 667 uint32_t dofs_entsize; /* size of section entry (if table) */ 668 uint64_t dofs_offset; /* offset of section data within file */ 669 uint64_t dofs_size; /* size of section data in bytes */ 670 } dof_sec_t; 671 672 #define DOF_SECT_NONE 0 /* null section */ 673 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 674 #define DOF_SECT_SOURCE 2 /* D program source code */ 675 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 676 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 677 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 678 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 679 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 680 #define DOF_SECT_STRTAB 8 /* string table */ 681 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 682 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 683 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 684 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 685 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 686 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 687 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 688 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 689 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 690 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 691 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 692 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 693 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 694 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 695 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 696 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 697 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 698 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 699 700 #define DOF_SECF_LOAD 1 /* section should be loaded */ 701 702 #define DOF_SEC_ISLOADABLE(x) \ 703 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ 704 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ 705 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ 706 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ 707 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ 708 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ 709 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ 710 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ 711 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ 712 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ 713 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \ 714 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS)) 715 716 typedef struct dof_ecbdesc { 717 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 718 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 719 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 720 uint32_t dofe_pad; /* reserved for future use */ 721 uint64_t dofe_uarg; /* user-supplied library argument */ 722 } dof_ecbdesc_t; 723 724 typedef struct dof_probedesc { 725 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 726 dof_stridx_t dofp_provider; /* provider string */ 727 dof_stridx_t dofp_mod; /* module string */ 728 dof_stridx_t dofp_func; /* function string */ 729 dof_stridx_t dofp_name; /* name string */ 730 uint32_t dofp_id; /* probe identifier (or zero) */ 731 } dof_probedesc_t; 732 733 typedef struct dof_actdesc { 734 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 735 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 736 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 737 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 738 uint64_t dofa_arg; /* kind-specific argument */ 739 uint64_t dofa_uarg; /* user-supplied argument */ 740 } dof_actdesc_t; 741 742 typedef struct dof_difohdr { 743 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 744 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 745 } dof_difohdr_t; 746 747 typedef struct dof_relohdr { 748 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 749 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 750 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 751 } dof_relohdr_t; 752 753 typedef struct dof_relodesc { 754 dof_stridx_t dofr_name; /* string name of relocation symbol */ 755 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 756 uint64_t dofr_offset; /* byte offset for relocation */ 757 uint64_t dofr_data; /* additional type-specific data */ 758 } dof_relodesc_t; 759 760 #define DOF_RELO_NONE 0 /* empty relocation entry */ 761 #define DOF_RELO_SETX 1 /* relocate setx value */ 762 763 typedef struct dof_optdesc { 764 uint32_t dofo_option; /* option identifier */ 765 dof_secidx_t dofo_strtab; /* string table, if string option */ 766 uint64_t dofo_value; /* option value or string index */ 767 } dof_optdesc_t; 768 769 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 770 771 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 772 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 773 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 774 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 775 776 typedef struct dof_provider { 777 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 778 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 779 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 780 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 781 dof_stridx_t dofpv_name; /* provider name string */ 782 dof_attr_t dofpv_provattr; /* provider attributes */ 783 dof_attr_t dofpv_modattr; /* module attributes */ 784 dof_attr_t dofpv_funcattr; /* function attributes */ 785 dof_attr_t dofpv_nameattr; /* name attributes */ 786 dof_attr_t dofpv_argsattr; /* args attributes */ 787 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 788 } dof_provider_t; 789 790 typedef struct dof_probe { 791 uint64_t dofpr_addr; /* probe base address or offset */ 792 dof_stridx_t dofpr_func; /* probe function string */ 793 dof_stridx_t dofpr_name; /* probe name string */ 794 dof_stridx_t dofpr_nargv; /* native argument type strings */ 795 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 796 uint32_t dofpr_argidx; /* index of first argument mapping */ 797 uint32_t dofpr_offidx; /* index of first offset entry */ 798 uint8_t dofpr_nargc; /* native argument count */ 799 uint8_t dofpr_xargc; /* translated argument count */ 800 uint16_t dofpr_noffs; /* number of offset entries for probe */ 801 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 802 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 803 uint16_t dofpr_pad1; /* reserved for future use */ 804 uint32_t dofpr_pad2; /* reserved for future use */ 805 } dof_probe_t; 806 807 typedef struct dof_xlator { 808 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 809 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 810 dof_stridx_t dofxl_argv; /* input parameter type strings */ 811 uint32_t dofxl_argc; /* input parameter list length */ 812 dof_stridx_t dofxl_type; /* output type string name */ 813 dof_attr_t dofxl_attr; /* output stability attributes */ 814 } dof_xlator_t; 815 816 typedef struct dof_xlmember { 817 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 818 dof_stridx_t dofxm_name; /* member name */ 819 dtrace_diftype_t dofxm_type; /* member type */ 820 } dof_xlmember_t; 821 822 typedef struct dof_xlref { 823 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 824 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 825 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 826 } dof_xlref_t; 827 828 /* 829 * DTrace Intermediate Format Object (DIFO) 830 * 831 * A DIFO is used to store the compiled DIF for a D expression, its return 832 * type, and its string and variable tables. The string table is a single 833 * buffer of character data into which sets instructions and variable 834 * references can reference strings using a byte offset. The variable table 835 * is an array of dtrace_difv_t structures that describe the name and type of 836 * each variable and the id used in the DIF code. This structure is described 837 * above in the DIF section of this header file. The DIFO is used at both 838 * user-level (in the library) and in the kernel, but the structure is never 839 * passed between the two: the DOF structures form the only interface. As a 840 * result, the definition can change depending on the presence of _KERNEL. 841 */ 842 typedef struct dtrace_difo { 843 dif_instr_t *dtdo_buf; /* instruction buffer */ 844 uint64_t *dtdo_inttab; /* integer table (optional) */ 845 char *dtdo_strtab; /* string table (optional) */ 846 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 847 uint_t dtdo_len; /* length of instruction buffer */ 848 uint_t dtdo_intlen; /* length of integer table */ 849 uint_t dtdo_strlen; /* length of string table */ 850 uint_t dtdo_varlen; /* length of variable table */ 851 dtrace_diftype_t dtdo_rtype; /* return type */ 852 uint_t dtdo_refcnt; /* owner reference count */ 853 uint_t dtdo_destructive; /* invokes destructive subroutines */ 854 #ifndef _KERNEL 855 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 856 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 857 struct dt_node **dtdo_xlmtab; /* translator references */ 858 uint_t dtdo_krelen; /* length of krelo table */ 859 uint_t dtdo_urelen; /* length of urelo table */ 860 uint_t dtdo_xlmlen; /* length of translator table */ 861 #endif 862 } dtrace_difo_t; 863 864 /* 865 * DTrace Enabling Description Structures 866 * 867 * When DTrace is tracking the description of a DTrace enabling entity (probe, 868 * predicate, action, ECB, record, etc.), it does so in a description 869 * structure. These structures all end in "desc", and are used at both 870 * user-level and in the kernel -- but (with the exception of 871 * dtrace_probedesc_t) they are never passed between them. Typically, 872 * user-level will use the description structures when assembling an enabling. 873 * It will then distill those description structures into a DOF object (see 874 * above), and send it into the kernel. The kernel will again use the 875 * description structures to create a description of the enabling as it reads 876 * the DOF. When the description is complete, the enabling will be actually 877 * created -- turning it into the structures that represent the enabling 878 * instead of merely describing it. Not surprisingly, the description 879 * structures bear a strong resemblance to the DOF structures that act as their 880 * conduit. 881 */ 882 struct dtrace_predicate; 883 884 typedef struct dtrace_probedesc { 885 dtrace_id_t dtpd_id; /* probe identifier */ 886 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 887 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 888 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 889 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 890 } dtrace_probedesc_t; 891 892 typedef struct dtrace_repldesc { 893 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 894 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 895 } dtrace_repldesc_t; 896 897 typedef struct dtrace_preddesc { 898 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 899 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 900 } dtrace_preddesc_t; 901 902 typedef struct dtrace_actdesc { 903 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 904 struct dtrace_actdesc *dtad_next; /* next action */ 905 dtrace_actkind_t dtad_kind; /* kind of action */ 906 uint32_t dtad_ntuple; /* number in tuple */ 907 uint64_t dtad_arg; /* action argument */ 908 uint64_t dtad_uarg; /* user argument */ 909 int dtad_refcnt; /* reference count */ 910 } dtrace_actdesc_t; 911 912 typedef struct dtrace_ecbdesc { 913 dtrace_actdesc_t *dted_action; /* action description(s) */ 914 dtrace_preddesc_t dted_pred; /* predicate description */ 915 dtrace_probedesc_t dted_probe; /* probe description */ 916 uint64_t dted_uarg; /* library argument */ 917 int dted_refcnt; /* reference count */ 918 } dtrace_ecbdesc_t; 919 920 /* 921 * DTrace Metadata Description Structures 922 * 923 * DTrace separates the trace data stream from the metadata stream. The only 924 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID + 925 * timestamp) or (in the case of aggregations) aggregation identifiers. To 926 * determine the structure of the data, DTrace consumers pass the token to the 927 * kernel, and receive in return a corresponding description of the enabled 928 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 929 * dtrace_aggdesc structure). Both of these structures are expressed in terms 930 * of record descriptions (via the dtrace_recdesc structure) that describe the 931 * exact structure of the data. Some record descriptions may also contain a 932 * format identifier; this additional bit of metadata can be retrieved from the 933 * kernel, for which a format description is returned via the dtrace_fmtdesc 934 * structure. Note that all four of these structures must be bitness-neutral 935 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 936 */ 937 typedef struct dtrace_recdesc { 938 dtrace_actkind_t dtrd_action; /* kind of action */ 939 uint32_t dtrd_size; /* size of record */ 940 uint32_t dtrd_offset; /* offset in ECB's data */ 941 uint16_t dtrd_alignment; /* required alignment */ 942 uint16_t dtrd_format; /* format, if any */ 943 uint64_t dtrd_arg; /* action argument */ 944 uint64_t dtrd_uarg; /* user argument */ 945 } dtrace_recdesc_t; 946 947 typedef struct dtrace_eprobedesc { 948 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 949 dtrace_id_t dtepd_probeid; /* probe ID */ 950 uint64_t dtepd_uarg; /* library argument */ 951 uint32_t dtepd_size; /* total size */ 952 int dtepd_nrecs; /* number of records */ 953 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 954 } dtrace_eprobedesc_t; 955 956 typedef struct dtrace_aggdesc { 957 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 958 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 959 int dtagd_flags; /* not filled in by kernel */ 960 dtrace_aggid_t dtagd_id; /* aggregation ID */ 961 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 962 uint32_t dtagd_size; /* size in bytes */ 963 int dtagd_nrecs; /* number of records */ 964 uint32_t dtagd_pad; /* explicit padding */ 965 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 966 } dtrace_aggdesc_t; 967 968 typedef struct dtrace_fmtdesc { 969 DTRACE_PTR(char, dtfd_string); /* format string */ 970 int dtfd_length; /* length of format string */ 971 uint16_t dtfd_format; /* format identifier */ 972 } dtrace_fmtdesc_t; 973 974 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 975 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 976 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 977 978 #define DTRACE_SIZEOF_AGGDESC(desc) \ 979 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 980 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 981 982 /* 983 * DTrace Option Interface 984 * 985 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 986 * in a DOF image. The dof_optdesc structure contains an option identifier and 987 * an option value. The valid option identifiers are found below; the mapping 988 * between option identifiers and option identifying strings is maintained at 989 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 990 * following are potentially valid option values: all positive integers, zero 991 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 992 * predefined tokens as their values; these are defined with 993 * DTRACEOPT_{option}_{token}. 994 */ 995 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 996 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 997 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 998 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 999 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 1000 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 1001 #define DTRACEOPT_STRSIZE 6 /* string size */ 1002 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 1003 #define DTRACEOPT_CPU 8 /* CPU to trace */ 1004 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 1005 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 1006 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 1007 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 1008 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 1009 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 1010 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 1011 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 1012 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 1013 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 1014 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 1015 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 1016 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 1017 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 1018 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 1019 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 1020 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 1021 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 1022 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */ 1023 #define DTRACEOPT_MAX 28 /* number of options */ 1024 1025 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 1026 1027 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 1028 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 1029 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 1030 1031 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 1032 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 1033 1034 /* 1035 * DTrace Buffer Interface 1036 * 1037 * In order to get a snapshot of the principal or aggregation buffer, 1038 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 1039 * structure. This describes which CPU user-level is interested in, and 1040 * where user-level wishes the kernel to snapshot the buffer to (the 1041 * dtbd_data field). The kernel uses the same structure to pass back some 1042 * information regarding the buffer: the size of data actually copied out, the 1043 * number of drops, the number of errors, the offset of the oldest record, 1044 * and the time of the snapshot. 1045 * 1046 * If the buffer policy is a "switch" policy, taking a snapshot of the 1047 * principal buffer has the additional effect of switching the active and 1048 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 1049 * the additional effect of switching the active and inactive buffers. 1050 */ 1051 typedef struct dtrace_bufdesc { 1052 uint64_t dtbd_size; /* size of buffer */ 1053 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1054 uint32_t dtbd_errors; /* number of errors */ 1055 uint64_t dtbd_drops; /* number of drops */ 1056 DTRACE_PTR(char, dtbd_data); /* data */ 1057 uint64_t dtbd_oldest; /* offset of oldest record */ 1058 uint64_t dtbd_timestamp; /* hrtime of snapshot */ 1059 } dtrace_bufdesc_t; 1060 1061 /* 1062 * Each record in the buffer (dtbd_data) begins with a header that includes 1063 * the epid and a timestamp. The timestamp is split into two 4-byte parts 1064 * so that we do not require 8-byte alignment. 1065 */ 1066 typedef struct dtrace_rechdr { 1067 dtrace_epid_t dtrh_epid; /* enabled probe id */ 1068 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */ 1069 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */ 1070 } dtrace_rechdr_t; 1071 1072 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \ 1073 ((dtrh)->dtrh_timestamp_lo + \ 1074 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32)) 1075 1076 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \ 1077 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \ 1078 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \ 1079 } 1080 1081 /* 1082 * DTrace Status 1083 * 1084 * The status of DTrace is relayed via the dtrace_status structure. This 1085 * structure contains members to count drops other than the capacity drops 1086 * available via the buffer interface (see above). This consists of dynamic 1087 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1088 * speculative drops (including capacity speculative drops, drops due to busy 1089 * speculative buffers and drops due to unavailable speculative buffers). 1090 * Additionally, the status structure contains a field to indicate the number 1091 * of "fill"-policy buffers have been filled and a boolean field to indicate 1092 * that exit() has been called. If the dtst_exiting field is non-zero, no 1093 * further data will be generated until tracing is stopped (at which time any 1094 * enablings of the END action will be processed); if user-level sees that 1095 * this field is non-zero, tracing should be stopped as soon as possible. 1096 */ 1097 typedef struct dtrace_status { 1098 uint64_t dtst_dyndrops; /* dynamic drops */ 1099 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1100 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1101 uint64_t dtst_specdrops; /* speculative drops */ 1102 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1103 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1104 uint64_t dtst_errors; /* total errors */ 1105 uint64_t dtst_filled; /* number of filled bufs */ 1106 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1107 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1108 char dtst_killed; /* non-zero if killed */ 1109 char dtst_exiting; /* non-zero if exit() called */ 1110 char dtst_pad[6]; /* pad out to 64-bit align */ 1111 } dtrace_status_t; 1112 1113 /* 1114 * DTrace Configuration 1115 * 1116 * User-level may need to understand some elements of the kernel DTrace 1117 * configuration in order to generate correct DIF. This information is 1118 * conveyed via the dtrace_conf structure. 1119 */ 1120 typedef struct dtrace_conf { 1121 uint_t dtc_difversion; /* supported DIF version */ 1122 uint_t dtc_difintregs; /* # of DIF integer registers */ 1123 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1124 uint_t dtc_ctfmodel; /* CTF data model */ 1125 uint_t dtc_pad[8]; /* reserved for future use */ 1126 } dtrace_conf_t; 1127 1128 /* 1129 * DTrace Faults 1130 * 1131 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1132 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1133 * postprocessing at user-level. Probe processing faults induce an ERROR 1134 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1135 * the error condition using thse symbolic labels. 1136 */ 1137 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1138 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1139 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1140 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1141 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1142 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1143 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1144 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1145 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1146 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1147 1148 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1149 1150 /* 1151 * DTrace Argument Types 1152 * 1153 * Because it would waste both space and time, argument types do not reside 1154 * with the probe. In order to determine argument types for args[X] 1155 * variables, the D compiler queries for argument types on a probe-by-probe 1156 * basis. (This optimizes for the common case that arguments are either not 1157 * used or used in an untyped fashion.) Typed arguments are specified with a 1158 * string of the type name in the dtragd_native member of the argument 1159 * description structure. Typed arguments may be further translated to types 1160 * of greater stability; the provider indicates such a translated argument by 1161 * filling in the dtargd_xlate member with the string of the translated type. 1162 * Finally, the provider may indicate which argument value a given argument 1163 * maps to by setting the dtargd_mapping member -- allowing a single argument 1164 * to map to multiple args[X] variables. 1165 */ 1166 typedef struct dtrace_argdesc { 1167 dtrace_id_t dtargd_id; /* probe identifier */ 1168 int dtargd_ndx; /* arg number (-1 iff none) */ 1169 int dtargd_mapping; /* value mapping */ 1170 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1171 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1172 } dtrace_argdesc_t; 1173 1174 /* 1175 * DTrace Stability Attributes 1176 * 1177 * Each DTrace provider advertises the name and data stability of each of its 1178 * probe description components, as well as its architectural dependencies. 1179 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1180 * order to compute the properties of an input program and report them. 1181 */ 1182 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1183 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1184 1185 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1186 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1187 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1188 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1189 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1190 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1191 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1192 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1193 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1194 1195 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1196 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1197 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1198 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1199 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1200 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1201 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1202 1203 #define DTRACE_PRIV_NONE 0x0000 1204 #define DTRACE_PRIV_KERNEL 0x0001 1205 #define DTRACE_PRIV_USER 0x0002 1206 #define DTRACE_PRIV_PROC 0x0004 1207 #define DTRACE_PRIV_OWNER 0x0008 1208 #define DTRACE_PRIV_ZONEOWNER 0x0010 1209 1210 #define DTRACE_PRIV_ALL \ 1211 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1212 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1213 1214 typedef struct dtrace_ppriv { 1215 uint32_t dtpp_flags; /* privilege flags */ 1216 uid_t dtpp_uid; /* user ID */ 1217 zoneid_t dtpp_zoneid; /* zone ID */ 1218 } dtrace_ppriv_t; 1219 1220 typedef struct dtrace_attribute { 1221 dtrace_stability_t dtat_name; /* entity name stability */ 1222 dtrace_stability_t dtat_data; /* entity data stability */ 1223 dtrace_class_t dtat_class; /* entity data dependency */ 1224 } dtrace_attribute_t; 1225 1226 typedef struct dtrace_pattr { 1227 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1228 dtrace_attribute_t dtpa_mod; /* module attributes */ 1229 dtrace_attribute_t dtpa_func; /* function attributes */ 1230 dtrace_attribute_t dtpa_name; /* name attributes */ 1231 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1232 } dtrace_pattr_t; 1233 1234 typedef struct dtrace_providerdesc { 1235 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1236 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1237 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1238 } dtrace_providerdesc_t; 1239 1240 /* 1241 * DTrace Pseudodevice Interface 1242 * 1243 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1244 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1245 * DTrace. 1246 */ 1247 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1248 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1249 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1250 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1251 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1252 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1253 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1254 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1255 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1256 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1257 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1258 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1259 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1260 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1261 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1262 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1263 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1264 1265 /* 1266 * DTrace Helpers 1267 * 1268 * In general, DTrace establishes probes in processes and takes actions on 1269 * processes without knowing their specific user-level structures. Instead of 1270 * existing in the framework, process-specific knowledge is contained by the 1271 * enabling D program -- which can apply process-specific knowledge by making 1272 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1273 * operate on user-level data. However, there may exist some specific probes 1274 * of particular semantic relevance that the application developer may wish to 1275 * explicitly export. For example, an application may wish to export a probe 1276 * at the point that it begins and ends certain well-defined transactions. In 1277 * addition to providing probes, programs may wish to offer assistance for 1278 * certain actions. For example, in highly dynamic environments (e.g., Java), 1279 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1280 * names (the translation from instruction addresses to corresponding symbol 1281 * names may only be possible in situ); these environments may wish to define 1282 * a series of actions to be applied in situ to obtain a meaningful stack 1283 * trace. 1284 * 1285 * These two mechanisms -- user-level statically defined tracing and assisting 1286 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1287 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1288 * providers, probes and their arguments. If a helper wishes to provide 1289 * action assistance, probe descriptions and corresponding DIF actions may be 1290 * specified in the helper DOF. For such helper actions, however, the probe 1291 * description describes the specific helper: all DTrace helpers have the 1292 * provider name "dtrace" and the module name "helper", and the name of the 1293 * helper is contained in the function name (for example, the ustack() helper 1294 * is named "ustack"). Any helper-specific name may be contained in the name 1295 * (for example, if a helper were to have a constructor, it might be named 1296 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1297 * action that they are helping is taken. Helper actions may only return DIF 1298 * expressions, and may only call the following subroutines: 1299 * 1300 * alloca() <= Allocates memory out of the consumer's scratch space 1301 * bcopy() <= Copies memory to scratch space 1302 * copyin() <= Copies memory from user-level into consumer's scratch 1303 * copyinto() <= Copies memory into a specific location in scratch 1304 * copyinstr() <= Copies a string into a specific location in scratch 1305 * 1306 * Helper actions may only access the following built-in variables: 1307 * 1308 * curthread <= Current kthread_t pointer 1309 * tid <= Current thread identifier 1310 * pid <= Current process identifier 1311 * ppid <= Parent process identifier 1312 * uid <= Current user ID 1313 * gid <= Current group ID 1314 * execname <= Current executable name 1315 * zonename <= Current zone name 1316 * 1317 * Helper actions may not manipulate or allocate dynamic variables, but they 1318 * may have clause-local and statically-allocated global variables. The 1319 * helper action variable state is specific to the helper action -- variables 1320 * used by the helper action may not be accessed outside of the helper 1321 * action, and the helper action may not access variables that like outside 1322 * of it. Helper actions may not load from kernel memory at-large; they are 1323 * restricting to loading current user state (via copyin() and variants) and 1324 * scratch space. As with probe enablings, helper actions are executed in 1325 * program order. The result of the helper action is the result of the last 1326 * executing helper expression. 1327 * 1328 * Helpers -- composed of either providers/probes or probes/actions (or both) 1329 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1330 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1331 * encapsulates the name and base address of the user-level library or 1332 * executable publishing the helpers and probes as well as the DOF that 1333 * contains the definitions of those helpers and probes. 1334 * 1335 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1336 * helpers and should no longer be used. No other ioctls are valid on the 1337 * helper minor node. 1338 */ 1339 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1340 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1341 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1342 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1343 1344 typedef struct dof_helper { 1345 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1346 uint64_t dofhp_addr; /* base address of object */ 1347 uint64_t dofhp_dof; /* address of helper DOF */ 1348 } dof_helper_t; 1349 1350 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1351 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1352 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1353 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1354 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1355 1356 #ifdef _KERNEL 1357 1358 /* 1359 * DTrace Provider API 1360 * 1361 * The following functions are implemented by the DTrace framework and are 1362 * used to implement separate in-kernel DTrace providers. Common functions 1363 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1364 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1365 * 1366 * The provider API has two halves: the API that the providers consume from 1367 * DTrace, and the API that providers make available to DTrace. 1368 * 1369 * 1 Framework-to-Provider API 1370 * 1371 * 1.1 Overview 1372 * 1373 * The Framework-to-Provider API is represented by the dtrace_pops structure 1374 * that the provider passes to the framework when registering itself. This 1375 * structure consists of the following members: 1376 * 1377 * dtps_provide() <-- Provide all probes, all modules 1378 * dtps_provide_module() <-- Provide all probes in specified module 1379 * dtps_enable() <-- Enable specified probe 1380 * dtps_disable() <-- Disable specified probe 1381 * dtps_suspend() <-- Suspend specified probe 1382 * dtps_resume() <-- Resume specified probe 1383 * dtps_getargdesc() <-- Get the argument description for args[X] 1384 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1385 * dtps_mode() <-- Return the mode of the fired probe 1386 * dtps_destroy() <-- Destroy all state associated with this probe 1387 * 1388 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1389 * 1390 * 1.2.1 Overview 1391 * 1392 * Called to indicate that the provider should provide all probes. If the 1393 * specified description is non-NULL, dtps_provide() is being called because 1394 * no probe matched a specified probe -- if the provider has the ability to 1395 * create custom probes, it may wish to create a probe that matches the 1396 * specified description. 1397 * 1398 * 1.2.2 Arguments and notes 1399 * 1400 * The first argument is the cookie as passed to dtrace_register(). The 1401 * second argument is a pointer to a probe description that the provider may 1402 * wish to consider when creating custom probes. The provider is expected to 1403 * call back into the DTrace framework via dtrace_probe_create() to create 1404 * any necessary probes. dtps_provide() may be called even if the provider 1405 * has made available all probes; the provider should check the return value 1406 * of dtrace_probe_create() to handle this case. Note that the provider need 1407 * not implement both dtps_provide() and dtps_provide_module(); see 1408 * "Arguments and Notes" for dtrace_register(), below. 1409 * 1410 * 1.2.3 Return value 1411 * 1412 * None. 1413 * 1414 * 1.2.4 Caller's context 1415 * 1416 * dtps_provide() is typically called from open() or ioctl() context, but may 1417 * be called from other contexts as well. The DTrace framework is locked in 1418 * such a way that providers may not register or unregister. This means that 1419 * the provider may not call any DTrace API that affects its registration with 1420 * the framework, including dtrace_register(), dtrace_unregister(), 1421 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1422 * that the provider may (and indeed, is expected to) call probe-related 1423 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1424 * and dtrace_probe_arg(). 1425 * 1426 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1427 * 1428 * 1.3.1 Overview 1429 * 1430 * Called to indicate that the provider should provide all probes in the 1431 * specified module. 1432 * 1433 * 1.3.2 Arguments and notes 1434 * 1435 * The first argument is the cookie as passed to dtrace_register(). The 1436 * second argument is a pointer to a modctl structure that indicates the 1437 * module for which probes should be created. 1438 * 1439 * 1.3.3 Return value 1440 * 1441 * None. 1442 * 1443 * 1.3.4 Caller's context 1444 * 1445 * dtps_provide_module() may be called from open() or ioctl() context, but 1446 * may also be called from a module loading context. mod_lock is held, and 1447 * the DTrace framework is locked in such a way that providers may not 1448 * register or unregister. This means that the provider may not call any 1449 * DTrace API that affects its registration with the framework, including 1450 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1451 * dtrace_condense(). However, the context is such that the provider may (and 1452 * indeed, is expected to) call probe-related DTrace routines, including 1453 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1454 * that the provider need not implement both dtps_provide() and 1455 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1456 * below. 1457 * 1458 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg) 1459 * 1460 * 1.4.1 Overview 1461 * 1462 * Called to enable the specified probe. 1463 * 1464 * 1.4.2 Arguments and notes 1465 * 1466 * The first argument is the cookie as passed to dtrace_register(). The 1467 * second argument is the identifier of the probe to be enabled. The third 1468 * argument is the probe argument as passed to dtrace_probe_create(). 1469 * dtps_enable() will be called when a probe transitions from not being 1470 * enabled at all to having one or more ECB. The number of ECBs associated 1471 * with the probe may change without subsequent calls into the provider. 1472 * When the number of ECBs drops to zero, the provider will be explicitly 1473 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1474 * be called for a probe identifier that hasn't been explicitly enabled via 1475 * dtps_enable(). 1476 * 1477 * 1.4.3 Return value 1478 * 1479 * On success, dtps_enable() should return 0. On failure, -1 should be 1480 * returned. 1481 * 1482 * 1.4.4 Caller's context 1483 * 1484 * The DTrace framework is locked in such a way that it may not be called 1485 * back into at all. cpu_lock is held. mod_lock is not held and may not 1486 * be acquired. 1487 * 1488 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1489 * 1490 * 1.5.1 Overview 1491 * 1492 * Called to disable the specified probe. 1493 * 1494 * 1.5.2 Arguments and notes 1495 * 1496 * The first argument is the cookie as passed to dtrace_register(). The 1497 * second argument is the identifier of the probe to be disabled. The third 1498 * argument is the probe argument as passed to dtrace_probe_create(). 1499 * dtps_disable() will be called when a probe transitions from being enabled 1500 * to having zero ECBs. dtrace_probe() should never be called for a probe 1501 * identifier that has been explicitly enabled via dtps_disable(). 1502 * 1503 * 1.5.3 Return value 1504 * 1505 * None. 1506 * 1507 * 1.5.4 Caller's context 1508 * 1509 * The DTrace framework is locked in such a way that it may not be called 1510 * back into at all. cpu_lock is held. mod_lock is not held and may not 1511 * be acquired. 1512 * 1513 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1514 * 1515 * 1.6.1 Overview 1516 * 1517 * Called to suspend the specified enabled probe. This entry point is for 1518 * providers that may need to suspend some or all of their probes when CPUs 1519 * are being powered on or when the boot monitor is being entered for a 1520 * prolonged period of time. 1521 * 1522 * 1.6.2 Arguments and notes 1523 * 1524 * The first argument is the cookie as passed to dtrace_register(). The 1525 * second argument is the identifier of the probe to be suspended. The 1526 * third argument is the probe argument as passed to dtrace_probe_create(). 1527 * dtps_suspend will only be called on an enabled probe. Providers that 1528 * provide a dtps_suspend entry point will want to take roughly the action 1529 * that it takes for dtps_disable. 1530 * 1531 * 1.6.3 Return value 1532 * 1533 * None. 1534 * 1535 * 1.6.4 Caller's context 1536 * 1537 * Interrupts are disabled. The DTrace framework is in a state such that the 1538 * specified probe cannot be disabled or destroyed for the duration of 1539 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1540 * little latitude; the provider is expected to do no more than a store to 1541 * memory. 1542 * 1543 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1544 * 1545 * 1.7.1 Overview 1546 * 1547 * Called to resume the specified enabled probe. This entry point is for 1548 * providers that may need to resume some or all of their probes after the 1549 * completion of an event that induced a call to dtps_suspend(). 1550 * 1551 * 1.7.2 Arguments and notes 1552 * 1553 * The first argument is the cookie as passed to dtrace_register(). The 1554 * second argument is the identifier of the probe to be resumed. The 1555 * third argument is the probe argument as passed to dtrace_probe_create(). 1556 * dtps_resume will only be called on an enabled probe. Providers that 1557 * provide a dtps_resume entry point will want to take roughly the action 1558 * that it takes for dtps_enable. 1559 * 1560 * 1.7.3 Return value 1561 * 1562 * None. 1563 * 1564 * 1.7.4 Caller's context 1565 * 1566 * Interrupts are disabled. The DTrace framework is in a state such that the 1567 * specified probe cannot be disabled or destroyed for the duration of 1568 * dtps_resume(). As interrupts are disabled, the provider is afforded 1569 * little latitude; the provider is expected to do no more than a store to 1570 * memory. 1571 * 1572 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1573 * dtrace_argdesc_t *desc) 1574 * 1575 * 1.8.1 Overview 1576 * 1577 * Called to retrieve the argument description for an args[X] variable. 1578 * 1579 * 1.8.2 Arguments and notes 1580 * 1581 * The first argument is the cookie as passed to dtrace_register(). The 1582 * second argument is the identifier of the current probe. The third 1583 * argument is the probe argument as passed to dtrace_probe_create(). The 1584 * fourth argument is a pointer to the argument description. This 1585 * description is both an input and output parameter: it contains the 1586 * index of the desired argument in the dtargd_ndx field, and expects 1587 * the other fields to be filled in upon return. If there is no argument 1588 * corresponding to the specified index, the dtargd_ndx field should be set 1589 * to DTRACE_ARGNONE. 1590 * 1591 * 1.8.3 Return value 1592 * 1593 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1594 * members of the dtrace_argdesc_t structure are all output values. 1595 * 1596 * 1.8.4 Caller's context 1597 * 1598 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1599 * the DTrace framework is locked in such a way that providers may not 1600 * register or unregister. This means that the provider may not call any 1601 * DTrace API that affects its registration with the framework, including 1602 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1603 * dtrace_condense(). 1604 * 1605 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1606 * int argno, int aframes) 1607 * 1608 * 1.9.1 Overview 1609 * 1610 * Called to retrieve a value for an argX or args[X] variable. 1611 * 1612 * 1.9.2 Arguments and notes 1613 * 1614 * The first argument is the cookie as passed to dtrace_register(). The 1615 * second argument is the identifier of the current probe. The third 1616 * argument is the probe argument as passed to dtrace_probe_create(). The 1617 * fourth argument is the number of the argument (the X in the example in 1618 * 1.9.1). The fifth argument is the number of stack frames that were used 1619 * to get from the actual place in the code that fired the probe to 1620 * dtrace_probe() itself, the so-called artificial frames. This argument may 1621 * be used to descend an appropriate number of frames to find the correct 1622 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1623 * function is used. 1624 * 1625 * 1.9.3 Return value 1626 * 1627 * The value of the argument. 1628 * 1629 * 1.9.4 Caller's context 1630 * 1631 * This is called from within dtrace_probe() meaning that interrupts 1632 * are disabled. No locks should be taken within this entry point. 1633 * 1634 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg) 1635 * 1636 * 1.10.1 Overview 1637 * 1638 * Called to determine the mode of a fired probe. 1639 * 1640 * 1.10.2 Arguments and notes 1641 * 1642 * The first argument is the cookie as passed to dtrace_register(). The 1643 * second argument is the identifier of the current probe. The third 1644 * argument is the probe argument as passed to dtrace_probe_create(). This 1645 * entry point must not be left NULL for providers whose probes allow for 1646 * mixed mode tracing, that is to say those unanchored probes that can fire 1647 * during kernel- or user-mode execution. 1648 * 1649 * 1.10.3 Return value 1650 * 1651 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL 1652 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling 1653 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP, 1654 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If 1655 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result 1656 * in the probe firing being silently ignored for the enabling; if the 1657 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not 1658 * prevent probe processing for the enabling, but restrictions will be in 1659 * place that induce a UPRIV fault upon attempt to examine probe arguments 1660 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit 1661 * is set, similar restrictions will be placed upon operation if the 1662 * privilege is sufficient to process the enabling, but does not otherwise 1663 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and 1664 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these 1665 * two policies must be specified), but either may be combined (or not) 1666 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT. 1667 * 1668 * 1.10.4 Caller's context 1669 * 1670 * This is called from within dtrace_probe() meaning that interrupts 1671 * are disabled. No locks should be taken within this entry point. 1672 * 1673 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1674 * 1675 * 1.11.1 Overview 1676 * 1677 * Called to destroy the specified probe. 1678 * 1679 * 1.11.2 Arguments and notes 1680 * 1681 * The first argument is the cookie as passed to dtrace_register(). The 1682 * second argument is the identifier of the probe to be destroyed. The third 1683 * argument is the probe argument as passed to dtrace_probe_create(). The 1684 * provider should free all state associated with the probe. The framework 1685 * guarantees that dtps_destroy() is only called for probes that have either 1686 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1687 * Once dtps_disable() has been called for a probe, no further call will be 1688 * made specifying the probe. 1689 * 1690 * 1.11.3 Return value 1691 * 1692 * None. 1693 * 1694 * 1.11.4 Caller's context 1695 * 1696 * The DTrace framework is locked in such a way that it may not be called 1697 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1698 * acquired. 1699 * 1700 * 1701 * 2 Provider-to-Framework API 1702 * 1703 * 2.1 Overview 1704 * 1705 * The Provider-to-Framework API provides the mechanism for the provider to 1706 * register itself with the DTrace framework, to create probes, to lookup 1707 * probes and (most importantly) to fire probes. The Provider-to-Framework 1708 * consists of: 1709 * 1710 * dtrace_register() <-- Register a provider with the DTrace framework 1711 * dtrace_unregister() <-- Remove a provider's DTrace registration 1712 * dtrace_invalidate() <-- Invalidate the specified provider 1713 * dtrace_condense() <-- Remove a provider's unenabled probes 1714 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1715 * dtrace_probe_create() <-- Create a DTrace probe 1716 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1717 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1718 * dtrace_probe() <-- Fire the specified probe 1719 * 1720 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1721 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1722 * dtrace_provider_id_t *idp) 1723 * 1724 * 2.2.1 Overview 1725 * 1726 * dtrace_register() registers the calling provider with the DTrace 1727 * framework. It should generally be called by DTrace providers in their 1728 * attach(9E) entry point. 1729 * 1730 * 2.2.2 Arguments and Notes 1731 * 1732 * The first argument is the name of the provider. The second argument is a 1733 * pointer to the stability attributes for the provider. The third argument 1734 * is the privilege flags for the provider, and must be some combination of: 1735 * 1736 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1737 * 1738 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1739 * enable probes from this provider 1740 * 1741 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1742 * enable probes from this provider 1743 * 1744 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1745 * may enable probes from this provider 1746 * 1747 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1748 * the privilege requirements above. These probes 1749 * require either (a) a user ID matching the user 1750 * ID of the cred passed in the fourth argument 1751 * or (b) the PRIV_PROC_OWNER privilege. 1752 * 1753 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1754 * the privilege requirements above. These probes 1755 * require either (a) a zone ID matching the zone 1756 * ID of the cred passed in the fourth argument 1757 * or (b) the PRIV_PROC_ZONE privilege. 1758 * 1759 * Note that these flags designate the _visibility_ of the probes, not 1760 * the conditions under which they may or may not fire. 1761 * 1762 * The fourth argument is the credential that is associated with the 1763 * provider. This argument should be NULL if the privilege flags don't 1764 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1765 * framework stashes the uid and zoneid represented by this credential 1766 * for use at probe-time, in implicit predicates. These limit visibility 1767 * of the probes to users and/or zones which have sufficient privilege to 1768 * access them. 1769 * 1770 * The fifth argument is a DTrace provider operations vector, which provides 1771 * the implementation for the Framework-to-Provider API. (See Section 1, 1772 * above.) This must be non-NULL, and each member must be non-NULL. The 1773 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1774 * members (if the provider so desires, _one_ of these members may be left 1775 * NULL -- denoting that the provider only implements the other) and (2) 1776 * the dtps_suspend() and dtps_resume() members, which must either both be 1777 * NULL or both be non-NULL. 1778 * 1779 * The sixth argument is a cookie to be specified as the first argument for 1780 * each function in the Framework-to-Provider API. This argument may have 1781 * any value. 1782 * 1783 * The final argument is a pointer to dtrace_provider_id_t. If 1784 * dtrace_register() successfully completes, the provider identifier will be 1785 * stored in the memory pointed to be this argument. This argument must be 1786 * non-NULL. 1787 * 1788 * 2.2.3 Return value 1789 * 1790 * On success, dtrace_register() returns 0 and stores the new provider's 1791 * identifier into the memory pointed to by the idp argument. On failure, 1792 * dtrace_register() returns an errno: 1793 * 1794 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1795 * This may because a parameter that must be non-NULL was NULL, 1796 * because the name was invalid (either empty or an illegal 1797 * provider name) or because the attributes were invalid. 1798 * 1799 * No other failure code is returned. 1800 * 1801 * 2.2.4 Caller's context 1802 * 1803 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1804 * hold no locks across dtrace_register() that may also be acquired by 1805 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1806 * 1807 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1808 * 1809 * 2.3.1 Overview 1810 * 1811 * Unregisters the specified provider from the DTrace framework. It should 1812 * generally be called by DTrace providers in their detach(9E) entry point. 1813 * 1814 * 2.3.2 Arguments and Notes 1815 * 1816 * The only argument is the provider identifier, as returned from a 1817 * successful call to dtrace_register(). As a result of calling 1818 * dtrace_unregister(), the DTrace framework will call back into the provider 1819 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1820 * completes, however, the DTrace framework will no longer make calls through 1821 * the Framework-to-Provider API. 1822 * 1823 * 2.3.3 Return value 1824 * 1825 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1826 * returns an errno: 1827 * 1828 * EBUSY There are currently processes that have the DTrace pseudodevice 1829 * open, or there exists an anonymous enabling that hasn't yet 1830 * been claimed. 1831 * 1832 * No other failure code is returned. 1833 * 1834 * 2.3.4 Caller's context 1835 * 1836 * Because a call to dtrace_unregister() may induce calls through the 1837 * Framework-to-Provider API, the caller may not hold any lock across 1838 * dtrace_register() that is also acquired in any of the Framework-to- 1839 * Provider API functions. Additionally, mod_lock may not be held. 1840 * 1841 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1842 * 1843 * 2.4.1 Overview 1844 * 1845 * Invalidates the specified provider. All subsequent probe lookups for the 1846 * specified provider will fail, but its probes will not be removed. 1847 * 1848 * 2.4.2 Arguments and note 1849 * 1850 * The only argument is the provider identifier, as returned from a 1851 * successful call to dtrace_register(). In general, a provider's probes 1852 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1853 * an entire provider, regardless of whether or not probes are enabled or 1854 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1855 * probes from firing -- it will merely prevent any new enablings of the 1856 * provider's probes. 1857 * 1858 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1859 * 1860 * 2.5.1 Overview 1861 * 1862 * Removes all the unenabled probes for the given provider. This function is 1863 * not unlike dtrace_unregister(), except that it doesn't remove the 1864 * provider just as many of its associated probes as it can. 1865 * 1866 * 2.5.2 Arguments and Notes 1867 * 1868 * As with dtrace_unregister(), the sole argument is the provider identifier 1869 * as returned from a successful call to dtrace_register(). As a result of 1870 * calling dtrace_condense(), the DTrace framework will call back into the 1871 * given provider's dtps_destroy() entry point for each of the provider's 1872 * unenabled probes. 1873 * 1874 * 2.5.3 Return value 1875 * 1876 * Currently, dtrace_condense() always returns 0. However, consumers of this 1877 * function should check the return value as appropriate; its behavior may 1878 * change in the future. 1879 * 1880 * 2.5.4 Caller's context 1881 * 1882 * As with dtrace_unregister(), the caller may not hold any lock across 1883 * dtrace_condense() that is also acquired in the provider's entry points. 1884 * Also, mod_lock may not be held. 1885 * 1886 * 2.6 int dtrace_attached() 1887 * 1888 * 2.6.1 Overview 1889 * 1890 * Indicates whether or not DTrace has attached. 1891 * 1892 * 2.6.2 Arguments and Notes 1893 * 1894 * For most providers, DTrace makes initial contact beyond registration. 1895 * That is, once a provider has registered with DTrace, it waits to hear 1896 * from DTrace to create probes. However, some providers may wish to 1897 * proactively create probes without first being told by DTrace to do so. 1898 * If providers wish to do this, they must first call dtrace_attached() to 1899 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1900 * the provider must not make any other Provider-to-Framework API call. 1901 * 1902 * 2.6.3 Return value 1903 * 1904 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1905 * 1906 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1907 * const char *func, const char *name, int aframes, void *arg) 1908 * 1909 * 2.7.1 Overview 1910 * 1911 * Creates a probe with specified module name, function name, and name. 1912 * 1913 * 2.7.2 Arguments and Notes 1914 * 1915 * The first argument is the provider identifier, as returned from a 1916 * successful call to dtrace_register(). The second, third, and fourth 1917 * arguments are the module name, function name, and probe name, 1918 * respectively. Of these, module name and function name may both be NULL 1919 * (in which case the probe is considered to be unanchored), or they may both 1920 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1921 * string. 1922 * 1923 * The fifth argument is the number of artificial stack frames that will be 1924 * found on the stack when dtrace_probe() is called for the new probe. These 1925 * artificial frames will be automatically be pruned should the stack() or 1926 * stackdepth() functions be called as part of one of the probe's ECBs. If 1927 * the parameter doesn't add an artificial frame, this parameter should be 1928 * zero. 1929 * 1930 * The final argument is a probe argument that will be passed back to the 1931 * provider when a probe-specific operation is called. (e.g., via 1932 * dtps_enable(), dtps_disable(), etc.) 1933 * 1934 * Note that it is up to the provider to be sure that the probe that it 1935 * creates does not already exist -- if the provider is unsure of the probe's 1936 * existence, it should assure its absence with dtrace_probe_lookup() before 1937 * calling dtrace_probe_create(). 1938 * 1939 * 2.7.3 Return value 1940 * 1941 * dtrace_probe_create() always succeeds, and always returns the identifier 1942 * of the newly-created probe. 1943 * 1944 * 2.7.4 Caller's context 1945 * 1946 * While dtrace_probe_create() is generally expected to be called from 1947 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1948 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1949 * 1950 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1951 * const char *func, const char *name) 1952 * 1953 * 2.8.1 Overview 1954 * 1955 * Looks up a probe based on provdider and one or more of module name, 1956 * function name and probe name. 1957 * 1958 * 2.8.2 Arguments and Notes 1959 * 1960 * The first argument is the provider identifier, as returned from a 1961 * successful call to dtrace_register(). The second, third, and fourth 1962 * arguments are the module name, function name, and probe name, 1963 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1964 * the identifier of the first probe that is provided by the specified 1965 * provider and matches all of the non-NULL matching criteria. 1966 * dtrace_probe_lookup() is generally used by a provider to be check the 1967 * existence of a probe before creating it with dtrace_probe_create(). 1968 * 1969 * 2.8.3 Return value 1970 * 1971 * If the probe exists, returns its identifier. If the probe does not exist, 1972 * return DTRACE_IDNONE. 1973 * 1974 * 2.8.4 Caller's context 1975 * 1976 * While dtrace_probe_lookup() is generally expected to be called from 1977 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1978 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1979 * 1980 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1981 * 1982 * 2.9.1 Overview 1983 * 1984 * Returns the probe argument associated with the specified probe. 1985 * 1986 * 2.9.2 Arguments and Notes 1987 * 1988 * The first argument is the provider identifier, as returned from a 1989 * successful call to dtrace_register(). The second argument is a probe 1990 * identifier, as returned from dtrace_probe_lookup() or 1991 * dtrace_probe_create(). This is useful if a probe has multiple 1992 * provider-specific components to it: the provider can create the probe 1993 * once with provider-specific state, and then add to the state by looking 1994 * up the probe based on probe identifier. 1995 * 1996 * 2.9.3 Return value 1997 * 1998 * Returns the argument associated with the specified probe. If the 1999 * specified probe does not exist, or if the specified probe is not provided 2000 * by the specified provider, NULL is returned. 2001 * 2002 * 2.9.4 Caller's context 2003 * 2004 * While dtrace_probe_arg() is generally expected to be called from 2005 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2006 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2007 * 2008 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 2009 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 2010 * 2011 * 2.10.1 Overview 2012 * 2013 * The epicenter of DTrace: fires the specified probes with the specified 2014 * arguments. 2015 * 2016 * 2.10.2 Arguments and Notes 2017 * 2018 * The first argument is a probe identifier as returned by 2019 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 2020 * arguments are the values to which the D variables "arg0" through "arg4" 2021 * will be mapped. 2022 * 2023 * dtrace_probe() should be called whenever the specified probe has fired -- 2024 * however the provider defines it. 2025 * 2026 * 2.10.3 Return value 2027 * 2028 * None. 2029 * 2030 * 2.10.4 Caller's context 2031 * 2032 * dtrace_probe() may be called in virtually any context: kernel, user, 2033 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 2034 * dispatcher locks held, with interrupts disabled, etc. The only latitude 2035 * that must be afforded to DTrace is the ability to make calls within 2036 * itself (and to its in-kernel subroutines) and the ability to access 2037 * arbitrary (but mapped) memory. On some platforms, this constrains 2038 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 2039 * from any context in which TL is greater than zero. dtrace_probe() may 2040 * also not be called from any routine which may be called by dtrace_probe() 2041 * -- which includes functions in the DTrace framework and some in-kernel 2042 * DTrace subroutines. All such functions "dtrace_"; providers that 2043 * instrument the kernel arbitrarily should be sure to not instrument these 2044 * routines. 2045 */ 2046 typedef struct dtrace_pops { 2047 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 2048 void (*dtps_provide_module)(void *arg, struct modctl *mp); 2049 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 2050 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 2051 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 2052 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 2053 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 2054 dtrace_argdesc_t *desc); 2055 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 2056 int argno, int aframes); 2057 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg); 2058 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 2059 } dtrace_pops_t; 2060 2061 #define DTRACE_MODE_KERNEL 0x01 2062 #define DTRACE_MODE_USER 0x02 2063 #define DTRACE_MODE_NOPRIV_DROP 0x10 2064 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20 2065 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40 2066 2067 typedef uintptr_t dtrace_provider_id_t; 2068 2069 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 2070 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 2071 extern int dtrace_unregister(dtrace_provider_id_t); 2072 extern int dtrace_condense(dtrace_provider_id_t); 2073 extern void dtrace_invalidate(dtrace_provider_id_t); 2074 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 2075 const char *, const char *); 2076 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 2077 const char *, const char *, int, void *); 2078 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 2079 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 2080 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 2081 2082 /* 2083 * DTrace Meta Provider API 2084 * 2085 * The following functions are implemented by the DTrace framework and are 2086 * used to implement meta providers. Meta providers plug into the DTrace 2087 * framework and are used to instantiate new providers on the fly. At 2088 * present, there is only one type of meta provider and only one meta 2089 * provider may be registered with the DTrace framework at a time. The 2090 * sole meta provider type provides user-land static tracing facilities 2091 * by taking meta probe descriptions and adding a corresponding provider 2092 * into the DTrace framework. 2093 * 2094 * 1 Framework-to-Provider 2095 * 2096 * 1.1 Overview 2097 * 2098 * The Framework-to-Provider API is represented by the dtrace_mops structure 2099 * that the meta provider passes to the framework when registering itself as 2100 * a meta provider. This structure consists of the following members: 2101 * 2102 * dtms_create_probe() <-- Add a new probe to a created provider 2103 * dtms_provide_pid() <-- Create a new provider for a given process 2104 * dtms_remove_pid() <-- Remove a previously created provider 2105 * 2106 * 1.2 void dtms_create_probe(void *arg, void *parg, 2107 * dtrace_helper_probedesc_t *probedesc); 2108 * 2109 * 1.2.1 Overview 2110 * 2111 * Called by the DTrace framework to create a new probe in a provider 2112 * created by this meta provider. 2113 * 2114 * 1.2.2 Arguments and notes 2115 * 2116 * The first argument is the cookie as passed to dtrace_meta_register(). 2117 * The second argument is the provider cookie for the associated provider; 2118 * this is obtained from the return value of dtms_provide_pid(). The third 2119 * argument is the helper probe description. 2120 * 2121 * 1.2.3 Return value 2122 * 2123 * None 2124 * 2125 * 1.2.4 Caller's context 2126 * 2127 * dtms_create_probe() is called from either ioctl() or module load context. 2128 * The DTrace framework is locked in such a way that meta providers may not 2129 * register or unregister. This means that the meta provider cannot call 2130 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2131 * such that the provider may (and is expected to) call provider-related 2132 * DTrace provider APIs including dtrace_probe_create(). 2133 * 2134 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2135 * pid_t pid) 2136 * 2137 * 1.3.1 Overview 2138 * 2139 * Called by the DTrace framework to instantiate a new provider given the 2140 * description of the provider and probes in the mprov argument. The 2141 * meta provider should call dtrace_register() to insert the new provider 2142 * into the DTrace framework. 2143 * 2144 * 1.3.2 Arguments and notes 2145 * 2146 * The first argument is the cookie as passed to dtrace_meta_register(). 2147 * The second argument is a pointer to a structure describing the new 2148 * helper provider. The third argument is the process identifier for 2149 * process associated with this new provider. Note that the name of the 2150 * provider as passed to dtrace_register() should be the contatenation of 2151 * the dtmpb_provname member of the mprov argument and the processs 2152 * identifier as a string. 2153 * 2154 * 1.3.3 Return value 2155 * 2156 * The cookie for the provider that the meta provider creates. This is 2157 * the same value that it passed to dtrace_register(). 2158 * 2159 * 1.3.4 Caller's context 2160 * 2161 * dtms_provide_pid() is called from either ioctl() or module load context. 2162 * The DTrace framework is locked in such a way that meta providers may not 2163 * register or unregister. This means that the meta provider cannot call 2164 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2165 * is such that the provider may -- and is expected to -- call 2166 * provider-related DTrace provider APIs including dtrace_register(). 2167 * 2168 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2169 * pid_t pid) 2170 * 2171 * 1.4.1 Overview 2172 * 2173 * Called by the DTrace framework to remove a provider that had previously 2174 * been instantiated via the dtms_provide_pid() entry point. The meta 2175 * provider need not remove the provider immediately, but this entry 2176 * point indicates that the provider should be removed as soon as possible 2177 * using the dtrace_unregister() API. 2178 * 2179 * 1.4.2 Arguments and notes 2180 * 2181 * The first argument is the cookie as passed to dtrace_meta_register(). 2182 * The second argument is a pointer to a structure describing the helper 2183 * provider. The third argument is the process identifier for process 2184 * associated with this new provider. 2185 * 2186 * 1.4.3 Return value 2187 * 2188 * None 2189 * 2190 * 1.4.4 Caller's context 2191 * 2192 * dtms_remove_pid() is called from either ioctl() or exit() context. 2193 * The DTrace framework is locked in such a way that meta providers may not 2194 * register or unregister. This means that the meta provider cannot call 2195 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2196 * is such that the provider may -- and is expected to -- call 2197 * provider-related DTrace provider APIs including dtrace_unregister(). 2198 */ 2199 typedef struct dtrace_helper_probedesc { 2200 char *dthpb_mod; /* probe module */ 2201 char *dthpb_func; /* probe function */ 2202 char *dthpb_name; /* probe name */ 2203 uint64_t dthpb_base; /* base address */ 2204 uint32_t *dthpb_offs; /* offsets array */ 2205 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2206 uint32_t dthpb_noffs; /* offsets count */ 2207 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2208 uint8_t *dthpb_args; /* argument mapping array */ 2209 uint8_t dthpb_xargc; /* translated argument count */ 2210 uint8_t dthpb_nargc; /* native argument count */ 2211 char *dthpb_xtypes; /* translated types strings */ 2212 char *dthpb_ntypes; /* native types strings */ 2213 } dtrace_helper_probedesc_t; 2214 2215 typedef struct dtrace_helper_provdesc { 2216 char *dthpv_provname; /* provider name */ 2217 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2218 } dtrace_helper_provdesc_t; 2219 2220 typedef struct dtrace_mops { 2221 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2222 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2223 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2224 } dtrace_mops_t; 2225 2226 typedef uintptr_t dtrace_meta_provider_id_t; 2227 2228 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2229 dtrace_meta_provider_id_t *); 2230 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2231 2232 /* 2233 * DTrace Kernel Hooks 2234 * 2235 * The following functions are implemented by the base kernel and form a set of 2236 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2237 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2238 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2239 */ 2240 2241 typedef enum dtrace_vtime_state { 2242 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2243 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2244 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2245 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2246 } dtrace_vtime_state_t; 2247 2248 extern dtrace_vtime_state_t dtrace_vtime_active; 2249 extern void dtrace_vtime_switch(kthread_t *next); 2250 extern void dtrace_vtime_enable_tnf(void); 2251 extern void dtrace_vtime_disable_tnf(void); 2252 extern void dtrace_vtime_enable(void); 2253 extern void dtrace_vtime_disable(void); 2254 2255 struct regs; 2256 2257 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2258 extern int (*dtrace_return_probe_ptr)(struct regs *); 2259 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2260 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2261 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2262 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2263 2264 typedef uintptr_t dtrace_icookie_t; 2265 typedef void (*dtrace_xcall_t)(void *); 2266 2267 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2268 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2269 2270 extern void dtrace_membar_producer(void); 2271 extern void dtrace_membar_consumer(void); 2272 2273 extern void (*dtrace_cpu_init)(processorid_t); 2274 extern void (*dtrace_modload)(struct modctl *); 2275 extern void (*dtrace_modunload)(struct modctl *); 2276 extern void (*dtrace_helpers_cleanup)(); 2277 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2278 extern void (*dtrace_cpustart_init)(); 2279 extern void (*dtrace_cpustart_fini)(); 2280 extern void (*dtrace_closef)(); 2281 2282 extern void (*dtrace_debugger_init)(); 2283 extern void (*dtrace_debugger_fini)(); 2284 extern dtrace_cacheid_t dtrace_predcache_id; 2285 2286 extern hrtime_t dtrace_gethrtime(void); 2287 extern void dtrace_sync(void); 2288 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2289 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2290 extern void dtrace_vpanic(const char *, __va_list); 2291 extern void dtrace_panic(const char *, ...); 2292 2293 extern int dtrace_safe_defer_signal(void); 2294 extern void dtrace_safe_synchronous_signal(void); 2295 2296 extern int dtrace_mach_aframes(void); 2297 2298 #if defined(__i386) || defined(__amd64) 2299 extern int dtrace_instr_size(uchar_t *instr); 2300 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2301 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2302 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2303 extern void dtrace_invop_callsite(void); 2304 #endif 2305 2306 #ifdef __sparc 2307 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2308 extern void dtrace_getfsr(uint64_t *); 2309 #endif 2310 2311 #define DTRACE_CPUFLAG_ISSET(flag) \ 2312 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2313 2314 #define DTRACE_CPUFLAG_SET(flag) \ 2315 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2316 2317 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2318 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2319 2320 #endif /* _KERNEL */ 2321 2322 #endif /* _ASM */ 2323 2324 #if defined(__i386) || defined(__amd64) 2325 2326 #define DTRACE_INVOP_PUSHL_EBP 1 2327 #define DTRACE_INVOP_POPL_EBP 2 2328 #define DTRACE_INVOP_LEAVE 3 2329 #define DTRACE_INVOP_NOP 4 2330 #define DTRACE_INVOP_RET 5 2331 2332 #endif 2333 2334 #ifdef __cplusplus 2335 } 2336 #endif 2337 2338 #endif /* _SYS_DTRACE_H */