1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 96 /* 97 * DTrace Tunable Variables 98 * 99 * The following variables may be tuned by adding a line to /etc/system that 100 * includes both the name of the DTrace module ("dtrace") and the name of the 101 * variable. For example: 102 * 103 * set dtrace:dtrace_destructive_disallow = 1 104 * 105 * In general, the only variables that one should be tuning this way are those 106 * that affect system-wide DTrace behavior, and for which the default behavior 107 * is undesirable. Most of these variables are tunable on a per-consumer 108 * basis using DTrace options, and need not be tuned on a system-wide basis. 109 * When tuning these variables, avoid pathological values; while some attempt 110 * is made to verify the integrity of these variables, they are not considered 111 * part of the supported interface to DTrace, and they are therefore not 112 * checked comprehensively. Further, these variables should not be tuned 113 * dynamically via "mdb -kw" or other means; they should only be tuned via 114 * /etc/system. 115 */ 116 int dtrace_destructive_disallow = 0; 117 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 118 size_t dtrace_difo_maxsize = (256 * 1024); 119 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 120 size_t dtrace_global_maxsize = (16 * 1024); 121 size_t dtrace_actions_max = (16 * 1024); 122 size_t dtrace_retain_max = 1024; 123 dtrace_optval_t dtrace_helper_actions_max = 1024; 124 dtrace_optval_t dtrace_helper_providers_max = 32; 125 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 126 size_t dtrace_strsize_default = 256; 127 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 128 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 129 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 130 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 133 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 134 dtrace_optval_t dtrace_nspec_default = 1; 135 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 136 dtrace_optval_t dtrace_stackframes_default = 20; 137 dtrace_optval_t dtrace_ustackframes_default = 20; 138 dtrace_optval_t dtrace_jstackframes_default = 50; 139 dtrace_optval_t dtrace_jstackstrsize_default = 512; 140 int dtrace_msgdsize_max = 128; 141 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 142 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 143 int dtrace_devdepth_max = 32; 144 int dtrace_err_verbose; 145 hrtime_t dtrace_deadman_interval = NANOSEC; 146 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 147 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 148 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static int dtrace_getf; /* number of unpriv getf()s */ 175 static void *dtrace_softstate; /* softstate pointer */ 176 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 177 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 178 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 179 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 180 static int dtrace_toxranges; /* number of toxic ranges */ 181 static int dtrace_toxranges_max; /* size of toxic range array */ 182 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 183 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 184 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 185 static kthread_t *dtrace_panicked; /* panicking thread */ 186 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 187 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 188 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 189 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 190 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 191 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 192 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 193 194 /* 195 * DTrace Locking 196 * DTrace is protected by three (relatively coarse-grained) locks: 197 * 198 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 199 * including enabling state, probes, ECBs, consumer state, helper state, 200 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 201 * probe context is lock-free -- synchronization is handled via the 202 * dtrace_sync() cross call mechanism. 203 * 204 * (2) dtrace_provider_lock is required when manipulating provider state, or 205 * when provider state must be held constant. 206 * 207 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 208 * when meta provider state must be held constant. 209 * 210 * The lock ordering between these three locks is dtrace_meta_lock before 211 * dtrace_provider_lock before dtrace_lock. (In particular, there are 212 * several places where dtrace_provider_lock is held by the framework as it 213 * calls into the providers -- which then call back into the framework, 214 * grabbing dtrace_lock.) 215 * 216 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 217 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 218 * role as a coarse-grained lock; it is acquired before both of these locks. 219 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 220 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 221 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 222 * acquired _between_ dtrace_provider_lock and dtrace_lock. 223 */ 224 static kmutex_t dtrace_lock; /* probe state lock */ 225 static kmutex_t dtrace_provider_lock; /* provider state lock */ 226 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 227 228 /* 229 * DTrace Provider Variables 230 * 231 * These are the variables relating to DTrace as a provider (that is, the 232 * provider of the BEGIN, END, and ERROR probes). 233 */ 234 static dtrace_pattr_t dtrace_provider_attr = { 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 }; 241 242 static void 243 dtrace_nullop(void) 244 {} 245 246 static int 247 dtrace_enable_nullop(void) 248 { 249 return (0); 250 } 251 252 static dtrace_pops_t dtrace_provider_ops = { 253 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 254 (void (*)(void *, struct modctl *))dtrace_nullop, 255 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 NULL, 260 NULL, 261 NULL, 262 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 263 }; 264 265 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 266 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 267 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 268 269 /* 270 * DTrace Helper Tracing Variables 271 */ 272 uint32_t dtrace_helptrace_next = 0; 273 uint32_t dtrace_helptrace_nlocals; 274 char *dtrace_helptrace_buffer; 275 int dtrace_helptrace_bufsize = 512 * 1024; 276 277 #ifdef DEBUG 278 int dtrace_helptrace_enabled = 1; 279 #else 280 int dtrace_helptrace_enabled = 0; 281 #endif 282 283 /* 284 * DTrace Error Hashing 285 * 286 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 287 * table. This is very useful for checking coverage of tests that are 288 * expected to induce DIF or DOF processing errors, and may be useful for 289 * debugging problems in the DIF code generator or in DOF generation . The 290 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 291 */ 292 #ifdef DEBUG 293 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 294 static const char *dtrace_errlast; 295 static kthread_t *dtrace_errthread; 296 static kmutex_t dtrace_errlock; 297 #endif 298 299 /* 300 * DTrace Macros and Constants 301 * 302 * These are various macros that are useful in various spots in the 303 * implementation, along with a few random constants that have no meaning 304 * outside of the implementation. There is no real structure to this cpp 305 * mishmash -- but is there ever? 306 */ 307 #define DTRACE_HASHSTR(hash, probe) \ 308 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 309 310 #define DTRACE_HASHNEXT(hash, probe) \ 311 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 312 313 #define DTRACE_HASHPREV(hash, probe) \ 314 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 315 316 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 317 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 318 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 319 320 #define DTRACE_AGGHASHSIZE_SLEW 17 321 322 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 323 324 /* 325 * The key for a thread-local variable consists of the lower 61 bits of the 326 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 327 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 328 * equal to a variable identifier. This is necessary (but not sufficient) to 329 * assure that global associative arrays never collide with thread-local 330 * variables. To guarantee that they cannot collide, we must also define the 331 * order for keying dynamic variables. That order is: 332 * 333 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 334 * 335 * Because the variable-key and the tls-key are in orthogonal spaces, there is 336 * no way for a global variable key signature to match a thread-local key 337 * signature. 338 */ 339 #define DTRACE_TLS_THRKEY(where) { \ 340 uint_t intr = 0; \ 341 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 342 for (; actv; actv >>= 1) \ 343 intr++; \ 344 ASSERT(intr < (1 << 3)); \ 345 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 346 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 347 } 348 349 #define DT_BSWAP_8(x) ((x) & 0xff) 350 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 351 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 352 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 353 354 #define DT_MASK_LO 0x00000000FFFFFFFFULL 355 356 #define DTRACE_STORE(type, tomax, offset, what) \ 357 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 358 359 #ifndef __x86 360 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 361 if (addr & (size - 1)) { \ 362 *flags |= CPU_DTRACE_BADALIGN; \ 363 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 364 return (0); \ 365 } 366 #else 367 #define DTRACE_ALIGNCHECK(addr, size, flags) 368 #endif 369 370 /* 371 * Test whether a range of memory starting at testaddr of size testsz falls 372 * within the range of memory described by addr, sz. We take care to avoid 373 * problems with overflow and underflow of the unsigned quantities, and 374 * disallow all negative sizes. Ranges of size 0 are allowed. 375 */ 376 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 377 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 378 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 379 (testaddr) + (testsz) >= (testaddr)) 380 381 /* 382 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 383 * alloc_sz on the righthand side of the comparison in order to avoid overflow 384 * or underflow in the comparison with it. This is simpler than the INRANGE 385 * check above, because we know that the dtms_scratch_ptr is valid in the 386 * range. Allocations of size zero are allowed. 387 */ 388 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 389 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 390 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 391 392 #define DTRACE_LOADFUNC(bits) \ 393 /*CSTYLED*/ \ 394 uint##bits##_t \ 395 dtrace_load##bits(uintptr_t addr) \ 396 { \ 397 size_t size = bits / NBBY; \ 398 /*CSTYLED*/ \ 399 uint##bits##_t rval; \ 400 int i; \ 401 volatile uint16_t *flags = (volatile uint16_t *) \ 402 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 403 \ 404 DTRACE_ALIGNCHECK(addr, size, flags); \ 405 \ 406 for (i = 0; i < dtrace_toxranges; i++) { \ 407 if (addr >= dtrace_toxrange[i].dtt_limit) \ 408 continue; \ 409 \ 410 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 411 continue; \ 412 \ 413 /* \ 414 * This address falls within a toxic region; return 0. \ 415 */ \ 416 *flags |= CPU_DTRACE_BADADDR; \ 417 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 418 return (0); \ 419 } \ 420 \ 421 *flags |= CPU_DTRACE_NOFAULT; \ 422 /*CSTYLED*/ \ 423 rval = *((volatile uint##bits##_t *)addr); \ 424 *flags &= ~CPU_DTRACE_NOFAULT; \ 425 \ 426 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 427 } 428 429 #ifdef _LP64 430 #define dtrace_loadptr dtrace_load64 431 #else 432 #define dtrace_loadptr dtrace_load32 433 #endif 434 435 #define DTRACE_DYNHASH_FREE 0 436 #define DTRACE_DYNHASH_SINK 1 437 #define DTRACE_DYNHASH_VALID 2 438 439 #define DTRACE_MATCH_FAIL -1 440 #define DTRACE_MATCH_NEXT 0 441 #define DTRACE_MATCH_DONE 1 442 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 443 #define DTRACE_STATE_ALIGN 64 444 445 #define DTRACE_FLAGS2FLT(flags) \ 446 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 447 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 448 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 449 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 450 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 451 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 452 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 453 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 454 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 455 DTRACEFLT_UNKNOWN) 456 457 #define DTRACEACT_ISSTRING(act) \ 458 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 459 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 460 461 static size_t dtrace_strlen(const char *, size_t); 462 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 463 static void dtrace_enabling_provide(dtrace_provider_t *); 464 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 465 static void dtrace_enabling_matchall(void); 466 static void dtrace_enabling_reap(void); 467 static dtrace_state_t *dtrace_anon_grab(void); 468 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 469 dtrace_state_t *, uint64_t, uint64_t); 470 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 471 static void dtrace_buffer_drop(dtrace_buffer_t *); 472 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 473 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 474 dtrace_state_t *, dtrace_mstate_t *); 475 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 476 dtrace_optval_t); 477 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 478 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 479 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 480 static void dtrace_getf_barrier(void); 481 482 /* 483 * DTrace Probe Context Functions 484 * 485 * These functions are called from probe context. Because probe context is 486 * any context in which C may be called, arbitrarily locks may be held, 487 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 488 * As a result, functions called from probe context may only call other DTrace 489 * support functions -- they may not interact at all with the system at large. 490 * (Note that the ASSERT macro is made probe-context safe by redefining it in 491 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 492 * loads are to be performed from probe context, they _must_ be in terms of 493 * the safe dtrace_load*() variants. 494 * 495 * Some functions in this block are not actually called from probe context; 496 * for these functions, there will be a comment above the function reading 497 * "Note: not called from probe context." 498 */ 499 void 500 dtrace_panic(const char *format, ...) 501 { 502 va_list alist; 503 504 va_start(alist, format); 505 dtrace_vpanic(format, alist); 506 va_end(alist); 507 } 508 509 int 510 dtrace_assfail(const char *a, const char *f, int l) 511 { 512 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 513 514 /* 515 * We just need something here that even the most clever compiler 516 * cannot optimize away. 517 */ 518 return (a[(uintptr_t)f]); 519 } 520 521 /* 522 * Atomically increment a specified error counter from probe context. 523 */ 524 static void 525 dtrace_error(uint32_t *counter) 526 { 527 /* 528 * Most counters stored to in probe context are per-CPU counters. 529 * However, there are some error conditions that are sufficiently 530 * arcane that they don't merit per-CPU storage. If these counters 531 * are incremented concurrently on different CPUs, scalability will be 532 * adversely affected -- but we don't expect them to be white-hot in a 533 * correctly constructed enabling... 534 */ 535 uint32_t oval, nval; 536 537 do { 538 oval = *counter; 539 540 if ((nval = oval + 1) == 0) { 541 /* 542 * If the counter would wrap, set it to 1 -- assuring 543 * that the counter is never zero when we have seen 544 * errors. (The counter must be 32-bits because we 545 * aren't guaranteed a 64-bit compare&swap operation.) 546 * To save this code both the infamy of being fingered 547 * by a priggish news story and the indignity of being 548 * the target of a neo-puritan witch trial, we're 549 * carefully avoiding any colorful description of the 550 * likelihood of this condition -- but suffice it to 551 * say that it is only slightly more likely than the 552 * overflow of predicate cache IDs, as discussed in 553 * dtrace_predicate_create(). 554 */ 555 nval = 1; 556 } 557 } while (dtrace_cas32(counter, oval, nval) != oval); 558 } 559 560 /* 561 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 562 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 563 */ 564 DTRACE_LOADFUNC(8) 565 DTRACE_LOADFUNC(16) 566 DTRACE_LOADFUNC(32) 567 DTRACE_LOADFUNC(64) 568 569 static int 570 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 571 { 572 if (dest < mstate->dtms_scratch_base) 573 return (0); 574 575 if (dest + size < dest) 576 return (0); 577 578 if (dest + size > mstate->dtms_scratch_ptr) 579 return (0); 580 581 return (1); 582 } 583 584 static int 585 dtrace_canstore_statvar(uint64_t addr, size_t sz, 586 dtrace_statvar_t **svars, int nsvars) 587 { 588 int i; 589 590 for (i = 0; i < nsvars; i++) { 591 dtrace_statvar_t *svar = svars[i]; 592 593 if (svar == NULL || svar->dtsv_size == 0) 594 continue; 595 596 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 597 return (1); 598 } 599 600 return (0); 601 } 602 603 /* 604 * Check to see if the address is within a memory region to which a store may 605 * be issued. This includes the DTrace scratch areas, and any DTrace variable 606 * region. The caller of dtrace_canstore() is responsible for performing any 607 * alignment checks that are needed before stores are actually executed. 608 */ 609 static int 610 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 611 dtrace_vstate_t *vstate) 612 { 613 /* 614 * First, check to see if the address is in scratch space... 615 */ 616 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 617 mstate->dtms_scratch_size)) 618 return (1); 619 620 /* 621 * Now check to see if it's a dynamic variable. This check will pick 622 * up both thread-local variables and any global dynamically-allocated 623 * variables. 624 */ 625 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 626 vstate->dtvs_dynvars.dtds_size)) { 627 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 628 uintptr_t base = (uintptr_t)dstate->dtds_base + 629 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 630 uintptr_t chunkoffs; 631 632 /* 633 * Before we assume that we can store here, we need to make 634 * sure that it isn't in our metadata -- storing to our 635 * dynamic variable metadata would corrupt our state. For 636 * the range to not include any dynamic variable metadata, 637 * it must: 638 * 639 * (1) Start above the hash table that is at the base of 640 * the dynamic variable space 641 * 642 * (2) Have a starting chunk offset that is beyond the 643 * dtrace_dynvar_t that is at the base of every chunk 644 * 645 * (3) Not span a chunk boundary 646 * 647 */ 648 if (addr < base) 649 return (0); 650 651 chunkoffs = (addr - base) % dstate->dtds_chunksize; 652 653 if (chunkoffs < sizeof (dtrace_dynvar_t)) 654 return (0); 655 656 if (chunkoffs + sz > dstate->dtds_chunksize) 657 return (0); 658 659 return (1); 660 } 661 662 /* 663 * Finally, check the static local and global variables. These checks 664 * take the longest, so we perform them last. 665 */ 666 if (dtrace_canstore_statvar(addr, sz, 667 vstate->dtvs_locals, vstate->dtvs_nlocals)) 668 return (1); 669 670 if (dtrace_canstore_statvar(addr, sz, 671 vstate->dtvs_globals, vstate->dtvs_nglobals)) 672 return (1); 673 674 return (0); 675 } 676 677 678 /* 679 * Convenience routine to check to see if the address is within a memory 680 * region in which a load may be issued given the user's privilege level; 681 * if not, it sets the appropriate error flags and loads 'addr' into the 682 * illegal value slot. 683 * 684 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 685 * appropriate memory access protection. 686 */ 687 static int 688 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 689 dtrace_vstate_t *vstate) 690 { 691 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 692 file_t *fp; 693 694 /* 695 * If we hold the privilege to read from kernel memory, then 696 * everything is readable. 697 */ 698 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 699 return (1); 700 701 /* 702 * You can obviously read that which you can store. 703 */ 704 if (dtrace_canstore(addr, sz, mstate, vstate)) 705 return (1); 706 707 /* 708 * We're allowed to read from our own string table. 709 */ 710 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 711 mstate->dtms_difo->dtdo_strlen)) 712 return (1); 713 714 if (vstate->dtvs_state != NULL && 715 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 716 proc_t *p; 717 718 /* 719 * When we have privileges to the current process, there are 720 * several context-related kernel structures that are safe to 721 * read, even absent the privilege to read from kernel memory. 722 * These reads are safe because these structures contain only 723 * state that (1) we're permitted to read, (2) is harmless or 724 * (3) contains pointers to additional kernel state that we're 725 * not permitted to read (and as such, do not present an 726 * opportunity for privilege escalation). Finally (and 727 * critically), because of the nature of their relation with 728 * the current thread context, the memory associated with these 729 * structures cannot change over the duration of probe context, 730 * and it is therefore impossible for this memory to be 731 * deallocated and reallocated as something else while it's 732 * being operated upon. 733 */ 734 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 735 return (1); 736 737 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 738 sz, curthread->t_procp, sizeof (proc_t))) { 739 return (1); 740 } 741 742 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 743 curthread->t_cred, sizeof (cred_t))) { 744 return (1); 745 } 746 747 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 748 &(p->p_pidp->pid_id), sizeof (pid_t))) { 749 return (1); 750 } 751 752 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 753 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 754 return (1); 755 } 756 } 757 758 if ((fp = mstate->dtms_getf) != NULL) { 759 uintptr_t psz = sizeof (void *); 760 vnode_t *vp; 761 vnodeops_t *op; 762 763 /* 764 * When getf() returns a file_t, the enabling is implicitly 765 * granted the (transient) right to read the returned file_t 766 * as well as the v_path and v_op->vnop_name of the underlying 767 * vnode. These accesses are allowed after a successful 768 * getf() because the members that they refer to cannot change 769 * once set -- and the barrier logic in the kernel's closef() 770 * path assures that the file_t and its referenced vode_t 771 * cannot themselves be stale (that is, it impossible for 772 * either dtms_getf itself or its f_vnode member to reference 773 * freed memory). 774 */ 775 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 776 return (1); 777 778 if ((vp = fp->f_vnode) != NULL) { 779 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 780 return (1); 781 782 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 783 vp->v_path, strlen(vp->v_path) + 1)) { 784 return (1); 785 } 786 787 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 788 return (1); 789 790 if ((op = vp->v_op) != NULL && 791 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 792 return (1); 793 } 794 795 if (op != NULL && op->vnop_name != NULL && 796 DTRACE_INRANGE(addr, sz, op->vnop_name, 797 strlen(op->vnop_name) + 1)) { 798 return (1); 799 } 800 } 801 } 802 803 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 804 *illval = addr; 805 return (0); 806 } 807 808 /* 809 * Convenience routine to check to see if a given string is within a memory 810 * region in which a load may be issued given the user's privilege level; 811 * this exists so that we don't need to issue unnecessary dtrace_strlen() 812 * calls in the event that the user has all privileges. 813 */ 814 static int 815 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 816 dtrace_vstate_t *vstate) 817 { 818 size_t strsz; 819 820 /* 821 * If we hold the privilege to read from kernel memory, then 822 * everything is readable. 823 */ 824 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 825 return (1); 826 827 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 828 if (dtrace_canload(addr, strsz, mstate, vstate)) 829 return (1); 830 831 return (0); 832 } 833 834 /* 835 * Convenience routine to check to see if a given variable is within a memory 836 * region in which a load may be issued given the user's privilege level. 837 */ 838 static int 839 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 840 dtrace_vstate_t *vstate) 841 { 842 size_t sz; 843 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 844 845 /* 846 * If we hold the privilege to read from kernel memory, then 847 * everything is readable. 848 */ 849 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 850 return (1); 851 852 if (type->dtdt_kind == DIF_TYPE_STRING) 853 sz = dtrace_strlen(src, 854 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 855 else 856 sz = type->dtdt_size; 857 858 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 859 } 860 861 /* 862 * Compare two strings using safe loads. 863 */ 864 static int 865 dtrace_strncmp(char *s1, char *s2, size_t limit) 866 { 867 uint8_t c1, c2; 868 volatile uint16_t *flags; 869 870 if (s1 == s2 || limit == 0) 871 return (0); 872 873 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 874 875 do { 876 if (s1 == NULL) { 877 c1 = '\0'; 878 } else { 879 c1 = dtrace_load8((uintptr_t)s1++); 880 } 881 882 if (s2 == NULL) { 883 c2 = '\0'; 884 } else { 885 c2 = dtrace_load8((uintptr_t)s2++); 886 } 887 888 if (c1 != c2) 889 return (c1 - c2); 890 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 891 892 return (0); 893 } 894 895 /* 896 * Compute strlen(s) for a string using safe memory accesses. The additional 897 * len parameter is used to specify a maximum length to ensure completion. 898 */ 899 static size_t 900 dtrace_strlen(const char *s, size_t lim) 901 { 902 uint_t len; 903 904 for (len = 0; len != lim; len++) { 905 if (dtrace_load8((uintptr_t)s++) == '\0') 906 break; 907 } 908 909 return (len); 910 } 911 912 /* 913 * Check if an address falls within a toxic region. 914 */ 915 static int 916 dtrace_istoxic(uintptr_t kaddr, size_t size) 917 { 918 uintptr_t taddr, tsize; 919 int i; 920 921 for (i = 0; i < dtrace_toxranges; i++) { 922 taddr = dtrace_toxrange[i].dtt_base; 923 tsize = dtrace_toxrange[i].dtt_limit - taddr; 924 925 if (kaddr - taddr < tsize) { 926 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 927 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 928 return (1); 929 } 930 931 if (taddr - kaddr < size) { 932 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 933 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 934 return (1); 935 } 936 } 937 938 return (0); 939 } 940 941 /* 942 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 943 * memory specified by the DIF program. The dst is assumed to be safe memory 944 * that we can store to directly because it is managed by DTrace. As with 945 * standard bcopy, overlapping copies are handled properly. 946 */ 947 static void 948 dtrace_bcopy(const void *src, void *dst, size_t len) 949 { 950 if (len != 0) { 951 uint8_t *s1 = dst; 952 const uint8_t *s2 = src; 953 954 if (s1 <= s2) { 955 do { 956 *s1++ = dtrace_load8((uintptr_t)s2++); 957 } while (--len != 0); 958 } else { 959 s2 += len; 960 s1 += len; 961 962 do { 963 *--s1 = dtrace_load8((uintptr_t)--s2); 964 } while (--len != 0); 965 } 966 } 967 } 968 969 /* 970 * Copy src to dst using safe memory accesses, up to either the specified 971 * length, or the point that a nul byte is encountered. The src is assumed to 972 * be unsafe memory specified by the DIF program. The dst is assumed to be 973 * safe memory that we can store to directly because it is managed by DTrace. 974 * Unlike dtrace_bcopy(), overlapping regions are not handled. 975 */ 976 static void 977 dtrace_strcpy(const void *src, void *dst, size_t len) 978 { 979 if (len != 0) { 980 uint8_t *s1 = dst, c; 981 const uint8_t *s2 = src; 982 983 do { 984 *s1++ = c = dtrace_load8((uintptr_t)s2++); 985 } while (--len != 0 && c != '\0'); 986 } 987 } 988 989 /* 990 * Copy src to dst, deriving the size and type from the specified (BYREF) 991 * variable type. The src is assumed to be unsafe memory specified by the DIF 992 * program. The dst is assumed to be DTrace variable memory that is of the 993 * specified type; we assume that we can store to directly. 994 */ 995 static void 996 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 997 { 998 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 999 1000 if (type->dtdt_kind == DIF_TYPE_STRING) { 1001 dtrace_strcpy(src, dst, type->dtdt_size); 1002 } else { 1003 dtrace_bcopy(src, dst, type->dtdt_size); 1004 } 1005 } 1006 1007 /* 1008 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1009 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1010 * safe memory that we can access directly because it is managed by DTrace. 1011 */ 1012 static int 1013 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1014 { 1015 volatile uint16_t *flags; 1016 1017 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1018 1019 if (s1 == s2) 1020 return (0); 1021 1022 if (s1 == NULL || s2 == NULL) 1023 return (1); 1024 1025 if (s1 != s2 && len != 0) { 1026 const uint8_t *ps1 = s1; 1027 const uint8_t *ps2 = s2; 1028 1029 do { 1030 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1031 return (1); 1032 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1033 } 1034 return (0); 1035 } 1036 1037 /* 1038 * Zero the specified region using a simple byte-by-byte loop. Note that this 1039 * is for safe DTrace-managed memory only. 1040 */ 1041 static void 1042 dtrace_bzero(void *dst, size_t len) 1043 { 1044 uchar_t *cp; 1045 1046 for (cp = dst; len != 0; len--) 1047 *cp++ = 0; 1048 } 1049 1050 static void 1051 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1052 { 1053 uint64_t result[2]; 1054 1055 result[0] = addend1[0] + addend2[0]; 1056 result[1] = addend1[1] + addend2[1] + 1057 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1058 1059 sum[0] = result[0]; 1060 sum[1] = result[1]; 1061 } 1062 1063 /* 1064 * Shift the 128-bit value in a by b. If b is positive, shift left. 1065 * If b is negative, shift right. 1066 */ 1067 static void 1068 dtrace_shift_128(uint64_t *a, int b) 1069 { 1070 uint64_t mask; 1071 1072 if (b == 0) 1073 return; 1074 1075 if (b < 0) { 1076 b = -b; 1077 if (b >= 64) { 1078 a[0] = a[1] >> (b - 64); 1079 a[1] = 0; 1080 } else { 1081 a[0] >>= b; 1082 mask = 1LL << (64 - b); 1083 mask -= 1; 1084 a[0] |= ((a[1] & mask) << (64 - b)); 1085 a[1] >>= b; 1086 } 1087 } else { 1088 if (b >= 64) { 1089 a[1] = a[0] << (b - 64); 1090 a[0] = 0; 1091 } else { 1092 a[1] <<= b; 1093 mask = a[0] >> (64 - b); 1094 a[1] |= mask; 1095 a[0] <<= b; 1096 } 1097 } 1098 } 1099 1100 /* 1101 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1102 * use native multiplication on those, and then re-combine into the 1103 * resulting 128-bit value. 1104 * 1105 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1106 * hi1 * hi2 << 64 + 1107 * hi1 * lo2 << 32 + 1108 * hi2 * lo1 << 32 + 1109 * lo1 * lo2 1110 */ 1111 static void 1112 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1113 { 1114 uint64_t hi1, hi2, lo1, lo2; 1115 uint64_t tmp[2]; 1116 1117 hi1 = factor1 >> 32; 1118 hi2 = factor2 >> 32; 1119 1120 lo1 = factor1 & DT_MASK_LO; 1121 lo2 = factor2 & DT_MASK_LO; 1122 1123 product[0] = lo1 * lo2; 1124 product[1] = hi1 * hi2; 1125 1126 tmp[0] = hi1 * lo2; 1127 tmp[1] = 0; 1128 dtrace_shift_128(tmp, 32); 1129 dtrace_add_128(product, tmp, product); 1130 1131 tmp[0] = hi2 * lo1; 1132 tmp[1] = 0; 1133 dtrace_shift_128(tmp, 32); 1134 dtrace_add_128(product, tmp, product); 1135 } 1136 1137 /* 1138 * This privilege check should be used by actions and subroutines to 1139 * verify that the user credentials of the process that enabled the 1140 * invoking ECB match the target credentials 1141 */ 1142 static int 1143 dtrace_priv_proc_common_user(dtrace_state_t *state) 1144 { 1145 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1146 1147 /* 1148 * We should always have a non-NULL state cred here, since if cred 1149 * is null (anonymous tracing), we fast-path bypass this routine. 1150 */ 1151 ASSERT(s_cr != NULL); 1152 1153 if ((cr = CRED()) != NULL && 1154 s_cr->cr_uid == cr->cr_uid && 1155 s_cr->cr_uid == cr->cr_ruid && 1156 s_cr->cr_uid == cr->cr_suid && 1157 s_cr->cr_gid == cr->cr_gid && 1158 s_cr->cr_gid == cr->cr_rgid && 1159 s_cr->cr_gid == cr->cr_sgid) 1160 return (1); 1161 1162 return (0); 1163 } 1164 1165 /* 1166 * This privilege check should be used by actions and subroutines to 1167 * verify that the zone of the process that enabled the invoking ECB 1168 * matches the target credentials 1169 */ 1170 static int 1171 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1172 { 1173 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1174 1175 /* 1176 * We should always have a non-NULL state cred here, since if cred 1177 * is null (anonymous tracing), we fast-path bypass this routine. 1178 */ 1179 ASSERT(s_cr != NULL); 1180 1181 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1182 return (1); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * This privilege check should be used by actions and subroutines to 1189 * verify that the process has not setuid or changed credentials. 1190 */ 1191 static int 1192 dtrace_priv_proc_common_nocd() 1193 { 1194 proc_t *proc; 1195 1196 if ((proc = ttoproc(curthread)) != NULL && 1197 !(proc->p_flag & SNOCD)) 1198 return (1); 1199 1200 return (0); 1201 } 1202 1203 static int 1204 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1205 { 1206 int action = state->dts_cred.dcr_action; 1207 1208 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1209 goto bad; 1210 1211 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1212 dtrace_priv_proc_common_zone(state) == 0) 1213 goto bad; 1214 1215 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1216 dtrace_priv_proc_common_user(state) == 0) 1217 goto bad; 1218 1219 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1220 dtrace_priv_proc_common_nocd() == 0) 1221 goto bad; 1222 1223 return (1); 1224 1225 bad: 1226 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1227 1228 return (0); 1229 } 1230 1231 static int 1232 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1233 { 1234 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1235 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1236 return (1); 1237 1238 if (dtrace_priv_proc_common_zone(state) && 1239 dtrace_priv_proc_common_user(state) && 1240 dtrace_priv_proc_common_nocd()) 1241 return (1); 1242 } 1243 1244 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1245 1246 return (0); 1247 } 1248 1249 static int 1250 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1251 { 1252 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1253 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1254 return (1); 1255 1256 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1257 1258 return (0); 1259 } 1260 1261 static int 1262 dtrace_priv_kernel(dtrace_state_t *state) 1263 { 1264 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1265 return (1); 1266 1267 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1268 1269 return (0); 1270 } 1271 1272 static int 1273 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1274 { 1275 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1276 return (1); 1277 1278 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1279 1280 return (0); 1281 } 1282 1283 /* 1284 * Determine if the dte_cond of the specified ECB allows for processing of 1285 * the current probe to continue. Note that this routine may allow continued 1286 * processing, but with access(es) stripped from the mstate's dtms_access 1287 * field. 1288 */ 1289 static int 1290 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1291 dtrace_ecb_t *ecb) 1292 { 1293 dtrace_probe_t *probe = ecb->dte_probe; 1294 dtrace_provider_t *prov = probe->dtpr_provider; 1295 dtrace_pops_t *pops = &prov->dtpv_pops; 1296 int mode = DTRACE_MODE_NOPRIV_DROP; 1297 1298 ASSERT(ecb->dte_cond); 1299 1300 if (pops->dtps_mode != NULL) { 1301 mode = pops->dtps_mode(prov->dtpv_arg, 1302 probe->dtpr_id, probe->dtpr_arg); 1303 1304 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1305 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1306 DTRACE_MODE_NOPRIV_DROP)); 1307 } 1308 1309 /* 1310 * If the dte_cond bits indicate that this consumer is only allowed to 1311 * see user-mode firings of this probe, check that the probe was fired 1312 * while in a user context. If that's not the case, use the policy 1313 * specified by the provider to determine if we drop the probe or 1314 * merely restrict operation. 1315 */ 1316 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1317 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1318 1319 if (!(mode & DTRACE_MODE_USER)) { 1320 if (mode & DTRACE_MODE_NOPRIV_DROP) 1321 return (0); 1322 1323 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1324 } 1325 } 1326 1327 /* 1328 * This is more subtle than it looks. We have to be absolutely certain 1329 * that CRED() isn't going to change out from under us so it's only 1330 * legit to examine that structure if we're in constrained situations. 1331 * Currently, the only times we'll this check is if a non-super-user 1332 * has enabled the profile or syscall providers -- providers that 1333 * allow visibility of all processes. For the profile case, the check 1334 * above will ensure that we're examining a user context. 1335 */ 1336 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1337 cred_t *cr; 1338 cred_t *s_cr = state->dts_cred.dcr_cred; 1339 proc_t *proc; 1340 1341 ASSERT(s_cr != NULL); 1342 1343 if ((cr = CRED()) == NULL || 1344 s_cr->cr_uid != cr->cr_uid || 1345 s_cr->cr_uid != cr->cr_ruid || 1346 s_cr->cr_uid != cr->cr_suid || 1347 s_cr->cr_gid != cr->cr_gid || 1348 s_cr->cr_gid != cr->cr_rgid || 1349 s_cr->cr_gid != cr->cr_sgid || 1350 (proc = ttoproc(curthread)) == NULL || 1351 (proc->p_flag & SNOCD)) { 1352 if (mode & DTRACE_MODE_NOPRIV_DROP) 1353 return (0); 1354 1355 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1356 } 1357 } 1358 1359 /* 1360 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1361 * in our zone, check to see if our mode policy is to restrict rather 1362 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1363 * and DTRACE_ACCESS_ARGS 1364 */ 1365 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1366 cred_t *cr; 1367 cred_t *s_cr = state->dts_cred.dcr_cred; 1368 1369 ASSERT(s_cr != NULL); 1370 1371 if ((cr = CRED()) == NULL || 1372 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1373 if (mode & DTRACE_MODE_NOPRIV_DROP) 1374 return (0); 1375 1376 mstate->dtms_access &= 1377 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1378 } 1379 } 1380 1381 /* 1382 * By merits of being in this code path at all, we have limited 1383 * privileges. If the provider has indicated that limited privileges 1384 * are to denote restricted operation, strip off the ability to access 1385 * arguments. 1386 */ 1387 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1388 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1389 1390 return (1); 1391 } 1392 1393 /* 1394 * Note: not called from probe context. This function is called 1395 * asynchronously (and at a regular interval) from outside of probe context to 1396 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1397 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1398 */ 1399 void 1400 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1401 { 1402 dtrace_dynvar_t *dirty; 1403 dtrace_dstate_percpu_t *dcpu; 1404 dtrace_dynvar_t **rinsep; 1405 int i, j, work = 0; 1406 1407 for (i = 0; i < NCPU; i++) { 1408 dcpu = &dstate->dtds_percpu[i]; 1409 rinsep = &dcpu->dtdsc_rinsing; 1410 1411 /* 1412 * If the dirty list is NULL, there is no dirty work to do. 1413 */ 1414 if (dcpu->dtdsc_dirty == NULL) 1415 continue; 1416 1417 if (dcpu->dtdsc_rinsing != NULL) { 1418 /* 1419 * If the rinsing list is non-NULL, then it is because 1420 * this CPU was selected to accept another CPU's 1421 * dirty list -- and since that time, dirty buffers 1422 * have accumulated. This is a highly unlikely 1423 * condition, but we choose to ignore the dirty 1424 * buffers -- they'll be picked up a future cleanse. 1425 */ 1426 continue; 1427 } 1428 1429 if (dcpu->dtdsc_clean != NULL) { 1430 /* 1431 * If the clean list is non-NULL, then we're in a 1432 * situation where a CPU has done deallocations (we 1433 * have a non-NULL dirty list) but no allocations (we 1434 * also have a non-NULL clean list). We can't simply 1435 * move the dirty list into the clean list on this 1436 * CPU, yet we also don't want to allow this condition 1437 * to persist, lest a short clean list prevent a 1438 * massive dirty list from being cleaned (which in 1439 * turn could lead to otherwise avoidable dynamic 1440 * drops). To deal with this, we look for some CPU 1441 * with a NULL clean list, NULL dirty list, and NULL 1442 * rinsing list -- and then we borrow this CPU to 1443 * rinse our dirty list. 1444 */ 1445 for (j = 0; j < NCPU; j++) { 1446 dtrace_dstate_percpu_t *rinser; 1447 1448 rinser = &dstate->dtds_percpu[j]; 1449 1450 if (rinser->dtdsc_rinsing != NULL) 1451 continue; 1452 1453 if (rinser->dtdsc_dirty != NULL) 1454 continue; 1455 1456 if (rinser->dtdsc_clean != NULL) 1457 continue; 1458 1459 rinsep = &rinser->dtdsc_rinsing; 1460 break; 1461 } 1462 1463 if (j == NCPU) { 1464 /* 1465 * We were unable to find another CPU that 1466 * could accept this dirty list -- we are 1467 * therefore unable to clean it now. 1468 */ 1469 dtrace_dynvar_failclean++; 1470 continue; 1471 } 1472 } 1473 1474 work = 1; 1475 1476 /* 1477 * Atomically move the dirty list aside. 1478 */ 1479 do { 1480 dirty = dcpu->dtdsc_dirty; 1481 1482 /* 1483 * Before we zap the dirty list, set the rinsing list. 1484 * (This allows for a potential assertion in 1485 * dtrace_dynvar(): if a free dynamic variable appears 1486 * on a hash chain, either the dirty list or the 1487 * rinsing list for some CPU must be non-NULL.) 1488 */ 1489 *rinsep = dirty; 1490 dtrace_membar_producer(); 1491 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1492 dirty, NULL) != dirty); 1493 } 1494 1495 if (!work) { 1496 /* 1497 * We have no work to do; we can simply return. 1498 */ 1499 return; 1500 } 1501 1502 dtrace_sync(); 1503 1504 for (i = 0; i < NCPU; i++) { 1505 dcpu = &dstate->dtds_percpu[i]; 1506 1507 if (dcpu->dtdsc_rinsing == NULL) 1508 continue; 1509 1510 /* 1511 * We are now guaranteed that no hash chain contains a pointer 1512 * into this dirty list; we can make it clean. 1513 */ 1514 ASSERT(dcpu->dtdsc_clean == NULL); 1515 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1516 dcpu->dtdsc_rinsing = NULL; 1517 } 1518 1519 /* 1520 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1521 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1522 * This prevents a race whereby a CPU incorrectly decides that 1523 * the state should be something other than DTRACE_DSTATE_CLEAN 1524 * after dtrace_dynvar_clean() has completed. 1525 */ 1526 dtrace_sync(); 1527 1528 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1529 } 1530 1531 /* 1532 * Depending on the value of the op parameter, this function looks-up, 1533 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1534 * allocation is requested, this function will return a pointer to a 1535 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1536 * variable can be allocated. If NULL is returned, the appropriate counter 1537 * will be incremented. 1538 */ 1539 dtrace_dynvar_t * 1540 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1541 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1542 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1543 { 1544 uint64_t hashval = DTRACE_DYNHASH_VALID; 1545 dtrace_dynhash_t *hash = dstate->dtds_hash; 1546 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1547 processorid_t me = CPU->cpu_id, cpu = me; 1548 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1549 size_t bucket, ksize; 1550 size_t chunksize = dstate->dtds_chunksize; 1551 uintptr_t kdata, lock, nstate; 1552 uint_t i; 1553 1554 ASSERT(nkeys != 0); 1555 1556 /* 1557 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1558 * algorithm. For the by-value portions, we perform the algorithm in 1559 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1560 * bit, and seems to have only a minute effect on distribution. For 1561 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1562 * over each referenced byte. It's painful to do this, but it's much 1563 * better than pathological hash distribution. The efficacy of the 1564 * hashing algorithm (and a comparison with other algorithms) may be 1565 * found by running the ::dtrace_dynstat MDB dcmd. 1566 */ 1567 for (i = 0; i < nkeys; i++) { 1568 if (key[i].dttk_size == 0) { 1569 uint64_t val = key[i].dttk_value; 1570 1571 hashval += (val >> 48) & 0xffff; 1572 hashval += (hashval << 10); 1573 hashval ^= (hashval >> 6); 1574 1575 hashval += (val >> 32) & 0xffff; 1576 hashval += (hashval << 10); 1577 hashval ^= (hashval >> 6); 1578 1579 hashval += (val >> 16) & 0xffff; 1580 hashval += (hashval << 10); 1581 hashval ^= (hashval >> 6); 1582 1583 hashval += val & 0xffff; 1584 hashval += (hashval << 10); 1585 hashval ^= (hashval >> 6); 1586 } else { 1587 /* 1588 * This is incredibly painful, but it beats the hell 1589 * out of the alternative. 1590 */ 1591 uint64_t j, size = key[i].dttk_size; 1592 uintptr_t base = (uintptr_t)key[i].dttk_value; 1593 1594 if (!dtrace_canload(base, size, mstate, vstate)) 1595 break; 1596 1597 for (j = 0; j < size; j++) { 1598 hashval += dtrace_load8(base + j); 1599 hashval += (hashval << 10); 1600 hashval ^= (hashval >> 6); 1601 } 1602 } 1603 } 1604 1605 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1606 return (NULL); 1607 1608 hashval += (hashval << 3); 1609 hashval ^= (hashval >> 11); 1610 hashval += (hashval << 15); 1611 1612 /* 1613 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1614 * comes out to be one of our two sentinel hash values. If this 1615 * actually happens, we set the hashval to be a value known to be a 1616 * non-sentinel value. 1617 */ 1618 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1619 hashval = DTRACE_DYNHASH_VALID; 1620 1621 /* 1622 * Yes, it's painful to do a divide here. If the cycle count becomes 1623 * important here, tricks can be pulled to reduce it. (However, it's 1624 * critical that hash collisions be kept to an absolute minimum; 1625 * they're much more painful than a divide.) It's better to have a 1626 * solution that generates few collisions and still keeps things 1627 * relatively simple. 1628 */ 1629 bucket = hashval % dstate->dtds_hashsize; 1630 1631 if (op == DTRACE_DYNVAR_DEALLOC) { 1632 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1633 1634 for (;;) { 1635 while ((lock = *lockp) & 1) 1636 continue; 1637 1638 if (dtrace_casptr((void *)lockp, 1639 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1640 break; 1641 } 1642 1643 dtrace_membar_producer(); 1644 } 1645 1646 top: 1647 prev = NULL; 1648 lock = hash[bucket].dtdh_lock; 1649 1650 dtrace_membar_consumer(); 1651 1652 start = hash[bucket].dtdh_chain; 1653 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1654 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1655 op != DTRACE_DYNVAR_DEALLOC)); 1656 1657 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1658 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1659 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1660 1661 if (dvar->dtdv_hashval != hashval) { 1662 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1663 /* 1664 * We've reached the sink, and therefore the 1665 * end of the hash chain; we can kick out of 1666 * the loop knowing that we have seen a valid 1667 * snapshot of state. 1668 */ 1669 ASSERT(dvar->dtdv_next == NULL); 1670 ASSERT(dvar == &dtrace_dynhash_sink); 1671 break; 1672 } 1673 1674 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1675 /* 1676 * We've gone off the rails: somewhere along 1677 * the line, one of the members of this hash 1678 * chain was deleted. Note that we could also 1679 * detect this by simply letting this loop run 1680 * to completion, as we would eventually hit 1681 * the end of the dirty list. However, we 1682 * want to avoid running the length of the 1683 * dirty list unnecessarily (it might be quite 1684 * long), so we catch this as early as 1685 * possible by detecting the hash marker. In 1686 * this case, we simply set dvar to NULL and 1687 * break; the conditional after the loop will 1688 * send us back to top. 1689 */ 1690 dvar = NULL; 1691 break; 1692 } 1693 1694 goto next; 1695 } 1696 1697 if (dtuple->dtt_nkeys != nkeys) 1698 goto next; 1699 1700 for (i = 0; i < nkeys; i++, dkey++) { 1701 if (dkey->dttk_size != key[i].dttk_size) 1702 goto next; /* size or type mismatch */ 1703 1704 if (dkey->dttk_size != 0) { 1705 if (dtrace_bcmp( 1706 (void *)(uintptr_t)key[i].dttk_value, 1707 (void *)(uintptr_t)dkey->dttk_value, 1708 dkey->dttk_size)) 1709 goto next; 1710 } else { 1711 if (dkey->dttk_value != key[i].dttk_value) 1712 goto next; 1713 } 1714 } 1715 1716 if (op != DTRACE_DYNVAR_DEALLOC) 1717 return (dvar); 1718 1719 ASSERT(dvar->dtdv_next == NULL || 1720 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1721 1722 if (prev != NULL) { 1723 ASSERT(hash[bucket].dtdh_chain != dvar); 1724 ASSERT(start != dvar); 1725 ASSERT(prev->dtdv_next == dvar); 1726 prev->dtdv_next = dvar->dtdv_next; 1727 } else { 1728 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1729 start, dvar->dtdv_next) != start) { 1730 /* 1731 * We have failed to atomically swing the 1732 * hash table head pointer, presumably because 1733 * of a conflicting allocation on another CPU. 1734 * We need to reread the hash chain and try 1735 * again. 1736 */ 1737 goto top; 1738 } 1739 } 1740 1741 dtrace_membar_producer(); 1742 1743 /* 1744 * Now set the hash value to indicate that it's free. 1745 */ 1746 ASSERT(hash[bucket].dtdh_chain != dvar); 1747 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1748 1749 dtrace_membar_producer(); 1750 1751 /* 1752 * Set the next pointer to point at the dirty list, and 1753 * atomically swing the dirty pointer to the newly freed dvar. 1754 */ 1755 do { 1756 next = dcpu->dtdsc_dirty; 1757 dvar->dtdv_next = next; 1758 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1759 1760 /* 1761 * Finally, unlock this hash bucket. 1762 */ 1763 ASSERT(hash[bucket].dtdh_lock == lock); 1764 ASSERT(lock & 1); 1765 hash[bucket].dtdh_lock++; 1766 1767 return (NULL); 1768 next: 1769 prev = dvar; 1770 continue; 1771 } 1772 1773 if (dvar == NULL) { 1774 /* 1775 * If dvar is NULL, it is because we went off the rails: 1776 * one of the elements that we traversed in the hash chain 1777 * was deleted while we were traversing it. In this case, 1778 * we assert that we aren't doing a dealloc (deallocs lock 1779 * the hash bucket to prevent themselves from racing with 1780 * one another), and retry the hash chain traversal. 1781 */ 1782 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1783 goto top; 1784 } 1785 1786 if (op != DTRACE_DYNVAR_ALLOC) { 1787 /* 1788 * If we are not to allocate a new variable, we want to 1789 * return NULL now. Before we return, check that the value 1790 * of the lock word hasn't changed. If it has, we may have 1791 * seen an inconsistent snapshot. 1792 */ 1793 if (op == DTRACE_DYNVAR_NOALLOC) { 1794 if (hash[bucket].dtdh_lock != lock) 1795 goto top; 1796 } else { 1797 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1798 ASSERT(hash[bucket].dtdh_lock == lock); 1799 ASSERT(lock & 1); 1800 hash[bucket].dtdh_lock++; 1801 } 1802 1803 return (NULL); 1804 } 1805 1806 /* 1807 * We need to allocate a new dynamic variable. The size we need is the 1808 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1809 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1810 * the size of any referred-to data (dsize). We then round the final 1811 * size up to the chunksize for allocation. 1812 */ 1813 for (ksize = 0, i = 0; i < nkeys; i++) 1814 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1815 1816 /* 1817 * This should be pretty much impossible, but could happen if, say, 1818 * strange DIF specified the tuple. Ideally, this should be an 1819 * assertion and not an error condition -- but that requires that the 1820 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1821 * bullet-proof. (That is, it must not be able to be fooled by 1822 * malicious DIF.) Given the lack of backwards branches in DIF, 1823 * solving this would presumably not amount to solving the Halting 1824 * Problem -- but it still seems awfully hard. 1825 */ 1826 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1827 ksize + dsize > chunksize) { 1828 dcpu->dtdsc_drops++; 1829 return (NULL); 1830 } 1831 1832 nstate = DTRACE_DSTATE_EMPTY; 1833 1834 do { 1835 retry: 1836 free = dcpu->dtdsc_free; 1837 1838 if (free == NULL) { 1839 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1840 void *rval; 1841 1842 if (clean == NULL) { 1843 /* 1844 * We're out of dynamic variable space on 1845 * this CPU. Unless we have tried all CPUs, 1846 * we'll try to allocate from a different 1847 * CPU. 1848 */ 1849 switch (dstate->dtds_state) { 1850 case DTRACE_DSTATE_CLEAN: { 1851 void *sp = &dstate->dtds_state; 1852 1853 if (++cpu >= NCPU) 1854 cpu = 0; 1855 1856 if (dcpu->dtdsc_dirty != NULL && 1857 nstate == DTRACE_DSTATE_EMPTY) 1858 nstate = DTRACE_DSTATE_DIRTY; 1859 1860 if (dcpu->dtdsc_rinsing != NULL) 1861 nstate = DTRACE_DSTATE_RINSING; 1862 1863 dcpu = &dstate->dtds_percpu[cpu]; 1864 1865 if (cpu != me) 1866 goto retry; 1867 1868 (void) dtrace_cas32(sp, 1869 DTRACE_DSTATE_CLEAN, nstate); 1870 1871 /* 1872 * To increment the correct bean 1873 * counter, take another lap. 1874 */ 1875 goto retry; 1876 } 1877 1878 case DTRACE_DSTATE_DIRTY: 1879 dcpu->dtdsc_dirty_drops++; 1880 break; 1881 1882 case DTRACE_DSTATE_RINSING: 1883 dcpu->dtdsc_rinsing_drops++; 1884 break; 1885 1886 case DTRACE_DSTATE_EMPTY: 1887 dcpu->dtdsc_drops++; 1888 break; 1889 } 1890 1891 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1892 return (NULL); 1893 } 1894 1895 /* 1896 * The clean list appears to be non-empty. We want to 1897 * move the clean list to the free list; we start by 1898 * moving the clean pointer aside. 1899 */ 1900 if (dtrace_casptr(&dcpu->dtdsc_clean, 1901 clean, NULL) != clean) { 1902 /* 1903 * We are in one of two situations: 1904 * 1905 * (a) The clean list was switched to the 1906 * free list by another CPU. 1907 * 1908 * (b) The clean list was added to by the 1909 * cleansing cyclic. 1910 * 1911 * In either of these situations, we can 1912 * just reattempt the free list allocation. 1913 */ 1914 goto retry; 1915 } 1916 1917 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1918 1919 /* 1920 * Now we'll move the clean list to our free list. 1921 * It's impossible for this to fail: the only way 1922 * the free list can be updated is through this 1923 * code path, and only one CPU can own the clean list. 1924 * Thus, it would only be possible for this to fail if 1925 * this code were racing with dtrace_dynvar_clean(). 1926 * (That is, if dtrace_dynvar_clean() updated the clean 1927 * list, and we ended up racing to update the free 1928 * list.) This race is prevented by the dtrace_sync() 1929 * in dtrace_dynvar_clean() -- which flushes the 1930 * owners of the clean lists out before resetting 1931 * the clean lists. 1932 */ 1933 dcpu = &dstate->dtds_percpu[me]; 1934 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1935 ASSERT(rval == NULL); 1936 goto retry; 1937 } 1938 1939 dvar = free; 1940 new_free = dvar->dtdv_next; 1941 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1942 1943 /* 1944 * We have now allocated a new chunk. We copy the tuple keys into the 1945 * tuple array and copy any referenced key data into the data space 1946 * following the tuple array. As we do this, we relocate dttk_value 1947 * in the final tuple to point to the key data address in the chunk. 1948 */ 1949 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1950 dvar->dtdv_data = (void *)(kdata + ksize); 1951 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1952 1953 for (i = 0; i < nkeys; i++) { 1954 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1955 size_t kesize = key[i].dttk_size; 1956 1957 if (kesize != 0) { 1958 dtrace_bcopy( 1959 (const void *)(uintptr_t)key[i].dttk_value, 1960 (void *)kdata, kesize); 1961 dkey->dttk_value = kdata; 1962 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1963 } else { 1964 dkey->dttk_value = key[i].dttk_value; 1965 } 1966 1967 dkey->dttk_size = kesize; 1968 } 1969 1970 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1971 dvar->dtdv_hashval = hashval; 1972 dvar->dtdv_next = start; 1973 1974 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1975 return (dvar); 1976 1977 /* 1978 * The cas has failed. Either another CPU is adding an element to 1979 * this hash chain, or another CPU is deleting an element from this 1980 * hash chain. The simplest way to deal with both of these cases 1981 * (though not necessarily the most efficient) is to free our 1982 * allocated block and tail-call ourselves. Note that the free is 1983 * to the dirty list and _not_ to the free list. This is to prevent 1984 * races with allocators, above. 1985 */ 1986 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1987 1988 dtrace_membar_producer(); 1989 1990 do { 1991 free = dcpu->dtdsc_dirty; 1992 dvar->dtdv_next = free; 1993 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1994 1995 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1996 } 1997 1998 /*ARGSUSED*/ 1999 static void 2000 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2001 { 2002 if ((int64_t)nval < (int64_t)*oval) 2003 *oval = nval; 2004 } 2005 2006 /*ARGSUSED*/ 2007 static void 2008 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2009 { 2010 if ((int64_t)nval > (int64_t)*oval) 2011 *oval = nval; 2012 } 2013 2014 static void 2015 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2016 { 2017 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2018 int64_t val = (int64_t)nval; 2019 2020 if (val < 0) { 2021 for (i = 0; i < zero; i++) { 2022 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2023 quanta[i] += incr; 2024 return; 2025 } 2026 } 2027 } else { 2028 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2029 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2030 quanta[i - 1] += incr; 2031 return; 2032 } 2033 } 2034 2035 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2036 return; 2037 } 2038 2039 ASSERT(0); 2040 } 2041 2042 static void 2043 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2044 { 2045 uint64_t arg = *lquanta++; 2046 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2047 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2048 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2049 int32_t val = (int32_t)nval, level; 2050 2051 ASSERT(step != 0); 2052 ASSERT(levels != 0); 2053 2054 if (val < base) { 2055 /* 2056 * This is an underflow. 2057 */ 2058 lquanta[0] += incr; 2059 return; 2060 } 2061 2062 level = (val - base) / step; 2063 2064 if (level < levels) { 2065 lquanta[level + 1] += incr; 2066 return; 2067 } 2068 2069 /* 2070 * This is an overflow. 2071 */ 2072 lquanta[levels + 1] += incr; 2073 } 2074 2075 static int 2076 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2077 uint16_t high, uint16_t nsteps, int64_t value) 2078 { 2079 int64_t this = 1, last, next; 2080 int base = 1, order; 2081 2082 ASSERT(factor <= nsteps); 2083 ASSERT(nsteps % factor == 0); 2084 2085 for (order = 0; order < low; order++) 2086 this *= factor; 2087 2088 /* 2089 * If our value is less than our factor taken to the power of the 2090 * low order of magnitude, it goes into the zeroth bucket. 2091 */ 2092 if (value < (last = this)) 2093 return (0); 2094 2095 for (this *= factor; order <= high; order++) { 2096 int nbuckets = this > nsteps ? nsteps : this; 2097 2098 if ((next = this * factor) < this) { 2099 /* 2100 * We should not generally get log/linear quantizations 2101 * with a high magnitude that allows 64-bits to 2102 * overflow, but we nonetheless protect against this 2103 * by explicitly checking for overflow, and clamping 2104 * our value accordingly. 2105 */ 2106 value = this - 1; 2107 } 2108 2109 if (value < this) { 2110 /* 2111 * If our value lies within this order of magnitude, 2112 * determine its position by taking the offset within 2113 * the order of magnitude, dividing by the bucket 2114 * width, and adding to our (accumulated) base. 2115 */ 2116 return (base + (value - last) / (this / nbuckets)); 2117 } 2118 2119 base += nbuckets - (nbuckets / factor); 2120 last = this; 2121 this = next; 2122 } 2123 2124 /* 2125 * Our value is greater than or equal to our factor taken to the 2126 * power of one plus the high magnitude -- return the top bucket. 2127 */ 2128 return (base); 2129 } 2130 2131 static void 2132 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2133 { 2134 uint64_t arg = *llquanta++; 2135 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2136 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2137 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2138 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2139 2140 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2141 low, high, nsteps, nval)] += incr; 2142 } 2143 2144 /*ARGSUSED*/ 2145 static void 2146 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2147 { 2148 data[0]++; 2149 data[1] += nval; 2150 } 2151 2152 /*ARGSUSED*/ 2153 static void 2154 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2155 { 2156 int64_t snval = (int64_t)nval; 2157 uint64_t tmp[2]; 2158 2159 data[0]++; 2160 data[1] += nval; 2161 2162 /* 2163 * What we want to say here is: 2164 * 2165 * data[2] += nval * nval; 2166 * 2167 * But given that nval is 64-bit, we could easily overflow, so 2168 * we do this as 128-bit arithmetic. 2169 */ 2170 if (snval < 0) 2171 snval = -snval; 2172 2173 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2174 dtrace_add_128(data + 2, tmp, data + 2); 2175 } 2176 2177 /*ARGSUSED*/ 2178 static void 2179 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2180 { 2181 *oval = *oval + 1; 2182 } 2183 2184 /*ARGSUSED*/ 2185 static void 2186 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2187 { 2188 *oval += nval; 2189 } 2190 2191 /* 2192 * Aggregate given the tuple in the principal data buffer, and the aggregating 2193 * action denoted by the specified dtrace_aggregation_t. The aggregation 2194 * buffer is specified as the buf parameter. This routine does not return 2195 * failure; if there is no space in the aggregation buffer, the data will be 2196 * dropped, and a corresponding counter incremented. 2197 */ 2198 static void 2199 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2200 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2201 { 2202 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2203 uint32_t i, ndx, size, fsize; 2204 uint32_t align = sizeof (uint64_t) - 1; 2205 dtrace_aggbuffer_t *agb; 2206 dtrace_aggkey_t *key; 2207 uint32_t hashval = 0, limit, isstr; 2208 caddr_t tomax, data, kdata; 2209 dtrace_actkind_t action; 2210 dtrace_action_t *act; 2211 uintptr_t offs; 2212 2213 if (buf == NULL) 2214 return; 2215 2216 if (!agg->dtag_hasarg) { 2217 /* 2218 * Currently, only quantize() and lquantize() take additional 2219 * arguments, and they have the same semantics: an increment 2220 * value that defaults to 1 when not present. If additional 2221 * aggregating actions take arguments, the setting of the 2222 * default argument value will presumably have to become more 2223 * sophisticated... 2224 */ 2225 arg = 1; 2226 } 2227 2228 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2229 size = rec->dtrd_offset - agg->dtag_base; 2230 fsize = size + rec->dtrd_size; 2231 2232 ASSERT(dbuf->dtb_tomax != NULL); 2233 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2234 2235 if ((tomax = buf->dtb_tomax) == NULL) { 2236 dtrace_buffer_drop(buf); 2237 return; 2238 } 2239 2240 /* 2241 * The metastructure is always at the bottom of the buffer. 2242 */ 2243 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2244 sizeof (dtrace_aggbuffer_t)); 2245 2246 if (buf->dtb_offset == 0) { 2247 /* 2248 * We just kludge up approximately 1/8th of the size to be 2249 * buckets. If this guess ends up being routinely 2250 * off-the-mark, we may need to dynamically readjust this 2251 * based on past performance. 2252 */ 2253 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2254 2255 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2256 (uintptr_t)tomax || hashsize == 0) { 2257 /* 2258 * We've been given a ludicrously small buffer; 2259 * increment our drop count and leave. 2260 */ 2261 dtrace_buffer_drop(buf); 2262 return; 2263 } 2264 2265 /* 2266 * And now, a pathetic attempt to try to get a an odd (or 2267 * perchance, a prime) hash size for better hash distribution. 2268 */ 2269 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2270 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2271 2272 agb->dtagb_hashsize = hashsize; 2273 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2274 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2275 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2276 2277 for (i = 0; i < agb->dtagb_hashsize; i++) 2278 agb->dtagb_hash[i] = NULL; 2279 } 2280 2281 ASSERT(agg->dtag_first != NULL); 2282 ASSERT(agg->dtag_first->dta_intuple); 2283 2284 /* 2285 * Calculate the hash value based on the key. Note that we _don't_ 2286 * include the aggid in the hashing (but we will store it as part of 2287 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2288 * algorithm: a simple, quick algorithm that has no known funnels, and 2289 * gets good distribution in practice. The efficacy of the hashing 2290 * algorithm (and a comparison with other algorithms) may be found by 2291 * running the ::dtrace_aggstat MDB dcmd. 2292 */ 2293 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2294 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2295 limit = i + act->dta_rec.dtrd_size; 2296 ASSERT(limit <= size); 2297 isstr = DTRACEACT_ISSTRING(act); 2298 2299 for (; i < limit; i++) { 2300 hashval += data[i]; 2301 hashval += (hashval << 10); 2302 hashval ^= (hashval >> 6); 2303 2304 if (isstr && data[i] == '\0') 2305 break; 2306 } 2307 } 2308 2309 hashval += (hashval << 3); 2310 hashval ^= (hashval >> 11); 2311 hashval += (hashval << 15); 2312 2313 /* 2314 * Yes, the divide here is expensive -- but it's generally the least 2315 * of the performance issues given the amount of data that we iterate 2316 * over to compute hash values, compare data, etc. 2317 */ 2318 ndx = hashval % agb->dtagb_hashsize; 2319 2320 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2321 ASSERT((caddr_t)key >= tomax); 2322 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2323 2324 if (hashval != key->dtak_hashval || key->dtak_size != size) 2325 continue; 2326 2327 kdata = key->dtak_data; 2328 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2329 2330 for (act = agg->dtag_first; act->dta_intuple; 2331 act = act->dta_next) { 2332 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2333 limit = i + act->dta_rec.dtrd_size; 2334 ASSERT(limit <= size); 2335 isstr = DTRACEACT_ISSTRING(act); 2336 2337 for (; i < limit; i++) { 2338 if (kdata[i] != data[i]) 2339 goto next; 2340 2341 if (isstr && data[i] == '\0') 2342 break; 2343 } 2344 } 2345 2346 if (action != key->dtak_action) { 2347 /* 2348 * We are aggregating on the same value in the same 2349 * aggregation with two different aggregating actions. 2350 * (This should have been picked up in the compiler, 2351 * so we may be dealing with errant or devious DIF.) 2352 * This is an error condition; we indicate as much, 2353 * and return. 2354 */ 2355 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2356 return; 2357 } 2358 2359 /* 2360 * This is a hit: we need to apply the aggregator to 2361 * the value at this key. 2362 */ 2363 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2364 return; 2365 next: 2366 continue; 2367 } 2368 2369 /* 2370 * We didn't find it. We need to allocate some zero-filled space, 2371 * link it into the hash table appropriately, and apply the aggregator 2372 * to the (zero-filled) value. 2373 */ 2374 offs = buf->dtb_offset; 2375 while (offs & (align - 1)) 2376 offs += sizeof (uint32_t); 2377 2378 /* 2379 * If we don't have enough room to both allocate a new key _and_ 2380 * its associated data, increment the drop count and return. 2381 */ 2382 if ((uintptr_t)tomax + offs + fsize > 2383 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2384 dtrace_buffer_drop(buf); 2385 return; 2386 } 2387 2388 /*CONSTCOND*/ 2389 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2390 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2391 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2392 2393 key->dtak_data = kdata = tomax + offs; 2394 buf->dtb_offset = offs + fsize; 2395 2396 /* 2397 * Now copy the data across. 2398 */ 2399 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2400 2401 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2402 kdata[i] = data[i]; 2403 2404 /* 2405 * Because strings are not zeroed out by default, we need to iterate 2406 * looking for actions that store strings, and we need to explicitly 2407 * pad these strings out with zeroes. 2408 */ 2409 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2410 int nul; 2411 2412 if (!DTRACEACT_ISSTRING(act)) 2413 continue; 2414 2415 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2416 limit = i + act->dta_rec.dtrd_size; 2417 ASSERT(limit <= size); 2418 2419 for (nul = 0; i < limit; i++) { 2420 if (nul) { 2421 kdata[i] = '\0'; 2422 continue; 2423 } 2424 2425 if (data[i] != '\0') 2426 continue; 2427 2428 nul = 1; 2429 } 2430 } 2431 2432 for (i = size; i < fsize; i++) 2433 kdata[i] = 0; 2434 2435 key->dtak_hashval = hashval; 2436 key->dtak_size = size; 2437 key->dtak_action = action; 2438 key->dtak_next = agb->dtagb_hash[ndx]; 2439 agb->dtagb_hash[ndx] = key; 2440 2441 /* 2442 * Finally, apply the aggregator. 2443 */ 2444 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2445 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2446 } 2447 2448 /* 2449 * Given consumer state, this routine finds a speculation in the INACTIVE 2450 * state and transitions it into the ACTIVE state. If there is no speculation 2451 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2452 * incremented -- it is up to the caller to take appropriate action. 2453 */ 2454 static int 2455 dtrace_speculation(dtrace_state_t *state) 2456 { 2457 int i = 0; 2458 dtrace_speculation_state_t current; 2459 uint32_t *stat = &state->dts_speculations_unavail, count; 2460 2461 while (i < state->dts_nspeculations) { 2462 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2463 2464 current = spec->dtsp_state; 2465 2466 if (current != DTRACESPEC_INACTIVE) { 2467 if (current == DTRACESPEC_COMMITTINGMANY || 2468 current == DTRACESPEC_COMMITTING || 2469 current == DTRACESPEC_DISCARDING) 2470 stat = &state->dts_speculations_busy; 2471 i++; 2472 continue; 2473 } 2474 2475 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2476 current, DTRACESPEC_ACTIVE) == current) 2477 return (i + 1); 2478 } 2479 2480 /* 2481 * We couldn't find a speculation. If we found as much as a single 2482 * busy speculation buffer, we'll attribute this failure as "busy" 2483 * instead of "unavail". 2484 */ 2485 do { 2486 count = *stat; 2487 } while (dtrace_cas32(stat, count, count + 1) != count); 2488 2489 return (0); 2490 } 2491 2492 /* 2493 * This routine commits an active speculation. If the specified speculation 2494 * is not in a valid state to perform a commit(), this routine will silently do 2495 * nothing. The state of the specified speculation is transitioned according 2496 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2497 */ 2498 static void 2499 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2500 dtrace_specid_t which) 2501 { 2502 dtrace_speculation_t *spec; 2503 dtrace_buffer_t *src, *dest; 2504 uintptr_t daddr, saddr, dlimit, slimit; 2505 dtrace_speculation_state_t current, new; 2506 intptr_t offs; 2507 uint64_t timestamp; 2508 2509 if (which == 0) 2510 return; 2511 2512 if (which > state->dts_nspeculations) { 2513 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2514 return; 2515 } 2516 2517 spec = &state->dts_speculations[which - 1]; 2518 src = &spec->dtsp_buffer[cpu]; 2519 dest = &state->dts_buffer[cpu]; 2520 2521 do { 2522 current = spec->dtsp_state; 2523 2524 if (current == DTRACESPEC_COMMITTINGMANY) 2525 break; 2526 2527 switch (current) { 2528 case DTRACESPEC_INACTIVE: 2529 case DTRACESPEC_DISCARDING: 2530 return; 2531 2532 case DTRACESPEC_COMMITTING: 2533 /* 2534 * This is only possible if we are (a) commit()'ing 2535 * without having done a prior speculate() on this CPU 2536 * and (b) racing with another commit() on a different 2537 * CPU. There's nothing to do -- we just assert that 2538 * our offset is 0. 2539 */ 2540 ASSERT(src->dtb_offset == 0); 2541 return; 2542 2543 case DTRACESPEC_ACTIVE: 2544 new = DTRACESPEC_COMMITTING; 2545 break; 2546 2547 case DTRACESPEC_ACTIVEONE: 2548 /* 2549 * This speculation is active on one CPU. If our 2550 * buffer offset is non-zero, we know that the one CPU 2551 * must be us. Otherwise, we are committing on a 2552 * different CPU from the speculate(), and we must 2553 * rely on being asynchronously cleaned. 2554 */ 2555 if (src->dtb_offset != 0) { 2556 new = DTRACESPEC_COMMITTING; 2557 break; 2558 } 2559 /*FALLTHROUGH*/ 2560 2561 case DTRACESPEC_ACTIVEMANY: 2562 new = DTRACESPEC_COMMITTINGMANY; 2563 break; 2564 2565 default: 2566 ASSERT(0); 2567 } 2568 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2569 current, new) != current); 2570 2571 /* 2572 * We have set the state to indicate that we are committing this 2573 * speculation. Now reserve the necessary space in the destination 2574 * buffer. 2575 */ 2576 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2577 sizeof (uint64_t), state, NULL)) < 0) { 2578 dtrace_buffer_drop(dest); 2579 goto out; 2580 } 2581 2582 /* 2583 * We have sufficient space to copy the speculative buffer into the 2584 * primary buffer. First, modify the speculative buffer, filling 2585 * in the timestamp of all entries with the current time. The data 2586 * must have the commit() time rather than the time it was traced, 2587 * so that all entries in the primary buffer are in timestamp order. 2588 */ 2589 timestamp = dtrace_gethrtime(); 2590 saddr = (uintptr_t)src->dtb_tomax; 2591 slimit = saddr + src->dtb_offset; 2592 while (saddr < slimit) { 2593 size_t size; 2594 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2595 2596 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2597 saddr += sizeof (dtrace_epid_t); 2598 continue; 2599 } 2600 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2601 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2602 2603 ASSERT3U(saddr + size, <=, slimit); 2604 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2605 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2606 2607 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2608 2609 saddr += size; 2610 } 2611 2612 /* 2613 * Copy the buffer across. (Note that this is a 2614 * highly subobtimal bcopy(); in the unlikely event that this becomes 2615 * a serious performance issue, a high-performance DTrace-specific 2616 * bcopy() should obviously be invented.) 2617 */ 2618 daddr = (uintptr_t)dest->dtb_tomax + offs; 2619 dlimit = daddr + src->dtb_offset; 2620 saddr = (uintptr_t)src->dtb_tomax; 2621 2622 /* 2623 * First, the aligned portion. 2624 */ 2625 while (dlimit - daddr >= sizeof (uint64_t)) { 2626 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2627 2628 daddr += sizeof (uint64_t); 2629 saddr += sizeof (uint64_t); 2630 } 2631 2632 /* 2633 * Now any left-over bit... 2634 */ 2635 while (dlimit - daddr) 2636 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2637 2638 /* 2639 * Finally, commit the reserved space in the destination buffer. 2640 */ 2641 dest->dtb_offset = offs + src->dtb_offset; 2642 2643 out: 2644 /* 2645 * If we're lucky enough to be the only active CPU on this speculation 2646 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2647 */ 2648 if (current == DTRACESPEC_ACTIVE || 2649 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2650 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2651 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2652 2653 ASSERT(rval == DTRACESPEC_COMMITTING); 2654 } 2655 2656 src->dtb_offset = 0; 2657 src->dtb_xamot_drops += src->dtb_drops; 2658 src->dtb_drops = 0; 2659 } 2660 2661 /* 2662 * This routine discards an active speculation. If the specified speculation 2663 * is not in a valid state to perform a discard(), this routine will silently 2664 * do nothing. The state of the specified speculation is transitioned 2665 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2666 */ 2667 static void 2668 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2669 dtrace_specid_t which) 2670 { 2671 dtrace_speculation_t *spec; 2672 dtrace_speculation_state_t current, new; 2673 dtrace_buffer_t *buf; 2674 2675 if (which == 0) 2676 return; 2677 2678 if (which > state->dts_nspeculations) { 2679 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2680 return; 2681 } 2682 2683 spec = &state->dts_speculations[which - 1]; 2684 buf = &spec->dtsp_buffer[cpu]; 2685 2686 do { 2687 current = spec->dtsp_state; 2688 2689 switch (current) { 2690 case DTRACESPEC_INACTIVE: 2691 case DTRACESPEC_COMMITTINGMANY: 2692 case DTRACESPEC_COMMITTING: 2693 case DTRACESPEC_DISCARDING: 2694 return; 2695 2696 case DTRACESPEC_ACTIVE: 2697 case DTRACESPEC_ACTIVEMANY: 2698 new = DTRACESPEC_DISCARDING; 2699 break; 2700 2701 case DTRACESPEC_ACTIVEONE: 2702 if (buf->dtb_offset != 0) { 2703 new = DTRACESPEC_INACTIVE; 2704 } else { 2705 new = DTRACESPEC_DISCARDING; 2706 } 2707 break; 2708 2709 default: 2710 ASSERT(0); 2711 } 2712 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2713 current, new) != current); 2714 2715 buf->dtb_offset = 0; 2716 buf->dtb_drops = 0; 2717 } 2718 2719 /* 2720 * Note: not called from probe context. This function is called 2721 * asynchronously from cross call context to clean any speculations that are 2722 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2723 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2724 * speculation. 2725 */ 2726 static void 2727 dtrace_speculation_clean_here(dtrace_state_t *state) 2728 { 2729 dtrace_icookie_t cookie; 2730 processorid_t cpu = CPU->cpu_id; 2731 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2732 dtrace_specid_t i; 2733 2734 cookie = dtrace_interrupt_disable(); 2735 2736 if (dest->dtb_tomax == NULL) { 2737 dtrace_interrupt_enable(cookie); 2738 return; 2739 } 2740 2741 for (i = 0; i < state->dts_nspeculations; i++) { 2742 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2743 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2744 2745 if (src->dtb_tomax == NULL) 2746 continue; 2747 2748 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2749 src->dtb_offset = 0; 2750 continue; 2751 } 2752 2753 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2754 continue; 2755 2756 if (src->dtb_offset == 0) 2757 continue; 2758 2759 dtrace_speculation_commit(state, cpu, i + 1); 2760 } 2761 2762 dtrace_interrupt_enable(cookie); 2763 } 2764 2765 /* 2766 * Note: not called from probe context. This function is called 2767 * asynchronously (and at a regular interval) to clean any speculations that 2768 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2769 * is work to be done, it cross calls all CPUs to perform that work; 2770 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2771 * INACTIVE state until they have been cleaned by all CPUs. 2772 */ 2773 static void 2774 dtrace_speculation_clean(dtrace_state_t *state) 2775 { 2776 int work = 0, rv; 2777 dtrace_specid_t i; 2778 2779 for (i = 0; i < state->dts_nspeculations; i++) { 2780 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2781 2782 ASSERT(!spec->dtsp_cleaning); 2783 2784 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2785 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2786 continue; 2787 2788 work++; 2789 spec->dtsp_cleaning = 1; 2790 } 2791 2792 if (!work) 2793 return; 2794 2795 dtrace_xcall(DTRACE_CPUALL, 2796 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2797 2798 /* 2799 * We now know that all CPUs have committed or discarded their 2800 * speculation buffers, as appropriate. We can now set the state 2801 * to inactive. 2802 */ 2803 for (i = 0; i < state->dts_nspeculations; i++) { 2804 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2805 dtrace_speculation_state_t current, new; 2806 2807 if (!spec->dtsp_cleaning) 2808 continue; 2809 2810 current = spec->dtsp_state; 2811 ASSERT(current == DTRACESPEC_DISCARDING || 2812 current == DTRACESPEC_COMMITTINGMANY); 2813 2814 new = DTRACESPEC_INACTIVE; 2815 2816 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2817 ASSERT(rv == current); 2818 spec->dtsp_cleaning = 0; 2819 } 2820 } 2821 2822 /* 2823 * Called as part of a speculate() to get the speculative buffer associated 2824 * with a given speculation. Returns NULL if the specified speculation is not 2825 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2826 * the active CPU is not the specified CPU -- the speculation will be 2827 * atomically transitioned into the ACTIVEMANY state. 2828 */ 2829 static dtrace_buffer_t * 2830 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2831 dtrace_specid_t which) 2832 { 2833 dtrace_speculation_t *spec; 2834 dtrace_speculation_state_t current, new; 2835 dtrace_buffer_t *buf; 2836 2837 if (which == 0) 2838 return (NULL); 2839 2840 if (which > state->dts_nspeculations) { 2841 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2842 return (NULL); 2843 } 2844 2845 spec = &state->dts_speculations[which - 1]; 2846 buf = &spec->dtsp_buffer[cpuid]; 2847 2848 do { 2849 current = spec->dtsp_state; 2850 2851 switch (current) { 2852 case DTRACESPEC_INACTIVE: 2853 case DTRACESPEC_COMMITTINGMANY: 2854 case DTRACESPEC_DISCARDING: 2855 return (NULL); 2856 2857 case DTRACESPEC_COMMITTING: 2858 ASSERT(buf->dtb_offset == 0); 2859 return (NULL); 2860 2861 case DTRACESPEC_ACTIVEONE: 2862 /* 2863 * This speculation is currently active on one CPU. 2864 * Check the offset in the buffer; if it's non-zero, 2865 * that CPU must be us (and we leave the state alone). 2866 * If it's zero, assume that we're starting on a new 2867 * CPU -- and change the state to indicate that the 2868 * speculation is active on more than one CPU. 2869 */ 2870 if (buf->dtb_offset != 0) 2871 return (buf); 2872 2873 new = DTRACESPEC_ACTIVEMANY; 2874 break; 2875 2876 case DTRACESPEC_ACTIVEMANY: 2877 return (buf); 2878 2879 case DTRACESPEC_ACTIVE: 2880 new = DTRACESPEC_ACTIVEONE; 2881 break; 2882 2883 default: 2884 ASSERT(0); 2885 } 2886 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2887 current, new) != current); 2888 2889 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2890 return (buf); 2891 } 2892 2893 /* 2894 * Return a string. In the event that the user lacks the privilege to access 2895 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2896 * don't fail access checking. 2897 * 2898 * dtrace_dif_variable() uses this routine as a helper for various 2899 * builtin values such as 'execname' and 'probefunc.' 2900 */ 2901 uintptr_t 2902 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2903 dtrace_mstate_t *mstate) 2904 { 2905 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2906 uintptr_t ret; 2907 size_t strsz; 2908 2909 /* 2910 * The easy case: this probe is allowed to read all of memory, so 2911 * we can just return this as a vanilla pointer. 2912 */ 2913 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2914 return (addr); 2915 2916 /* 2917 * This is the tougher case: we copy the string in question from 2918 * kernel memory into scratch memory and return it that way: this 2919 * ensures that we won't trip up when access checking tests the 2920 * BYREF return value. 2921 */ 2922 strsz = dtrace_strlen((char *)addr, size) + 1; 2923 2924 if (mstate->dtms_scratch_ptr + strsz > 2925 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2926 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2927 return (NULL); 2928 } 2929 2930 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2931 strsz); 2932 ret = mstate->dtms_scratch_ptr; 2933 mstate->dtms_scratch_ptr += strsz; 2934 return (ret); 2935 } 2936 2937 /* 2938 * This function implements the DIF emulator's variable lookups. The emulator 2939 * passes a reserved variable identifier and optional built-in array index. 2940 */ 2941 static uint64_t 2942 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2943 uint64_t ndx) 2944 { 2945 /* 2946 * If we're accessing one of the uncached arguments, we'll turn this 2947 * into a reference in the args array. 2948 */ 2949 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2950 ndx = v - DIF_VAR_ARG0; 2951 v = DIF_VAR_ARGS; 2952 } 2953 2954 switch (v) { 2955 case DIF_VAR_ARGS: 2956 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 2957 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 2958 CPU_DTRACE_KPRIV; 2959 return (0); 2960 } 2961 2962 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2963 if (ndx >= sizeof (mstate->dtms_arg) / 2964 sizeof (mstate->dtms_arg[0])) { 2965 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2966 dtrace_provider_t *pv; 2967 uint64_t val; 2968 2969 pv = mstate->dtms_probe->dtpr_provider; 2970 if (pv->dtpv_pops.dtps_getargval != NULL) 2971 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2972 mstate->dtms_probe->dtpr_id, 2973 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2974 else 2975 val = dtrace_getarg(ndx, aframes); 2976 2977 /* 2978 * This is regrettably required to keep the compiler 2979 * from tail-optimizing the call to dtrace_getarg(). 2980 * The condition always evaluates to true, but the 2981 * compiler has no way of figuring that out a priori. 2982 * (None of this would be necessary if the compiler 2983 * could be relied upon to _always_ tail-optimize 2984 * the call to dtrace_getarg() -- but it can't.) 2985 */ 2986 if (mstate->dtms_probe != NULL) 2987 return (val); 2988 2989 ASSERT(0); 2990 } 2991 2992 return (mstate->dtms_arg[ndx]); 2993 2994 case DIF_VAR_UREGS: { 2995 klwp_t *lwp; 2996 2997 if (!dtrace_priv_proc(state, mstate)) 2998 return (0); 2999 3000 if ((lwp = curthread->t_lwp) == NULL) { 3001 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3002 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3003 return (0); 3004 } 3005 3006 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3007 } 3008 3009 case DIF_VAR_VMREGS: { 3010 uint64_t rval; 3011 3012 if (!dtrace_priv_kernel(state)) 3013 return (0); 3014 3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3016 3017 rval = dtrace_getvmreg(ndx, 3018 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3019 3020 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3021 3022 return (rval); 3023 } 3024 3025 case DIF_VAR_CURTHREAD: 3026 if (!dtrace_priv_proc(state, mstate)) 3027 return (0); 3028 return ((uint64_t)(uintptr_t)curthread); 3029 3030 case DIF_VAR_TIMESTAMP: 3031 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3032 mstate->dtms_timestamp = dtrace_gethrtime(); 3033 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3034 } 3035 return (mstate->dtms_timestamp); 3036 3037 case DIF_VAR_VTIMESTAMP: 3038 ASSERT(dtrace_vtime_references != 0); 3039 return (curthread->t_dtrace_vtime); 3040 3041 case DIF_VAR_WALLTIMESTAMP: 3042 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3043 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3044 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3045 } 3046 return (mstate->dtms_walltimestamp); 3047 3048 case DIF_VAR_IPL: 3049 if (!dtrace_priv_kernel(state)) 3050 return (0); 3051 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3052 mstate->dtms_ipl = dtrace_getipl(); 3053 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3054 } 3055 return (mstate->dtms_ipl); 3056 3057 case DIF_VAR_EPID: 3058 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3059 return (mstate->dtms_epid); 3060 3061 case DIF_VAR_ID: 3062 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3063 return (mstate->dtms_probe->dtpr_id); 3064 3065 case DIF_VAR_STACKDEPTH: 3066 if (!dtrace_priv_kernel(state)) 3067 return (0); 3068 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3069 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3070 3071 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3072 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3073 } 3074 return (mstate->dtms_stackdepth); 3075 3076 case DIF_VAR_USTACKDEPTH: 3077 if (!dtrace_priv_proc(state, mstate)) 3078 return (0); 3079 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3080 /* 3081 * See comment in DIF_VAR_PID. 3082 */ 3083 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3084 CPU_ON_INTR(CPU)) { 3085 mstate->dtms_ustackdepth = 0; 3086 } else { 3087 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3088 mstate->dtms_ustackdepth = 3089 dtrace_getustackdepth(); 3090 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3091 } 3092 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3093 } 3094 return (mstate->dtms_ustackdepth); 3095 3096 case DIF_VAR_CALLER: 3097 if (!dtrace_priv_kernel(state)) 3098 return (0); 3099 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3100 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3101 3102 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3103 /* 3104 * If this is an unanchored probe, we are 3105 * required to go through the slow path: 3106 * dtrace_caller() only guarantees correct 3107 * results for anchored probes. 3108 */ 3109 pc_t caller[2]; 3110 3111 dtrace_getpcstack(caller, 2, aframes, 3112 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3113 mstate->dtms_caller = caller[1]; 3114 } else if ((mstate->dtms_caller = 3115 dtrace_caller(aframes)) == -1) { 3116 /* 3117 * We have failed to do this the quick way; 3118 * we must resort to the slower approach of 3119 * calling dtrace_getpcstack(). 3120 */ 3121 pc_t caller; 3122 3123 dtrace_getpcstack(&caller, 1, aframes, NULL); 3124 mstate->dtms_caller = caller; 3125 } 3126 3127 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3128 } 3129 return (mstate->dtms_caller); 3130 3131 case DIF_VAR_UCALLER: 3132 if (!dtrace_priv_proc(state, mstate)) 3133 return (0); 3134 3135 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3136 uint64_t ustack[3]; 3137 3138 /* 3139 * dtrace_getupcstack() fills in the first uint64_t 3140 * with the current PID. The second uint64_t will 3141 * be the program counter at user-level. The third 3142 * uint64_t will contain the caller, which is what 3143 * we're after. 3144 */ 3145 ustack[2] = NULL; 3146 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3147 dtrace_getupcstack(ustack, 3); 3148 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3149 mstate->dtms_ucaller = ustack[2]; 3150 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3151 } 3152 3153 return (mstate->dtms_ucaller); 3154 3155 case DIF_VAR_PROBEPROV: 3156 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3157 return (dtrace_dif_varstr( 3158 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3159 state, mstate)); 3160 3161 case DIF_VAR_PROBEMOD: 3162 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3163 return (dtrace_dif_varstr( 3164 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3165 state, mstate)); 3166 3167 case DIF_VAR_PROBEFUNC: 3168 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3169 return (dtrace_dif_varstr( 3170 (uintptr_t)mstate->dtms_probe->dtpr_func, 3171 state, mstate)); 3172 3173 case DIF_VAR_PROBENAME: 3174 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3175 return (dtrace_dif_varstr( 3176 (uintptr_t)mstate->dtms_probe->dtpr_name, 3177 state, mstate)); 3178 3179 case DIF_VAR_PID: 3180 if (!dtrace_priv_proc(state, mstate)) 3181 return (0); 3182 3183 /* 3184 * Note that we are assuming that an unanchored probe is 3185 * always due to a high-level interrupt. (And we're assuming 3186 * that there is only a single high level interrupt.) 3187 */ 3188 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3189 return (pid0.pid_id); 3190 3191 /* 3192 * It is always safe to dereference one's own t_procp pointer: 3193 * it always points to a valid, allocated proc structure. 3194 * Further, it is always safe to dereference the p_pidp member 3195 * of one's own proc structure. (These are truisms becuase 3196 * threads and processes don't clean up their own state -- 3197 * they leave that task to whomever reaps them.) 3198 */ 3199 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3200 3201 case DIF_VAR_PPID: 3202 if (!dtrace_priv_proc(state, mstate)) 3203 return (0); 3204 3205 /* 3206 * See comment in DIF_VAR_PID. 3207 */ 3208 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3209 return (pid0.pid_id); 3210 3211 /* 3212 * It is always safe to dereference one's own t_procp pointer: 3213 * it always points to a valid, allocated proc structure. 3214 * (This is true because threads don't clean up their own 3215 * state -- they leave that task to whomever reaps them.) 3216 */ 3217 return ((uint64_t)curthread->t_procp->p_ppid); 3218 3219 case DIF_VAR_TID: 3220 /* 3221 * See comment in DIF_VAR_PID. 3222 */ 3223 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3224 return (0); 3225 3226 return ((uint64_t)curthread->t_tid); 3227 3228 case DIF_VAR_EXECNAME: 3229 if (!dtrace_priv_proc(state, mstate)) 3230 return (0); 3231 3232 /* 3233 * See comment in DIF_VAR_PID. 3234 */ 3235 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3236 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3237 3238 /* 3239 * It is always safe to dereference one's own t_procp pointer: 3240 * it always points to a valid, allocated proc structure. 3241 * (This is true because threads don't clean up their own 3242 * state -- they leave that task to whomever reaps them.) 3243 */ 3244 return (dtrace_dif_varstr( 3245 (uintptr_t)curthread->t_procp->p_user.u_comm, 3246 state, mstate)); 3247 3248 case DIF_VAR_ZONENAME: 3249 if (!dtrace_priv_proc(state, mstate)) 3250 return (0); 3251 3252 /* 3253 * See comment in DIF_VAR_PID. 3254 */ 3255 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3256 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3257 3258 /* 3259 * It is always safe to dereference one's own t_procp pointer: 3260 * it always points to a valid, allocated proc structure. 3261 * (This is true because threads don't clean up their own 3262 * state -- they leave that task to whomever reaps them.) 3263 */ 3264 return (dtrace_dif_varstr( 3265 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3266 state, mstate)); 3267 3268 case DIF_VAR_UID: 3269 if (!dtrace_priv_proc(state, mstate)) 3270 return (0); 3271 3272 /* 3273 * See comment in DIF_VAR_PID. 3274 */ 3275 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3276 return ((uint64_t)p0.p_cred->cr_uid); 3277 3278 /* 3279 * It is always safe to dereference one's own t_procp pointer: 3280 * it always points to a valid, allocated proc structure. 3281 * (This is true because threads don't clean up their own 3282 * state -- they leave that task to whomever reaps them.) 3283 * 3284 * Additionally, it is safe to dereference one's own process 3285 * credential, since this is never NULL after process birth. 3286 */ 3287 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3288 3289 case DIF_VAR_GID: 3290 if (!dtrace_priv_proc(state, mstate)) 3291 return (0); 3292 3293 /* 3294 * See comment in DIF_VAR_PID. 3295 */ 3296 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3297 return ((uint64_t)p0.p_cred->cr_gid); 3298 3299 /* 3300 * It is always safe to dereference one's own t_procp pointer: 3301 * it always points to a valid, allocated proc structure. 3302 * (This is true because threads don't clean up their own 3303 * state -- they leave that task to whomever reaps them.) 3304 * 3305 * Additionally, it is safe to dereference one's own process 3306 * credential, since this is never NULL after process birth. 3307 */ 3308 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3309 3310 case DIF_VAR_ERRNO: { 3311 klwp_t *lwp; 3312 if (!dtrace_priv_proc(state, mstate)) 3313 return (0); 3314 3315 /* 3316 * See comment in DIF_VAR_PID. 3317 */ 3318 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3319 return (0); 3320 3321 /* 3322 * It is always safe to dereference one's own t_lwp pointer in 3323 * the event that this pointer is non-NULL. (This is true 3324 * because threads and lwps don't clean up their own state -- 3325 * they leave that task to whomever reaps them.) 3326 */ 3327 if ((lwp = curthread->t_lwp) == NULL) 3328 return (0); 3329 3330 return ((uint64_t)lwp->lwp_errno); 3331 } 3332 default: 3333 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3334 return (0); 3335 } 3336 } 3337 3338 /* 3339 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3340 * Notice that we don't bother validating the proper number of arguments or 3341 * their types in the tuple stack. This isn't needed because all argument 3342 * interpretation is safe because of our load safety -- the worst that can 3343 * happen is that a bogus program can obtain bogus results. 3344 */ 3345 static void 3346 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3347 dtrace_key_t *tupregs, int nargs, 3348 dtrace_mstate_t *mstate, dtrace_state_t *state) 3349 { 3350 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3351 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3352 dtrace_vstate_t *vstate = &state->dts_vstate; 3353 3354 union { 3355 mutex_impl_t mi; 3356 uint64_t mx; 3357 } m; 3358 3359 union { 3360 krwlock_t ri; 3361 uintptr_t rw; 3362 } r; 3363 3364 switch (subr) { 3365 case DIF_SUBR_RAND: 3366 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3367 break; 3368 3369 case DIF_SUBR_MUTEX_OWNED: 3370 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3371 mstate, vstate)) { 3372 regs[rd] = NULL; 3373 break; 3374 } 3375 3376 m.mx = dtrace_load64(tupregs[0].dttk_value); 3377 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3378 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3379 else 3380 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3381 break; 3382 3383 case DIF_SUBR_MUTEX_OWNER: 3384 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3385 mstate, vstate)) { 3386 regs[rd] = NULL; 3387 break; 3388 } 3389 3390 m.mx = dtrace_load64(tupregs[0].dttk_value); 3391 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3392 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3393 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3394 else 3395 regs[rd] = 0; 3396 break; 3397 3398 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3399 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3400 mstate, vstate)) { 3401 regs[rd] = NULL; 3402 break; 3403 } 3404 3405 m.mx = dtrace_load64(tupregs[0].dttk_value); 3406 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3407 break; 3408 3409 case DIF_SUBR_MUTEX_TYPE_SPIN: 3410 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3411 mstate, vstate)) { 3412 regs[rd] = NULL; 3413 break; 3414 } 3415 3416 m.mx = dtrace_load64(tupregs[0].dttk_value); 3417 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3418 break; 3419 3420 case DIF_SUBR_RW_READ_HELD: { 3421 uintptr_t tmp; 3422 3423 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3424 mstate, vstate)) { 3425 regs[rd] = NULL; 3426 break; 3427 } 3428 3429 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3430 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3431 break; 3432 } 3433 3434 case DIF_SUBR_RW_WRITE_HELD: 3435 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3436 mstate, vstate)) { 3437 regs[rd] = NULL; 3438 break; 3439 } 3440 3441 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3442 regs[rd] = _RW_WRITE_HELD(&r.ri); 3443 break; 3444 3445 case DIF_SUBR_RW_ISWRITER: 3446 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3447 mstate, vstate)) { 3448 regs[rd] = NULL; 3449 break; 3450 } 3451 3452 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3453 regs[rd] = _RW_ISWRITER(&r.ri); 3454 break; 3455 3456 case DIF_SUBR_BCOPY: { 3457 /* 3458 * We need to be sure that the destination is in the scratch 3459 * region -- no other region is allowed. 3460 */ 3461 uintptr_t src = tupregs[0].dttk_value; 3462 uintptr_t dest = tupregs[1].dttk_value; 3463 size_t size = tupregs[2].dttk_value; 3464 3465 if (!dtrace_inscratch(dest, size, mstate)) { 3466 *flags |= CPU_DTRACE_BADADDR; 3467 *illval = regs[rd]; 3468 break; 3469 } 3470 3471 if (!dtrace_canload(src, size, mstate, vstate)) { 3472 regs[rd] = NULL; 3473 break; 3474 } 3475 3476 dtrace_bcopy((void *)src, (void *)dest, size); 3477 break; 3478 } 3479 3480 case DIF_SUBR_ALLOCA: 3481 case DIF_SUBR_COPYIN: { 3482 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3483 uint64_t size = 3484 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3485 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3486 3487 /* 3488 * This action doesn't require any credential checks since 3489 * probes will not activate in user contexts to which the 3490 * enabling user does not have permissions. 3491 */ 3492 3493 /* 3494 * Rounding up the user allocation size could have overflowed 3495 * a large, bogus allocation (like -1ULL) to 0. 3496 */ 3497 if (scratch_size < size || 3498 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3499 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3500 regs[rd] = NULL; 3501 break; 3502 } 3503 3504 if (subr == DIF_SUBR_COPYIN) { 3505 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3506 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3507 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3508 } 3509 3510 mstate->dtms_scratch_ptr += scratch_size; 3511 regs[rd] = dest; 3512 break; 3513 } 3514 3515 case DIF_SUBR_COPYINTO: { 3516 uint64_t size = tupregs[1].dttk_value; 3517 uintptr_t dest = tupregs[2].dttk_value; 3518 3519 /* 3520 * This action doesn't require any credential checks since 3521 * probes will not activate in user contexts to which the 3522 * enabling user does not have permissions. 3523 */ 3524 if (!dtrace_inscratch(dest, size, mstate)) { 3525 *flags |= CPU_DTRACE_BADADDR; 3526 *illval = regs[rd]; 3527 break; 3528 } 3529 3530 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3531 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3532 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3533 break; 3534 } 3535 3536 case DIF_SUBR_COPYINSTR: { 3537 uintptr_t dest = mstate->dtms_scratch_ptr; 3538 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3539 3540 if (nargs > 1 && tupregs[1].dttk_value < size) 3541 size = tupregs[1].dttk_value + 1; 3542 3543 /* 3544 * This action doesn't require any credential checks since 3545 * probes will not activate in user contexts to which the 3546 * enabling user does not have permissions. 3547 */ 3548 if (!DTRACE_INSCRATCH(mstate, size)) { 3549 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3550 regs[rd] = NULL; 3551 break; 3552 } 3553 3554 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3555 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3556 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3557 3558 ((char *)dest)[size - 1] = '\0'; 3559 mstate->dtms_scratch_ptr += size; 3560 regs[rd] = dest; 3561 break; 3562 } 3563 3564 case DIF_SUBR_MSGSIZE: 3565 case DIF_SUBR_MSGDSIZE: { 3566 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3567 uintptr_t wptr, rptr; 3568 size_t count = 0; 3569 int cont = 0; 3570 3571 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3572 3573 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3574 vstate)) { 3575 regs[rd] = NULL; 3576 break; 3577 } 3578 3579 wptr = dtrace_loadptr(baddr + 3580 offsetof(mblk_t, b_wptr)); 3581 3582 rptr = dtrace_loadptr(baddr + 3583 offsetof(mblk_t, b_rptr)); 3584 3585 if (wptr < rptr) { 3586 *flags |= CPU_DTRACE_BADADDR; 3587 *illval = tupregs[0].dttk_value; 3588 break; 3589 } 3590 3591 daddr = dtrace_loadptr(baddr + 3592 offsetof(mblk_t, b_datap)); 3593 3594 baddr = dtrace_loadptr(baddr + 3595 offsetof(mblk_t, b_cont)); 3596 3597 /* 3598 * We want to prevent against denial-of-service here, 3599 * so we're only going to search the list for 3600 * dtrace_msgdsize_max mblks. 3601 */ 3602 if (cont++ > dtrace_msgdsize_max) { 3603 *flags |= CPU_DTRACE_ILLOP; 3604 break; 3605 } 3606 3607 if (subr == DIF_SUBR_MSGDSIZE) { 3608 if (dtrace_load8(daddr + 3609 offsetof(dblk_t, db_type)) != M_DATA) 3610 continue; 3611 } 3612 3613 count += wptr - rptr; 3614 } 3615 3616 if (!(*flags & CPU_DTRACE_FAULT)) 3617 regs[rd] = count; 3618 3619 break; 3620 } 3621 3622 case DIF_SUBR_PROGENYOF: { 3623 pid_t pid = tupregs[0].dttk_value; 3624 proc_t *p; 3625 int rval = 0; 3626 3627 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3628 3629 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3630 if (p->p_pidp->pid_id == pid) { 3631 rval = 1; 3632 break; 3633 } 3634 } 3635 3636 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3637 3638 regs[rd] = rval; 3639 break; 3640 } 3641 3642 case DIF_SUBR_SPECULATION: 3643 regs[rd] = dtrace_speculation(state); 3644 break; 3645 3646 case DIF_SUBR_COPYOUT: { 3647 uintptr_t kaddr = tupregs[0].dttk_value; 3648 uintptr_t uaddr = tupregs[1].dttk_value; 3649 uint64_t size = tupregs[2].dttk_value; 3650 3651 if (!dtrace_destructive_disallow && 3652 dtrace_priv_proc_control(state, mstate) && 3653 !dtrace_istoxic(kaddr, size)) { 3654 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3655 dtrace_copyout(kaddr, uaddr, size, flags); 3656 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3657 } 3658 break; 3659 } 3660 3661 case DIF_SUBR_COPYOUTSTR: { 3662 uintptr_t kaddr = tupregs[0].dttk_value; 3663 uintptr_t uaddr = tupregs[1].dttk_value; 3664 uint64_t size = tupregs[2].dttk_value; 3665 3666 if (!dtrace_destructive_disallow && 3667 dtrace_priv_proc_control(state, mstate) && 3668 !dtrace_istoxic(kaddr, size)) { 3669 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3670 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3671 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3672 } 3673 break; 3674 } 3675 3676 case DIF_SUBR_STRLEN: { 3677 size_t sz; 3678 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3679 sz = dtrace_strlen((char *)addr, 3680 state->dts_options[DTRACEOPT_STRSIZE]); 3681 3682 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3683 regs[rd] = NULL; 3684 break; 3685 } 3686 3687 regs[rd] = sz; 3688 3689 break; 3690 } 3691 3692 case DIF_SUBR_STRCHR: 3693 case DIF_SUBR_STRRCHR: { 3694 /* 3695 * We're going to iterate over the string looking for the 3696 * specified character. We will iterate until we have reached 3697 * the string length or we have found the character. If this 3698 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3699 * of the specified character instead of the first. 3700 */ 3701 uintptr_t saddr = tupregs[0].dttk_value; 3702 uintptr_t addr = tupregs[0].dttk_value; 3703 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3704 char c, target = (char)tupregs[1].dttk_value; 3705 3706 for (regs[rd] = NULL; addr < limit; addr++) { 3707 if ((c = dtrace_load8(addr)) == target) { 3708 regs[rd] = addr; 3709 3710 if (subr == DIF_SUBR_STRCHR) 3711 break; 3712 } 3713 3714 if (c == '\0') 3715 break; 3716 } 3717 3718 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3719 regs[rd] = NULL; 3720 break; 3721 } 3722 3723 break; 3724 } 3725 3726 case DIF_SUBR_STRSTR: 3727 case DIF_SUBR_INDEX: 3728 case DIF_SUBR_RINDEX: { 3729 /* 3730 * We're going to iterate over the string looking for the 3731 * specified string. We will iterate until we have reached 3732 * the string length or we have found the string. (Yes, this 3733 * is done in the most naive way possible -- but considering 3734 * that the string we're searching for is likely to be 3735 * relatively short, the complexity of Rabin-Karp or similar 3736 * hardly seems merited.) 3737 */ 3738 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3739 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3740 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3741 size_t len = dtrace_strlen(addr, size); 3742 size_t sublen = dtrace_strlen(substr, size); 3743 char *limit = addr + len, *orig = addr; 3744 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3745 int inc = 1; 3746 3747 regs[rd] = notfound; 3748 3749 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3750 regs[rd] = NULL; 3751 break; 3752 } 3753 3754 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3755 vstate)) { 3756 regs[rd] = NULL; 3757 break; 3758 } 3759 3760 /* 3761 * strstr() and index()/rindex() have similar semantics if 3762 * both strings are the empty string: strstr() returns a 3763 * pointer to the (empty) string, and index() and rindex() 3764 * both return index 0 (regardless of any position argument). 3765 */ 3766 if (sublen == 0 && len == 0) { 3767 if (subr == DIF_SUBR_STRSTR) 3768 regs[rd] = (uintptr_t)addr; 3769 else 3770 regs[rd] = 0; 3771 break; 3772 } 3773 3774 if (subr != DIF_SUBR_STRSTR) { 3775 if (subr == DIF_SUBR_RINDEX) { 3776 limit = orig - 1; 3777 addr += len; 3778 inc = -1; 3779 } 3780 3781 /* 3782 * Both index() and rindex() take an optional position 3783 * argument that denotes the starting position. 3784 */ 3785 if (nargs == 3) { 3786 int64_t pos = (int64_t)tupregs[2].dttk_value; 3787 3788 /* 3789 * If the position argument to index() is 3790 * negative, Perl implicitly clamps it at 3791 * zero. This semantic is a little surprising 3792 * given the special meaning of negative 3793 * positions to similar Perl functions like 3794 * substr(), but it appears to reflect a 3795 * notion that index() can start from a 3796 * negative index and increment its way up to 3797 * the string. Given this notion, Perl's 3798 * rindex() is at least self-consistent in 3799 * that it implicitly clamps positions greater 3800 * than the string length to be the string 3801 * length. Where Perl completely loses 3802 * coherence, however, is when the specified 3803 * substring is the empty string (""). In 3804 * this case, even if the position is 3805 * negative, rindex() returns 0 -- and even if 3806 * the position is greater than the length, 3807 * index() returns the string length. These 3808 * semantics violate the notion that index() 3809 * should never return a value less than the 3810 * specified position and that rindex() should 3811 * never return a value greater than the 3812 * specified position. (One assumes that 3813 * these semantics are artifacts of Perl's 3814 * implementation and not the results of 3815 * deliberate design -- it beggars belief that 3816 * even Larry Wall could desire such oddness.) 3817 * While in the abstract one would wish for 3818 * consistent position semantics across 3819 * substr(), index() and rindex() -- or at the 3820 * very least self-consistent position 3821 * semantics for index() and rindex() -- we 3822 * instead opt to keep with the extant Perl 3823 * semantics, in all their broken glory. (Do 3824 * we have more desire to maintain Perl's 3825 * semantics than Perl does? Probably.) 3826 */ 3827 if (subr == DIF_SUBR_RINDEX) { 3828 if (pos < 0) { 3829 if (sublen == 0) 3830 regs[rd] = 0; 3831 break; 3832 } 3833 3834 if (pos > len) 3835 pos = len; 3836 } else { 3837 if (pos < 0) 3838 pos = 0; 3839 3840 if (pos >= len) { 3841 if (sublen == 0) 3842 regs[rd] = len; 3843 break; 3844 } 3845 } 3846 3847 addr = orig + pos; 3848 } 3849 } 3850 3851 for (regs[rd] = notfound; addr != limit; addr += inc) { 3852 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3853 if (subr != DIF_SUBR_STRSTR) { 3854 /* 3855 * As D index() and rindex() are 3856 * modeled on Perl (and not on awk), 3857 * we return a zero-based (and not a 3858 * one-based) index. (For you Perl 3859 * weenies: no, we're not going to add 3860 * $[ -- and shouldn't you be at a con 3861 * or something?) 3862 */ 3863 regs[rd] = (uintptr_t)(addr - orig); 3864 break; 3865 } 3866 3867 ASSERT(subr == DIF_SUBR_STRSTR); 3868 regs[rd] = (uintptr_t)addr; 3869 break; 3870 } 3871 } 3872 3873 break; 3874 } 3875 3876 case DIF_SUBR_STRTOK: { 3877 uintptr_t addr = tupregs[0].dttk_value; 3878 uintptr_t tokaddr = tupregs[1].dttk_value; 3879 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3880 uintptr_t limit, toklimit = tokaddr + size; 3881 uint8_t c, tokmap[32]; /* 256 / 8 */ 3882 char *dest = (char *)mstate->dtms_scratch_ptr; 3883 int i; 3884 3885 /* 3886 * Check both the token buffer and (later) the input buffer, 3887 * since both could be non-scratch addresses. 3888 */ 3889 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3890 regs[rd] = NULL; 3891 break; 3892 } 3893 3894 if (!DTRACE_INSCRATCH(mstate, size)) { 3895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3896 regs[rd] = NULL; 3897 break; 3898 } 3899 3900 if (addr == NULL) { 3901 /* 3902 * If the address specified is NULL, we use our saved 3903 * strtok pointer from the mstate. Note that this 3904 * means that the saved strtok pointer is _only_ 3905 * valid within multiple enablings of the same probe -- 3906 * it behaves like an implicit clause-local variable. 3907 */ 3908 addr = mstate->dtms_strtok; 3909 } else { 3910 /* 3911 * If the user-specified address is non-NULL we must 3912 * access check it. This is the only time we have 3913 * a chance to do so, since this address may reside 3914 * in the string table of this clause-- future calls 3915 * (when we fetch addr from mstate->dtms_strtok) 3916 * would fail this access check. 3917 */ 3918 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3919 regs[rd] = NULL; 3920 break; 3921 } 3922 } 3923 3924 /* 3925 * First, zero the token map, and then process the token 3926 * string -- setting a bit in the map for every character 3927 * found in the token string. 3928 */ 3929 for (i = 0; i < sizeof (tokmap); i++) 3930 tokmap[i] = 0; 3931 3932 for (; tokaddr < toklimit; tokaddr++) { 3933 if ((c = dtrace_load8(tokaddr)) == '\0') 3934 break; 3935 3936 ASSERT((c >> 3) < sizeof (tokmap)); 3937 tokmap[c >> 3] |= (1 << (c & 0x7)); 3938 } 3939 3940 for (limit = addr + size; addr < limit; addr++) { 3941 /* 3942 * We're looking for a character that is _not_ contained 3943 * in the token string. 3944 */ 3945 if ((c = dtrace_load8(addr)) == '\0') 3946 break; 3947 3948 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3949 break; 3950 } 3951 3952 if (c == '\0') { 3953 /* 3954 * We reached the end of the string without finding 3955 * any character that was not in the token string. 3956 * We return NULL in this case, and we set the saved 3957 * address to NULL as well. 3958 */ 3959 regs[rd] = NULL; 3960 mstate->dtms_strtok = NULL; 3961 break; 3962 } 3963 3964 /* 3965 * From here on, we're copying into the destination string. 3966 */ 3967 for (i = 0; addr < limit && i < size - 1; addr++) { 3968 if ((c = dtrace_load8(addr)) == '\0') 3969 break; 3970 3971 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3972 break; 3973 3974 ASSERT(i < size); 3975 dest[i++] = c; 3976 } 3977 3978 ASSERT(i < size); 3979 dest[i] = '\0'; 3980 regs[rd] = (uintptr_t)dest; 3981 mstate->dtms_scratch_ptr += size; 3982 mstate->dtms_strtok = addr; 3983 break; 3984 } 3985 3986 case DIF_SUBR_SUBSTR: { 3987 uintptr_t s = tupregs[0].dttk_value; 3988 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3989 char *d = (char *)mstate->dtms_scratch_ptr; 3990 int64_t index = (int64_t)tupregs[1].dttk_value; 3991 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3992 size_t len = dtrace_strlen((char *)s, size); 3993 int64_t i; 3994 3995 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3996 regs[rd] = NULL; 3997 break; 3998 } 3999 4000 if (!DTRACE_INSCRATCH(mstate, size)) { 4001 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4002 regs[rd] = NULL; 4003 break; 4004 } 4005 4006 if (nargs <= 2) 4007 remaining = (int64_t)size; 4008 4009 if (index < 0) { 4010 index += len; 4011 4012 if (index < 0 && index + remaining > 0) { 4013 remaining += index; 4014 index = 0; 4015 } 4016 } 4017 4018 if (index >= len || index < 0) { 4019 remaining = 0; 4020 } else if (remaining < 0) { 4021 remaining += len - index; 4022 } else if (index + remaining > size) { 4023 remaining = size - index; 4024 } 4025 4026 for (i = 0; i < remaining; i++) { 4027 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4028 break; 4029 } 4030 4031 d[i] = '\0'; 4032 4033 mstate->dtms_scratch_ptr += size; 4034 regs[rd] = (uintptr_t)d; 4035 break; 4036 } 4037 4038 case DIF_SUBR_TOUPPER: 4039 case DIF_SUBR_TOLOWER: { 4040 uintptr_t s = tupregs[0].dttk_value; 4041 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4042 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4043 size_t len = dtrace_strlen((char *)s, size); 4044 char lower, upper, convert; 4045 int64_t i; 4046 4047 if (subr == DIF_SUBR_TOUPPER) { 4048 lower = 'a'; 4049 upper = 'z'; 4050 convert = 'A'; 4051 } else { 4052 lower = 'A'; 4053 upper = 'Z'; 4054 convert = 'a'; 4055 } 4056 4057 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4058 regs[rd] = NULL; 4059 break; 4060 } 4061 4062 if (!DTRACE_INSCRATCH(mstate, size)) { 4063 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4064 regs[rd] = NULL; 4065 break; 4066 } 4067 4068 for (i = 0; i < size - 1; i++) { 4069 if ((c = dtrace_load8(s + i)) == '\0') 4070 break; 4071 4072 if (c >= lower && c <= upper) 4073 c = convert + (c - lower); 4074 4075 dest[i] = c; 4076 } 4077 4078 ASSERT(i < size); 4079 dest[i] = '\0'; 4080 regs[rd] = (uintptr_t)dest; 4081 mstate->dtms_scratch_ptr += size; 4082 break; 4083 } 4084 4085 case DIF_SUBR_GETMAJOR: 4086 #ifdef _LP64 4087 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4088 #else 4089 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4090 #endif 4091 break; 4092 4093 case DIF_SUBR_GETMINOR: 4094 #ifdef _LP64 4095 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4096 #else 4097 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4098 #endif 4099 break; 4100 4101 case DIF_SUBR_DDI_PATHNAME: { 4102 /* 4103 * This one is a galactic mess. We are going to roughly 4104 * emulate ddi_pathname(), but it's made more complicated 4105 * by the fact that we (a) want to include the minor name and 4106 * (b) must proceed iteratively instead of recursively. 4107 */ 4108 uintptr_t dest = mstate->dtms_scratch_ptr; 4109 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4110 char *start = (char *)dest, *end = start + size - 1; 4111 uintptr_t daddr = tupregs[0].dttk_value; 4112 int64_t minor = (int64_t)tupregs[1].dttk_value; 4113 char *s; 4114 int i, len, depth = 0; 4115 4116 /* 4117 * Due to all the pointer jumping we do and context we must 4118 * rely upon, we just mandate that the user must have kernel 4119 * read privileges to use this routine. 4120 */ 4121 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4122 *flags |= CPU_DTRACE_KPRIV; 4123 *illval = daddr; 4124 regs[rd] = NULL; 4125 } 4126 4127 if (!DTRACE_INSCRATCH(mstate, size)) { 4128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4129 regs[rd] = NULL; 4130 break; 4131 } 4132 4133 *end = '\0'; 4134 4135 /* 4136 * We want to have a name for the minor. In order to do this, 4137 * we need to walk the minor list from the devinfo. We want 4138 * to be sure that we don't infinitely walk a circular list, 4139 * so we check for circularity by sending a scout pointer 4140 * ahead two elements for every element that we iterate over; 4141 * if the list is circular, these will ultimately point to the 4142 * same element. You may recognize this little trick as the 4143 * answer to a stupid interview question -- one that always 4144 * seems to be asked by those who had to have it laboriously 4145 * explained to them, and who can't even concisely describe 4146 * the conditions under which one would be forced to resort to 4147 * this technique. Needless to say, those conditions are 4148 * found here -- and probably only here. Is this the only use 4149 * of this infamous trick in shipping, production code? If it 4150 * isn't, it probably should be... 4151 */ 4152 if (minor != -1) { 4153 uintptr_t maddr = dtrace_loadptr(daddr + 4154 offsetof(struct dev_info, devi_minor)); 4155 4156 uintptr_t next = offsetof(struct ddi_minor_data, next); 4157 uintptr_t name = offsetof(struct ddi_minor_data, 4158 d_minor) + offsetof(struct ddi_minor, name); 4159 uintptr_t dev = offsetof(struct ddi_minor_data, 4160 d_minor) + offsetof(struct ddi_minor, dev); 4161 uintptr_t scout; 4162 4163 if (maddr != NULL) 4164 scout = dtrace_loadptr(maddr + next); 4165 4166 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4167 uint64_t m; 4168 #ifdef _LP64 4169 m = dtrace_load64(maddr + dev) & MAXMIN64; 4170 #else 4171 m = dtrace_load32(maddr + dev) & MAXMIN; 4172 #endif 4173 if (m != minor) { 4174 maddr = dtrace_loadptr(maddr + next); 4175 4176 if (scout == NULL) 4177 continue; 4178 4179 scout = dtrace_loadptr(scout + next); 4180 4181 if (scout == NULL) 4182 continue; 4183 4184 scout = dtrace_loadptr(scout + next); 4185 4186 if (scout == NULL) 4187 continue; 4188 4189 if (scout == maddr) { 4190 *flags |= CPU_DTRACE_ILLOP; 4191 break; 4192 } 4193 4194 continue; 4195 } 4196 4197 /* 4198 * We have the minor data. Now we need to 4199 * copy the minor's name into the end of the 4200 * pathname. 4201 */ 4202 s = (char *)dtrace_loadptr(maddr + name); 4203 len = dtrace_strlen(s, size); 4204 4205 if (*flags & CPU_DTRACE_FAULT) 4206 break; 4207 4208 if (len != 0) { 4209 if ((end -= (len + 1)) < start) 4210 break; 4211 4212 *end = ':'; 4213 } 4214 4215 for (i = 1; i <= len; i++) 4216 end[i] = dtrace_load8((uintptr_t)s++); 4217 break; 4218 } 4219 } 4220 4221 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4222 ddi_node_state_t devi_state; 4223 4224 devi_state = dtrace_load32(daddr + 4225 offsetof(struct dev_info, devi_node_state)); 4226 4227 if (*flags & CPU_DTRACE_FAULT) 4228 break; 4229 4230 if (devi_state >= DS_INITIALIZED) { 4231 s = (char *)dtrace_loadptr(daddr + 4232 offsetof(struct dev_info, devi_addr)); 4233 len = dtrace_strlen(s, size); 4234 4235 if (*flags & CPU_DTRACE_FAULT) 4236 break; 4237 4238 if (len != 0) { 4239 if ((end -= (len + 1)) < start) 4240 break; 4241 4242 *end = '@'; 4243 } 4244 4245 for (i = 1; i <= len; i++) 4246 end[i] = dtrace_load8((uintptr_t)s++); 4247 } 4248 4249 /* 4250 * Now for the node name... 4251 */ 4252 s = (char *)dtrace_loadptr(daddr + 4253 offsetof(struct dev_info, devi_node_name)); 4254 4255 daddr = dtrace_loadptr(daddr + 4256 offsetof(struct dev_info, devi_parent)); 4257 4258 /* 4259 * If our parent is NULL (that is, if we're the root 4260 * node), we're going to use the special path 4261 * "devices". 4262 */ 4263 if (daddr == NULL) 4264 s = "devices"; 4265 4266 len = dtrace_strlen(s, size); 4267 if (*flags & CPU_DTRACE_FAULT) 4268 break; 4269 4270 if ((end -= (len + 1)) < start) 4271 break; 4272 4273 for (i = 1; i <= len; i++) 4274 end[i] = dtrace_load8((uintptr_t)s++); 4275 *end = '/'; 4276 4277 if (depth++ > dtrace_devdepth_max) { 4278 *flags |= CPU_DTRACE_ILLOP; 4279 break; 4280 } 4281 } 4282 4283 if (end < start) 4284 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4285 4286 if (daddr == NULL) { 4287 regs[rd] = (uintptr_t)end; 4288 mstate->dtms_scratch_ptr += size; 4289 } 4290 4291 break; 4292 } 4293 4294 case DIF_SUBR_STRJOIN: { 4295 char *d = (char *)mstate->dtms_scratch_ptr; 4296 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4297 uintptr_t s1 = tupregs[0].dttk_value; 4298 uintptr_t s2 = tupregs[1].dttk_value; 4299 int i = 0; 4300 4301 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4302 !dtrace_strcanload(s2, size, mstate, vstate)) { 4303 regs[rd] = NULL; 4304 break; 4305 } 4306 4307 if (!DTRACE_INSCRATCH(mstate, size)) { 4308 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4309 regs[rd] = NULL; 4310 break; 4311 } 4312 4313 for (;;) { 4314 if (i >= size) { 4315 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4316 regs[rd] = NULL; 4317 break; 4318 } 4319 4320 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4321 i--; 4322 break; 4323 } 4324 } 4325 4326 for (;;) { 4327 if (i >= size) { 4328 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4329 regs[rd] = NULL; 4330 break; 4331 } 4332 4333 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4334 break; 4335 } 4336 4337 if (i < size) { 4338 mstate->dtms_scratch_ptr += i; 4339 regs[rd] = (uintptr_t)d; 4340 } 4341 4342 break; 4343 } 4344 4345 case DIF_SUBR_LLTOSTR: { 4346 int64_t i = (int64_t)tupregs[0].dttk_value; 4347 uint64_t val, digit; 4348 uint64_t size = 65; /* enough room for 2^64 in binary */ 4349 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4350 int base = 10; 4351 4352 if (nargs > 1) { 4353 if ((base = tupregs[1].dttk_value) <= 1 || 4354 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4355 *flags |= CPU_DTRACE_ILLOP; 4356 break; 4357 } 4358 } 4359 4360 val = (base == 10 && i < 0) ? i * -1 : i; 4361 4362 if (!DTRACE_INSCRATCH(mstate, size)) { 4363 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4364 regs[rd] = NULL; 4365 break; 4366 } 4367 4368 for (*end-- = '\0'; val; val /= base) { 4369 if ((digit = val % base) <= '9' - '0') { 4370 *end-- = '0' + digit; 4371 } else { 4372 *end-- = 'a' + (digit - ('9' - '0') - 1); 4373 } 4374 } 4375 4376 if (i == 0 && base == 16) 4377 *end-- = '0'; 4378 4379 if (base == 16) 4380 *end-- = 'x'; 4381 4382 if (i == 0 || base == 8 || base == 16) 4383 *end-- = '0'; 4384 4385 if (i < 0 && base == 10) 4386 *end-- = '-'; 4387 4388 regs[rd] = (uintptr_t)end + 1; 4389 mstate->dtms_scratch_ptr += size; 4390 break; 4391 } 4392 4393 case DIF_SUBR_HTONS: 4394 case DIF_SUBR_NTOHS: 4395 #ifdef _BIG_ENDIAN 4396 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4397 #else 4398 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4399 #endif 4400 break; 4401 4402 4403 case DIF_SUBR_HTONL: 4404 case DIF_SUBR_NTOHL: 4405 #ifdef _BIG_ENDIAN 4406 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4407 #else 4408 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4409 #endif 4410 break; 4411 4412 4413 case DIF_SUBR_HTONLL: 4414 case DIF_SUBR_NTOHLL: 4415 #ifdef _BIG_ENDIAN 4416 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4417 #else 4418 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4419 #endif 4420 break; 4421 4422 4423 case DIF_SUBR_DIRNAME: 4424 case DIF_SUBR_BASENAME: { 4425 char *dest = (char *)mstate->dtms_scratch_ptr; 4426 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4427 uintptr_t src = tupregs[0].dttk_value; 4428 int i, j, len = dtrace_strlen((char *)src, size); 4429 int lastbase = -1, firstbase = -1, lastdir = -1; 4430 int start, end; 4431 4432 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4433 regs[rd] = NULL; 4434 break; 4435 } 4436 4437 if (!DTRACE_INSCRATCH(mstate, size)) { 4438 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4439 regs[rd] = NULL; 4440 break; 4441 } 4442 4443 /* 4444 * The basename and dirname for a zero-length string is 4445 * defined to be "." 4446 */ 4447 if (len == 0) { 4448 len = 1; 4449 src = (uintptr_t)"."; 4450 } 4451 4452 /* 4453 * Start from the back of the string, moving back toward the 4454 * front until we see a character that isn't a slash. That 4455 * character is the last character in the basename. 4456 */ 4457 for (i = len - 1; i >= 0; i--) { 4458 if (dtrace_load8(src + i) != '/') 4459 break; 4460 } 4461 4462 if (i >= 0) 4463 lastbase = i; 4464 4465 /* 4466 * Starting from the last character in the basename, move 4467 * towards the front until we find a slash. The character 4468 * that we processed immediately before that is the first 4469 * character in the basename. 4470 */ 4471 for (; i >= 0; i--) { 4472 if (dtrace_load8(src + i) == '/') 4473 break; 4474 } 4475 4476 if (i >= 0) 4477 firstbase = i + 1; 4478 4479 /* 4480 * Now keep going until we find a non-slash character. That 4481 * character is the last character in the dirname. 4482 */ 4483 for (; i >= 0; i--) { 4484 if (dtrace_load8(src + i) != '/') 4485 break; 4486 } 4487 4488 if (i >= 0) 4489 lastdir = i; 4490 4491 ASSERT(!(lastbase == -1 && firstbase != -1)); 4492 ASSERT(!(firstbase == -1 && lastdir != -1)); 4493 4494 if (lastbase == -1) { 4495 /* 4496 * We didn't find a non-slash character. We know that 4497 * the length is non-zero, so the whole string must be 4498 * slashes. In either the dirname or the basename 4499 * case, we return '/'. 4500 */ 4501 ASSERT(firstbase == -1); 4502 firstbase = lastbase = lastdir = 0; 4503 } 4504 4505 if (firstbase == -1) { 4506 /* 4507 * The entire string consists only of a basename 4508 * component. If we're looking for dirname, we need 4509 * to change our string to be just "."; if we're 4510 * looking for a basename, we'll just set the first 4511 * character of the basename to be 0. 4512 */ 4513 if (subr == DIF_SUBR_DIRNAME) { 4514 ASSERT(lastdir == -1); 4515 src = (uintptr_t)"."; 4516 lastdir = 0; 4517 } else { 4518 firstbase = 0; 4519 } 4520 } 4521 4522 if (subr == DIF_SUBR_DIRNAME) { 4523 if (lastdir == -1) { 4524 /* 4525 * We know that we have a slash in the name -- 4526 * or lastdir would be set to 0, above. And 4527 * because lastdir is -1, we know that this 4528 * slash must be the first character. (That 4529 * is, the full string must be of the form 4530 * "/basename".) In this case, the last 4531 * character of the directory name is 0. 4532 */ 4533 lastdir = 0; 4534 } 4535 4536 start = 0; 4537 end = lastdir; 4538 } else { 4539 ASSERT(subr == DIF_SUBR_BASENAME); 4540 ASSERT(firstbase != -1 && lastbase != -1); 4541 start = firstbase; 4542 end = lastbase; 4543 } 4544 4545 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4546 dest[j] = dtrace_load8(src + i); 4547 4548 dest[j] = '\0'; 4549 regs[rd] = (uintptr_t)dest; 4550 mstate->dtms_scratch_ptr += size; 4551 break; 4552 } 4553 4554 case DIF_SUBR_GETF: { 4555 uintptr_t fd = tupregs[0].dttk_value; 4556 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 4557 file_t *fp; 4558 4559 if (!dtrace_priv_proc(state, mstate)) { 4560 regs[rd] = NULL; 4561 break; 4562 } 4563 4564 /* 4565 * This is safe because fi_nfiles only increases, and the 4566 * fi_list array is not freed when the array size doubles. 4567 * (See the comment in flist_grow() for details on the 4568 * management of the u_finfo structure.) 4569 */ 4570 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 4571 4572 mstate->dtms_getf = fp; 4573 regs[rd] = (uintptr_t)fp; 4574 break; 4575 } 4576 4577 case DIF_SUBR_CLEANPATH: { 4578 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4579 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4580 uintptr_t src = tupregs[0].dttk_value; 4581 int i = 0, j = 0; 4582 zone_t *z; 4583 4584 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4585 regs[rd] = NULL; 4586 break; 4587 } 4588 4589 if (!DTRACE_INSCRATCH(mstate, size)) { 4590 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4591 regs[rd] = NULL; 4592 break; 4593 } 4594 4595 /* 4596 * Move forward, loading each character. 4597 */ 4598 do { 4599 c = dtrace_load8(src + i++); 4600 next: 4601 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4602 break; 4603 4604 if (c != '/') { 4605 dest[j++] = c; 4606 continue; 4607 } 4608 4609 c = dtrace_load8(src + i++); 4610 4611 if (c == '/') { 4612 /* 4613 * We have two slashes -- we can just advance 4614 * to the next character. 4615 */ 4616 goto next; 4617 } 4618 4619 if (c != '.') { 4620 /* 4621 * This is not "." and it's not ".." -- we can 4622 * just store the "/" and this character and 4623 * drive on. 4624 */ 4625 dest[j++] = '/'; 4626 dest[j++] = c; 4627 continue; 4628 } 4629 4630 c = dtrace_load8(src + i++); 4631 4632 if (c == '/') { 4633 /* 4634 * This is a "/./" component. We're not going 4635 * to store anything in the destination buffer; 4636 * we're just going to go to the next component. 4637 */ 4638 goto next; 4639 } 4640 4641 if (c != '.') { 4642 /* 4643 * This is not ".." -- we can just store the 4644 * "/." and this character and continue 4645 * processing. 4646 */ 4647 dest[j++] = '/'; 4648 dest[j++] = '.'; 4649 dest[j++] = c; 4650 continue; 4651 } 4652 4653 c = dtrace_load8(src + i++); 4654 4655 if (c != '/' && c != '\0') { 4656 /* 4657 * This is not ".." -- it's "..[mumble]". 4658 * We'll store the "/.." and this character 4659 * and continue processing. 4660 */ 4661 dest[j++] = '/'; 4662 dest[j++] = '.'; 4663 dest[j++] = '.'; 4664 dest[j++] = c; 4665 continue; 4666 } 4667 4668 /* 4669 * This is "/../" or "/..\0". We need to back up 4670 * our destination pointer until we find a "/". 4671 */ 4672 i--; 4673 while (j != 0 && dest[--j] != '/') 4674 continue; 4675 4676 if (c == '\0') 4677 dest[++j] = '/'; 4678 } while (c != '\0'); 4679 4680 dest[j] = '\0'; 4681 4682 if (mstate->dtms_getf != NULL && 4683 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 4684 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 4685 /* 4686 * If we've done a getf() as a part of this ECB and we 4687 * don't have kernel access (and we're not in the global 4688 * zone), check if the path we cleaned up begins with 4689 * the zone's root path, and trim it off if so. Note 4690 * that this is an output cleanliness issue, not a 4691 * security issue: knowing one's zone root path does 4692 * not enable privilege escalation. 4693 */ 4694 if (strstr(dest, z->zone_rootpath) == dest) 4695 dest += strlen(z->zone_rootpath) - 1; 4696 } 4697 4698 regs[rd] = (uintptr_t)dest; 4699 mstate->dtms_scratch_ptr += size; 4700 break; 4701 } 4702 4703 case DIF_SUBR_INET_NTOA: 4704 case DIF_SUBR_INET_NTOA6: 4705 case DIF_SUBR_INET_NTOP: { 4706 size_t size; 4707 int af, argi, i; 4708 char *base, *end; 4709 4710 if (subr == DIF_SUBR_INET_NTOP) { 4711 af = (int)tupregs[0].dttk_value; 4712 argi = 1; 4713 } else { 4714 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4715 argi = 0; 4716 } 4717 4718 if (af == AF_INET) { 4719 ipaddr_t ip4; 4720 uint8_t *ptr8, val; 4721 4722 /* 4723 * Safely load the IPv4 address. 4724 */ 4725 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4726 4727 /* 4728 * Check an IPv4 string will fit in scratch. 4729 */ 4730 size = INET_ADDRSTRLEN; 4731 if (!DTRACE_INSCRATCH(mstate, size)) { 4732 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4733 regs[rd] = NULL; 4734 break; 4735 } 4736 base = (char *)mstate->dtms_scratch_ptr; 4737 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4738 4739 /* 4740 * Stringify as a dotted decimal quad. 4741 */ 4742 *end-- = '\0'; 4743 ptr8 = (uint8_t *)&ip4; 4744 for (i = 3; i >= 0; i--) { 4745 val = ptr8[i]; 4746 4747 if (val == 0) { 4748 *end-- = '0'; 4749 } else { 4750 for (; val; val /= 10) { 4751 *end-- = '0' + (val % 10); 4752 } 4753 } 4754 4755 if (i > 0) 4756 *end-- = '.'; 4757 } 4758 ASSERT(end + 1 >= base); 4759 4760 } else if (af == AF_INET6) { 4761 struct in6_addr ip6; 4762 int firstzero, tryzero, numzero, v6end; 4763 uint16_t val; 4764 const char digits[] = "0123456789abcdef"; 4765 4766 /* 4767 * Stringify using RFC 1884 convention 2 - 16 bit 4768 * hexadecimal values with a zero-run compression. 4769 * Lower case hexadecimal digits are used. 4770 * eg, fe80::214:4fff:fe0b:76c8. 4771 * The IPv4 embedded form is returned for inet_ntop, 4772 * just the IPv4 string is returned for inet_ntoa6. 4773 */ 4774 4775 /* 4776 * Safely load the IPv6 address. 4777 */ 4778 dtrace_bcopy( 4779 (void *)(uintptr_t)tupregs[argi].dttk_value, 4780 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4781 4782 /* 4783 * Check an IPv6 string will fit in scratch. 4784 */ 4785 size = INET6_ADDRSTRLEN; 4786 if (!DTRACE_INSCRATCH(mstate, size)) { 4787 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4788 regs[rd] = NULL; 4789 break; 4790 } 4791 base = (char *)mstate->dtms_scratch_ptr; 4792 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4793 *end-- = '\0'; 4794 4795 /* 4796 * Find the longest run of 16 bit zero values 4797 * for the single allowed zero compression - "::". 4798 */ 4799 firstzero = -1; 4800 tryzero = -1; 4801 numzero = 1; 4802 for (i = 0; i < sizeof (struct in6_addr); i++) { 4803 if (ip6._S6_un._S6_u8[i] == 0 && 4804 tryzero == -1 && i % 2 == 0) { 4805 tryzero = i; 4806 continue; 4807 } 4808 4809 if (tryzero != -1 && 4810 (ip6._S6_un._S6_u8[i] != 0 || 4811 i == sizeof (struct in6_addr) - 1)) { 4812 4813 if (i - tryzero <= numzero) { 4814 tryzero = -1; 4815 continue; 4816 } 4817 4818 firstzero = tryzero; 4819 numzero = i - i % 2 - tryzero; 4820 tryzero = -1; 4821 4822 if (ip6._S6_un._S6_u8[i] == 0 && 4823 i == sizeof (struct in6_addr) - 1) 4824 numzero += 2; 4825 } 4826 } 4827 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4828 4829 /* 4830 * Check for an IPv4 embedded address. 4831 */ 4832 v6end = sizeof (struct in6_addr) - 2; 4833 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4834 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4835 for (i = sizeof (struct in6_addr) - 1; 4836 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4837 ASSERT(end >= base); 4838 4839 val = ip6._S6_un._S6_u8[i]; 4840 4841 if (val == 0) { 4842 *end-- = '0'; 4843 } else { 4844 for (; val; val /= 10) { 4845 *end-- = '0' + val % 10; 4846 } 4847 } 4848 4849 if (i > DTRACE_V4MAPPED_OFFSET) 4850 *end-- = '.'; 4851 } 4852 4853 if (subr == DIF_SUBR_INET_NTOA6) 4854 goto inetout; 4855 4856 /* 4857 * Set v6end to skip the IPv4 address that 4858 * we have already stringified. 4859 */ 4860 v6end = 10; 4861 } 4862 4863 /* 4864 * Build the IPv6 string by working through the 4865 * address in reverse. 4866 */ 4867 for (i = v6end; i >= 0; i -= 2) { 4868 ASSERT(end >= base); 4869 4870 if (i == firstzero + numzero - 2) { 4871 *end-- = ':'; 4872 *end-- = ':'; 4873 i -= numzero - 2; 4874 continue; 4875 } 4876 4877 if (i < 14 && i != firstzero - 2) 4878 *end-- = ':'; 4879 4880 val = (ip6._S6_un._S6_u8[i] << 8) + 4881 ip6._S6_un._S6_u8[i + 1]; 4882 4883 if (val == 0) { 4884 *end-- = '0'; 4885 } else { 4886 for (; val; val /= 16) { 4887 *end-- = digits[val % 16]; 4888 } 4889 } 4890 } 4891 ASSERT(end + 1 >= base); 4892 4893 } else { 4894 /* 4895 * The user didn't use AH_INET or AH_INET6. 4896 */ 4897 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4898 regs[rd] = NULL; 4899 break; 4900 } 4901 4902 inetout: regs[rd] = (uintptr_t)end + 1; 4903 mstate->dtms_scratch_ptr += size; 4904 break; 4905 } 4906 4907 } 4908 } 4909 4910 /* 4911 * Emulate the execution of DTrace IR instructions specified by the given 4912 * DIF object. This function is deliberately void of assertions as all of 4913 * the necessary checks are handled by a call to dtrace_difo_validate(). 4914 */ 4915 static uint64_t 4916 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4917 dtrace_vstate_t *vstate, dtrace_state_t *state) 4918 { 4919 const dif_instr_t *text = difo->dtdo_buf; 4920 const uint_t textlen = difo->dtdo_len; 4921 const char *strtab = difo->dtdo_strtab; 4922 const uint64_t *inttab = difo->dtdo_inttab; 4923 4924 uint64_t rval = 0; 4925 dtrace_statvar_t *svar; 4926 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4927 dtrace_difv_t *v; 4928 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4929 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4930 4931 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4932 uint64_t regs[DIF_DIR_NREGS]; 4933 uint64_t *tmp; 4934 4935 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4936 int64_t cc_r; 4937 uint_t pc = 0, id, opc; 4938 uint8_t ttop = 0; 4939 dif_instr_t instr; 4940 uint_t r1, r2, rd; 4941 4942 /* 4943 * We stash the current DIF object into the machine state: we need it 4944 * for subsequent access checking. 4945 */ 4946 mstate->dtms_difo = difo; 4947 4948 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4949 4950 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4951 opc = pc; 4952 4953 instr = text[pc++]; 4954 r1 = DIF_INSTR_R1(instr); 4955 r2 = DIF_INSTR_R2(instr); 4956 rd = DIF_INSTR_RD(instr); 4957 4958 switch (DIF_INSTR_OP(instr)) { 4959 case DIF_OP_OR: 4960 regs[rd] = regs[r1] | regs[r2]; 4961 break; 4962 case DIF_OP_XOR: 4963 regs[rd] = regs[r1] ^ regs[r2]; 4964 break; 4965 case DIF_OP_AND: 4966 regs[rd] = regs[r1] & regs[r2]; 4967 break; 4968 case DIF_OP_SLL: 4969 regs[rd] = regs[r1] << regs[r2]; 4970 break; 4971 case DIF_OP_SRL: 4972 regs[rd] = regs[r1] >> regs[r2]; 4973 break; 4974 case DIF_OP_SUB: 4975 regs[rd] = regs[r1] - regs[r2]; 4976 break; 4977 case DIF_OP_ADD: 4978 regs[rd] = regs[r1] + regs[r2]; 4979 break; 4980 case DIF_OP_MUL: 4981 regs[rd] = regs[r1] * regs[r2]; 4982 break; 4983 case DIF_OP_SDIV: 4984 if (regs[r2] == 0) { 4985 regs[rd] = 0; 4986 *flags |= CPU_DTRACE_DIVZERO; 4987 } else { 4988 regs[rd] = (int64_t)regs[r1] / 4989 (int64_t)regs[r2]; 4990 } 4991 break; 4992 4993 case DIF_OP_UDIV: 4994 if (regs[r2] == 0) { 4995 regs[rd] = 0; 4996 *flags |= CPU_DTRACE_DIVZERO; 4997 } else { 4998 regs[rd] = regs[r1] / regs[r2]; 4999 } 5000 break; 5001 5002 case DIF_OP_SREM: 5003 if (regs[r2] == 0) { 5004 regs[rd] = 0; 5005 *flags |= CPU_DTRACE_DIVZERO; 5006 } else { 5007 regs[rd] = (int64_t)regs[r1] % 5008 (int64_t)regs[r2]; 5009 } 5010 break; 5011 5012 case DIF_OP_UREM: 5013 if (regs[r2] == 0) { 5014 regs[rd] = 0; 5015 *flags |= CPU_DTRACE_DIVZERO; 5016 } else { 5017 regs[rd] = regs[r1] % regs[r2]; 5018 } 5019 break; 5020 5021 case DIF_OP_NOT: 5022 regs[rd] = ~regs[r1]; 5023 break; 5024 case DIF_OP_MOV: 5025 regs[rd] = regs[r1]; 5026 break; 5027 case DIF_OP_CMP: 5028 cc_r = regs[r1] - regs[r2]; 5029 cc_n = cc_r < 0; 5030 cc_z = cc_r == 0; 5031 cc_v = 0; 5032 cc_c = regs[r1] < regs[r2]; 5033 break; 5034 case DIF_OP_TST: 5035 cc_n = cc_v = cc_c = 0; 5036 cc_z = regs[r1] == 0; 5037 break; 5038 case DIF_OP_BA: 5039 pc = DIF_INSTR_LABEL(instr); 5040 break; 5041 case DIF_OP_BE: 5042 if (cc_z) 5043 pc = DIF_INSTR_LABEL(instr); 5044 break; 5045 case DIF_OP_BNE: 5046 if (cc_z == 0) 5047 pc = DIF_INSTR_LABEL(instr); 5048 break; 5049 case DIF_OP_BG: 5050 if ((cc_z | (cc_n ^ cc_v)) == 0) 5051 pc = DIF_INSTR_LABEL(instr); 5052 break; 5053 case DIF_OP_BGU: 5054 if ((cc_c | cc_z) == 0) 5055 pc = DIF_INSTR_LABEL(instr); 5056 break; 5057 case DIF_OP_BGE: 5058 if ((cc_n ^ cc_v) == 0) 5059 pc = DIF_INSTR_LABEL(instr); 5060 break; 5061 case DIF_OP_BGEU: 5062 if (cc_c == 0) 5063 pc = DIF_INSTR_LABEL(instr); 5064 break; 5065 case DIF_OP_BL: 5066 if (cc_n ^ cc_v) 5067 pc = DIF_INSTR_LABEL(instr); 5068 break; 5069 case DIF_OP_BLU: 5070 if (cc_c) 5071 pc = DIF_INSTR_LABEL(instr); 5072 break; 5073 case DIF_OP_BLE: 5074 if (cc_z | (cc_n ^ cc_v)) 5075 pc = DIF_INSTR_LABEL(instr); 5076 break; 5077 case DIF_OP_BLEU: 5078 if (cc_c | cc_z) 5079 pc = DIF_INSTR_LABEL(instr); 5080 break; 5081 case DIF_OP_RLDSB: 5082 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5083 break; 5084 /*FALLTHROUGH*/ 5085 case DIF_OP_LDSB: 5086 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5087 break; 5088 case DIF_OP_RLDSH: 5089 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5090 break; 5091 /*FALLTHROUGH*/ 5092 case DIF_OP_LDSH: 5093 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5094 break; 5095 case DIF_OP_RLDSW: 5096 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5097 break; 5098 /*FALLTHROUGH*/ 5099 case DIF_OP_LDSW: 5100 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5101 break; 5102 case DIF_OP_RLDUB: 5103 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5104 break; 5105 /*FALLTHROUGH*/ 5106 case DIF_OP_LDUB: 5107 regs[rd] = dtrace_load8(regs[r1]); 5108 break; 5109 case DIF_OP_RLDUH: 5110 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5111 break; 5112 /*FALLTHROUGH*/ 5113 case DIF_OP_LDUH: 5114 regs[rd] = dtrace_load16(regs[r1]); 5115 break; 5116 case DIF_OP_RLDUW: 5117 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5118 break; 5119 /*FALLTHROUGH*/ 5120 case DIF_OP_LDUW: 5121 regs[rd] = dtrace_load32(regs[r1]); 5122 break; 5123 case DIF_OP_RLDX: 5124 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5125 break; 5126 /*FALLTHROUGH*/ 5127 case DIF_OP_LDX: 5128 regs[rd] = dtrace_load64(regs[r1]); 5129 break; 5130 case DIF_OP_ULDSB: 5131 regs[rd] = (int8_t) 5132 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5133 break; 5134 case DIF_OP_ULDSH: 5135 regs[rd] = (int16_t) 5136 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5137 break; 5138 case DIF_OP_ULDSW: 5139 regs[rd] = (int32_t) 5140 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5141 break; 5142 case DIF_OP_ULDUB: 5143 regs[rd] = 5144 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5145 break; 5146 case DIF_OP_ULDUH: 5147 regs[rd] = 5148 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5149 break; 5150 case DIF_OP_ULDUW: 5151 regs[rd] = 5152 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5153 break; 5154 case DIF_OP_ULDX: 5155 regs[rd] = 5156 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5157 break; 5158 case DIF_OP_RET: 5159 rval = regs[rd]; 5160 pc = textlen; 5161 break; 5162 case DIF_OP_NOP: 5163 break; 5164 case DIF_OP_SETX: 5165 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5166 break; 5167 case DIF_OP_SETS: 5168 regs[rd] = (uint64_t)(uintptr_t) 5169 (strtab + DIF_INSTR_STRING(instr)); 5170 break; 5171 case DIF_OP_SCMP: { 5172 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5173 uintptr_t s1 = regs[r1]; 5174 uintptr_t s2 = regs[r2]; 5175 5176 if (s1 != NULL && 5177 !dtrace_strcanload(s1, sz, mstate, vstate)) 5178 break; 5179 if (s2 != NULL && 5180 !dtrace_strcanload(s2, sz, mstate, vstate)) 5181 break; 5182 5183 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5184 5185 cc_n = cc_r < 0; 5186 cc_z = cc_r == 0; 5187 cc_v = cc_c = 0; 5188 break; 5189 } 5190 case DIF_OP_LDGA: 5191 regs[rd] = dtrace_dif_variable(mstate, state, 5192 r1, regs[r2]); 5193 break; 5194 case DIF_OP_LDGS: 5195 id = DIF_INSTR_VAR(instr); 5196 5197 if (id >= DIF_VAR_OTHER_UBASE) { 5198 uintptr_t a; 5199 5200 id -= DIF_VAR_OTHER_UBASE; 5201 svar = vstate->dtvs_globals[id]; 5202 ASSERT(svar != NULL); 5203 v = &svar->dtsv_var; 5204 5205 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5206 regs[rd] = svar->dtsv_data; 5207 break; 5208 } 5209 5210 a = (uintptr_t)svar->dtsv_data; 5211 5212 if (*(uint8_t *)a == UINT8_MAX) { 5213 /* 5214 * If the 0th byte is set to UINT8_MAX 5215 * then this is to be treated as a 5216 * reference to a NULL variable. 5217 */ 5218 regs[rd] = NULL; 5219 } else { 5220 regs[rd] = a + sizeof (uint64_t); 5221 } 5222 5223 break; 5224 } 5225 5226 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5227 break; 5228 5229 case DIF_OP_STGS: 5230 id = DIF_INSTR_VAR(instr); 5231 5232 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5233 id -= DIF_VAR_OTHER_UBASE; 5234 5235 svar = vstate->dtvs_globals[id]; 5236 ASSERT(svar != NULL); 5237 v = &svar->dtsv_var; 5238 5239 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5240 uintptr_t a = (uintptr_t)svar->dtsv_data; 5241 5242 ASSERT(a != NULL); 5243 ASSERT(svar->dtsv_size != 0); 5244 5245 if (regs[rd] == NULL) { 5246 *(uint8_t *)a = UINT8_MAX; 5247 break; 5248 } else { 5249 *(uint8_t *)a = 0; 5250 a += sizeof (uint64_t); 5251 } 5252 if (!dtrace_vcanload( 5253 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5254 mstate, vstate)) 5255 break; 5256 5257 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5258 (void *)a, &v->dtdv_type); 5259 break; 5260 } 5261 5262 svar->dtsv_data = regs[rd]; 5263 break; 5264 5265 case DIF_OP_LDTA: 5266 /* 5267 * There are no DTrace built-in thread-local arrays at 5268 * present. This opcode is saved for future work. 5269 */ 5270 *flags |= CPU_DTRACE_ILLOP; 5271 regs[rd] = 0; 5272 break; 5273 5274 case DIF_OP_LDLS: 5275 id = DIF_INSTR_VAR(instr); 5276 5277 if (id < DIF_VAR_OTHER_UBASE) { 5278 /* 5279 * For now, this has no meaning. 5280 */ 5281 regs[rd] = 0; 5282 break; 5283 } 5284 5285 id -= DIF_VAR_OTHER_UBASE; 5286 5287 ASSERT(id < vstate->dtvs_nlocals); 5288 ASSERT(vstate->dtvs_locals != NULL); 5289 5290 svar = vstate->dtvs_locals[id]; 5291 ASSERT(svar != NULL); 5292 v = &svar->dtsv_var; 5293 5294 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5295 uintptr_t a = (uintptr_t)svar->dtsv_data; 5296 size_t sz = v->dtdv_type.dtdt_size; 5297 5298 sz += sizeof (uint64_t); 5299 ASSERT(svar->dtsv_size == NCPU * sz); 5300 a += CPU->cpu_id * sz; 5301 5302 if (*(uint8_t *)a == UINT8_MAX) { 5303 /* 5304 * If the 0th byte is set to UINT8_MAX 5305 * then this is to be treated as a 5306 * reference to a NULL variable. 5307 */ 5308 regs[rd] = NULL; 5309 } else { 5310 regs[rd] = a + sizeof (uint64_t); 5311 } 5312 5313 break; 5314 } 5315 5316 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5317 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5318 regs[rd] = tmp[CPU->cpu_id]; 5319 break; 5320 5321 case DIF_OP_STLS: 5322 id = DIF_INSTR_VAR(instr); 5323 5324 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5325 id -= DIF_VAR_OTHER_UBASE; 5326 ASSERT(id < vstate->dtvs_nlocals); 5327 5328 ASSERT(vstate->dtvs_locals != NULL); 5329 svar = vstate->dtvs_locals[id]; 5330 ASSERT(svar != NULL); 5331 v = &svar->dtsv_var; 5332 5333 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5334 uintptr_t a = (uintptr_t)svar->dtsv_data; 5335 size_t sz = v->dtdv_type.dtdt_size; 5336 5337 sz += sizeof (uint64_t); 5338 ASSERT(svar->dtsv_size == NCPU * sz); 5339 a += CPU->cpu_id * sz; 5340 5341 if (regs[rd] == NULL) { 5342 *(uint8_t *)a = UINT8_MAX; 5343 break; 5344 } else { 5345 *(uint8_t *)a = 0; 5346 a += sizeof (uint64_t); 5347 } 5348 5349 if (!dtrace_vcanload( 5350 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5351 mstate, vstate)) 5352 break; 5353 5354 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5355 (void *)a, &v->dtdv_type); 5356 break; 5357 } 5358 5359 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5360 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5361 tmp[CPU->cpu_id] = regs[rd]; 5362 break; 5363 5364 case DIF_OP_LDTS: { 5365 dtrace_dynvar_t *dvar; 5366 dtrace_key_t *key; 5367 5368 id = DIF_INSTR_VAR(instr); 5369 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5370 id -= DIF_VAR_OTHER_UBASE; 5371 v = &vstate->dtvs_tlocals[id]; 5372 5373 key = &tupregs[DIF_DTR_NREGS]; 5374 key[0].dttk_value = (uint64_t)id; 5375 key[0].dttk_size = 0; 5376 DTRACE_TLS_THRKEY(key[1].dttk_value); 5377 key[1].dttk_size = 0; 5378 5379 dvar = dtrace_dynvar(dstate, 2, key, 5380 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5381 mstate, vstate); 5382 5383 if (dvar == NULL) { 5384 regs[rd] = 0; 5385 break; 5386 } 5387 5388 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5389 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5390 } else { 5391 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5392 } 5393 5394 break; 5395 } 5396 5397 case DIF_OP_STTS: { 5398 dtrace_dynvar_t *dvar; 5399 dtrace_key_t *key; 5400 5401 id = DIF_INSTR_VAR(instr); 5402 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5403 id -= DIF_VAR_OTHER_UBASE; 5404 5405 key = &tupregs[DIF_DTR_NREGS]; 5406 key[0].dttk_value = (uint64_t)id; 5407 key[0].dttk_size = 0; 5408 DTRACE_TLS_THRKEY(key[1].dttk_value); 5409 key[1].dttk_size = 0; 5410 v = &vstate->dtvs_tlocals[id]; 5411 5412 dvar = dtrace_dynvar(dstate, 2, key, 5413 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5414 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5415 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5416 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5417 5418 /* 5419 * Given that we're storing to thread-local data, 5420 * we need to flush our predicate cache. 5421 */ 5422 curthread->t_predcache = NULL; 5423 5424 if (dvar == NULL) 5425 break; 5426 5427 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5428 if (!dtrace_vcanload( 5429 (void *)(uintptr_t)regs[rd], 5430 &v->dtdv_type, mstate, vstate)) 5431 break; 5432 5433 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5434 dvar->dtdv_data, &v->dtdv_type); 5435 } else { 5436 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5437 } 5438 5439 break; 5440 } 5441 5442 case DIF_OP_SRA: 5443 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5444 break; 5445 5446 case DIF_OP_CALL: 5447 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5448 regs, tupregs, ttop, mstate, state); 5449 break; 5450 5451 case DIF_OP_PUSHTR: 5452 if (ttop == DIF_DTR_NREGS) { 5453 *flags |= CPU_DTRACE_TUPOFLOW; 5454 break; 5455 } 5456 5457 if (r1 == DIF_TYPE_STRING) { 5458 /* 5459 * If this is a string type and the size is 0, 5460 * we'll use the system-wide default string 5461 * size. Note that we are _not_ looking at 5462 * the value of the DTRACEOPT_STRSIZE option; 5463 * had this been set, we would expect to have 5464 * a non-zero size value in the "pushtr". 5465 */ 5466 tupregs[ttop].dttk_size = 5467 dtrace_strlen((char *)(uintptr_t)regs[rd], 5468 regs[r2] ? regs[r2] : 5469 dtrace_strsize_default) + 1; 5470 } else { 5471 tupregs[ttop].dttk_size = regs[r2]; 5472 } 5473 5474 tupregs[ttop++].dttk_value = regs[rd]; 5475 break; 5476 5477 case DIF_OP_PUSHTV: 5478 if (ttop == DIF_DTR_NREGS) { 5479 *flags |= CPU_DTRACE_TUPOFLOW; 5480 break; 5481 } 5482 5483 tupregs[ttop].dttk_value = regs[rd]; 5484 tupregs[ttop++].dttk_size = 0; 5485 break; 5486 5487 case DIF_OP_POPTS: 5488 if (ttop != 0) 5489 ttop--; 5490 break; 5491 5492 case DIF_OP_FLUSHTS: 5493 ttop = 0; 5494 break; 5495 5496 case DIF_OP_LDGAA: 5497 case DIF_OP_LDTAA: { 5498 dtrace_dynvar_t *dvar; 5499 dtrace_key_t *key = tupregs; 5500 uint_t nkeys = ttop; 5501 5502 id = DIF_INSTR_VAR(instr); 5503 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5504 id -= DIF_VAR_OTHER_UBASE; 5505 5506 key[nkeys].dttk_value = (uint64_t)id; 5507 key[nkeys++].dttk_size = 0; 5508 5509 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5510 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5511 key[nkeys++].dttk_size = 0; 5512 v = &vstate->dtvs_tlocals[id]; 5513 } else { 5514 v = &vstate->dtvs_globals[id]->dtsv_var; 5515 } 5516 5517 dvar = dtrace_dynvar(dstate, nkeys, key, 5518 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5519 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5520 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5521 5522 if (dvar == NULL) { 5523 regs[rd] = 0; 5524 break; 5525 } 5526 5527 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5528 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5529 } else { 5530 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5531 } 5532 5533 break; 5534 } 5535 5536 case DIF_OP_STGAA: 5537 case DIF_OP_STTAA: { 5538 dtrace_dynvar_t *dvar; 5539 dtrace_key_t *key = tupregs; 5540 uint_t nkeys = ttop; 5541 5542 id = DIF_INSTR_VAR(instr); 5543 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5544 id -= DIF_VAR_OTHER_UBASE; 5545 5546 key[nkeys].dttk_value = (uint64_t)id; 5547 key[nkeys++].dttk_size = 0; 5548 5549 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5550 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5551 key[nkeys++].dttk_size = 0; 5552 v = &vstate->dtvs_tlocals[id]; 5553 } else { 5554 v = &vstate->dtvs_globals[id]->dtsv_var; 5555 } 5556 5557 dvar = dtrace_dynvar(dstate, nkeys, key, 5558 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5559 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5560 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5561 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5562 5563 if (dvar == NULL) 5564 break; 5565 5566 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5567 if (!dtrace_vcanload( 5568 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5569 mstate, vstate)) 5570 break; 5571 5572 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5573 dvar->dtdv_data, &v->dtdv_type); 5574 } else { 5575 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5576 } 5577 5578 break; 5579 } 5580 5581 case DIF_OP_ALLOCS: { 5582 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5583 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5584 5585 /* 5586 * Rounding up the user allocation size could have 5587 * overflowed large, bogus allocations (like -1ULL) to 5588 * 0. 5589 */ 5590 if (size < regs[r1] || 5591 !DTRACE_INSCRATCH(mstate, size)) { 5592 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5593 regs[rd] = NULL; 5594 break; 5595 } 5596 5597 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5598 mstate->dtms_scratch_ptr += size; 5599 regs[rd] = ptr; 5600 break; 5601 } 5602 5603 case DIF_OP_COPYS: 5604 if (!dtrace_canstore(regs[rd], regs[r2], 5605 mstate, vstate)) { 5606 *flags |= CPU_DTRACE_BADADDR; 5607 *illval = regs[rd]; 5608 break; 5609 } 5610 5611 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5612 break; 5613 5614 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5615 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5616 break; 5617 5618 case DIF_OP_STB: 5619 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5620 *flags |= CPU_DTRACE_BADADDR; 5621 *illval = regs[rd]; 5622 break; 5623 } 5624 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5625 break; 5626 5627 case DIF_OP_STH: 5628 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5629 *flags |= CPU_DTRACE_BADADDR; 5630 *illval = regs[rd]; 5631 break; 5632 } 5633 if (regs[rd] & 1) { 5634 *flags |= CPU_DTRACE_BADALIGN; 5635 *illval = regs[rd]; 5636 break; 5637 } 5638 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5639 break; 5640 5641 case DIF_OP_STW: 5642 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5643 *flags |= CPU_DTRACE_BADADDR; 5644 *illval = regs[rd]; 5645 break; 5646 } 5647 if (regs[rd] & 3) { 5648 *flags |= CPU_DTRACE_BADALIGN; 5649 *illval = regs[rd]; 5650 break; 5651 } 5652 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5653 break; 5654 5655 case DIF_OP_STX: 5656 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5657 *flags |= CPU_DTRACE_BADADDR; 5658 *illval = regs[rd]; 5659 break; 5660 } 5661 if (regs[rd] & 7) { 5662 *flags |= CPU_DTRACE_BADALIGN; 5663 *illval = regs[rd]; 5664 break; 5665 } 5666 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5667 break; 5668 } 5669 } 5670 5671 if (!(*flags & CPU_DTRACE_FAULT)) 5672 return (rval); 5673 5674 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5675 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5676 5677 return (0); 5678 } 5679 5680 static void 5681 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5682 { 5683 dtrace_probe_t *probe = ecb->dte_probe; 5684 dtrace_provider_t *prov = probe->dtpr_provider; 5685 char c[DTRACE_FULLNAMELEN + 80], *str; 5686 char *msg = "dtrace: breakpoint action at probe "; 5687 char *ecbmsg = " (ecb "; 5688 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5689 uintptr_t val = (uintptr_t)ecb; 5690 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5691 5692 if (dtrace_destructive_disallow) 5693 return; 5694 5695 /* 5696 * It's impossible to be taking action on the NULL probe. 5697 */ 5698 ASSERT(probe != NULL); 5699 5700 /* 5701 * This is a poor man's (destitute man's?) sprintf(): we want to 5702 * print the provider name, module name, function name and name of 5703 * the probe, along with the hex address of the ECB with the breakpoint 5704 * action -- all of which we must place in the character buffer by 5705 * hand. 5706 */ 5707 while (*msg != '\0') 5708 c[i++] = *msg++; 5709 5710 for (str = prov->dtpv_name; *str != '\0'; str++) 5711 c[i++] = *str; 5712 c[i++] = ':'; 5713 5714 for (str = probe->dtpr_mod; *str != '\0'; str++) 5715 c[i++] = *str; 5716 c[i++] = ':'; 5717 5718 for (str = probe->dtpr_func; *str != '\0'; str++) 5719 c[i++] = *str; 5720 c[i++] = ':'; 5721 5722 for (str = probe->dtpr_name; *str != '\0'; str++) 5723 c[i++] = *str; 5724 5725 while (*ecbmsg != '\0') 5726 c[i++] = *ecbmsg++; 5727 5728 while (shift >= 0) { 5729 mask = (uintptr_t)0xf << shift; 5730 5731 if (val >= ((uintptr_t)1 << shift)) 5732 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5733 shift -= 4; 5734 } 5735 5736 c[i++] = ')'; 5737 c[i] = '\0'; 5738 5739 debug_enter(c); 5740 } 5741 5742 static void 5743 dtrace_action_panic(dtrace_ecb_t *ecb) 5744 { 5745 dtrace_probe_t *probe = ecb->dte_probe; 5746 5747 /* 5748 * It's impossible to be taking action on the NULL probe. 5749 */ 5750 ASSERT(probe != NULL); 5751 5752 if (dtrace_destructive_disallow) 5753 return; 5754 5755 if (dtrace_panicked != NULL) 5756 return; 5757 5758 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5759 return; 5760 5761 /* 5762 * We won the right to panic. (We want to be sure that only one 5763 * thread calls panic() from dtrace_probe(), and that panic() is 5764 * called exactly once.) 5765 */ 5766 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5767 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5768 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5769 } 5770 5771 static void 5772 dtrace_action_raise(uint64_t sig) 5773 { 5774 if (dtrace_destructive_disallow) 5775 return; 5776 5777 if (sig >= NSIG) { 5778 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5779 return; 5780 } 5781 5782 /* 5783 * raise() has a queue depth of 1 -- we ignore all subsequent 5784 * invocations of the raise() action. 5785 */ 5786 if (curthread->t_dtrace_sig == 0) 5787 curthread->t_dtrace_sig = (uint8_t)sig; 5788 5789 curthread->t_sig_check = 1; 5790 aston(curthread); 5791 } 5792 5793 static void 5794 dtrace_action_stop(void) 5795 { 5796 if (dtrace_destructive_disallow) 5797 return; 5798 5799 if (!curthread->t_dtrace_stop) { 5800 curthread->t_dtrace_stop = 1; 5801 curthread->t_sig_check = 1; 5802 aston(curthread); 5803 } 5804 } 5805 5806 static void 5807 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5808 { 5809 hrtime_t now; 5810 volatile uint16_t *flags; 5811 cpu_t *cpu = CPU; 5812 5813 if (dtrace_destructive_disallow) 5814 return; 5815 5816 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5817 5818 now = dtrace_gethrtime(); 5819 5820 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5821 /* 5822 * We need to advance the mark to the current time. 5823 */ 5824 cpu->cpu_dtrace_chillmark = now; 5825 cpu->cpu_dtrace_chilled = 0; 5826 } 5827 5828 /* 5829 * Now check to see if the requested chill time would take us over 5830 * the maximum amount of time allowed in the chill interval. (Or 5831 * worse, if the calculation itself induces overflow.) 5832 */ 5833 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5834 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5835 *flags |= CPU_DTRACE_ILLOP; 5836 return; 5837 } 5838 5839 while (dtrace_gethrtime() - now < val) 5840 continue; 5841 5842 /* 5843 * Normally, we assure that the value of the variable "timestamp" does 5844 * not change within an ECB. The presence of chill() represents an 5845 * exception to this rule, however. 5846 */ 5847 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5848 cpu->cpu_dtrace_chilled += val; 5849 } 5850 5851 static void 5852 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5853 uint64_t *buf, uint64_t arg) 5854 { 5855 int nframes = DTRACE_USTACK_NFRAMES(arg); 5856 int strsize = DTRACE_USTACK_STRSIZE(arg); 5857 uint64_t *pcs = &buf[1], *fps; 5858 char *str = (char *)&pcs[nframes]; 5859 int size, offs = 0, i, j; 5860 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5861 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5862 char *sym; 5863 5864 /* 5865 * Should be taking a faster path if string space has not been 5866 * allocated. 5867 */ 5868 ASSERT(strsize != 0); 5869 5870 /* 5871 * We will first allocate some temporary space for the frame pointers. 5872 */ 5873 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5874 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5875 (nframes * sizeof (uint64_t)); 5876 5877 if (!DTRACE_INSCRATCH(mstate, size)) { 5878 /* 5879 * Not enough room for our frame pointers -- need to indicate 5880 * that we ran out of scratch space. 5881 */ 5882 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5883 return; 5884 } 5885 5886 mstate->dtms_scratch_ptr += size; 5887 saved = mstate->dtms_scratch_ptr; 5888 5889 /* 5890 * Now get a stack with both program counters and frame pointers. 5891 */ 5892 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5893 dtrace_getufpstack(buf, fps, nframes + 1); 5894 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5895 5896 /* 5897 * If that faulted, we're cooked. 5898 */ 5899 if (*flags & CPU_DTRACE_FAULT) 5900 goto out; 5901 5902 /* 5903 * Now we want to walk up the stack, calling the USTACK helper. For 5904 * each iteration, we restore the scratch pointer. 5905 */ 5906 for (i = 0; i < nframes; i++) { 5907 mstate->dtms_scratch_ptr = saved; 5908 5909 if (offs >= strsize) 5910 break; 5911 5912 sym = (char *)(uintptr_t)dtrace_helper( 5913 DTRACE_HELPER_ACTION_USTACK, 5914 mstate, state, pcs[i], fps[i]); 5915 5916 /* 5917 * If we faulted while running the helper, we're going to 5918 * clear the fault and null out the corresponding string. 5919 */ 5920 if (*flags & CPU_DTRACE_FAULT) { 5921 *flags &= ~CPU_DTRACE_FAULT; 5922 str[offs++] = '\0'; 5923 continue; 5924 } 5925 5926 if (sym == NULL) { 5927 str[offs++] = '\0'; 5928 continue; 5929 } 5930 5931 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5932 5933 /* 5934 * Now copy in the string that the helper returned to us. 5935 */ 5936 for (j = 0; offs + j < strsize; j++) { 5937 if ((str[offs + j] = sym[j]) == '\0') 5938 break; 5939 } 5940 5941 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5942 5943 offs += j + 1; 5944 } 5945 5946 if (offs >= strsize) { 5947 /* 5948 * If we didn't have room for all of the strings, we don't 5949 * abort processing -- this needn't be a fatal error -- but we 5950 * still want to increment a counter (dts_stkstroverflows) to 5951 * allow this condition to be warned about. (If this is from 5952 * a jstack() action, it is easily tuned via jstackstrsize.) 5953 */ 5954 dtrace_error(&state->dts_stkstroverflows); 5955 } 5956 5957 while (offs < strsize) 5958 str[offs++] = '\0'; 5959 5960 out: 5961 mstate->dtms_scratch_ptr = old; 5962 } 5963 5964 /* 5965 * If you're looking for the epicenter of DTrace, you just found it. This 5966 * is the function called by the provider to fire a probe -- from which all 5967 * subsequent probe-context DTrace activity emanates. 5968 */ 5969 void 5970 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5971 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5972 { 5973 processorid_t cpuid; 5974 dtrace_icookie_t cookie; 5975 dtrace_probe_t *probe; 5976 dtrace_mstate_t mstate; 5977 dtrace_ecb_t *ecb; 5978 dtrace_action_t *act; 5979 intptr_t offs; 5980 size_t size; 5981 int vtime, onintr; 5982 volatile uint16_t *flags; 5983 hrtime_t now, end; 5984 5985 /* 5986 * Kick out immediately if this CPU is still being born (in which case 5987 * curthread will be set to -1) or the current thread can't allow 5988 * probes in its current context. 5989 */ 5990 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5991 return; 5992 5993 cookie = dtrace_interrupt_disable(); 5994 probe = dtrace_probes[id - 1]; 5995 cpuid = CPU->cpu_id; 5996 onintr = CPU_ON_INTR(CPU); 5997 5998 CPU->cpu_dtrace_probes++; 5999 6000 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6001 probe->dtpr_predcache == curthread->t_predcache) { 6002 /* 6003 * We have hit in the predicate cache; we know that 6004 * this predicate would evaluate to be false. 6005 */ 6006 dtrace_interrupt_enable(cookie); 6007 return; 6008 } 6009 6010 if (panic_quiesce) { 6011 /* 6012 * We don't trace anything if we're panicking. 6013 */ 6014 dtrace_interrupt_enable(cookie); 6015 return; 6016 } 6017 6018 now = dtrace_gethrtime(); 6019 vtime = dtrace_vtime_references != 0; 6020 6021 if (vtime && curthread->t_dtrace_start) 6022 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6023 6024 mstate.dtms_difo = NULL; 6025 mstate.dtms_probe = probe; 6026 mstate.dtms_strtok = NULL; 6027 mstate.dtms_arg[0] = arg0; 6028 mstate.dtms_arg[1] = arg1; 6029 mstate.dtms_arg[2] = arg2; 6030 mstate.dtms_arg[3] = arg3; 6031 mstate.dtms_arg[4] = arg4; 6032 6033 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6034 6035 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6036 dtrace_predicate_t *pred = ecb->dte_predicate; 6037 dtrace_state_t *state = ecb->dte_state; 6038 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6039 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6040 dtrace_vstate_t *vstate = &state->dts_vstate; 6041 dtrace_provider_t *prov = probe->dtpr_provider; 6042 uint64_t tracememsize = 0; 6043 int committed = 0; 6044 caddr_t tomax; 6045 6046 /* 6047 * A little subtlety with the following (seemingly innocuous) 6048 * declaration of the automatic 'val': by looking at the 6049 * code, you might think that it could be declared in the 6050 * action processing loop, below. (That is, it's only used in 6051 * the action processing loop.) However, it must be declared 6052 * out of that scope because in the case of DIF expression 6053 * arguments to aggregating actions, one iteration of the 6054 * action loop will use the last iteration's value. 6055 */ 6056 #ifdef lint 6057 uint64_t val = 0; 6058 #else 6059 uint64_t val; 6060 #endif 6061 6062 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6063 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6064 mstate.dtms_getf = NULL; 6065 6066 *flags &= ~CPU_DTRACE_ERROR; 6067 6068 if (prov == dtrace_provider) { 6069 /* 6070 * If dtrace itself is the provider of this probe, 6071 * we're only going to continue processing the ECB if 6072 * arg0 (the dtrace_state_t) is equal to the ECB's 6073 * creating state. (This prevents disjoint consumers 6074 * from seeing one another's metaprobes.) 6075 */ 6076 if (arg0 != (uint64_t)(uintptr_t)state) 6077 continue; 6078 } 6079 6080 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6081 /* 6082 * We're not currently active. If our provider isn't 6083 * the dtrace pseudo provider, we're not interested. 6084 */ 6085 if (prov != dtrace_provider) 6086 continue; 6087 6088 /* 6089 * Now we must further check if we are in the BEGIN 6090 * probe. If we are, we will only continue processing 6091 * if we're still in WARMUP -- if one BEGIN enabling 6092 * has invoked the exit() action, we don't want to 6093 * evaluate subsequent BEGIN enablings. 6094 */ 6095 if (probe->dtpr_id == dtrace_probeid_begin && 6096 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6097 ASSERT(state->dts_activity == 6098 DTRACE_ACTIVITY_DRAINING); 6099 continue; 6100 } 6101 } 6102 6103 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6104 continue; 6105 6106 if (now - state->dts_alive > dtrace_deadman_timeout) { 6107 /* 6108 * We seem to be dead. Unless we (a) have kernel 6109 * destructive permissions (b) have explicitly enabled 6110 * destructive actions and (c) destructive actions have 6111 * not been disabled, we're going to transition into 6112 * the KILLED state, from which no further processing 6113 * on this state will be performed. 6114 */ 6115 if (!dtrace_priv_kernel_destructive(state) || 6116 !state->dts_cred.dcr_destructive || 6117 dtrace_destructive_disallow) { 6118 void *activity = &state->dts_activity; 6119 dtrace_activity_t current; 6120 6121 do { 6122 current = state->dts_activity; 6123 } while (dtrace_cas32(activity, current, 6124 DTRACE_ACTIVITY_KILLED) != current); 6125 6126 continue; 6127 } 6128 } 6129 6130 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6131 ecb->dte_alignment, state, &mstate)) < 0) 6132 continue; 6133 6134 tomax = buf->dtb_tomax; 6135 ASSERT(tomax != NULL); 6136 6137 if (ecb->dte_size != 0) { 6138 dtrace_rechdr_t dtrh; 6139 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6140 mstate.dtms_timestamp = dtrace_gethrtime(); 6141 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6142 } 6143 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6144 dtrh.dtrh_epid = ecb->dte_epid; 6145 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6146 mstate.dtms_timestamp); 6147 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6148 } 6149 6150 mstate.dtms_epid = ecb->dte_epid; 6151 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6152 6153 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6154 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6155 6156 if (pred != NULL) { 6157 dtrace_difo_t *dp = pred->dtp_difo; 6158 int rval; 6159 6160 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6161 6162 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6163 dtrace_cacheid_t cid = probe->dtpr_predcache; 6164 6165 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6166 /* 6167 * Update the predicate cache... 6168 */ 6169 ASSERT(cid == pred->dtp_cacheid); 6170 curthread->t_predcache = cid; 6171 } 6172 6173 continue; 6174 } 6175 } 6176 6177 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6178 act != NULL; act = act->dta_next) { 6179 size_t valoffs; 6180 dtrace_difo_t *dp; 6181 dtrace_recdesc_t *rec = &act->dta_rec; 6182 6183 size = rec->dtrd_size; 6184 valoffs = offs + rec->dtrd_offset; 6185 6186 if (DTRACEACT_ISAGG(act->dta_kind)) { 6187 uint64_t v = 0xbad; 6188 dtrace_aggregation_t *agg; 6189 6190 agg = (dtrace_aggregation_t *)act; 6191 6192 if ((dp = act->dta_difo) != NULL) 6193 v = dtrace_dif_emulate(dp, 6194 &mstate, vstate, state); 6195 6196 if (*flags & CPU_DTRACE_ERROR) 6197 continue; 6198 6199 /* 6200 * Note that we always pass the expression 6201 * value from the previous iteration of the 6202 * action loop. This value will only be used 6203 * if there is an expression argument to the 6204 * aggregating action, denoted by the 6205 * dtag_hasarg field. 6206 */ 6207 dtrace_aggregate(agg, buf, 6208 offs, aggbuf, v, val); 6209 continue; 6210 } 6211 6212 switch (act->dta_kind) { 6213 case DTRACEACT_STOP: 6214 if (dtrace_priv_proc_destructive(state, 6215 &mstate)) 6216 dtrace_action_stop(); 6217 continue; 6218 6219 case DTRACEACT_BREAKPOINT: 6220 if (dtrace_priv_kernel_destructive(state)) 6221 dtrace_action_breakpoint(ecb); 6222 continue; 6223 6224 case DTRACEACT_PANIC: 6225 if (dtrace_priv_kernel_destructive(state)) 6226 dtrace_action_panic(ecb); 6227 continue; 6228 6229 case DTRACEACT_STACK: 6230 if (!dtrace_priv_kernel(state)) 6231 continue; 6232 6233 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6234 size / sizeof (pc_t), probe->dtpr_aframes, 6235 DTRACE_ANCHORED(probe) ? NULL : 6236 (uint32_t *)arg0); 6237 6238 continue; 6239 6240 case DTRACEACT_JSTACK: 6241 case DTRACEACT_USTACK: 6242 if (!dtrace_priv_proc(state, &mstate)) 6243 continue; 6244 6245 /* 6246 * See comment in DIF_VAR_PID. 6247 */ 6248 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6249 CPU_ON_INTR(CPU)) { 6250 int depth = DTRACE_USTACK_NFRAMES( 6251 rec->dtrd_arg) + 1; 6252 6253 dtrace_bzero((void *)(tomax + valoffs), 6254 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6255 + depth * sizeof (uint64_t)); 6256 6257 continue; 6258 } 6259 6260 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6261 curproc->p_dtrace_helpers != NULL) { 6262 /* 6263 * This is the slow path -- we have 6264 * allocated string space, and we're 6265 * getting the stack of a process that 6266 * has helpers. Call into a separate 6267 * routine to perform this processing. 6268 */ 6269 dtrace_action_ustack(&mstate, state, 6270 (uint64_t *)(tomax + valoffs), 6271 rec->dtrd_arg); 6272 continue; 6273 } 6274 6275 /* 6276 * Clear the string space, since there's no 6277 * helper to do it for us. 6278 */ 6279 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6280 int depth = DTRACE_USTACK_NFRAMES( 6281 rec->dtrd_arg); 6282 size_t strsize = DTRACE_USTACK_STRSIZE( 6283 rec->dtrd_arg); 6284 uint64_t *buf = (uint64_t *)(tomax + 6285 valoffs); 6286 void *strspace = &buf[depth + 1]; 6287 6288 dtrace_bzero(strspace, 6289 MIN(depth, strsize)); 6290 } 6291 6292 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6293 dtrace_getupcstack((uint64_t *) 6294 (tomax + valoffs), 6295 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6296 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6297 continue; 6298 6299 default: 6300 break; 6301 } 6302 6303 dp = act->dta_difo; 6304 ASSERT(dp != NULL); 6305 6306 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6307 6308 if (*flags & CPU_DTRACE_ERROR) 6309 continue; 6310 6311 switch (act->dta_kind) { 6312 case DTRACEACT_SPECULATE: { 6313 dtrace_rechdr_t *dtrh; 6314 6315 ASSERT(buf == &state->dts_buffer[cpuid]); 6316 buf = dtrace_speculation_buffer(state, 6317 cpuid, val); 6318 6319 if (buf == NULL) { 6320 *flags |= CPU_DTRACE_DROP; 6321 continue; 6322 } 6323 6324 offs = dtrace_buffer_reserve(buf, 6325 ecb->dte_needed, ecb->dte_alignment, 6326 state, NULL); 6327 6328 if (offs < 0) { 6329 *flags |= CPU_DTRACE_DROP; 6330 continue; 6331 } 6332 6333 tomax = buf->dtb_tomax; 6334 ASSERT(tomax != NULL); 6335 6336 if (ecb->dte_size == 0) 6337 continue; 6338 6339 ASSERT3U(ecb->dte_size, >=, 6340 sizeof (dtrace_rechdr_t)); 6341 dtrh = ((void *)(tomax + offs)); 6342 dtrh->dtrh_epid = ecb->dte_epid; 6343 /* 6344 * When the speculation is committed, all of 6345 * the records in the speculative buffer will 6346 * have their timestamps set to the commit 6347 * time. Until then, it is set to a sentinel 6348 * value, for debugability. 6349 */ 6350 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 6351 continue; 6352 } 6353 6354 case DTRACEACT_CHILL: 6355 if (dtrace_priv_kernel_destructive(state)) 6356 dtrace_action_chill(&mstate, val); 6357 continue; 6358 6359 case DTRACEACT_RAISE: 6360 if (dtrace_priv_proc_destructive(state, 6361 &mstate)) 6362 dtrace_action_raise(val); 6363 continue; 6364 6365 case DTRACEACT_COMMIT: 6366 ASSERT(!committed); 6367 6368 /* 6369 * We need to commit our buffer state. 6370 */ 6371 if (ecb->dte_size) 6372 buf->dtb_offset = offs + ecb->dte_size; 6373 buf = &state->dts_buffer[cpuid]; 6374 dtrace_speculation_commit(state, cpuid, val); 6375 committed = 1; 6376 continue; 6377 6378 case DTRACEACT_DISCARD: 6379 dtrace_speculation_discard(state, cpuid, val); 6380 continue; 6381 6382 case DTRACEACT_DIFEXPR: 6383 case DTRACEACT_LIBACT: 6384 case DTRACEACT_PRINTF: 6385 case DTRACEACT_PRINTA: 6386 case DTRACEACT_SYSTEM: 6387 case DTRACEACT_FREOPEN: 6388 case DTRACEACT_TRACEMEM: 6389 break; 6390 6391 case DTRACEACT_TRACEMEM_DYNSIZE: 6392 tracememsize = val; 6393 break; 6394 6395 case DTRACEACT_SYM: 6396 case DTRACEACT_MOD: 6397 if (!dtrace_priv_kernel(state)) 6398 continue; 6399 break; 6400 6401 case DTRACEACT_USYM: 6402 case DTRACEACT_UMOD: 6403 case DTRACEACT_UADDR: { 6404 struct pid *pid = curthread->t_procp->p_pidp; 6405 6406 if (!dtrace_priv_proc(state, &mstate)) 6407 continue; 6408 6409 DTRACE_STORE(uint64_t, tomax, 6410 valoffs, (uint64_t)pid->pid_id); 6411 DTRACE_STORE(uint64_t, tomax, 6412 valoffs + sizeof (uint64_t), val); 6413 6414 continue; 6415 } 6416 6417 case DTRACEACT_EXIT: { 6418 /* 6419 * For the exit action, we are going to attempt 6420 * to atomically set our activity to be 6421 * draining. If this fails (either because 6422 * another CPU has beat us to the exit action, 6423 * or because our current activity is something 6424 * other than ACTIVE or WARMUP), we will 6425 * continue. This assures that the exit action 6426 * can be successfully recorded at most once 6427 * when we're in the ACTIVE state. If we're 6428 * encountering the exit() action while in 6429 * COOLDOWN, however, we want to honor the new 6430 * status code. (We know that we're the only 6431 * thread in COOLDOWN, so there is no race.) 6432 */ 6433 void *activity = &state->dts_activity; 6434 dtrace_activity_t current = state->dts_activity; 6435 6436 if (current == DTRACE_ACTIVITY_COOLDOWN) 6437 break; 6438 6439 if (current != DTRACE_ACTIVITY_WARMUP) 6440 current = DTRACE_ACTIVITY_ACTIVE; 6441 6442 if (dtrace_cas32(activity, current, 6443 DTRACE_ACTIVITY_DRAINING) != current) { 6444 *flags |= CPU_DTRACE_DROP; 6445 continue; 6446 } 6447 6448 break; 6449 } 6450 6451 default: 6452 ASSERT(0); 6453 } 6454 6455 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6456 uintptr_t end = valoffs + size; 6457 6458 if (tracememsize != 0 && 6459 valoffs + tracememsize < end) { 6460 end = valoffs + tracememsize; 6461 tracememsize = 0; 6462 } 6463 6464 if (!dtrace_vcanload((void *)(uintptr_t)val, 6465 &dp->dtdo_rtype, &mstate, vstate)) 6466 continue; 6467 6468 /* 6469 * If this is a string, we're going to only 6470 * load until we find the zero byte -- after 6471 * which we'll store zero bytes. 6472 */ 6473 if (dp->dtdo_rtype.dtdt_kind == 6474 DIF_TYPE_STRING) { 6475 char c = '\0' + 1; 6476 int intuple = act->dta_intuple; 6477 size_t s; 6478 6479 for (s = 0; s < size; s++) { 6480 if (c != '\0') 6481 c = dtrace_load8(val++); 6482 6483 DTRACE_STORE(uint8_t, tomax, 6484 valoffs++, c); 6485 6486 if (c == '\0' && intuple) 6487 break; 6488 } 6489 6490 continue; 6491 } 6492 6493 while (valoffs < end) { 6494 DTRACE_STORE(uint8_t, tomax, valoffs++, 6495 dtrace_load8(val++)); 6496 } 6497 6498 continue; 6499 } 6500 6501 switch (size) { 6502 case 0: 6503 break; 6504 6505 case sizeof (uint8_t): 6506 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6507 break; 6508 case sizeof (uint16_t): 6509 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6510 break; 6511 case sizeof (uint32_t): 6512 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6513 break; 6514 case sizeof (uint64_t): 6515 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6516 break; 6517 default: 6518 /* 6519 * Any other size should have been returned by 6520 * reference, not by value. 6521 */ 6522 ASSERT(0); 6523 break; 6524 } 6525 } 6526 6527 if (*flags & CPU_DTRACE_DROP) 6528 continue; 6529 6530 if (*flags & CPU_DTRACE_FAULT) { 6531 int ndx; 6532 dtrace_action_t *err; 6533 6534 buf->dtb_errors++; 6535 6536 if (probe->dtpr_id == dtrace_probeid_error) { 6537 /* 6538 * There's nothing we can do -- we had an 6539 * error on the error probe. We bump an 6540 * error counter to at least indicate that 6541 * this condition happened. 6542 */ 6543 dtrace_error(&state->dts_dblerrors); 6544 continue; 6545 } 6546 6547 if (vtime) { 6548 /* 6549 * Before recursing on dtrace_probe(), we 6550 * need to explicitly clear out our start 6551 * time to prevent it from being accumulated 6552 * into t_dtrace_vtime. 6553 */ 6554 curthread->t_dtrace_start = 0; 6555 } 6556 6557 /* 6558 * Iterate over the actions to figure out which action 6559 * we were processing when we experienced the error. 6560 * Note that act points _past_ the faulting action; if 6561 * act is ecb->dte_action, the fault was in the 6562 * predicate, if it's ecb->dte_action->dta_next it's 6563 * in action #1, and so on. 6564 */ 6565 for (err = ecb->dte_action, ndx = 0; 6566 err != act; err = err->dta_next, ndx++) 6567 continue; 6568 6569 dtrace_probe_error(state, ecb->dte_epid, ndx, 6570 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6571 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6572 cpu_core[cpuid].cpuc_dtrace_illval); 6573 6574 continue; 6575 } 6576 6577 if (!committed) 6578 buf->dtb_offset = offs + ecb->dte_size; 6579 } 6580 6581 end = dtrace_gethrtime(); 6582 if (vtime) 6583 curthread->t_dtrace_start = end; 6584 6585 CPU->cpu_dtrace_nsec += end - now; 6586 6587 dtrace_interrupt_enable(cookie); 6588 } 6589 6590 /* 6591 * DTrace Probe Hashing Functions 6592 * 6593 * The functions in this section (and indeed, the functions in remaining 6594 * sections) are not _called_ from probe context. (Any exceptions to this are 6595 * marked with a "Note:".) Rather, they are called from elsewhere in the 6596 * DTrace framework to look-up probes in, add probes to and remove probes from 6597 * the DTrace probe hashes. (Each probe is hashed by each element of the 6598 * probe tuple -- allowing for fast lookups, regardless of what was 6599 * specified.) 6600 */ 6601 static uint_t 6602 dtrace_hash_str(char *p) 6603 { 6604 unsigned int g; 6605 uint_t hval = 0; 6606 6607 while (*p) { 6608 hval = (hval << 4) + *p++; 6609 if ((g = (hval & 0xf0000000)) != 0) 6610 hval ^= g >> 24; 6611 hval &= ~g; 6612 } 6613 return (hval); 6614 } 6615 6616 static dtrace_hash_t * 6617 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6618 { 6619 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6620 6621 hash->dth_stroffs = stroffs; 6622 hash->dth_nextoffs = nextoffs; 6623 hash->dth_prevoffs = prevoffs; 6624 6625 hash->dth_size = 1; 6626 hash->dth_mask = hash->dth_size - 1; 6627 6628 hash->dth_tab = kmem_zalloc(hash->dth_size * 6629 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6630 6631 return (hash); 6632 } 6633 6634 static void 6635 dtrace_hash_destroy(dtrace_hash_t *hash) 6636 { 6637 #ifdef DEBUG 6638 int i; 6639 6640 for (i = 0; i < hash->dth_size; i++) 6641 ASSERT(hash->dth_tab[i] == NULL); 6642 #endif 6643 6644 kmem_free(hash->dth_tab, 6645 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6646 kmem_free(hash, sizeof (dtrace_hash_t)); 6647 } 6648 6649 static void 6650 dtrace_hash_resize(dtrace_hash_t *hash) 6651 { 6652 int size = hash->dth_size, i, ndx; 6653 int new_size = hash->dth_size << 1; 6654 int new_mask = new_size - 1; 6655 dtrace_hashbucket_t **new_tab, *bucket, *next; 6656 6657 ASSERT((new_size & new_mask) == 0); 6658 6659 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6660 6661 for (i = 0; i < size; i++) { 6662 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6663 dtrace_probe_t *probe = bucket->dthb_chain; 6664 6665 ASSERT(probe != NULL); 6666 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6667 6668 next = bucket->dthb_next; 6669 bucket->dthb_next = new_tab[ndx]; 6670 new_tab[ndx] = bucket; 6671 } 6672 } 6673 6674 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6675 hash->dth_tab = new_tab; 6676 hash->dth_size = new_size; 6677 hash->dth_mask = new_mask; 6678 } 6679 6680 static void 6681 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6682 { 6683 int hashval = DTRACE_HASHSTR(hash, new); 6684 int ndx = hashval & hash->dth_mask; 6685 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6686 dtrace_probe_t **nextp, **prevp; 6687 6688 for (; bucket != NULL; bucket = bucket->dthb_next) { 6689 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6690 goto add; 6691 } 6692 6693 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6694 dtrace_hash_resize(hash); 6695 dtrace_hash_add(hash, new); 6696 return; 6697 } 6698 6699 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6700 bucket->dthb_next = hash->dth_tab[ndx]; 6701 hash->dth_tab[ndx] = bucket; 6702 hash->dth_nbuckets++; 6703 6704 add: 6705 nextp = DTRACE_HASHNEXT(hash, new); 6706 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6707 *nextp = bucket->dthb_chain; 6708 6709 if (bucket->dthb_chain != NULL) { 6710 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6711 ASSERT(*prevp == NULL); 6712 *prevp = new; 6713 } 6714 6715 bucket->dthb_chain = new; 6716 bucket->dthb_len++; 6717 } 6718 6719 static dtrace_probe_t * 6720 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6721 { 6722 int hashval = DTRACE_HASHSTR(hash, template); 6723 int ndx = hashval & hash->dth_mask; 6724 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6725 6726 for (; bucket != NULL; bucket = bucket->dthb_next) { 6727 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6728 return (bucket->dthb_chain); 6729 } 6730 6731 return (NULL); 6732 } 6733 6734 static int 6735 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6736 { 6737 int hashval = DTRACE_HASHSTR(hash, template); 6738 int ndx = hashval & hash->dth_mask; 6739 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6740 6741 for (; bucket != NULL; bucket = bucket->dthb_next) { 6742 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6743 return (bucket->dthb_len); 6744 } 6745 6746 return (NULL); 6747 } 6748 6749 static void 6750 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6751 { 6752 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6753 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6754 6755 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6756 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6757 6758 /* 6759 * Find the bucket that we're removing this probe from. 6760 */ 6761 for (; bucket != NULL; bucket = bucket->dthb_next) { 6762 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6763 break; 6764 } 6765 6766 ASSERT(bucket != NULL); 6767 6768 if (*prevp == NULL) { 6769 if (*nextp == NULL) { 6770 /* 6771 * The removed probe was the only probe on this 6772 * bucket; we need to remove the bucket. 6773 */ 6774 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6775 6776 ASSERT(bucket->dthb_chain == probe); 6777 ASSERT(b != NULL); 6778 6779 if (b == bucket) { 6780 hash->dth_tab[ndx] = bucket->dthb_next; 6781 } else { 6782 while (b->dthb_next != bucket) 6783 b = b->dthb_next; 6784 b->dthb_next = bucket->dthb_next; 6785 } 6786 6787 ASSERT(hash->dth_nbuckets > 0); 6788 hash->dth_nbuckets--; 6789 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6790 return; 6791 } 6792 6793 bucket->dthb_chain = *nextp; 6794 } else { 6795 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6796 } 6797 6798 if (*nextp != NULL) 6799 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6800 } 6801 6802 /* 6803 * DTrace Utility Functions 6804 * 6805 * These are random utility functions that are _not_ called from probe context. 6806 */ 6807 static int 6808 dtrace_badattr(const dtrace_attribute_t *a) 6809 { 6810 return (a->dtat_name > DTRACE_STABILITY_MAX || 6811 a->dtat_data > DTRACE_STABILITY_MAX || 6812 a->dtat_class > DTRACE_CLASS_MAX); 6813 } 6814 6815 /* 6816 * Return a duplicate copy of a string. If the specified string is NULL, 6817 * this function returns a zero-length string. 6818 */ 6819 static char * 6820 dtrace_strdup(const char *str) 6821 { 6822 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6823 6824 if (str != NULL) 6825 (void) strcpy(new, str); 6826 6827 return (new); 6828 } 6829 6830 #define DTRACE_ISALPHA(c) \ 6831 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6832 6833 static int 6834 dtrace_badname(const char *s) 6835 { 6836 char c; 6837 6838 if (s == NULL || (c = *s++) == '\0') 6839 return (0); 6840 6841 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6842 return (1); 6843 6844 while ((c = *s++) != '\0') { 6845 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6846 c != '-' && c != '_' && c != '.' && c != '`') 6847 return (1); 6848 } 6849 6850 return (0); 6851 } 6852 6853 static void 6854 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6855 { 6856 uint32_t priv; 6857 6858 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6859 /* 6860 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6861 */ 6862 priv = DTRACE_PRIV_ALL; 6863 } else { 6864 *uidp = crgetuid(cr); 6865 *zoneidp = crgetzoneid(cr); 6866 6867 priv = 0; 6868 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6869 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6870 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6871 priv |= DTRACE_PRIV_USER; 6872 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6873 priv |= DTRACE_PRIV_PROC; 6874 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6875 priv |= DTRACE_PRIV_OWNER; 6876 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6877 priv |= DTRACE_PRIV_ZONEOWNER; 6878 } 6879 6880 *privp = priv; 6881 } 6882 6883 #ifdef DTRACE_ERRDEBUG 6884 static void 6885 dtrace_errdebug(const char *str) 6886 { 6887 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6888 int occupied = 0; 6889 6890 mutex_enter(&dtrace_errlock); 6891 dtrace_errlast = str; 6892 dtrace_errthread = curthread; 6893 6894 while (occupied++ < DTRACE_ERRHASHSZ) { 6895 if (dtrace_errhash[hval].dter_msg == str) { 6896 dtrace_errhash[hval].dter_count++; 6897 goto out; 6898 } 6899 6900 if (dtrace_errhash[hval].dter_msg != NULL) { 6901 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6902 continue; 6903 } 6904 6905 dtrace_errhash[hval].dter_msg = str; 6906 dtrace_errhash[hval].dter_count = 1; 6907 goto out; 6908 } 6909 6910 panic("dtrace: undersized error hash"); 6911 out: 6912 mutex_exit(&dtrace_errlock); 6913 } 6914 #endif 6915 6916 /* 6917 * DTrace Matching Functions 6918 * 6919 * These functions are used to match groups of probes, given some elements of 6920 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6921 */ 6922 static int 6923 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6924 zoneid_t zoneid) 6925 { 6926 if (priv != DTRACE_PRIV_ALL) { 6927 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6928 uint32_t match = priv & ppriv; 6929 6930 /* 6931 * No PRIV_DTRACE_* privileges... 6932 */ 6933 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6934 DTRACE_PRIV_KERNEL)) == 0) 6935 return (0); 6936 6937 /* 6938 * No matching bits, but there were bits to match... 6939 */ 6940 if (match == 0 && ppriv != 0) 6941 return (0); 6942 6943 /* 6944 * Need to have permissions to the process, but don't... 6945 */ 6946 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6947 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6948 return (0); 6949 } 6950 6951 /* 6952 * Need to be in the same zone unless we possess the 6953 * privilege to examine all zones. 6954 */ 6955 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6956 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6957 return (0); 6958 } 6959 } 6960 6961 return (1); 6962 } 6963 6964 /* 6965 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6966 * consists of input pattern strings and an ops-vector to evaluate them. 6967 * This function returns >0 for match, 0 for no match, and <0 for error. 6968 */ 6969 static int 6970 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6971 uint32_t priv, uid_t uid, zoneid_t zoneid) 6972 { 6973 dtrace_provider_t *pvp = prp->dtpr_provider; 6974 int rv; 6975 6976 if (pvp->dtpv_defunct) 6977 return (0); 6978 6979 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6980 return (rv); 6981 6982 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6983 return (rv); 6984 6985 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6986 return (rv); 6987 6988 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6989 return (rv); 6990 6991 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6992 return (0); 6993 6994 return (rv); 6995 } 6996 6997 /* 6998 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6999 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7000 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7001 * In addition, all of the recursion cases except for '*' matching have been 7002 * unwound. For '*', we still implement recursive evaluation, but a depth 7003 * counter is maintained and matching is aborted if we recurse too deep. 7004 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7005 */ 7006 static int 7007 dtrace_match_glob(const char *s, const char *p, int depth) 7008 { 7009 const char *olds; 7010 char s1, c; 7011 int gs; 7012 7013 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7014 return (-1); 7015 7016 if (s == NULL) 7017 s = ""; /* treat NULL as empty string */ 7018 7019 top: 7020 olds = s; 7021 s1 = *s++; 7022 7023 if (p == NULL) 7024 return (0); 7025 7026 if ((c = *p++) == '\0') 7027 return (s1 == '\0'); 7028 7029 switch (c) { 7030 case '[': { 7031 int ok = 0, notflag = 0; 7032 char lc = '\0'; 7033 7034 if (s1 == '\0') 7035 return (0); 7036 7037 if (*p == '!') { 7038 notflag = 1; 7039 p++; 7040 } 7041 7042 if ((c = *p++) == '\0') 7043 return (0); 7044 7045 do { 7046 if (c == '-' && lc != '\0' && *p != ']') { 7047 if ((c = *p++) == '\0') 7048 return (0); 7049 if (c == '\\' && (c = *p++) == '\0') 7050 return (0); 7051 7052 if (notflag) { 7053 if (s1 < lc || s1 > c) 7054 ok++; 7055 else 7056 return (0); 7057 } else if (lc <= s1 && s1 <= c) 7058 ok++; 7059 7060 } else if (c == '\\' && (c = *p++) == '\0') 7061 return (0); 7062 7063 lc = c; /* save left-hand 'c' for next iteration */ 7064 7065 if (notflag) { 7066 if (s1 != c) 7067 ok++; 7068 else 7069 return (0); 7070 } else if (s1 == c) 7071 ok++; 7072 7073 if ((c = *p++) == '\0') 7074 return (0); 7075 7076 } while (c != ']'); 7077 7078 if (ok) 7079 goto top; 7080 7081 return (0); 7082 } 7083 7084 case '\\': 7085 if ((c = *p++) == '\0') 7086 return (0); 7087 /*FALLTHRU*/ 7088 7089 default: 7090 if (c != s1) 7091 return (0); 7092 /*FALLTHRU*/ 7093 7094 case '?': 7095 if (s1 != '\0') 7096 goto top; 7097 return (0); 7098 7099 case '*': 7100 while (*p == '*') 7101 p++; /* consecutive *'s are identical to a single one */ 7102 7103 if (*p == '\0') 7104 return (1); 7105 7106 for (s = olds; *s != '\0'; s++) { 7107 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7108 return (gs); 7109 } 7110 7111 return (0); 7112 } 7113 } 7114 7115 /*ARGSUSED*/ 7116 static int 7117 dtrace_match_string(const char *s, const char *p, int depth) 7118 { 7119 return (s != NULL && strcmp(s, p) == 0); 7120 } 7121 7122 /*ARGSUSED*/ 7123 static int 7124 dtrace_match_nul(const char *s, const char *p, int depth) 7125 { 7126 return (1); /* always match the empty pattern */ 7127 } 7128 7129 /*ARGSUSED*/ 7130 static int 7131 dtrace_match_nonzero(const char *s, const char *p, int depth) 7132 { 7133 return (s != NULL && s[0] != '\0'); 7134 } 7135 7136 static int 7137 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7138 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7139 { 7140 dtrace_probe_t template, *probe; 7141 dtrace_hash_t *hash = NULL; 7142 int len, rc, best = INT_MAX, nmatched = 0; 7143 dtrace_id_t i; 7144 7145 ASSERT(MUTEX_HELD(&dtrace_lock)); 7146 7147 /* 7148 * If the probe ID is specified in the key, just lookup by ID and 7149 * invoke the match callback once if a matching probe is found. 7150 */ 7151 if (pkp->dtpk_id != DTRACE_IDNONE) { 7152 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7153 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7154 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7155 return (DTRACE_MATCH_FAIL); 7156 nmatched++; 7157 } 7158 return (nmatched); 7159 } 7160 7161 template.dtpr_mod = (char *)pkp->dtpk_mod; 7162 template.dtpr_func = (char *)pkp->dtpk_func; 7163 template.dtpr_name = (char *)pkp->dtpk_name; 7164 7165 /* 7166 * We want to find the most distinct of the module name, function 7167 * name, and name. So for each one that is not a glob pattern or 7168 * empty string, we perform a lookup in the corresponding hash and 7169 * use the hash table with the fewest collisions to do our search. 7170 */ 7171 if (pkp->dtpk_mmatch == &dtrace_match_string && 7172 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7173 best = len; 7174 hash = dtrace_bymod; 7175 } 7176 7177 if (pkp->dtpk_fmatch == &dtrace_match_string && 7178 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7179 best = len; 7180 hash = dtrace_byfunc; 7181 } 7182 7183 if (pkp->dtpk_nmatch == &dtrace_match_string && 7184 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7185 best = len; 7186 hash = dtrace_byname; 7187 } 7188 7189 /* 7190 * If we did not select a hash table, iterate over every probe and 7191 * invoke our callback for each one that matches our input probe key. 7192 */ 7193 if (hash == NULL) { 7194 for (i = 0; i < dtrace_nprobes; i++) { 7195 if ((probe = dtrace_probes[i]) == NULL || 7196 dtrace_match_probe(probe, pkp, priv, uid, 7197 zoneid) <= 0) 7198 continue; 7199 7200 nmatched++; 7201 7202 if ((rc = (*matched)(probe, arg)) != 7203 DTRACE_MATCH_NEXT) { 7204 if (rc == DTRACE_MATCH_FAIL) 7205 return (DTRACE_MATCH_FAIL); 7206 break; 7207 } 7208 } 7209 7210 return (nmatched); 7211 } 7212 7213 /* 7214 * If we selected a hash table, iterate over each probe of the same key 7215 * name and invoke the callback for every probe that matches the other 7216 * attributes of our input probe key. 7217 */ 7218 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7219 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7220 7221 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7222 continue; 7223 7224 nmatched++; 7225 7226 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7227 if (rc == DTRACE_MATCH_FAIL) 7228 return (DTRACE_MATCH_FAIL); 7229 break; 7230 } 7231 } 7232 7233 return (nmatched); 7234 } 7235 7236 /* 7237 * Return the function pointer dtrace_probecmp() should use to compare the 7238 * specified pattern with a string. For NULL or empty patterns, we select 7239 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7240 * For non-empty non-glob strings, we use dtrace_match_string(). 7241 */ 7242 static dtrace_probekey_f * 7243 dtrace_probekey_func(const char *p) 7244 { 7245 char c; 7246 7247 if (p == NULL || *p == '\0') 7248 return (&dtrace_match_nul); 7249 7250 while ((c = *p++) != '\0') { 7251 if (c == '[' || c == '?' || c == '*' || c == '\\') 7252 return (&dtrace_match_glob); 7253 } 7254 7255 return (&dtrace_match_string); 7256 } 7257 7258 /* 7259 * Build a probe comparison key for use with dtrace_match_probe() from the 7260 * given probe description. By convention, a null key only matches anchored 7261 * probes: if each field is the empty string, reset dtpk_fmatch to 7262 * dtrace_match_nonzero(). 7263 */ 7264 static void 7265 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7266 { 7267 pkp->dtpk_prov = pdp->dtpd_provider; 7268 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7269 7270 pkp->dtpk_mod = pdp->dtpd_mod; 7271 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7272 7273 pkp->dtpk_func = pdp->dtpd_func; 7274 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7275 7276 pkp->dtpk_name = pdp->dtpd_name; 7277 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7278 7279 pkp->dtpk_id = pdp->dtpd_id; 7280 7281 if (pkp->dtpk_id == DTRACE_IDNONE && 7282 pkp->dtpk_pmatch == &dtrace_match_nul && 7283 pkp->dtpk_mmatch == &dtrace_match_nul && 7284 pkp->dtpk_fmatch == &dtrace_match_nul && 7285 pkp->dtpk_nmatch == &dtrace_match_nul) 7286 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7287 } 7288 7289 /* 7290 * DTrace Provider-to-Framework API Functions 7291 * 7292 * These functions implement much of the Provider-to-Framework API, as 7293 * described in <sys/dtrace.h>. The parts of the API not in this section are 7294 * the functions in the API for probe management (found below), and 7295 * dtrace_probe() itself (found above). 7296 */ 7297 7298 /* 7299 * Register the calling provider with the DTrace framework. This should 7300 * generally be called by DTrace providers in their attach(9E) entry point. 7301 */ 7302 int 7303 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7304 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7305 { 7306 dtrace_provider_t *provider; 7307 7308 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7309 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7310 "arguments", name ? name : "<NULL>"); 7311 return (EINVAL); 7312 } 7313 7314 if (name[0] == '\0' || dtrace_badname(name)) { 7315 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7316 "provider name", name); 7317 return (EINVAL); 7318 } 7319 7320 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7321 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7322 pops->dtps_destroy == NULL || 7323 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7324 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7325 "provider ops", name); 7326 return (EINVAL); 7327 } 7328 7329 if (dtrace_badattr(&pap->dtpa_provider) || 7330 dtrace_badattr(&pap->dtpa_mod) || 7331 dtrace_badattr(&pap->dtpa_func) || 7332 dtrace_badattr(&pap->dtpa_name) || 7333 dtrace_badattr(&pap->dtpa_args)) { 7334 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7335 "provider attributes", name); 7336 return (EINVAL); 7337 } 7338 7339 if (priv & ~DTRACE_PRIV_ALL) { 7340 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7341 "privilege attributes", name); 7342 return (EINVAL); 7343 } 7344 7345 if ((priv & DTRACE_PRIV_KERNEL) && 7346 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7347 pops->dtps_mode == NULL) { 7348 cmn_err(CE_WARN, "failed to register provider '%s': need " 7349 "dtps_mode() op for given privilege attributes", name); 7350 return (EINVAL); 7351 } 7352 7353 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7354 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7355 (void) strcpy(provider->dtpv_name, name); 7356 7357 provider->dtpv_attr = *pap; 7358 provider->dtpv_priv.dtpp_flags = priv; 7359 if (cr != NULL) { 7360 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7361 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7362 } 7363 provider->dtpv_pops = *pops; 7364 7365 if (pops->dtps_provide == NULL) { 7366 ASSERT(pops->dtps_provide_module != NULL); 7367 provider->dtpv_pops.dtps_provide = 7368 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7369 } 7370 7371 if (pops->dtps_provide_module == NULL) { 7372 ASSERT(pops->dtps_provide != NULL); 7373 provider->dtpv_pops.dtps_provide_module = 7374 (void (*)(void *, struct modctl *))dtrace_nullop; 7375 } 7376 7377 if (pops->dtps_suspend == NULL) { 7378 ASSERT(pops->dtps_resume == NULL); 7379 provider->dtpv_pops.dtps_suspend = 7380 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7381 provider->dtpv_pops.dtps_resume = 7382 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7383 } 7384 7385 provider->dtpv_arg = arg; 7386 *idp = (dtrace_provider_id_t)provider; 7387 7388 if (pops == &dtrace_provider_ops) { 7389 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7390 ASSERT(MUTEX_HELD(&dtrace_lock)); 7391 ASSERT(dtrace_anon.dta_enabling == NULL); 7392 7393 /* 7394 * We make sure that the DTrace provider is at the head of 7395 * the provider chain. 7396 */ 7397 provider->dtpv_next = dtrace_provider; 7398 dtrace_provider = provider; 7399 return (0); 7400 } 7401 7402 mutex_enter(&dtrace_provider_lock); 7403 mutex_enter(&dtrace_lock); 7404 7405 /* 7406 * If there is at least one provider registered, we'll add this 7407 * provider after the first provider. 7408 */ 7409 if (dtrace_provider != NULL) { 7410 provider->dtpv_next = dtrace_provider->dtpv_next; 7411 dtrace_provider->dtpv_next = provider; 7412 } else { 7413 dtrace_provider = provider; 7414 } 7415 7416 if (dtrace_retained != NULL) { 7417 dtrace_enabling_provide(provider); 7418 7419 /* 7420 * Now we need to call dtrace_enabling_matchall() -- which 7421 * will acquire cpu_lock and dtrace_lock. We therefore need 7422 * to drop all of our locks before calling into it... 7423 */ 7424 mutex_exit(&dtrace_lock); 7425 mutex_exit(&dtrace_provider_lock); 7426 dtrace_enabling_matchall(); 7427 7428 return (0); 7429 } 7430 7431 mutex_exit(&dtrace_lock); 7432 mutex_exit(&dtrace_provider_lock); 7433 7434 return (0); 7435 } 7436 7437 /* 7438 * Unregister the specified provider from the DTrace framework. This should 7439 * generally be called by DTrace providers in their detach(9E) entry point. 7440 */ 7441 int 7442 dtrace_unregister(dtrace_provider_id_t id) 7443 { 7444 dtrace_provider_t *old = (dtrace_provider_t *)id; 7445 dtrace_provider_t *prev = NULL; 7446 int i, self = 0, noreap = 0; 7447 dtrace_probe_t *probe, *first = NULL; 7448 7449 if (old->dtpv_pops.dtps_enable == 7450 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7451 /* 7452 * If DTrace itself is the provider, we're called with locks 7453 * already held. 7454 */ 7455 ASSERT(old == dtrace_provider); 7456 ASSERT(dtrace_devi != NULL); 7457 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7458 ASSERT(MUTEX_HELD(&dtrace_lock)); 7459 self = 1; 7460 7461 if (dtrace_provider->dtpv_next != NULL) { 7462 /* 7463 * There's another provider here; return failure. 7464 */ 7465 return (EBUSY); 7466 } 7467 } else { 7468 mutex_enter(&dtrace_provider_lock); 7469 mutex_enter(&mod_lock); 7470 mutex_enter(&dtrace_lock); 7471 } 7472 7473 /* 7474 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7475 * probes, we refuse to let providers slither away, unless this 7476 * provider has already been explicitly invalidated. 7477 */ 7478 if (!old->dtpv_defunct && 7479 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7480 dtrace_anon.dta_state->dts_necbs > 0))) { 7481 if (!self) { 7482 mutex_exit(&dtrace_lock); 7483 mutex_exit(&mod_lock); 7484 mutex_exit(&dtrace_provider_lock); 7485 } 7486 return (EBUSY); 7487 } 7488 7489 /* 7490 * Attempt to destroy the probes associated with this provider. 7491 */ 7492 for (i = 0; i < dtrace_nprobes; i++) { 7493 if ((probe = dtrace_probes[i]) == NULL) 7494 continue; 7495 7496 if (probe->dtpr_provider != old) 7497 continue; 7498 7499 if (probe->dtpr_ecb == NULL) 7500 continue; 7501 7502 /* 7503 * If we are trying to unregister a defunct provider, and the 7504 * provider was made defunct within the interval dictated by 7505 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7506 * attempt to reap our enablings. To denote that the provider 7507 * should reattempt to unregister itself at some point in the 7508 * future, we will return a differentiable error code (EAGAIN 7509 * instead of EBUSY) in this case. 7510 */ 7511 if (dtrace_gethrtime() - old->dtpv_defunct > 7512 dtrace_unregister_defunct_reap) 7513 noreap = 1; 7514 7515 if (!self) { 7516 mutex_exit(&dtrace_lock); 7517 mutex_exit(&mod_lock); 7518 mutex_exit(&dtrace_provider_lock); 7519 } 7520 7521 if (noreap) 7522 return (EBUSY); 7523 7524 (void) taskq_dispatch(dtrace_taskq, 7525 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 7526 7527 return (EAGAIN); 7528 } 7529 7530 /* 7531 * All of the probes for this provider are disabled; we can safely 7532 * remove all of them from their hash chains and from the probe array. 7533 */ 7534 for (i = 0; i < dtrace_nprobes; i++) { 7535 if ((probe = dtrace_probes[i]) == NULL) 7536 continue; 7537 7538 if (probe->dtpr_provider != old) 7539 continue; 7540 7541 dtrace_probes[i] = NULL; 7542 7543 dtrace_hash_remove(dtrace_bymod, probe); 7544 dtrace_hash_remove(dtrace_byfunc, probe); 7545 dtrace_hash_remove(dtrace_byname, probe); 7546 7547 if (first == NULL) { 7548 first = probe; 7549 probe->dtpr_nextmod = NULL; 7550 } else { 7551 probe->dtpr_nextmod = first; 7552 first = probe; 7553 } 7554 } 7555 7556 /* 7557 * The provider's probes have been removed from the hash chains and 7558 * from the probe array. Now issue a dtrace_sync() to be sure that 7559 * everyone has cleared out from any probe array processing. 7560 */ 7561 dtrace_sync(); 7562 7563 for (probe = first; probe != NULL; probe = first) { 7564 first = probe->dtpr_nextmod; 7565 7566 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7567 probe->dtpr_arg); 7568 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7569 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7570 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7571 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7572 kmem_free(probe, sizeof (dtrace_probe_t)); 7573 } 7574 7575 if ((prev = dtrace_provider) == old) { 7576 ASSERT(self || dtrace_devi == NULL); 7577 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7578 dtrace_provider = old->dtpv_next; 7579 } else { 7580 while (prev != NULL && prev->dtpv_next != old) 7581 prev = prev->dtpv_next; 7582 7583 if (prev == NULL) { 7584 panic("attempt to unregister non-existent " 7585 "dtrace provider %p\n", (void *)id); 7586 } 7587 7588 prev->dtpv_next = old->dtpv_next; 7589 } 7590 7591 if (!self) { 7592 mutex_exit(&dtrace_lock); 7593 mutex_exit(&mod_lock); 7594 mutex_exit(&dtrace_provider_lock); 7595 } 7596 7597 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7598 kmem_free(old, sizeof (dtrace_provider_t)); 7599 7600 return (0); 7601 } 7602 7603 /* 7604 * Invalidate the specified provider. All subsequent probe lookups for the 7605 * specified provider will fail, but its probes will not be removed. 7606 */ 7607 void 7608 dtrace_invalidate(dtrace_provider_id_t id) 7609 { 7610 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7611 7612 ASSERT(pvp->dtpv_pops.dtps_enable != 7613 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7614 7615 mutex_enter(&dtrace_provider_lock); 7616 mutex_enter(&dtrace_lock); 7617 7618 pvp->dtpv_defunct = dtrace_gethrtime(); 7619 7620 mutex_exit(&dtrace_lock); 7621 mutex_exit(&dtrace_provider_lock); 7622 } 7623 7624 /* 7625 * Indicate whether or not DTrace has attached. 7626 */ 7627 int 7628 dtrace_attached(void) 7629 { 7630 /* 7631 * dtrace_provider will be non-NULL iff the DTrace driver has 7632 * attached. (It's non-NULL because DTrace is always itself a 7633 * provider.) 7634 */ 7635 return (dtrace_provider != NULL); 7636 } 7637 7638 /* 7639 * Remove all the unenabled probes for the given provider. This function is 7640 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7641 * -- just as many of its associated probes as it can. 7642 */ 7643 int 7644 dtrace_condense(dtrace_provider_id_t id) 7645 { 7646 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7647 int i; 7648 dtrace_probe_t *probe; 7649 7650 /* 7651 * Make sure this isn't the dtrace provider itself. 7652 */ 7653 ASSERT(prov->dtpv_pops.dtps_enable != 7654 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7655 7656 mutex_enter(&dtrace_provider_lock); 7657 mutex_enter(&dtrace_lock); 7658 7659 /* 7660 * Attempt to destroy the probes associated with this provider. 7661 */ 7662 for (i = 0; i < dtrace_nprobes; i++) { 7663 if ((probe = dtrace_probes[i]) == NULL) 7664 continue; 7665 7666 if (probe->dtpr_provider != prov) 7667 continue; 7668 7669 if (probe->dtpr_ecb != NULL) 7670 continue; 7671 7672 dtrace_probes[i] = NULL; 7673 7674 dtrace_hash_remove(dtrace_bymod, probe); 7675 dtrace_hash_remove(dtrace_byfunc, probe); 7676 dtrace_hash_remove(dtrace_byname, probe); 7677 7678 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7679 probe->dtpr_arg); 7680 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7681 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7682 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7683 kmem_free(probe, sizeof (dtrace_probe_t)); 7684 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7685 } 7686 7687 mutex_exit(&dtrace_lock); 7688 mutex_exit(&dtrace_provider_lock); 7689 7690 return (0); 7691 } 7692 7693 /* 7694 * DTrace Probe Management Functions 7695 * 7696 * The functions in this section perform the DTrace probe management, 7697 * including functions to create probes, look-up probes, and call into the 7698 * providers to request that probes be provided. Some of these functions are 7699 * in the Provider-to-Framework API; these functions can be identified by the 7700 * fact that they are not declared "static". 7701 */ 7702 7703 /* 7704 * Create a probe with the specified module name, function name, and name. 7705 */ 7706 dtrace_id_t 7707 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7708 const char *func, const char *name, int aframes, void *arg) 7709 { 7710 dtrace_probe_t *probe, **probes; 7711 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7712 dtrace_id_t id; 7713 7714 if (provider == dtrace_provider) { 7715 ASSERT(MUTEX_HELD(&dtrace_lock)); 7716 } else { 7717 mutex_enter(&dtrace_lock); 7718 } 7719 7720 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7721 VM_BESTFIT | VM_SLEEP); 7722 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7723 7724 probe->dtpr_id = id; 7725 probe->dtpr_gen = dtrace_probegen++; 7726 probe->dtpr_mod = dtrace_strdup(mod); 7727 probe->dtpr_func = dtrace_strdup(func); 7728 probe->dtpr_name = dtrace_strdup(name); 7729 probe->dtpr_arg = arg; 7730 probe->dtpr_aframes = aframes; 7731 probe->dtpr_provider = provider; 7732 7733 dtrace_hash_add(dtrace_bymod, probe); 7734 dtrace_hash_add(dtrace_byfunc, probe); 7735 dtrace_hash_add(dtrace_byname, probe); 7736 7737 if (id - 1 >= dtrace_nprobes) { 7738 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7739 size_t nsize = osize << 1; 7740 7741 if (nsize == 0) { 7742 ASSERT(osize == 0); 7743 ASSERT(dtrace_probes == NULL); 7744 nsize = sizeof (dtrace_probe_t *); 7745 } 7746 7747 probes = kmem_zalloc(nsize, KM_SLEEP); 7748 7749 if (dtrace_probes == NULL) { 7750 ASSERT(osize == 0); 7751 dtrace_probes = probes; 7752 dtrace_nprobes = 1; 7753 } else { 7754 dtrace_probe_t **oprobes = dtrace_probes; 7755 7756 bcopy(oprobes, probes, osize); 7757 dtrace_membar_producer(); 7758 dtrace_probes = probes; 7759 7760 dtrace_sync(); 7761 7762 /* 7763 * All CPUs are now seeing the new probes array; we can 7764 * safely free the old array. 7765 */ 7766 kmem_free(oprobes, osize); 7767 dtrace_nprobes <<= 1; 7768 } 7769 7770 ASSERT(id - 1 < dtrace_nprobes); 7771 } 7772 7773 ASSERT(dtrace_probes[id - 1] == NULL); 7774 dtrace_probes[id - 1] = probe; 7775 7776 if (provider != dtrace_provider) 7777 mutex_exit(&dtrace_lock); 7778 7779 return (id); 7780 } 7781 7782 static dtrace_probe_t * 7783 dtrace_probe_lookup_id(dtrace_id_t id) 7784 { 7785 ASSERT(MUTEX_HELD(&dtrace_lock)); 7786 7787 if (id == 0 || id > dtrace_nprobes) 7788 return (NULL); 7789 7790 return (dtrace_probes[id - 1]); 7791 } 7792 7793 static int 7794 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7795 { 7796 *((dtrace_id_t *)arg) = probe->dtpr_id; 7797 7798 return (DTRACE_MATCH_DONE); 7799 } 7800 7801 /* 7802 * Look up a probe based on provider and one or more of module name, function 7803 * name and probe name. 7804 */ 7805 dtrace_id_t 7806 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7807 const char *func, const char *name) 7808 { 7809 dtrace_probekey_t pkey; 7810 dtrace_id_t id; 7811 int match; 7812 7813 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7814 pkey.dtpk_pmatch = &dtrace_match_string; 7815 pkey.dtpk_mod = mod; 7816 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7817 pkey.dtpk_func = func; 7818 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7819 pkey.dtpk_name = name; 7820 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7821 pkey.dtpk_id = DTRACE_IDNONE; 7822 7823 mutex_enter(&dtrace_lock); 7824 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7825 dtrace_probe_lookup_match, &id); 7826 mutex_exit(&dtrace_lock); 7827 7828 ASSERT(match == 1 || match == 0); 7829 return (match ? id : 0); 7830 } 7831 7832 /* 7833 * Returns the probe argument associated with the specified probe. 7834 */ 7835 void * 7836 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7837 { 7838 dtrace_probe_t *probe; 7839 void *rval = NULL; 7840 7841 mutex_enter(&dtrace_lock); 7842 7843 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7844 probe->dtpr_provider == (dtrace_provider_t *)id) 7845 rval = probe->dtpr_arg; 7846 7847 mutex_exit(&dtrace_lock); 7848 7849 return (rval); 7850 } 7851 7852 /* 7853 * Copy a probe into a probe description. 7854 */ 7855 static void 7856 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7857 { 7858 bzero(pdp, sizeof (dtrace_probedesc_t)); 7859 pdp->dtpd_id = prp->dtpr_id; 7860 7861 (void) strncpy(pdp->dtpd_provider, 7862 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7863 7864 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7865 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7866 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7867 } 7868 7869 /* 7870 * Called to indicate that a probe -- or probes -- should be provided by a 7871 * specfied provider. If the specified description is NULL, the provider will 7872 * be told to provide all of its probes. (This is done whenever a new 7873 * consumer comes along, or whenever a retained enabling is to be matched.) If 7874 * the specified description is non-NULL, the provider is given the 7875 * opportunity to dynamically provide the specified probe, allowing providers 7876 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7877 * probes.) If the provider is NULL, the operations will be applied to all 7878 * providers; if the provider is non-NULL the operations will only be applied 7879 * to the specified provider. The dtrace_provider_lock must be held, and the 7880 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7881 * will need to grab the dtrace_lock when it reenters the framework through 7882 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7883 */ 7884 static void 7885 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7886 { 7887 struct modctl *ctl; 7888 int all = 0; 7889 7890 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7891 7892 if (prv == NULL) { 7893 all = 1; 7894 prv = dtrace_provider; 7895 } 7896 7897 do { 7898 /* 7899 * First, call the blanket provide operation. 7900 */ 7901 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7902 7903 /* 7904 * Now call the per-module provide operation. We will grab 7905 * mod_lock to prevent the list from being modified. Note 7906 * that this also prevents the mod_busy bits from changing. 7907 * (mod_busy can only be changed with mod_lock held.) 7908 */ 7909 mutex_enter(&mod_lock); 7910 7911 ctl = &modules; 7912 do { 7913 if (ctl->mod_busy || ctl->mod_mp == NULL) 7914 continue; 7915 7916 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7917 7918 } while ((ctl = ctl->mod_next) != &modules); 7919 7920 mutex_exit(&mod_lock); 7921 } while (all && (prv = prv->dtpv_next) != NULL); 7922 } 7923 7924 /* 7925 * Iterate over each probe, and call the Framework-to-Provider API function 7926 * denoted by offs. 7927 */ 7928 static void 7929 dtrace_probe_foreach(uintptr_t offs) 7930 { 7931 dtrace_provider_t *prov; 7932 void (*func)(void *, dtrace_id_t, void *); 7933 dtrace_probe_t *probe; 7934 dtrace_icookie_t cookie; 7935 int i; 7936 7937 /* 7938 * We disable interrupts to walk through the probe array. This is 7939 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7940 * won't see stale data. 7941 */ 7942 cookie = dtrace_interrupt_disable(); 7943 7944 for (i = 0; i < dtrace_nprobes; i++) { 7945 if ((probe = dtrace_probes[i]) == NULL) 7946 continue; 7947 7948 if (probe->dtpr_ecb == NULL) { 7949 /* 7950 * This probe isn't enabled -- don't call the function. 7951 */ 7952 continue; 7953 } 7954 7955 prov = probe->dtpr_provider; 7956 func = *((void(**)(void *, dtrace_id_t, void *)) 7957 ((uintptr_t)&prov->dtpv_pops + offs)); 7958 7959 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7960 } 7961 7962 dtrace_interrupt_enable(cookie); 7963 } 7964 7965 static int 7966 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7967 { 7968 dtrace_probekey_t pkey; 7969 uint32_t priv; 7970 uid_t uid; 7971 zoneid_t zoneid; 7972 7973 ASSERT(MUTEX_HELD(&dtrace_lock)); 7974 dtrace_ecb_create_cache = NULL; 7975 7976 if (desc == NULL) { 7977 /* 7978 * If we're passed a NULL description, we're being asked to 7979 * create an ECB with a NULL probe. 7980 */ 7981 (void) dtrace_ecb_create_enable(NULL, enab); 7982 return (0); 7983 } 7984 7985 dtrace_probekey(desc, &pkey); 7986 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7987 &priv, &uid, &zoneid); 7988 7989 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7990 enab)); 7991 } 7992 7993 /* 7994 * DTrace Helper Provider Functions 7995 */ 7996 static void 7997 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7998 { 7999 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8000 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8001 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8002 } 8003 8004 static void 8005 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8006 const dof_provider_t *dofprov, char *strtab) 8007 { 8008 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8009 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8010 dofprov->dofpv_provattr); 8011 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8012 dofprov->dofpv_modattr); 8013 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8014 dofprov->dofpv_funcattr); 8015 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8016 dofprov->dofpv_nameattr); 8017 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8018 dofprov->dofpv_argsattr); 8019 } 8020 8021 static void 8022 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8023 { 8024 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8025 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8026 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8027 dof_provider_t *provider; 8028 dof_probe_t *probe; 8029 uint32_t *off, *enoff; 8030 uint8_t *arg; 8031 char *strtab; 8032 uint_t i, nprobes; 8033 dtrace_helper_provdesc_t dhpv; 8034 dtrace_helper_probedesc_t dhpb; 8035 dtrace_meta_t *meta = dtrace_meta_pid; 8036 dtrace_mops_t *mops = &meta->dtm_mops; 8037 void *parg; 8038 8039 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8040 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8041 provider->dofpv_strtab * dof->dofh_secsize); 8042 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8043 provider->dofpv_probes * dof->dofh_secsize); 8044 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8045 provider->dofpv_prargs * dof->dofh_secsize); 8046 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8047 provider->dofpv_proffs * dof->dofh_secsize); 8048 8049 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8050 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8051 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8052 enoff = NULL; 8053 8054 /* 8055 * See dtrace_helper_provider_validate(). 8056 */ 8057 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8058 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8059 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8060 provider->dofpv_prenoffs * dof->dofh_secsize); 8061 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8062 } 8063 8064 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8065 8066 /* 8067 * Create the provider. 8068 */ 8069 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8070 8071 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8072 return; 8073 8074 meta->dtm_count++; 8075 8076 /* 8077 * Create the probes. 8078 */ 8079 for (i = 0; i < nprobes; i++) { 8080 probe = (dof_probe_t *)(uintptr_t)(daddr + 8081 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8082 8083 dhpb.dthpb_mod = dhp->dofhp_mod; 8084 dhpb.dthpb_func = strtab + probe->dofpr_func; 8085 dhpb.dthpb_name = strtab + probe->dofpr_name; 8086 dhpb.dthpb_base = probe->dofpr_addr; 8087 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8088 dhpb.dthpb_noffs = probe->dofpr_noffs; 8089 if (enoff != NULL) { 8090 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8091 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8092 } else { 8093 dhpb.dthpb_enoffs = NULL; 8094 dhpb.dthpb_nenoffs = 0; 8095 } 8096 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8097 dhpb.dthpb_nargc = probe->dofpr_nargc; 8098 dhpb.dthpb_xargc = probe->dofpr_xargc; 8099 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8100 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8101 8102 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8103 } 8104 } 8105 8106 static void 8107 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8108 { 8109 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8110 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8111 int i; 8112 8113 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8114 8115 for (i = 0; i < dof->dofh_secnum; i++) { 8116 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8117 dof->dofh_secoff + i * dof->dofh_secsize); 8118 8119 if (sec->dofs_type != DOF_SECT_PROVIDER) 8120 continue; 8121 8122 dtrace_helper_provide_one(dhp, sec, pid); 8123 } 8124 8125 /* 8126 * We may have just created probes, so we must now rematch against 8127 * any retained enablings. Note that this call will acquire both 8128 * cpu_lock and dtrace_lock; the fact that we are holding 8129 * dtrace_meta_lock now is what defines the ordering with respect to 8130 * these three locks. 8131 */ 8132 dtrace_enabling_matchall(); 8133 } 8134 8135 static void 8136 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8137 { 8138 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8139 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8140 dof_sec_t *str_sec; 8141 dof_provider_t *provider; 8142 char *strtab; 8143 dtrace_helper_provdesc_t dhpv; 8144 dtrace_meta_t *meta = dtrace_meta_pid; 8145 dtrace_mops_t *mops = &meta->dtm_mops; 8146 8147 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8148 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8149 provider->dofpv_strtab * dof->dofh_secsize); 8150 8151 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8152 8153 /* 8154 * Create the provider. 8155 */ 8156 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8157 8158 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8159 8160 meta->dtm_count--; 8161 } 8162 8163 static void 8164 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8165 { 8166 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8167 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8168 int i; 8169 8170 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8171 8172 for (i = 0; i < dof->dofh_secnum; i++) { 8173 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8174 dof->dofh_secoff + i * dof->dofh_secsize); 8175 8176 if (sec->dofs_type != DOF_SECT_PROVIDER) 8177 continue; 8178 8179 dtrace_helper_provider_remove_one(dhp, sec, pid); 8180 } 8181 } 8182 8183 /* 8184 * DTrace Meta Provider-to-Framework API Functions 8185 * 8186 * These functions implement the Meta Provider-to-Framework API, as described 8187 * in <sys/dtrace.h>. 8188 */ 8189 int 8190 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8191 dtrace_meta_provider_id_t *idp) 8192 { 8193 dtrace_meta_t *meta; 8194 dtrace_helpers_t *help, *next; 8195 int i; 8196 8197 *idp = DTRACE_METAPROVNONE; 8198 8199 /* 8200 * We strictly don't need the name, but we hold onto it for 8201 * debuggability. All hail error queues! 8202 */ 8203 if (name == NULL) { 8204 cmn_err(CE_WARN, "failed to register meta-provider: " 8205 "invalid name"); 8206 return (EINVAL); 8207 } 8208 8209 if (mops == NULL || 8210 mops->dtms_create_probe == NULL || 8211 mops->dtms_provide_pid == NULL || 8212 mops->dtms_remove_pid == NULL) { 8213 cmn_err(CE_WARN, "failed to register meta-register %s: " 8214 "invalid ops", name); 8215 return (EINVAL); 8216 } 8217 8218 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8219 meta->dtm_mops = *mops; 8220 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8221 (void) strcpy(meta->dtm_name, name); 8222 meta->dtm_arg = arg; 8223 8224 mutex_enter(&dtrace_meta_lock); 8225 mutex_enter(&dtrace_lock); 8226 8227 if (dtrace_meta_pid != NULL) { 8228 mutex_exit(&dtrace_lock); 8229 mutex_exit(&dtrace_meta_lock); 8230 cmn_err(CE_WARN, "failed to register meta-register %s: " 8231 "user-land meta-provider exists", name); 8232 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8233 kmem_free(meta, sizeof (dtrace_meta_t)); 8234 return (EINVAL); 8235 } 8236 8237 dtrace_meta_pid = meta; 8238 *idp = (dtrace_meta_provider_id_t)meta; 8239 8240 /* 8241 * If there are providers and probes ready to go, pass them 8242 * off to the new meta provider now. 8243 */ 8244 8245 help = dtrace_deferred_pid; 8246 dtrace_deferred_pid = NULL; 8247 8248 mutex_exit(&dtrace_lock); 8249 8250 while (help != NULL) { 8251 for (i = 0; i < help->dthps_nprovs; i++) { 8252 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8253 help->dthps_pid); 8254 } 8255 8256 next = help->dthps_next; 8257 help->dthps_next = NULL; 8258 help->dthps_prev = NULL; 8259 help->dthps_deferred = 0; 8260 help = next; 8261 } 8262 8263 mutex_exit(&dtrace_meta_lock); 8264 8265 return (0); 8266 } 8267 8268 int 8269 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8270 { 8271 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8272 8273 mutex_enter(&dtrace_meta_lock); 8274 mutex_enter(&dtrace_lock); 8275 8276 if (old == dtrace_meta_pid) { 8277 pp = &dtrace_meta_pid; 8278 } else { 8279 panic("attempt to unregister non-existent " 8280 "dtrace meta-provider %p\n", (void *)old); 8281 } 8282 8283 if (old->dtm_count != 0) { 8284 mutex_exit(&dtrace_lock); 8285 mutex_exit(&dtrace_meta_lock); 8286 return (EBUSY); 8287 } 8288 8289 *pp = NULL; 8290 8291 mutex_exit(&dtrace_lock); 8292 mutex_exit(&dtrace_meta_lock); 8293 8294 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8295 kmem_free(old, sizeof (dtrace_meta_t)); 8296 8297 return (0); 8298 } 8299 8300 8301 /* 8302 * DTrace DIF Object Functions 8303 */ 8304 static int 8305 dtrace_difo_err(uint_t pc, const char *format, ...) 8306 { 8307 if (dtrace_err_verbose) { 8308 va_list alist; 8309 8310 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8311 va_start(alist, format); 8312 (void) vuprintf(format, alist); 8313 va_end(alist); 8314 } 8315 8316 #ifdef DTRACE_ERRDEBUG 8317 dtrace_errdebug(format); 8318 #endif 8319 return (1); 8320 } 8321 8322 /* 8323 * Validate a DTrace DIF object by checking the IR instructions. The following 8324 * rules are currently enforced by dtrace_difo_validate(): 8325 * 8326 * 1. Each instruction must have a valid opcode 8327 * 2. Each register, string, variable, or subroutine reference must be valid 8328 * 3. No instruction can modify register %r0 (must be zero) 8329 * 4. All instruction reserved bits must be set to zero 8330 * 5. The last instruction must be a "ret" instruction 8331 * 6. All branch targets must reference a valid instruction _after_ the branch 8332 */ 8333 static int 8334 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8335 cred_t *cr) 8336 { 8337 int err = 0, i; 8338 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8339 int kcheckload; 8340 uint_t pc; 8341 8342 kcheckload = cr == NULL || 8343 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8344 8345 dp->dtdo_destructive = 0; 8346 8347 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8348 dif_instr_t instr = dp->dtdo_buf[pc]; 8349 8350 uint_t r1 = DIF_INSTR_R1(instr); 8351 uint_t r2 = DIF_INSTR_R2(instr); 8352 uint_t rd = DIF_INSTR_RD(instr); 8353 uint_t rs = DIF_INSTR_RS(instr); 8354 uint_t label = DIF_INSTR_LABEL(instr); 8355 uint_t v = DIF_INSTR_VAR(instr); 8356 uint_t subr = DIF_INSTR_SUBR(instr); 8357 uint_t type = DIF_INSTR_TYPE(instr); 8358 uint_t op = DIF_INSTR_OP(instr); 8359 8360 switch (op) { 8361 case DIF_OP_OR: 8362 case DIF_OP_XOR: 8363 case DIF_OP_AND: 8364 case DIF_OP_SLL: 8365 case DIF_OP_SRL: 8366 case DIF_OP_SRA: 8367 case DIF_OP_SUB: 8368 case DIF_OP_ADD: 8369 case DIF_OP_MUL: 8370 case DIF_OP_SDIV: 8371 case DIF_OP_UDIV: 8372 case DIF_OP_SREM: 8373 case DIF_OP_UREM: 8374 case DIF_OP_COPYS: 8375 if (r1 >= nregs) 8376 err += efunc(pc, "invalid register %u\n", r1); 8377 if (r2 >= nregs) 8378 err += efunc(pc, "invalid register %u\n", r2); 8379 if (rd >= nregs) 8380 err += efunc(pc, "invalid register %u\n", rd); 8381 if (rd == 0) 8382 err += efunc(pc, "cannot write to %r0\n"); 8383 break; 8384 case DIF_OP_NOT: 8385 case DIF_OP_MOV: 8386 case DIF_OP_ALLOCS: 8387 if (r1 >= nregs) 8388 err += efunc(pc, "invalid register %u\n", r1); 8389 if (r2 != 0) 8390 err += efunc(pc, "non-zero reserved bits\n"); 8391 if (rd >= nregs) 8392 err += efunc(pc, "invalid register %u\n", rd); 8393 if (rd == 0) 8394 err += efunc(pc, "cannot write to %r0\n"); 8395 break; 8396 case DIF_OP_LDSB: 8397 case DIF_OP_LDSH: 8398 case DIF_OP_LDSW: 8399 case DIF_OP_LDUB: 8400 case DIF_OP_LDUH: 8401 case DIF_OP_LDUW: 8402 case DIF_OP_LDX: 8403 if (r1 >= nregs) 8404 err += efunc(pc, "invalid register %u\n", r1); 8405 if (r2 != 0) 8406 err += efunc(pc, "non-zero reserved bits\n"); 8407 if (rd >= nregs) 8408 err += efunc(pc, "invalid register %u\n", rd); 8409 if (rd == 0) 8410 err += efunc(pc, "cannot write to %r0\n"); 8411 if (kcheckload) 8412 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8413 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8414 break; 8415 case DIF_OP_RLDSB: 8416 case DIF_OP_RLDSH: 8417 case DIF_OP_RLDSW: 8418 case DIF_OP_RLDUB: 8419 case DIF_OP_RLDUH: 8420 case DIF_OP_RLDUW: 8421 case DIF_OP_RLDX: 8422 if (r1 >= nregs) 8423 err += efunc(pc, "invalid register %u\n", r1); 8424 if (r2 != 0) 8425 err += efunc(pc, "non-zero reserved bits\n"); 8426 if (rd >= nregs) 8427 err += efunc(pc, "invalid register %u\n", rd); 8428 if (rd == 0) 8429 err += efunc(pc, "cannot write to %r0\n"); 8430 break; 8431 case DIF_OP_ULDSB: 8432 case DIF_OP_ULDSH: 8433 case DIF_OP_ULDSW: 8434 case DIF_OP_ULDUB: 8435 case DIF_OP_ULDUH: 8436 case DIF_OP_ULDUW: 8437 case DIF_OP_ULDX: 8438 if (r1 >= nregs) 8439 err += efunc(pc, "invalid register %u\n", r1); 8440 if (r2 != 0) 8441 err += efunc(pc, "non-zero reserved bits\n"); 8442 if (rd >= nregs) 8443 err += efunc(pc, "invalid register %u\n", rd); 8444 if (rd == 0) 8445 err += efunc(pc, "cannot write to %r0\n"); 8446 break; 8447 case DIF_OP_STB: 8448 case DIF_OP_STH: 8449 case DIF_OP_STW: 8450 case DIF_OP_STX: 8451 if (r1 >= nregs) 8452 err += efunc(pc, "invalid register %u\n", r1); 8453 if (r2 != 0) 8454 err += efunc(pc, "non-zero reserved bits\n"); 8455 if (rd >= nregs) 8456 err += efunc(pc, "invalid register %u\n", rd); 8457 if (rd == 0) 8458 err += efunc(pc, "cannot write to 0 address\n"); 8459 break; 8460 case DIF_OP_CMP: 8461 case DIF_OP_SCMP: 8462 if (r1 >= nregs) 8463 err += efunc(pc, "invalid register %u\n", r1); 8464 if (r2 >= nregs) 8465 err += efunc(pc, "invalid register %u\n", r2); 8466 if (rd != 0) 8467 err += efunc(pc, "non-zero reserved bits\n"); 8468 break; 8469 case DIF_OP_TST: 8470 if (r1 >= nregs) 8471 err += efunc(pc, "invalid register %u\n", r1); 8472 if (r2 != 0 || rd != 0) 8473 err += efunc(pc, "non-zero reserved bits\n"); 8474 break; 8475 case DIF_OP_BA: 8476 case DIF_OP_BE: 8477 case DIF_OP_BNE: 8478 case DIF_OP_BG: 8479 case DIF_OP_BGU: 8480 case DIF_OP_BGE: 8481 case DIF_OP_BGEU: 8482 case DIF_OP_BL: 8483 case DIF_OP_BLU: 8484 case DIF_OP_BLE: 8485 case DIF_OP_BLEU: 8486 if (label >= dp->dtdo_len) { 8487 err += efunc(pc, "invalid branch target %u\n", 8488 label); 8489 } 8490 if (label <= pc) { 8491 err += efunc(pc, "backward branch to %u\n", 8492 label); 8493 } 8494 break; 8495 case DIF_OP_RET: 8496 if (r1 != 0 || r2 != 0) 8497 err += efunc(pc, "non-zero reserved bits\n"); 8498 if (rd >= nregs) 8499 err += efunc(pc, "invalid register %u\n", rd); 8500 break; 8501 case DIF_OP_NOP: 8502 case DIF_OP_POPTS: 8503 case DIF_OP_FLUSHTS: 8504 if (r1 != 0 || r2 != 0 || rd != 0) 8505 err += efunc(pc, "non-zero reserved bits\n"); 8506 break; 8507 case DIF_OP_SETX: 8508 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8509 err += efunc(pc, "invalid integer ref %u\n", 8510 DIF_INSTR_INTEGER(instr)); 8511 } 8512 if (rd >= nregs) 8513 err += efunc(pc, "invalid register %u\n", rd); 8514 if (rd == 0) 8515 err += efunc(pc, "cannot write to %r0\n"); 8516 break; 8517 case DIF_OP_SETS: 8518 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8519 err += efunc(pc, "invalid string ref %u\n", 8520 DIF_INSTR_STRING(instr)); 8521 } 8522 if (rd >= nregs) 8523 err += efunc(pc, "invalid register %u\n", rd); 8524 if (rd == 0) 8525 err += efunc(pc, "cannot write to %r0\n"); 8526 break; 8527 case DIF_OP_LDGA: 8528 case DIF_OP_LDTA: 8529 if (r1 > DIF_VAR_ARRAY_MAX) 8530 err += efunc(pc, "invalid array %u\n", r1); 8531 if (r2 >= nregs) 8532 err += efunc(pc, "invalid register %u\n", r2); 8533 if (rd >= nregs) 8534 err += efunc(pc, "invalid register %u\n", rd); 8535 if (rd == 0) 8536 err += efunc(pc, "cannot write to %r0\n"); 8537 break; 8538 case DIF_OP_LDGS: 8539 case DIF_OP_LDTS: 8540 case DIF_OP_LDLS: 8541 case DIF_OP_LDGAA: 8542 case DIF_OP_LDTAA: 8543 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8544 err += efunc(pc, "invalid variable %u\n", v); 8545 if (rd >= nregs) 8546 err += efunc(pc, "invalid register %u\n", rd); 8547 if (rd == 0) 8548 err += efunc(pc, "cannot write to %r0\n"); 8549 break; 8550 case DIF_OP_STGS: 8551 case DIF_OP_STTS: 8552 case DIF_OP_STLS: 8553 case DIF_OP_STGAA: 8554 case DIF_OP_STTAA: 8555 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8556 err += efunc(pc, "invalid variable %u\n", v); 8557 if (rs >= nregs) 8558 err += efunc(pc, "invalid register %u\n", rd); 8559 break; 8560 case DIF_OP_CALL: 8561 if (subr > DIF_SUBR_MAX) 8562 err += efunc(pc, "invalid subr %u\n", subr); 8563 if (rd >= nregs) 8564 err += efunc(pc, "invalid register %u\n", rd); 8565 if (rd == 0) 8566 err += efunc(pc, "cannot write to %r0\n"); 8567 8568 if (subr == DIF_SUBR_COPYOUT || 8569 subr == DIF_SUBR_COPYOUTSTR) { 8570 dp->dtdo_destructive = 1; 8571 } 8572 8573 if (subr == DIF_SUBR_GETF) { 8574 /* 8575 * If we have a getf() we need to record that 8576 * in our state. Note that our state can be 8577 * NULL if this is a helper -- but in that 8578 * case, the call to getf() is itself illegal, 8579 * and will be caught (slightly later) when 8580 * the helper is validated. 8581 */ 8582 if (vstate->dtvs_state != NULL) 8583 vstate->dtvs_state->dts_getf++; 8584 } 8585 8586 break; 8587 case DIF_OP_PUSHTR: 8588 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8589 err += efunc(pc, "invalid ref type %u\n", type); 8590 if (r2 >= nregs) 8591 err += efunc(pc, "invalid register %u\n", r2); 8592 if (rs >= nregs) 8593 err += efunc(pc, "invalid register %u\n", rs); 8594 break; 8595 case DIF_OP_PUSHTV: 8596 if (type != DIF_TYPE_CTF) 8597 err += efunc(pc, "invalid val type %u\n", type); 8598 if (r2 >= nregs) 8599 err += efunc(pc, "invalid register %u\n", r2); 8600 if (rs >= nregs) 8601 err += efunc(pc, "invalid register %u\n", rs); 8602 break; 8603 default: 8604 err += efunc(pc, "invalid opcode %u\n", 8605 DIF_INSTR_OP(instr)); 8606 } 8607 } 8608 8609 if (dp->dtdo_len != 0 && 8610 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8611 err += efunc(dp->dtdo_len - 1, 8612 "expected 'ret' as last DIF instruction\n"); 8613 } 8614 8615 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8616 /* 8617 * If we're not returning by reference, the size must be either 8618 * 0 or the size of one of the base types. 8619 */ 8620 switch (dp->dtdo_rtype.dtdt_size) { 8621 case 0: 8622 case sizeof (uint8_t): 8623 case sizeof (uint16_t): 8624 case sizeof (uint32_t): 8625 case sizeof (uint64_t): 8626 break; 8627 8628 default: 8629 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8630 } 8631 } 8632 8633 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8634 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8635 dtrace_diftype_t *vt, *et; 8636 uint_t id, ndx; 8637 8638 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8639 v->dtdv_scope != DIFV_SCOPE_THREAD && 8640 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8641 err += efunc(i, "unrecognized variable scope %d\n", 8642 v->dtdv_scope); 8643 break; 8644 } 8645 8646 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8647 v->dtdv_kind != DIFV_KIND_SCALAR) { 8648 err += efunc(i, "unrecognized variable type %d\n", 8649 v->dtdv_kind); 8650 break; 8651 } 8652 8653 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8654 err += efunc(i, "%d exceeds variable id limit\n", id); 8655 break; 8656 } 8657 8658 if (id < DIF_VAR_OTHER_UBASE) 8659 continue; 8660 8661 /* 8662 * For user-defined variables, we need to check that this 8663 * definition is identical to any previous definition that we 8664 * encountered. 8665 */ 8666 ndx = id - DIF_VAR_OTHER_UBASE; 8667 8668 switch (v->dtdv_scope) { 8669 case DIFV_SCOPE_GLOBAL: 8670 if (ndx < vstate->dtvs_nglobals) { 8671 dtrace_statvar_t *svar; 8672 8673 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8674 existing = &svar->dtsv_var; 8675 } 8676 8677 break; 8678 8679 case DIFV_SCOPE_THREAD: 8680 if (ndx < vstate->dtvs_ntlocals) 8681 existing = &vstate->dtvs_tlocals[ndx]; 8682 break; 8683 8684 case DIFV_SCOPE_LOCAL: 8685 if (ndx < vstate->dtvs_nlocals) { 8686 dtrace_statvar_t *svar; 8687 8688 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8689 existing = &svar->dtsv_var; 8690 } 8691 8692 break; 8693 } 8694 8695 vt = &v->dtdv_type; 8696 8697 if (vt->dtdt_flags & DIF_TF_BYREF) { 8698 if (vt->dtdt_size == 0) { 8699 err += efunc(i, "zero-sized variable\n"); 8700 break; 8701 } 8702 8703 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8704 vt->dtdt_size > dtrace_global_maxsize) { 8705 err += efunc(i, "oversized by-ref global\n"); 8706 break; 8707 } 8708 } 8709 8710 if (existing == NULL || existing->dtdv_id == 0) 8711 continue; 8712 8713 ASSERT(existing->dtdv_id == v->dtdv_id); 8714 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8715 8716 if (existing->dtdv_kind != v->dtdv_kind) 8717 err += efunc(i, "%d changed variable kind\n", id); 8718 8719 et = &existing->dtdv_type; 8720 8721 if (vt->dtdt_flags != et->dtdt_flags) { 8722 err += efunc(i, "%d changed variable type flags\n", id); 8723 break; 8724 } 8725 8726 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8727 err += efunc(i, "%d changed variable type size\n", id); 8728 break; 8729 } 8730 } 8731 8732 return (err); 8733 } 8734 8735 /* 8736 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8737 * are much more constrained than normal DIFOs. Specifically, they may 8738 * not: 8739 * 8740 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8741 * miscellaneous string routines 8742 * 2. Access DTrace variables other than the args[] array, and the 8743 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8744 * 3. Have thread-local variables. 8745 * 4. Have dynamic variables. 8746 */ 8747 static int 8748 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8749 { 8750 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8751 int err = 0; 8752 uint_t pc; 8753 8754 for (pc = 0; pc < dp->dtdo_len; pc++) { 8755 dif_instr_t instr = dp->dtdo_buf[pc]; 8756 8757 uint_t v = DIF_INSTR_VAR(instr); 8758 uint_t subr = DIF_INSTR_SUBR(instr); 8759 uint_t op = DIF_INSTR_OP(instr); 8760 8761 switch (op) { 8762 case DIF_OP_OR: 8763 case DIF_OP_XOR: 8764 case DIF_OP_AND: 8765 case DIF_OP_SLL: 8766 case DIF_OP_SRL: 8767 case DIF_OP_SRA: 8768 case DIF_OP_SUB: 8769 case DIF_OP_ADD: 8770 case DIF_OP_MUL: 8771 case DIF_OP_SDIV: 8772 case DIF_OP_UDIV: 8773 case DIF_OP_SREM: 8774 case DIF_OP_UREM: 8775 case DIF_OP_COPYS: 8776 case DIF_OP_NOT: 8777 case DIF_OP_MOV: 8778 case DIF_OP_RLDSB: 8779 case DIF_OP_RLDSH: 8780 case DIF_OP_RLDSW: 8781 case DIF_OP_RLDUB: 8782 case DIF_OP_RLDUH: 8783 case DIF_OP_RLDUW: 8784 case DIF_OP_RLDX: 8785 case DIF_OP_ULDSB: 8786 case DIF_OP_ULDSH: 8787 case DIF_OP_ULDSW: 8788 case DIF_OP_ULDUB: 8789 case DIF_OP_ULDUH: 8790 case DIF_OP_ULDUW: 8791 case DIF_OP_ULDX: 8792 case DIF_OP_STB: 8793 case DIF_OP_STH: 8794 case DIF_OP_STW: 8795 case DIF_OP_STX: 8796 case DIF_OP_ALLOCS: 8797 case DIF_OP_CMP: 8798 case DIF_OP_SCMP: 8799 case DIF_OP_TST: 8800 case DIF_OP_BA: 8801 case DIF_OP_BE: 8802 case DIF_OP_BNE: 8803 case DIF_OP_BG: 8804 case DIF_OP_BGU: 8805 case DIF_OP_BGE: 8806 case DIF_OP_BGEU: 8807 case DIF_OP_BL: 8808 case DIF_OP_BLU: 8809 case DIF_OP_BLE: 8810 case DIF_OP_BLEU: 8811 case DIF_OP_RET: 8812 case DIF_OP_NOP: 8813 case DIF_OP_POPTS: 8814 case DIF_OP_FLUSHTS: 8815 case DIF_OP_SETX: 8816 case DIF_OP_SETS: 8817 case DIF_OP_LDGA: 8818 case DIF_OP_LDLS: 8819 case DIF_OP_STGS: 8820 case DIF_OP_STLS: 8821 case DIF_OP_PUSHTR: 8822 case DIF_OP_PUSHTV: 8823 break; 8824 8825 case DIF_OP_LDGS: 8826 if (v >= DIF_VAR_OTHER_UBASE) 8827 break; 8828 8829 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8830 break; 8831 8832 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8833 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8834 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8835 v == DIF_VAR_UID || v == DIF_VAR_GID) 8836 break; 8837 8838 err += efunc(pc, "illegal variable %u\n", v); 8839 break; 8840 8841 case DIF_OP_LDTA: 8842 case DIF_OP_LDTS: 8843 case DIF_OP_LDGAA: 8844 case DIF_OP_LDTAA: 8845 err += efunc(pc, "illegal dynamic variable load\n"); 8846 break; 8847 8848 case DIF_OP_STTS: 8849 case DIF_OP_STGAA: 8850 case DIF_OP_STTAA: 8851 err += efunc(pc, "illegal dynamic variable store\n"); 8852 break; 8853 8854 case DIF_OP_CALL: 8855 if (subr == DIF_SUBR_ALLOCA || 8856 subr == DIF_SUBR_BCOPY || 8857 subr == DIF_SUBR_COPYIN || 8858 subr == DIF_SUBR_COPYINTO || 8859 subr == DIF_SUBR_COPYINSTR || 8860 subr == DIF_SUBR_INDEX || 8861 subr == DIF_SUBR_INET_NTOA || 8862 subr == DIF_SUBR_INET_NTOA6 || 8863 subr == DIF_SUBR_INET_NTOP || 8864 subr == DIF_SUBR_LLTOSTR || 8865 subr == DIF_SUBR_RINDEX || 8866 subr == DIF_SUBR_STRCHR || 8867 subr == DIF_SUBR_STRJOIN || 8868 subr == DIF_SUBR_STRRCHR || 8869 subr == DIF_SUBR_STRSTR || 8870 subr == DIF_SUBR_HTONS || 8871 subr == DIF_SUBR_HTONL || 8872 subr == DIF_SUBR_HTONLL || 8873 subr == DIF_SUBR_NTOHS || 8874 subr == DIF_SUBR_NTOHL || 8875 subr == DIF_SUBR_NTOHLL) 8876 break; 8877 8878 err += efunc(pc, "invalid subr %u\n", subr); 8879 break; 8880 8881 default: 8882 err += efunc(pc, "invalid opcode %u\n", 8883 DIF_INSTR_OP(instr)); 8884 } 8885 } 8886 8887 return (err); 8888 } 8889 8890 /* 8891 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8892 * basis; 0 if not. 8893 */ 8894 static int 8895 dtrace_difo_cacheable(dtrace_difo_t *dp) 8896 { 8897 int i; 8898 8899 if (dp == NULL) 8900 return (0); 8901 8902 for (i = 0; i < dp->dtdo_varlen; i++) { 8903 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8904 8905 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8906 continue; 8907 8908 switch (v->dtdv_id) { 8909 case DIF_VAR_CURTHREAD: 8910 case DIF_VAR_PID: 8911 case DIF_VAR_TID: 8912 case DIF_VAR_EXECNAME: 8913 case DIF_VAR_ZONENAME: 8914 break; 8915 8916 default: 8917 return (0); 8918 } 8919 } 8920 8921 /* 8922 * This DIF object may be cacheable. Now we need to look for any 8923 * array loading instructions, any memory loading instructions, or 8924 * any stores to thread-local variables. 8925 */ 8926 for (i = 0; i < dp->dtdo_len; i++) { 8927 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8928 8929 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8930 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8931 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8932 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8933 return (0); 8934 } 8935 8936 return (1); 8937 } 8938 8939 static void 8940 dtrace_difo_hold(dtrace_difo_t *dp) 8941 { 8942 int i; 8943 8944 ASSERT(MUTEX_HELD(&dtrace_lock)); 8945 8946 dp->dtdo_refcnt++; 8947 ASSERT(dp->dtdo_refcnt != 0); 8948 8949 /* 8950 * We need to check this DIF object for references to the variable 8951 * DIF_VAR_VTIMESTAMP. 8952 */ 8953 for (i = 0; i < dp->dtdo_varlen; i++) { 8954 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8955 8956 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8957 continue; 8958 8959 if (dtrace_vtime_references++ == 0) 8960 dtrace_vtime_enable(); 8961 } 8962 } 8963 8964 /* 8965 * This routine calculates the dynamic variable chunksize for a given DIF 8966 * object. The calculation is not fool-proof, and can probably be tricked by 8967 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8968 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8969 * if a dynamic variable size exceeds the chunksize. 8970 */ 8971 static void 8972 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8973 { 8974 uint64_t sval; 8975 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8976 const dif_instr_t *text = dp->dtdo_buf; 8977 uint_t pc, srd = 0; 8978 uint_t ttop = 0; 8979 size_t size, ksize; 8980 uint_t id, i; 8981 8982 for (pc = 0; pc < dp->dtdo_len; pc++) { 8983 dif_instr_t instr = text[pc]; 8984 uint_t op = DIF_INSTR_OP(instr); 8985 uint_t rd = DIF_INSTR_RD(instr); 8986 uint_t r1 = DIF_INSTR_R1(instr); 8987 uint_t nkeys = 0; 8988 uchar_t scope; 8989 8990 dtrace_key_t *key = tupregs; 8991 8992 switch (op) { 8993 case DIF_OP_SETX: 8994 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8995 srd = rd; 8996 continue; 8997 8998 case DIF_OP_STTS: 8999 key = &tupregs[DIF_DTR_NREGS]; 9000 key[0].dttk_size = 0; 9001 key[1].dttk_size = 0; 9002 nkeys = 2; 9003 scope = DIFV_SCOPE_THREAD; 9004 break; 9005 9006 case DIF_OP_STGAA: 9007 case DIF_OP_STTAA: 9008 nkeys = ttop; 9009 9010 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9011 key[nkeys++].dttk_size = 0; 9012 9013 key[nkeys++].dttk_size = 0; 9014 9015 if (op == DIF_OP_STTAA) { 9016 scope = DIFV_SCOPE_THREAD; 9017 } else { 9018 scope = DIFV_SCOPE_GLOBAL; 9019 } 9020 9021 break; 9022 9023 case DIF_OP_PUSHTR: 9024 if (ttop == DIF_DTR_NREGS) 9025 return; 9026 9027 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9028 /* 9029 * If the register for the size of the "pushtr" 9030 * is %r0 (or the value is 0) and the type is 9031 * a string, we'll use the system-wide default 9032 * string size. 9033 */ 9034 tupregs[ttop++].dttk_size = 9035 dtrace_strsize_default; 9036 } else { 9037 if (srd == 0) 9038 return; 9039 9040 tupregs[ttop++].dttk_size = sval; 9041 } 9042 9043 break; 9044 9045 case DIF_OP_PUSHTV: 9046 if (ttop == DIF_DTR_NREGS) 9047 return; 9048 9049 tupregs[ttop++].dttk_size = 0; 9050 break; 9051 9052 case DIF_OP_FLUSHTS: 9053 ttop = 0; 9054 break; 9055 9056 case DIF_OP_POPTS: 9057 if (ttop != 0) 9058 ttop--; 9059 break; 9060 } 9061 9062 sval = 0; 9063 srd = 0; 9064 9065 if (nkeys == 0) 9066 continue; 9067 9068 /* 9069 * We have a dynamic variable allocation; calculate its size. 9070 */ 9071 for (ksize = 0, i = 0; i < nkeys; i++) 9072 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9073 9074 size = sizeof (dtrace_dynvar_t); 9075 size += sizeof (dtrace_key_t) * (nkeys - 1); 9076 size += ksize; 9077 9078 /* 9079 * Now we need to determine the size of the stored data. 9080 */ 9081 id = DIF_INSTR_VAR(instr); 9082 9083 for (i = 0; i < dp->dtdo_varlen; i++) { 9084 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9085 9086 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9087 size += v->dtdv_type.dtdt_size; 9088 break; 9089 } 9090 } 9091 9092 if (i == dp->dtdo_varlen) 9093 return; 9094 9095 /* 9096 * We have the size. If this is larger than the chunk size 9097 * for our dynamic variable state, reset the chunk size. 9098 */ 9099 size = P2ROUNDUP(size, sizeof (uint64_t)); 9100 9101 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9102 vstate->dtvs_dynvars.dtds_chunksize = size; 9103 } 9104 } 9105 9106 static void 9107 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9108 { 9109 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9110 uint_t id; 9111 9112 ASSERT(MUTEX_HELD(&dtrace_lock)); 9113 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9114 9115 for (i = 0; i < dp->dtdo_varlen; i++) { 9116 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9117 dtrace_statvar_t *svar, ***svarp; 9118 size_t dsize = 0; 9119 uint8_t scope = v->dtdv_scope; 9120 int *np; 9121 9122 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9123 continue; 9124 9125 id -= DIF_VAR_OTHER_UBASE; 9126 9127 switch (scope) { 9128 case DIFV_SCOPE_THREAD: 9129 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9130 dtrace_difv_t *tlocals; 9131 9132 if ((ntlocals = (otlocals << 1)) == 0) 9133 ntlocals = 1; 9134 9135 osz = otlocals * sizeof (dtrace_difv_t); 9136 nsz = ntlocals * sizeof (dtrace_difv_t); 9137 9138 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9139 9140 if (osz != 0) { 9141 bcopy(vstate->dtvs_tlocals, 9142 tlocals, osz); 9143 kmem_free(vstate->dtvs_tlocals, osz); 9144 } 9145 9146 vstate->dtvs_tlocals = tlocals; 9147 vstate->dtvs_ntlocals = ntlocals; 9148 } 9149 9150 vstate->dtvs_tlocals[id] = *v; 9151 continue; 9152 9153 case DIFV_SCOPE_LOCAL: 9154 np = &vstate->dtvs_nlocals; 9155 svarp = &vstate->dtvs_locals; 9156 9157 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9158 dsize = NCPU * (v->dtdv_type.dtdt_size + 9159 sizeof (uint64_t)); 9160 else 9161 dsize = NCPU * sizeof (uint64_t); 9162 9163 break; 9164 9165 case DIFV_SCOPE_GLOBAL: 9166 np = &vstate->dtvs_nglobals; 9167 svarp = &vstate->dtvs_globals; 9168 9169 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9170 dsize = v->dtdv_type.dtdt_size + 9171 sizeof (uint64_t); 9172 9173 break; 9174 9175 default: 9176 ASSERT(0); 9177 } 9178 9179 while (id >= (oldsvars = *np)) { 9180 dtrace_statvar_t **statics; 9181 int newsvars, oldsize, newsize; 9182 9183 if ((newsvars = (oldsvars << 1)) == 0) 9184 newsvars = 1; 9185 9186 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9187 newsize = newsvars * sizeof (dtrace_statvar_t *); 9188 9189 statics = kmem_zalloc(newsize, KM_SLEEP); 9190 9191 if (oldsize != 0) { 9192 bcopy(*svarp, statics, oldsize); 9193 kmem_free(*svarp, oldsize); 9194 } 9195 9196 *svarp = statics; 9197 *np = newsvars; 9198 } 9199 9200 if ((svar = (*svarp)[id]) == NULL) { 9201 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9202 svar->dtsv_var = *v; 9203 9204 if ((svar->dtsv_size = dsize) != 0) { 9205 svar->dtsv_data = (uint64_t)(uintptr_t) 9206 kmem_zalloc(dsize, KM_SLEEP); 9207 } 9208 9209 (*svarp)[id] = svar; 9210 } 9211 9212 svar->dtsv_refcnt++; 9213 } 9214 9215 dtrace_difo_chunksize(dp, vstate); 9216 dtrace_difo_hold(dp); 9217 } 9218 9219 static dtrace_difo_t * 9220 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9221 { 9222 dtrace_difo_t *new; 9223 size_t sz; 9224 9225 ASSERT(dp->dtdo_buf != NULL); 9226 ASSERT(dp->dtdo_refcnt != 0); 9227 9228 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9229 9230 ASSERT(dp->dtdo_buf != NULL); 9231 sz = dp->dtdo_len * sizeof (dif_instr_t); 9232 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9233 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9234 new->dtdo_len = dp->dtdo_len; 9235 9236 if (dp->dtdo_strtab != NULL) { 9237 ASSERT(dp->dtdo_strlen != 0); 9238 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9239 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9240 new->dtdo_strlen = dp->dtdo_strlen; 9241 } 9242 9243 if (dp->dtdo_inttab != NULL) { 9244 ASSERT(dp->dtdo_intlen != 0); 9245 sz = dp->dtdo_intlen * sizeof (uint64_t); 9246 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9247 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9248 new->dtdo_intlen = dp->dtdo_intlen; 9249 } 9250 9251 if (dp->dtdo_vartab != NULL) { 9252 ASSERT(dp->dtdo_varlen != 0); 9253 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9254 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9255 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9256 new->dtdo_varlen = dp->dtdo_varlen; 9257 } 9258 9259 dtrace_difo_init(new, vstate); 9260 return (new); 9261 } 9262 9263 static void 9264 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9265 { 9266 int i; 9267 9268 ASSERT(dp->dtdo_refcnt == 0); 9269 9270 for (i = 0; i < dp->dtdo_varlen; i++) { 9271 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9272 dtrace_statvar_t *svar, **svarp; 9273 uint_t id; 9274 uint8_t scope = v->dtdv_scope; 9275 int *np; 9276 9277 switch (scope) { 9278 case DIFV_SCOPE_THREAD: 9279 continue; 9280 9281 case DIFV_SCOPE_LOCAL: 9282 np = &vstate->dtvs_nlocals; 9283 svarp = vstate->dtvs_locals; 9284 break; 9285 9286 case DIFV_SCOPE_GLOBAL: 9287 np = &vstate->dtvs_nglobals; 9288 svarp = vstate->dtvs_globals; 9289 break; 9290 9291 default: 9292 ASSERT(0); 9293 } 9294 9295 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9296 continue; 9297 9298 id -= DIF_VAR_OTHER_UBASE; 9299 ASSERT(id < *np); 9300 9301 svar = svarp[id]; 9302 ASSERT(svar != NULL); 9303 ASSERT(svar->dtsv_refcnt > 0); 9304 9305 if (--svar->dtsv_refcnt > 0) 9306 continue; 9307 9308 if (svar->dtsv_size != 0) { 9309 ASSERT(svar->dtsv_data != NULL); 9310 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9311 svar->dtsv_size); 9312 } 9313 9314 kmem_free(svar, sizeof (dtrace_statvar_t)); 9315 svarp[id] = NULL; 9316 } 9317 9318 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9319 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9320 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9321 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9322 9323 kmem_free(dp, sizeof (dtrace_difo_t)); 9324 } 9325 9326 static void 9327 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9328 { 9329 int i; 9330 9331 ASSERT(MUTEX_HELD(&dtrace_lock)); 9332 ASSERT(dp->dtdo_refcnt != 0); 9333 9334 for (i = 0; i < dp->dtdo_varlen; i++) { 9335 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9336 9337 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9338 continue; 9339 9340 ASSERT(dtrace_vtime_references > 0); 9341 if (--dtrace_vtime_references == 0) 9342 dtrace_vtime_disable(); 9343 } 9344 9345 if (--dp->dtdo_refcnt == 0) 9346 dtrace_difo_destroy(dp, vstate); 9347 } 9348 9349 /* 9350 * DTrace Format Functions 9351 */ 9352 static uint16_t 9353 dtrace_format_add(dtrace_state_t *state, char *str) 9354 { 9355 char *fmt, **new; 9356 uint16_t ndx, len = strlen(str) + 1; 9357 9358 fmt = kmem_zalloc(len, KM_SLEEP); 9359 bcopy(str, fmt, len); 9360 9361 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9362 if (state->dts_formats[ndx] == NULL) { 9363 state->dts_formats[ndx] = fmt; 9364 return (ndx + 1); 9365 } 9366 } 9367 9368 if (state->dts_nformats == USHRT_MAX) { 9369 /* 9370 * This is only likely if a denial-of-service attack is being 9371 * attempted. As such, it's okay to fail silently here. 9372 */ 9373 kmem_free(fmt, len); 9374 return (0); 9375 } 9376 9377 /* 9378 * For simplicity, we always resize the formats array to be exactly the 9379 * number of formats. 9380 */ 9381 ndx = state->dts_nformats++; 9382 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9383 9384 if (state->dts_formats != NULL) { 9385 ASSERT(ndx != 0); 9386 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9387 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9388 } 9389 9390 state->dts_formats = new; 9391 state->dts_formats[ndx] = fmt; 9392 9393 return (ndx + 1); 9394 } 9395 9396 static void 9397 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9398 { 9399 char *fmt; 9400 9401 ASSERT(state->dts_formats != NULL); 9402 ASSERT(format <= state->dts_nformats); 9403 ASSERT(state->dts_formats[format - 1] != NULL); 9404 9405 fmt = state->dts_formats[format - 1]; 9406 kmem_free(fmt, strlen(fmt) + 1); 9407 state->dts_formats[format - 1] = NULL; 9408 } 9409 9410 static void 9411 dtrace_format_destroy(dtrace_state_t *state) 9412 { 9413 int i; 9414 9415 if (state->dts_nformats == 0) { 9416 ASSERT(state->dts_formats == NULL); 9417 return; 9418 } 9419 9420 ASSERT(state->dts_formats != NULL); 9421 9422 for (i = 0; i < state->dts_nformats; i++) { 9423 char *fmt = state->dts_formats[i]; 9424 9425 if (fmt == NULL) 9426 continue; 9427 9428 kmem_free(fmt, strlen(fmt) + 1); 9429 } 9430 9431 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9432 state->dts_nformats = 0; 9433 state->dts_formats = NULL; 9434 } 9435 9436 /* 9437 * DTrace Predicate Functions 9438 */ 9439 static dtrace_predicate_t * 9440 dtrace_predicate_create(dtrace_difo_t *dp) 9441 { 9442 dtrace_predicate_t *pred; 9443 9444 ASSERT(MUTEX_HELD(&dtrace_lock)); 9445 ASSERT(dp->dtdo_refcnt != 0); 9446 9447 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9448 pred->dtp_difo = dp; 9449 pred->dtp_refcnt = 1; 9450 9451 if (!dtrace_difo_cacheable(dp)) 9452 return (pred); 9453 9454 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9455 /* 9456 * This is only theoretically possible -- we have had 2^32 9457 * cacheable predicates on this machine. We cannot allow any 9458 * more predicates to become cacheable: as unlikely as it is, 9459 * there may be a thread caching a (now stale) predicate cache 9460 * ID. (N.B.: the temptation is being successfully resisted to 9461 * have this cmn_err() "Holy shit -- we executed this code!") 9462 */ 9463 return (pred); 9464 } 9465 9466 pred->dtp_cacheid = dtrace_predcache_id++; 9467 9468 return (pred); 9469 } 9470 9471 static void 9472 dtrace_predicate_hold(dtrace_predicate_t *pred) 9473 { 9474 ASSERT(MUTEX_HELD(&dtrace_lock)); 9475 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9476 ASSERT(pred->dtp_refcnt > 0); 9477 9478 pred->dtp_refcnt++; 9479 } 9480 9481 static void 9482 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9483 { 9484 dtrace_difo_t *dp = pred->dtp_difo; 9485 9486 ASSERT(MUTEX_HELD(&dtrace_lock)); 9487 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9488 ASSERT(pred->dtp_refcnt > 0); 9489 9490 if (--pred->dtp_refcnt == 0) { 9491 dtrace_difo_release(pred->dtp_difo, vstate); 9492 kmem_free(pred, sizeof (dtrace_predicate_t)); 9493 } 9494 } 9495 9496 /* 9497 * DTrace Action Description Functions 9498 */ 9499 static dtrace_actdesc_t * 9500 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9501 uint64_t uarg, uint64_t arg) 9502 { 9503 dtrace_actdesc_t *act; 9504 9505 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9506 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9507 9508 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9509 act->dtad_kind = kind; 9510 act->dtad_ntuple = ntuple; 9511 act->dtad_uarg = uarg; 9512 act->dtad_arg = arg; 9513 act->dtad_refcnt = 1; 9514 9515 return (act); 9516 } 9517 9518 static void 9519 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9520 { 9521 ASSERT(act->dtad_refcnt >= 1); 9522 act->dtad_refcnt++; 9523 } 9524 9525 static void 9526 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9527 { 9528 dtrace_actkind_t kind = act->dtad_kind; 9529 dtrace_difo_t *dp; 9530 9531 ASSERT(act->dtad_refcnt >= 1); 9532 9533 if (--act->dtad_refcnt != 0) 9534 return; 9535 9536 if ((dp = act->dtad_difo) != NULL) 9537 dtrace_difo_release(dp, vstate); 9538 9539 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9540 char *str = (char *)(uintptr_t)act->dtad_arg; 9541 9542 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9543 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9544 9545 if (str != NULL) 9546 kmem_free(str, strlen(str) + 1); 9547 } 9548 9549 kmem_free(act, sizeof (dtrace_actdesc_t)); 9550 } 9551 9552 /* 9553 * DTrace ECB Functions 9554 */ 9555 static dtrace_ecb_t * 9556 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9557 { 9558 dtrace_ecb_t *ecb; 9559 dtrace_epid_t epid; 9560 9561 ASSERT(MUTEX_HELD(&dtrace_lock)); 9562 9563 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9564 ecb->dte_predicate = NULL; 9565 ecb->dte_probe = probe; 9566 9567 /* 9568 * The default size is the size of the default action: recording 9569 * the header. 9570 */ 9571 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 9572 ecb->dte_alignment = sizeof (dtrace_epid_t); 9573 9574 epid = state->dts_epid++; 9575 9576 if (epid - 1 >= state->dts_necbs) { 9577 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9578 int necbs = state->dts_necbs << 1; 9579 9580 ASSERT(epid == state->dts_necbs + 1); 9581 9582 if (necbs == 0) { 9583 ASSERT(oecbs == NULL); 9584 necbs = 1; 9585 } 9586 9587 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9588 9589 if (oecbs != NULL) 9590 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9591 9592 dtrace_membar_producer(); 9593 state->dts_ecbs = ecbs; 9594 9595 if (oecbs != NULL) { 9596 /* 9597 * If this state is active, we must dtrace_sync() 9598 * before we can free the old dts_ecbs array: we're 9599 * coming in hot, and there may be active ring 9600 * buffer processing (which indexes into the dts_ecbs 9601 * array) on another CPU. 9602 */ 9603 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9604 dtrace_sync(); 9605 9606 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9607 } 9608 9609 dtrace_membar_producer(); 9610 state->dts_necbs = necbs; 9611 } 9612 9613 ecb->dte_state = state; 9614 9615 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9616 dtrace_membar_producer(); 9617 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9618 9619 return (ecb); 9620 } 9621 9622 static int 9623 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9624 { 9625 dtrace_probe_t *probe = ecb->dte_probe; 9626 9627 ASSERT(MUTEX_HELD(&cpu_lock)); 9628 ASSERT(MUTEX_HELD(&dtrace_lock)); 9629 ASSERT(ecb->dte_next == NULL); 9630 9631 if (probe == NULL) { 9632 /* 9633 * This is the NULL probe -- there's nothing to do. 9634 */ 9635 return (0); 9636 } 9637 9638 if (probe->dtpr_ecb == NULL) { 9639 dtrace_provider_t *prov = probe->dtpr_provider; 9640 9641 /* 9642 * We're the first ECB on this probe. 9643 */ 9644 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9645 9646 if (ecb->dte_predicate != NULL) 9647 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9648 9649 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9650 probe->dtpr_id, probe->dtpr_arg)); 9651 } else { 9652 /* 9653 * This probe is already active. Swing the last pointer to 9654 * point to the new ECB, and issue a dtrace_sync() to assure 9655 * that all CPUs have seen the change. 9656 */ 9657 ASSERT(probe->dtpr_ecb_last != NULL); 9658 probe->dtpr_ecb_last->dte_next = ecb; 9659 probe->dtpr_ecb_last = ecb; 9660 probe->dtpr_predcache = 0; 9661 9662 dtrace_sync(); 9663 return (0); 9664 } 9665 } 9666 9667 static void 9668 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9669 { 9670 dtrace_action_t *act; 9671 uint32_t curneeded = UINT32_MAX; 9672 uint32_t aggbase = UINT32_MAX; 9673 9674 /* 9675 * If we record anything, we always record the dtrace_rechdr_t. (And 9676 * we always record it first.) 9677 */ 9678 ecb->dte_size = sizeof (dtrace_rechdr_t); 9679 ecb->dte_alignment = sizeof (dtrace_epid_t); 9680 9681 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9682 dtrace_recdesc_t *rec = &act->dta_rec; 9683 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 9684 9685 ecb->dte_alignment = MAX(ecb->dte_alignment, 9686 rec->dtrd_alignment); 9687 9688 if (DTRACEACT_ISAGG(act->dta_kind)) { 9689 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9690 9691 ASSERT(rec->dtrd_size != 0); 9692 ASSERT(agg->dtag_first != NULL); 9693 ASSERT(act->dta_prev->dta_intuple); 9694 ASSERT(aggbase != UINT32_MAX); 9695 ASSERT(curneeded != UINT32_MAX); 9696 9697 agg->dtag_base = aggbase; 9698 9699 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 9700 rec->dtrd_offset = curneeded; 9701 curneeded += rec->dtrd_size; 9702 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 9703 9704 aggbase = UINT32_MAX; 9705 curneeded = UINT32_MAX; 9706 } else if (act->dta_intuple) { 9707 if (curneeded == UINT32_MAX) { 9708 /* 9709 * This is the first record in a tuple. Align 9710 * curneeded to be at offset 4 in an 8-byte 9711 * aligned block. 9712 */ 9713 ASSERT(act->dta_prev == NULL || 9714 !act->dta_prev->dta_intuple); 9715 ASSERT3U(aggbase, ==, UINT32_MAX); 9716 curneeded = P2PHASEUP(ecb->dte_size, 9717 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 9718 9719 aggbase = curneeded - sizeof (dtrace_aggid_t); 9720 ASSERT(IS_P2ALIGNED(aggbase, 9721 sizeof (uint64_t))); 9722 } 9723 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 9724 rec->dtrd_offset = curneeded; 9725 curneeded += rec->dtrd_size; 9726 } else { 9727 /* tuples must be followed by an aggregation */ 9728 ASSERT(act->dta_prev == NULL || 9729 !act->dta_prev->dta_intuple); 9730 9731 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 9732 rec->dtrd_alignment); 9733 rec->dtrd_offset = ecb->dte_size; 9734 ecb->dte_size += rec->dtrd_size; 9735 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 9736 } 9737 } 9738 9739 if ((act = ecb->dte_action) != NULL && 9740 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9741 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 9742 /* 9743 * If the size is still sizeof (dtrace_rechdr_t), then all 9744 * actions store no data; set the size to 0. 9745 */ 9746 ecb->dte_size = 0; 9747 } 9748 9749 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 9750 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 9751 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 9752 ecb->dte_needed); 9753 } 9754 9755 static dtrace_action_t * 9756 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9757 { 9758 dtrace_aggregation_t *agg; 9759 size_t size = sizeof (uint64_t); 9760 int ntuple = desc->dtad_ntuple; 9761 dtrace_action_t *act; 9762 dtrace_recdesc_t *frec; 9763 dtrace_aggid_t aggid; 9764 dtrace_state_t *state = ecb->dte_state; 9765 9766 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9767 agg->dtag_ecb = ecb; 9768 9769 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9770 9771 switch (desc->dtad_kind) { 9772 case DTRACEAGG_MIN: 9773 agg->dtag_initial = INT64_MAX; 9774 agg->dtag_aggregate = dtrace_aggregate_min; 9775 break; 9776 9777 case DTRACEAGG_MAX: 9778 agg->dtag_initial = INT64_MIN; 9779 agg->dtag_aggregate = dtrace_aggregate_max; 9780 break; 9781 9782 case DTRACEAGG_COUNT: 9783 agg->dtag_aggregate = dtrace_aggregate_count; 9784 break; 9785 9786 case DTRACEAGG_QUANTIZE: 9787 agg->dtag_aggregate = dtrace_aggregate_quantize; 9788 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9789 sizeof (uint64_t); 9790 break; 9791 9792 case DTRACEAGG_LQUANTIZE: { 9793 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9794 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9795 9796 agg->dtag_initial = desc->dtad_arg; 9797 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9798 9799 if (step == 0 || levels == 0) 9800 goto err; 9801 9802 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9803 break; 9804 } 9805 9806 case DTRACEAGG_LLQUANTIZE: { 9807 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 9808 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 9809 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 9810 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 9811 int64_t v; 9812 9813 agg->dtag_initial = desc->dtad_arg; 9814 agg->dtag_aggregate = dtrace_aggregate_llquantize; 9815 9816 if (factor < 2 || low >= high || nsteps < factor) 9817 goto err; 9818 9819 /* 9820 * Now check that the number of steps evenly divides a power 9821 * of the factor. (This assures both integer bucket size and 9822 * linearity within each magnitude.) 9823 */ 9824 for (v = factor; v < nsteps; v *= factor) 9825 continue; 9826 9827 if ((v % nsteps) || (nsteps % factor)) 9828 goto err; 9829 9830 size = (dtrace_aggregate_llquantize_bucket(factor, 9831 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 9832 break; 9833 } 9834 9835 case DTRACEAGG_AVG: 9836 agg->dtag_aggregate = dtrace_aggregate_avg; 9837 size = sizeof (uint64_t) * 2; 9838 break; 9839 9840 case DTRACEAGG_STDDEV: 9841 agg->dtag_aggregate = dtrace_aggregate_stddev; 9842 size = sizeof (uint64_t) * 4; 9843 break; 9844 9845 case DTRACEAGG_SUM: 9846 agg->dtag_aggregate = dtrace_aggregate_sum; 9847 break; 9848 9849 default: 9850 goto err; 9851 } 9852 9853 agg->dtag_action.dta_rec.dtrd_size = size; 9854 9855 if (ntuple == 0) 9856 goto err; 9857 9858 /* 9859 * We must make sure that we have enough actions for the n-tuple. 9860 */ 9861 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9862 if (DTRACEACT_ISAGG(act->dta_kind)) 9863 break; 9864 9865 if (--ntuple == 0) { 9866 /* 9867 * This is the action with which our n-tuple begins. 9868 */ 9869 agg->dtag_first = act; 9870 goto success; 9871 } 9872 } 9873 9874 /* 9875 * This n-tuple is short by ntuple elements. Return failure. 9876 */ 9877 ASSERT(ntuple != 0); 9878 err: 9879 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9880 return (NULL); 9881 9882 success: 9883 /* 9884 * If the last action in the tuple has a size of zero, it's actually 9885 * an expression argument for the aggregating action. 9886 */ 9887 ASSERT(ecb->dte_action_last != NULL); 9888 act = ecb->dte_action_last; 9889 9890 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9891 ASSERT(act->dta_difo != NULL); 9892 9893 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9894 agg->dtag_hasarg = 1; 9895 } 9896 9897 /* 9898 * We need to allocate an id for this aggregation. 9899 */ 9900 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9901 VM_BESTFIT | VM_SLEEP); 9902 9903 if (aggid - 1 >= state->dts_naggregations) { 9904 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9905 dtrace_aggregation_t **aggs; 9906 int naggs = state->dts_naggregations << 1; 9907 int onaggs = state->dts_naggregations; 9908 9909 ASSERT(aggid == state->dts_naggregations + 1); 9910 9911 if (naggs == 0) { 9912 ASSERT(oaggs == NULL); 9913 naggs = 1; 9914 } 9915 9916 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9917 9918 if (oaggs != NULL) { 9919 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9920 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9921 } 9922 9923 state->dts_aggregations = aggs; 9924 state->dts_naggregations = naggs; 9925 } 9926 9927 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9928 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9929 9930 frec = &agg->dtag_first->dta_rec; 9931 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9932 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9933 9934 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9935 ASSERT(!act->dta_intuple); 9936 act->dta_intuple = 1; 9937 } 9938 9939 return (&agg->dtag_action); 9940 } 9941 9942 static void 9943 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9944 { 9945 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9946 dtrace_state_t *state = ecb->dte_state; 9947 dtrace_aggid_t aggid = agg->dtag_id; 9948 9949 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9950 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9951 9952 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9953 state->dts_aggregations[aggid - 1] = NULL; 9954 9955 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9956 } 9957 9958 static int 9959 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9960 { 9961 dtrace_action_t *action, *last; 9962 dtrace_difo_t *dp = desc->dtad_difo; 9963 uint32_t size = 0, align = sizeof (uint8_t), mask; 9964 uint16_t format = 0; 9965 dtrace_recdesc_t *rec; 9966 dtrace_state_t *state = ecb->dte_state; 9967 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9968 uint64_t arg = desc->dtad_arg; 9969 9970 ASSERT(MUTEX_HELD(&dtrace_lock)); 9971 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9972 9973 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9974 /* 9975 * If this is an aggregating action, there must be neither 9976 * a speculate nor a commit on the action chain. 9977 */ 9978 dtrace_action_t *act; 9979 9980 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9981 if (act->dta_kind == DTRACEACT_COMMIT) 9982 return (EINVAL); 9983 9984 if (act->dta_kind == DTRACEACT_SPECULATE) 9985 return (EINVAL); 9986 } 9987 9988 action = dtrace_ecb_aggregation_create(ecb, desc); 9989 9990 if (action == NULL) 9991 return (EINVAL); 9992 } else { 9993 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9994 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9995 dp != NULL && dp->dtdo_destructive)) { 9996 state->dts_destructive = 1; 9997 } 9998 9999 switch (desc->dtad_kind) { 10000 case DTRACEACT_PRINTF: 10001 case DTRACEACT_PRINTA: 10002 case DTRACEACT_SYSTEM: 10003 case DTRACEACT_FREOPEN: 10004 case DTRACEACT_DIFEXPR: 10005 /* 10006 * We know that our arg is a string -- turn it into a 10007 * format. 10008 */ 10009 if (arg == NULL) { 10010 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10011 desc->dtad_kind == DTRACEACT_DIFEXPR); 10012 format = 0; 10013 } else { 10014 ASSERT(arg != NULL); 10015 ASSERT(arg > KERNELBASE); 10016 format = dtrace_format_add(state, 10017 (char *)(uintptr_t)arg); 10018 } 10019 10020 /*FALLTHROUGH*/ 10021 case DTRACEACT_LIBACT: 10022 case DTRACEACT_TRACEMEM: 10023 case DTRACEACT_TRACEMEM_DYNSIZE: 10024 if (dp == NULL) 10025 return (EINVAL); 10026 10027 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10028 break; 10029 10030 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10031 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10032 return (EINVAL); 10033 10034 size = opt[DTRACEOPT_STRSIZE]; 10035 } 10036 10037 break; 10038 10039 case DTRACEACT_STACK: 10040 if ((nframes = arg) == 0) { 10041 nframes = opt[DTRACEOPT_STACKFRAMES]; 10042 ASSERT(nframes > 0); 10043 arg = nframes; 10044 } 10045 10046 size = nframes * sizeof (pc_t); 10047 break; 10048 10049 case DTRACEACT_JSTACK: 10050 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10051 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10052 10053 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10054 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10055 10056 arg = DTRACE_USTACK_ARG(nframes, strsize); 10057 10058 /*FALLTHROUGH*/ 10059 case DTRACEACT_USTACK: 10060 if (desc->dtad_kind != DTRACEACT_JSTACK && 10061 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10062 strsize = DTRACE_USTACK_STRSIZE(arg); 10063 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10064 ASSERT(nframes > 0); 10065 arg = DTRACE_USTACK_ARG(nframes, strsize); 10066 } 10067 10068 /* 10069 * Save a slot for the pid. 10070 */ 10071 size = (nframes + 1) * sizeof (uint64_t); 10072 size += DTRACE_USTACK_STRSIZE(arg); 10073 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10074 10075 break; 10076 10077 case DTRACEACT_SYM: 10078 case DTRACEACT_MOD: 10079 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10080 sizeof (uint64_t)) || 10081 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10082 return (EINVAL); 10083 break; 10084 10085 case DTRACEACT_USYM: 10086 case DTRACEACT_UMOD: 10087 case DTRACEACT_UADDR: 10088 if (dp == NULL || 10089 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10090 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10091 return (EINVAL); 10092 10093 /* 10094 * We have a slot for the pid, plus a slot for the 10095 * argument. To keep things simple (aligned with 10096 * bitness-neutral sizing), we store each as a 64-bit 10097 * quantity. 10098 */ 10099 size = 2 * sizeof (uint64_t); 10100 break; 10101 10102 case DTRACEACT_STOP: 10103 case DTRACEACT_BREAKPOINT: 10104 case DTRACEACT_PANIC: 10105 break; 10106 10107 case DTRACEACT_CHILL: 10108 case DTRACEACT_DISCARD: 10109 case DTRACEACT_RAISE: 10110 if (dp == NULL) 10111 return (EINVAL); 10112 break; 10113 10114 case DTRACEACT_EXIT: 10115 if (dp == NULL || 10116 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10117 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10118 return (EINVAL); 10119 break; 10120 10121 case DTRACEACT_SPECULATE: 10122 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10123 return (EINVAL); 10124 10125 if (dp == NULL) 10126 return (EINVAL); 10127 10128 state->dts_speculates = 1; 10129 break; 10130 10131 case DTRACEACT_COMMIT: { 10132 dtrace_action_t *act = ecb->dte_action; 10133 10134 for (; act != NULL; act = act->dta_next) { 10135 if (act->dta_kind == DTRACEACT_COMMIT) 10136 return (EINVAL); 10137 } 10138 10139 if (dp == NULL) 10140 return (EINVAL); 10141 break; 10142 } 10143 10144 default: 10145 return (EINVAL); 10146 } 10147 10148 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10149 /* 10150 * If this is a data-storing action or a speculate, 10151 * we must be sure that there isn't a commit on the 10152 * action chain. 10153 */ 10154 dtrace_action_t *act = ecb->dte_action; 10155 10156 for (; act != NULL; act = act->dta_next) { 10157 if (act->dta_kind == DTRACEACT_COMMIT) 10158 return (EINVAL); 10159 } 10160 } 10161 10162 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10163 action->dta_rec.dtrd_size = size; 10164 } 10165 10166 action->dta_refcnt = 1; 10167 rec = &action->dta_rec; 10168 size = rec->dtrd_size; 10169 10170 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10171 if (!(size & mask)) { 10172 align = mask + 1; 10173 break; 10174 } 10175 } 10176 10177 action->dta_kind = desc->dtad_kind; 10178 10179 if ((action->dta_difo = dp) != NULL) 10180 dtrace_difo_hold(dp); 10181 10182 rec->dtrd_action = action->dta_kind; 10183 rec->dtrd_arg = arg; 10184 rec->dtrd_uarg = desc->dtad_uarg; 10185 rec->dtrd_alignment = (uint16_t)align; 10186 rec->dtrd_format = format; 10187 10188 if ((last = ecb->dte_action_last) != NULL) { 10189 ASSERT(ecb->dte_action != NULL); 10190 action->dta_prev = last; 10191 last->dta_next = action; 10192 } else { 10193 ASSERT(ecb->dte_action == NULL); 10194 ecb->dte_action = action; 10195 } 10196 10197 ecb->dte_action_last = action; 10198 10199 return (0); 10200 } 10201 10202 static void 10203 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10204 { 10205 dtrace_action_t *act = ecb->dte_action, *next; 10206 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10207 dtrace_difo_t *dp; 10208 uint16_t format; 10209 10210 if (act != NULL && act->dta_refcnt > 1) { 10211 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10212 act->dta_refcnt--; 10213 } else { 10214 for (; act != NULL; act = next) { 10215 next = act->dta_next; 10216 ASSERT(next != NULL || act == ecb->dte_action_last); 10217 ASSERT(act->dta_refcnt == 1); 10218 10219 if ((format = act->dta_rec.dtrd_format) != 0) 10220 dtrace_format_remove(ecb->dte_state, format); 10221 10222 if ((dp = act->dta_difo) != NULL) 10223 dtrace_difo_release(dp, vstate); 10224 10225 if (DTRACEACT_ISAGG(act->dta_kind)) { 10226 dtrace_ecb_aggregation_destroy(ecb, act); 10227 } else { 10228 kmem_free(act, sizeof (dtrace_action_t)); 10229 } 10230 } 10231 } 10232 10233 ecb->dte_action = NULL; 10234 ecb->dte_action_last = NULL; 10235 ecb->dte_size = 0; 10236 } 10237 10238 static void 10239 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10240 { 10241 /* 10242 * We disable the ECB by removing it from its probe. 10243 */ 10244 dtrace_ecb_t *pecb, *prev = NULL; 10245 dtrace_probe_t *probe = ecb->dte_probe; 10246 10247 ASSERT(MUTEX_HELD(&dtrace_lock)); 10248 10249 if (probe == NULL) { 10250 /* 10251 * This is the NULL probe; there is nothing to disable. 10252 */ 10253 return; 10254 } 10255 10256 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10257 if (pecb == ecb) 10258 break; 10259 prev = pecb; 10260 } 10261 10262 ASSERT(pecb != NULL); 10263 10264 if (prev == NULL) { 10265 probe->dtpr_ecb = ecb->dte_next; 10266 } else { 10267 prev->dte_next = ecb->dte_next; 10268 } 10269 10270 if (ecb == probe->dtpr_ecb_last) { 10271 ASSERT(ecb->dte_next == NULL); 10272 probe->dtpr_ecb_last = prev; 10273 } 10274 10275 /* 10276 * The ECB has been disconnected from the probe; now sync to assure 10277 * that all CPUs have seen the change before returning. 10278 */ 10279 dtrace_sync(); 10280 10281 if (probe->dtpr_ecb == NULL) { 10282 /* 10283 * That was the last ECB on the probe; clear the predicate 10284 * cache ID for the probe, disable it and sync one more time 10285 * to assure that we'll never hit it again. 10286 */ 10287 dtrace_provider_t *prov = probe->dtpr_provider; 10288 10289 ASSERT(ecb->dte_next == NULL); 10290 ASSERT(probe->dtpr_ecb_last == NULL); 10291 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10292 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10293 probe->dtpr_id, probe->dtpr_arg); 10294 dtrace_sync(); 10295 } else { 10296 /* 10297 * There is at least one ECB remaining on the probe. If there 10298 * is _exactly_ one, set the probe's predicate cache ID to be 10299 * the predicate cache ID of the remaining ECB. 10300 */ 10301 ASSERT(probe->dtpr_ecb_last != NULL); 10302 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10303 10304 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10305 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10306 10307 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10308 10309 if (p != NULL) 10310 probe->dtpr_predcache = p->dtp_cacheid; 10311 } 10312 10313 ecb->dte_next = NULL; 10314 } 10315 } 10316 10317 static void 10318 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10319 { 10320 dtrace_state_t *state = ecb->dte_state; 10321 dtrace_vstate_t *vstate = &state->dts_vstate; 10322 dtrace_predicate_t *pred; 10323 dtrace_epid_t epid = ecb->dte_epid; 10324 10325 ASSERT(MUTEX_HELD(&dtrace_lock)); 10326 ASSERT(ecb->dte_next == NULL); 10327 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10328 10329 if ((pred = ecb->dte_predicate) != NULL) 10330 dtrace_predicate_release(pred, vstate); 10331 10332 dtrace_ecb_action_remove(ecb); 10333 10334 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10335 state->dts_ecbs[epid - 1] = NULL; 10336 10337 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10338 } 10339 10340 static dtrace_ecb_t * 10341 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10342 dtrace_enabling_t *enab) 10343 { 10344 dtrace_ecb_t *ecb; 10345 dtrace_predicate_t *pred; 10346 dtrace_actdesc_t *act; 10347 dtrace_provider_t *prov; 10348 dtrace_ecbdesc_t *desc = enab->dten_current; 10349 10350 ASSERT(MUTEX_HELD(&dtrace_lock)); 10351 ASSERT(state != NULL); 10352 10353 ecb = dtrace_ecb_add(state, probe); 10354 ecb->dte_uarg = desc->dted_uarg; 10355 10356 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10357 dtrace_predicate_hold(pred); 10358 ecb->dte_predicate = pred; 10359 } 10360 10361 if (probe != NULL) { 10362 /* 10363 * If the provider shows more leg than the consumer is old 10364 * enough to see, we need to enable the appropriate implicit 10365 * predicate bits to prevent the ecb from activating at 10366 * revealing times. 10367 * 10368 * Providers specifying DTRACE_PRIV_USER at register time 10369 * are stating that they need the /proc-style privilege 10370 * model to be enforced, and this is what DTRACE_COND_OWNER 10371 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10372 */ 10373 prov = probe->dtpr_provider; 10374 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10375 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10376 ecb->dte_cond |= DTRACE_COND_OWNER; 10377 10378 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10379 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10380 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10381 10382 /* 10383 * If the provider shows us kernel innards and the user 10384 * is lacking sufficient privilege, enable the 10385 * DTRACE_COND_USERMODE implicit predicate. 10386 */ 10387 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10388 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10389 ecb->dte_cond |= DTRACE_COND_USERMODE; 10390 } 10391 10392 if (dtrace_ecb_create_cache != NULL) { 10393 /* 10394 * If we have a cached ecb, we'll use its action list instead 10395 * of creating our own (saving both time and space). 10396 */ 10397 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10398 dtrace_action_t *act = cached->dte_action; 10399 10400 if (act != NULL) { 10401 ASSERT(act->dta_refcnt > 0); 10402 act->dta_refcnt++; 10403 ecb->dte_action = act; 10404 ecb->dte_action_last = cached->dte_action_last; 10405 ecb->dte_needed = cached->dte_needed; 10406 ecb->dte_size = cached->dte_size; 10407 ecb->dte_alignment = cached->dte_alignment; 10408 } 10409 10410 return (ecb); 10411 } 10412 10413 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10414 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10415 dtrace_ecb_destroy(ecb); 10416 return (NULL); 10417 } 10418 } 10419 10420 dtrace_ecb_resize(ecb); 10421 10422 return (dtrace_ecb_create_cache = ecb); 10423 } 10424 10425 static int 10426 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10427 { 10428 dtrace_ecb_t *ecb; 10429 dtrace_enabling_t *enab = arg; 10430 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10431 10432 ASSERT(state != NULL); 10433 10434 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10435 /* 10436 * This probe was created in a generation for which this 10437 * enabling has previously created ECBs; we don't want to 10438 * enable it again, so just kick out. 10439 */ 10440 return (DTRACE_MATCH_NEXT); 10441 } 10442 10443 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10444 return (DTRACE_MATCH_DONE); 10445 10446 if (dtrace_ecb_enable(ecb) < 0) 10447 return (DTRACE_MATCH_FAIL); 10448 10449 return (DTRACE_MATCH_NEXT); 10450 } 10451 10452 static dtrace_ecb_t * 10453 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10454 { 10455 dtrace_ecb_t *ecb; 10456 10457 ASSERT(MUTEX_HELD(&dtrace_lock)); 10458 10459 if (id == 0 || id > state->dts_necbs) 10460 return (NULL); 10461 10462 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10463 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10464 10465 return (state->dts_ecbs[id - 1]); 10466 } 10467 10468 static dtrace_aggregation_t * 10469 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10470 { 10471 dtrace_aggregation_t *agg; 10472 10473 ASSERT(MUTEX_HELD(&dtrace_lock)); 10474 10475 if (id == 0 || id > state->dts_naggregations) 10476 return (NULL); 10477 10478 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10479 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10480 agg->dtag_id == id); 10481 10482 return (state->dts_aggregations[id - 1]); 10483 } 10484 10485 /* 10486 * DTrace Buffer Functions 10487 * 10488 * The following functions manipulate DTrace buffers. Most of these functions 10489 * are called in the context of establishing or processing consumer state; 10490 * exceptions are explicitly noted. 10491 */ 10492 10493 /* 10494 * Note: called from cross call context. This function switches the two 10495 * buffers on a given CPU. The atomicity of this operation is assured by 10496 * disabling interrupts while the actual switch takes place; the disabling of 10497 * interrupts serializes the execution with any execution of dtrace_probe() on 10498 * the same CPU. 10499 */ 10500 static void 10501 dtrace_buffer_switch(dtrace_buffer_t *buf) 10502 { 10503 caddr_t tomax = buf->dtb_tomax; 10504 caddr_t xamot = buf->dtb_xamot; 10505 dtrace_icookie_t cookie; 10506 hrtime_t now; 10507 10508 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10509 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10510 10511 cookie = dtrace_interrupt_disable(); 10512 now = dtrace_gethrtime(); 10513 buf->dtb_tomax = xamot; 10514 buf->dtb_xamot = tomax; 10515 buf->dtb_xamot_drops = buf->dtb_drops; 10516 buf->dtb_xamot_offset = buf->dtb_offset; 10517 buf->dtb_xamot_errors = buf->dtb_errors; 10518 buf->dtb_xamot_flags = buf->dtb_flags; 10519 buf->dtb_offset = 0; 10520 buf->dtb_drops = 0; 10521 buf->dtb_errors = 0; 10522 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10523 buf->dtb_interval = now - buf->dtb_switched; 10524 buf->dtb_switched = now; 10525 dtrace_interrupt_enable(cookie); 10526 } 10527 10528 /* 10529 * Note: called from cross call context. This function activates a buffer 10530 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10531 * is guaranteed by the disabling of interrupts. 10532 */ 10533 static void 10534 dtrace_buffer_activate(dtrace_state_t *state) 10535 { 10536 dtrace_buffer_t *buf; 10537 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10538 10539 buf = &state->dts_buffer[CPU->cpu_id]; 10540 10541 if (buf->dtb_tomax != NULL) { 10542 /* 10543 * We might like to assert that the buffer is marked inactive, 10544 * but this isn't necessarily true: the buffer for the CPU 10545 * that processes the BEGIN probe has its buffer activated 10546 * manually. In this case, we take the (harmless) action 10547 * re-clearing the bit INACTIVE bit. 10548 */ 10549 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10550 } 10551 10552 dtrace_interrupt_enable(cookie); 10553 } 10554 10555 static int 10556 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10557 processorid_t cpu, int *factor) 10558 { 10559 cpu_t *cp; 10560 dtrace_buffer_t *buf; 10561 int allocated = 0, desired = 0; 10562 10563 ASSERT(MUTEX_HELD(&cpu_lock)); 10564 ASSERT(MUTEX_HELD(&dtrace_lock)); 10565 10566 *factor = 1; 10567 10568 if (size > dtrace_nonroot_maxsize && 10569 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10570 return (EFBIG); 10571 10572 cp = cpu_list; 10573 10574 do { 10575 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10576 continue; 10577 10578 buf = &bufs[cp->cpu_id]; 10579 10580 /* 10581 * If there is already a buffer allocated for this CPU, it 10582 * is only possible that this is a DR event. In this case, 10583 * the buffer size must match our specified size. 10584 */ 10585 if (buf->dtb_tomax != NULL) { 10586 ASSERT(buf->dtb_size == size); 10587 continue; 10588 } 10589 10590 ASSERT(buf->dtb_xamot == NULL); 10591 10592 if ((buf->dtb_tomax = kmem_zalloc(size, 10593 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10594 goto err; 10595 10596 buf->dtb_size = size; 10597 buf->dtb_flags = flags; 10598 buf->dtb_offset = 0; 10599 buf->dtb_drops = 0; 10600 10601 if (flags & DTRACEBUF_NOSWITCH) 10602 continue; 10603 10604 if ((buf->dtb_xamot = kmem_zalloc(size, 10605 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10606 goto err; 10607 } while ((cp = cp->cpu_next) != cpu_list); 10608 10609 return (0); 10610 10611 err: 10612 cp = cpu_list; 10613 10614 do { 10615 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10616 continue; 10617 10618 buf = &bufs[cp->cpu_id]; 10619 desired += 2; 10620 10621 if (buf->dtb_xamot != NULL) { 10622 ASSERT(buf->dtb_tomax != NULL); 10623 ASSERT(buf->dtb_size == size); 10624 kmem_free(buf->dtb_xamot, size); 10625 allocated++; 10626 } 10627 10628 if (buf->dtb_tomax != NULL) { 10629 ASSERT(buf->dtb_size == size); 10630 kmem_free(buf->dtb_tomax, size); 10631 allocated++; 10632 } 10633 10634 buf->dtb_tomax = NULL; 10635 buf->dtb_xamot = NULL; 10636 buf->dtb_size = 0; 10637 } while ((cp = cp->cpu_next) != cpu_list); 10638 10639 *factor = desired / (allocated > 0 ? allocated : 1); 10640 10641 return (ENOMEM); 10642 } 10643 10644 /* 10645 * Note: called from probe context. This function just increments the drop 10646 * count on a buffer. It has been made a function to allow for the 10647 * possibility of understanding the source of mysterious drop counts. (A 10648 * problem for which one may be particularly disappointed that DTrace cannot 10649 * be used to understand DTrace.) 10650 */ 10651 static void 10652 dtrace_buffer_drop(dtrace_buffer_t *buf) 10653 { 10654 buf->dtb_drops++; 10655 } 10656 10657 /* 10658 * Note: called from probe context. This function is called to reserve space 10659 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10660 * mstate. Returns the new offset in the buffer, or a negative value if an 10661 * error has occurred. 10662 */ 10663 static intptr_t 10664 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10665 dtrace_state_t *state, dtrace_mstate_t *mstate) 10666 { 10667 intptr_t offs = buf->dtb_offset, soffs; 10668 intptr_t woffs; 10669 caddr_t tomax; 10670 size_t total; 10671 10672 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10673 return (-1); 10674 10675 if ((tomax = buf->dtb_tomax) == NULL) { 10676 dtrace_buffer_drop(buf); 10677 return (-1); 10678 } 10679 10680 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10681 while (offs & (align - 1)) { 10682 /* 10683 * Assert that our alignment is off by a number which 10684 * is itself sizeof (uint32_t) aligned. 10685 */ 10686 ASSERT(!((align - (offs & (align - 1))) & 10687 (sizeof (uint32_t) - 1))); 10688 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10689 offs += sizeof (uint32_t); 10690 } 10691 10692 if ((soffs = offs + needed) > buf->dtb_size) { 10693 dtrace_buffer_drop(buf); 10694 return (-1); 10695 } 10696 10697 if (mstate == NULL) 10698 return (offs); 10699 10700 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10701 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10702 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10703 10704 return (offs); 10705 } 10706 10707 if (buf->dtb_flags & DTRACEBUF_FILL) { 10708 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10709 (buf->dtb_flags & DTRACEBUF_FULL)) 10710 return (-1); 10711 goto out; 10712 } 10713 10714 total = needed + (offs & (align - 1)); 10715 10716 /* 10717 * For a ring buffer, life is quite a bit more complicated. Before 10718 * we can store any padding, we need to adjust our wrapping offset. 10719 * (If we've never before wrapped or we're not about to, no adjustment 10720 * is required.) 10721 */ 10722 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10723 offs + total > buf->dtb_size) { 10724 woffs = buf->dtb_xamot_offset; 10725 10726 if (offs + total > buf->dtb_size) { 10727 /* 10728 * We can't fit in the end of the buffer. First, a 10729 * sanity check that we can fit in the buffer at all. 10730 */ 10731 if (total > buf->dtb_size) { 10732 dtrace_buffer_drop(buf); 10733 return (-1); 10734 } 10735 10736 /* 10737 * We're going to be storing at the top of the buffer, 10738 * so now we need to deal with the wrapped offset. We 10739 * only reset our wrapped offset to 0 if it is 10740 * currently greater than the current offset. If it 10741 * is less than the current offset, it is because a 10742 * previous allocation induced a wrap -- but the 10743 * allocation didn't subsequently take the space due 10744 * to an error or false predicate evaluation. In this 10745 * case, we'll just leave the wrapped offset alone: if 10746 * the wrapped offset hasn't been advanced far enough 10747 * for this allocation, it will be adjusted in the 10748 * lower loop. 10749 */ 10750 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10751 if (woffs >= offs) 10752 woffs = 0; 10753 } else { 10754 woffs = 0; 10755 } 10756 10757 /* 10758 * Now we know that we're going to be storing to the 10759 * top of the buffer and that there is room for us 10760 * there. We need to clear the buffer from the current 10761 * offset to the end (there may be old gunk there). 10762 */ 10763 while (offs < buf->dtb_size) 10764 tomax[offs++] = 0; 10765 10766 /* 10767 * We need to set our offset to zero. And because we 10768 * are wrapping, we need to set the bit indicating as 10769 * much. We can also adjust our needed space back 10770 * down to the space required by the ECB -- we know 10771 * that the top of the buffer is aligned. 10772 */ 10773 offs = 0; 10774 total = needed; 10775 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10776 } else { 10777 /* 10778 * There is room for us in the buffer, so we simply 10779 * need to check the wrapped offset. 10780 */ 10781 if (woffs < offs) { 10782 /* 10783 * The wrapped offset is less than the offset. 10784 * This can happen if we allocated buffer space 10785 * that induced a wrap, but then we didn't 10786 * subsequently take the space due to an error 10787 * or false predicate evaluation. This is 10788 * okay; we know that _this_ allocation isn't 10789 * going to induce a wrap. We still can't 10790 * reset the wrapped offset to be zero, 10791 * however: the space may have been trashed in 10792 * the previous failed probe attempt. But at 10793 * least the wrapped offset doesn't need to 10794 * be adjusted at all... 10795 */ 10796 goto out; 10797 } 10798 } 10799 10800 while (offs + total > woffs) { 10801 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10802 size_t size; 10803 10804 if (epid == DTRACE_EPIDNONE) { 10805 size = sizeof (uint32_t); 10806 } else { 10807 ASSERT3U(epid, <=, state->dts_necbs); 10808 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10809 10810 size = state->dts_ecbs[epid - 1]->dte_size; 10811 } 10812 10813 ASSERT(woffs + size <= buf->dtb_size); 10814 ASSERT(size != 0); 10815 10816 if (woffs + size == buf->dtb_size) { 10817 /* 10818 * We've reached the end of the buffer; we want 10819 * to set the wrapped offset to 0 and break 10820 * out. However, if the offs is 0, then we're 10821 * in a strange edge-condition: the amount of 10822 * space that we want to reserve plus the size 10823 * of the record that we're overwriting is 10824 * greater than the size of the buffer. This 10825 * is problematic because if we reserve the 10826 * space but subsequently don't consume it (due 10827 * to a failed predicate or error) the wrapped 10828 * offset will be 0 -- yet the EPID at offset 0 10829 * will not be committed. This situation is 10830 * relatively easy to deal with: if we're in 10831 * this case, the buffer is indistinguishable 10832 * from one that hasn't wrapped; we need only 10833 * finish the job by clearing the wrapped bit, 10834 * explicitly setting the offset to be 0, and 10835 * zero'ing out the old data in the buffer. 10836 */ 10837 if (offs == 0) { 10838 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10839 buf->dtb_offset = 0; 10840 woffs = total; 10841 10842 while (woffs < buf->dtb_size) 10843 tomax[woffs++] = 0; 10844 } 10845 10846 woffs = 0; 10847 break; 10848 } 10849 10850 woffs += size; 10851 } 10852 10853 /* 10854 * We have a wrapped offset. It may be that the wrapped offset 10855 * has become zero -- that's okay. 10856 */ 10857 buf->dtb_xamot_offset = woffs; 10858 } 10859 10860 out: 10861 /* 10862 * Now we can plow the buffer with any necessary padding. 10863 */ 10864 while (offs & (align - 1)) { 10865 /* 10866 * Assert that our alignment is off by a number which 10867 * is itself sizeof (uint32_t) aligned. 10868 */ 10869 ASSERT(!((align - (offs & (align - 1))) & 10870 (sizeof (uint32_t) - 1))); 10871 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10872 offs += sizeof (uint32_t); 10873 } 10874 10875 if (buf->dtb_flags & DTRACEBUF_FILL) { 10876 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10877 buf->dtb_flags |= DTRACEBUF_FULL; 10878 return (-1); 10879 } 10880 } 10881 10882 if (mstate == NULL) 10883 return (offs); 10884 10885 /* 10886 * For ring buffers and fill buffers, the scratch space is always 10887 * the inactive buffer. 10888 */ 10889 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10890 mstate->dtms_scratch_size = buf->dtb_size; 10891 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10892 10893 return (offs); 10894 } 10895 10896 static void 10897 dtrace_buffer_polish(dtrace_buffer_t *buf) 10898 { 10899 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10900 ASSERT(MUTEX_HELD(&dtrace_lock)); 10901 10902 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10903 return; 10904 10905 /* 10906 * We need to polish the ring buffer. There are three cases: 10907 * 10908 * - The first (and presumably most common) is that there is no gap 10909 * between the buffer offset and the wrapped offset. In this case, 10910 * there is nothing in the buffer that isn't valid data; we can 10911 * mark the buffer as polished and return. 10912 * 10913 * - The second (less common than the first but still more common 10914 * than the third) is that there is a gap between the buffer offset 10915 * and the wrapped offset, and the wrapped offset is larger than the 10916 * buffer offset. This can happen because of an alignment issue, or 10917 * can happen because of a call to dtrace_buffer_reserve() that 10918 * didn't subsequently consume the buffer space. In this case, 10919 * we need to zero the data from the buffer offset to the wrapped 10920 * offset. 10921 * 10922 * - The third (and least common) is that there is a gap between the 10923 * buffer offset and the wrapped offset, but the wrapped offset is 10924 * _less_ than the buffer offset. This can only happen because a 10925 * call to dtrace_buffer_reserve() induced a wrap, but the space 10926 * was not subsequently consumed. In this case, we need to zero the 10927 * space from the offset to the end of the buffer _and_ from the 10928 * top of the buffer to the wrapped offset. 10929 */ 10930 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10931 bzero(buf->dtb_tomax + buf->dtb_offset, 10932 buf->dtb_xamot_offset - buf->dtb_offset); 10933 } 10934 10935 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10936 bzero(buf->dtb_tomax + buf->dtb_offset, 10937 buf->dtb_size - buf->dtb_offset); 10938 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10939 } 10940 } 10941 10942 /* 10943 * This routine determines if data generated at the specified time has likely 10944 * been entirely consumed at user-level. This routine is called to determine 10945 * if an ECB on a defunct probe (but for an active enabling) can be safely 10946 * disabled and destroyed. 10947 */ 10948 static int 10949 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 10950 { 10951 int i; 10952 10953 for (i = 0; i < NCPU; i++) { 10954 dtrace_buffer_t *buf = &bufs[i]; 10955 10956 if (buf->dtb_size == 0) 10957 continue; 10958 10959 if (buf->dtb_flags & DTRACEBUF_RING) 10960 return (0); 10961 10962 if (!buf->dtb_switched && buf->dtb_offset != 0) 10963 return (0); 10964 10965 if (buf->dtb_switched - buf->dtb_interval < when) 10966 return (0); 10967 } 10968 10969 return (1); 10970 } 10971 10972 static void 10973 dtrace_buffer_free(dtrace_buffer_t *bufs) 10974 { 10975 int i; 10976 10977 for (i = 0; i < NCPU; i++) { 10978 dtrace_buffer_t *buf = &bufs[i]; 10979 10980 if (buf->dtb_tomax == NULL) { 10981 ASSERT(buf->dtb_xamot == NULL); 10982 ASSERT(buf->dtb_size == 0); 10983 continue; 10984 } 10985 10986 if (buf->dtb_xamot != NULL) { 10987 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10988 kmem_free(buf->dtb_xamot, buf->dtb_size); 10989 } 10990 10991 kmem_free(buf->dtb_tomax, buf->dtb_size); 10992 buf->dtb_size = 0; 10993 buf->dtb_tomax = NULL; 10994 buf->dtb_xamot = NULL; 10995 } 10996 } 10997 10998 /* 10999 * DTrace Enabling Functions 11000 */ 11001 static dtrace_enabling_t * 11002 dtrace_enabling_create(dtrace_vstate_t *vstate) 11003 { 11004 dtrace_enabling_t *enab; 11005 11006 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11007 enab->dten_vstate = vstate; 11008 11009 return (enab); 11010 } 11011 11012 static void 11013 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11014 { 11015 dtrace_ecbdesc_t **ndesc; 11016 size_t osize, nsize; 11017 11018 /* 11019 * We can't add to enablings after we've enabled them, or after we've 11020 * retained them. 11021 */ 11022 ASSERT(enab->dten_probegen == 0); 11023 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11024 11025 if (enab->dten_ndesc < enab->dten_maxdesc) { 11026 enab->dten_desc[enab->dten_ndesc++] = ecb; 11027 return; 11028 } 11029 11030 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11031 11032 if (enab->dten_maxdesc == 0) { 11033 enab->dten_maxdesc = 1; 11034 } else { 11035 enab->dten_maxdesc <<= 1; 11036 } 11037 11038 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11039 11040 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11041 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11042 bcopy(enab->dten_desc, ndesc, osize); 11043 kmem_free(enab->dten_desc, osize); 11044 11045 enab->dten_desc = ndesc; 11046 enab->dten_desc[enab->dten_ndesc++] = ecb; 11047 } 11048 11049 static void 11050 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11051 dtrace_probedesc_t *pd) 11052 { 11053 dtrace_ecbdesc_t *new; 11054 dtrace_predicate_t *pred; 11055 dtrace_actdesc_t *act; 11056 11057 /* 11058 * We're going to create a new ECB description that matches the 11059 * specified ECB in every way, but has the specified probe description. 11060 */ 11061 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11062 11063 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11064 dtrace_predicate_hold(pred); 11065 11066 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11067 dtrace_actdesc_hold(act); 11068 11069 new->dted_action = ecb->dted_action; 11070 new->dted_pred = ecb->dted_pred; 11071 new->dted_probe = *pd; 11072 new->dted_uarg = ecb->dted_uarg; 11073 11074 dtrace_enabling_add(enab, new); 11075 } 11076 11077 static void 11078 dtrace_enabling_dump(dtrace_enabling_t *enab) 11079 { 11080 int i; 11081 11082 for (i = 0; i < enab->dten_ndesc; i++) { 11083 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11084 11085 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11086 desc->dtpd_provider, desc->dtpd_mod, 11087 desc->dtpd_func, desc->dtpd_name); 11088 } 11089 } 11090 11091 static void 11092 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11093 { 11094 int i; 11095 dtrace_ecbdesc_t *ep; 11096 dtrace_vstate_t *vstate = enab->dten_vstate; 11097 11098 ASSERT(MUTEX_HELD(&dtrace_lock)); 11099 11100 for (i = 0; i < enab->dten_ndesc; i++) { 11101 dtrace_actdesc_t *act, *next; 11102 dtrace_predicate_t *pred; 11103 11104 ep = enab->dten_desc[i]; 11105 11106 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11107 dtrace_predicate_release(pred, vstate); 11108 11109 for (act = ep->dted_action; act != NULL; act = next) { 11110 next = act->dtad_next; 11111 dtrace_actdesc_release(act, vstate); 11112 } 11113 11114 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11115 } 11116 11117 kmem_free(enab->dten_desc, 11118 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11119 11120 /* 11121 * If this was a retained enabling, decrement the dts_nretained count 11122 * and take it off of the dtrace_retained list. 11123 */ 11124 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11125 dtrace_retained == enab) { 11126 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11127 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11128 enab->dten_vstate->dtvs_state->dts_nretained--; 11129 dtrace_retained_gen++; 11130 } 11131 11132 if (enab->dten_prev == NULL) { 11133 if (dtrace_retained == enab) { 11134 dtrace_retained = enab->dten_next; 11135 11136 if (dtrace_retained != NULL) 11137 dtrace_retained->dten_prev = NULL; 11138 } 11139 } else { 11140 ASSERT(enab != dtrace_retained); 11141 ASSERT(dtrace_retained != NULL); 11142 enab->dten_prev->dten_next = enab->dten_next; 11143 } 11144 11145 if (enab->dten_next != NULL) { 11146 ASSERT(dtrace_retained != NULL); 11147 enab->dten_next->dten_prev = enab->dten_prev; 11148 } 11149 11150 kmem_free(enab, sizeof (dtrace_enabling_t)); 11151 } 11152 11153 static int 11154 dtrace_enabling_retain(dtrace_enabling_t *enab) 11155 { 11156 dtrace_state_t *state; 11157 11158 ASSERT(MUTEX_HELD(&dtrace_lock)); 11159 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11160 ASSERT(enab->dten_vstate != NULL); 11161 11162 state = enab->dten_vstate->dtvs_state; 11163 ASSERT(state != NULL); 11164 11165 /* 11166 * We only allow each state to retain dtrace_retain_max enablings. 11167 */ 11168 if (state->dts_nretained >= dtrace_retain_max) 11169 return (ENOSPC); 11170 11171 state->dts_nretained++; 11172 dtrace_retained_gen++; 11173 11174 if (dtrace_retained == NULL) { 11175 dtrace_retained = enab; 11176 return (0); 11177 } 11178 11179 enab->dten_next = dtrace_retained; 11180 dtrace_retained->dten_prev = enab; 11181 dtrace_retained = enab; 11182 11183 return (0); 11184 } 11185 11186 static int 11187 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11188 dtrace_probedesc_t *create) 11189 { 11190 dtrace_enabling_t *new, *enab; 11191 int found = 0, err = ENOENT; 11192 11193 ASSERT(MUTEX_HELD(&dtrace_lock)); 11194 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11195 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11196 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11197 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11198 11199 new = dtrace_enabling_create(&state->dts_vstate); 11200 11201 /* 11202 * Iterate over all retained enablings, looking for enablings that 11203 * match the specified state. 11204 */ 11205 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11206 int i; 11207 11208 /* 11209 * dtvs_state can only be NULL for helper enablings -- and 11210 * helper enablings can't be retained. 11211 */ 11212 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11213 11214 if (enab->dten_vstate->dtvs_state != state) 11215 continue; 11216 11217 /* 11218 * Now iterate over each probe description; we're looking for 11219 * an exact match to the specified probe description. 11220 */ 11221 for (i = 0; i < enab->dten_ndesc; i++) { 11222 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11223 dtrace_probedesc_t *pd = &ep->dted_probe; 11224 11225 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11226 continue; 11227 11228 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11229 continue; 11230 11231 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11232 continue; 11233 11234 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11235 continue; 11236 11237 /* 11238 * We have a winning probe! Add it to our growing 11239 * enabling. 11240 */ 11241 found = 1; 11242 dtrace_enabling_addlike(new, ep, create); 11243 } 11244 } 11245 11246 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11247 dtrace_enabling_destroy(new); 11248 return (err); 11249 } 11250 11251 return (0); 11252 } 11253 11254 static void 11255 dtrace_enabling_retract(dtrace_state_t *state) 11256 { 11257 dtrace_enabling_t *enab, *next; 11258 11259 ASSERT(MUTEX_HELD(&dtrace_lock)); 11260 11261 /* 11262 * Iterate over all retained enablings, destroy the enablings retained 11263 * for the specified state. 11264 */ 11265 for (enab = dtrace_retained; enab != NULL; enab = next) { 11266 next = enab->dten_next; 11267 11268 /* 11269 * dtvs_state can only be NULL for helper enablings -- and 11270 * helper enablings can't be retained. 11271 */ 11272 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11273 11274 if (enab->dten_vstate->dtvs_state == state) { 11275 ASSERT(state->dts_nretained > 0); 11276 dtrace_enabling_destroy(enab); 11277 } 11278 } 11279 11280 ASSERT(state->dts_nretained == 0); 11281 } 11282 11283 static int 11284 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11285 { 11286 int i = 0; 11287 int total_matched = 0, matched = 0; 11288 11289 ASSERT(MUTEX_HELD(&cpu_lock)); 11290 ASSERT(MUTEX_HELD(&dtrace_lock)); 11291 11292 for (i = 0; i < enab->dten_ndesc; i++) { 11293 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11294 11295 enab->dten_current = ep; 11296 enab->dten_error = 0; 11297 11298 /* 11299 * If a provider failed to enable a probe then get out and 11300 * let the consumer know we failed. 11301 */ 11302 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11303 return (EBUSY); 11304 11305 total_matched += matched; 11306 11307 if (enab->dten_error != 0) { 11308 /* 11309 * If we get an error half-way through enabling the 11310 * probes, we kick out -- perhaps with some number of 11311 * them enabled. Leaving enabled probes enabled may 11312 * be slightly confusing for user-level, but we expect 11313 * that no one will attempt to actually drive on in 11314 * the face of such errors. If this is an anonymous 11315 * enabling (indicated with a NULL nmatched pointer), 11316 * we cmn_err() a message. We aren't expecting to 11317 * get such an error -- such as it can exist at all, 11318 * it would be a result of corrupted DOF in the driver 11319 * properties. 11320 */ 11321 if (nmatched == NULL) { 11322 cmn_err(CE_WARN, "dtrace_enabling_match() " 11323 "error on %p: %d", (void *)ep, 11324 enab->dten_error); 11325 } 11326 11327 return (enab->dten_error); 11328 } 11329 } 11330 11331 enab->dten_probegen = dtrace_probegen; 11332 if (nmatched != NULL) 11333 *nmatched = total_matched; 11334 11335 return (0); 11336 } 11337 11338 static void 11339 dtrace_enabling_matchall(void) 11340 { 11341 dtrace_enabling_t *enab; 11342 11343 mutex_enter(&cpu_lock); 11344 mutex_enter(&dtrace_lock); 11345 11346 /* 11347 * Iterate over all retained enablings to see if any probes match 11348 * against them. We only perform this operation on enablings for which 11349 * we have sufficient permissions by virtue of being in the global zone 11350 * or in the same zone as the DTrace client. Because we can be called 11351 * after dtrace_detach() has been called, we cannot assert that there 11352 * are retained enablings. We can safely load from dtrace_retained, 11353 * however: the taskq_destroy() at the end of dtrace_detach() will 11354 * block pending our completion. 11355 */ 11356 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11357 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11358 cred_t *cr = dcr->dcr_cred; 11359 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11360 11361 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11362 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11363 (void) dtrace_enabling_match(enab, NULL); 11364 } 11365 11366 mutex_exit(&dtrace_lock); 11367 mutex_exit(&cpu_lock); 11368 } 11369 11370 /* 11371 * If an enabling is to be enabled without having matched probes (that is, if 11372 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11373 * enabling must be _primed_ by creating an ECB for every ECB description. 11374 * This must be done to assure that we know the number of speculations, the 11375 * number of aggregations, the minimum buffer size needed, etc. before we 11376 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11377 * enabling any probes, we create ECBs for every ECB decription, but with a 11378 * NULL probe -- which is exactly what this function does. 11379 */ 11380 static void 11381 dtrace_enabling_prime(dtrace_state_t *state) 11382 { 11383 dtrace_enabling_t *enab; 11384 int i; 11385 11386 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11387 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11388 11389 if (enab->dten_vstate->dtvs_state != state) 11390 continue; 11391 11392 /* 11393 * We don't want to prime an enabling more than once, lest 11394 * we allow a malicious user to induce resource exhaustion. 11395 * (The ECBs that result from priming an enabling aren't 11396 * leaked -- but they also aren't deallocated until the 11397 * consumer state is destroyed.) 11398 */ 11399 if (enab->dten_primed) 11400 continue; 11401 11402 for (i = 0; i < enab->dten_ndesc; i++) { 11403 enab->dten_current = enab->dten_desc[i]; 11404 (void) dtrace_probe_enable(NULL, enab); 11405 } 11406 11407 enab->dten_primed = 1; 11408 } 11409 } 11410 11411 /* 11412 * Called to indicate that probes should be provided due to retained 11413 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11414 * must take an initial lap through the enabling calling the dtps_provide() 11415 * entry point explicitly to allow for autocreated probes. 11416 */ 11417 static void 11418 dtrace_enabling_provide(dtrace_provider_t *prv) 11419 { 11420 int i, all = 0; 11421 dtrace_probedesc_t desc; 11422 dtrace_genid_t gen; 11423 11424 ASSERT(MUTEX_HELD(&dtrace_lock)); 11425 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11426 11427 if (prv == NULL) { 11428 all = 1; 11429 prv = dtrace_provider; 11430 } 11431 11432 do { 11433 dtrace_enabling_t *enab; 11434 void *parg = prv->dtpv_arg; 11435 11436 retry: 11437 gen = dtrace_retained_gen; 11438 for (enab = dtrace_retained; enab != NULL; 11439 enab = enab->dten_next) { 11440 for (i = 0; i < enab->dten_ndesc; i++) { 11441 desc = enab->dten_desc[i]->dted_probe; 11442 mutex_exit(&dtrace_lock); 11443 prv->dtpv_pops.dtps_provide(parg, &desc); 11444 mutex_enter(&dtrace_lock); 11445 /* 11446 * Process the retained enablings again if 11447 * they have changed while we weren't holding 11448 * dtrace_lock. 11449 */ 11450 if (gen != dtrace_retained_gen) 11451 goto retry; 11452 } 11453 } 11454 } while (all && (prv = prv->dtpv_next) != NULL); 11455 11456 mutex_exit(&dtrace_lock); 11457 dtrace_probe_provide(NULL, all ? NULL : prv); 11458 mutex_enter(&dtrace_lock); 11459 } 11460 11461 /* 11462 * Called to reap ECBs that are attached to probes from defunct providers. 11463 */ 11464 static void 11465 dtrace_enabling_reap(void) 11466 { 11467 dtrace_provider_t *prov; 11468 dtrace_probe_t *probe; 11469 dtrace_ecb_t *ecb; 11470 hrtime_t when; 11471 int i; 11472 11473 mutex_enter(&cpu_lock); 11474 mutex_enter(&dtrace_lock); 11475 11476 for (i = 0; i < dtrace_nprobes; i++) { 11477 if ((probe = dtrace_probes[i]) == NULL) 11478 continue; 11479 11480 if (probe->dtpr_ecb == NULL) 11481 continue; 11482 11483 prov = probe->dtpr_provider; 11484 11485 if ((when = prov->dtpv_defunct) == 0) 11486 continue; 11487 11488 /* 11489 * We have ECBs on a defunct provider: we want to reap these 11490 * ECBs to allow the provider to unregister. The destruction 11491 * of these ECBs must be done carefully: if we destroy the ECB 11492 * and the consumer later wishes to consume an EPID that 11493 * corresponds to the destroyed ECB (and if the EPID metadata 11494 * has not been previously consumed), the consumer will abort 11495 * processing on the unknown EPID. To reduce (but not, sadly, 11496 * eliminate) the possibility of this, we will only destroy an 11497 * ECB for a defunct provider if, for the state that 11498 * corresponds to the ECB: 11499 * 11500 * (a) There is no speculative tracing (which can effectively 11501 * cache an EPID for an arbitrary amount of time). 11502 * 11503 * (b) The principal buffers have been switched twice since the 11504 * provider became defunct. 11505 * 11506 * (c) The aggregation buffers are of zero size or have been 11507 * switched twice since the provider became defunct. 11508 * 11509 * We use dts_speculates to determine (a) and call a function 11510 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 11511 * that as soon as we've been unable to destroy one of the ECBs 11512 * associated with the probe, we quit trying -- reaping is only 11513 * fruitful in as much as we can destroy all ECBs associated 11514 * with the defunct provider's probes. 11515 */ 11516 while ((ecb = probe->dtpr_ecb) != NULL) { 11517 dtrace_state_t *state = ecb->dte_state; 11518 dtrace_buffer_t *buf = state->dts_buffer; 11519 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 11520 11521 if (state->dts_speculates) 11522 break; 11523 11524 if (!dtrace_buffer_consumed(buf, when)) 11525 break; 11526 11527 if (!dtrace_buffer_consumed(aggbuf, when)) 11528 break; 11529 11530 dtrace_ecb_disable(ecb); 11531 ASSERT(probe->dtpr_ecb != ecb); 11532 dtrace_ecb_destroy(ecb); 11533 } 11534 } 11535 11536 mutex_exit(&dtrace_lock); 11537 mutex_exit(&cpu_lock); 11538 } 11539 11540 /* 11541 * DTrace DOF Functions 11542 */ 11543 /*ARGSUSED*/ 11544 static void 11545 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11546 { 11547 if (dtrace_err_verbose) 11548 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11549 11550 #ifdef DTRACE_ERRDEBUG 11551 dtrace_errdebug(str); 11552 #endif 11553 } 11554 11555 /* 11556 * Create DOF out of a currently enabled state. Right now, we only create 11557 * DOF containing the run-time options -- but this could be expanded to create 11558 * complete DOF representing the enabled state. 11559 */ 11560 static dof_hdr_t * 11561 dtrace_dof_create(dtrace_state_t *state) 11562 { 11563 dof_hdr_t *dof; 11564 dof_sec_t *sec; 11565 dof_optdesc_t *opt; 11566 int i, len = sizeof (dof_hdr_t) + 11567 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11568 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11569 11570 ASSERT(MUTEX_HELD(&dtrace_lock)); 11571 11572 dof = kmem_zalloc(len, KM_SLEEP); 11573 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11574 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11575 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11576 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11577 11578 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11579 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11580 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11581 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11582 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11583 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11584 11585 dof->dofh_flags = 0; 11586 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11587 dof->dofh_secsize = sizeof (dof_sec_t); 11588 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11589 dof->dofh_secoff = sizeof (dof_hdr_t); 11590 dof->dofh_loadsz = len; 11591 dof->dofh_filesz = len; 11592 dof->dofh_pad = 0; 11593 11594 /* 11595 * Fill in the option section header... 11596 */ 11597 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11598 sec->dofs_type = DOF_SECT_OPTDESC; 11599 sec->dofs_align = sizeof (uint64_t); 11600 sec->dofs_flags = DOF_SECF_LOAD; 11601 sec->dofs_entsize = sizeof (dof_optdesc_t); 11602 11603 opt = (dof_optdesc_t *)((uintptr_t)sec + 11604 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11605 11606 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11607 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11608 11609 for (i = 0; i < DTRACEOPT_MAX; i++) { 11610 opt[i].dofo_option = i; 11611 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11612 opt[i].dofo_value = state->dts_options[i]; 11613 } 11614 11615 return (dof); 11616 } 11617 11618 static dof_hdr_t * 11619 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11620 { 11621 dof_hdr_t hdr, *dof; 11622 11623 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11624 11625 /* 11626 * First, we're going to copyin() the sizeof (dof_hdr_t). 11627 */ 11628 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11629 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11630 *errp = EFAULT; 11631 return (NULL); 11632 } 11633 11634 /* 11635 * Now we'll allocate the entire DOF and copy it in -- provided 11636 * that the length isn't outrageous. 11637 */ 11638 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11639 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11640 *errp = E2BIG; 11641 return (NULL); 11642 } 11643 11644 if (hdr.dofh_loadsz < sizeof (hdr)) { 11645 dtrace_dof_error(&hdr, "invalid load size"); 11646 *errp = EINVAL; 11647 return (NULL); 11648 } 11649 11650 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11651 11652 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11653 dof->dofh_loadsz != hdr.dofh_loadsz) { 11654 kmem_free(dof, hdr.dofh_loadsz); 11655 *errp = EFAULT; 11656 return (NULL); 11657 } 11658 11659 return (dof); 11660 } 11661 11662 static dof_hdr_t * 11663 dtrace_dof_property(const char *name) 11664 { 11665 uchar_t *buf; 11666 uint64_t loadsz; 11667 unsigned int len, i; 11668 dof_hdr_t *dof; 11669 11670 /* 11671 * Unfortunately, array of values in .conf files are always (and 11672 * only) interpreted to be integer arrays. We must read our DOF 11673 * as an integer array, and then squeeze it into a byte array. 11674 */ 11675 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11676 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11677 return (NULL); 11678 11679 for (i = 0; i < len; i++) 11680 buf[i] = (uchar_t)(((int *)buf)[i]); 11681 11682 if (len < sizeof (dof_hdr_t)) { 11683 ddi_prop_free(buf); 11684 dtrace_dof_error(NULL, "truncated header"); 11685 return (NULL); 11686 } 11687 11688 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11689 ddi_prop_free(buf); 11690 dtrace_dof_error(NULL, "truncated DOF"); 11691 return (NULL); 11692 } 11693 11694 if (loadsz >= dtrace_dof_maxsize) { 11695 ddi_prop_free(buf); 11696 dtrace_dof_error(NULL, "oversized DOF"); 11697 return (NULL); 11698 } 11699 11700 dof = kmem_alloc(loadsz, KM_SLEEP); 11701 bcopy(buf, dof, loadsz); 11702 ddi_prop_free(buf); 11703 11704 return (dof); 11705 } 11706 11707 static void 11708 dtrace_dof_destroy(dof_hdr_t *dof) 11709 { 11710 kmem_free(dof, dof->dofh_loadsz); 11711 } 11712 11713 /* 11714 * Return the dof_sec_t pointer corresponding to a given section index. If the 11715 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11716 * a type other than DOF_SECT_NONE is specified, the header is checked against 11717 * this type and NULL is returned if the types do not match. 11718 */ 11719 static dof_sec_t * 11720 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11721 { 11722 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11723 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11724 11725 if (i >= dof->dofh_secnum) { 11726 dtrace_dof_error(dof, "referenced section index is invalid"); 11727 return (NULL); 11728 } 11729 11730 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11731 dtrace_dof_error(dof, "referenced section is not loadable"); 11732 return (NULL); 11733 } 11734 11735 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11736 dtrace_dof_error(dof, "referenced section is the wrong type"); 11737 return (NULL); 11738 } 11739 11740 return (sec); 11741 } 11742 11743 static dtrace_probedesc_t * 11744 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11745 { 11746 dof_probedesc_t *probe; 11747 dof_sec_t *strtab; 11748 uintptr_t daddr = (uintptr_t)dof; 11749 uintptr_t str; 11750 size_t size; 11751 11752 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11753 dtrace_dof_error(dof, "invalid probe section"); 11754 return (NULL); 11755 } 11756 11757 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11758 dtrace_dof_error(dof, "bad alignment in probe description"); 11759 return (NULL); 11760 } 11761 11762 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11763 dtrace_dof_error(dof, "truncated probe description"); 11764 return (NULL); 11765 } 11766 11767 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11768 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11769 11770 if (strtab == NULL) 11771 return (NULL); 11772 11773 str = daddr + strtab->dofs_offset; 11774 size = strtab->dofs_size; 11775 11776 if (probe->dofp_provider >= strtab->dofs_size) { 11777 dtrace_dof_error(dof, "corrupt probe provider"); 11778 return (NULL); 11779 } 11780 11781 (void) strncpy(desc->dtpd_provider, 11782 (char *)(str + probe->dofp_provider), 11783 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11784 11785 if (probe->dofp_mod >= strtab->dofs_size) { 11786 dtrace_dof_error(dof, "corrupt probe module"); 11787 return (NULL); 11788 } 11789 11790 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11791 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11792 11793 if (probe->dofp_func >= strtab->dofs_size) { 11794 dtrace_dof_error(dof, "corrupt probe function"); 11795 return (NULL); 11796 } 11797 11798 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11799 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11800 11801 if (probe->dofp_name >= strtab->dofs_size) { 11802 dtrace_dof_error(dof, "corrupt probe name"); 11803 return (NULL); 11804 } 11805 11806 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11807 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11808 11809 return (desc); 11810 } 11811 11812 static dtrace_difo_t * 11813 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11814 cred_t *cr) 11815 { 11816 dtrace_difo_t *dp; 11817 size_t ttl = 0; 11818 dof_difohdr_t *dofd; 11819 uintptr_t daddr = (uintptr_t)dof; 11820 size_t max = dtrace_difo_maxsize; 11821 int i, l, n; 11822 11823 static const struct { 11824 int section; 11825 int bufoffs; 11826 int lenoffs; 11827 int entsize; 11828 int align; 11829 const char *msg; 11830 } difo[] = { 11831 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11832 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11833 sizeof (dif_instr_t), "multiple DIF sections" }, 11834 11835 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11836 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11837 sizeof (uint64_t), "multiple integer tables" }, 11838 11839 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11840 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11841 sizeof (char), "multiple string tables" }, 11842 11843 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11844 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11845 sizeof (uint_t), "multiple variable tables" }, 11846 11847 { DOF_SECT_NONE, 0, 0, 0, NULL } 11848 }; 11849 11850 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11851 dtrace_dof_error(dof, "invalid DIFO header section"); 11852 return (NULL); 11853 } 11854 11855 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11856 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11857 return (NULL); 11858 } 11859 11860 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11861 sec->dofs_size % sizeof (dof_secidx_t)) { 11862 dtrace_dof_error(dof, "bad size in DIFO header"); 11863 return (NULL); 11864 } 11865 11866 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11867 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11868 11869 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11870 dp->dtdo_rtype = dofd->dofd_rtype; 11871 11872 for (l = 0; l < n; l++) { 11873 dof_sec_t *subsec; 11874 void **bufp; 11875 uint32_t *lenp; 11876 11877 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11878 dofd->dofd_links[l])) == NULL) 11879 goto err; /* invalid section link */ 11880 11881 if (ttl + subsec->dofs_size > max) { 11882 dtrace_dof_error(dof, "exceeds maximum size"); 11883 goto err; 11884 } 11885 11886 ttl += subsec->dofs_size; 11887 11888 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11889 if (subsec->dofs_type != difo[i].section) 11890 continue; 11891 11892 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11893 dtrace_dof_error(dof, "section not loaded"); 11894 goto err; 11895 } 11896 11897 if (subsec->dofs_align != difo[i].align) { 11898 dtrace_dof_error(dof, "bad alignment"); 11899 goto err; 11900 } 11901 11902 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11903 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11904 11905 if (*bufp != NULL) { 11906 dtrace_dof_error(dof, difo[i].msg); 11907 goto err; 11908 } 11909 11910 if (difo[i].entsize != subsec->dofs_entsize) { 11911 dtrace_dof_error(dof, "entry size mismatch"); 11912 goto err; 11913 } 11914 11915 if (subsec->dofs_entsize != 0 && 11916 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11917 dtrace_dof_error(dof, "corrupt entry size"); 11918 goto err; 11919 } 11920 11921 *lenp = subsec->dofs_size; 11922 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11923 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11924 *bufp, subsec->dofs_size); 11925 11926 if (subsec->dofs_entsize != 0) 11927 *lenp /= subsec->dofs_entsize; 11928 11929 break; 11930 } 11931 11932 /* 11933 * If we encounter a loadable DIFO sub-section that is not 11934 * known to us, assume this is a broken program and fail. 11935 */ 11936 if (difo[i].section == DOF_SECT_NONE && 11937 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11938 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11939 goto err; 11940 } 11941 } 11942 11943 if (dp->dtdo_buf == NULL) { 11944 /* 11945 * We can't have a DIF object without DIF text. 11946 */ 11947 dtrace_dof_error(dof, "missing DIF text"); 11948 goto err; 11949 } 11950 11951 /* 11952 * Before we validate the DIF object, run through the variable table 11953 * looking for the strings -- if any of their size are under, we'll set 11954 * their size to be the system-wide default string size. Note that 11955 * this should _not_ happen if the "strsize" option has been set -- 11956 * in this case, the compiler should have set the size to reflect the 11957 * setting of the option. 11958 */ 11959 for (i = 0; i < dp->dtdo_varlen; i++) { 11960 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11961 dtrace_diftype_t *t = &v->dtdv_type; 11962 11963 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11964 continue; 11965 11966 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11967 t->dtdt_size = dtrace_strsize_default; 11968 } 11969 11970 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11971 goto err; 11972 11973 dtrace_difo_init(dp, vstate); 11974 return (dp); 11975 11976 err: 11977 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11978 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11979 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11980 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11981 11982 kmem_free(dp, sizeof (dtrace_difo_t)); 11983 return (NULL); 11984 } 11985 11986 static dtrace_predicate_t * 11987 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11988 cred_t *cr) 11989 { 11990 dtrace_difo_t *dp; 11991 11992 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11993 return (NULL); 11994 11995 return (dtrace_predicate_create(dp)); 11996 } 11997 11998 static dtrace_actdesc_t * 11999 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12000 cred_t *cr) 12001 { 12002 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12003 dof_actdesc_t *desc; 12004 dof_sec_t *difosec; 12005 size_t offs; 12006 uintptr_t daddr = (uintptr_t)dof; 12007 uint64_t arg; 12008 dtrace_actkind_t kind; 12009 12010 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12011 dtrace_dof_error(dof, "invalid action section"); 12012 return (NULL); 12013 } 12014 12015 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12016 dtrace_dof_error(dof, "truncated action description"); 12017 return (NULL); 12018 } 12019 12020 if (sec->dofs_align != sizeof (uint64_t)) { 12021 dtrace_dof_error(dof, "bad alignment in action description"); 12022 return (NULL); 12023 } 12024 12025 if (sec->dofs_size < sec->dofs_entsize) { 12026 dtrace_dof_error(dof, "section entry size exceeds total size"); 12027 return (NULL); 12028 } 12029 12030 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12031 dtrace_dof_error(dof, "bad entry size in action description"); 12032 return (NULL); 12033 } 12034 12035 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12036 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12037 return (NULL); 12038 } 12039 12040 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12041 desc = (dof_actdesc_t *)(daddr + 12042 (uintptr_t)sec->dofs_offset + offs); 12043 kind = (dtrace_actkind_t)desc->dofa_kind; 12044 12045 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12046 (kind != DTRACEACT_PRINTA || 12047 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12048 (kind == DTRACEACT_DIFEXPR && 12049 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12050 dof_sec_t *strtab; 12051 char *str, *fmt; 12052 uint64_t i; 12053 12054 /* 12055 * The argument to these actions is an index into the 12056 * DOF string table. For printf()-like actions, this 12057 * is the format string. For print(), this is the 12058 * CTF type of the expression result. 12059 */ 12060 if ((strtab = dtrace_dof_sect(dof, 12061 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12062 goto err; 12063 12064 str = (char *)((uintptr_t)dof + 12065 (uintptr_t)strtab->dofs_offset); 12066 12067 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12068 if (str[i] == '\0') 12069 break; 12070 } 12071 12072 if (i >= strtab->dofs_size) { 12073 dtrace_dof_error(dof, "bogus format string"); 12074 goto err; 12075 } 12076 12077 if (i == desc->dofa_arg) { 12078 dtrace_dof_error(dof, "empty format string"); 12079 goto err; 12080 } 12081 12082 i -= desc->dofa_arg; 12083 fmt = kmem_alloc(i + 1, KM_SLEEP); 12084 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12085 arg = (uint64_t)(uintptr_t)fmt; 12086 } else { 12087 if (kind == DTRACEACT_PRINTA) { 12088 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12089 arg = 0; 12090 } else { 12091 arg = desc->dofa_arg; 12092 } 12093 } 12094 12095 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12096 desc->dofa_uarg, arg); 12097 12098 if (last != NULL) { 12099 last->dtad_next = act; 12100 } else { 12101 first = act; 12102 } 12103 12104 last = act; 12105 12106 if (desc->dofa_difo == DOF_SECIDX_NONE) 12107 continue; 12108 12109 if ((difosec = dtrace_dof_sect(dof, 12110 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12111 goto err; 12112 12113 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12114 12115 if (act->dtad_difo == NULL) 12116 goto err; 12117 } 12118 12119 ASSERT(first != NULL); 12120 return (first); 12121 12122 err: 12123 for (act = first; act != NULL; act = next) { 12124 next = act->dtad_next; 12125 dtrace_actdesc_release(act, vstate); 12126 } 12127 12128 return (NULL); 12129 } 12130 12131 static dtrace_ecbdesc_t * 12132 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12133 cred_t *cr) 12134 { 12135 dtrace_ecbdesc_t *ep; 12136 dof_ecbdesc_t *ecb; 12137 dtrace_probedesc_t *desc; 12138 dtrace_predicate_t *pred = NULL; 12139 12140 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12141 dtrace_dof_error(dof, "truncated ECB description"); 12142 return (NULL); 12143 } 12144 12145 if (sec->dofs_align != sizeof (uint64_t)) { 12146 dtrace_dof_error(dof, "bad alignment in ECB description"); 12147 return (NULL); 12148 } 12149 12150 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12151 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12152 12153 if (sec == NULL) 12154 return (NULL); 12155 12156 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12157 ep->dted_uarg = ecb->dofe_uarg; 12158 desc = &ep->dted_probe; 12159 12160 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12161 goto err; 12162 12163 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12164 if ((sec = dtrace_dof_sect(dof, 12165 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12166 goto err; 12167 12168 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12169 goto err; 12170 12171 ep->dted_pred.dtpdd_predicate = pred; 12172 } 12173 12174 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12175 if ((sec = dtrace_dof_sect(dof, 12176 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12177 goto err; 12178 12179 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12180 12181 if (ep->dted_action == NULL) 12182 goto err; 12183 } 12184 12185 return (ep); 12186 12187 err: 12188 if (pred != NULL) 12189 dtrace_predicate_release(pred, vstate); 12190 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12191 return (NULL); 12192 } 12193 12194 /* 12195 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12196 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12197 * site of any user SETX relocations to account for load object base address. 12198 * In the future, if we need other relocations, this function can be extended. 12199 */ 12200 static int 12201 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12202 { 12203 uintptr_t daddr = (uintptr_t)dof; 12204 dof_relohdr_t *dofr = 12205 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12206 dof_sec_t *ss, *rs, *ts; 12207 dof_relodesc_t *r; 12208 uint_t i, n; 12209 12210 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12211 sec->dofs_align != sizeof (dof_secidx_t)) { 12212 dtrace_dof_error(dof, "invalid relocation header"); 12213 return (-1); 12214 } 12215 12216 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12217 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12218 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12219 12220 if (ss == NULL || rs == NULL || ts == NULL) 12221 return (-1); /* dtrace_dof_error() has been called already */ 12222 12223 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12224 rs->dofs_align != sizeof (uint64_t)) { 12225 dtrace_dof_error(dof, "invalid relocation section"); 12226 return (-1); 12227 } 12228 12229 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12230 n = rs->dofs_size / rs->dofs_entsize; 12231 12232 for (i = 0; i < n; i++) { 12233 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12234 12235 switch (r->dofr_type) { 12236 case DOF_RELO_NONE: 12237 break; 12238 case DOF_RELO_SETX: 12239 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12240 sizeof (uint64_t) > ts->dofs_size) { 12241 dtrace_dof_error(dof, "bad relocation offset"); 12242 return (-1); 12243 } 12244 12245 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12246 dtrace_dof_error(dof, "misaligned setx relo"); 12247 return (-1); 12248 } 12249 12250 *(uint64_t *)taddr += ubase; 12251 break; 12252 default: 12253 dtrace_dof_error(dof, "invalid relocation type"); 12254 return (-1); 12255 } 12256 12257 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12258 } 12259 12260 return (0); 12261 } 12262 12263 /* 12264 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12265 * header: it should be at the front of a memory region that is at least 12266 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12267 * size. It need not be validated in any other way. 12268 */ 12269 static int 12270 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12271 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12272 { 12273 uint64_t len = dof->dofh_loadsz, seclen; 12274 uintptr_t daddr = (uintptr_t)dof; 12275 dtrace_ecbdesc_t *ep; 12276 dtrace_enabling_t *enab; 12277 uint_t i; 12278 12279 ASSERT(MUTEX_HELD(&dtrace_lock)); 12280 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12281 12282 /* 12283 * Check the DOF header identification bytes. In addition to checking 12284 * valid settings, we also verify that unused bits/bytes are zeroed so 12285 * we can use them later without fear of regressing existing binaries. 12286 */ 12287 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12288 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12289 dtrace_dof_error(dof, "DOF magic string mismatch"); 12290 return (-1); 12291 } 12292 12293 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12294 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12295 dtrace_dof_error(dof, "DOF has invalid data model"); 12296 return (-1); 12297 } 12298 12299 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12300 dtrace_dof_error(dof, "DOF encoding mismatch"); 12301 return (-1); 12302 } 12303 12304 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12305 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12306 dtrace_dof_error(dof, "DOF version mismatch"); 12307 return (-1); 12308 } 12309 12310 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12311 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12312 return (-1); 12313 } 12314 12315 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12316 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12317 return (-1); 12318 } 12319 12320 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12321 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12322 return (-1); 12323 } 12324 12325 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12326 if (dof->dofh_ident[i] != 0) { 12327 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12328 return (-1); 12329 } 12330 } 12331 12332 if (dof->dofh_flags & ~DOF_FL_VALID) { 12333 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12334 return (-1); 12335 } 12336 12337 if (dof->dofh_secsize == 0) { 12338 dtrace_dof_error(dof, "zero section header size"); 12339 return (-1); 12340 } 12341 12342 /* 12343 * Check that the section headers don't exceed the amount of DOF 12344 * data. Note that we cast the section size and number of sections 12345 * to uint64_t's to prevent possible overflow in the multiplication. 12346 */ 12347 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12348 12349 if (dof->dofh_secoff > len || seclen > len || 12350 dof->dofh_secoff + seclen > len) { 12351 dtrace_dof_error(dof, "truncated section headers"); 12352 return (-1); 12353 } 12354 12355 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12356 dtrace_dof_error(dof, "misaligned section headers"); 12357 return (-1); 12358 } 12359 12360 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12361 dtrace_dof_error(dof, "misaligned section size"); 12362 return (-1); 12363 } 12364 12365 /* 12366 * Take an initial pass through the section headers to be sure that 12367 * the headers don't have stray offsets. If the 'noprobes' flag is 12368 * set, do not permit sections relating to providers, probes, or args. 12369 */ 12370 for (i = 0; i < dof->dofh_secnum; i++) { 12371 dof_sec_t *sec = (dof_sec_t *)(daddr + 12372 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12373 12374 if (noprobes) { 12375 switch (sec->dofs_type) { 12376 case DOF_SECT_PROVIDER: 12377 case DOF_SECT_PROBES: 12378 case DOF_SECT_PRARGS: 12379 case DOF_SECT_PROFFS: 12380 dtrace_dof_error(dof, "illegal sections " 12381 "for enabling"); 12382 return (-1); 12383 } 12384 } 12385 12386 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12387 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12388 dtrace_dof_error(dof, "loadable section with load " 12389 "flag unset"); 12390 return (-1); 12391 } 12392 12393 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12394 continue; /* just ignore non-loadable sections */ 12395 12396 if (sec->dofs_align & (sec->dofs_align - 1)) { 12397 dtrace_dof_error(dof, "bad section alignment"); 12398 return (-1); 12399 } 12400 12401 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12402 dtrace_dof_error(dof, "misaligned section"); 12403 return (-1); 12404 } 12405 12406 if (sec->dofs_offset > len || sec->dofs_size > len || 12407 sec->dofs_offset + sec->dofs_size > len) { 12408 dtrace_dof_error(dof, "corrupt section header"); 12409 return (-1); 12410 } 12411 12412 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12413 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12414 dtrace_dof_error(dof, "non-terminating string table"); 12415 return (-1); 12416 } 12417 } 12418 12419 /* 12420 * Take a second pass through the sections and locate and perform any 12421 * relocations that are present. We do this after the first pass to 12422 * be sure that all sections have had their headers validated. 12423 */ 12424 for (i = 0; i < dof->dofh_secnum; i++) { 12425 dof_sec_t *sec = (dof_sec_t *)(daddr + 12426 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12427 12428 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12429 continue; /* skip sections that are not loadable */ 12430 12431 switch (sec->dofs_type) { 12432 case DOF_SECT_URELHDR: 12433 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12434 return (-1); 12435 break; 12436 } 12437 } 12438 12439 if ((enab = *enabp) == NULL) 12440 enab = *enabp = dtrace_enabling_create(vstate); 12441 12442 for (i = 0; i < dof->dofh_secnum; i++) { 12443 dof_sec_t *sec = (dof_sec_t *)(daddr + 12444 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12445 12446 if (sec->dofs_type != DOF_SECT_ECBDESC) 12447 continue; 12448 12449 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12450 dtrace_enabling_destroy(enab); 12451 *enabp = NULL; 12452 return (-1); 12453 } 12454 12455 dtrace_enabling_add(enab, ep); 12456 } 12457 12458 return (0); 12459 } 12460 12461 /* 12462 * Process DOF for any options. This routine assumes that the DOF has been 12463 * at least processed by dtrace_dof_slurp(). 12464 */ 12465 static int 12466 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12467 { 12468 int i, rval; 12469 uint32_t entsize; 12470 size_t offs; 12471 dof_optdesc_t *desc; 12472 12473 for (i = 0; i < dof->dofh_secnum; i++) { 12474 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12475 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12476 12477 if (sec->dofs_type != DOF_SECT_OPTDESC) 12478 continue; 12479 12480 if (sec->dofs_align != sizeof (uint64_t)) { 12481 dtrace_dof_error(dof, "bad alignment in " 12482 "option description"); 12483 return (EINVAL); 12484 } 12485 12486 if ((entsize = sec->dofs_entsize) == 0) { 12487 dtrace_dof_error(dof, "zeroed option entry size"); 12488 return (EINVAL); 12489 } 12490 12491 if (entsize < sizeof (dof_optdesc_t)) { 12492 dtrace_dof_error(dof, "bad option entry size"); 12493 return (EINVAL); 12494 } 12495 12496 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12497 desc = (dof_optdesc_t *)((uintptr_t)dof + 12498 (uintptr_t)sec->dofs_offset + offs); 12499 12500 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12501 dtrace_dof_error(dof, "non-zero option string"); 12502 return (EINVAL); 12503 } 12504 12505 if (desc->dofo_value == DTRACEOPT_UNSET) { 12506 dtrace_dof_error(dof, "unset option"); 12507 return (EINVAL); 12508 } 12509 12510 if ((rval = dtrace_state_option(state, 12511 desc->dofo_option, desc->dofo_value)) != 0) { 12512 dtrace_dof_error(dof, "rejected option"); 12513 return (rval); 12514 } 12515 } 12516 } 12517 12518 return (0); 12519 } 12520 12521 /* 12522 * DTrace Consumer State Functions 12523 */ 12524 int 12525 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12526 { 12527 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12528 void *base; 12529 uintptr_t limit; 12530 dtrace_dynvar_t *dvar, *next, *start; 12531 int i; 12532 12533 ASSERT(MUTEX_HELD(&dtrace_lock)); 12534 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12535 12536 bzero(dstate, sizeof (dtrace_dstate_t)); 12537 12538 if ((dstate->dtds_chunksize = chunksize) == 0) 12539 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12540 12541 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12542 size = min; 12543 12544 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12545 return (ENOMEM); 12546 12547 dstate->dtds_size = size; 12548 dstate->dtds_base = base; 12549 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12550 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12551 12552 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12553 12554 if (hashsize != 1 && (hashsize & 1)) 12555 hashsize--; 12556 12557 dstate->dtds_hashsize = hashsize; 12558 dstate->dtds_hash = dstate->dtds_base; 12559 12560 /* 12561 * Set all of our hash buckets to point to the single sink, and (if 12562 * it hasn't already been set), set the sink's hash value to be the 12563 * sink sentinel value. The sink is needed for dynamic variable 12564 * lookups to know that they have iterated over an entire, valid hash 12565 * chain. 12566 */ 12567 for (i = 0; i < hashsize; i++) 12568 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12569 12570 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12571 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12572 12573 /* 12574 * Determine number of active CPUs. Divide free list evenly among 12575 * active CPUs. 12576 */ 12577 start = (dtrace_dynvar_t *) 12578 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12579 limit = (uintptr_t)base + size; 12580 12581 maxper = (limit - (uintptr_t)start) / NCPU; 12582 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12583 12584 for (i = 0; i < NCPU; i++) { 12585 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12586 12587 /* 12588 * If we don't even have enough chunks to make it once through 12589 * NCPUs, we're just going to allocate everything to the first 12590 * CPU. And if we're on the last CPU, we're going to allocate 12591 * whatever is left over. In either case, we set the limit to 12592 * be the limit of the dynamic variable space. 12593 */ 12594 if (maxper == 0 || i == NCPU - 1) { 12595 limit = (uintptr_t)base + size; 12596 start = NULL; 12597 } else { 12598 limit = (uintptr_t)start + maxper; 12599 start = (dtrace_dynvar_t *)limit; 12600 } 12601 12602 ASSERT(limit <= (uintptr_t)base + size); 12603 12604 for (;;) { 12605 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12606 dstate->dtds_chunksize); 12607 12608 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12609 break; 12610 12611 dvar->dtdv_next = next; 12612 dvar = next; 12613 } 12614 12615 if (maxper == 0) 12616 break; 12617 } 12618 12619 return (0); 12620 } 12621 12622 void 12623 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12624 { 12625 ASSERT(MUTEX_HELD(&cpu_lock)); 12626 12627 if (dstate->dtds_base == NULL) 12628 return; 12629 12630 kmem_free(dstate->dtds_base, dstate->dtds_size); 12631 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12632 } 12633 12634 static void 12635 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12636 { 12637 /* 12638 * Logical XOR, where are you? 12639 */ 12640 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12641 12642 if (vstate->dtvs_nglobals > 0) { 12643 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12644 sizeof (dtrace_statvar_t *)); 12645 } 12646 12647 if (vstate->dtvs_ntlocals > 0) { 12648 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12649 sizeof (dtrace_difv_t)); 12650 } 12651 12652 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12653 12654 if (vstate->dtvs_nlocals > 0) { 12655 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12656 sizeof (dtrace_statvar_t *)); 12657 } 12658 } 12659 12660 static void 12661 dtrace_state_clean(dtrace_state_t *state) 12662 { 12663 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12664 return; 12665 12666 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12667 dtrace_speculation_clean(state); 12668 } 12669 12670 static void 12671 dtrace_state_deadman(dtrace_state_t *state) 12672 { 12673 hrtime_t now; 12674 12675 dtrace_sync(); 12676 12677 now = dtrace_gethrtime(); 12678 12679 if (state != dtrace_anon.dta_state && 12680 now - state->dts_laststatus >= dtrace_deadman_user) 12681 return; 12682 12683 /* 12684 * We must be sure that dts_alive never appears to be less than the 12685 * value upon entry to dtrace_state_deadman(), and because we lack a 12686 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12687 * store INT64_MAX to it, followed by a memory barrier, followed by 12688 * the new value. This assures that dts_alive never appears to be 12689 * less than its true value, regardless of the order in which the 12690 * stores to the underlying storage are issued. 12691 */ 12692 state->dts_alive = INT64_MAX; 12693 dtrace_membar_producer(); 12694 state->dts_alive = now; 12695 } 12696 12697 dtrace_state_t * 12698 dtrace_state_create(dev_t *devp, cred_t *cr) 12699 { 12700 minor_t minor; 12701 major_t major; 12702 char c[30]; 12703 dtrace_state_t *state; 12704 dtrace_optval_t *opt; 12705 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12706 12707 ASSERT(MUTEX_HELD(&dtrace_lock)); 12708 ASSERT(MUTEX_HELD(&cpu_lock)); 12709 12710 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12711 VM_BESTFIT | VM_SLEEP); 12712 12713 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12714 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12715 return (NULL); 12716 } 12717 12718 state = ddi_get_soft_state(dtrace_softstate, minor); 12719 state->dts_epid = DTRACE_EPIDNONE + 1; 12720 12721 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12722 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12723 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12724 12725 if (devp != NULL) { 12726 major = getemajor(*devp); 12727 } else { 12728 major = ddi_driver_major(dtrace_devi); 12729 } 12730 12731 state->dts_dev = makedevice(major, minor); 12732 12733 if (devp != NULL) 12734 *devp = state->dts_dev; 12735 12736 /* 12737 * We allocate NCPU buffers. On the one hand, this can be quite 12738 * a bit of memory per instance (nearly 36K on a Starcat). On the 12739 * other hand, it saves an additional memory reference in the probe 12740 * path. 12741 */ 12742 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12743 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12744 state->dts_cleaner = CYCLIC_NONE; 12745 state->dts_deadman = CYCLIC_NONE; 12746 state->dts_vstate.dtvs_state = state; 12747 12748 for (i = 0; i < DTRACEOPT_MAX; i++) 12749 state->dts_options[i] = DTRACEOPT_UNSET; 12750 12751 /* 12752 * Set the default options. 12753 */ 12754 opt = state->dts_options; 12755 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12756 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12757 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12758 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12759 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12760 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12761 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12762 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12763 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12764 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12765 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12766 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12767 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12768 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12769 12770 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12771 12772 /* 12773 * Depending on the user credentials, we set flag bits which alter probe 12774 * visibility or the amount of destructiveness allowed. In the case of 12775 * actual anonymous tracing, or the possession of all privileges, all of 12776 * the normal checks are bypassed. 12777 */ 12778 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12779 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12780 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12781 } else { 12782 /* 12783 * Set up the credentials for this instantiation. We take a 12784 * hold on the credential to prevent it from disappearing on 12785 * us; this in turn prevents the zone_t referenced by this 12786 * credential from disappearing. This means that we can 12787 * examine the credential and the zone from probe context. 12788 */ 12789 crhold(cr); 12790 state->dts_cred.dcr_cred = cr; 12791 12792 /* 12793 * CRA_PROC means "we have *some* privilege for dtrace" and 12794 * unlocks the use of variables like pid, zonename, etc. 12795 */ 12796 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12797 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12798 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12799 } 12800 12801 /* 12802 * dtrace_user allows use of syscall and profile providers. 12803 * If the user also has proc_owner and/or proc_zone, we 12804 * extend the scope to include additional visibility and 12805 * destructive power. 12806 */ 12807 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12808 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12809 state->dts_cred.dcr_visible |= 12810 DTRACE_CRV_ALLPROC; 12811 12812 state->dts_cred.dcr_action |= 12813 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12814 } 12815 12816 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12817 state->dts_cred.dcr_visible |= 12818 DTRACE_CRV_ALLZONE; 12819 12820 state->dts_cred.dcr_action |= 12821 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12822 } 12823 12824 /* 12825 * If we have all privs in whatever zone this is, 12826 * we can do destructive things to processes which 12827 * have altered credentials. 12828 */ 12829 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12830 cr->cr_zone->zone_privset)) { 12831 state->dts_cred.dcr_action |= 12832 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12833 } 12834 } 12835 12836 /* 12837 * Holding the dtrace_kernel privilege also implies that 12838 * the user has the dtrace_user privilege from a visibility 12839 * perspective. But without further privileges, some 12840 * destructive actions are not available. 12841 */ 12842 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12843 /* 12844 * Make all probes in all zones visible. However, 12845 * this doesn't mean that all actions become available 12846 * to all zones. 12847 */ 12848 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12849 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12850 12851 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12852 DTRACE_CRA_PROC; 12853 /* 12854 * Holding proc_owner means that destructive actions 12855 * for *this* zone are allowed. 12856 */ 12857 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12858 state->dts_cred.dcr_action |= 12859 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12860 12861 /* 12862 * Holding proc_zone means that destructive actions 12863 * for this user/group ID in all zones is allowed. 12864 */ 12865 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12866 state->dts_cred.dcr_action |= 12867 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12868 12869 /* 12870 * If we have all privs in whatever zone this is, 12871 * we can do destructive things to processes which 12872 * have altered credentials. 12873 */ 12874 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12875 cr->cr_zone->zone_privset)) { 12876 state->dts_cred.dcr_action |= 12877 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12878 } 12879 } 12880 12881 /* 12882 * Holding the dtrace_proc privilege gives control over fasttrap 12883 * and pid providers. We need to grant wider destructive 12884 * privileges in the event that the user has proc_owner and/or 12885 * proc_zone. 12886 */ 12887 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12888 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12889 state->dts_cred.dcr_action |= 12890 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12891 12892 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12893 state->dts_cred.dcr_action |= 12894 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12895 } 12896 } 12897 12898 return (state); 12899 } 12900 12901 static int 12902 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12903 { 12904 dtrace_optval_t *opt = state->dts_options, size; 12905 processorid_t cpu; 12906 int flags = 0, rval, factor, divisor = 1; 12907 12908 ASSERT(MUTEX_HELD(&dtrace_lock)); 12909 ASSERT(MUTEX_HELD(&cpu_lock)); 12910 ASSERT(which < DTRACEOPT_MAX); 12911 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12912 (state == dtrace_anon.dta_state && 12913 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12914 12915 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12916 return (0); 12917 12918 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12919 cpu = opt[DTRACEOPT_CPU]; 12920 12921 if (which == DTRACEOPT_SPECSIZE) 12922 flags |= DTRACEBUF_NOSWITCH; 12923 12924 if (which == DTRACEOPT_BUFSIZE) { 12925 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12926 flags |= DTRACEBUF_RING; 12927 12928 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12929 flags |= DTRACEBUF_FILL; 12930 12931 if (state != dtrace_anon.dta_state || 12932 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12933 flags |= DTRACEBUF_INACTIVE; 12934 } 12935 12936 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 12937 /* 12938 * The size must be 8-byte aligned. If the size is not 8-byte 12939 * aligned, drop it down by the difference. 12940 */ 12941 if (size & (sizeof (uint64_t) - 1)) 12942 size -= size & (sizeof (uint64_t) - 1); 12943 12944 if (size < state->dts_reserve) { 12945 /* 12946 * Buffers always must be large enough to accommodate 12947 * their prereserved space. We return E2BIG instead 12948 * of ENOMEM in this case to allow for user-level 12949 * software to differentiate the cases. 12950 */ 12951 return (E2BIG); 12952 } 12953 12954 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 12955 12956 if (rval != ENOMEM) { 12957 opt[which] = size; 12958 return (rval); 12959 } 12960 12961 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12962 return (rval); 12963 12964 for (divisor = 2; divisor < factor; divisor <<= 1) 12965 continue; 12966 } 12967 12968 return (ENOMEM); 12969 } 12970 12971 static int 12972 dtrace_state_buffers(dtrace_state_t *state) 12973 { 12974 dtrace_speculation_t *spec = state->dts_speculations; 12975 int rval, i; 12976 12977 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12978 DTRACEOPT_BUFSIZE)) != 0) 12979 return (rval); 12980 12981 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12982 DTRACEOPT_AGGSIZE)) != 0) 12983 return (rval); 12984 12985 for (i = 0; i < state->dts_nspeculations; i++) { 12986 if ((rval = dtrace_state_buffer(state, 12987 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12988 return (rval); 12989 } 12990 12991 return (0); 12992 } 12993 12994 static void 12995 dtrace_state_prereserve(dtrace_state_t *state) 12996 { 12997 dtrace_ecb_t *ecb; 12998 dtrace_probe_t *probe; 12999 13000 state->dts_reserve = 0; 13001 13002 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13003 return; 13004 13005 /* 13006 * If our buffer policy is a "fill" buffer policy, we need to set the 13007 * prereserved space to be the space required by the END probes. 13008 */ 13009 probe = dtrace_probes[dtrace_probeid_end - 1]; 13010 ASSERT(probe != NULL); 13011 13012 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13013 if (ecb->dte_state != state) 13014 continue; 13015 13016 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13017 } 13018 } 13019 13020 static int 13021 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13022 { 13023 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13024 dtrace_speculation_t *spec; 13025 dtrace_buffer_t *buf; 13026 cyc_handler_t hdlr; 13027 cyc_time_t when; 13028 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13029 dtrace_icookie_t cookie; 13030 13031 mutex_enter(&cpu_lock); 13032 mutex_enter(&dtrace_lock); 13033 13034 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13035 rval = EBUSY; 13036 goto out; 13037 } 13038 13039 /* 13040 * Before we can perform any checks, we must prime all of the 13041 * retained enablings that correspond to this state. 13042 */ 13043 dtrace_enabling_prime(state); 13044 13045 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13046 rval = EACCES; 13047 goto out; 13048 } 13049 13050 dtrace_state_prereserve(state); 13051 13052 /* 13053 * Now we want to do is try to allocate our speculations. 13054 * We do not automatically resize the number of speculations; if 13055 * this fails, we will fail the operation. 13056 */ 13057 nspec = opt[DTRACEOPT_NSPEC]; 13058 ASSERT(nspec != DTRACEOPT_UNSET); 13059 13060 if (nspec > INT_MAX) { 13061 rval = ENOMEM; 13062 goto out; 13063 } 13064 13065 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13066 KM_NOSLEEP | KM_NORMALPRI); 13067 13068 if (spec == NULL) { 13069 rval = ENOMEM; 13070 goto out; 13071 } 13072 13073 state->dts_speculations = spec; 13074 state->dts_nspeculations = (int)nspec; 13075 13076 for (i = 0; i < nspec; i++) { 13077 if ((buf = kmem_zalloc(bufsize, 13078 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13079 rval = ENOMEM; 13080 goto err; 13081 } 13082 13083 spec[i].dtsp_buffer = buf; 13084 } 13085 13086 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13087 if (dtrace_anon.dta_state == NULL) { 13088 rval = ENOENT; 13089 goto out; 13090 } 13091 13092 if (state->dts_necbs != 0) { 13093 rval = EALREADY; 13094 goto out; 13095 } 13096 13097 state->dts_anon = dtrace_anon_grab(); 13098 ASSERT(state->dts_anon != NULL); 13099 state = state->dts_anon; 13100 13101 /* 13102 * We want "grabanon" to be set in the grabbed state, so we'll 13103 * copy that option value from the grabbing state into the 13104 * grabbed state. 13105 */ 13106 state->dts_options[DTRACEOPT_GRABANON] = 13107 opt[DTRACEOPT_GRABANON]; 13108 13109 *cpu = dtrace_anon.dta_beganon; 13110 13111 /* 13112 * If the anonymous state is active (as it almost certainly 13113 * is if the anonymous enabling ultimately matched anything), 13114 * we don't allow any further option processing -- but we 13115 * don't return failure. 13116 */ 13117 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13118 goto out; 13119 } 13120 13121 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13122 opt[DTRACEOPT_AGGSIZE] != 0) { 13123 if (state->dts_aggregations == NULL) { 13124 /* 13125 * We're not going to create an aggregation buffer 13126 * because we don't have any ECBs that contain 13127 * aggregations -- set this option to 0. 13128 */ 13129 opt[DTRACEOPT_AGGSIZE] = 0; 13130 } else { 13131 /* 13132 * If we have an aggregation buffer, we must also have 13133 * a buffer to use as scratch. 13134 */ 13135 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13136 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13137 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13138 } 13139 } 13140 } 13141 13142 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13143 opt[DTRACEOPT_SPECSIZE] != 0) { 13144 if (!state->dts_speculates) { 13145 /* 13146 * We're not going to create speculation buffers 13147 * because we don't have any ECBs that actually 13148 * speculate -- set the speculation size to 0. 13149 */ 13150 opt[DTRACEOPT_SPECSIZE] = 0; 13151 } 13152 } 13153 13154 /* 13155 * The bare minimum size for any buffer that we're actually going to 13156 * do anything to is sizeof (uint64_t). 13157 */ 13158 sz = sizeof (uint64_t); 13159 13160 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13161 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13162 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13163 /* 13164 * A buffer size has been explicitly set to 0 (or to a size 13165 * that will be adjusted to 0) and we need the space -- we 13166 * need to return failure. We return ENOSPC to differentiate 13167 * it from failing to allocate a buffer due to failure to meet 13168 * the reserve (for which we return E2BIG). 13169 */ 13170 rval = ENOSPC; 13171 goto out; 13172 } 13173 13174 if ((rval = dtrace_state_buffers(state)) != 0) 13175 goto err; 13176 13177 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13178 sz = dtrace_dstate_defsize; 13179 13180 do { 13181 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13182 13183 if (rval == 0) 13184 break; 13185 13186 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13187 goto err; 13188 } while (sz >>= 1); 13189 13190 opt[DTRACEOPT_DYNVARSIZE] = sz; 13191 13192 if (rval != 0) 13193 goto err; 13194 13195 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13196 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13197 13198 if (opt[DTRACEOPT_CLEANRATE] == 0) 13199 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13200 13201 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13202 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13203 13204 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13205 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13206 13207 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13208 hdlr.cyh_arg = state; 13209 hdlr.cyh_level = CY_LOW_LEVEL; 13210 13211 when.cyt_when = 0; 13212 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13213 13214 state->dts_cleaner = cyclic_add(&hdlr, &when); 13215 13216 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13217 hdlr.cyh_arg = state; 13218 hdlr.cyh_level = CY_LOW_LEVEL; 13219 13220 when.cyt_when = 0; 13221 when.cyt_interval = dtrace_deadman_interval; 13222 13223 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13224 state->dts_deadman = cyclic_add(&hdlr, &when); 13225 13226 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13227 13228 if (state->dts_getf != 0 && 13229 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13230 /* 13231 * We don't have kernel privs but we have at least one call 13232 * to getf(); we need to bump our zone's count, and (if 13233 * this is the first enabling to have an unprivileged call 13234 * to getf()) we need to hook into closef(). 13235 */ 13236 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13237 13238 if (dtrace_getf++ == 0) { 13239 ASSERT(dtrace_closef == NULL); 13240 dtrace_closef = dtrace_getf_barrier; 13241 } 13242 } 13243 13244 /* 13245 * Now it's time to actually fire the BEGIN probe. We need to disable 13246 * interrupts here both to record the CPU on which we fired the BEGIN 13247 * probe (the data from this CPU will be processed first at user 13248 * level) and to manually activate the buffer for this CPU. 13249 */ 13250 cookie = dtrace_interrupt_disable(); 13251 *cpu = CPU->cpu_id; 13252 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13253 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13254 13255 dtrace_probe(dtrace_probeid_begin, 13256 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13257 dtrace_interrupt_enable(cookie); 13258 /* 13259 * We may have had an exit action from a BEGIN probe; only change our 13260 * state to ACTIVE if we're still in WARMUP. 13261 */ 13262 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13263 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13264 13265 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13266 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13267 13268 /* 13269 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13270 * want each CPU to transition its principal buffer out of the 13271 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13272 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13273 * atomically transition from processing none of a state's ECBs to 13274 * processing all of them. 13275 */ 13276 dtrace_xcall(DTRACE_CPUALL, 13277 (dtrace_xcall_t)dtrace_buffer_activate, state); 13278 goto out; 13279 13280 err: 13281 dtrace_buffer_free(state->dts_buffer); 13282 dtrace_buffer_free(state->dts_aggbuffer); 13283 13284 if ((nspec = state->dts_nspeculations) == 0) { 13285 ASSERT(state->dts_speculations == NULL); 13286 goto out; 13287 } 13288 13289 spec = state->dts_speculations; 13290 ASSERT(spec != NULL); 13291 13292 for (i = 0; i < state->dts_nspeculations; i++) { 13293 if ((buf = spec[i].dtsp_buffer) == NULL) 13294 break; 13295 13296 dtrace_buffer_free(buf); 13297 kmem_free(buf, bufsize); 13298 } 13299 13300 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13301 state->dts_nspeculations = 0; 13302 state->dts_speculations = NULL; 13303 13304 out: 13305 mutex_exit(&dtrace_lock); 13306 mutex_exit(&cpu_lock); 13307 13308 return (rval); 13309 } 13310 13311 static int 13312 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13313 { 13314 dtrace_icookie_t cookie; 13315 13316 ASSERT(MUTEX_HELD(&dtrace_lock)); 13317 13318 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13319 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13320 return (EINVAL); 13321 13322 /* 13323 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13324 * to be sure that every CPU has seen it. See below for the details 13325 * on why this is done. 13326 */ 13327 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13328 dtrace_sync(); 13329 13330 /* 13331 * By this point, it is impossible for any CPU to be still processing 13332 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13333 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13334 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13335 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13336 * iff we're in the END probe. 13337 */ 13338 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13339 dtrace_sync(); 13340 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13341 13342 /* 13343 * Finally, we can release the reserve and call the END probe. We 13344 * disable interrupts across calling the END probe to allow us to 13345 * return the CPU on which we actually called the END probe. This 13346 * allows user-land to be sure that this CPU's principal buffer is 13347 * processed last. 13348 */ 13349 state->dts_reserve = 0; 13350 13351 cookie = dtrace_interrupt_disable(); 13352 *cpu = CPU->cpu_id; 13353 dtrace_probe(dtrace_probeid_end, 13354 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13355 dtrace_interrupt_enable(cookie); 13356 13357 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13358 dtrace_sync(); 13359 13360 if (state->dts_getf != 0 && 13361 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13362 /* 13363 * We don't have kernel privs but we have at least one call 13364 * to getf(); we need to lower our zone's count, and (if 13365 * this is the last enabling to have an unprivileged call 13366 * to getf()) we need to clear the closef() hook. 13367 */ 13368 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 13369 ASSERT(dtrace_closef == dtrace_getf_barrier); 13370 ASSERT(dtrace_getf > 0); 13371 13372 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 13373 13374 if (--dtrace_getf == 0) 13375 dtrace_closef = NULL; 13376 } 13377 13378 return (0); 13379 } 13380 13381 static int 13382 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13383 dtrace_optval_t val) 13384 { 13385 ASSERT(MUTEX_HELD(&dtrace_lock)); 13386 13387 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13388 return (EBUSY); 13389 13390 if (option >= DTRACEOPT_MAX) 13391 return (EINVAL); 13392 13393 if (option != DTRACEOPT_CPU && val < 0) 13394 return (EINVAL); 13395 13396 switch (option) { 13397 case DTRACEOPT_DESTRUCTIVE: 13398 if (dtrace_destructive_disallow) 13399 return (EACCES); 13400 13401 state->dts_cred.dcr_destructive = 1; 13402 break; 13403 13404 case DTRACEOPT_BUFSIZE: 13405 case DTRACEOPT_DYNVARSIZE: 13406 case DTRACEOPT_AGGSIZE: 13407 case DTRACEOPT_SPECSIZE: 13408 case DTRACEOPT_STRSIZE: 13409 if (val < 0) 13410 return (EINVAL); 13411 13412 if (val >= LONG_MAX) { 13413 /* 13414 * If this is an otherwise negative value, set it to 13415 * the highest multiple of 128m less than LONG_MAX. 13416 * Technically, we're adjusting the size without 13417 * regard to the buffer resizing policy, but in fact, 13418 * this has no effect -- if we set the buffer size to 13419 * ~LONG_MAX and the buffer policy is ultimately set to 13420 * be "manual", the buffer allocation is guaranteed to 13421 * fail, if only because the allocation requires two 13422 * buffers. (We set the the size to the highest 13423 * multiple of 128m because it ensures that the size 13424 * will remain a multiple of a megabyte when 13425 * repeatedly halved -- all the way down to 15m.) 13426 */ 13427 val = LONG_MAX - (1 << 27) + 1; 13428 } 13429 } 13430 13431 state->dts_options[option] = val; 13432 13433 return (0); 13434 } 13435 13436 static void 13437 dtrace_state_destroy(dtrace_state_t *state) 13438 { 13439 dtrace_ecb_t *ecb; 13440 dtrace_vstate_t *vstate = &state->dts_vstate; 13441 minor_t minor = getminor(state->dts_dev); 13442 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13443 dtrace_speculation_t *spec = state->dts_speculations; 13444 int nspec = state->dts_nspeculations; 13445 uint32_t match; 13446 13447 ASSERT(MUTEX_HELD(&dtrace_lock)); 13448 ASSERT(MUTEX_HELD(&cpu_lock)); 13449 13450 /* 13451 * First, retract any retained enablings for this state. 13452 */ 13453 dtrace_enabling_retract(state); 13454 ASSERT(state->dts_nretained == 0); 13455 13456 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13457 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13458 /* 13459 * We have managed to come into dtrace_state_destroy() on a 13460 * hot enabling -- almost certainly because of a disorderly 13461 * shutdown of a consumer. (That is, a consumer that is 13462 * exiting without having called dtrace_stop().) In this case, 13463 * we're going to set our activity to be KILLED, and then 13464 * issue a sync to be sure that everyone is out of probe 13465 * context before we start blowing away ECBs. 13466 */ 13467 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13468 dtrace_sync(); 13469 } 13470 13471 /* 13472 * Release the credential hold we took in dtrace_state_create(). 13473 */ 13474 if (state->dts_cred.dcr_cred != NULL) 13475 crfree(state->dts_cred.dcr_cred); 13476 13477 /* 13478 * Now we can safely disable and destroy any enabled probes. Because 13479 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13480 * (especially if they're all enabled), we take two passes through the 13481 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13482 * in the second we disable whatever is left over. 13483 */ 13484 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13485 for (i = 0; i < state->dts_necbs; i++) { 13486 if ((ecb = state->dts_ecbs[i]) == NULL) 13487 continue; 13488 13489 if (match && ecb->dte_probe != NULL) { 13490 dtrace_probe_t *probe = ecb->dte_probe; 13491 dtrace_provider_t *prov = probe->dtpr_provider; 13492 13493 if (!(prov->dtpv_priv.dtpp_flags & match)) 13494 continue; 13495 } 13496 13497 dtrace_ecb_disable(ecb); 13498 dtrace_ecb_destroy(ecb); 13499 } 13500 13501 if (!match) 13502 break; 13503 } 13504 13505 /* 13506 * Before we free the buffers, perform one more sync to assure that 13507 * every CPU is out of probe context. 13508 */ 13509 dtrace_sync(); 13510 13511 dtrace_buffer_free(state->dts_buffer); 13512 dtrace_buffer_free(state->dts_aggbuffer); 13513 13514 for (i = 0; i < nspec; i++) 13515 dtrace_buffer_free(spec[i].dtsp_buffer); 13516 13517 if (state->dts_cleaner != CYCLIC_NONE) 13518 cyclic_remove(state->dts_cleaner); 13519 13520 if (state->dts_deadman != CYCLIC_NONE) 13521 cyclic_remove(state->dts_deadman); 13522 13523 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13524 dtrace_vstate_fini(vstate); 13525 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13526 13527 if (state->dts_aggregations != NULL) { 13528 #ifdef DEBUG 13529 for (i = 0; i < state->dts_naggregations; i++) 13530 ASSERT(state->dts_aggregations[i] == NULL); 13531 #endif 13532 ASSERT(state->dts_naggregations > 0); 13533 kmem_free(state->dts_aggregations, 13534 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13535 } 13536 13537 kmem_free(state->dts_buffer, bufsize); 13538 kmem_free(state->dts_aggbuffer, bufsize); 13539 13540 for (i = 0; i < nspec; i++) 13541 kmem_free(spec[i].dtsp_buffer, bufsize); 13542 13543 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13544 13545 dtrace_format_destroy(state); 13546 13547 vmem_destroy(state->dts_aggid_arena); 13548 ddi_soft_state_free(dtrace_softstate, minor); 13549 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13550 } 13551 13552 /* 13553 * DTrace Anonymous Enabling Functions 13554 */ 13555 static dtrace_state_t * 13556 dtrace_anon_grab(void) 13557 { 13558 dtrace_state_t *state; 13559 13560 ASSERT(MUTEX_HELD(&dtrace_lock)); 13561 13562 if ((state = dtrace_anon.dta_state) == NULL) { 13563 ASSERT(dtrace_anon.dta_enabling == NULL); 13564 return (NULL); 13565 } 13566 13567 ASSERT(dtrace_anon.dta_enabling != NULL); 13568 ASSERT(dtrace_retained != NULL); 13569 13570 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13571 dtrace_anon.dta_enabling = NULL; 13572 dtrace_anon.dta_state = NULL; 13573 13574 return (state); 13575 } 13576 13577 static void 13578 dtrace_anon_property(void) 13579 { 13580 int i, rv; 13581 dtrace_state_t *state; 13582 dof_hdr_t *dof; 13583 char c[32]; /* enough for "dof-data-" + digits */ 13584 13585 ASSERT(MUTEX_HELD(&dtrace_lock)); 13586 ASSERT(MUTEX_HELD(&cpu_lock)); 13587 13588 for (i = 0; ; i++) { 13589 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13590 13591 dtrace_err_verbose = 1; 13592 13593 if ((dof = dtrace_dof_property(c)) == NULL) { 13594 dtrace_err_verbose = 0; 13595 break; 13596 } 13597 13598 /* 13599 * We want to create anonymous state, so we need to transition 13600 * the kernel debugger to indicate that DTrace is active. If 13601 * this fails (e.g. because the debugger has modified text in 13602 * some way), we won't continue with the processing. 13603 */ 13604 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13605 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13606 "enabling ignored."); 13607 dtrace_dof_destroy(dof); 13608 break; 13609 } 13610 13611 /* 13612 * If we haven't allocated an anonymous state, we'll do so now. 13613 */ 13614 if ((state = dtrace_anon.dta_state) == NULL) { 13615 state = dtrace_state_create(NULL, NULL); 13616 dtrace_anon.dta_state = state; 13617 13618 if (state == NULL) { 13619 /* 13620 * This basically shouldn't happen: the only 13621 * failure mode from dtrace_state_create() is a 13622 * failure of ddi_soft_state_zalloc() that 13623 * itself should never happen. Still, the 13624 * interface allows for a failure mode, and 13625 * we want to fail as gracefully as possible: 13626 * we'll emit an error message and cease 13627 * processing anonymous state in this case. 13628 */ 13629 cmn_err(CE_WARN, "failed to create " 13630 "anonymous state"); 13631 dtrace_dof_destroy(dof); 13632 break; 13633 } 13634 } 13635 13636 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13637 &dtrace_anon.dta_enabling, 0, B_TRUE); 13638 13639 if (rv == 0) 13640 rv = dtrace_dof_options(dof, state); 13641 13642 dtrace_err_verbose = 0; 13643 dtrace_dof_destroy(dof); 13644 13645 if (rv != 0) { 13646 /* 13647 * This is malformed DOF; chuck any anonymous state 13648 * that we created. 13649 */ 13650 ASSERT(dtrace_anon.dta_enabling == NULL); 13651 dtrace_state_destroy(state); 13652 dtrace_anon.dta_state = NULL; 13653 break; 13654 } 13655 13656 ASSERT(dtrace_anon.dta_enabling != NULL); 13657 } 13658 13659 if (dtrace_anon.dta_enabling != NULL) { 13660 int rval; 13661 13662 /* 13663 * dtrace_enabling_retain() can only fail because we are 13664 * trying to retain more enablings than are allowed -- but 13665 * we only have one anonymous enabling, and we are guaranteed 13666 * to be allowed at least one retained enabling; we assert 13667 * that dtrace_enabling_retain() returns success. 13668 */ 13669 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13670 ASSERT(rval == 0); 13671 13672 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13673 } 13674 } 13675 13676 /* 13677 * DTrace Helper Functions 13678 */ 13679 static void 13680 dtrace_helper_trace(dtrace_helper_action_t *helper, 13681 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13682 { 13683 uint32_t size, next, nnext, i; 13684 dtrace_helptrace_t *ent; 13685 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13686 13687 if (!dtrace_helptrace_enabled) 13688 return; 13689 13690 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13691 13692 /* 13693 * What would a tracing framework be without its own tracing 13694 * framework? (Well, a hell of a lot simpler, for starters...) 13695 */ 13696 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13697 sizeof (uint64_t) - sizeof (uint64_t); 13698 13699 /* 13700 * Iterate until we can allocate a slot in the trace buffer. 13701 */ 13702 do { 13703 next = dtrace_helptrace_next; 13704 13705 if (next + size < dtrace_helptrace_bufsize) { 13706 nnext = next + size; 13707 } else { 13708 nnext = size; 13709 } 13710 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13711 13712 /* 13713 * We have our slot; fill it in. 13714 */ 13715 if (nnext == size) 13716 next = 0; 13717 13718 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13719 ent->dtht_helper = helper; 13720 ent->dtht_where = where; 13721 ent->dtht_nlocals = vstate->dtvs_nlocals; 13722 13723 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13724 mstate->dtms_fltoffs : -1; 13725 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13726 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13727 13728 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13729 dtrace_statvar_t *svar; 13730 13731 if ((svar = vstate->dtvs_locals[i]) == NULL) 13732 continue; 13733 13734 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13735 ent->dtht_locals[i] = 13736 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13737 } 13738 } 13739 13740 static uint64_t 13741 dtrace_helper(int which, dtrace_mstate_t *mstate, 13742 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13743 { 13744 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13745 uint64_t sarg0 = mstate->dtms_arg[0]; 13746 uint64_t sarg1 = mstate->dtms_arg[1]; 13747 uint64_t rval; 13748 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13749 dtrace_helper_action_t *helper; 13750 dtrace_vstate_t *vstate; 13751 dtrace_difo_t *pred; 13752 int i, trace = dtrace_helptrace_enabled; 13753 13754 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13755 13756 if (helpers == NULL) 13757 return (0); 13758 13759 if ((helper = helpers->dthps_actions[which]) == NULL) 13760 return (0); 13761 13762 vstate = &helpers->dthps_vstate; 13763 mstate->dtms_arg[0] = arg0; 13764 mstate->dtms_arg[1] = arg1; 13765 13766 /* 13767 * Now iterate over each helper. If its predicate evaluates to 'true', 13768 * we'll call the corresponding actions. Note that the below calls 13769 * to dtrace_dif_emulate() may set faults in machine state. This is 13770 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13771 * the stored DIF offset with its own (which is the desired behavior). 13772 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13773 * from machine state; this is okay, too. 13774 */ 13775 for (; helper != NULL; helper = helper->dtha_next) { 13776 if ((pred = helper->dtha_predicate) != NULL) { 13777 if (trace) 13778 dtrace_helper_trace(helper, mstate, vstate, 0); 13779 13780 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13781 goto next; 13782 13783 if (*flags & CPU_DTRACE_FAULT) 13784 goto err; 13785 } 13786 13787 for (i = 0; i < helper->dtha_nactions; i++) { 13788 if (trace) 13789 dtrace_helper_trace(helper, 13790 mstate, vstate, i + 1); 13791 13792 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13793 mstate, vstate, state); 13794 13795 if (*flags & CPU_DTRACE_FAULT) 13796 goto err; 13797 } 13798 13799 next: 13800 if (trace) 13801 dtrace_helper_trace(helper, mstate, vstate, 13802 DTRACE_HELPTRACE_NEXT); 13803 } 13804 13805 if (trace) 13806 dtrace_helper_trace(helper, mstate, vstate, 13807 DTRACE_HELPTRACE_DONE); 13808 13809 /* 13810 * Restore the arg0 that we saved upon entry. 13811 */ 13812 mstate->dtms_arg[0] = sarg0; 13813 mstate->dtms_arg[1] = sarg1; 13814 13815 return (rval); 13816 13817 err: 13818 if (trace) 13819 dtrace_helper_trace(helper, mstate, vstate, 13820 DTRACE_HELPTRACE_ERR); 13821 13822 /* 13823 * Restore the arg0 that we saved upon entry. 13824 */ 13825 mstate->dtms_arg[0] = sarg0; 13826 mstate->dtms_arg[1] = sarg1; 13827 13828 return (NULL); 13829 } 13830 13831 static void 13832 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13833 dtrace_vstate_t *vstate) 13834 { 13835 int i; 13836 13837 if (helper->dtha_predicate != NULL) 13838 dtrace_difo_release(helper->dtha_predicate, vstate); 13839 13840 for (i = 0; i < helper->dtha_nactions; i++) { 13841 ASSERT(helper->dtha_actions[i] != NULL); 13842 dtrace_difo_release(helper->dtha_actions[i], vstate); 13843 } 13844 13845 kmem_free(helper->dtha_actions, 13846 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13847 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13848 } 13849 13850 static int 13851 dtrace_helper_destroygen(int gen) 13852 { 13853 proc_t *p = curproc; 13854 dtrace_helpers_t *help = p->p_dtrace_helpers; 13855 dtrace_vstate_t *vstate; 13856 int i; 13857 13858 ASSERT(MUTEX_HELD(&dtrace_lock)); 13859 13860 if (help == NULL || gen > help->dthps_generation) 13861 return (EINVAL); 13862 13863 vstate = &help->dthps_vstate; 13864 13865 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13866 dtrace_helper_action_t *last = NULL, *h, *next; 13867 13868 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13869 next = h->dtha_next; 13870 13871 if (h->dtha_generation == gen) { 13872 if (last != NULL) { 13873 last->dtha_next = next; 13874 } else { 13875 help->dthps_actions[i] = next; 13876 } 13877 13878 dtrace_helper_action_destroy(h, vstate); 13879 } else { 13880 last = h; 13881 } 13882 } 13883 } 13884 13885 /* 13886 * Interate until we've cleared out all helper providers with the 13887 * given generation number. 13888 */ 13889 for (;;) { 13890 dtrace_helper_provider_t *prov; 13891 13892 /* 13893 * Look for a helper provider with the right generation. We 13894 * have to start back at the beginning of the list each time 13895 * because we drop dtrace_lock. It's unlikely that we'll make 13896 * more than two passes. 13897 */ 13898 for (i = 0; i < help->dthps_nprovs; i++) { 13899 prov = help->dthps_provs[i]; 13900 13901 if (prov->dthp_generation == gen) 13902 break; 13903 } 13904 13905 /* 13906 * If there were no matches, we're done. 13907 */ 13908 if (i == help->dthps_nprovs) 13909 break; 13910 13911 /* 13912 * Move the last helper provider into this slot. 13913 */ 13914 help->dthps_nprovs--; 13915 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13916 help->dthps_provs[help->dthps_nprovs] = NULL; 13917 13918 mutex_exit(&dtrace_lock); 13919 13920 /* 13921 * If we have a meta provider, remove this helper provider. 13922 */ 13923 mutex_enter(&dtrace_meta_lock); 13924 if (dtrace_meta_pid != NULL) { 13925 ASSERT(dtrace_deferred_pid == NULL); 13926 dtrace_helper_provider_remove(&prov->dthp_prov, 13927 p->p_pid); 13928 } 13929 mutex_exit(&dtrace_meta_lock); 13930 13931 dtrace_helper_provider_destroy(prov); 13932 13933 mutex_enter(&dtrace_lock); 13934 } 13935 13936 return (0); 13937 } 13938 13939 static int 13940 dtrace_helper_validate(dtrace_helper_action_t *helper) 13941 { 13942 int err = 0, i; 13943 dtrace_difo_t *dp; 13944 13945 if ((dp = helper->dtha_predicate) != NULL) 13946 err += dtrace_difo_validate_helper(dp); 13947 13948 for (i = 0; i < helper->dtha_nactions; i++) 13949 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13950 13951 return (err == 0); 13952 } 13953 13954 static int 13955 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13956 { 13957 dtrace_helpers_t *help; 13958 dtrace_helper_action_t *helper, *last; 13959 dtrace_actdesc_t *act; 13960 dtrace_vstate_t *vstate; 13961 dtrace_predicate_t *pred; 13962 int count = 0, nactions = 0, i; 13963 13964 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13965 return (EINVAL); 13966 13967 help = curproc->p_dtrace_helpers; 13968 last = help->dthps_actions[which]; 13969 vstate = &help->dthps_vstate; 13970 13971 for (count = 0; last != NULL; last = last->dtha_next) { 13972 count++; 13973 if (last->dtha_next == NULL) 13974 break; 13975 } 13976 13977 /* 13978 * If we already have dtrace_helper_actions_max helper actions for this 13979 * helper action type, we'll refuse to add a new one. 13980 */ 13981 if (count >= dtrace_helper_actions_max) 13982 return (ENOSPC); 13983 13984 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13985 helper->dtha_generation = help->dthps_generation; 13986 13987 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13988 ASSERT(pred->dtp_difo != NULL); 13989 dtrace_difo_hold(pred->dtp_difo); 13990 helper->dtha_predicate = pred->dtp_difo; 13991 } 13992 13993 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13994 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13995 goto err; 13996 13997 if (act->dtad_difo == NULL) 13998 goto err; 13999 14000 nactions++; 14001 } 14002 14003 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14004 (helper->dtha_nactions = nactions), KM_SLEEP); 14005 14006 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14007 dtrace_difo_hold(act->dtad_difo); 14008 helper->dtha_actions[i++] = act->dtad_difo; 14009 } 14010 14011 if (!dtrace_helper_validate(helper)) 14012 goto err; 14013 14014 if (last == NULL) { 14015 help->dthps_actions[which] = helper; 14016 } else { 14017 last->dtha_next = helper; 14018 } 14019 14020 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14021 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14022 dtrace_helptrace_next = 0; 14023 } 14024 14025 return (0); 14026 err: 14027 dtrace_helper_action_destroy(helper, vstate); 14028 return (EINVAL); 14029 } 14030 14031 static void 14032 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14033 dof_helper_t *dofhp) 14034 { 14035 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14036 14037 mutex_enter(&dtrace_meta_lock); 14038 mutex_enter(&dtrace_lock); 14039 14040 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14041 /* 14042 * If the dtrace module is loaded but not attached, or if 14043 * there aren't isn't a meta provider registered to deal with 14044 * these provider descriptions, we need to postpone creating 14045 * the actual providers until later. 14046 */ 14047 14048 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14049 dtrace_deferred_pid != help) { 14050 help->dthps_deferred = 1; 14051 help->dthps_pid = p->p_pid; 14052 help->dthps_next = dtrace_deferred_pid; 14053 help->dthps_prev = NULL; 14054 if (dtrace_deferred_pid != NULL) 14055 dtrace_deferred_pid->dthps_prev = help; 14056 dtrace_deferred_pid = help; 14057 } 14058 14059 mutex_exit(&dtrace_lock); 14060 14061 } else if (dofhp != NULL) { 14062 /* 14063 * If the dtrace module is loaded and we have a particular 14064 * helper provider description, pass that off to the 14065 * meta provider. 14066 */ 14067 14068 mutex_exit(&dtrace_lock); 14069 14070 dtrace_helper_provide(dofhp, p->p_pid); 14071 14072 } else { 14073 /* 14074 * Otherwise, just pass all the helper provider descriptions 14075 * off to the meta provider. 14076 */ 14077 14078 int i; 14079 mutex_exit(&dtrace_lock); 14080 14081 for (i = 0; i < help->dthps_nprovs; i++) { 14082 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14083 p->p_pid); 14084 } 14085 } 14086 14087 mutex_exit(&dtrace_meta_lock); 14088 } 14089 14090 static int 14091 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14092 { 14093 dtrace_helpers_t *help; 14094 dtrace_helper_provider_t *hprov, **tmp_provs; 14095 uint_t tmp_maxprovs, i; 14096 14097 ASSERT(MUTEX_HELD(&dtrace_lock)); 14098 14099 help = curproc->p_dtrace_helpers; 14100 ASSERT(help != NULL); 14101 14102 /* 14103 * If we already have dtrace_helper_providers_max helper providers, 14104 * we're refuse to add a new one. 14105 */ 14106 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14107 return (ENOSPC); 14108 14109 /* 14110 * Check to make sure this isn't a duplicate. 14111 */ 14112 for (i = 0; i < help->dthps_nprovs; i++) { 14113 if (dofhp->dofhp_dof == 14114 help->dthps_provs[i]->dthp_prov.dofhp_dof) 14115 return (EALREADY); 14116 } 14117 14118 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14119 hprov->dthp_prov = *dofhp; 14120 hprov->dthp_ref = 1; 14121 hprov->dthp_generation = gen; 14122 14123 /* 14124 * Allocate a bigger table for helper providers if it's already full. 14125 */ 14126 if (help->dthps_maxprovs == help->dthps_nprovs) { 14127 tmp_maxprovs = help->dthps_maxprovs; 14128 tmp_provs = help->dthps_provs; 14129 14130 if (help->dthps_maxprovs == 0) 14131 help->dthps_maxprovs = 2; 14132 else 14133 help->dthps_maxprovs *= 2; 14134 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14135 help->dthps_maxprovs = dtrace_helper_providers_max; 14136 14137 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14138 14139 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14140 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14141 14142 if (tmp_provs != NULL) { 14143 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14144 sizeof (dtrace_helper_provider_t *)); 14145 kmem_free(tmp_provs, tmp_maxprovs * 14146 sizeof (dtrace_helper_provider_t *)); 14147 } 14148 } 14149 14150 help->dthps_provs[help->dthps_nprovs] = hprov; 14151 help->dthps_nprovs++; 14152 14153 return (0); 14154 } 14155 14156 static void 14157 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14158 { 14159 mutex_enter(&dtrace_lock); 14160 14161 if (--hprov->dthp_ref == 0) { 14162 dof_hdr_t *dof; 14163 mutex_exit(&dtrace_lock); 14164 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14165 dtrace_dof_destroy(dof); 14166 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14167 } else { 14168 mutex_exit(&dtrace_lock); 14169 } 14170 } 14171 14172 static int 14173 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14174 { 14175 uintptr_t daddr = (uintptr_t)dof; 14176 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14177 dof_provider_t *provider; 14178 dof_probe_t *probe; 14179 uint8_t *arg; 14180 char *strtab, *typestr; 14181 dof_stridx_t typeidx; 14182 size_t typesz; 14183 uint_t nprobes, j, k; 14184 14185 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14186 14187 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14188 dtrace_dof_error(dof, "misaligned section offset"); 14189 return (-1); 14190 } 14191 14192 /* 14193 * The section needs to be large enough to contain the DOF provider 14194 * structure appropriate for the given version. 14195 */ 14196 if (sec->dofs_size < 14197 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14198 offsetof(dof_provider_t, dofpv_prenoffs) : 14199 sizeof (dof_provider_t))) { 14200 dtrace_dof_error(dof, "provider section too small"); 14201 return (-1); 14202 } 14203 14204 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14205 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14206 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14207 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14208 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14209 14210 if (str_sec == NULL || prb_sec == NULL || 14211 arg_sec == NULL || off_sec == NULL) 14212 return (-1); 14213 14214 enoff_sec = NULL; 14215 14216 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14217 provider->dofpv_prenoffs != DOF_SECT_NONE && 14218 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14219 provider->dofpv_prenoffs)) == NULL) 14220 return (-1); 14221 14222 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14223 14224 if (provider->dofpv_name >= str_sec->dofs_size || 14225 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14226 dtrace_dof_error(dof, "invalid provider name"); 14227 return (-1); 14228 } 14229 14230 if (prb_sec->dofs_entsize == 0 || 14231 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14232 dtrace_dof_error(dof, "invalid entry size"); 14233 return (-1); 14234 } 14235 14236 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14237 dtrace_dof_error(dof, "misaligned entry size"); 14238 return (-1); 14239 } 14240 14241 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14242 dtrace_dof_error(dof, "invalid entry size"); 14243 return (-1); 14244 } 14245 14246 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14247 dtrace_dof_error(dof, "misaligned section offset"); 14248 return (-1); 14249 } 14250 14251 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14252 dtrace_dof_error(dof, "invalid entry size"); 14253 return (-1); 14254 } 14255 14256 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14257 14258 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14259 14260 /* 14261 * Take a pass through the probes to check for errors. 14262 */ 14263 for (j = 0; j < nprobes; j++) { 14264 probe = (dof_probe_t *)(uintptr_t)(daddr + 14265 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14266 14267 if (probe->dofpr_func >= str_sec->dofs_size) { 14268 dtrace_dof_error(dof, "invalid function name"); 14269 return (-1); 14270 } 14271 14272 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14273 dtrace_dof_error(dof, "function name too long"); 14274 return (-1); 14275 } 14276 14277 if (probe->dofpr_name >= str_sec->dofs_size || 14278 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14279 dtrace_dof_error(dof, "invalid probe name"); 14280 return (-1); 14281 } 14282 14283 /* 14284 * The offset count must not wrap the index, and the offsets 14285 * must also not overflow the section's data. 14286 */ 14287 if (probe->dofpr_offidx + probe->dofpr_noffs < 14288 probe->dofpr_offidx || 14289 (probe->dofpr_offidx + probe->dofpr_noffs) * 14290 off_sec->dofs_entsize > off_sec->dofs_size) { 14291 dtrace_dof_error(dof, "invalid probe offset"); 14292 return (-1); 14293 } 14294 14295 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14296 /* 14297 * If there's no is-enabled offset section, make sure 14298 * there aren't any is-enabled offsets. Otherwise 14299 * perform the same checks as for probe offsets 14300 * (immediately above). 14301 */ 14302 if (enoff_sec == NULL) { 14303 if (probe->dofpr_enoffidx != 0 || 14304 probe->dofpr_nenoffs != 0) { 14305 dtrace_dof_error(dof, "is-enabled " 14306 "offsets with null section"); 14307 return (-1); 14308 } 14309 } else if (probe->dofpr_enoffidx + 14310 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14311 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14312 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14313 dtrace_dof_error(dof, "invalid is-enabled " 14314 "offset"); 14315 return (-1); 14316 } 14317 14318 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14319 dtrace_dof_error(dof, "zero probe and " 14320 "is-enabled offsets"); 14321 return (-1); 14322 } 14323 } else if (probe->dofpr_noffs == 0) { 14324 dtrace_dof_error(dof, "zero probe offsets"); 14325 return (-1); 14326 } 14327 14328 if (probe->dofpr_argidx + probe->dofpr_xargc < 14329 probe->dofpr_argidx || 14330 (probe->dofpr_argidx + probe->dofpr_xargc) * 14331 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14332 dtrace_dof_error(dof, "invalid args"); 14333 return (-1); 14334 } 14335 14336 typeidx = probe->dofpr_nargv; 14337 typestr = strtab + probe->dofpr_nargv; 14338 for (k = 0; k < probe->dofpr_nargc; k++) { 14339 if (typeidx >= str_sec->dofs_size) { 14340 dtrace_dof_error(dof, "bad " 14341 "native argument type"); 14342 return (-1); 14343 } 14344 14345 typesz = strlen(typestr) + 1; 14346 if (typesz > DTRACE_ARGTYPELEN) { 14347 dtrace_dof_error(dof, "native " 14348 "argument type too long"); 14349 return (-1); 14350 } 14351 typeidx += typesz; 14352 typestr += typesz; 14353 } 14354 14355 typeidx = probe->dofpr_xargv; 14356 typestr = strtab + probe->dofpr_xargv; 14357 for (k = 0; k < probe->dofpr_xargc; k++) { 14358 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14359 dtrace_dof_error(dof, "bad " 14360 "native argument index"); 14361 return (-1); 14362 } 14363 14364 if (typeidx >= str_sec->dofs_size) { 14365 dtrace_dof_error(dof, "bad " 14366 "translated argument type"); 14367 return (-1); 14368 } 14369 14370 typesz = strlen(typestr) + 1; 14371 if (typesz > DTRACE_ARGTYPELEN) { 14372 dtrace_dof_error(dof, "translated argument " 14373 "type too long"); 14374 return (-1); 14375 } 14376 14377 typeidx += typesz; 14378 typestr += typesz; 14379 } 14380 } 14381 14382 return (0); 14383 } 14384 14385 static int 14386 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14387 { 14388 dtrace_helpers_t *help; 14389 dtrace_vstate_t *vstate; 14390 dtrace_enabling_t *enab = NULL; 14391 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14392 uintptr_t daddr = (uintptr_t)dof; 14393 14394 ASSERT(MUTEX_HELD(&dtrace_lock)); 14395 14396 if ((help = curproc->p_dtrace_helpers) == NULL) 14397 help = dtrace_helpers_create(curproc); 14398 14399 vstate = &help->dthps_vstate; 14400 14401 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14402 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14403 dtrace_dof_destroy(dof); 14404 return (rv); 14405 } 14406 14407 /* 14408 * Look for helper providers and validate their descriptions. 14409 */ 14410 if (dhp != NULL) { 14411 for (i = 0; i < dof->dofh_secnum; i++) { 14412 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14413 dof->dofh_secoff + i * dof->dofh_secsize); 14414 14415 if (sec->dofs_type != DOF_SECT_PROVIDER) 14416 continue; 14417 14418 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14419 dtrace_enabling_destroy(enab); 14420 dtrace_dof_destroy(dof); 14421 return (-1); 14422 } 14423 14424 nprovs++; 14425 } 14426 } 14427 14428 /* 14429 * Now we need to walk through the ECB descriptions in the enabling. 14430 */ 14431 for (i = 0; i < enab->dten_ndesc; i++) { 14432 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14433 dtrace_probedesc_t *desc = &ep->dted_probe; 14434 14435 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14436 continue; 14437 14438 if (strcmp(desc->dtpd_mod, "helper") != 0) 14439 continue; 14440 14441 if (strcmp(desc->dtpd_func, "ustack") != 0) 14442 continue; 14443 14444 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14445 ep)) != 0) { 14446 /* 14447 * Adding this helper action failed -- we are now going 14448 * to rip out the entire generation and return failure. 14449 */ 14450 (void) dtrace_helper_destroygen(help->dthps_generation); 14451 dtrace_enabling_destroy(enab); 14452 dtrace_dof_destroy(dof); 14453 return (-1); 14454 } 14455 14456 nhelpers++; 14457 } 14458 14459 if (nhelpers < enab->dten_ndesc) 14460 dtrace_dof_error(dof, "unmatched helpers"); 14461 14462 gen = help->dthps_generation++; 14463 dtrace_enabling_destroy(enab); 14464 14465 if (dhp != NULL && nprovs > 0) { 14466 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14467 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14468 mutex_exit(&dtrace_lock); 14469 dtrace_helper_provider_register(curproc, help, dhp); 14470 mutex_enter(&dtrace_lock); 14471 14472 destroy = 0; 14473 } 14474 } 14475 14476 if (destroy) 14477 dtrace_dof_destroy(dof); 14478 14479 return (gen); 14480 } 14481 14482 static dtrace_helpers_t * 14483 dtrace_helpers_create(proc_t *p) 14484 { 14485 dtrace_helpers_t *help; 14486 14487 ASSERT(MUTEX_HELD(&dtrace_lock)); 14488 ASSERT(p->p_dtrace_helpers == NULL); 14489 14490 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14491 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14492 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14493 14494 p->p_dtrace_helpers = help; 14495 dtrace_helpers++; 14496 14497 return (help); 14498 } 14499 14500 static void 14501 dtrace_helpers_destroy(void) 14502 { 14503 dtrace_helpers_t *help; 14504 dtrace_vstate_t *vstate; 14505 proc_t *p = curproc; 14506 int i; 14507 14508 mutex_enter(&dtrace_lock); 14509 14510 ASSERT(p->p_dtrace_helpers != NULL); 14511 ASSERT(dtrace_helpers > 0); 14512 14513 help = p->p_dtrace_helpers; 14514 vstate = &help->dthps_vstate; 14515 14516 /* 14517 * We're now going to lose the help from this process. 14518 */ 14519 p->p_dtrace_helpers = NULL; 14520 dtrace_sync(); 14521 14522 /* 14523 * Destory the helper actions. 14524 */ 14525 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14526 dtrace_helper_action_t *h, *next; 14527 14528 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14529 next = h->dtha_next; 14530 dtrace_helper_action_destroy(h, vstate); 14531 h = next; 14532 } 14533 } 14534 14535 mutex_exit(&dtrace_lock); 14536 14537 /* 14538 * Destroy the helper providers. 14539 */ 14540 if (help->dthps_maxprovs > 0) { 14541 mutex_enter(&dtrace_meta_lock); 14542 if (dtrace_meta_pid != NULL) { 14543 ASSERT(dtrace_deferred_pid == NULL); 14544 14545 for (i = 0; i < help->dthps_nprovs; i++) { 14546 dtrace_helper_provider_remove( 14547 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14548 } 14549 } else { 14550 mutex_enter(&dtrace_lock); 14551 ASSERT(help->dthps_deferred == 0 || 14552 help->dthps_next != NULL || 14553 help->dthps_prev != NULL || 14554 help == dtrace_deferred_pid); 14555 14556 /* 14557 * Remove the helper from the deferred list. 14558 */ 14559 if (help->dthps_next != NULL) 14560 help->dthps_next->dthps_prev = help->dthps_prev; 14561 if (help->dthps_prev != NULL) 14562 help->dthps_prev->dthps_next = help->dthps_next; 14563 if (dtrace_deferred_pid == help) { 14564 dtrace_deferred_pid = help->dthps_next; 14565 ASSERT(help->dthps_prev == NULL); 14566 } 14567 14568 mutex_exit(&dtrace_lock); 14569 } 14570 14571 mutex_exit(&dtrace_meta_lock); 14572 14573 for (i = 0; i < help->dthps_nprovs; i++) { 14574 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14575 } 14576 14577 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14578 sizeof (dtrace_helper_provider_t *)); 14579 } 14580 14581 mutex_enter(&dtrace_lock); 14582 14583 dtrace_vstate_fini(&help->dthps_vstate); 14584 kmem_free(help->dthps_actions, 14585 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14586 kmem_free(help, sizeof (dtrace_helpers_t)); 14587 14588 --dtrace_helpers; 14589 mutex_exit(&dtrace_lock); 14590 } 14591 14592 static void 14593 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14594 { 14595 dtrace_helpers_t *help, *newhelp; 14596 dtrace_helper_action_t *helper, *new, *last; 14597 dtrace_difo_t *dp; 14598 dtrace_vstate_t *vstate; 14599 int i, j, sz, hasprovs = 0; 14600 14601 mutex_enter(&dtrace_lock); 14602 ASSERT(from->p_dtrace_helpers != NULL); 14603 ASSERT(dtrace_helpers > 0); 14604 14605 help = from->p_dtrace_helpers; 14606 newhelp = dtrace_helpers_create(to); 14607 ASSERT(to->p_dtrace_helpers != NULL); 14608 14609 newhelp->dthps_generation = help->dthps_generation; 14610 vstate = &newhelp->dthps_vstate; 14611 14612 /* 14613 * Duplicate the helper actions. 14614 */ 14615 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14616 if ((helper = help->dthps_actions[i]) == NULL) 14617 continue; 14618 14619 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14620 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14621 KM_SLEEP); 14622 new->dtha_generation = helper->dtha_generation; 14623 14624 if ((dp = helper->dtha_predicate) != NULL) { 14625 dp = dtrace_difo_duplicate(dp, vstate); 14626 new->dtha_predicate = dp; 14627 } 14628 14629 new->dtha_nactions = helper->dtha_nactions; 14630 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14631 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14632 14633 for (j = 0; j < new->dtha_nactions; j++) { 14634 dtrace_difo_t *dp = helper->dtha_actions[j]; 14635 14636 ASSERT(dp != NULL); 14637 dp = dtrace_difo_duplicate(dp, vstate); 14638 new->dtha_actions[j] = dp; 14639 } 14640 14641 if (last != NULL) { 14642 last->dtha_next = new; 14643 } else { 14644 newhelp->dthps_actions[i] = new; 14645 } 14646 14647 last = new; 14648 } 14649 } 14650 14651 /* 14652 * Duplicate the helper providers and register them with the 14653 * DTrace framework. 14654 */ 14655 if (help->dthps_nprovs > 0) { 14656 newhelp->dthps_nprovs = help->dthps_nprovs; 14657 newhelp->dthps_maxprovs = help->dthps_nprovs; 14658 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14659 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14660 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14661 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14662 newhelp->dthps_provs[i]->dthp_ref++; 14663 } 14664 14665 hasprovs = 1; 14666 } 14667 14668 mutex_exit(&dtrace_lock); 14669 14670 if (hasprovs) 14671 dtrace_helper_provider_register(to, newhelp, NULL); 14672 } 14673 14674 /* 14675 * DTrace Hook Functions 14676 */ 14677 static void 14678 dtrace_module_loaded(struct modctl *ctl) 14679 { 14680 dtrace_provider_t *prv; 14681 14682 mutex_enter(&dtrace_provider_lock); 14683 mutex_enter(&mod_lock); 14684 14685 ASSERT(ctl->mod_busy); 14686 14687 /* 14688 * We're going to call each providers per-module provide operation 14689 * specifying only this module. 14690 */ 14691 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14692 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14693 14694 mutex_exit(&mod_lock); 14695 mutex_exit(&dtrace_provider_lock); 14696 14697 /* 14698 * If we have any retained enablings, we need to match against them. 14699 * Enabling probes requires that cpu_lock be held, and we cannot hold 14700 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14701 * module. (In particular, this happens when loading scheduling 14702 * classes.) So if we have any retained enablings, we need to dispatch 14703 * our task queue to do the match for us. 14704 */ 14705 mutex_enter(&dtrace_lock); 14706 14707 if (dtrace_retained == NULL) { 14708 mutex_exit(&dtrace_lock); 14709 return; 14710 } 14711 14712 (void) taskq_dispatch(dtrace_taskq, 14713 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14714 14715 mutex_exit(&dtrace_lock); 14716 14717 /* 14718 * And now, for a little heuristic sleaze: in general, we want to 14719 * match modules as soon as they load. However, we cannot guarantee 14720 * this, because it would lead us to the lock ordering violation 14721 * outlined above. The common case, of course, is that cpu_lock is 14722 * _not_ held -- so we delay here for a clock tick, hoping that that's 14723 * long enough for the task queue to do its work. If it's not, it's 14724 * not a serious problem -- it just means that the module that we 14725 * just loaded may not be immediately instrumentable. 14726 */ 14727 delay(1); 14728 } 14729 14730 static void 14731 dtrace_module_unloaded(struct modctl *ctl) 14732 { 14733 dtrace_probe_t template, *probe, *first, *next; 14734 dtrace_provider_t *prov; 14735 14736 template.dtpr_mod = ctl->mod_modname; 14737 14738 mutex_enter(&dtrace_provider_lock); 14739 mutex_enter(&mod_lock); 14740 mutex_enter(&dtrace_lock); 14741 14742 if (dtrace_bymod == NULL) { 14743 /* 14744 * The DTrace module is loaded (obviously) but not attached; 14745 * we don't have any work to do. 14746 */ 14747 mutex_exit(&dtrace_provider_lock); 14748 mutex_exit(&mod_lock); 14749 mutex_exit(&dtrace_lock); 14750 return; 14751 } 14752 14753 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14754 probe != NULL; probe = probe->dtpr_nextmod) { 14755 if (probe->dtpr_ecb != NULL) { 14756 mutex_exit(&dtrace_provider_lock); 14757 mutex_exit(&mod_lock); 14758 mutex_exit(&dtrace_lock); 14759 14760 /* 14761 * This shouldn't _actually_ be possible -- we're 14762 * unloading a module that has an enabled probe in it. 14763 * (It's normally up to the provider to make sure that 14764 * this can't happen.) However, because dtps_enable() 14765 * doesn't have a failure mode, there can be an 14766 * enable/unload race. Upshot: we don't want to 14767 * assert, but we're not going to disable the 14768 * probe, either. 14769 */ 14770 if (dtrace_err_verbose) { 14771 cmn_err(CE_WARN, "unloaded module '%s' had " 14772 "enabled probes", ctl->mod_modname); 14773 } 14774 14775 return; 14776 } 14777 } 14778 14779 probe = first; 14780 14781 for (first = NULL; probe != NULL; probe = next) { 14782 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14783 14784 dtrace_probes[probe->dtpr_id - 1] = NULL; 14785 14786 next = probe->dtpr_nextmod; 14787 dtrace_hash_remove(dtrace_bymod, probe); 14788 dtrace_hash_remove(dtrace_byfunc, probe); 14789 dtrace_hash_remove(dtrace_byname, probe); 14790 14791 if (first == NULL) { 14792 first = probe; 14793 probe->dtpr_nextmod = NULL; 14794 } else { 14795 probe->dtpr_nextmod = first; 14796 first = probe; 14797 } 14798 } 14799 14800 /* 14801 * We've removed all of the module's probes from the hash chains and 14802 * from the probe array. Now issue a dtrace_sync() to be sure that 14803 * everyone has cleared out from any probe array processing. 14804 */ 14805 dtrace_sync(); 14806 14807 for (probe = first; probe != NULL; probe = first) { 14808 first = probe->dtpr_nextmod; 14809 prov = probe->dtpr_provider; 14810 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14811 probe->dtpr_arg); 14812 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14813 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14814 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14815 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14816 kmem_free(probe, sizeof (dtrace_probe_t)); 14817 } 14818 14819 mutex_exit(&dtrace_lock); 14820 mutex_exit(&mod_lock); 14821 mutex_exit(&dtrace_provider_lock); 14822 } 14823 14824 void 14825 dtrace_suspend(void) 14826 { 14827 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14828 } 14829 14830 void 14831 dtrace_resume(void) 14832 { 14833 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14834 } 14835 14836 static int 14837 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14838 { 14839 ASSERT(MUTEX_HELD(&cpu_lock)); 14840 mutex_enter(&dtrace_lock); 14841 14842 switch (what) { 14843 case CPU_CONFIG: { 14844 dtrace_state_t *state; 14845 dtrace_optval_t *opt, rs, c; 14846 14847 /* 14848 * For now, we only allocate a new buffer for anonymous state. 14849 */ 14850 if ((state = dtrace_anon.dta_state) == NULL) 14851 break; 14852 14853 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14854 break; 14855 14856 opt = state->dts_options; 14857 c = opt[DTRACEOPT_CPU]; 14858 14859 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14860 break; 14861 14862 /* 14863 * Regardless of what the actual policy is, we're going to 14864 * temporarily set our resize policy to be manual. We're 14865 * also going to temporarily set our CPU option to denote 14866 * the newly configured CPU. 14867 */ 14868 rs = opt[DTRACEOPT_BUFRESIZE]; 14869 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14870 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14871 14872 (void) dtrace_state_buffers(state); 14873 14874 opt[DTRACEOPT_BUFRESIZE] = rs; 14875 opt[DTRACEOPT_CPU] = c; 14876 14877 break; 14878 } 14879 14880 case CPU_UNCONFIG: 14881 /* 14882 * We don't free the buffer in the CPU_UNCONFIG case. (The 14883 * buffer will be freed when the consumer exits.) 14884 */ 14885 break; 14886 14887 default: 14888 break; 14889 } 14890 14891 mutex_exit(&dtrace_lock); 14892 return (0); 14893 } 14894 14895 static void 14896 dtrace_cpu_setup_initial(processorid_t cpu) 14897 { 14898 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14899 } 14900 14901 static void 14902 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14903 { 14904 if (dtrace_toxranges >= dtrace_toxranges_max) { 14905 int osize, nsize; 14906 dtrace_toxrange_t *range; 14907 14908 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14909 14910 if (osize == 0) { 14911 ASSERT(dtrace_toxrange == NULL); 14912 ASSERT(dtrace_toxranges_max == 0); 14913 dtrace_toxranges_max = 1; 14914 } else { 14915 dtrace_toxranges_max <<= 1; 14916 } 14917 14918 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14919 range = kmem_zalloc(nsize, KM_SLEEP); 14920 14921 if (dtrace_toxrange != NULL) { 14922 ASSERT(osize != 0); 14923 bcopy(dtrace_toxrange, range, osize); 14924 kmem_free(dtrace_toxrange, osize); 14925 } 14926 14927 dtrace_toxrange = range; 14928 } 14929 14930 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14931 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14932 14933 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14934 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14935 dtrace_toxranges++; 14936 } 14937 14938 static void 14939 dtrace_getf_barrier() 14940 { 14941 /* 14942 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 14943 * that contain calls to getf(), this routine will be called on every 14944 * closef() before either the underlying vnode is released or the 14945 * file_t itself is freed. By the time we are here, it is essential 14946 * that the file_t can no longer be accessed from a call to getf() 14947 * in probe context -- that assures that a dtrace_sync() can be used 14948 * to clear out any enablings referring to the old structures. 14949 */ 14950 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 14951 kcred->cr_zone->zone_dtrace_getf != 0) 14952 dtrace_sync(); 14953 } 14954 14955 /* 14956 * DTrace Driver Cookbook Functions 14957 */ 14958 /*ARGSUSED*/ 14959 static int 14960 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14961 { 14962 dtrace_provider_id_t id; 14963 dtrace_state_t *state = NULL; 14964 dtrace_enabling_t *enab; 14965 14966 mutex_enter(&cpu_lock); 14967 mutex_enter(&dtrace_provider_lock); 14968 mutex_enter(&dtrace_lock); 14969 14970 if (ddi_soft_state_init(&dtrace_softstate, 14971 sizeof (dtrace_state_t), 0) != 0) { 14972 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14973 mutex_exit(&cpu_lock); 14974 mutex_exit(&dtrace_provider_lock); 14975 mutex_exit(&dtrace_lock); 14976 return (DDI_FAILURE); 14977 } 14978 14979 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14980 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14981 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14982 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14983 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14984 ddi_remove_minor_node(devi, NULL); 14985 ddi_soft_state_fini(&dtrace_softstate); 14986 mutex_exit(&cpu_lock); 14987 mutex_exit(&dtrace_provider_lock); 14988 mutex_exit(&dtrace_lock); 14989 return (DDI_FAILURE); 14990 } 14991 14992 ddi_report_dev(devi); 14993 dtrace_devi = devi; 14994 14995 dtrace_modload = dtrace_module_loaded; 14996 dtrace_modunload = dtrace_module_unloaded; 14997 dtrace_cpu_init = dtrace_cpu_setup_initial; 14998 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14999 dtrace_helpers_fork = dtrace_helpers_duplicate; 15000 dtrace_cpustart_init = dtrace_suspend; 15001 dtrace_cpustart_fini = dtrace_resume; 15002 dtrace_debugger_init = dtrace_suspend; 15003 dtrace_debugger_fini = dtrace_resume; 15004 15005 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15006 15007 ASSERT(MUTEX_HELD(&cpu_lock)); 15008 15009 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15010 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15011 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15012 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15013 VM_SLEEP | VMC_IDENTIFIER); 15014 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15015 1, INT_MAX, 0); 15016 15017 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15018 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15019 NULL, NULL, NULL, NULL, NULL, 0); 15020 15021 ASSERT(MUTEX_HELD(&cpu_lock)); 15022 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15023 offsetof(dtrace_probe_t, dtpr_nextmod), 15024 offsetof(dtrace_probe_t, dtpr_prevmod)); 15025 15026 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15027 offsetof(dtrace_probe_t, dtpr_nextfunc), 15028 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15029 15030 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15031 offsetof(dtrace_probe_t, dtpr_nextname), 15032 offsetof(dtrace_probe_t, dtpr_prevname)); 15033 15034 if (dtrace_retain_max < 1) { 15035 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15036 "setting to 1", dtrace_retain_max); 15037 dtrace_retain_max = 1; 15038 } 15039 15040 /* 15041 * Now discover our toxic ranges. 15042 */ 15043 dtrace_toxic_ranges(dtrace_toxrange_add); 15044 15045 /* 15046 * Before we register ourselves as a provider to our own framework, 15047 * we would like to assert that dtrace_provider is NULL -- but that's 15048 * not true if we were loaded as a dependency of a DTrace provider. 15049 * Once we've registered, we can assert that dtrace_provider is our 15050 * pseudo provider. 15051 */ 15052 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15053 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15054 15055 ASSERT(dtrace_provider != NULL); 15056 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15057 15058 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15059 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15060 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15061 dtrace_provider, NULL, NULL, "END", 0, NULL); 15062 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15063 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15064 15065 dtrace_anon_property(); 15066 mutex_exit(&cpu_lock); 15067 15068 /* 15069 * If DTrace helper tracing is enabled, we need to allocate the 15070 * trace buffer and initialize the values. 15071 */ 15072 if (dtrace_helptrace_enabled) { 15073 ASSERT(dtrace_helptrace_buffer == NULL); 15074 dtrace_helptrace_buffer = 15075 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15076 dtrace_helptrace_next = 0; 15077 } 15078 15079 /* 15080 * If there are already providers, we must ask them to provide their 15081 * probes, and then match any anonymous enabling against them. Note 15082 * that there should be no other retained enablings at this time: 15083 * the only retained enablings at this time should be the anonymous 15084 * enabling. 15085 */ 15086 if (dtrace_anon.dta_enabling != NULL) { 15087 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15088 15089 dtrace_enabling_provide(NULL); 15090 state = dtrace_anon.dta_state; 15091 15092 /* 15093 * We couldn't hold cpu_lock across the above call to 15094 * dtrace_enabling_provide(), but we must hold it to actually 15095 * enable the probes. We have to drop all of our locks, pick 15096 * up cpu_lock, and regain our locks before matching the 15097 * retained anonymous enabling. 15098 */ 15099 mutex_exit(&dtrace_lock); 15100 mutex_exit(&dtrace_provider_lock); 15101 15102 mutex_enter(&cpu_lock); 15103 mutex_enter(&dtrace_provider_lock); 15104 mutex_enter(&dtrace_lock); 15105 15106 if ((enab = dtrace_anon.dta_enabling) != NULL) 15107 (void) dtrace_enabling_match(enab, NULL); 15108 15109 mutex_exit(&cpu_lock); 15110 } 15111 15112 mutex_exit(&dtrace_lock); 15113 mutex_exit(&dtrace_provider_lock); 15114 15115 if (state != NULL) { 15116 /* 15117 * If we created any anonymous state, set it going now. 15118 */ 15119 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15120 } 15121 15122 return (DDI_SUCCESS); 15123 } 15124 15125 /*ARGSUSED*/ 15126 static int 15127 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15128 { 15129 dtrace_state_t *state; 15130 uint32_t priv; 15131 uid_t uid; 15132 zoneid_t zoneid; 15133 15134 if (getminor(*devp) == DTRACEMNRN_HELPER) 15135 return (0); 15136 15137 /* 15138 * If this wasn't an open with the "helper" minor, then it must be 15139 * the "dtrace" minor. 15140 */ 15141 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15142 return (ENXIO); 15143 15144 /* 15145 * If no DTRACE_PRIV_* bits are set in the credential, then the 15146 * caller lacks sufficient permission to do anything with DTrace. 15147 */ 15148 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15149 if (priv == DTRACE_PRIV_NONE) 15150 return (EACCES); 15151 15152 /* 15153 * Ask all providers to provide all their probes. 15154 */ 15155 mutex_enter(&dtrace_provider_lock); 15156 dtrace_probe_provide(NULL, NULL); 15157 mutex_exit(&dtrace_provider_lock); 15158 15159 mutex_enter(&cpu_lock); 15160 mutex_enter(&dtrace_lock); 15161 dtrace_opens++; 15162 dtrace_membar_producer(); 15163 15164 /* 15165 * If the kernel debugger is active (that is, if the kernel debugger 15166 * modified text in some way), we won't allow the open. 15167 */ 15168 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15169 dtrace_opens--; 15170 mutex_exit(&cpu_lock); 15171 mutex_exit(&dtrace_lock); 15172 return (EBUSY); 15173 } 15174 15175 state = dtrace_state_create(devp, cred_p); 15176 mutex_exit(&cpu_lock); 15177 15178 if (state == NULL) { 15179 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15180 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15181 mutex_exit(&dtrace_lock); 15182 return (EAGAIN); 15183 } 15184 15185 mutex_exit(&dtrace_lock); 15186 15187 return (0); 15188 } 15189 15190 /*ARGSUSED*/ 15191 static int 15192 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15193 { 15194 minor_t minor = getminor(dev); 15195 dtrace_state_t *state; 15196 15197 if (minor == DTRACEMNRN_HELPER) 15198 return (0); 15199 15200 state = ddi_get_soft_state(dtrace_softstate, minor); 15201 15202 mutex_enter(&cpu_lock); 15203 mutex_enter(&dtrace_lock); 15204 15205 if (state->dts_anon) { 15206 /* 15207 * There is anonymous state. Destroy that first. 15208 */ 15209 ASSERT(dtrace_anon.dta_state == NULL); 15210 dtrace_state_destroy(state->dts_anon); 15211 } 15212 15213 dtrace_state_destroy(state); 15214 ASSERT(dtrace_opens > 0); 15215 15216 /* 15217 * Only relinquish control of the kernel debugger interface when there 15218 * are no consumers and no anonymous enablings. 15219 */ 15220 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15221 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15222 15223 mutex_exit(&dtrace_lock); 15224 mutex_exit(&cpu_lock); 15225 15226 return (0); 15227 } 15228 15229 /*ARGSUSED*/ 15230 static int 15231 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15232 { 15233 int rval; 15234 dof_helper_t help, *dhp = NULL; 15235 15236 switch (cmd) { 15237 case DTRACEHIOC_ADDDOF: 15238 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15239 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15240 return (EFAULT); 15241 } 15242 15243 dhp = &help; 15244 arg = (intptr_t)help.dofhp_dof; 15245 /*FALLTHROUGH*/ 15246 15247 case DTRACEHIOC_ADD: { 15248 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15249 15250 if (dof == NULL) 15251 return (rval); 15252 15253 mutex_enter(&dtrace_lock); 15254 15255 /* 15256 * dtrace_helper_slurp() takes responsibility for the dof -- 15257 * it may free it now or it may save it and free it later. 15258 */ 15259 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15260 *rv = rval; 15261 rval = 0; 15262 } else { 15263 rval = EINVAL; 15264 } 15265 15266 mutex_exit(&dtrace_lock); 15267 return (rval); 15268 } 15269 15270 case DTRACEHIOC_REMOVE: { 15271 mutex_enter(&dtrace_lock); 15272 rval = dtrace_helper_destroygen(arg); 15273 mutex_exit(&dtrace_lock); 15274 15275 return (rval); 15276 } 15277 15278 default: 15279 break; 15280 } 15281 15282 return (ENOTTY); 15283 } 15284 15285 /*ARGSUSED*/ 15286 static int 15287 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15288 { 15289 minor_t minor = getminor(dev); 15290 dtrace_state_t *state; 15291 int rval; 15292 15293 if (minor == DTRACEMNRN_HELPER) 15294 return (dtrace_ioctl_helper(cmd, arg, rv)); 15295 15296 state = ddi_get_soft_state(dtrace_softstate, minor); 15297 15298 if (state->dts_anon) { 15299 ASSERT(dtrace_anon.dta_state == NULL); 15300 state = state->dts_anon; 15301 } 15302 15303 switch (cmd) { 15304 case DTRACEIOC_PROVIDER: { 15305 dtrace_providerdesc_t pvd; 15306 dtrace_provider_t *pvp; 15307 15308 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15309 return (EFAULT); 15310 15311 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15312 mutex_enter(&dtrace_provider_lock); 15313 15314 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15315 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15316 break; 15317 } 15318 15319 mutex_exit(&dtrace_provider_lock); 15320 15321 if (pvp == NULL) 15322 return (ESRCH); 15323 15324 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15325 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15326 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15327 return (EFAULT); 15328 15329 return (0); 15330 } 15331 15332 case DTRACEIOC_EPROBE: { 15333 dtrace_eprobedesc_t epdesc; 15334 dtrace_ecb_t *ecb; 15335 dtrace_action_t *act; 15336 void *buf; 15337 size_t size; 15338 uintptr_t dest; 15339 int nrecs; 15340 15341 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15342 return (EFAULT); 15343 15344 mutex_enter(&dtrace_lock); 15345 15346 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15347 mutex_exit(&dtrace_lock); 15348 return (EINVAL); 15349 } 15350 15351 if (ecb->dte_probe == NULL) { 15352 mutex_exit(&dtrace_lock); 15353 return (EINVAL); 15354 } 15355 15356 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15357 epdesc.dtepd_uarg = ecb->dte_uarg; 15358 epdesc.dtepd_size = ecb->dte_size; 15359 15360 nrecs = epdesc.dtepd_nrecs; 15361 epdesc.dtepd_nrecs = 0; 15362 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15363 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15364 continue; 15365 15366 epdesc.dtepd_nrecs++; 15367 } 15368 15369 /* 15370 * Now that we have the size, we need to allocate a temporary 15371 * buffer in which to store the complete description. We need 15372 * the temporary buffer to be able to drop dtrace_lock() 15373 * across the copyout(), below. 15374 */ 15375 size = sizeof (dtrace_eprobedesc_t) + 15376 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15377 15378 buf = kmem_alloc(size, KM_SLEEP); 15379 dest = (uintptr_t)buf; 15380 15381 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15382 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15383 15384 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15385 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15386 continue; 15387 15388 if (nrecs-- == 0) 15389 break; 15390 15391 bcopy(&act->dta_rec, (void *)dest, 15392 sizeof (dtrace_recdesc_t)); 15393 dest += sizeof (dtrace_recdesc_t); 15394 } 15395 15396 mutex_exit(&dtrace_lock); 15397 15398 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15399 kmem_free(buf, size); 15400 return (EFAULT); 15401 } 15402 15403 kmem_free(buf, size); 15404 return (0); 15405 } 15406 15407 case DTRACEIOC_AGGDESC: { 15408 dtrace_aggdesc_t aggdesc; 15409 dtrace_action_t *act; 15410 dtrace_aggregation_t *agg; 15411 int nrecs; 15412 uint32_t offs; 15413 dtrace_recdesc_t *lrec; 15414 void *buf; 15415 size_t size; 15416 uintptr_t dest; 15417 15418 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15419 return (EFAULT); 15420 15421 mutex_enter(&dtrace_lock); 15422 15423 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15424 mutex_exit(&dtrace_lock); 15425 return (EINVAL); 15426 } 15427 15428 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15429 15430 nrecs = aggdesc.dtagd_nrecs; 15431 aggdesc.dtagd_nrecs = 0; 15432 15433 offs = agg->dtag_base; 15434 lrec = &agg->dtag_action.dta_rec; 15435 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15436 15437 for (act = agg->dtag_first; ; act = act->dta_next) { 15438 ASSERT(act->dta_intuple || 15439 DTRACEACT_ISAGG(act->dta_kind)); 15440 15441 /* 15442 * If this action has a record size of zero, it 15443 * denotes an argument to the aggregating action. 15444 * Because the presence of this record doesn't (or 15445 * shouldn't) affect the way the data is interpreted, 15446 * we don't copy it out to save user-level the 15447 * confusion of dealing with a zero-length record. 15448 */ 15449 if (act->dta_rec.dtrd_size == 0) { 15450 ASSERT(agg->dtag_hasarg); 15451 continue; 15452 } 15453 15454 aggdesc.dtagd_nrecs++; 15455 15456 if (act == &agg->dtag_action) 15457 break; 15458 } 15459 15460 /* 15461 * Now that we have the size, we need to allocate a temporary 15462 * buffer in which to store the complete description. We need 15463 * the temporary buffer to be able to drop dtrace_lock() 15464 * across the copyout(), below. 15465 */ 15466 size = sizeof (dtrace_aggdesc_t) + 15467 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15468 15469 buf = kmem_alloc(size, KM_SLEEP); 15470 dest = (uintptr_t)buf; 15471 15472 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15473 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15474 15475 for (act = agg->dtag_first; ; act = act->dta_next) { 15476 dtrace_recdesc_t rec = act->dta_rec; 15477 15478 /* 15479 * See the comment in the above loop for why we pass 15480 * over zero-length records. 15481 */ 15482 if (rec.dtrd_size == 0) { 15483 ASSERT(agg->dtag_hasarg); 15484 continue; 15485 } 15486 15487 if (nrecs-- == 0) 15488 break; 15489 15490 rec.dtrd_offset -= offs; 15491 bcopy(&rec, (void *)dest, sizeof (rec)); 15492 dest += sizeof (dtrace_recdesc_t); 15493 15494 if (act == &agg->dtag_action) 15495 break; 15496 } 15497 15498 mutex_exit(&dtrace_lock); 15499 15500 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15501 kmem_free(buf, size); 15502 return (EFAULT); 15503 } 15504 15505 kmem_free(buf, size); 15506 return (0); 15507 } 15508 15509 case DTRACEIOC_ENABLE: { 15510 dof_hdr_t *dof; 15511 dtrace_enabling_t *enab = NULL; 15512 dtrace_vstate_t *vstate; 15513 int err = 0; 15514 15515 *rv = 0; 15516 15517 /* 15518 * If a NULL argument has been passed, we take this as our 15519 * cue to reevaluate our enablings. 15520 */ 15521 if (arg == NULL) { 15522 dtrace_enabling_matchall(); 15523 15524 return (0); 15525 } 15526 15527 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15528 return (rval); 15529 15530 mutex_enter(&cpu_lock); 15531 mutex_enter(&dtrace_lock); 15532 vstate = &state->dts_vstate; 15533 15534 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15535 mutex_exit(&dtrace_lock); 15536 mutex_exit(&cpu_lock); 15537 dtrace_dof_destroy(dof); 15538 return (EBUSY); 15539 } 15540 15541 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15542 mutex_exit(&dtrace_lock); 15543 mutex_exit(&cpu_lock); 15544 dtrace_dof_destroy(dof); 15545 return (EINVAL); 15546 } 15547 15548 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15549 dtrace_enabling_destroy(enab); 15550 mutex_exit(&dtrace_lock); 15551 mutex_exit(&cpu_lock); 15552 dtrace_dof_destroy(dof); 15553 return (rval); 15554 } 15555 15556 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15557 err = dtrace_enabling_retain(enab); 15558 } else { 15559 dtrace_enabling_destroy(enab); 15560 } 15561 15562 mutex_exit(&cpu_lock); 15563 mutex_exit(&dtrace_lock); 15564 dtrace_dof_destroy(dof); 15565 15566 return (err); 15567 } 15568 15569 case DTRACEIOC_REPLICATE: { 15570 dtrace_repldesc_t desc; 15571 dtrace_probedesc_t *match = &desc.dtrpd_match; 15572 dtrace_probedesc_t *create = &desc.dtrpd_create; 15573 int err; 15574 15575 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15576 return (EFAULT); 15577 15578 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15579 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15580 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15581 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15582 15583 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15584 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15585 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15586 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15587 15588 mutex_enter(&dtrace_lock); 15589 err = dtrace_enabling_replicate(state, match, create); 15590 mutex_exit(&dtrace_lock); 15591 15592 return (err); 15593 } 15594 15595 case DTRACEIOC_PROBEMATCH: 15596 case DTRACEIOC_PROBES: { 15597 dtrace_probe_t *probe = NULL; 15598 dtrace_probedesc_t desc; 15599 dtrace_probekey_t pkey; 15600 dtrace_id_t i; 15601 int m = 0; 15602 uint32_t priv; 15603 uid_t uid; 15604 zoneid_t zoneid; 15605 15606 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15607 return (EFAULT); 15608 15609 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15610 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15611 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15612 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15613 15614 /* 15615 * Before we attempt to match this probe, we want to give 15616 * all providers the opportunity to provide it. 15617 */ 15618 if (desc.dtpd_id == DTRACE_IDNONE) { 15619 mutex_enter(&dtrace_provider_lock); 15620 dtrace_probe_provide(&desc, NULL); 15621 mutex_exit(&dtrace_provider_lock); 15622 desc.dtpd_id++; 15623 } 15624 15625 if (cmd == DTRACEIOC_PROBEMATCH) { 15626 dtrace_probekey(&desc, &pkey); 15627 pkey.dtpk_id = DTRACE_IDNONE; 15628 } 15629 15630 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15631 15632 mutex_enter(&dtrace_lock); 15633 15634 if (cmd == DTRACEIOC_PROBEMATCH) { 15635 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15636 if ((probe = dtrace_probes[i - 1]) != NULL && 15637 (m = dtrace_match_probe(probe, &pkey, 15638 priv, uid, zoneid)) != 0) 15639 break; 15640 } 15641 15642 if (m < 0) { 15643 mutex_exit(&dtrace_lock); 15644 return (EINVAL); 15645 } 15646 15647 } else { 15648 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15649 if ((probe = dtrace_probes[i - 1]) != NULL && 15650 dtrace_match_priv(probe, priv, uid, zoneid)) 15651 break; 15652 } 15653 } 15654 15655 if (probe == NULL) { 15656 mutex_exit(&dtrace_lock); 15657 return (ESRCH); 15658 } 15659 15660 dtrace_probe_description(probe, &desc); 15661 mutex_exit(&dtrace_lock); 15662 15663 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15664 return (EFAULT); 15665 15666 return (0); 15667 } 15668 15669 case DTRACEIOC_PROBEARG: { 15670 dtrace_argdesc_t desc; 15671 dtrace_probe_t *probe; 15672 dtrace_provider_t *prov; 15673 15674 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15675 return (EFAULT); 15676 15677 if (desc.dtargd_id == DTRACE_IDNONE) 15678 return (EINVAL); 15679 15680 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15681 return (EINVAL); 15682 15683 mutex_enter(&dtrace_provider_lock); 15684 mutex_enter(&mod_lock); 15685 mutex_enter(&dtrace_lock); 15686 15687 if (desc.dtargd_id > dtrace_nprobes) { 15688 mutex_exit(&dtrace_lock); 15689 mutex_exit(&mod_lock); 15690 mutex_exit(&dtrace_provider_lock); 15691 return (EINVAL); 15692 } 15693 15694 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15695 mutex_exit(&dtrace_lock); 15696 mutex_exit(&mod_lock); 15697 mutex_exit(&dtrace_provider_lock); 15698 return (EINVAL); 15699 } 15700 15701 mutex_exit(&dtrace_lock); 15702 15703 prov = probe->dtpr_provider; 15704 15705 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15706 /* 15707 * There isn't any typed information for this probe. 15708 * Set the argument number to DTRACE_ARGNONE. 15709 */ 15710 desc.dtargd_ndx = DTRACE_ARGNONE; 15711 } else { 15712 desc.dtargd_native[0] = '\0'; 15713 desc.dtargd_xlate[0] = '\0'; 15714 desc.dtargd_mapping = desc.dtargd_ndx; 15715 15716 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15717 probe->dtpr_id, probe->dtpr_arg, &desc); 15718 } 15719 15720 mutex_exit(&mod_lock); 15721 mutex_exit(&dtrace_provider_lock); 15722 15723 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15724 return (EFAULT); 15725 15726 return (0); 15727 } 15728 15729 case DTRACEIOC_GO: { 15730 processorid_t cpuid; 15731 rval = dtrace_state_go(state, &cpuid); 15732 15733 if (rval != 0) 15734 return (rval); 15735 15736 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15737 return (EFAULT); 15738 15739 return (0); 15740 } 15741 15742 case DTRACEIOC_STOP: { 15743 processorid_t cpuid; 15744 15745 mutex_enter(&dtrace_lock); 15746 rval = dtrace_state_stop(state, &cpuid); 15747 mutex_exit(&dtrace_lock); 15748 15749 if (rval != 0) 15750 return (rval); 15751 15752 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15753 return (EFAULT); 15754 15755 return (0); 15756 } 15757 15758 case DTRACEIOC_DOFGET: { 15759 dof_hdr_t hdr, *dof; 15760 uint64_t len; 15761 15762 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15763 return (EFAULT); 15764 15765 mutex_enter(&dtrace_lock); 15766 dof = dtrace_dof_create(state); 15767 mutex_exit(&dtrace_lock); 15768 15769 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15770 rval = copyout(dof, (void *)arg, len); 15771 dtrace_dof_destroy(dof); 15772 15773 return (rval == 0 ? 0 : EFAULT); 15774 } 15775 15776 case DTRACEIOC_AGGSNAP: 15777 case DTRACEIOC_BUFSNAP: { 15778 dtrace_bufdesc_t desc; 15779 caddr_t cached; 15780 dtrace_buffer_t *buf; 15781 15782 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15783 return (EFAULT); 15784 15785 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15786 return (EINVAL); 15787 15788 mutex_enter(&dtrace_lock); 15789 15790 if (cmd == DTRACEIOC_BUFSNAP) { 15791 buf = &state->dts_buffer[desc.dtbd_cpu]; 15792 } else { 15793 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15794 } 15795 15796 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15797 size_t sz = buf->dtb_offset; 15798 15799 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15800 mutex_exit(&dtrace_lock); 15801 return (EBUSY); 15802 } 15803 15804 /* 15805 * If this buffer has already been consumed, we're 15806 * going to indicate that there's nothing left here 15807 * to consume. 15808 */ 15809 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15810 mutex_exit(&dtrace_lock); 15811 15812 desc.dtbd_size = 0; 15813 desc.dtbd_drops = 0; 15814 desc.dtbd_errors = 0; 15815 desc.dtbd_oldest = 0; 15816 sz = sizeof (desc); 15817 15818 if (copyout(&desc, (void *)arg, sz) != 0) 15819 return (EFAULT); 15820 15821 return (0); 15822 } 15823 15824 /* 15825 * If this is a ring buffer that has wrapped, we want 15826 * to copy the whole thing out. 15827 */ 15828 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15829 dtrace_buffer_polish(buf); 15830 sz = buf->dtb_size; 15831 } 15832 15833 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15834 mutex_exit(&dtrace_lock); 15835 return (EFAULT); 15836 } 15837 15838 desc.dtbd_size = sz; 15839 desc.dtbd_drops = buf->dtb_drops; 15840 desc.dtbd_errors = buf->dtb_errors; 15841 desc.dtbd_oldest = buf->dtb_xamot_offset; 15842 desc.dtbd_timestamp = dtrace_gethrtime(); 15843 15844 mutex_exit(&dtrace_lock); 15845 15846 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15847 return (EFAULT); 15848 15849 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15850 15851 return (0); 15852 } 15853 15854 if (buf->dtb_tomax == NULL) { 15855 ASSERT(buf->dtb_xamot == NULL); 15856 mutex_exit(&dtrace_lock); 15857 return (ENOENT); 15858 } 15859 15860 cached = buf->dtb_tomax; 15861 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15862 15863 dtrace_xcall(desc.dtbd_cpu, 15864 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15865 15866 state->dts_errors += buf->dtb_xamot_errors; 15867 15868 /* 15869 * If the buffers did not actually switch, then the cross call 15870 * did not take place -- presumably because the given CPU is 15871 * not in the ready set. If this is the case, we'll return 15872 * ENOENT. 15873 */ 15874 if (buf->dtb_tomax == cached) { 15875 ASSERT(buf->dtb_xamot != cached); 15876 mutex_exit(&dtrace_lock); 15877 return (ENOENT); 15878 } 15879 15880 ASSERT(cached == buf->dtb_xamot); 15881 15882 /* 15883 * We have our snapshot; now copy it out. 15884 */ 15885 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15886 buf->dtb_xamot_offset) != 0) { 15887 mutex_exit(&dtrace_lock); 15888 return (EFAULT); 15889 } 15890 15891 desc.dtbd_size = buf->dtb_xamot_offset; 15892 desc.dtbd_drops = buf->dtb_xamot_drops; 15893 desc.dtbd_errors = buf->dtb_xamot_errors; 15894 desc.dtbd_oldest = 0; 15895 desc.dtbd_timestamp = buf->dtb_switched; 15896 15897 mutex_exit(&dtrace_lock); 15898 15899 /* 15900 * Finally, copy out the buffer description. 15901 */ 15902 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15903 return (EFAULT); 15904 15905 return (0); 15906 } 15907 15908 case DTRACEIOC_CONF: { 15909 dtrace_conf_t conf; 15910 15911 bzero(&conf, sizeof (conf)); 15912 conf.dtc_difversion = DIF_VERSION; 15913 conf.dtc_difintregs = DIF_DIR_NREGS; 15914 conf.dtc_diftupregs = DIF_DTR_NREGS; 15915 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15916 15917 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15918 return (EFAULT); 15919 15920 return (0); 15921 } 15922 15923 case DTRACEIOC_STATUS: { 15924 dtrace_status_t stat; 15925 dtrace_dstate_t *dstate; 15926 int i, j; 15927 uint64_t nerrs; 15928 15929 /* 15930 * See the comment in dtrace_state_deadman() for the reason 15931 * for setting dts_laststatus to INT64_MAX before setting 15932 * it to the correct value. 15933 */ 15934 state->dts_laststatus = INT64_MAX; 15935 dtrace_membar_producer(); 15936 state->dts_laststatus = dtrace_gethrtime(); 15937 15938 bzero(&stat, sizeof (stat)); 15939 15940 mutex_enter(&dtrace_lock); 15941 15942 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15943 mutex_exit(&dtrace_lock); 15944 return (ENOENT); 15945 } 15946 15947 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15948 stat.dtst_exiting = 1; 15949 15950 nerrs = state->dts_errors; 15951 dstate = &state->dts_vstate.dtvs_dynvars; 15952 15953 for (i = 0; i < NCPU; i++) { 15954 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15955 15956 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15957 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15958 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15959 15960 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15961 stat.dtst_filled++; 15962 15963 nerrs += state->dts_buffer[i].dtb_errors; 15964 15965 for (j = 0; j < state->dts_nspeculations; j++) { 15966 dtrace_speculation_t *spec; 15967 dtrace_buffer_t *buf; 15968 15969 spec = &state->dts_speculations[j]; 15970 buf = &spec->dtsp_buffer[i]; 15971 stat.dtst_specdrops += buf->dtb_xamot_drops; 15972 } 15973 } 15974 15975 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15976 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15977 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15978 stat.dtst_dblerrors = state->dts_dblerrors; 15979 stat.dtst_killed = 15980 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15981 stat.dtst_errors = nerrs; 15982 15983 mutex_exit(&dtrace_lock); 15984 15985 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15986 return (EFAULT); 15987 15988 return (0); 15989 } 15990 15991 case DTRACEIOC_FORMAT: { 15992 dtrace_fmtdesc_t fmt; 15993 char *str; 15994 int len; 15995 15996 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15997 return (EFAULT); 15998 15999 mutex_enter(&dtrace_lock); 16000 16001 if (fmt.dtfd_format == 0 || 16002 fmt.dtfd_format > state->dts_nformats) { 16003 mutex_exit(&dtrace_lock); 16004 return (EINVAL); 16005 } 16006 16007 /* 16008 * Format strings are allocated contiguously and they are 16009 * never freed; if a format index is less than the number 16010 * of formats, we can assert that the format map is non-NULL 16011 * and that the format for the specified index is non-NULL. 16012 */ 16013 ASSERT(state->dts_formats != NULL); 16014 str = state->dts_formats[fmt.dtfd_format - 1]; 16015 ASSERT(str != NULL); 16016 16017 len = strlen(str) + 1; 16018 16019 if (len > fmt.dtfd_length) { 16020 fmt.dtfd_length = len; 16021 16022 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16023 mutex_exit(&dtrace_lock); 16024 return (EINVAL); 16025 } 16026 } else { 16027 if (copyout(str, fmt.dtfd_string, len) != 0) { 16028 mutex_exit(&dtrace_lock); 16029 return (EINVAL); 16030 } 16031 } 16032 16033 mutex_exit(&dtrace_lock); 16034 return (0); 16035 } 16036 16037 default: 16038 break; 16039 } 16040 16041 return (ENOTTY); 16042 } 16043 16044 /*ARGSUSED*/ 16045 static int 16046 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16047 { 16048 dtrace_state_t *state; 16049 16050 switch (cmd) { 16051 case DDI_DETACH: 16052 break; 16053 16054 case DDI_SUSPEND: 16055 return (DDI_SUCCESS); 16056 16057 default: 16058 return (DDI_FAILURE); 16059 } 16060 16061 mutex_enter(&cpu_lock); 16062 mutex_enter(&dtrace_provider_lock); 16063 mutex_enter(&dtrace_lock); 16064 16065 ASSERT(dtrace_opens == 0); 16066 16067 if (dtrace_helpers > 0) { 16068 mutex_exit(&dtrace_provider_lock); 16069 mutex_exit(&dtrace_lock); 16070 mutex_exit(&cpu_lock); 16071 return (DDI_FAILURE); 16072 } 16073 16074 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16075 mutex_exit(&dtrace_provider_lock); 16076 mutex_exit(&dtrace_lock); 16077 mutex_exit(&cpu_lock); 16078 return (DDI_FAILURE); 16079 } 16080 16081 dtrace_provider = NULL; 16082 16083 if ((state = dtrace_anon_grab()) != NULL) { 16084 /* 16085 * If there were ECBs on this state, the provider should 16086 * have not been allowed to detach; assert that there is 16087 * none. 16088 */ 16089 ASSERT(state->dts_necbs == 0); 16090 dtrace_state_destroy(state); 16091 16092 /* 16093 * If we're being detached with anonymous state, we need to 16094 * indicate to the kernel debugger that DTrace is now inactive. 16095 */ 16096 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16097 } 16098 16099 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16100 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16101 dtrace_cpu_init = NULL; 16102 dtrace_helpers_cleanup = NULL; 16103 dtrace_helpers_fork = NULL; 16104 dtrace_cpustart_init = NULL; 16105 dtrace_cpustart_fini = NULL; 16106 dtrace_debugger_init = NULL; 16107 dtrace_debugger_fini = NULL; 16108 dtrace_modload = NULL; 16109 dtrace_modunload = NULL; 16110 16111 ASSERT(dtrace_getf == 0); 16112 ASSERT(dtrace_closef == NULL); 16113 16114 mutex_exit(&cpu_lock); 16115 16116 if (dtrace_helptrace_enabled) { 16117 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 16118 dtrace_helptrace_buffer = NULL; 16119 } 16120 16121 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16122 dtrace_probes = NULL; 16123 dtrace_nprobes = 0; 16124 16125 dtrace_hash_destroy(dtrace_bymod); 16126 dtrace_hash_destroy(dtrace_byfunc); 16127 dtrace_hash_destroy(dtrace_byname); 16128 dtrace_bymod = NULL; 16129 dtrace_byfunc = NULL; 16130 dtrace_byname = NULL; 16131 16132 kmem_cache_destroy(dtrace_state_cache); 16133 vmem_destroy(dtrace_minor); 16134 vmem_destroy(dtrace_arena); 16135 16136 if (dtrace_toxrange != NULL) { 16137 kmem_free(dtrace_toxrange, 16138 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16139 dtrace_toxrange = NULL; 16140 dtrace_toxranges = 0; 16141 dtrace_toxranges_max = 0; 16142 } 16143 16144 ddi_remove_minor_node(dtrace_devi, NULL); 16145 dtrace_devi = NULL; 16146 16147 ddi_soft_state_fini(&dtrace_softstate); 16148 16149 ASSERT(dtrace_vtime_references == 0); 16150 ASSERT(dtrace_opens == 0); 16151 ASSERT(dtrace_retained == NULL); 16152 16153 mutex_exit(&dtrace_lock); 16154 mutex_exit(&dtrace_provider_lock); 16155 16156 /* 16157 * We don't destroy the task queue until after we have dropped our 16158 * locks (taskq_destroy() may block on running tasks). To prevent 16159 * attempting to do work after we have effectively detached but before 16160 * the task queue has been destroyed, all tasks dispatched via the 16161 * task queue must check that DTrace is still attached before 16162 * performing any operation. 16163 */ 16164 taskq_destroy(dtrace_taskq); 16165 dtrace_taskq = NULL; 16166 16167 return (DDI_SUCCESS); 16168 } 16169 16170 /*ARGSUSED*/ 16171 static int 16172 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16173 { 16174 int error; 16175 16176 switch (infocmd) { 16177 case DDI_INFO_DEVT2DEVINFO: 16178 *result = (void *)dtrace_devi; 16179 error = DDI_SUCCESS; 16180 break; 16181 case DDI_INFO_DEVT2INSTANCE: 16182 *result = (void *)0; 16183 error = DDI_SUCCESS; 16184 break; 16185 default: 16186 error = DDI_FAILURE; 16187 } 16188 return (error); 16189 } 16190 16191 static struct cb_ops dtrace_cb_ops = { 16192 dtrace_open, /* open */ 16193 dtrace_close, /* close */ 16194 nulldev, /* strategy */ 16195 nulldev, /* print */ 16196 nodev, /* dump */ 16197 nodev, /* read */ 16198 nodev, /* write */ 16199 dtrace_ioctl, /* ioctl */ 16200 nodev, /* devmap */ 16201 nodev, /* mmap */ 16202 nodev, /* segmap */ 16203 nochpoll, /* poll */ 16204 ddi_prop_op, /* cb_prop_op */ 16205 0, /* streamtab */ 16206 D_NEW | D_MP /* Driver compatibility flag */ 16207 }; 16208 16209 static struct dev_ops dtrace_ops = { 16210 DEVO_REV, /* devo_rev */ 16211 0, /* refcnt */ 16212 dtrace_info, /* get_dev_info */ 16213 nulldev, /* identify */ 16214 nulldev, /* probe */ 16215 dtrace_attach, /* attach */ 16216 dtrace_detach, /* detach */ 16217 nodev, /* reset */ 16218 &dtrace_cb_ops, /* driver operations */ 16219 NULL, /* bus operations */ 16220 nodev, /* dev power */ 16221 ddi_quiesce_not_needed, /* quiesce */ 16222 }; 16223 16224 static struct modldrv modldrv = { 16225 &mod_driverops, /* module type (this is a pseudo driver) */ 16226 "Dynamic Tracing", /* name of module */ 16227 &dtrace_ops, /* driver ops */ 16228 }; 16229 16230 static struct modlinkage modlinkage = { 16231 MODREV_1, 16232 (void *)&modldrv, 16233 NULL 16234 }; 16235 16236 int 16237 _init(void) 16238 { 16239 return (mod_install(&modlinkage)); 16240 } 16241 16242 int 16243 _info(struct modinfo *modinfop) 16244 { 16245 return (mod_info(&modlinkage, modinfop)); 16246 } 16247 16248 int 16249 _fini(void) 16250 { 16251 return (mod_remove(&modlinkage)); 16252 }