1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
  28  * Copyright (c) 2012 by Delphix. All rights reserved.
  29  */
  30 
  31 #include <stdlib.h>
  32 #include <strings.h>
  33 #include <errno.h>
  34 #include <unistd.h>
  35 #include <limits.h>
  36 #include <assert.h>
  37 #include <ctype.h>
  38 #include <alloca.h>
  39 #include <dt_impl.h>
  40 #include <dt_pq.h>
  41 
  42 #define DT_MASK_LO 0x00000000FFFFFFFFULL
  43 
  44 /*
  45  * We declare this here because (1) we need it and (2) we want to avoid a
  46  * dependency on libm in libdtrace.
  47  */
  48 static long double
  49 dt_fabsl(long double x)
  50 {
  51         if (x < 0)
  52                 return (-x);
  53 
  54         return (x);
  55 }
  56 
  57 /*
  58  * 128-bit arithmetic functions needed to support the stddev() aggregating
  59  * action.
  60  */
  61 static int
  62 dt_gt_128(uint64_t *a, uint64_t *b)
  63 {
  64         return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
  65 }
  66 
  67 static int
  68 dt_ge_128(uint64_t *a, uint64_t *b)
  69 {
  70         return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
  71 }
  72 
  73 static int
  74 dt_le_128(uint64_t *a, uint64_t *b)
  75 {
  76         return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
  77 }
  78 
  79 /*
  80  * Shift the 128-bit value in a by b. If b is positive, shift left.
  81  * If b is negative, shift right.
  82  */
  83 static void
  84 dt_shift_128(uint64_t *a, int b)
  85 {
  86         uint64_t mask;
  87 
  88         if (b == 0)
  89                 return;
  90 
  91         if (b < 0) {
  92                 b = -b;
  93                 if (b >= 64) {
  94                         a[0] = a[1] >> (b - 64);
  95                         a[1] = 0;
  96                 } else {
  97                         a[0] >>= b;
  98                         mask = 1LL << (64 - b);
  99                         mask -= 1;
 100                         a[0] |= ((a[1] & mask) << (64 - b));
 101                         a[1] >>= b;
 102                 }
 103         } else {
 104                 if (b >= 64) {
 105                         a[1] = a[0] << (b - 64);
 106                         a[0] = 0;
 107                 } else {
 108                         a[1] <<= b;
 109                         mask = a[0] >> (64 - b);
 110                         a[1] |= mask;
 111                         a[0] <<= b;
 112                 }
 113         }
 114 }
 115 
 116 static int
 117 dt_nbits_128(uint64_t *a)
 118 {
 119         int nbits = 0;
 120         uint64_t tmp[2];
 121         uint64_t zero[2] = { 0, 0 };
 122 
 123         tmp[0] = a[0];
 124         tmp[1] = a[1];
 125 
 126         dt_shift_128(tmp, -1);
 127         while (dt_gt_128(tmp, zero)) {
 128                 dt_shift_128(tmp, -1);
 129                 nbits++;
 130         }
 131 
 132         return (nbits);
 133 }
 134 
 135 static void
 136 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
 137 {
 138         uint64_t result[2];
 139 
 140         result[0] = minuend[0] - subtrahend[0];
 141         result[1] = minuend[1] - subtrahend[1] -
 142             (minuend[0] < subtrahend[0] ? 1 : 0);
 143 
 144         difference[0] = result[0];
 145         difference[1] = result[1];
 146 }
 147 
 148 static void
 149 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
 150 {
 151         uint64_t result[2];
 152 
 153         result[0] = addend1[0] + addend2[0];
 154         result[1] = addend1[1] + addend2[1] +
 155             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
 156 
 157         sum[0] = result[0];
 158         sum[1] = result[1];
 159 }
 160 
 161 /*
 162  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
 163  * use native multiplication on those, and then re-combine into the
 164  * resulting 128-bit value.
 165  *
 166  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
 167  *     hi1 * hi2 << 64 +
 168  *     hi1 * lo2 << 32 +
 169  *     hi2 * lo1 << 32 +
 170  *     lo1 * lo2
 171  */
 172 static void
 173 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
 174 {
 175         uint64_t hi1, hi2, lo1, lo2;
 176         uint64_t tmp[2];
 177 
 178         hi1 = factor1 >> 32;
 179         hi2 = factor2 >> 32;
 180 
 181         lo1 = factor1 & DT_MASK_LO;
 182         lo2 = factor2 & DT_MASK_LO;
 183 
 184         product[0] = lo1 * lo2;
 185         product[1] = hi1 * hi2;
 186 
 187         tmp[0] = hi1 * lo2;
 188         tmp[1] = 0;
 189         dt_shift_128(tmp, 32);
 190         dt_add_128(product, tmp, product);
 191 
 192         tmp[0] = hi2 * lo1;
 193         tmp[1] = 0;
 194         dt_shift_128(tmp, 32);
 195         dt_add_128(product, tmp, product);
 196 }
 197 
 198 /*
 199  * This is long-hand division.
 200  *
 201  * We initialize subtrahend by shifting divisor left as far as possible. We
 202  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
 203  * subtract and set the appropriate bit in the result.  We then shift
 204  * subtrahend right by one bit for the next comparison.
 205  */
 206 static void
 207 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
 208 {
 209         uint64_t result[2] = { 0, 0 };
 210         uint64_t remainder[2];
 211         uint64_t subtrahend[2];
 212         uint64_t divisor_128[2];
 213         uint64_t mask[2] = { 1, 0 };
 214         int log = 0;
 215 
 216         assert(divisor != 0);
 217 
 218         divisor_128[0] = divisor;
 219         divisor_128[1] = 0;
 220 
 221         remainder[0] = dividend[0];
 222         remainder[1] = dividend[1];
 223 
 224         subtrahend[0] = divisor;
 225         subtrahend[1] = 0;
 226 
 227         while (divisor > 0) {
 228                 log++;
 229                 divisor >>= 1;
 230         }
 231 
 232         dt_shift_128(subtrahend, 128 - log);
 233         dt_shift_128(mask, 128 - log);
 234 
 235         while (dt_ge_128(remainder, divisor_128)) {
 236                 if (dt_ge_128(remainder, subtrahend)) {
 237                         dt_subtract_128(remainder, subtrahend, remainder);
 238                         result[0] |= mask[0];
 239                         result[1] |= mask[1];
 240                 }
 241 
 242                 dt_shift_128(subtrahend, -1);
 243                 dt_shift_128(mask, -1);
 244         }
 245 
 246         quotient[0] = result[0];
 247         quotient[1] = result[1];
 248 }
 249 
 250 /*
 251  * This is the long-hand method of calculating a square root.
 252  * The algorithm is as follows:
 253  *
 254  * 1. Group the digits by 2 from the right.
 255  * 2. Over the leftmost group, find the largest single-digit number
 256  *    whose square is less than that group.
 257  * 3. Subtract the result of the previous step (2 or 4, depending) and
 258  *    bring down the next two-digit group.
 259  * 4. For the result R we have so far, find the largest single-digit number
 260  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
 261  *    (Note that this is doubling R and performing a decimal left-shift by 1
 262  *    and searching for the appropriate decimal to fill the one's place.)
 263  *    The value x is the next digit in the square root.
 264  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
 265  * dealing with integers, so the above is sufficient.)
 266  *
 267  * In decimal, the square root of 582,734 would be calculated as so:
 268  *
 269  *     __7__6__3
 270  *    | 58 27 34
 271  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
 272  *      --
 273  *       9 27    (Subtract and bring down the next group.)
 274  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
 275  *      -----     the square root)
 276  *         51 34 (Subtract and bring down the next group.)
 277  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
 278  *         -----  the square root)
 279  *          5 65 (remainder)
 280  *
 281  * The above algorithm applies similarly in binary, but note that the
 282  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
 283  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
 284  * preceding difference?
 285  *
 286  * In binary, the square root of 11011011 would be calculated as so:
 287  *
 288  *     __1__1__1__0
 289  *    | 11 01 10 11
 290  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
 291  *      --
 292  *      10 01 10 11
 293  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
 294  *      -----
 295  *       1 00 10 11
 296  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
 297  *       -------
 298  *          1 01 11
 299  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
 300  *
 301  */
 302 static uint64_t
 303 dt_sqrt_128(uint64_t *square)
 304 {
 305         uint64_t result[2] = { 0, 0 };
 306         uint64_t diff[2] = { 0, 0 };
 307         uint64_t one[2] = { 1, 0 };
 308         uint64_t next_pair[2];
 309         uint64_t next_try[2];
 310         uint64_t bit_pairs, pair_shift;
 311         int i;
 312 
 313         bit_pairs = dt_nbits_128(square) / 2;
 314         pair_shift = bit_pairs * 2;
 315 
 316         for (i = 0; i <= bit_pairs; i++) {
 317                 /*
 318                  * Bring down the next pair of bits.
 319                  */
 320                 next_pair[0] = square[0];
 321                 next_pair[1] = square[1];
 322                 dt_shift_128(next_pair, -pair_shift);
 323                 next_pair[0] &= 0x3;
 324                 next_pair[1] = 0;
 325 
 326                 dt_shift_128(diff, 2);
 327                 dt_add_128(diff, next_pair, diff);
 328 
 329                 /*
 330                  * next_try = R << 2 + 1
 331                  */
 332                 next_try[0] = result[0];
 333                 next_try[1] = result[1];
 334                 dt_shift_128(next_try, 2);
 335                 dt_add_128(next_try, one, next_try);
 336 
 337                 if (dt_le_128(next_try, diff)) {
 338                         dt_subtract_128(diff, next_try, diff);
 339                         dt_shift_128(result, 1);
 340                         dt_add_128(result, one, result);
 341                 } else {
 342                         dt_shift_128(result, 1);
 343                 }
 344 
 345                 pair_shift -= 2;
 346         }
 347 
 348         assert(result[1] == 0);
 349 
 350         return (result[0]);
 351 }
 352 
 353 uint64_t
 354 dt_stddev(uint64_t *data, uint64_t normal)
 355 {
 356         uint64_t avg_of_squares[2];
 357         uint64_t square_of_avg[2];
 358         int64_t norm_avg;
 359         uint64_t diff[2];
 360 
 361         /*
 362          * The standard approximation for standard deviation is
 363          * sqrt(average(x**2) - average(x)**2), i.e. the square root
 364          * of the average of the squares minus the square of the average.
 365          */
 366         dt_divide_128(data + 2, normal, avg_of_squares);
 367         dt_divide_128(avg_of_squares, data[0], avg_of_squares);
 368 
 369         norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
 370 
 371         if (norm_avg < 0)
 372                 norm_avg = -norm_avg;
 373 
 374         dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
 375 
 376         dt_subtract_128(avg_of_squares, square_of_avg, diff);
 377 
 378         return (dt_sqrt_128(diff));
 379 }
 380 
 381 static int
 382 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
 383     dtrace_bufdesc_t *buf, size_t offs)
 384 {
 385         dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
 386         dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
 387         char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
 388         dtrace_flowkind_t flow = DTRACEFLOW_NONE;
 389         const char *str = NULL;
 390         static const char *e_str[2] = { " -> ", " => " };
 391         static const char *r_str[2] = { " <- ", " <= " };
 392         static const char *ent = "entry", *ret = "return";
 393         static int entlen = 0, retlen = 0;
 394         dtrace_epid_t next, id = epd->dtepd_epid;
 395         int rval;
 396 
 397         if (entlen == 0) {
 398                 assert(retlen == 0);
 399                 entlen = strlen(ent);
 400                 retlen = strlen(ret);
 401         }
 402 
 403         /*
 404          * If the name of the probe is "entry" or ends with "-entry", we
 405          * treat it as an entry; if it is "return" or ends with "-return",
 406          * we treat it as a return.  (This allows application-provided probes
 407          * like "method-entry" or "function-entry" to participate in flow
 408          * indentation -- without accidentally misinterpreting popular probe
 409          * names like "carpentry", "gentry" or "Coventry".)
 410          */
 411         if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
 412             (sub == n || sub[-1] == '-')) {
 413                 flow = DTRACEFLOW_ENTRY;
 414                 str = e_str[strcmp(p, "syscall") == 0];
 415         } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
 416             (sub == n || sub[-1] == '-')) {
 417                 flow = DTRACEFLOW_RETURN;
 418                 str = r_str[strcmp(p, "syscall") == 0];
 419         }
 420 
 421         /*
 422          * If we're going to indent this, we need to check the ID of our last
 423          * call.  If we're looking at the same probe ID but a different EPID,
 424          * we _don't_ want to indent.  (Yes, there are some minor holes in
 425          * this scheme -- it's a heuristic.)
 426          */
 427         if (flow == DTRACEFLOW_ENTRY) {
 428                 if ((last != DTRACE_EPIDNONE && id != last &&
 429                     pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
 430                         flow = DTRACEFLOW_NONE;
 431         }
 432 
 433         /*
 434          * If we're going to unindent this, it's more difficult to see if
 435          * we don't actually want to unindent it -- we need to look at the
 436          * _next_ EPID.
 437          */
 438         if (flow == DTRACEFLOW_RETURN) {
 439                 offs += epd->dtepd_size;
 440 
 441                 do {
 442                         if (offs >= buf->dtbd_size)
 443                                 goto out;
 444 
 445                         next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
 446 
 447                         if (next == DTRACE_EPIDNONE)
 448                                 offs += sizeof (id);
 449                 } while (next == DTRACE_EPIDNONE);
 450 
 451                 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
 452                         return (rval);
 453 
 454                 if (next != id && npd->dtpd_id == pd->dtpd_id)
 455                         flow = DTRACEFLOW_NONE;
 456         }
 457 
 458 out:
 459         if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
 460                 data->dtpda_prefix = str;
 461         } else {
 462                 data->dtpda_prefix = "| ";
 463         }
 464 
 465         if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
 466                 data->dtpda_indent -= 2;
 467 
 468         data->dtpda_flow = flow;
 469 
 470         return (0);
 471 }
 472 
 473 static int
 474 dt_nullprobe()
 475 {
 476         return (DTRACE_CONSUME_THIS);
 477 }
 478 
 479 static int
 480 dt_nullrec()
 481 {
 482         return (DTRACE_CONSUME_NEXT);
 483 }
 484 
 485 int
 486 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
 487     uint64_t normal, long double total, char positives, char negatives)
 488 {
 489         long double f;
 490         uint_t depth, len = 40;
 491 
 492         const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
 493         const char *spaces = "                                        ";
 494 
 495         assert(strlen(ats) == len && strlen(spaces) == len);
 496         assert(!(total == 0 && (positives || negatives)));
 497         assert(!(val < 0 && !negatives));
 498         assert(!(val > 0 && !positives));
 499         assert(!(val != 0 && total == 0));
 500 
 501         if (!negatives) {
 502                 if (positives) {
 503                         f = (dt_fabsl((long double)val) * len) / total;
 504                         depth = (uint_t)(f + 0.5);
 505                 } else {
 506                         depth = 0;
 507                 }
 508 
 509                 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
 510                     spaces + depth, (long long)val / normal));
 511         }
 512 
 513         if (!positives) {
 514                 f = (dt_fabsl((long double)val) * len) / total;
 515                 depth = (uint_t)(f + 0.5);
 516 
 517                 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
 518                     ats + len - depth, (long long)val / normal));
 519         }
 520 
 521         /*
 522          * If we're here, we have both positive and negative bucket values.
 523          * To express this graphically, we're going to generate both positive
 524          * and negative bars separated by a centerline.  These bars are half
 525          * the size of normal quantize()/lquantize() bars, so we divide the
 526          * length in half before calculating the bar length.
 527          */
 528         len /= 2;
 529         ats = &ats[len];
 530         spaces = &spaces[len];
 531 
 532         f = (dt_fabsl((long double)val) * len) / total;
 533         depth = (uint_t)(f + 0.5);
 534 
 535         if (val <= 0) {
 536                 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
 537                     ats + len - depth, len, "", (long long)val / normal));
 538         } else {
 539                 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
 540                     ats + len - depth, spaces + depth,
 541                     (long long)val / normal));
 542         }
 543 }
 544 
 545 int
 546 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
 547     size_t size, uint64_t normal)
 548 {
 549         const int64_t *data = addr;
 550         int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
 551         long double total = 0;
 552         char positives = 0, negatives = 0;
 553 
 554         if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
 555                 return (dt_set_errno(dtp, EDT_DMISMATCH));
 556 
 557         while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
 558                 first_bin++;
 559 
 560         if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
 561                 /*
 562                  * There isn't any data.  This is possible if (and only if)
 563                  * negative increment values have been used.  In this case,
 564                  * we'll print the buckets around 0.
 565                  */
 566                 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
 567                 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
 568         } else {
 569                 if (first_bin > 0)
 570                         first_bin--;
 571 
 572                 while (last_bin > 0 && data[last_bin] == 0)
 573                         last_bin--;
 574 
 575                 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
 576                         last_bin++;
 577         }
 578 
 579         for (i = first_bin; i <= last_bin; i++) {
 580                 positives |= (data[i] > 0);
 581                 negatives |= (data[i] < 0);
 582                 total += dt_fabsl((long double)data[i]);
 583         }
 584 
 585         if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
 586             "------------- Distribution -------------", "count") < 0)
 587                 return (-1);
 588 
 589         for (i = first_bin; i <= last_bin; i++) {
 590                 if (dt_printf(dtp, fp, "%16lld ",
 591                     (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
 592                         return (-1);
 593 
 594                 if (dt_print_quantline(dtp, fp, data[i], normal, total,
 595                     positives, negatives) < 0)
 596                         return (-1);
 597         }
 598 
 599         return (0);
 600 }
 601 
 602 int
 603 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
 604     size_t size, uint64_t normal)
 605 {
 606         const int64_t *data = addr;
 607         int i, first_bin, last_bin, base;
 608         uint64_t arg;
 609         long double total = 0;
 610         uint16_t step, levels;
 611         char positives = 0, negatives = 0;
 612 
 613         if (size < sizeof (uint64_t))
 614                 return (dt_set_errno(dtp, EDT_DMISMATCH));
 615 
 616         arg = *data++;
 617         size -= sizeof (uint64_t);
 618 
 619         base = DTRACE_LQUANTIZE_BASE(arg);
 620         step = DTRACE_LQUANTIZE_STEP(arg);
 621         levels = DTRACE_LQUANTIZE_LEVELS(arg);
 622 
 623         first_bin = 0;
 624         last_bin = levels + 1;
 625 
 626         if (size != sizeof (uint64_t) * (levels + 2))
 627                 return (dt_set_errno(dtp, EDT_DMISMATCH));
 628 
 629         while (first_bin <= levels + 1 && data[first_bin] == 0)
 630                 first_bin++;
 631 
 632         if (first_bin > levels + 1) {
 633                 first_bin = 0;
 634                 last_bin = 2;
 635         } else {
 636                 if (first_bin > 0)
 637                         first_bin--;
 638 
 639                 while (last_bin > 0 && data[last_bin] == 0)
 640                         last_bin--;
 641 
 642                 if (last_bin < levels + 1)
 643                         last_bin++;
 644         }
 645 
 646         for (i = first_bin; i <= last_bin; i++) {
 647                 positives |= (data[i] > 0);
 648                 negatives |= (data[i] < 0);
 649                 total += dt_fabsl((long double)data[i]);
 650         }
 651 
 652         if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
 653             "------------- Distribution -------------", "count") < 0)
 654                 return (-1);
 655 
 656         for (i = first_bin; i <= last_bin; i++) {
 657                 char c[32];
 658                 int err;
 659 
 660                 if (i == 0) {
 661                         (void) snprintf(c, sizeof (c), "< %d",
 662                             base / (uint32_t)normal);
 663                         err = dt_printf(dtp, fp, "%16s ", c);
 664                 } else if (i == levels + 1) {
 665                         (void) snprintf(c, sizeof (c), ">= %d",
 666                             base + (levels * step));
 667                         err = dt_printf(dtp, fp, "%16s ", c);
 668                 } else {
 669                         err = dt_printf(dtp, fp, "%16d ",
 670                             base + (i - 1) * step);
 671                 }
 672 
 673                 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
 674                     total, positives, negatives) < 0)
 675                         return (-1);
 676         }
 677 
 678         return (0);
 679 }
 680 
 681 int
 682 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
 683     size_t size, uint64_t normal)
 684 {
 685         int i, first_bin, last_bin, bin = 1, order, levels;
 686         uint16_t factor, low, high, nsteps;
 687         const int64_t *data = addr;
 688         int64_t value = 1, next, step;
 689         char positives = 0, negatives = 0;
 690         long double total = 0;
 691         uint64_t arg;
 692         char c[32];
 693 
 694         if (size < sizeof (uint64_t))
 695                 return (dt_set_errno(dtp, EDT_DMISMATCH));
 696 
 697         arg = *data++;
 698         size -= sizeof (uint64_t);
 699 
 700         factor = DTRACE_LLQUANTIZE_FACTOR(arg);
 701         low = DTRACE_LLQUANTIZE_LOW(arg);
 702         high = DTRACE_LLQUANTIZE_HIGH(arg);
 703         nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
 704 
 705         /*
 706          * We don't expect to be handed invalid llquantize() parameters here,
 707          * but sanity check them (to a degree) nonetheless.
 708          */
 709         if (size > INT32_MAX || factor < 2 || low >= high ||
 710             nsteps == 0 || factor > nsteps)
 711                 return (dt_set_errno(dtp, EDT_DMISMATCH));
 712 
 713         levels = (int)size / sizeof (uint64_t);
 714 
 715         first_bin = 0;
 716         last_bin = levels - 1;
 717 
 718         while (first_bin < levels && data[first_bin] == 0)
 719                 first_bin++;
 720 
 721         if (first_bin == levels) {
 722                 first_bin = 0;
 723                 last_bin = 1;
 724         } else {
 725                 if (first_bin > 0)
 726                         first_bin--;
 727 
 728                 while (last_bin > 0 && data[last_bin] == 0)
 729                         last_bin--;
 730 
 731                 if (last_bin < levels - 1)
 732                         last_bin++;
 733         }
 734 
 735         for (i = first_bin; i <= last_bin; i++) {
 736                 positives |= (data[i] > 0);
 737                 negatives |= (data[i] < 0);
 738                 total += dt_fabsl((long double)data[i]);
 739         }
 740 
 741         if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
 742             "------------- Distribution -------------", "count") < 0)
 743                 return (-1);
 744 
 745         for (order = 0; order < low; order++)
 746                 value *= factor;
 747 
 748         next = value * factor;
 749         step = next > nsteps ? next / nsteps : 1;
 750 
 751         if (first_bin == 0) {
 752                 (void) snprintf(c, sizeof (c), "< %lld", value);
 753 
 754                 if (dt_printf(dtp, fp, "%16s ", c) < 0)
 755                         return (-1);
 756 
 757                 if (dt_print_quantline(dtp, fp, data[0], normal,
 758                     total, positives, negatives) < 0)
 759                         return (-1);
 760         }
 761 
 762         while (order <= high) {
 763                 if (bin >= first_bin && bin <= last_bin) {
 764                         if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
 765                                 return (-1);
 766 
 767                         if (dt_print_quantline(dtp, fp, data[bin],
 768                             normal, total, positives, negatives) < 0)
 769                                 return (-1);
 770                 }
 771 
 772                 assert(value < next);
 773                 bin++;
 774 
 775                 if ((value += step) != next)
 776                         continue;
 777 
 778                 next = value * factor;
 779                 step = next > nsteps ? next / nsteps : 1;
 780                 order++;
 781         }
 782 
 783         if (last_bin < bin)
 784                 return (0);
 785 
 786         assert(last_bin == bin);
 787         (void) snprintf(c, sizeof (c), ">= %lld", value);
 788 
 789         if (dt_printf(dtp, fp, "%16s ", c) < 0)
 790                 return (-1);
 791 
 792         return (dt_print_quantline(dtp, fp, data[bin], normal,
 793             total, positives, negatives));
 794 }
 795 
 796 /*ARGSUSED*/
 797 static int
 798 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
 799     size_t size, uint64_t normal)
 800 {
 801         /* LINTED - alignment */
 802         int64_t *data = (int64_t *)addr;
 803 
 804         return (dt_printf(dtp, fp, " %16lld", data[0] ?
 805             (long long)(data[1] / (int64_t)normal / data[0]) : 0));
 806 }
 807 
 808 /*ARGSUSED*/
 809 static int
 810 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
 811     size_t size, uint64_t normal)
 812 {
 813         /* LINTED - alignment */
 814         uint64_t *data = (uint64_t *)addr;
 815 
 816         return (dt_printf(dtp, fp, " %16llu", data[0] ?
 817             (unsigned long long) dt_stddev(data, normal) : 0));
 818 }
 819 
 820 /*ARGSUSED*/
 821 int
 822 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
 823     size_t nbytes, int width, int quiet, int forceraw)
 824 {
 825         /*
 826          * If the byte stream is a series of printable characters, followed by
 827          * a terminating byte, we print it out as a string.  Otherwise, we
 828          * assume that it's something else and just print the bytes.
 829          */
 830         int i, j, margin = 5;
 831         char *c = (char *)addr;
 832 
 833         if (nbytes == 0)
 834                 return (0);
 835 
 836         if (forceraw)
 837                 goto raw;
 838 
 839         if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
 840                 goto raw;
 841 
 842         for (i = 0; i < nbytes; i++) {
 843                 /*
 844                  * We define a "printable character" to be one for which
 845                  * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
 846                  * or a character which is either backspace or the bell.
 847                  * Backspace and the bell are regrettably special because
 848                  * they fail the first two tests -- and yet they are entirely
 849                  * printable.  These are the only two control characters that
 850                  * have meaning for the terminal and for which isprint(3C) and
 851                  * isspace(3C) return 0.
 852                  */
 853                 if (isprint(c[i]) || isspace(c[i]) ||
 854                     c[i] == '\b' || c[i] == '\a')
 855                         continue;
 856 
 857                 if (c[i] == '\0' && i > 0) {
 858                         /*
 859                          * This looks like it might be a string.  Before we
 860                          * assume that it is indeed a string, check the
 861                          * remainder of the byte range; if it contains
 862                          * additional non-nul characters, we'll assume that
 863                          * it's a binary stream that just happens to look like
 864                          * a string, and we'll print out the individual bytes.
 865                          */
 866                         for (j = i + 1; j < nbytes; j++) {
 867                                 if (c[j] != '\0')
 868                                         break;
 869                         }
 870 
 871                         if (j != nbytes)
 872                                 break;
 873 
 874                         if (quiet)
 875                                 return (dt_printf(dtp, fp, "%s", c));
 876                         else
 877                                 return (dt_printf(dtp, fp, "  %-*s", width, c));
 878                 }
 879 
 880                 break;
 881         }
 882 
 883         if (i == nbytes) {
 884                 /*
 885                  * The byte range is all printable characters, but there is
 886                  * no trailing nul byte.  We'll assume that it's a string and
 887                  * print it as such.
 888                  */
 889                 char *s = alloca(nbytes + 1);
 890                 bcopy(c, s, nbytes);
 891                 s[nbytes] = '\0';
 892                 return (dt_printf(dtp, fp, "  %-*s", width, s));
 893         }
 894 
 895 raw:
 896         if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
 897                 return (-1);
 898 
 899         for (i = 0; i < 16; i++)
 900                 if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
 901                         return (-1);
 902 
 903         if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
 904                 return (-1);
 905 
 906 
 907         for (i = 0; i < nbytes; i += 16) {
 908                 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
 909                         return (-1);
 910 
 911                 for (j = i; j < i + 16 && j < nbytes; j++) {
 912                         if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
 913                                 return (-1);
 914                 }
 915 
 916                 while (j++ % 16) {
 917                         if (dt_printf(dtp, fp, "   ") < 0)
 918                                 return (-1);
 919                 }
 920 
 921                 if (dt_printf(dtp, fp, "  ") < 0)
 922                         return (-1);
 923 
 924                 for (j = i; j < i + 16 && j < nbytes; j++) {
 925                         if (dt_printf(dtp, fp, "%c",
 926                             c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
 927                                 return (-1);
 928                 }
 929 
 930                 if (dt_printf(dtp, fp, "\n") < 0)
 931                         return (-1);
 932         }
 933 
 934         return (0);
 935 }
 936 
 937 int
 938 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
 939     caddr_t addr, int depth, int size)
 940 {
 941         dtrace_syminfo_t dts;
 942         GElf_Sym sym;
 943         int i, indent;
 944         char c[PATH_MAX * 2];
 945         uint64_t pc;
 946 
 947         if (dt_printf(dtp, fp, "\n") < 0)
 948                 return (-1);
 949 
 950         if (format == NULL)
 951                 format = "%s";
 952 
 953         if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
 954                 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
 955         else
 956                 indent = _dtrace_stkindent;
 957 
 958         for (i = 0; i < depth; i++) {
 959                 switch (size) {
 960                 case sizeof (uint32_t):
 961                         /* LINTED - alignment */
 962                         pc = *((uint32_t *)addr);
 963                         break;
 964 
 965                 case sizeof (uint64_t):
 966                         /* LINTED - alignment */
 967                         pc = *((uint64_t *)addr);
 968                         break;
 969 
 970                 default:
 971                         return (dt_set_errno(dtp, EDT_BADSTACKPC));
 972                 }
 973 
 974                 if (pc == NULL)
 975                         break;
 976 
 977                 addr += size;
 978 
 979                 if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
 980                         return (-1);
 981 
 982                 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
 983                         if (pc > sym.st_value) {
 984                                 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
 985                                     dts.dts_object, dts.dts_name,
 986                                     pc - sym.st_value);
 987                         } else {
 988                                 (void) snprintf(c, sizeof (c), "%s`%s",
 989                                     dts.dts_object, dts.dts_name);
 990                         }
 991                 } else {
 992                         /*
 993                          * We'll repeat the lookup, but this time we'll specify
 994                          * a NULL GElf_Sym -- indicating that we're only
 995                          * interested in the containing module.
 996                          */
 997                         if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
 998                                 (void) snprintf(c, sizeof (c), "%s`0x%llx",
 999                                     dts.dts_object, pc);
1000                         } else {
1001                                 (void) snprintf(c, sizeof (c), "0x%llx", pc);
1002                         }
1003                 }
1004 
1005                 if (dt_printf(dtp, fp, format, c) < 0)
1006                         return (-1);
1007 
1008                 if (dt_printf(dtp, fp, "\n") < 0)
1009                         return (-1);
1010         }
1011 
1012         return (0);
1013 }
1014 
1015 int
1016 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1017     caddr_t addr, uint64_t arg)
1018 {
1019         /* LINTED - alignment */
1020         uint64_t *pc = (uint64_t *)addr;
1021         uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1022         uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1023         const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1024         const char *str = strsize ? strbase : NULL;
1025         int err = 0;
1026 
1027         char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1028         struct ps_prochandle *P;
1029         GElf_Sym sym;
1030         int i, indent;
1031         pid_t pid;
1032 
1033         if (depth == 0)
1034                 return (0);
1035 
1036         pid = (pid_t)*pc++;
1037 
1038         if (dt_printf(dtp, fp, "\n") < 0)
1039                 return (-1);
1040 
1041         if (format == NULL)
1042                 format = "%s";
1043 
1044         if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1045                 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1046         else
1047                 indent = _dtrace_stkindent;
1048 
1049         /*
1050          * Ultimately, we need to add an entry point in the library vector for
1051          * determining <symbol, offset> from <pid, address>.  For now, if
1052          * this is a vector open, we just print the raw address or string.
1053          */
1054         if (dtp->dt_vector == NULL)
1055                 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1056         else
1057                 P = NULL;
1058 
1059         if (P != NULL)
1060                 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1061 
1062         for (i = 0; i < depth && pc[i] != NULL; i++) {
1063                 const prmap_t *map;
1064 
1065                 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1066                         break;
1067 
1068                 if (P != NULL && Plookup_by_addr(P, pc[i],
1069                     name, sizeof (name), &sym) == 0) {
1070                         (void) Pobjname(P, pc[i], objname, sizeof (objname));
1071 
1072                         if (pc[i] > sym.st_value) {
1073                                 (void) snprintf(c, sizeof (c),
1074                                     "%s`%s+0x%llx", dt_basename(objname), name,
1075                                     (u_longlong_t)(pc[i] - sym.st_value));
1076                         } else {
1077                                 (void) snprintf(c, sizeof (c),
1078                                     "%s`%s", dt_basename(objname), name);
1079                         }
1080                 } else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1081                     (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1082                     (map->pr_mflags & MA_WRITE)))) {
1083                         /*
1084                          * If the current string pointer in the string table
1085                          * does not point to an empty string _and_ the program
1086                          * counter falls in a writable region, we'll use the
1087                          * string from the string table instead of the raw
1088                          * address.  This last condition is necessary because
1089                          * some (broken) ustack helpers will return a string
1090                          * even for a program counter that they can't
1091                          * identify.  If we have a string for a program
1092                          * counter that falls in a segment that isn't
1093                          * writable, we assume that we have fallen into this
1094                          * case and we refuse to use the string.
1095                          */
1096                         (void) snprintf(c, sizeof (c), "%s", str);
1097                 } else {
1098                         if (P != NULL && Pobjname(P, pc[i], objname,
1099                             sizeof (objname)) != NULL) {
1100                                 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1101                                     dt_basename(objname), (u_longlong_t)pc[i]);
1102                         } else {
1103                                 (void) snprintf(c, sizeof (c), "0x%llx",
1104                                     (u_longlong_t)pc[i]);
1105                         }
1106                 }
1107 
1108                 if ((err = dt_printf(dtp, fp, format, c)) < 0)
1109                         break;
1110 
1111                 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1112                         break;
1113 
1114                 if (str != NULL && str[0] == '@') {
1115                         /*
1116                          * If the first character of the string is an "at" sign,
1117                          * then the string is inferred to be an annotation --
1118                          * and it is printed out beneath the frame and offset
1119                          * with brackets.
1120                          */
1121                         if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1122                                 break;
1123 
1124                         (void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1125 
1126                         if ((err = dt_printf(dtp, fp, format, c)) < 0)
1127                                 break;
1128 
1129                         if ((err = dt_printf(dtp, fp, "\n")) < 0)
1130                                 break;
1131                 }
1132 
1133                 if (str != NULL) {
1134                         str += strlen(str) + 1;
1135                         if (str - strbase >= strsize)
1136                                 str = NULL;
1137                 }
1138         }
1139 
1140         if (P != NULL) {
1141                 dt_proc_unlock(dtp, P);
1142                 dt_proc_release(dtp, P);
1143         }
1144 
1145         return (err);
1146 }
1147 
1148 static int
1149 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1150 {
1151         /* LINTED - alignment */
1152         uint64_t pid = ((uint64_t *)addr)[0];
1153         /* LINTED - alignment */
1154         uint64_t pc = ((uint64_t *)addr)[1];
1155         const char *format = "  %-50s";
1156         char *s;
1157         int n, len = 256;
1158 
1159         if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1160                 struct ps_prochandle *P;
1161 
1162                 if ((P = dt_proc_grab(dtp, pid,
1163                     PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1164                         GElf_Sym sym;
1165 
1166                         dt_proc_lock(dtp, P);
1167 
1168                         if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1169                                 pc = sym.st_value;
1170 
1171                         dt_proc_unlock(dtp, P);
1172                         dt_proc_release(dtp, P);
1173                 }
1174         }
1175 
1176         do {
1177                 n = len;
1178                 s = alloca(n);
1179         } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1180 
1181         return (dt_printf(dtp, fp, format, s));
1182 }
1183 
1184 int
1185 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1186 {
1187         /* LINTED - alignment */
1188         uint64_t pid = ((uint64_t *)addr)[0];
1189         /* LINTED - alignment */
1190         uint64_t pc = ((uint64_t *)addr)[1];
1191         int err = 0;
1192 
1193         char objname[PATH_MAX], c[PATH_MAX * 2];
1194         struct ps_prochandle *P;
1195 
1196         if (format == NULL)
1197                 format = "  %-50s";
1198 
1199         /*
1200          * See the comment in dt_print_ustack() for the rationale for
1201          * printing raw addresses in the vectored case.
1202          */
1203         if (dtp->dt_vector == NULL)
1204                 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1205         else
1206                 P = NULL;
1207 
1208         if (P != NULL)
1209                 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1210 
1211         if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1212                 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1213         } else {
1214                 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1215         }
1216 
1217         err = dt_printf(dtp, fp, format, c);
1218 
1219         if (P != NULL) {
1220                 dt_proc_unlock(dtp, P);
1221                 dt_proc_release(dtp, P);
1222         }
1223 
1224         return (err);
1225 }
1226 
1227 static int
1228 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1229 {
1230         /* LINTED - alignment */
1231         uint64_t pc = *((uint64_t *)addr);
1232         dtrace_syminfo_t dts;
1233         GElf_Sym sym;
1234         char c[PATH_MAX * 2];
1235 
1236         if (format == NULL)
1237                 format = "  %-50s";
1238 
1239         if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1240                 (void) snprintf(c, sizeof (c), "%s`%s",
1241                     dts.dts_object, dts.dts_name);
1242         } else {
1243                 /*
1244                  * We'll repeat the lookup, but this time we'll specify a
1245                  * NULL GElf_Sym -- indicating that we're only interested in
1246                  * the containing module.
1247                  */
1248                 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1249                         (void) snprintf(c, sizeof (c), "%s`0x%llx",
1250                             dts.dts_object, (u_longlong_t)pc);
1251                 } else {
1252                         (void) snprintf(c, sizeof (c), "0x%llx",
1253                             (u_longlong_t)pc);
1254                 }
1255         }
1256 
1257         if (dt_printf(dtp, fp, format, c) < 0)
1258                 return (-1);
1259 
1260         return (0);
1261 }
1262 
1263 int
1264 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1265 {
1266         /* LINTED - alignment */
1267         uint64_t pc = *((uint64_t *)addr);
1268         dtrace_syminfo_t dts;
1269         char c[PATH_MAX * 2];
1270 
1271         if (format == NULL)
1272                 format = "  %-50s";
1273 
1274         if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1275                 (void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1276         } else {
1277                 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1278         }
1279 
1280         if (dt_printf(dtp, fp, format, c) < 0)
1281                 return (-1);
1282 
1283         return (0);
1284 }
1285 
1286 typedef struct dt_normal {
1287         dtrace_aggvarid_t dtnd_id;
1288         uint64_t dtnd_normal;
1289 } dt_normal_t;
1290 
1291 static int
1292 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1293 {
1294         dt_normal_t *normal = arg;
1295         dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1296         dtrace_aggvarid_t id = normal->dtnd_id;
1297 
1298         if (agg->dtagd_nrecs == 0)
1299                 return (DTRACE_AGGWALK_NEXT);
1300 
1301         if (agg->dtagd_varid != id)
1302                 return (DTRACE_AGGWALK_NEXT);
1303 
1304         ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1305         return (DTRACE_AGGWALK_NORMALIZE);
1306 }
1307 
1308 static int
1309 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1310 {
1311         dt_normal_t normal;
1312         caddr_t addr;
1313 
1314         /*
1315          * We (should) have two records:  the aggregation ID followed by the
1316          * normalization value.
1317          */
1318         addr = base + rec->dtrd_offset;
1319 
1320         if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1321                 return (dt_set_errno(dtp, EDT_BADNORMAL));
1322 
1323         /* LINTED - alignment */
1324         normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1325         rec++;
1326 
1327         if (rec->dtrd_action != DTRACEACT_LIBACT)
1328                 return (dt_set_errno(dtp, EDT_BADNORMAL));
1329 
1330         if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1331                 return (dt_set_errno(dtp, EDT_BADNORMAL));
1332 
1333         addr = base + rec->dtrd_offset;
1334 
1335         switch (rec->dtrd_size) {
1336         case sizeof (uint64_t):
1337                 /* LINTED - alignment */
1338                 normal.dtnd_normal = *((uint64_t *)addr);
1339                 break;
1340         case sizeof (uint32_t):
1341                 /* LINTED - alignment */
1342                 normal.dtnd_normal = *((uint32_t *)addr);
1343                 break;
1344         case sizeof (uint16_t):
1345                 /* LINTED - alignment */
1346                 normal.dtnd_normal = *((uint16_t *)addr);
1347                 break;
1348         case sizeof (uint8_t):
1349                 normal.dtnd_normal = *((uint8_t *)addr);
1350                 break;
1351         default:
1352                 return (dt_set_errno(dtp, EDT_BADNORMAL));
1353         }
1354 
1355         (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1356 
1357         return (0);
1358 }
1359 
1360 static int
1361 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1362 {
1363         dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1364         dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1365 
1366         if (agg->dtagd_nrecs == 0)
1367                 return (DTRACE_AGGWALK_NEXT);
1368 
1369         if (agg->dtagd_varid != id)
1370                 return (DTRACE_AGGWALK_NEXT);
1371 
1372         return (DTRACE_AGGWALK_DENORMALIZE);
1373 }
1374 
1375 static int
1376 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1377 {
1378         dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1379         dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1380 
1381         if (agg->dtagd_nrecs == 0)
1382                 return (DTRACE_AGGWALK_NEXT);
1383 
1384         if (agg->dtagd_varid != id)
1385                 return (DTRACE_AGGWALK_NEXT);
1386 
1387         return (DTRACE_AGGWALK_CLEAR);
1388 }
1389 
1390 typedef struct dt_trunc {
1391         dtrace_aggvarid_t dttd_id;
1392         uint64_t dttd_remaining;
1393 } dt_trunc_t;
1394 
1395 static int
1396 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1397 {
1398         dt_trunc_t *trunc = arg;
1399         dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1400         dtrace_aggvarid_t id = trunc->dttd_id;
1401 
1402         if (agg->dtagd_nrecs == 0)
1403                 return (DTRACE_AGGWALK_NEXT);
1404 
1405         if (agg->dtagd_varid != id)
1406                 return (DTRACE_AGGWALK_NEXT);
1407 
1408         if (trunc->dttd_remaining == 0)
1409                 return (DTRACE_AGGWALK_REMOVE);
1410 
1411         trunc->dttd_remaining--;
1412         return (DTRACE_AGGWALK_NEXT);
1413 }
1414 
1415 static int
1416 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1417 {
1418         dt_trunc_t trunc;
1419         caddr_t addr;
1420         int64_t remaining;
1421         int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1422 
1423         /*
1424          * We (should) have two records:  the aggregation ID followed by the
1425          * number of aggregation entries after which the aggregation is to be
1426          * truncated.
1427          */
1428         addr = base + rec->dtrd_offset;
1429 
1430         if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1431                 return (dt_set_errno(dtp, EDT_BADTRUNC));
1432 
1433         /* LINTED - alignment */
1434         trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1435         rec++;
1436 
1437         if (rec->dtrd_action != DTRACEACT_LIBACT)
1438                 return (dt_set_errno(dtp, EDT_BADTRUNC));
1439 
1440         if (rec->dtrd_arg != DT_ACT_TRUNC)
1441                 return (dt_set_errno(dtp, EDT_BADTRUNC));
1442 
1443         addr = base + rec->dtrd_offset;
1444 
1445         switch (rec->dtrd_size) {
1446         case sizeof (uint64_t):
1447                 /* LINTED - alignment */
1448                 remaining = *((int64_t *)addr);
1449                 break;
1450         case sizeof (uint32_t):
1451                 /* LINTED - alignment */
1452                 remaining = *((int32_t *)addr);
1453                 break;
1454         case sizeof (uint16_t):
1455                 /* LINTED - alignment */
1456                 remaining = *((int16_t *)addr);
1457                 break;
1458         case sizeof (uint8_t):
1459                 remaining = *((int8_t *)addr);
1460                 break;
1461         default:
1462                 return (dt_set_errno(dtp, EDT_BADNORMAL));
1463         }
1464 
1465         if (remaining < 0) {
1466                 func = dtrace_aggregate_walk_valsorted;
1467                 remaining = -remaining;
1468         } else {
1469                 func = dtrace_aggregate_walk_valrevsorted;
1470         }
1471 
1472         assert(remaining >= 0);
1473         trunc.dttd_remaining = remaining;
1474 
1475         (void) func(dtp, dt_trunc_agg, &trunc);
1476 
1477         return (0);
1478 }
1479 
1480 static int
1481 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1482     caddr_t addr, size_t size, uint64_t normal)
1483 {
1484         int err;
1485         dtrace_actkind_t act = rec->dtrd_action;
1486 
1487         switch (act) {
1488         case DTRACEACT_STACK:
1489                 return (dt_print_stack(dtp, fp, NULL, addr,
1490                     rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1491 
1492         case DTRACEACT_USTACK:
1493         case DTRACEACT_JSTACK:
1494                 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1495 
1496         case DTRACEACT_USYM:
1497         case DTRACEACT_UADDR:
1498                 return (dt_print_usym(dtp, fp, addr, act));
1499 
1500         case DTRACEACT_UMOD:
1501                 return (dt_print_umod(dtp, fp, NULL, addr));
1502 
1503         case DTRACEACT_SYM:
1504                 return (dt_print_sym(dtp, fp, NULL, addr));
1505 
1506         case DTRACEACT_MOD:
1507                 return (dt_print_mod(dtp, fp, NULL, addr));
1508 
1509         case DTRACEAGG_QUANTIZE:
1510                 return (dt_print_quantize(dtp, fp, addr, size, normal));
1511 
1512         case DTRACEAGG_LQUANTIZE:
1513                 return (dt_print_lquantize(dtp, fp, addr, size, normal));
1514 
1515         case DTRACEAGG_LLQUANTIZE:
1516                 return (dt_print_llquantize(dtp, fp, addr, size, normal));
1517 
1518         case DTRACEAGG_AVG:
1519                 return (dt_print_average(dtp, fp, addr, size, normal));
1520 
1521         case DTRACEAGG_STDDEV:
1522                 return (dt_print_stddev(dtp, fp, addr, size, normal));
1523 
1524         default:
1525                 break;
1526         }
1527 
1528         switch (size) {
1529         case sizeof (uint64_t):
1530                 err = dt_printf(dtp, fp, " %16lld",
1531                     /* LINTED - alignment */
1532                     (long long)*((uint64_t *)addr) / normal);
1533                 break;
1534         case sizeof (uint32_t):
1535                 /* LINTED - alignment */
1536                 err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1537                     (uint32_t)normal);
1538                 break;
1539         case sizeof (uint16_t):
1540                 /* LINTED - alignment */
1541                 err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1542                     (uint32_t)normal);
1543                 break;
1544         case sizeof (uint8_t):
1545                 err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1546                     (uint32_t)normal);
1547                 break;
1548         default:
1549                 err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1550                 break;
1551         }
1552 
1553         return (err);
1554 }
1555 
1556 int
1557 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1558 {
1559         int i, aggact = 0;
1560         dt_print_aggdata_t *pd = arg;
1561         const dtrace_aggdata_t *aggdata = aggsdata[0];
1562         dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1563         FILE *fp = pd->dtpa_fp;
1564         dtrace_hdl_t *dtp = pd->dtpa_dtp;
1565         dtrace_recdesc_t *rec;
1566         dtrace_actkind_t act;
1567         caddr_t addr;
1568         size_t size;
1569 
1570         /*
1571          * Iterate over each record description in the key, printing the traced
1572          * data, skipping the first datum (the tuple member created by the
1573          * compiler).
1574          */
1575         for (i = 1; i < agg->dtagd_nrecs; i++) {
1576                 rec = &agg->dtagd_rec[i];
1577                 act = rec->dtrd_action;
1578                 addr = aggdata->dtada_data + rec->dtrd_offset;
1579                 size = rec->dtrd_size;
1580 
1581                 if (DTRACEACT_ISAGG(act)) {
1582                         aggact = i;
1583                         break;
1584                 }
1585 
1586                 if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1587                         return (-1);
1588 
1589                 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1590                     DTRACE_BUFDATA_AGGKEY) < 0)
1591                         return (-1);
1592         }
1593 
1594         assert(aggact != 0);
1595 
1596         for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1597                 uint64_t normal;
1598 
1599                 aggdata = aggsdata[i];
1600                 agg = aggdata->dtada_desc;
1601                 rec = &agg->dtagd_rec[aggact];
1602                 act = rec->dtrd_action;
1603                 addr = aggdata->dtada_data + rec->dtrd_offset;
1604                 size = rec->dtrd_size;
1605 
1606                 assert(DTRACEACT_ISAGG(act));
1607                 normal = aggdata->dtada_normal;
1608 
1609                 if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1610                         return (-1);
1611 
1612                 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1613                     DTRACE_BUFDATA_AGGVAL) < 0)
1614                         return (-1);
1615 
1616                 if (!pd->dtpa_allunprint)
1617                         agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1618         }
1619 
1620         if (dt_printf(dtp, fp, "\n") < 0)
1621                 return (-1);
1622 
1623         if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1624             DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1625                 return (-1);
1626 
1627         return (0);
1628 }
1629 
1630 int
1631 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1632 {
1633         dt_print_aggdata_t *pd = arg;
1634         dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1635         dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1636 
1637         if (pd->dtpa_allunprint) {
1638                 if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1639                         return (0);
1640         } else {
1641                 /*
1642                  * If we're not printing all unprinted aggregations, then the
1643                  * aggregation variable ID denotes a specific aggregation
1644                  * variable that we should print -- skip any other aggregations
1645                  * that we encounter.
1646                  */
1647                 if (agg->dtagd_nrecs == 0)
1648                         return (0);
1649 
1650                 if (aggvarid != agg->dtagd_varid)
1651                         return (0);
1652         }
1653 
1654         return (dt_print_aggs(&aggdata, 1, arg));
1655 }
1656 
1657 int
1658 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1659     const char *option, const char *value)
1660 {
1661         int len, rval;
1662         char *msg;
1663         const char *errstr;
1664         dtrace_setoptdata_t optdata;
1665 
1666         bzero(&optdata, sizeof (optdata));
1667         (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1668 
1669         if (dtrace_setopt(dtp, option, value) == 0) {
1670                 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1671                 optdata.dtsda_probe = data;
1672                 optdata.dtsda_option = option;
1673                 optdata.dtsda_handle = dtp;
1674 
1675                 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1676                         return (rval);
1677 
1678                 return (0);
1679         }
1680 
1681         errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1682         len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1683         msg = alloca(len);
1684 
1685         (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1686             option, value, errstr);
1687 
1688         if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1689                 return (0);
1690 
1691         return (rval);
1692 }
1693 
1694 static int
1695 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
1696     dtrace_bufdesc_t *buf, boolean_t just_one,
1697     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1698 {
1699         dtrace_epid_t id;
1700         size_t offs;
1701         int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1702         int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1703         int rval, i, n;
1704         uint64_t tracememsize = 0;
1705         dtrace_probedata_t data;
1706         uint64_t drops;
1707 
1708         bzero(&data, sizeof (data));
1709         data.dtpda_handle = dtp;
1710         data.dtpda_cpu = cpu;
1711         data.dtpda_flow = dtp->dt_flow;
1712         data.dtpda_indent = dtp->dt_indent;
1713         data.dtpda_prefix = dtp->dt_prefix;
1714 
1715         for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
1716                 dtrace_eprobedesc_t *epd;
1717 
1718                 /*
1719                  * We're guaranteed to have an ID.
1720                  */
1721                 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1722 
1723                 if (id == DTRACE_EPIDNONE) {
1724                         /*
1725                          * This is filler to assure proper alignment of the
1726                          * next record; we simply ignore it.
1727                          */
1728                         offs += sizeof (id);
1729                         continue;
1730                 }
1731 
1732                 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1733                     &data.dtpda_pdesc)) != 0)
1734                         return (rval);
1735 
1736                 epd = data.dtpda_edesc;
1737                 data.dtpda_data = buf->dtbd_data + offs;
1738 
1739                 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1740                         rval = dt_handle(dtp, &data);
1741 
1742                         if (rval == DTRACE_CONSUME_NEXT)
1743                                 goto nextepid;
1744 
1745                         if (rval == DTRACE_CONSUME_ERROR)
1746                                 return (-1);
1747                 }
1748 
1749                 if (flow)
1750                         (void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
1751                             buf, offs);
1752 
1753                 rval = (*efunc)(&data, arg);
1754 
1755                 if (flow) {
1756                         if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1757                                 data.dtpda_indent += 2;
1758                 }
1759 
1760                 if (rval == DTRACE_CONSUME_NEXT)
1761                         goto nextepid;
1762 
1763                 if (rval == DTRACE_CONSUME_ABORT)
1764                         return (dt_set_errno(dtp, EDT_DIRABORT));
1765 
1766                 if (rval != DTRACE_CONSUME_THIS)
1767                         return (dt_set_errno(dtp, EDT_BADRVAL));
1768 
1769                 for (i = 0; i < epd->dtepd_nrecs; i++) {
1770                         caddr_t addr;
1771                         dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1772                         dtrace_actkind_t act = rec->dtrd_action;
1773 
1774                         data.dtpda_data = buf->dtbd_data + offs +
1775                             rec->dtrd_offset;
1776                         addr = data.dtpda_data;
1777 
1778                         if (act == DTRACEACT_LIBACT) {
1779                                 uint64_t arg = rec->dtrd_arg;
1780                                 dtrace_aggvarid_t id;
1781 
1782                                 switch (arg) {
1783                                 case DT_ACT_CLEAR:
1784                                         /* LINTED - alignment */
1785                                         id = *((dtrace_aggvarid_t *)addr);
1786                                         (void) dtrace_aggregate_walk(dtp,
1787                                             dt_clear_agg, &id);
1788                                         continue;
1789 
1790                                 case DT_ACT_DENORMALIZE:
1791                                         /* LINTED - alignment */
1792                                         id = *((dtrace_aggvarid_t *)addr);
1793                                         (void) dtrace_aggregate_walk(dtp,
1794                                             dt_denormalize_agg, &id);
1795                                         continue;
1796 
1797                                 case DT_ACT_FTRUNCATE:
1798                                         if (fp == NULL)
1799                                                 continue;
1800 
1801                                         (void) fflush(fp);
1802                                         (void) ftruncate(fileno(fp), 0);
1803                                         (void) fseeko(fp, 0, SEEK_SET);
1804                                         continue;
1805 
1806                                 case DT_ACT_NORMALIZE:
1807                                         if (i == epd->dtepd_nrecs - 1)
1808                                                 return (dt_set_errno(dtp,
1809                                                     EDT_BADNORMAL));
1810 
1811                                         if (dt_normalize(dtp,
1812                                             buf->dtbd_data + offs, rec) != 0)
1813                                                 return (-1);
1814 
1815                                         i++;
1816                                         continue;
1817 
1818                                 case DT_ACT_SETOPT: {
1819                                         uint64_t *opts = dtp->dt_options;
1820                                         dtrace_recdesc_t *valrec;
1821                                         uint32_t valsize;
1822                                         caddr_t val;
1823                                         int rv;
1824 
1825                                         if (i == epd->dtepd_nrecs - 1) {
1826                                                 return (dt_set_errno(dtp,
1827                                                     EDT_BADSETOPT));
1828                                         }
1829 
1830                                         valrec = &epd->dtepd_rec[++i];
1831                                         valsize = valrec->dtrd_size;
1832 
1833                                         if (valrec->dtrd_action != act ||
1834                                             valrec->dtrd_arg != arg) {
1835                                                 return (dt_set_errno(dtp,
1836                                                     EDT_BADSETOPT));
1837                                         }
1838 
1839                                         if (valsize > sizeof (uint64_t)) {
1840                                                 val = buf->dtbd_data + offs +
1841                                                     valrec->dtrd_offset;
1842                                         } else {
1843                                                 val = "1";
1844                                         }
1845 
1846                                         rv = dt_setopt(dtp, &data, addr, val);
1847 
1848                                         if (rv != 0)
1849                                                 return (-1);
1850 
1851                                         flow = (opts[DTRACEOPT_FLOWINDENT] !=
1852                                             DTRACEOPT_UNSET);
1853                                         quiet = (opts[DTRACEOPT_QUIET] !=
1854                                             DTRACEOPT_UNSET);
1855 
1856                                         continue;
1857                                 }
1858 
1859                                 case DT_ACT_TRUNC:
1860                                         if (i == epd->dtepd_nrecs - 1)
1861                                                 return (dt_set_errno(dtp,
1862                                                     EDT_BADTRUNC));
1863 
1864                                         if (dt_trunc(dtp,
1865                                             buf->dtbd_data + offs, rec) != 0)
1866                                                 return (-1);
1867 
1868                                         i++;
1869                                         continue;
1870 
1871                                 default:
1872                                         continue;
1873                                 }
1874                         }
1875 
1876                         if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
1877                             rec->dtrd_size == sizeof (uint64_t)) {
1878                                 /* LINTED - alignment */
1879                                 tracememsize = *((unsigned long long *)addr);
1880                                 continue;
1881                         }
1882 
1883                         rval = (*rfunc)(&data, rec, arg);
1884 
1885                         if (rval == DTRACE_CONSUME_NEXT)
1886                                 continue;
1887 
1888                         if (rval == DTRACE_CONSUME_ABORT)
1889                                 return (dt_set_errno(dtp, EDT_DIRABORT));
1890 
1891                         if (rval != DTRACE_CONSUME_THIS)
1892                                 return (dt_set_errno(dtp, EDT_BADRVAL));
1893 
1894                         if (act == DTRACEACT_STACK) {
1895                                 int depth = rec->dtrd_arg;
1896 
1897                                 if (dt_print_stack(dtp, fp, NULL, addr, depth,
1898                                     rec->dtrd_size / depth) < 0)
1899                                         return (-1);
1900                                 goto nextrec;
1901                         }
1902 
1903                         if (act == DTRACEACT_USTACK ||
1904                             act == DTRACEACT_JSTACK) {
1905                                 if (dt_print_ustack(dtp, fp, NULL,
1906                                     addr, rec->dtrd_arg) < 0)
1907                                         return (-1);
1908                                 goto nextrec;
1909                         }
1910 
1911                         if (act == DTRACEACT_SYM) {
1912                                 if (dt_print_sym(dtp, fp, NULL, addr) < 0)
1913                                         return (-1);
1914                                 goto nextrec;
1915                         }
1916 
1917                         if (act == DTRACEACT_MOD) {
1918                                 if (dt_print_mod(dtp, fp, NULL, addr) < 0)
1919                                         return (-1);
1920                                 goto nextrec;
1921                         }
1922 
1923                         if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
1924                                 if (dt_print_usym(dtp, fp, addr, act) < 0)
1925                                         return (-1);
1926                                 goto nextrec;
1927                         }
1928 
1929                         if (act == DTRACEACT_UMOD) {
1930                                 if (dt_print_umod(dtp, fp, NULL, addr) < 0)
1931                                         return (-1);
1932                                 goto nextrec;
1933                         }
1934 
1935                         if (DTRACEACT_ISPRINTFLIKE(act)) {
1936                                 void *fmtdata;
1937                                 int (*func)(dtrace_hdl_t *, FILE *, void *,
1938                                     const dtrace_probedata_t *,
1939                                     const dtrace_recdesc_t *, uint_t,
1940                                     const void *buf, size_t);
1941 
1942                                 if ((fmtdata = dt_format_lookup(dtp,
1943                                     rec->dtrd_format)) == NULL)
1944                                         goto nofmt;
1945 
1946                                 switch (act) {
1947                                 case DTRACEACT_PRINTF:
1948                                         func = dtrace_fprintf;
1949                                         break;
1950                                 case DTRACEACT_PRINTA:
1951                                         func = dtrace_fprinta;
1952                                         break;
1953                                 case DTRACEACT_SYSTEM:
1954                                         func = dtrace_system;
1955                                         break;
1956                                 case DTRACEACT_FREOPEN:
1957                                         func = dtrace_freopen;
1958                                         break;
1959                                 }
1960 
1961                                 n = (*func)(dtp, fp, fmtdata, &data,
1962                                     rec, epd->dtepd_nrecs - i,
1963                                     (uchar_t *)buf->dtbd_data + offs,
1964                                     buf->dtbd_size - offs);
1965 
1966                                 if (n < 0)
1967                                         return (-1); /* errno is set for us */
1968 
1969                                 if (n > 0)
1970                                         i += n - 1;
1971                                 goto nextrec;
1972                         }
1973 
1974                         /*
1975                          * If this is a DIF expression, and the record has a
1976                          * format set, this indicates we have a CTF type name
1977                          * associated with the data and we should try to print
1978                          * it out by type.
1979                          */
1980                         if (act == DTRACEACT_DIFEXPR) {
1981                                 const char *strdata = dt_strdata_lookup(dtp,
1982                                     rec->dtrd_format);
1983                                 if (strdata != NULL) {
1984                                         n = dtrace_print(dtp, fp, strdata,
1985                                             addr, rec->dtrd_size);
1986 
1987                                         /*
1988                                          * dtrace_print() will return -1 on
1989                                          * error, or return the number of bytes
1990                                          * consumed.  It will return 0 if the
1991                                          * type couldn't be determined, and we
1992                                          * should fall through to the normal
1993                                          * trace method.
1994                                          */
1995                                         if (n < 0)
1996                                                 return (-1);
1997 
1998                                         if (n > 0)
1999                                                 goto nextrec;
2000                                 }
2001                         }
2002 
2003 nofmt:
2004                         if (act == DTRACEACT_PRINTA) {
2005                                 dt_print_aggdata_t pd;
2006                                 dtrace_aggvarid_t *aggvars;
2007                                 int j, naggvars = 0;
2008                                 size_t size = ((epd->dtepd_nrecs - i) *
2009                                     sizeof (dtrace_aggvarid_t));
2010 
2011                                 if ((aggvars = dt_alloc(dtp, size)) == NULL)
2012                                         return (-1);
2013 
2014                                 /*
2015                                  * This might be a printa() with multiple
2016                                  * aggregation variables.  We need to scan
2017                                  * forward through the records until we find
2018                                  * a record from a different statement.
2019                                  */
2020                                 for (j = i; j < epd->dtepd_nrecs; j++) {
2021                                         dtrace_recdesc_t *nrec;
2022                                         caddr_t naddr;
2023 
2024                                         nrec = &epd->dtepd_rec[j];
2025 
2026                                         if (nrec->dtrd_uarg != rec->dtrd_uarg)
2027                                                 break;
2028 
2029                                         if (nrec->dtrd_action != act) {
2030                                                 return (dt_set_errno(dtp,
2031                                                     EDT_BADAGG));
2032                                         }
2033 
2034                                         naddr = buf->dtbd_data + offs +
2035                                             nrec->dtrd_offset;
2036 
2037                                         aggvars[naggvars++] =
2038                                             /* LINTED - alignment */
2039                                             *((dtrace_aggvarid_t *)naddr);
2040                                 }
2041 
2042                                 i = j - 1;
2043                                 bzero(&pd, sizeof (pd));
2044                                 pd.dtpa_dtp = dtp;
2045                                 pd.dtpa_fp = fp;
2046 
2047                                 assert(naggvars >= 1);
2048 
2049                                 if (naggvars == 1) {
2050                                         pd.dtpa_id = aggvars[0];
2051                                         dt_free(dtp, aggvars);
2052 
2053                                         if (dt_printf(dtp, fp, "\n") < 0 ||
2054                                             dtrace_aggregate_walk_sorted(dtp,
2055                                             dt_print_agg, &pd) < 0)
2056                                                 return (-1);
2057                                         goto nextrec;
2058                                 }
2059 
2060                                 if (dt_printf(dtp, fp, "\n") < 0 ||
2061                                     dtrace_aggregate_walk_joined(dtp, aggvars,
2062                                     naggvars, dt_print_aggs, &pd) < 0) {
2063                                         dt_free(dtp, aggvars);
2064                                         return (-1);
2065                                 }
2066 
2067                                 dt_free(dtp, aggvars);
2068                                 goto nextrec;
2069                         }
2070 
2071                         if (act == DTRACEACT_TRACEMEM) {
2072                                 if (tracememsize == 0 ||
2073                                     tracememsize > rec->dtrd_size) {
2074                                         tracememsize = rec->dtrd_size;
2075                                 }
2076 
2077                                 n = dt_print_bytes(dtp, fp, addr,
2078                                     tracememsize, 33, quiet, 1);
2079 
2080                                 tracememsize = 0;
2081 
2082                                 if (n < 0)
2083                                         return (-1);
2084 
2085                                 goto nextrec;
2086                         }
2087 
2088                         switch (rec->dtrd_size) {
2089                         case sizeof (uint64_t):
2090                                 n = dt_printf(dtp, fp,
2091                                     quiet ? "%lld" : " %16lld",
2092                                     /* LINTED - alignment */
2093                                     *((unsigned long long *)addr));
2094                                 break;
2095                         case sizeof (uint32_t):
2096                                 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2097                                     /* LINTED - alignment */
2098                                     *((uint32_t *)addr));
2099                                 break;
2100                         case sizeof (uint16_t):
2101                                 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2102                                     /* LINTED - alignment */
2103                                     *((uint16_t *)addr));
2104                                 break;
2105                         case sizeof (uint8_t):
2106                                 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2107                                     *((uint8_t *)addr));
2108                                 break;
2109                         default:
2110                                 n = dt_print_bytes(dtp, fp, addr,
2111                                     rec->dtrd_size, 33, quiet, 0);
2112                                 break;
2113                         }
2114 
2115                         if (n < 0)
2116                                 return (-1); /* errno is set for us */
2117 
2118 nextrec:
2119                         if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2120                                 return (-1); /* errno is set for us */
2121                 }
2122 
2123                 /*
2124                  * Call the record callback with a NULL record to indicate
2125                  * that we're done processing this EPID.
2126                  */
2127                 rval = (*rfunc)(&data, NULL, arg);
2128 nextepid:
2129                 offs += epd->dtepd_size;
2130                 dtp->dt_last_epid = id;
2131                 if (just_one) {
2132                         buf->dtbd_oldest = offs;
2133                         break;
2134                 }
2135         }
2136 
2137         dtp->dt_flow = data.dtpda_flow;
2138         dtp->dt_indent = data.dtpda_indent;
2139         dtp->dt_prefix = data.dtpda_prefix;
2140 
2141         if ((drops = buf->dtbd_drops) == 0)
2142                 return (0);
2143 
2144         /*
2145          * Explicitly zero the drops to prevent us from processing them again.
2146          */
2147         buf->dtbd_drops = 0;
2148 
2149         return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2150 }
2151 
2152 /*
2153  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2154  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2155  * only 4-byte aligned.
2156  */
2157 static void
2158 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2159 {
2160         uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2161         if (used < cursize / 2) {
2162                 int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2163                 char *newdata = dt_alloc(dtp, used + misalign);
2164                 if (newdata == NULL)
2165                         return;
2166                 bzero(newdata, misalign);
2167                 bcopy(buf->dtbd_data + buf->dtbd_oldest,
2168                     newdata + misalign, used);
2169                 dt_free(dtp, buf->dtbd_data);
2170                 buf->dtbd_oldest = misalign;
2171                 buf->dtbd_size = used + misalign;
2172                 buf->dtbd_data = newdata;
2173         }
2174 }
2175 
2176 /*
2177  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2178  * so that it is.  Note, we need to preserve the alignment of the data at
2179  * dtbd_oldest, which is only 4-byte aligned.
2180  */
2181 static int
2182 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2183 {
2184         int misalign;
2185         char *newdata, *ndp;
2186 
2187         if (buf->dtbd_oldest == 0)
2188                 return (0);
2189 
2190         misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2191         newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2192 
2193         if (newdata == NULL)
2194                 return (-1);
2195 
2196         assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2197 
2198         bzero(ndp, misalign);
2199         ndp += misalign;
2200 
2201         bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2202             buf->dtbd_size - buf->dtbd_oldest);
2203         ndp += buf->dtbd_size - buf->dtbd_oldest;
2204 
2205         bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2206 
2207         dt_free(dtp, buf->dtbd_data);
2208         buf->dtbd_oldest = 0;
2209         buf->dtbd_data = newdata;
2210         buf->dtbd_size += misalign;
2211 
2212         return (0);
2213 }
2214 
2215 static void
2216 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2217 {
2218         dt_free(dtp, buf->dtbd_data);
2219         dt_free(dtp, buf);
2220 }
2221 
2222 /*
2223  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2224  * data, or NULL if there is no data for this CPU.
2225  * Returns -1 on failure and sets dt_errno.
2226  */
2227 static int
2228 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2229 {
2230         dtrace_optval_t size;
2231         dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2232         int error;
2233 
2234         if (buf == NULL)
2235                 return (-1);
2236 
2237         (void) dtrace_getopt(dtp, "bufsize", &size);
2238         buf->dtbd_data = dt_alloc(dtp, size);
2239         if (buf->dtbd_data == NULL) {
2240                 dt_free(dtp, buf);
2241                 return (-1);
2242         }
2243         buf->dtbd_size = size;
2244         buf->dtbd_cpu = cpu;
2245 
2246         if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2247                 dt_put_buf(dtp, buf);
2248                 /*
2249                  * If we failed with ENOENT, it may be because the
2250                  * CPU was unconfigured -- this is okay.  Any other
2251                  * error, however, is unexpected.
2252                  */
2253                 if (errno == ENOENT) {
2254                         *bufp = NULL;
2255                         return (0);
2256                 }
2257 
2258                 return (dt_set_errno(dtp, errno));
2259         }
2260 
2261         error = dt_unring_buf(dtp, buf);
2262         if (error != 0) {
2263                 dt_put_buf(dtp, buf);
2264                 return (error);
2265         }
2266         dt_realloc_buf(dtp, buf, size);
2267 
2268         *bufp = buf;
2269         return (0);
2270 }
2271 
2272 typedef struct dt_begin {
2273         dtrace_consume_probe_f *dtbgn_probefunc;
2274         dtrace_consume_rec_f *dtbgn_recfunc;
2275         void *dtbgn_arg;
2276         dtrace_handle_err_f *dtbgn_errhdlr;
2277         void *dtbgn_errarg;
2278         int dtbgn_beginonly;
2279 } dt_begin_t;
2280 
2281 static int
2282 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2283 {
2284         dt_begin_t *begin = arg;
2285         dtrace_probedesc_t *pd = data->dtpda_pdesc;
2286 
2287         int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2288         int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2289 
2290         if (begin->dtbgn_beginonly) {
2291                 if (!(r1 && r2))
2292                         return (DTRACE_CONSUME_NEXT);
2293         } else {
2294                 if (r1 && r2)
2295                         return (DTRACE_CONSUME_NEXT);
2296         }
2297 
2298         /*
2299          * We have a record that we're interested in.  Now call the underlying
2300          * probe function...
2301          */
2302         return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2303 }
2304 
2305 static int
2306 dt_consume_begin_record(const dtrace_probedata_t *data,
2307     const dtrace_recdesc_t *rec, void *arg)
2308 {
2309         dt_begin_t *begin = arg;
2310 
2311         return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2312 }
2313 
2314 static int
2315 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2316 {
2317         dt_begin_t *begin = (dt_begin_t *)arg;
2318         dtrace_probedesc_t *pd = data->dteda_pdesc;
2319 
2320         int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2321         int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2322 
2323         if (begin->dtbgn_beginonly) {
2324                 if (!(r1 && r2))
2325                         return (DTRACE_HANDLE_OK);
2326         } else {
2327                 if (r1 && r2)
2328                         return (DTRACE_HANDLE_OK);
2329         }
2330 
2331         return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2332 }
2333 
2334 static int
2335 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2336     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2337 {
2338         /*
2339          * There's this idea that the BEGIN probe should be processed before
2340          * everything else, and that the END probe should be processed after
2341          * anything else.  In the common case, this is pretty easy to deal
2342          * with.  However, a situation may arise where the BEGIN enabling and
2343          * END enabling are on the same CPU, and some enabling in the middle
2344          * occurred on a different CPU.  To deal with this (blech!) we need to
2345          * consume the BEGIN buffer up until the end of the BEGIN probe, and
2346          * then set it aside.  We will then process every other CPU, and then
2347          * we'll return to the BEGIN CPU and process the rest of the data
2348          * (which will inevitably include the END probe, if any).  Making this
2349          * even more complicated (!) is the library's ERROR enabling.  Because
2350          * this enabling is processed before we even get into the consume call
2351          * back, any ERROR firing would result in the library's ERROR enabling
2352          * being processed twice -- once in our first pass (for BEGIN probes),
2353          * and again in our second pass (for everything but BEGIN probes).  To
2354          * deal with this, we interpose on the ERROR handler to assure that we
2355          * only process ERROR enablings induced by BEGIN enablings in the
2356          * first pass, and that we only process ERROR enablings _not_ induced
2357          * by BEGIN enablings in the second pass.
2358          */
2359 
2360         dt_begin_t begin;
2361         processorid_t cpu = dtp->dt_beganon;
2362         int rval, i;
2363         static int max_ncpus;
2364         dtrace_bufdesc_t *buf;
2365 
2366         dtp->dt_beganon = -1;
2367 
2368         if (dt_get_buf(dtp, cpu, &buf) != 0)
2369                 return (-1);
2370         if (buf == NULL)
2371                 return (0);
2372 
2373         if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2374                 /*
2375                  * This is the simple case.  We're either not stopped, or if
2376                  * we are, we actually processed any END probes on another
2377                  * CPU.  We can simply consume this buffer and return.
2378                  */
2379                 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2380                     pf, rf, arg);
2381                 dt_put_buf(dtp, buf);
2382                 return (rval);
2383         }
2384 
2385         begin.dtbgn_probefunc = pf;
2386         begin.dtbgn_recfunc = rf;
2387         begin.dtbgn_arg = arg;
2388         begin.dtbgn_beginonly = 1;
2389 
2390         /*
2391          * We need to interpose on the ERROR handler to be sure that we
2392          * only process ERRORs induced by BEGIN.
2393          */
2394         begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2395         begin.dtbgn_errarg = dtp->dt_errarg;
2396         dtp->dt_errhdlr = dt_consume_begin_error;
2397         dtp->dt_errarg = &begin;
2398 
2399         rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2400             dt_consume_begin_probe, dt_consume_begin_record, &begin);
2401 
2402         dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2403         dtp->dt_errarg = begin.dtbgn_errarg;
2404 
2405         if (rval != 0) {
2406                 dt_put_buf(dtp, buf);
2407                 return (rval);
2408         }
2409 
2410         if (max_ncpus == 0)
2411                 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2412 
2413         for (i = 0; i < max_ncpus; i++) {
2414                 dtrace_bufdesc_t *nbuf;
2415                 if (i == cpu)
2416                         continue;
2417 
2418                 if (dt_get_buf(dtp, i, &nbuf) != 0) {
2419                         dt_put_buf(dtp, buf);
2420                         return (-1);
2421                 }
2422                 if (nbuf == NULL)
2423                         continue;
2424 
2425                 rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2426                     pf, rf, arg);
2427                 dt_put_buf(dtp, nbuf);
2428                 if (rval != 0) {
2429                         dt_put_buf(dtp, buf);
2430                         return (rval);
2431                 }
2432         }
2433 
2434         /*
2435          * Okay -- we're done with the other buffers.  Now we want to
2436          * reconsume the first buffer -- but this time we're looking for
2437          * everything _but_ BEGIN.  And of course, in order to only consume
2438          * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2439          * ERROR interposition function...
2440          */
2441         begin.dtbgn_beginonly = 0;
2442 
2443         assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2444         assert(begin.dtbgn_errarg == dtp->dt_errarg);
2445         dtp->dt_errhdlr = dt_consume_begin_error;
2446         dtp->dt_errarg = &begin;
2447 
2448         rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2449             dt_consume_begin_probe, dt_consume_begin_record, &begin);
2450 
2451         dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2452         dtp->dt_errarg = begin.dtbgn_errarg;
2453 
2454         return (rval);
2455 }
2456 
2457 /* ARGSUSED */
2458 static uint64_t
2459 dt_buf_oldest(void *elem, void *arg)
2460 {
2461         dtrace_bufdesc_t *buf = elem;
2462         size_t offs = buf->dtbd_oldest;
2463 
2464         while (offs < buf->dtbd_size) {
2465                 dtrace_rechdr_t *dtrh =
2466                     /* LINTED - alignment */
2467                     (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2468                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2469                         offs += sizeof (dtrace_epid_t);
2470                 } else {
2471                         return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2472                 }
2473         }
2474 
2475         /* There are no records left; use the time the buffer was retrieved. */
2476         return (buf->dtbd_timestamp);
2477 }
2478 
2479 int
2480 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2481     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2482 {
2483         dtrace_optval_t size;
2484         static int max_ncpus;
2485         int i, rval;
2486         dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2487         hrtime_t now = gethrtime();
2488 
2489         if (dtp->dt_lastswitch != 0) {
2490                 if (now - dtp->dt_lastswitch < interval)
2491                         return (0);
2492 
2493                 dtp->dt_lastswitch += interval;
2494         } else {
2495                 dtp->dt_lastswitch = now;
2496         }
2497 
2498         if (!dtp->dt_active)
2499                 return (dt_set_errno(dtp, EINVAL));
2500 
2501         if (max_ncpus == 0)
2502                 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2503 
2504         if (pf == NULL)
2505                 pf = (dtrace_consume_probe_f *)dt_nullprobe;
2506 
2507         if (rf == NULL)
2508                 rf = (dtrace_consume_rec_f *)dt_nullrec;
2509 
2510         if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2511                 /*
2512                  * The output will not be in the order it was traced.  Rather,
2513                  * we will consume all of the data from each CPU's buffer in
2514                  * turn.  We apply special handling for the records from BEGIN
2515                  * and END probes so that they are consumed first and last,
2516                  * respectively.
2517                  *
2518                  * If we have just begun, we want to first process the CPU that
2519                  * executed the BEGIN probe (if any).
2520                  */
2521                 if (dtp->dt_active && dtp->dt_beganon != -1 &&
2522                     (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2523                         return (rval);
2524 
2525                 for (i = 0; i < max_ncpus; i++) {
2526                         dtrace_bufdesc_t *buf;
2527 
2528                         /*
2529                          * If we have stopped, we want to process the CPU on
2530                          * which the END probe was processed only _after_ we
2531                          * have processed everything else.
2532                          */
2533                         if (dtp->dt_stopped && (i == dtp->dt_endedon))
2534                                 continue;
2535 
2536                         if (dt_get_buf(dtp, i, &buf) != 0)
2537                                 return (-1);
2538                         if (buf == NULL)
2539                                 continue;
2540 
2541                         dtp->dt_flow = 0;
2542                         dtp->dt_indent = 0;
2543                         dtp->dt_prefix = NULL;
2544                         rval = dt_consume_cpu(dtp, fp, i,
2545                             buf, B_FALSE, pf, rf, arg);
2546                         dt_put_buf(dtp, buf);
2547                         if (rval != 0)
2548                                 return (rval);
2549                 }
2550                 if (dtp->dt_stopped) {
2551                         dtrace_bufdesc_t *buf;
2552 
2553                         if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2554                                 return (-1);
2555                         if (buf == NULL)
2556                                 return (0);
2557 
2558                         rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2559                             buf, B_FALSE, pf, rf, arg);
2560                         dt_put_buf(dtp, buf);
2561                         return (rval);
2562                 }
2563         } else {
2564                 /*
2565                  * The output will be in the order it was traced (or for
2566                  * speculations, when it was committed).  We retrieve a buffer
2567                  * from each CPU and put it into a priority queue, which sorts
2568                  * based on the first entry in the buffer.  This is sufficient
2569                  * because entries within a buffer are already sorted.
2570                  *
2571                  * We then consume records one at a time, always consuming the
2572                  * oldest record, as determined by the priority queue.  When
2573                  * we reach the end of the time covered by these buffers,
2574                  * we need to stop and retrieve more records on the next pass.
2575                  * The kernel tells us the time covered by each buffer, in
2576                  * dtbd_timestamp.  The first buffer's timestamp tells us the
2577                  * time covered by all buffers, as subsequently retrieved
2578                  * buffers will cover to a more recent time.
2579                  */
2580 
2581                 uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2582                 uint64_t first_timestamp = 0;
2583                 uint_t cookie = 0;
2584                 dtrace_bufdesc_t *buf;
2585 
2586                 bzero(drops, max_ncpus * sizeof (uint64_t));
2587 
2588                 if (dtp->dt_bufq == NULL) {
2589                         dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2590                             dt_buf_oldest, NULL);
2591                         if (dtp->dt_bufq == NULL) /* ENOMEM */
2592                                 return (-1);
2593                 }
2594 
2595                 /* Retrieve data from each CPU. */
2596                 (void) dtrace_getopt(dtp, "bufsize", &size);
2597                 for (i = 0; i < max_ncpus; i++) {
2598                         dtrace_bufdesc_t *buf;
2599 
2600                         if (dt_get_buf(dtp, i, &buf) != 0)
2601                                 return (-1);
2602                         if (buf != NULL) {
2603                                 if (first_timestamp == 0)
2604                                         first_timestamp = buf->dtbd_timestamp;
2605                                 assert(buf->dtbd_timestamp >= first_timestamp);
2606 
2607                                 dt_pq_insert(dtp->dt_bufq, buf);
2608                                 drops[i] = buf->dtbd_drops;
2609                                 buf->dtbd_drops = 0;
2610                         }
2611                 }
2612 
2613                 /* Consume records. */
2614                 for (;;) {
2615                         dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
2616                         uint64_t timestamp;
2617 
2618                         if (buf == NULL)
2619                                 break;
2620 
2621                         timestamp = dt_buf_oldest(buf, dtp);
2622                         assert(timestamp >= dtp->dt_last_timestamp);
2623                         dtp->dt_last_timestamp = timestamp;
2624 
2625                         if (timestamp == buf->dtbd_timestamp) {
2626                                 /*
2627                                  * We've reached the end of the time covered
2628                                  * by this buffer.  If this is the oldest
2629                                  * buffer, we must do another pass
2630                                  * to retrieve more data.
2631                                  */
2632                                 dt_put_buf(dtp, buf);
2633                                 if (timestamp == first_timestamp &&
2634                                     !dtp->dt_stopped)
2635                                         break;
2636                                 continue;
2637                         }
2638 
2639                         if ((rval = dt_consume_cpu(dtp, fp,
2640                             buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
2641                                 return (rval);
2642                         dt_pq_insert(dtp->dt_bufq, buf);
2643                 }
2644 
2645                 /* Consume drops. */
2646                 for (i = 0; i < max_ncpus; i++) {
2647                         if (drops[i] != 0) {
2648                                 int error = dt_handle_cpudrop(dtp, i,
2649                                     DTRACEDROP_PRINCIPAL, drops[i]);
2650                                 if (error != 0)
2651                                         return (error);
2652                         }
2653                 }
2654 
2655                 /*
2656                  * Reduce memory usage by re-allocating smaller buffers
2657                  * for the "remnants".
2658                  */
2659                 while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
2660                         dt_realloc_buf(dtp, buf, buf->dtbd_size);
2661         }
2662 
2663         return (0);
2664 }