1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2012 by Delphix. All rights reserved. 30 */ 31 32 #include <stdlib.h> 33 #include <strings.h> 34 #include <errno.h> 35 #include <unistd.h> 36 #include <dt_impl.h> 37 #include <assert.h> 38 #include <alloca.h> 39 #include <limits.h> 40 41 #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ 42 43 /* 44 * Because qsort(3C) does not allow an argument to be passed to a comparison 45 * function, the variables that affect comparison must regrettably be global; 46 * they are protected by a global static lock, dt_qsort_lock. 47 */ 48 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; 49 50 static int dt_revsort; 51 static int dt_keysort; 52 static int dt_keypos; 53 54 #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) 55 #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) 56 57 static void 58 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) 59 { 60 int i; 61 62 for (i = 0; i < size / sizeof (int64_t); i++) 63 existing[i] = existing[i] + new[i]; 64 } 65 66 static int 67 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) 68 { 69 int64_t lvar = *lhs; 70 int64_t rvar = *rhs; 71 72 if (lvar < rvar) 73 return (DT_LESSTHAN); 74 75 if (lvar > rvar) 76 return (DT_GREATERTHAN); 77 78 return (0); 79 } 80 81 /*ARGSUSED*/ 82 static void 83 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) 84 { 85 if (*new < *existing) 86 *existing = *new; 87 } 88 89 /*ARGSUSED*/ 90 static void 91 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) 92 { 93 if (*new > *existing) 94 *existing = *new; 95 } 96 97 static int 98 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) 99 { 100 int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; 101 int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; 102 103 if (lavg < ravg) 104 return (DT_LESSTHAN); 105 106 if (lavg > ravg) 107 return (DT_GREATERTHAN); 108 109 return (0); 110 } 111 112 static int 113 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs) 114 { 115 uint64_t lsd = dt_stddev((uint64_t *)lhs, 1); 116 uint64_t rsd = dt_stddev((uint64_t *)rhs, 1); 117 118 if (lsd < rsd) 119 return (DT_LESSTHAN); 120 121 if (lsd > rsd) 122 return (DT_GREATERTHAN); 123 124 return (0); 125 } 126 127 /*ARGSUSED*/ 128 static void 129 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) 130 { 131 int64_t arg = *existing++; 132 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 133 int i; 134 135 for (i = 0; i <= levels + 1; i++) 136 existing[i] = existing[i] + new[i + 1]; 137 } 138 139 static long double 140 dt_aggregate_lquantizedsum(int64_t *lquanta) 141 { 142 int64_t arg = *lquanta++; 143 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 144 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 145 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 146 long double total = (long double)lquanta[0] * (long double)(base - 1); 147 148 for (i = 0; i < levels; base += step, i++) 149 total += (long double)lquanta[i + 1] * (long double)base; 150 151 return (total + (long double)lquanta[levels + 1] * 152 (long double)(base + 1)); 153 } 154 155 static int64_t 156 dt_aggregate_lquantizedzero(int64_t *lquanta) 157 { 158 int64_t arg = *lquanta++; 159 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 160 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 161 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 162 163 if (base - 1 == 0) 164 return (lquanta[0]); 165 166 for (i = 0; i < levels; base += step, i++) { 167 if (base != 0) 168 continue; 169 170 return (lquanta[i + 1]); 171 } 172 173 if (base + 1 == 0) 174 return (lquanta[levels + 1]); 175 176 return (0); 177 } 178 179 static int 180 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) 181 { 182 long double lsum = dt_aggregate_lquantizedsum(lhs); 183 long double rsum = dt_aggregate_lquantizedsum(rhs); 184 int64_t lzero, rzero; 185 186 if (lsum < rsum) 187 return (DT_LESSTHAN); 188 189 if (lsum > rsum) 190 return (DT_GREATERTHAN); 191 192 /* 193 * If they're both equal, then we will compare based on the weights at 194 * zero. If the weights at zero are equal (or if zero is not within 195 * the range of the linear quantization), then this will be judged a 196 * tie and will be resolved based on the key comparison. 197 */ 198 lzero = dt_aggregate_lquantizedzero(lhs); 199 rzero = dt_aggregate_lquantizedzero(rhs); 200 201 if (lzero < rzero) 202 return (DT_LESSTHAN); 203 204 if (lzero > rzero) 205 return (DT_GREATERTHAN); 206 207 return (0); 208 } 209 210 static void 211 dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size) 212 { 213 int i; 214 215 for (i = 1; i < size / sizeof (int64_t); i++) 216 existing[i] = existing[i] + new[i]; 217 } 218 219 static long double 220 dt_aggregate_llquantizedsum(int64_t *llquanta) 221 { 222 int64_t arg = *llquanta++; 223 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 224 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 225 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 226 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 227 int bin = 0, order; 228 int64_t value = 1, next, step; 229 long double total; 230 231 assert(nsteps >= factor); 232 assert(nsteps % factor == 0); 233 234 for (order = 0; order < low; order++) 235 value *= factor; 236 237 total = (long double)llquanta[bin++] * (long double)(value - 1); 238 239 next = value * factor; 240 step = next > nsteps ? next / nsteps : 1; 241 242 while (order <= high) { 243 assert(value < next); 244 total += (long double)llquanta[bin++] * (long double)(value); 245 246 if ((value += step) != next) 247 continue; 248 249 next = value * factor; 250 step = next > nsteps ? next / nsteps : 1; 251 order++; 252 } 253 254 return (total + (long double)llquanta[bin] * (long double)value); 255 } 256 257 static int 258 dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs) 259 { 260 long double lsum = dt_aggregate_llquantizedsum(lhs); 261 long double rsum = dt_aggregate_llquantizedsum(rhs); 262 int64_t lzero, rzero; 263 264 if (lsum < rsum) 265 return (DT_LESSTHAN); 266 267 if (lsum > rsum) 268 return (DT_GREATERTHAN); 269 270 /* 271 * If they're both equal, then we will compare based on the weights at 272 * zero. If the weights at zero are equal, then this will be judged a 273 * tie and will be resolved based on the key comparison. 274 */ 275 lzero = lhs[1]; 276 rzero = rhs[1]; 277 278 if (lzero < rzero) 279 return (DT_LESSTHAN); 280 281 if (lzero > rzero) 282 return (DT_GREATERTHAN); 283 284 return (0); 285 } 286 287 static int 288 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) 289 { 290 int nbuckets = DTRACE_QUANTIZE_NBUCKETS, i; 291 long double ltotal = 0, rtotal = 0; 292 int64_t lzero, rzero; 293 294 for (i = 0; i < nbuckets; i++) { 295 int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); 296 297 if (bucketval == 0) { 298 lzero = lhs[i]; 299 rzero = rhs[i]; 300 } 301 302 ltotal += (long double)bucketval * (long double)lhs[i]; 303 rtotal += (long double)bucketval * (long double)rhs[i]; 304 } 305 306 if (ltotal < rtotal) 307 return (DT_LESSTHAN); 308 309 if (ltotal > rtotal) 310 return (DT_GREATERTHAN); 311 312 /* 313 * If they're both equal, then we will compare based on the weights at 314 * zero. If the weights at zero are equal, then this will be judged a 315 * tie and will be resolved based on the key comparison. 316 */ 317 if (lzero < rzero) 318 return (DT_LESSTHAN); 319 320 if (lzero > rzero) 321 return (DT_GREATERTHAN); 322 323 return (0); 324 } 325 326 static void 327 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) 328 { 329 uint64_t pid = data[0]; 330 uint64_t *pc = &data[1]; 331 struct ps_prochandle *P; 332 GElf_Sym sym; 333 334 if (dtp->dt_vector != NULL) 335 return; 336 337 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 338 return; 339 340 dt_proc_lock(dtp, P); 341 342 if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) 343 *pc = sym.st_value; 344 345 dt_proc_unlock(dtp, P); 346 dt_proc_release(dtp, P); 347 } 348 349 static void 350 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) 351 { 352 uint64_t pid = data[0]; 353 uint64_t *pc = &data[1]; 354 struct ps_prochandle *P; 355 const prmap_t *map; 356 357 if (dtp->dt_vector != NULL) 358 return; 359 360 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 361 return; 362 363 dt_proc_lock(dtp, P); 364 365 if ((map = Paddr_to_map(P, *pc)) != NULL) 366 *pc = map->pr_vaddr; 367 368 dt_proc_unlock(dtp, P); 369 dt_proc_release(dtp, P); 370 } 371 372 static void 373 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) 374 { 375 GElf_Sym sym; 376 uint64_t *pc = data; 377 378 if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) 379 *pc = sym.st_value; 380 } 381 382 static void 383 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) 384 { 385 uint64_t *pc = data; 386 dt_module_t *dmp; 387 388 if (dtp->dt_vector != NULL) { 389 /* 390 * We don't have a way of just getting the module for a 391 * vectored open, and it doesn't seem to be worth defining 392 * one. This means that use of mod() won't get true 393 * aggregation in the postmortem case (some modules may 394 * appear more than once in aggregation output). It seems 395 * unlikely that anyone will ever notice or care... 396 */ 397 return; 398 } 399 400 for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; 401 dmp = dt_list_next(dmp)) { 402 if (*pc - dmp->dm_text_va < dmp->dm_text_size) { 403 *pc = dmp->dm_text_va; 404 return; 405 } 406 } 407 } 408 409 static dtrace_aggvarid_t 410 dt_aggregate_aggvarid(dt_ahashent_t *ent) 411 { 412 dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; 413 caddr_t data = ent->dtahe_data.dtada_data; 414 dtrace_recdesc_t *rec = agg->dtagd_rec; 415 416 /* 417 * First, we'll check the variable ID in the aggdesc. If it's valid, 418 * we'll return it. If not, we'll use the compiler-generated ID 419 * present as the first record. 420 */ 421 if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) 422 return (agg->dtagd_varid); 423 424 agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + 425 rec->dtrd_offset)); 426 427 return (agg->dtagd_varid); 428 } 429 430 431 static int 432 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) 433 { 434 dtrace_epid_t id; 435 uint64_t hashval; 436 size_t offs, roffs, size, ndx; 437 int i, j, rval; 438 caddr_t addr, data; 439 dtrace_recdesc_t *rec; 440 dt_aggregate_t *agp = &dtp->dt_aggregate; 441 dtrace_aggdesc_t *agg; 442 dt_ahash_t *hash = &agp->dtat_hash; 443 dt_ahashent_t *h; 444 dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; 445 dtrace_aggdata_t *aggdata; 446 int flags = agp->dtat_flags; 447 448 buf->dtbd_cpu = cpu; 449 450 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { 451 if (errno == ENOENT) { 452 /* 453 * If that failed with ENOENT, it may be because the 454 * CPU was unconfigured. This is okay; we'll just 455 * do nothing but return success. 456 */ 457 return (0); 458 } 459 460 return (dt_set_errno(dtp, errno)); 461 } 462 463 if (buf->dtbd_drops != 0) { 464 if (dt_handle_cpudrop(dtp, cpu, 465 DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) 466 return (-1); 467 } 468 469 if (buf->dtbd_size == 0) 470 return (0); 471 472 if (hash->dtah_hash == NULL) { 473 size_t size; 474 475 hash->dtah_size = DTRACE_AHASHSIZE; 476 size = hash->dtah_size * sizeof (dt_ahashent_t *); 477 478 if ((hash->dtah_hash = malloc(size)) == NULL) 479 return (dt_set_errno(dtp, EDT_NOMEM)); 480 481 bzero(hash->dtah_hash, size); 482 } 483 484 for (offs = 0; offs < buf->dtbd_size; ) { 485 /* 486 * We're guaranteed to have an ID. 487 */ 488 id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + 489 (uintptr_t)offs)); 490 491 if (id == DTRACE_AGGIDNONE) { 492 /* 493 * This is filler to assure proper alignment of the 494 * next record; we simply ignore it. 495 */ 496 offs += sizeof (id); 497 continue; 498 } 499 500 if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) 501 return (rval); 502 503 addr = buf->dtbd_data + offs; 504 size = agg->dtagd_size; 505 hashval = 0; 506 507 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 508 rec = &agg->dtagd_rec[j]; 509 roffs = rec->dtrd_offset; 510 511 switch (rec->dtrd_action) { 512 case DTRACEACT_USYM: 513 dt_aggregate_usym(dtp, 514 /* LINTED - alignment */ 515 (uint64_t *)&addr[roffs]); 516 break; 517 518 case DTRACEACT_UMOD: 519 dt_aggregate_umod(dtp, 520 /* LINTED - alignment */ 521 (uint64_t *)&addr[roffs]); 522 break; 523 524 case DTRACEACT_SYM: 525 /* LINTED - alignment */ 526 dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); 527 break; 528 529 case DTRACEACT_MOD: 530 /* LINTED - alignment */ 531 dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); 532 break; 533 534 default: 535 break; 536 } 537 538 for (i = 0; i < rec->dtrd_size; i++) 539 hashval += addr[roffs + i]; 540 } 541 542 ndx = hashval % hash->dtah_size; 543 544 for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { 545 if (h->dtahe_hashval != hashval) 546 continue; 547 548 if (h->dtahe_size != size) 549 continue; 550 551 aggdata = &h->dtahe_data; 552 data = aggdata->dtada_data; 553 554 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 555 rec = &agg->dtagd_rec[j]; 556 roffs = rec->dtrd_offset; 557 558 for (i = 0; i < rec->dtrd_size; i++) 559 if (addr[roffs + i] != data[roffs + i]) 560 goto hashnext; 561 } 562 563 /* 564 * We found it. Now we need to apply the aggregating 565 * action on the data here. 566 */ 567 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 568 roffs = rec->dtrd_offset; 569 /* LINTED - alignment */ 570 h->dtahe_aggregate((int64_t *)&data[roffs], 571 /* LINTED - alignment */ 572 (int64_t *)&addr[roffs], rec->dtrd_size); 573 574 /* 575 * If we're keeping per CPU data, apply the aggregating 576 * action there as well. 577 */ 578 if (aggdata->dtada_percpu != NULL) { 579 data = aggdata->dtada_percpu[cpu]; 580 581 /* LINTED - alignment */ 582 h->dtahe_aggregate((int64_t *)data, 583 /* LINTED - alignment */ 584 (int64_t *)&addr[roffs], rec->dtrd_size); 585 } 586 587 goto bufnext; 588 hashnext: 589 continue; 590 } 591 592 /* 593 * If we're here, we couldn't find an entry for this record. 594 */ 595 if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) 596 return (dt_set_errno(dtp, EDT_NOMEM)); 597 bzero(h, sizeof (dt_ahashent_t)); 598 aggdata = &h->dtahe_data; 599 600 if ((aggdata->dtada_data = malloc(size)) == NULL) { 601 free(h); 602 return (dt_set_errno(dtp, EDT_NOMEM)); 603 } 604 605 bcopy(addr, aggdata->dtada_data, size); 606 aggdata->dtada_size = size; 607 aggdata->dtada_desc = agg; 608 aggdata->dtada_handle = dtp; 609 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 610 &aggdata->dtada_edesc, &aggdata->dtada_pdesc); 611 aggdata->dtada_normal = 1; 612 613 h->dtahe_hashval = hashval; 614 h->dtahe_size = size; 615 (void) dt_aggregate_aggvarid(h); 616 617 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 618 619 if (flags & DTRACE_A_PERCPU) { 620 int max_cpus = agp->dtat_maxcpu; 621 caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); 622 623 if (percpu == NULL) { 624 free(aggdata->dtada_data); 625 free(h); 626 return (dt_set_errno(dtp, EDT_NOMEM)); 627 } 628 629 for (j = 0; j < max_cpus; j++) { 630 percpu[j] = malloc(rec->dtrd_size); 631 632 if (percpu[j] == NULL) { 633 while (--j >= 0) 634 free(percpu[j]); 635 636 free(aggdata->dtada_data); 637 free(h); 638 return (dt_set_errno(dtp, EDT_NOMEM)); 639 } 640 641 if (j == cpu) { 642 bcopy(&addr[rec->dtrd_offset], 643 percpu[j], rec->dtrd_size); 644 } else { 645 bzero(percpu[j], rec->dtrd_size); 646 } 647 } 648 649 aggdata->dtada_percpu = percpu; 650 } 651 652 switch (rec->dtrd_action) { 653 case DTRACEAGG_MIN: 654 h->dtahe_aggregate = dt_aggregate_min; 655 break; 656 657 case DTRACEAGG_MAX: 658 h->dtahe_aggregate = dt_aggregate_max; 659 break; 660 661 case DTRACEAGG_LQUANTIZE: 662 h->dtahe_aggregate = dt_aggregate_lquantize; 663 break; 664 665 case DTRACEAGG_LLQUANTIZE: 666 h->dtahe_aggregate = dt_aggregate_llquantize; 667 break; 668 669 case DTRACEAGG_COUNT: 670 case DTRACEAGG_SUM: 671 case DTRACEAGG_AVG: 672 case DTRACEAGG_STDDEV: 673 case DTRACEAGG_QUANTIZE: 674 h->dtahe_aggregate = dt_aggregate_count; 675 break; 676 677 default: 678 return (dt_set_errno(dtp, EDT_BADAGG)); 679 } 680 681 if (hash->dtah_hash[ndx] != NULL) 682 hash->dtah_hash[ndx]->dtahe_prev = h; 683 684 h->dtahe_next = hash->dtah_hash[ndx]; 685 hash->dtah_hash[ndx] = h; 686 687 if (hash->dtah_all != NULL) 688 hash->dtah_all->dtahe_prevall = h; 689 690 h->dtahe_nextall = hash->dtah_all; 691 hash->dtah_all = h; 692 bufnext: 693 offs += agg->dtagd_size; 694 } 695 696 return (0); 697 } 698 699 int 700 dtrace_aggregate_snap(dtrace_hdl_t *dtp) 701 { 702 int i, rval; 703 dt_aggregate_t *agp = &dtp->dt_aggregate; 704 hrtime_t now = gethrtime(); 705 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; 706 707 if (dtp->dt_lastagg != 0) { 708 if (now - dtp->dt_lastagg < interval) 709 return (0); 710 711 dtp->dt_lastagg += interval; 712 } else { 713 dtp->dt_lastagg = now; 714 } 715 716 if (!dtp->dt_active) 717 return (dt_set_errno(dtp, EINVAL)); 718 719 if (agp->dtat_buf.dtbd_size == 0) 720 return (0); 721 722 for (i = 0; i < agp->dtat_ncpus; i++) { 723 if (rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])) 724 return (rval); 725 } 726 727 return (0); 728 } 729 730 static int 731 dt_aggregate_hashcmp(const void *lhs, const void *rhs) 732 { 733 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 734 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 735 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 736 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 737 738 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) 739 return (DT_LESSTHAN); 740 741 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) 742 return (DT_GREATERTHAN); 743 744 return (0); 745 } 746 747 static int 748 dt_aggregate_varcmp(const void *lhs, const void *rhs) 749 { 750 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 751 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 752 dtrace_aggvarid_t lid, rid; 753 754 lid = dt_aggregate_aggvarid(lh); 755 rid = dt_aggregate_aggvarid(rh); 756 757 if (lid < rid) 758 return (DT_LESSTHAN); 759 760 if (lid > rid) 761 return (DT_GREATERTHAN); 762 763 return (0); 764 } 765 766 static int 767 dt_aggregate_keycmp(const void *lhs, const void *rhs) 768 { 769 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 770 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 771 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 772 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 773 dtrace_recdesc_t *lrec, *rrec; 774 char *ldata, *rdata; 775 int rval, i, j, keypos, nrecs; 776 777 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) 778 return (rval); 779 780 nrecs = lagg->dtagd_nrecs - 1; 781 assert(nrecs == ragg->dtagd_nrecs - 1); 782 783 keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; 784 785 for (i = 1; i < nrecs; i++) { 786 uint64_t lval, rval; 787 int ndx = i + keypos; 788 789 if (ndx >= nrecs) 790 ndx = ndx - nrecs + 1; 791 792 lrec = &lagg->dtagd_rec[ndx]; 793 rrec = &ragg->dtagd_rec[ndx]; 794 795 ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; 796 rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; 797 798 if (lrec->dtrd_size < rrec->dtrd_size) 799 return (DT_LESSTHAN); 800 801 if (lrec->dtrd_size > rrec->dtrd_size) 802 return (DT_GREATERTHAN); 803 804 switch (lrec->dtrd_size) { 805 case sizeof (uint64_t): 806 /* LINTED - alignment */ 807 lval = *((uint64_t *)ldata); 808 /* LINTED - alignment */ 809 rval = *((uint64_t *)rdata); 810 break; 811 812 case sizeof (uint32_t): 813 /* LINTED - alignment */ 814 lval = *((uint32_t *)ldata); 815 /* LINTED - alignment */ 816 rval = *((uint32_t *)rdata); 817 break; 818 819 case sizeof (uint16_t): 820 /* LINTED - alignment */ 821 lval = *((uint16_t *)ldata); 822 /* LINTED - alignment */ 823 rval = *((uint16_t *)rdata); 824 break; 825 826 case sizeof (uint8_t): 827 lval = *((uint8_t *)ldata); 828 rval = *((uint8_t *)rdata); 829 break; 830 831 default: 832 switch (lrec->dtrd_action) { 833 case DTRACEACT_UMOD: 834 case DTRACEACT_UADDR: 835 case DTRACEACT_USYM: 836 for (j = 0; j < 2; j++) { 837 /* LINTED - alignment */ 838 lval = ((uint64_t *)ldata)[j]; 839 /* LINTED - alignment */ 840 rval = ((uint64_t *)rdata)[j]; 841 842 if (lval < rval) 843 return (DT_LESSTHAN); 844 845 if (lval > rval) 846 return (DT_GREATERTHAN); 847 } 848 849 break; 850 851 default: 852 for (j = 0; j < lrec->dtrd_size; j++) { 853 lval = ((uint8_t *)ldata)[j]; 854 rval = ((uint8_t *)rdata)[j]; 855 856 if (lval < rval) 857 return (DT_LESSTHAN); 858 859 if (lval > rval) 860 return (DT_GREATERTHAN); 861 } 862 } 863 864 continue; 865 } 866 867 if (lval < rval) 868 return (DT_LESSTHAN); 869 870 if (lval > rval) 871 return (DT_GREATERTHAN); 872 } 873 874 return (0); 875 } 876 877 static int 878 dt_aggregate_valcmp(const void *lhs, const void *rhs) 879 { 880 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 881 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 882 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 883 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 884 caddr_t ldata = lh->dtahe_data.dtada_data; 885 caddr_t rdata = rh->dtahe_data.dtada_data; 886 dtrace_recdesc_t *lrec, *rrec; 887 int64_t *laddr, *raddr; 888 int rval; 889 890 assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs); 891 892 lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1]; 893 rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1]; 894 895 assert(lrec->dtrd_action == rrec->dtrd_action); 896 897 laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); 898 raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); 899 900 switch (lrec->dtrd_action) { 901 case DTRACEAGG_AVG: 902 rval = dt_aggregate_averagecmp(laddr, raddr); 903 break; 904 905 case DTRACEAGG_STDDEV: 906 rval = dt_aggregate_stddevcmp(laddr, raddr); 907 break; 908 909 case DTRACEAGG_QUANTIZE: 910 rval = dt_aggregate_quantizedcmp(laddr, raddr); 911 break; 912 913 case DTRACEAGG_LQUANTIZE: 914 rval = dt_aggregate_lquantizedcmp(laddr, raddr); 915 break; 916 917 case DTRACEAGG_LLQUANTIZE: 918 rval = dt_aggregate_llquantizedcmp(laddr, raddr); 919 break; 920 921 case DTRACEAGG_COUNT: 922 case DTRACEAGG_SUM: 923 case DTRACEAGG_MIN: 924 case DTRACEAGG_MAX: 925 rval = dt_aggregate_countcmp(laddr, raddr); 926 break; 927 928 default: 929 assert(0); 930 } 931 932 return (rval); 933 } 934 935 static int 936 dt_aggregate_valkeycmp(const void *lhs, const void *rhs) 937 { 938 int rval; 939 940 if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) 941 return (rval); 942 943 /* 944 * If we're here, the values for the two aggregation elements are 945 * equal. We already know that the key layout is the same for the two 946 * elements; we must now compare the keys themselves as a tie-breaker. 947 */ 948 return (dt_aggregate_keycmp(lhs, rhs)); 949 } 950 951 static int 952 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) 953 { 954 int rval; 955 956 if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) 957 return (rval); 958 959 return (dt_aggregate_varcmp(lhs, rhs)); 960 } 961 962 static int 963 dt_aggregate_varkeycmp(const void *lhs, const void *rhs) 964 { 965 int rval; 966 967 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 968 return (rval); 969 970 return (dt_aggregate_keycmp(lhs, rhs)); 971 } 972 973 static int 974 dt_aggregate_valvarcmp(const void *lhs, const void *rhs) 975 { 976 int rval; 977 978 if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) 979 return (rval); 980 981 return (dt_aggregate_varcmp(lhs, rhs)); 982 } 983 984 static int 985 dt_aggregate_varvalcmp(const void *lhs, const void *rhs) 986 { 987 int rval; 988 989 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 990 return (rval); 991 992 return (dt_aggregate_valkeycmp(lhs, rhs)); 993 } 994 995 static int 996 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) 997 { 998 return (dt_aggregate_keyvarcmp(rhs, lhs)); 999 } 1000 1001 static int 1002 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) 1003 { 1004 return (dt_aggregate_varkeycmp(rhs, lhs)); 1005 } 1006 1007 static int 1008 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) 1009 { 1010 return (dt_aggregate_valvarcmp(rhs, lhs)); 1011 } 1012 1013 static int 1014 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) 1015 { 1016 return (dt_aggregate_varvalcmp(rhs, lhs)); 1017 } 1018 1019 static int 1020 dt_aggregate_bundlecmp(const void *lhs, const void *rhs) 1021 { 1022 dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); 1023 dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); 1024 int i, rval; 1025 1026 if (dt_keysort) { 1027 /* 1028 * If we're sorting on keys, we need to scan until we find the 1029 * last entry -- that's the representative key. (The order of 1030 * the bundle is values followed by key to accommodate the 1031 * default behavior of sorting by value.) If the keys are 1032 * equal, we'll fall into the value comparison loop, below. 1033 */ 1034 for (i = 0; lh[i + 1] != NULL; i++) 1035 continue; 1036 1037 assert(i != 0); 1038 assert(rh[i + 1] == NULL); 1039 1040 if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) 1041 return (rval); 1042 } 1043 1044 for (i = 0; ; i++) { 1045 if (lh[i + 1] == NULL) { 1046 /* 1047 * All of the values are equal; if we're sorting on 1048 * keys, then we're only here because the keys were 1049 * found to be equal and these records are therefore 1050 * equal. If we're not sorting on keys, we'll use the 1051 * key comparison from the representative key as the 1052 * tie-breaker. 1053 */ 1054 if (dt_keysort) 1055 return (0); 1056 1057 assert(i != 0); 1058 assert(rh[i + 1] == NULL); 1059 return (dt_aggregate_keycmp(&lh[i], &rh[i])); 1060 } else { 1061 if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) 1062 return (rval); 1063 } 1064 } 1065 } 1066 1067 int 1068 dt_aggregate_go(dtrace_hdl_t *dtp) 1069 { 1070 dt_aggregate_t *agp = &dtp->dt_aggregate; 1071 dtrace_optval_t size, cpu; 1072 dtrace_bufdesc_t *buf = &agp->dtat_buf; 1073 int rval, i; 1074 1075 assert(agp->dtat_maxcpu == 0); 1076 assert(agp->dtat_ncpu == 0); 1077 assert(agp->dtat_cpus == NULL); 1078 1079 agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 1080 agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX); 1081 agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); 1082 1083 if (agp->dtat_cpus == NULL) 1084 return (dt_set_errno(dtp, EDT_NOMEM)); 1085 1086 /* 1087 * Use the aggregation buffer size as reloaded from the kernel. 1088 */ 1089 size = dtp->dt_options[DTRACEOPT_AGGSIZE]; 1090 1091 rval = dtrace_getopt(dtp, "aggsize", &size); 1092 assert(rval == 0); 1093 1094 if (size == 0 || size == DTRACEOPT_UNSET) 1095 return (0); 1096 1097 buf = &agp->dtat_buf; 1098 buf->dtbd_size = size; 1099 1100 if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) 1101 return (dt_set_errno(dtp, EDT_NOMEM)); 1102 1103 /* 1104 * Now query for the CPUs enabled. 1105 */ 1106 rval = dtrace_getopt(dtp, "cpu", &cpu); 1107 assert(rval == 0 && cpu != DTRACEOPT_UNSET); 1108 1109 if (cpu != DTRACE_CPUALL) { 1110 assert(cpu < agp->dtat_ncpu); 1111 agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; 1112 1113 return (0); 1114 } 1115 1116 agp->dtat_ncpus = 0; 1117 for (i = 0; i < agp->dtat_maxcpu; i++) { 1118 if (dt_status(dtp, i) == -1) 1119 continue; 1120 1121 agp->dtat_cpus[agp->dtat_ncpus++] = i; 1122 } 1123 1124 return (0); 1125 } 1126 1127 static int 1128 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) 1129 { 1130 dt_aggregate_t *agp = &dtp->dt_aggregate; 1131 dtrace_aggdata_t *data; 1132 dtrace_aggdesc_t *aggdesc; 1133 dtrace_recdesc_t *rec; 1134 int i; 1135 1136 switch (rval) { 1137 case DTRACE_AGGWALK_NEXT: 1138 break; 1139 1140 case DTRACE_AGGWALK_CLEAR: { 1141 uint32_t size, offs = 0; 1142 1143 aggdesc = h->dtahe_data.dtada_desc; 1144 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1145 size = rec->dtrd_size; 1146 data = &h->dtahe_data; 1147 1148 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1149 offs = sizeof (uint64_t); 1150 size -= sizeof (uint64_t); 1151 } 1152 1153 bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); 1154 1155 if (data->dtada_percpu == NULL) 1156 break; 1157 1158 for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) 1159 bzero(data->dtada_percpu[i] + offs, size); 1160 break; 1161 } 1162 1163 case DTRACE_AGGWALK_ERROR: 1164 /* 1165 * We assume that errno is already set in this case. 1166 */ 1167 return (dt_set_errno(dtp, errno)); 1168 1169 case DTRACE_AGGWALK_ABORT: 1170 return (dt_set_errno(dtp, EDT_DIRABORT)); 1171 1172 case DTRACE_AGGWALK_DENORMALIZE: 1173 h->dtahe_data.dtada_normal = 1; 1174 return (0); 1175 1176 case DTRACE_AGGWALK_NORMALIZE: 1177 if (h->dtahe_data.dtada_normal == 0) { 1178 h->dtahe_data.dtada_normal = 1; 1179 return (dt_set_errno(dtp, EDT_BADRVAL)); 1180 } 1181 1182 return (0); 1183 1184 case DTRACE_AGGWALK_REMOVE: { 1185 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1186 int i, max_cpus = agp->dtat_maxcpu; 1187 1188 /* 1189 * First, remove this hash entry from its hash chain. 1190 */ 1191 if (h->dtahe_prev != NULL) { 1192 h->dtahe_prev->dtahe_next = h->dtahe_next; 1193 } else { 1194 dt_ahash_t *hash = &agp->dtat_hash; 1195 size_t ndx = h->dtahe_hashval % hash->dtah_size; 1196 1197 assert(hash->dtah_hash[ndx] == h); 1198 hash->dtah_hash[ndx] = h->dtahe_next; 1199 } 1200 1201 if (h->dtahe_next != NULL) 1202 h->dtahe_next->dtahe_prev = h->dtahe_prev; 1203 1204 /* 1205 * Now remove it from the list of all hash entries. 1206 */ 1207 if (h->dtahe_prevall != NULL) { 1208 h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; 1209 } else { 1210 dt_ahash_t *hash = &agp->dtat_hash; 1211 1212 assert(hash->dtah_all == h); 1213 hash->dtah_all = h->dtahe_nextall; 1214 } 1215 1216 if (h->dtahe_nextall != NULL) 1217 h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; 1218 1219 /* 1220 * We're unlinked. We can safely destroy the data. 1221 */ 1222 if (aggdata->dtada_percpu != NULL) { 1223 for (i = 0; i < max_cpus; i++) 1224 free(aggdata->dtada_percpu[i]); 1225 free(aggdata->dtada_percpu); 1226 } 1227 1228 free(aggdata->dtada_data); 1229 free(h); 1230 1231 return (0); 1232 } 1233 1234 default: 1235 return (dt_set_errno(dtp, EDT_BADRVAL)); 1236 } 1237 1238 return (0); 1239 } 1240 1241 void 1242 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, 1243 int (*compar)(const void *, const void *)) 1244 { 1245 int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; 1246 dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; 1247 1248 dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); 1249 dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); 1250 1251 if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { 1252 dt_keypos = (int)keyposopt; 1253 } else { 1254 dt_keypos = 0; 1255 } 1256 1257 if (compar == NULL) { 1258 if (!dt_keysort) { 1259 compar = dt_aggregate_varvalcmp; 1260 } else { 1261 compar = dt_aggregate_varkeycmp; 1262 } 1263 } 1264 1265 qsort(base, nel, width, compar); 1266 1267 dt_revsort = rev; 1268 dt_keysort = key; 1269 dt_keypos = keypos; 1270 } 1271 1272 int 1273 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) 1274 { 1275 dt_ahashent_t *h, *next; 1276 dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; 1277 1278 for (h = hash->dtah_all; h != NULL; h = next) { 1279 /* 1280 * dt_aggwalk_rval() can potentially remove the current hash 1281 * entry; we need to load the next hash entry before calling 1282 * into it. 1283 */ 1284 next = h->dtahe_nextall; 1285 1286 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) 1287 return (-1); 1288 } 1289 1290 return (0); 1291 } 1292 1293 static int 1294 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1295 dtrace_aggregate_f *func, void *arg, 1296 int (*sfunc)(const void *, const void *)) 1297 { 1298 dt_aggregate_t *agp = &dtp->dt_aggregate; 1299 dt_ahashent_t *h, **sorted; 1300 dt_ahash_t *hash = &agp->dtat_hash; 1301 size_t i, nentries = 0; 1302 1303 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) 1304 nentries++; 1305 1306 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1307 1308 if (sorted == NULL) 1309 return (-1); 1310 1311 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) 1312 sorted[i++] = h; 1313 1314 (void) pthread_mutex_lock(&dt_qsort_lock); 1315 1316 if (sfunc == NULL) { 1317 dt_aggregate_qsort(dtp, sorted, nentries, 1318 sizeof (dt_ahashent_t *), NULL); 1319 } else { 1320 /* 1321 * If we've been explicitly passed a sorting function, 1322 * we'll use that -- ignoring the values of the "aggsortrev", 1323 * "aggsortkey" and "aggsortkeypos" options. 1324 */ 1325 qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); 1326 } 1327 1328 (void) pthread_mutex_unlock(&dt_qsort_lock); 1329 1330 for (i = 0; i < nentries; i++) { 1331 h = sorted[i]; 1332 1333 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) { 1334 dt_free(dtp, sorted); 1335 return (-1); 1336 } 1337 } 1338 1339 dt_free(dtp, sorted); 1340 return (0); 1341 } 1342 1343 int 1344 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1345 dtrace_aggregate_f *func, void *arg) 1346 { 1347 return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); 1348 } 1349 1350 int 1351 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, 1352 dtrace_aggregate_f *func, void *arg) 1353 { 1354 return (dt_aggregate_walk_sorted(dtp, func, 1355 arg, dt_aggregate_varkeycmp)); 1356 } 1357 1358 int 1359 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, 1360 dtrace_aggregate_f *func, void *arg) 1361 { 1362 return (dt_aggregate_walk_sorted(dtp, func, 1363 arg, dt_aggregate_varvalcmp)); 1364 } 1365 1366 int 1367 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, 1368 dtrace_aggregate_f *func, void *arg) 1369 { 1370 return (dt_aggregate_walk_sorted(dtp, func, 1371 arg, dt_aggregate_keyvarcmp)); 1372 } 1373 1374 int 1375 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, 1376 dtrace_aggregate_f *func, void *arg) 1377 { 1378 return (dt_aggregate_walk_sorted(dtp, func, 1379 arg, dt_aggregate_valvarcmp)); 1380 } 1381 1382 int 1383 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, 1384 dtrace_aggregate_f *func, void *arg) 1385 { 1386 return (dt_aggregate_walk_sorted(dtp, func, 1387 arg, dt_aggregate_varkeyrevcmp)); 1388 } 1389 1390 int 1391 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, 1392 dtrace_aggregate_f *func, void *arg) 1393 { 1394 return (dt_aggregate_walk_sorted(dtp, func, 1395 arg, dt_aggregate_varvalrevcmp)); 1396 } 1397 1398 int 1399 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, 1400 dtrace_aggregate_f *func, void *arg) 1401 { 1402 return (dt_aggregate_walk_sorted(dtp, func, 1403 arg, dt_aggregate_keyvarrevcmp)); 1404 } 1405 1406 int 1407 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, 1408 dtrace_aggregate_f *func, void *arg) 1409 { 1410 return (dt_aggregate_walk_sorted(dtp, func, 1411 arg, dt_aggregate_valvarrevcmp)); 1412 } 1413 1414 int 1415 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, 1416 int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) 1417 { 1418 dt_aggregate_t *agp = &dtp->dt_aggregate; 1419 dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; 1420 const dtrace_aggdata_t **data; 1421 dt_ahashent_t *zaggdata = NULL; 1422 dt_ahash_t *hash = &agp->dtat_hash; 1423 size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; 1424 dtrace_aggvarid_t max = 0, aggvar; 1425 int rval = -1, *map, *remap = NULL; 1426 int i, j; 1427 dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; 1428 1429 /* 1430 * If the sorting position is greater than the number of aggregation 1431 * variable IDs, we silently set it to 0. 1432 */ 1433 if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) 1434 sortpos = 0; 1435 1436 /* 1437 * First we need to translate the specified aggregation variable IDs 1438 * into a linear map that will allow us to translate an aggregation 1439 * variable ID into its position in the specified aggvars. 1440 */ 1441 for (i = 0; i < naggvars; i++) { 1442 if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) 1443 return (dt_set_errno(dtp, EDT_BADAGGVAR)); 1444 1445 if (aggvars[i] > max) 1446 max = aggvars[i]; 1447 } 1448 1449 if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) 1450 return (-1); 1451 1452 zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); 1453 1454 if (zaggdata == NULL) 1455 goto out; 1456 1457 for (i = 0; i < naggvars; i++) { 1458 int ndx = i + sortpos; 1459 1460 if (ndx >= naggvars) 1461 ndx -= naggvars; 1462 1463 aggvar = aggvars[ndx]; 1464 assert(aggvar <= max); 1465 1466 if (map[aggvar]) { 1467 /* 1468 * We have an aggregation variable that is present 1469 * more than once in the array of aggregation 1470 * variables. While it's unclear why one might want 1471 * to do this, it's legal. To support this construct, 1472 * we will allocate a remap that will indicate the 1473 * position from which this aggregation variable 1474 * should be pulled. (That is, where the remap will 1475 * map from one position to another.) 1476 */ 1477 if (remap == NULL) { 1478 remap = dt_zalloc(dtp, naggvars * sizeof (int)); 1479 1480 if (remap == NULL) 1481 goto out; 1482 } 1483 1484 /* 1485 * Given that the variable is already present, assert 1486 * that following through the mapping and adjusting 1487 * for the sort position yields the same aggregation 1488 * variable ID. 1489 */ 1490 assert(aggvars[(map[aggvar] - 1 + sortpos) % 1491 naggvars] == aggvars[ndx]); 1492 1493 remap[i] = map[aggvar]; 1494 continue; 1495 } 1496 1497 map[aggvar] = i + 1; 1498 } 1499 1500 /* 1501 * We need to take two passes over the data to size our allocation, so 1502 * we'll use the first pass to also fill in the zero-filled data to be 1503 * used to properly format a zero-valued aggregation. 1504 */ 1505 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1506 dtrace_aggvarid_t id; 1507 int ndx; 1508 1509 if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) 1510 continue; 1511 1512 if (zaggdata[ndx - 1].dtahe_size == 0) { 1513 zaggdata[ndx - 1].dtahe_size = h->dtahe_size; 1514 zaggdata[ndx - 1].dtahe_data = h->dtahe_data; 1515 } 1516 1517 nentries++; 1518 } 1519 1520 if (nentries == 0) { 1521 /* 1522 * We couldn't find any entries; there is nothing else to do. 1523 */ 1524 rval = 0; 1525 goto out; 1526 } 1527 1528 /* 1529 * Before we sort the data, we're going to look for any holes in our 1530 * zero-filled data. This will occur if an aggregation variable that 1531 * we are being asked to print has not yet been assigned the result of 1532 * any aggregating action for _any_ tuple. The issue becomes that we 1533 * would like a zero value to be printed for all columns for this 1534 * aggregation, but without any record description, we don't know the 1535 * aggregating action that corresponds to the aggregation variable. To 1536 * try to find a match, we're simply going to lookup aggregation IDs 1537 * (which are guaranteed to be contiguous and to start from 1), looking 1538 * for the specified aggregation variable ID. If we find a match, 1539 * we'll use that. If we iterate over all aggregation IDs and don't 1540 * find a match, then we must be an anonymous enabling. (Anonymous 1541 * enablings can't currently derive either aggregation variable IDs or 1542 * aggregation variable names given only an aggregation ID.) In this 1543 * obscure case (anonymous enabling, multiple aggregation printa() with 1544 * some aggregations not represented for any tuple), our defined 1545 * behavior is that the zero will be printed in the format of the first 1546 * aggregation variable that contains any non-zero value. 1547 */ 1548 for (i = 0; i < naggvars; i++) { 1549 if (zaggdata[i].dtahe_size == 0) { 1550 dtrace_aggvarid_t aggvar; 1551 1552 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1553 assert(zaggdata[i].dtahe_data.dtada_data == NULL); 1554 1555 for (j = DTRACE_AGGIDNONE + 1; ; j++) { 1556 dtrace_aggdesc_t *agg; 1557 dtrace_aggdata_t *aggdata; 1558 1559 if (dt_aggid_lookup(dtp, j, &agg) != 0) 1560 break; 1561 1562 if (agg->dtagd_varid != aggvar) 1563 continue; 1564 1565 /* 1566 * We have our description -- now we need to 1567 * cons up the zaggdata entry for it. 1568 */ 1569 aggdata = &zaggdata[i].dtahe_data; 1570 aggdata->dtada_size = agg->dtagd_size; 1571 aggdata->dtada_desc = agg; 1572 aggdata->dtada_handle = dtp; 1573 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 1574 &aggdata->dtada_edesc, 1575 &aggdata->dtada_pdesc); 1576 aggdata->dtada_normal = 1; 1577 zaggdata[i].dtahe_hashval = 0; 1578 zaggdata[i].dtahe_size = agg->dtagd_size; 1579 break; 1580 } 1581 1582 if (zaggdata[i].dtahe_size == 0) { 1583 caddr_t data; 1584 1585 /* 1586 * We couldn't find this aggregation, meaning 1587 * that we have never seen it before for any 1588 * tuple _and_ this is an anonymous enabling. 1589 * That is, we're in the obscure case outlined 1590 * above. In this case, our defined behavior 1591 * is to format the data in the format of the 1592 * first non-zero aggregation -- of which, of 1593 * course, we know there to be at least one 1594 * (or nentries would have been zero). 1595 */ 1596 for (j = 0; j < naggvars; j++) { 1597 if (zaggdata[j].dtahe_size != 0) 1598 break; 1599 } 1600 1601 assert(j < naggvars); 1602 zaggdata[i] = zaggdata[j]; 1603 1604 data = zaggdata[i].dtahe_data.dtada_data; 1605 assert(data != NULL); 1606 } 1607 } 1608 } 1609 1610 /* 1611 * Now we need to allocate our zero-filled data for use for 1612 * aggregations that don't have a value corresponding to a given key. 1613 */ 1614 for (i = 0; i < naggvars; i++) { 1615 dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; 1616 dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; 1617 dtrace_recdesc_t *rec; 1618 uint64_t larg; 1619 caddr_t zdata; 1620 1621 zsize = zaggdata[i].dtahe_size; 1622 assert(zsize != 0); 1623 1624 if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { 1625 /* 1626 * If we failed to allocated some zero-filled data, we 1627 * need to zero out the remaining dtada_data pointers 1628 * to prevent the wrong data from being freed below. 1629 */ 1630 for (j = i; j < naggvars; j++) 1631 zaggdata[j].dtahe_data.dtada_data = NULL; 1632 goto out; 1633 } 1634 1635 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1636 1637 /* 1638 * First, the easy bit. To maintain compatibility with 1639 * consumers that pull the compiler-generated ID out of the 1640 * data, we put that ID at the top of the zero-filled data. 1641 */ 1642 rec = &aggdesc->dtagd_rec[0]; 1643 /* LINTED - alignment */ 1644 *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; 1645 1646 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1647 1648 /* 1649 * Now for the more complicated part. If (and only if) this 1650 * is an lquantize() aggregating action, zero-filled data is 1651 * not equivalent to an empty record: we must also get the 1652 * parameters for the lquantize(). 1653 */ 1654 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1655 if (aggdata->dtada_data != NULL) { 1656 /* 1657 * The easier case here is if we actually have 1658 * some prototype data -- in which case we 1659 * manually dig it out of the aggregation 1660 * record. 1661 */ 1662 /* LINTED - alignment */ 1663 larg = *((uint64_t *)(aggdata->dtada_data + 1664 rec->dtrd_offset)); 1665 } else { 1666 /* 1667 * We don't have any prototype data. As a 1668 * result, we know that we _do_ have the 1669 * compiler-generated information. (If this 1670 * were an anonymous enabling, all of our 1671 * zero-filled data would have prototype data 1672 * -- either directly or indirectly.) So as 1673 * gross as it is, we'll grovel around in the 1674 * compiler-generated information to find the 1675 * lquantize() parameters. 1676 */ 1677 dtrace_stmtdesc_t *sdp; 1678 dt_ident_t *aid; 1679 dt_idsig_t *isp; 1680 1681 sdp = (dtrace_stmtdesc_t *)(uintptr_t) 1682 aggdesc->dtagd_rec[0].dtrd_uarg; 1683 aid = sdp->dtsd_aggdata; 1684 isp = (dt_idsig_t *)aid->di_data; 1685 assert(isp->dis_auxinfo != 0); 1686 larg = isp->dis_auxinfo; 1687 } 1688 1689 /* LINTED - alignment */ 1690 *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; 1691 } 1692 1693 aggdata->dtada_data = zdata; 1694 } 1695 1696 /* 1697 * Now that we've dealt with setting up our zero-filled data, we can 1698 * allocate our sorted array, and take another pass over the data to 1699 * fill it. 1700 */ 1701 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1702 1703 if (sorted == NULL) 1704 goto out; 1705 1706 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { 1707 dtrace_aggvarid_t id; 1708 1709 if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) 1710 continue; 1711 1712 sorted[i++] = h; 1713 } 1714 1715 assert(i == nentries); 1716 1717 /* 1718 * We've loaded our array; now we need to sort by value to allow us 1719 * to create bundles of like value. We're going to acquire the 1720 * dt_qsort_lock here, and hold it across all of our subsequent 1721 * comparison and sorting. 1722 */ 1723 (void) pthread_mutex_lock(&dt_qsort_lock); 1724 1725 qsort(sorted, nentries, sizeof (dt_ahashent_t *), 1726 dt_aggregate_keyvarcmp); 1727 1728 /* 1729 * Now we need to go through and create bundles. Because the number 1730 * of bundles is bounded by the size of the sorted array, we're going 1731 * to reuse the underlying storage. And note that "bundle" is an 1732 * array of pointers to arrays of pointers to dt_ahashent_t -- making 1733 * its type (regrettably) "dt_ahashent_t ***". (Regrettable because 1734 * '*' -- like '_' and 'X' -- should never appear in triplicate in 1735 * an ideal world.) 1736 */ 1737 bundle = (dt_ahashent_t ***)sorted; 1738 1739 for (i = 1, start = 0; i <= nentries; i++) { 1740 if (i < nentries && 1741 dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) 1742 continue; 1743 1744 /* 1745 * We have a bundle boundary. Everything from start to 1746 * (i - 1) belongs in one bundle. 1747 */ 1748 assert(i - start <= naggvars); 1749 bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); 1750 1751 if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { 1752 (void) pthread_mutex_unlock(&dt_qsort_lock); 1753 goto out; 1754 } 1755 1756 for (j = start; j < i; j++) { 1757 dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); 1758 1759 assert(id <= max); 1760 assert(map[id] != 0); 1761 assert(map[id] - 1 < naggvars); 1762 assert(nbundle[map[id] - 1] == NULL); 1763 nbundle[map[id] - 1] = sorted[j]; 1764 1765 if (nbundle[naggvars] == NULL) 1766 nbundle[naggvars] = sorted[j]; 1767 } 1768 1769 for (j = 0; j < naggvars; j++) { 1770 if (nbundle[j] != NULL) 1771 continue; 1772 1773 /* 1774 * Before we assume that this aggregation variable 1775 * isn't present (and fall back to using the 1776 * zero-filled data allocated earlier), check the 1777 * remap. If we have a remapping, we'll drop it in 1778 * here. Note that we might be remapping an 1779 * aggregation variable that isn't present for this 1780 * key; in this case, the aggregation data that we 1781 * copy will point to the zeroed data. 1782 */ 1783 if (remap != NULL && remap[j]) { 1784 assert(remap[j] - 1 < j); 1785 assert(nbundle[remap[j] - 1] != NULL); 1786 nbundle[j] = nbundle[remap[j] - 1]; 1787 } else { 1788 nbundle[j] = &zaggdata[j]; 1789 } 1790 } 1791 1792 bundle[nbundles++] = nbundle; 1793 start = i; 1794 } 1795 1796 /* 1797 * Now we need to re-sort based on the first value. 1798 */ 1799 dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), 1800 dt_aggregate_bundlecmp); 1801 1802 (void) pthread_mutex_unlock(&dt_qsort_lock); 1803 1804 /* 1805 * We're done! Now we just need to go back over the sorted bundles, 1806 * calling the function. 1807 */ 1808 data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); 1809 1810 for (i = 0; i < nbundles; i++) { 1811 for (j = 0; j < naggvars; j++) 1812 data[j + 1] = NULL; 1813 1814 for (j = 0; j < naggvars; j++) { 1815 int ndx = j - sortpos; 1816 1817 if (ndx < 0) 1818 ndx += naggvars; 1819 1820 assert(bundle[i][ndx] != NULL); 1821 data[j + 1] = &bundle[i][ndx]->dtahe_data; 1822 } 1823 1824 for (j = 0; j < naggvars; j++) 1825 assert(data[j + 1] != NULL); 1826 1827 /* 1828 * The representative key is the last element in the bundle. 1829 * Assert that we have one, and then set it to be the first 1830 * element of data. 1831 */ 1832 assert(bundle[i][j] != NULL); 1833 data[0] = &bundle[i][j]->dtahe_data; 1834 1835 if ((rval = func(data, naggvars + 1, arg)) == -1) 1836 goto out; 1837 } 1838 1839 rval = 0; 1840 out: 1841 for (i = 0; i < nbundles; i++) 1842 dt_free(dtp, bundle[i]); 1843 1844 if (zaggdata != NULL) { 1845 for (i = 0; i < naggvars; i++) 1846 dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); 1847 } 1848 1849 dt_free(dtp, zaggdata); 1850 dt_free(dtp, sorted); 1851 dt_free(dtp, remap); 1852 dt_free(dtp, map); 1853 1854 return (rval); 1855 } 1856 1857 int 1858 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, 1859 dtrace_aggregate_walk_f *func) 1860 { 1861 dt_print_aggdata_t pd; 1862 1863 pd.dtpa_dtp = dtp; 1864 pd.dtpa_fp = fp; 1865 pd.dtpa_allunprint = 1; 1866 1867 if (func == NULL) 1868 func = dtrace_aggregate_walk_sorted; 1869 1870 if ((*func)(dtp, dt_print_agg, &pd) == -1) 1871 return (dt_set_errno(dtp, dtp->dt_errno)); 1872 1873 return (0); 1874 } 1875 1876 void 1877 dtrace_aggregate_clear(dtrace_hdl_t *dtp) 1878 { 1879 dt_aggregate_t *agp = &dtp->dt_aggregate; 1880 dt_ahash_t *hash = &agp->dtat_hash; 1881 dt_ahashent_t *h; 1882 dtrace_aggdata_t *data; 1883 dtrace_aggdesc_t *aggdesc; 1884 dtrace_recdesc_t *rec; 1885 int i, max_cpus = agp->dtat_maxcpu; 1886 1887 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1888 aggdesc = h->dtahe_data.dtada_desc; 1889 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1890 data = &h->dtahe_data; 1891 1892 bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); 1893 1894 if (data->dtada_percpu == NULL) 1895 continue; 1896 1897 for (i = 0; i < max_cpus; i++) 1898 bzero(data->dtada_percpu[i], rec->dtrd_size); 1899 } 1900 } 1901 1902 void 1903 dt_aggregate_destroy(dtrace_hdl_t *dtp) 1904 { 1905 dt_aggregate_t *agp = &dtp->dt_aggregate; 1906 dt_ahash_t *hash = &agp->dtat_hash; 1907 dt_ahashent_t *h, *next; 1908 dtrace_aggdata_t *aggdata; 1909 int i, max_cpus = agp->dtat_maxcpu; 1910 1911 if (hash->dtah_hash == NULL) { 1912 assert(hash->dtah_all == NULL); 1913 } else { 1914 free(hash->dtah_hash); 1915 1916 for (h = hash->dtah_all; h != NULL; h = next) { 1917 next = h->dtahe_nextall; 1918 1919 aggdata = &h->dtahe_data; 1920 1921 if (aggdata->dtada_percpu != NULL) { 1922 for (i = 0; i < max_cpus; i++) 1923 free(aggdata->dtada_percpu[i]); 1924 free(aggdata->dtada_percpu); 1925 } 1926 1927 free(aggdata->dtada_data); 1928 free(h); 1929 } 1930 1931 hash->dtah_hash = NULL; 1932 hash->dtah_all = NULL; 1933 hash->dtah_size = 0; 1934 } 1935 1936 free(agp->dtat_buf.dtbd_data); 1937 free(agp->dtat_cpus); 1938 }