1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 /*
  28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
  29  * Copyright (c) 2012 by Delphix. All rights reserved.
  30  */
  31 
  32 #ifndef _SYS_DTRACE_IMPL_H
  33 #define _SYS_DTRACE_IMPL_H
  34 
  35 #ifdef  __cplusplus
  36 extern "C" {
  37 #endif
  38 
  39 /*
  40  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
  41  *
  42  * Note: The contents of this file are private to the implementation of the
  43  * Solaris system and DTrace subsystem and are subject to change at any time
  44  * without notice.  Applications and drivers using these interfaces will fail
  45  * to run on future releases.  These interfaces should not be used for any
  46  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
  47  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
  48  */
  49 
  50 #include <sys/dtrace.h>
  51 
  52 /*
  53  * DTrace Implementation Constants and Typedefs
  54  */
  55 #define DTRACE_MAXPROPLEN               128
  56 #define DTRACE_DYNVAR_CHUNKSIZE         256
  57 
  58 struct dtrace_probe;
  59 struct dtrace_ecb;
  60 struct dtrace_predicate;
  61 struct dtrace_action;
  62 struct dtrace_provider;
  63 struct dtrace_state;
  64 
  65 typedef struct dtrace_probe dtrace_probe_t;
  66 typedef struct dtrace_ecb dtrace_ecb_t;
  67 typedef struct dtrace_predicate dtrace_predicate_t;
  68 typedef struct dtrace_action dtrace_action_t;
  69 typedef struct dtrace_provider dtrace_provider_t;
  70 typedef struct dtrace_meta dtrace_meta_t;
  71 typedef struct dtrace_state dtrace_state_t;
  72 typedef uint32_t dtrace_optid_t;
  73 typedef uint32_t dtrace_specid_t;
  74 typedef uint64_t dtrace_genid_t;
  75 
  76 /*
  77  * DTrace Probes
  78  *
  79  * The probe is the fundamental unit of the DTrace architecture.  Probes are
  80  * created by DTrace providers, and managed by the DTrace framework.  A probe
  81  * is identified by a unique <provider, module, function, name> tuple, and has
  82  * a unique probe identifier assigned to it.  (Some probes are not associated
  83  * with a specific point in text; these are called _unanchored probes_ and have
  84  * no module or function associated with them.)  Probes are represented as a
  85  * dtrace_probe structure.  To allow quick lookups based on each element of the
  86  * probe tuple, probes are hashed by each of provider, module, function and
  87  * name.  (If a lookup is performed based on a regular expression, a
  88  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
  89  * is additionally pointed to by a linear array indexed by its identifier.  The
  90  * identifier is the provider's mechanism for indicating to the DTrace
  91  * framework that a probe has fired:  the identifier is passed as the first
  92  * argument to dtrace_probe(), where it is then mapped into the corresponding
  93  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
  94  * iterate over the probe's list of enabling control blocks; see "DTrace
  95  * Enabling Control Blocks", below.)
  96  */
  97 struct dtrace_probe {
  98         dtrace_id_t dtpr_id;                    /* probe identifier */
  99         dtrace_ecb_t *dtpr_ecb;                 /* ECB list; see below */
 100         dtrace_ecb_t *dtpr_ecb_last;            /* last ECB in list */
 101         void *dtpr_arg;                         /* provider argument */
 102         dtrace_cacheid_t dtpr_predcache;        /* predicate cache ID */
 103         int dtpr_aframes;                       /* artificial frames */
 104         dtrace_provider_t *dtpr_provider;       /* pointer to provider */
 105         char *dtpr_mod;                         /* probe's module name */
 106         char *dtpr_func;                        /* probe's function name */
 107         char *dtpr_name;                        /* probe's name */
 108         dtrace_probe_t *dtpr_nextmod;           /* next in module hash */
 109         dtrace_probe_t *dtpr_prevmod;           /* previous in module hash */
 110         dtrace_probe_t *dtpr_nextfunc;          /* next in function hash */
 111         dtrace_probe_t *dtpr_prevfunc;          /* previous in function hash */
 112         dtrace_probe_t *dtpr_nextname;          /* next in name hash */
 113         dtrace_probe_t *dtpr_prevname;          /* previous in name hash */
 114         dtrace_genid_t dtpr_gen;                /* probe generation ID */
 115 };
 116 
 117 typedef int dtrace_probekey_f(const char *, const char *, int);
 118 
 119 typedef struct dtrace_probekey {
 120         const char *dtpk_prov;                  /* provider name to match */
 121         dtrace_probekey_f *dtpk_pmatch;         /* provider matching function */
 122         const char *dtpk_mod;                   /* module name to match */
 123         dtrace_probekey_f *dtpk_mmatch;         /* module matching function */
 124         const char *dtpk_func;                  /* func name to match */
 125         dtrace_probekey_f *dtpk_fmatch;         /* func matching function */
 126         const char *dtpk_name;                  /* name to match */
 127         dtrace_probekey_f *dtpk_nmatch;         /* name matching function */
 128         dtrace_id_t dtpk_id;                    /* identifier to match */
 129 } dtrace_probekey_t;
 130 
 131 typedef struct dtrace_hashbucket {
 132         struct dtrace_hashbucket *dthb_next;    /* next on hash chain */
 133         dtrace_probe_t *dthb_chain;             /* chain of probes */
 134         int dthb_len;                           /* number of probes here */
 135 } dtrace_hashbucket_t;
 136 
 137 typedef struct dtrace_hash {
 138         dtrace_hashbucket_t **dth_tab;          /* hash table */
 139         int dth_size;                           /* size of hash table */
 140         int dth_mask;                           /* mask to index into table */
 141         int dth_nbuckets;                       /* total number of buckets */
 142         uintptr_t dth_nextoffs;                 /* offset of next in probe */
 143         uintptr_t dth_prevoffs;                 /* offset of prev in probe */
 144         uintptr_t dth_stroffs;                  /* offset of str in probe */
 145 } dtrace_hash_t;
 146 
 147 /*
 148  * DTrace Enabling Control Blocks
 149  *
 150  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
 151  * passing the probe identifier as the first argument.  As described above,
 152  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
 153  * structure.  This structure contains information about the probe, and a
 154  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
 155  * DTrace consumer state, and contains an optional predicate, and a list of
 156  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
 157  * probe to be multiplexed across disjoint consumers, or across disjoint
 158  * enablings of a single probe within one consumer.
 159  *
 160  *   Enabling Control Block
 161  *        dtrace_ecb_t
 162  * +------------------------+
 163  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
 164  * | dtrace_state_t * ------+--------------> State associated with this ECB
 165  * | dtrace_predicate_t * --+---------+
 166  * | dtrace_action_t * -----+----+    |
 167  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
 168  * +-------------------+----+    |    |       dtrace_predicate_t
 169  *                     |         |    +---> +--------------------+
 170  *                     |         |          | dtrace_difo_t * ---+----> DIFO
 171  *                     |         |          +--------------------+
 172  *                     |         |
 173  *            Next ECB |         |           Action
 174  *            (if any) |         |       dtrace_action_t
 175  *                     :         +--> +-------------------+
 176  *                     :              | dtrace_actkind_t -+------> kind
 177  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
 178  *                                    | dtrace_recdesc_t -+------> record descr.
 179  *                                    | dtrace_action_t * +------+
 180  *                                    +-------------------+      |
 181  *                                                               | Next action
 182  *                               +-------------------------------+  (if any)
 183  *                               |
 184  *                               |           Action
 185  *                               |       dtrace_action_t
 186  *                               +--> +-------------------+
 187  *                                    | dtrace_actkind_t -+------> kind
 188  *                                    | dtrace_difo_t * --+------> DIFO (if any)
 189  *                                    | dtrace_action_t * +------+
 190  *                                    +-------------------+      |
 191  *                                                               | Next action
 192  *                               +-------------------------------+  (if any)
 193  *                               |
 194  *                               :
 195  *                               v
 196  *
 197  *
 198  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
 199  * than is available in the principal buffer, the ECB is processed:  if the
 200  * predicate is non-NULL, the DIF object is executed.  If the result is
 201  * non-zero, the action list is processed, with each action being executed
 202  * accordingly.  When the action list has been completely executed, processing
 203  * advances to the next ECB. The ECB abstraction allows disjoint consumers
 204  * to multiplex on single probes.
 205  *
 206  * Execution of the ECB results in consuming dte_size bytes in the buffer
 207  * to record data.  During execution, dte_needed bytes must be available in
 208  * the buffer.  This space is used for both recorded data and tuple data.
 209  */
 210 struct dtrace_ecb {
 211         dtrace_epid_t dte_epid;                 /* enabled probe ID */
 212         uint32_t dte_alignment;                 /* required alignment */
 213         size_t dte_needed;                      /* space needed for execution */
 214         size_t dte_size;                        /* size of recorded payload */
 215         dtrace_predicate_t *dte_predicate;      /* predicate, if any */
 216         dtrace_action_t *dte_action;            /* actions, if any */
 217         dtrace_ecb_t *dte_next;                 /* next ECB on probe */
 218         dtrace_state_t *dte_state;              /* pointer to state */
 219         uint32_t dte_cond;                      /* security condition */
 220         dtrace_probe_t *dte_probe;              /* pointer to probe */
 221         dtrace_action_t *dte_action_last;       /* last action on ECB */
 222         uint64_t dte_uarg;                      /* library argument */
 223 };
 224 
 225 struct dtrace_predicate {
 226         dtrace_difo_t *dtp_difo;                /* DIF object */
 227         dtrace_cacheid_t dtp_cacheid;           /* cache identifier */
 228         int dtp_refcnt;                         /* reference count */
 229 };
 230 
 231 struct dtrace_action {
 232         dtrace_actkind_t dta_kind;              /* kind of action */
 233         uint16_t dta_intuple;                   /* boolean:  in aggregation */
 234         uint32_t dta_refcnt;                    /* reference count */
 235         dtrace_difo_t *dta_difo;                /* pointer to DIFO */
 236         dtrace_recdesc_t dta_rec;               /* record description */
 237         dtrace_action_t *dta_prev;              /* previous action */
 238         dtrace_action_t *dta_next;              /* next action */
 239 };
 240 
 241 typedef struct dtrace_aggregation {
 242         dtrace_action_t dtag_action;            /* action; must be first */
 243         dtrace_aggid_t dtag_id;                 /* identifier */
 244         dtrace_ecb_t *dtag_ecb;                 /* corresponding ECB */
 245         dtrace_action_t *dtag_first;            /* first action in tuple */
 246         uint32_t dtag_base;                     /* base of aggregation */
 247         uint8_t dtag_hasarg;                    /* boolean:  has argument */
 248         uint64_t dtag_initial;                  /* initial value */
 249         void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
 250 } dtrace_aggregation_t;
 251 
 252 /*
 253  * DTrace Buffers
 254  *
 255  * Principal buffers, aggregation buffers, and speculative buffers are all
 256  * managed with the dtrace_buffer structure.  By default, this structure
 257  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
 258  * active and passive buffers, respectively.  For speculative buffers,
 259  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
 260  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
 261  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
 262  * never shared among CPUs.  (That is, there is never true sharing of the
 263  * dtrace_buffer structure; to prevent false sharing of the structure, it must
 264  * always be aligned to the coherence granularity -- generally 64 bytes.)
 265  *
 266  * One of the critical design decisions of DTrace is that a given ECB always
 267  * stores the same quantity and type of data.  This is done to assure that the
 268  * only metadata required for an ECB's traced data is the EPID.  That is, from
 269  * the EPID, the consumer can determine the data layout.  (The data buffer
 270  * layout is shown schematically below.)  By assuring that one can determine
 271  * data layout from the EPID, the metadata stream can be separated from the
 272  * data stream -- simplifying the data stream enormously.  The ECB always
 273  * proceeds the recorded data as part of the dtrace_rechdr_t structure that
 274  * includes the EPID and a high-resolution timestamp used for output ordering
 275  * consistency.
 276  *
 277  *      base of data buffer --->  +--------+--------------------+--------+
 278  *                                | rechdr | data               | rechdr |
 279  *                                +--------+------+--------+----+--------+
 280  *                                | data          | rechdr | data        |
 281  *                                +---------------+--------+-------------+
 282  *                                | data, cont.                          |
 283  *                                +--------+--------------------+--------+
 284  *                                | rechdr | data               |        |
 285  *                                +--------+--------------------+        |
 286  *                                |                ||                    |
 287  *                                |                ||                    |
 288  *                                |                \/                    |
 289  *                                :                                      :
 290  *                                .                                      .
 291  *                                .                                      .
 292  *                                .                                      .
 293  *                                :                                      :
 294  *                                |                                      |
 295  *     limit of data buffer --->  +--------------------------------------+
 296  *
 297  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
 298  * principal buffer (both scratch and payload) exceed the available space.  If
 299  * the ECB's needs exceed available space (and if the principal buffer policy
 300  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
 301  * is incremented, and processing advances to the next ECB.  If the ECB's needs
 302  * can be met with the available space, the ECB is processed, but the offset in
 303  * the principal buffer is only advanced if the ECB completes processing
 304  * without error.
 305  *
 306  * When a buffer is to be switched (either because the buffer is the principal
 307  * buffer with a "switch" policy or because it is an aggregation buffer), a
 308  * cross call is issued to the CPU associated with the buffer.  In the cross
 309  * call context, interrupts are disabled, and the active and the inactive
 310  * buffers are atomically switched.  This involves switching the data pointers,
 311  * copying the various state fields (offset, drops, errors, etc.) into their
 312  * inactive equivalents, and clearing the state fields.  Because interrupts are
 313  * disabled during this procedure, the switch is guaranteed to appear atomic to
 314  * dtrace_probe().
 315  *
 316  * DTrace Ring Buffering
 317  *
 318  * To process a ring buffer correctly, one must know the oldest valid record.
 319  * Processing starts at the oldest record in the buffer and continues until
 320  * the end of the buffer is reached.  Processing then resumes starting with
 321  * the record stored at offset 0 in the buffer, and continues until the
 322  * youngest record is processed.  If trace records are of a fixed-length,
 323  * determining the oldest record is trivial:
 324  *
 325  *   - If the ring buffer has not wrapped, the oldest record is the record
 326  *     stored at offset 0.
 327  *
 328  *   - If the ring buffer has wrapped, the oldest record is the record stored
 329  *     at the current offset.
 330  *
 331  * With variable length records, however, just knowing the current offset
 332  * doesn't suffice for determining the oldest valid record:  assuming that one
 333  * allows for arbitrary data, one has no way of searching forward from the
 334  * current offset to find the oldest valid record.  (That is, one has no way
 335  * of separating data from metadata.) It would be possible to simply refuse to
 336  * process any data in the ring buffer between the current offset and the
 337  * limit, but this leaves (potentially) an enormous amount of otherwise valid
 338  * data unprocessed.
 339  *
 340  * To effect ring buffering, we track two offsets in the buffer:  the current
 341  * offset and the _wrapped_ offset.  If a request is made to reserve some
 342  * amount of data, and the buffer has wrapped, the wrapped offset is
 343  * incremented until the wrapped offset minus the current offset is greater
 344  * than or equal to the reserve request.  This is done by repeatedly looking
 345  * up the ECB corresponding to the EPID at the current wrapped offset, and
 346  * incrementing the wrapped offset by the size of the data payload
 347  * corresponding to that ECB.  If this offset is greater than or equal to the
 348  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
 349  * current offset effectively "chases" the wrapped offset around the buffer.
 350  * Schematically:
 351  *
 352  *      base of data buffer --->  +------+--------------------+------+
 353  *                                | EPID | data               | EPID |
 354  *                                +------+--------+------+----+------+
 355  *                                | data          | EPID | data      |
 356  *                                +---------------+------+-----------+
 357  *                                | data, cont.                      |
 358  *                                +------+---------------------------+
 359  *                                | EPID | data                      |
 360  *           current offset --->  +------+---------------------------+
 361  *                                | invalid data                     |
 362  *           wrapped offset --->  +------+--------------------+------+
 363  *                                | EPID | data               | EPID |
 364  *                                +------+--------+------+----+------+
 365  *                                | data          | EPID | data      |
 366  *                                +---------------+------+-----------+
 367  *                                :                                  :
 368  *                                .                                  .
 369  *                                .        ... valid data ...        .
 370  *                                .                                  .
 371  *                                :                                  :
 372  *                                +------+-------------+------+------+
 373  *                                | EPID | data        | EPID | data |
 374  *                                +------+------------++------+------+
 375  *                                | data, cont.       | leftover     |
 376  *     limit of data buffer --->  +-------------------+--------------+
 377  *
 378  * If the amount of requested buffer space exceeds the amount of space
 379  * available between the current offset and the end of the buffer:
 380  *
 381  *  (1)  all words in the data buffer between the current offset and the limit
 382  *       of the data buffer (marked "leftover", above) are set to
 383  *       DTRACE_EPIDNONE
 384  *
 385  *  (2)  the wrapped offset is set to zero
 386  *
 387  *  (3)  the iteration process described above occurs until the wrapped offset
 388  *       is greater than the amount of desired space.
 389  *
 390  * The wrapped offset is implemented by (re-)using the inactive offset.
 391  * In a "switch" buffer policy, the inactive offset stores the offset in
 392  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
 393  * offset.
 394  *
 395  * DTrace Scratch Buffering
 396  *
 397  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
 398  * To accommodate such requests easily, scratch memory may be allocated in
 399  * the buffer beyond the current offset plus the needed memory of the current
 400  * ECB.  If there isn't sufficient room in the buffer for the requested amount
 401  * of scratch space, the allocation fails and an error is generated.  Scratch
 402  * memory is tracked in the dtrace_mstate_t and is automatically freed when
 403  * the ECB ceases processing.  Note that ring buffers cannot allocate their
 404  * scratch from the principal buffer -- lest they needlessly overwrite older,
 405  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
 406  * from which scratch is allocated.
 407  */
 408 #define DTRACEBUF_RING          0x0001          /* bufpolicy set to "ring" */
 409 #define DTRACEBUF_FILL          0x0002          /* bufpolicy set to "fill" */
 410 #define DTRACEBUF_NOSWITCH      0x0004          /* do not switch buffer */
 411 #define DTRACEBUF_WRAPPED       0x0008          /* ring buffer has wrapped */
 412 #define DTRACEBUF_DROPPED       0x0010          /* drops occurred */
 413 #define DTRACEBUF_ERROR         0x0020          /* errors occurred */
 414 #define DTRACEBUF_FULL          0x0040          /* "fill" buffer is full */
 415 #define DTRACEBUF_CONSUMED      0x0080          /* buffer has been consumed */
 416 #define DTRACEBUF_INACTIVE      0x0100          /* buffer is not yet active */
 417 
 418 typedef struct dtrace_buffer {
 419         uint64_t dtb_offset;                    /* current offset in buffer */
 420         uint64_t dtb_size;                      /* size of buffer */
 421         uint32_t dtb_flags;                     /* flags */
 422         uint32_t dtb_drops;                     /* number of drops */
 423         caddr_t dtb_tomax;                      /* active buffer */
 424         caddr_t dtb_xamot;                      /* inactive buffer */
 425         uint32_t dtb_xamot_flags;               /* inactive flags */
 426         uint32_t dtb_xamot_drops;               /* drops in inactive buffer */
 427         uint64_t dtb_xamot_offset;              /* offset in inactive buffer */
 428         uint32_t dtb_errors;                    /* number of errors */
 429         uint32_t dtb_xamot_errors;              /* errors in inactive buffer */
 430 #ifndef _LP64
 431         uint64_t dtb_pad1;                      /* pad out to 64 bytes */
 432 #endif
 433         uint64_t dtb_switched;                  /* time of last switch */
 434         uint64_t dtb_interval;                  /* observed switch interval */
 435         uint64_t dtb_pad2[6];                   /* pad to avoid false sharing */
 436 } dtrace_buffer_t;
 437 
 438 /*
 439  * DTrace Aggregation Buffers
 440  *
 441  * Aggregation buffers use much of the same mechanism as described above
 442  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
 443  * hash, there exists dynamic metadata associated with an aggregation buffer
 444  * that is not associated with other kinds of buffers.  This aggregation
 445  * metadata is _only_ relevant for the in-kernel implementation of
 446  * aggregations; it is not actually relevant to user-level consumers.  To do
 447  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
 448  * starting below the _limit_ of the buffer, and we allocate data from the
 449  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
 450  * data is copied out; the metadata is simply discarded.  Schematically,
 451  * aggregation buffers look like:
 452  *
 453  *      base of data buffer --->  +-------+------+-----------+-------+
 454  *                                | aggid | key  | value     | aggid |
 455  *                                +-------+------+-----------+-------+
 456  *                                | key                              |
 457  *                                +-------+-------+-----+------------+
 458  *                                | value | aggid | key | value      |
 459  *                                +-------+------++-----+------+-----+
 460  *                                | aggid | key  | value       |     |
 461  *                                +-------+------+-------------+     |
 462  *                                |                ||                |
 463  *                                |                ||                |
 464  *                                |                \/                |
 465  *                                :                                  :
 466  *                                .                                  .
 467  *                                .                                  .
 468  *                                .                                  .
 469  *                                :                                  :
 470  *                                |                /\                |
 471  *                                |                ||   +------------+
 472  *                                |                ||   |            |
 473  *                                +---------------------+            |
 474  *                                | hash keys                        |
 475  *                                | (dtrace_aggkey structures)       |
 476  *                                |                                  |
 477  *                                +----------------------------------+
 478  *                                | hash buckets                     |
 479  *                                | (dtrace_aggbuffer structure)     |
 480  *                                |                                  |
 481  *     limit of data buffer --->  +----------------------------------+
 482  *
 483  *
 484  * As implied above, just as we assure that ECBs always store a constant
 485  * amount of data, we assure that a given aggregation -- identified by its
 486  * aggregation ID -- always stores data of a constant quantity and type.
 487  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
 488  * given record.
 489  *
 490  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
 491  * aligned.  (If this the structure changes such that this becomes false, an
 492  * assertion will fail in dtrace_aggregate().)
 493  */
 494 typedef struct dtrace_aggkey {
 495         uint32_t dtak_hashval;                  /* hash value */
 496         uint32_t dtak_action:4;                 /* action -- 4 bits */
 497         uint32_t dtak_size:28;                  /* size -- 28 bits */
 498         caddr_t dtak_data;                      /* data pointer */
 499         struct dtrace_aggkey *dtak_next;        /* next in hash chain */
 500 } dtrace_aggkey_t;
 501 
 502 typedef struct dtrace_aggbuffer {
 503         uintptr_t dtagb_hashsize;               /* number of buckets */
 504         uintptr_t dtagb_free;                   /* free list of keys */
 505         dtrace_aggkey_t **dtagb_hash;           /* hash table */
 506 } dtrace_aggbuffer_t;
 507 
 508 /*
 509  * DTrace Speculations
 510  *
 511  * Speculations have a per-CPU buffer and a global state.  Once a speculation
 512  * buffer has been comitted or discarded, it cannot be reused until all CPUs
 513  * have taken the same action (commit or discard) on their respective
 514  * speculative buffer.  However, because DTrace probes may execute in arbitrary
 515  * context, other CPUs cannot simply be cross-called at probe firing time to
 516  * perform the necessary commit or discard.  The speculation states thus
 517  * optimize for the case that a speculative buffer is only active on one CPU at
 518  * the time of a commit() or discard() -- for if this is the case, other CPUs
 519  * need not take action, and the speculation is immediately available for
 520  * reuse.  If the speculation is active on multiple CPUs, it must be
 521  * asynchronously cleaned -- potentially leading to a higher rate of dirty
 522  * speculative drops.  The speculation states are as follows:
 523  *
 524  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
 525  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
 526  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
 527  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
 528  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
 529  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
 530  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
 531  *
 532  * The state transition diagram is as follows:
 533  *
 534  *     +----------------------------------------------------------+
 535  *     |                                                          |
 536  *     |                      +------------+                      |
 537  *     |  +-------------------| COMMITTING |<-----------------+   |
 538  *     |  |                   +------------+                  |   |
 539  *     |  | copied spec.            ^             commit() on |   | discard() on
 540  *     |  | into principal          |              active CPU |   | active CPU
 541  *     |  |                         | commit()                |   |
 542  *     V  V                         |                         |   |
 543  * +----------+                 +--------+                +-----------+
 544  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
 545  * +----------+  speculation()  +--------+  speculate()   +-----------+
 546  *     ^  ^                         |                         |   |
 547  *     |  |                         | discard()               |   |
 548  *     |  | asynchronously          |            discard() on |   | speculate()
 549  *     |  | cleaned                 V            inactive CPU |   | on inactive
 550  *     |  |                   +------------+                  |   | CPU
 551  *     |  +-------------------| DISCARDING |<-----------------+   |
 552  *     |                      +------------+                      |
 553  *     | asynchronously             ^                             |
 554  *     | copied spec.               |       discard()             |
 555  *     | into principal             +------------------------+    |
 556  *     |                                                     |    V
 557  *  +----------------+             commit()              +------------+
 558  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
 559  *  +----------------+                                   +------------+
 560  */
 561 typedef enum dtrace_speculation_state {
 562         DTRACESPEC_INACTIVE = 0,
 563         DTRACESPEC_ACTIVE,
 564         DTRACESPEC_ACTIVEONE,
 565         DTRACESPEC_ACTIVEMANY,
 566         DTRACESPEC_COMMITTING,
 567         DTRACESPEC_COMMITTINGMANY,
 568         DTRACESPEC_DISCARDING
 569 } dtrace_speculation_state_t;
 570 
 571 typedef struct dtrace_speculation {
 572         dtrace_speculation_state_t dtsp_state;  /* current speculation state */
 573         int dtsp_cleaning;                      /* non-zero if being cleaned */
 574         dtrace_buffer_t *dtsp_buffer;           /* speculative buffer */
 575 } dtrace_speculation_t;
 576 
 577 /*
 578  * DTrace Dynamic Variables
 579  *
 580  * The dynamic variable problem is obviously decomposed into two subproblems:
 581  * allocating new dynamic storage, and freeing old dynamic storage.  The
 582  * presence of the second problem makes the first much more complicated -- or
 583  * rather, the absence of the second renders the first trivial.  This is the
 584  * case with aggregations, for which there is effectively no deallocation of
 585  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
 586  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
 587  * allow for both dynamic allocation and dynamic deallocation, the
 588  * implementation of dynamic variables is quite a bit more complicated than
 589  * that of their aggregation kin.
 590  *
 591  * We observe that allocating new dynamic storage is tricky only because the
 592  * size can vary -- the allocation problem is much easier if allocation sizes
 593  * are uniform.  We further observe that in D, the size of dynamic variables is
 594  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
 595  * analysis of DIF text.  (This is true even of putatively dynamically-sized
 596  * objects like strings and stacks, the sizes of which are dictated by the
 597  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
 598  * performing this analysis on all DIF before enabling any probes.  For each
 599  * dynamic load or store, we calculate the dynamically-allocated size plus the
 600  * size of the dtrace_dynvar structure plus the storage required to key the
 601  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
 602  * We then divide dynamic memory into two parts:  a hash table that is wide
 603  * enough to have every chunk in its own bucket, and a larger region of equal
 604  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
 605  * always allocate a single chunk of memory.  Depending on the uniformity of
 606  * allocation, this will waste some amount of memory -- but it eliminates the
 607  * non-determinism inherent in traditional heap fragmentation.
 608  *
 609  * Dynamic objects are allocated by storing a non-zero value to them; they are
 610  * deallocated by storing a zero value to them.  Dynamic variables are
 611  * complicated enormously by being shared between CPUs.  In particular,
 612  * consider the following scenario:
 613  *
 614  *                 CPU A                                 CPU B
 615  *  +---------------------------------+   +---------------------------------+
 616  *  |                                 |   |                                 |
 617  *  | allocates dynamic object a[123] |   |                                 |
 618  *  | by storing the value 345 to it  |   |                                 |
 619  *  |                               --------->                              |
 620  *  |                                 |   | wishing to load from object     |
 621  *  |                                 |   | a[123], performs lookup in      |
 622  *  |                                 |   | dynamic variable space          |
 623  *  |                               <---------                              |
 624  *  | deallocates object a[123] by    |   |                                 |
 625  *  | storing 0 to it                 |   |                                 |
 626  *  |                                 |   |                                 |
 627  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
 628  *  | by storing the value 789 to it  |   |                                 |
 629  *  :                                 :   :                                 :
 630  *  .                                 .   .                                 .
 631  *
 632  * This is obviously a race in the D program, but there are nonetheless only
 633  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
 634  * CPU B may _not_ see the value 789 for a[123].
 635  *
 636  * There are essentially two ways to deal with this:
 637  *
 638  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
 639  *       from a[123], it needs to lock a[123] and hold the lock for the
 640  *       duration that it wishes to manipulate it.
 641  *
 642  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
 643  *       to them.
 644  *
 645  * The implementation of (1) is rife with complexity, because it requires the
 646  * user of a dynamic variable to explicitly decree when they are done using it.
 647  * Were all variables by value, this perhaps wouldn't be debilitating -- but
 648  * dynamic variables of non-scalar types are tracked by reference.  That is, if
 649  * a dynamic variable is, say, a string, and that variable is to be traced to,
 650  * say, the principal buffer, the DIF emulation code returns to the main
 651  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
 652  * the storage.  Further, code calling on DIF emulation would have to be aware
 653  * that the DIF emulation has returned a reference to a dynamic variable that
 654  * has been potentially locked.  The variable would have to be unlocked after
 655  * the main dtrace_probe() loop is finished with the variable, and the main
 656  * dtrace_probe() loop would have to be careful to not call any further DIF
 657  * emulation while the variable is locked to avoid deadlock.  More generally,
 658  * if one were to implement (1), DIF emulation code dealing with dynamic
 659  * variables could only deal with one dynamic variable at a time (lest deadlock
 660  * result).  To sum, (1) exports too much subtlety to the users of dynamic
 661  * variables -- increasing maintenance burden and imposing serious constraints
 662  * on future DTrace development.
 663  *
 664  * The implementation of (2) is also complex, but the complexity is more
 665  * manageable.  We need to be sure that when a variable is deallocated, it is
 666  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
 667  * variable is on a dirty list, it cannot be found by CPUs performing a
 668  * subsequent lookup of the variable -- but it may still be in use by other
 669  * CPUs.  To assure that all CPUs that may be seeing the old variable have
 670  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
 671  * dtrace_sync() has completed, it can be known that all CPUs are done
 672  * manipulating the dynamic variable -- the dirty list can be atomically
 673  * appended to the free list.  Unfortunately, there's a slight hiccup in this
 674  * mechanism:  dtrace_sync() may not be issued from probe context.  The
 675  * dtrace_sync() must be therefore issued asynchronously from non-probe
 676  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
 677  * "cleanrate" frequency.  To ease this implementation, we define several chunk
 678  * lists:
 679  *
 680  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
 681  *
 682  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
 683  *     cleaned.  Not available, but will be shortly.  Dynamic variable
 684  *     allocation may not spin or block for availability, however.
 685  *
 686  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
 687  *
 688  *   - Free.  Available for allocation.
 689  *
 690  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
 691  * on a per-CPU basis.  This is only for performance, not correctness; chunks
 692  * may be allocated from another CPU's free list.  The algorithm for allocation
 693  * then is this:
 694  *
 695  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
 696  *        is non-empty and allocation is successful, allocation is complete.
 697  *
 698  *   (2)  If the clean list is non-empty, atomically move it to the free list,
 699  *        and reattempt (1).
 700  *
 701  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
 702  *        and clean lists on other CPUs by setting the current CPU to the next
 703  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
 704  *        is, if all CPUs have been checked), atomically switch the state of
 705  *        the dynamic variable space based on the following:
 706  *
 707  *        - If no free chunks were found and no dirty chunks were found,
 708  *          atomically set the state to EMPTY.
 709  *
 710  *        - If dirty chunks were found, atomically set the state to DIRTY.
 711  *
 712  *        - If rinsing chunks were found, atomically set the state to RINSING.
 713  *
 714  *   (4)  Based on state of dynamic variable space state, increment appropriate
 715  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
 716  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
 717  *        RINSING state).  Fail the allocation.
 718  *
 719  * The cleaning cyclic operates with the following algorithm:  for all CPUs
 720  * with a non-empty dirty list, atomically move the dirty list to the rinsing
 721  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
 722  * atomically move the rinsing list to the clean list.  Perform another
 723  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
 724  * state of the dynamic variable space can be restored to CLEAN.
 725  *
 726  * There exist two final races that merit explanation.  The first is a simple
 727  * allocation race:
 728  *
 729  *                 CPU A                                 CPU B
 730  *  +---------------------------------+   +---------------------------------+
 731  *  |                                 |   |                                 |
 732  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
 733  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
 734  *  |                                 |   |                                 |
 735  *  :                                 :   :                                 :
 736  *  .                                 .   .                                 .
 737  *
 738  * Again, this is a race in the D program.  It can be resolved by having a[123]
 739  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
 740  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
 741  * put the same element twice on the same hash chain.)  This is resolved
 742  * simply:  before the allocation is undertaken, the start of the new chunk's
 743  * hash chain is noted.  Later, after the allocation is complete, the hash
 744  * chain is atomically switched to point to the new element.  If this fails
 745  * (because of either concurrent allocations or an allocation concurrent with a
 746  * deletion), the newly allocated chunk is deallocated to the dirty list, and
 747  * the whole process of looking up (and potentially allocating) the dynamic
 748  * variable is reattempted.
 749  *
 750  * The final race is a simple deallocation race:
 751  *
 752  *                 CPU A                                 CPU B
 753  *  +---------------------------------+   +---------------------------------+
 754  *  |                                 |   |                                 |
 755  *  | deallocates dynamic object      |   | deallocates dynamic object      |
 756  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
 757  *  | to it                           |   | to it                           |
 758  *  |                                 |   |                                 |
 759  *  :                                 :   :                                 :
 760  *  .                                 .   .                                 .
 761  *
 762  * Once again, this is a race in the D program, but it is one that we must
 763  * handle without corrupting the underlying data structures.  Because
 764  * deallocations require the deletion of a chunk from the middle of a hash
 765  * chain, we cannot use a single-word atomic operation to remove it.  For this,
 766  * we add a spin lock to the hash buckets that is _only_ used for deallocations
 767  * (allocation races are handled as above).  Further, this spin lock is _only_
 768  * held for the duration of the delete; before control is returned to the DIF
 769  * emulation code, the hash bucket is unlocked.
 770  */
 771 typedef struct dtrace_key {
 772         uint64_t dttk_value;                    /* data value or data pointer */
 773         uint64_t dttk_size;                     /* 0 if by-val, >0 if by-ref */
 774 } dtrace_key_t;
 775 
 776 typedef struct dtrace_tuple {
 777         uint32_t dtt_nkeys;                     /* number of keys in tuple */
 778         uint32_t dtt_pad;                       /* padding */
 779         dtrace_key_t dtt_key[1];                /* array of tuple keys */
 780 } dtrace_tuple_t;
 781 
 782 typedef struct dtrace_dynvar {
 783         uint64_t dtdv_hashval;                  /* hash value -- 0 if free */
 784         struct dtrace_dynvar *dtdv_next;        /* next on list or hash chain */
 785         void *dtdv_data;                        /* pointer to data */
 786         dtrace_tuple_t dtdv_tuple;              /* tuple key */
 787 } dtrace_dynvar_t;
 788 
 789 typedef enum dtrace_dynvar_op {
 790         DTRACE_DYNVAR_ALLOC,
 791         DTRACE_DYNVAR_NOALLOC,
 792         DTRACE_DYNVAR_DEALLOC
 793 } dtrace_dynvar_op_t;
 794 
 795 typedef struct dtrace_dynhash {
 796         dtrace_dynvar_t *dtdh_chain;            /* hash chain for this bucket */
 797         uintptr_t dtdh_lock;                    /* deallocation lock */
 798 #ifdef _LP64
 799         uintptr_t dtdh_pad[6];                  /* pad to avoid false sharing */
 800 #else
 801         uintptr_t dtdh_pad[14];                 /* pad to avoid false sharing */
 802 #endif
 803 } dtrace_dynhash_t;
 804 
 805 typedef struct dtrace_dstate_percpu {
 806         dtrace_dynvar_t *dtdsc_free;            /* free list for this CPU */
 807         dtrace_dynvar_t *dtdsc_dirty;           /* dirty list for this CPU */
 808         dtrace_dynvar_t *dtdsc_rinsing;         /* rinsing list for this CPU */
 809         dtrace_dynvar_t *dtdsc_clean;           /* clean list for this CPU */
 810         uint64_t dtdsc_drops;                   /* number of capacity drops */
 811         uint64_t dtdsc_dirty_drops;             /* number of dirty drops */
 812         uint64_t dtdsc_rinsing_drops;           /* number of rinsing drops */
 813 #ifdef _LP64
 814         uint64_t dtdsc_pad;                     /* pad to avoid false sharing */
 815 #else
 816         uint64_t dtdsc_pad[2];                  /* pad to avoid false sharing */
 817 #endif
 818 } dtrace_dstate_percpu_t;
 819 
 820 typedef enum dtrace_dstate_state {
 821         DTRACE_DSTATE_CLEAN = 0,
 822         DTRACE_DSTATE_EMPTY,
 823         DTRACE_DSTATE_DIRTY,
 824         DTRACE_DSTATE_RINSING
 825 } dtrace_dstate_state_t;
 826 
 827 typedef struct dtrace_dstate {
 828         void *dtds_base;                        /* base of dynamic var. space */
 829         size_t dtds_size;                       /* size of dynamic var. space */
 830         size_t dtds_hashsize;                   /* number of buckets in hash */
 831         size_t dtds_chunksize;                  /* size of each chunk */
 832         dtrace_dynhash_t *dtds_hash;            /* pointer to hash table */
 833         dtrace_dstate_state_t dtds_state;       /* current dynamic var. state */
 834         dtrace_dstate_percpu_t *dtds_percpu;    /* per-CPU dyn. var. state */
 835 } dtrace_dstate_t;
 836 
 837 /*
 838  * DTrace Variable State
 839  *
 840  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
 841  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
 842  * but some dtrace_vstate structures may exist without a corresponding DTrace
 843  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
 844  * user-defined variables can have one of three scopes:
 845  *
 846  *  DIFV_SCOPE_GLOBAL  =>  global scope
 847  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
 848  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
 849  *
 850  * The variable state tracks variables by both their scope and their allocation
 851  * type:
 852  *
 853  *  - The dtvs_globals and dtvs_locals members each point to an array of
 854  *    dtrace_statvar structures.  These structures contain both the variable
 855  *    metadata (dtrace_difv structures) and the underlying storage for all
 856  *    statically allocated variables, including statically allocated
 857  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
 858  *
 859  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
 860  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
 861  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
 862  *    is allocated out of the dynamic variable space.
 863  *
 864  *  - The dtvs_dynvars member is the dynamic variable state associated with the
 865  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
 866  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
 867  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
 868  */
 869 typedef struct dtrace_statvar {
 870         uint64_t dtsv_data;                     /* data or pointer to it */
 871         size_t dtsv_size;                       /* size of pointed-to data */
 872         int dtsv_refcnt;                        /* reference count */
 873         dtrace_difv_t dtsv_var;                 /* variable metadata */
 874 } dtrace_statvar_t;
 875 
 876 typedef struct dtrace_vstate {
 877         dtrace_state_t *dtvs_state;             /* back pointer to state */
 878         dtrace_statvar_t **dtvs_globals;        /* statically-allocated glbls */
 879         int dtvs_nglobals;                      /* number of globals */
 880         dtrace_difv_t *dtvs_tlocals;            /* thread-local metadata */
 881         int dtvs_ntlocals;                      /* number of thread-locals */
 882         dtrace_statvar_t **dtvs_locals;         /* clause-local data */
 883         int dtvs_nlocals;                       /* number of clause-locals */
 884         dtrace_dstate_t dtvs_dynvars;           /* dynamic variable state */
 885 } dtrace_vstate_t;
 886 
 887 /*
 888  * DTrace Machine State
 889  *
 890  * In the process of processing a fired probe, DTrace needs to track and/or
 891  * cache some per-CPU state associated with that particular firing.  This is
 892  * state that is always discarded after the probe firing has completed, and
 893  * much of it is not specific to any DTrace consumer, remaining valid across
 894  * all ECBs.  This state is tracked in the dtrace_mstate structure.
 895  */
 896 #define DTRACE_MSTATE_ARGS              0x00000001
 897 #define DTRACE_MSTATE_PROBE             0x00000002
 898 #define DTRACE_MSTATE_EPID              0x00000004
 899 #define DTRACE_MSTATE_TIMESTAMP         0x00000008
 900 #define DTRACE_MSTATE_STACKDEPTH        0x00000010
 901 #define DTRACE_MSTATE_CALLER            0x00000020
 902 #define DTRACE_MSTATE_IPL               0x00000040
 903 #define DTRACE_MSTATE_FLTOFFS           0x00000080
 904 #define DTRACE_MSTATE_WALLTIMESTAMP     0x00000100
 905 #define DTRACE_MSTATE_USTACKDEPTH       0x00000200
 906 #define DTRACE_MSTATE_UCALLER           0x00000400
 907 
 908 typedef struct dtrace_mstate {
 909         uintptr_t dtms_scratch_base;            /* base of scratch space */
 910         uintptr_t dtms_scratch_ptr;             /* current scratch pointer */
 911         size_t dtms_scratch_size;               /* scratch size */
 912         uint32_t dtms_present;                  /* variables that are present */
 913         uint64_t dtms_arg[5];                   /* cached arguments */
 914         dtrace_epid_t dtms_epid;                /* current EPID */
 915         uint64_t dtms_timestamp;                /* cached timestamp */
 916         hrtime_t dtms_walltimestamp;            /* cached wall timestamp */
 917         int dtms_stackdepth;                    /* cached stackdepth */
 918         int dtms_ustackdepth;                   /* cached ustackdepth */
 919         struct dtrace_probe *dtms_probe;        /* current probe */
 920         uintptr_t dtms_caller;                  /* cached caller */
 921         uint64_t dtms_ucaller;                  /* cached user-level caller */
 922         int dtms_ipl;                           /* cached interrupt pri lev */
 923         int dtms_fltoffs;                       /* faulting DIFO offset */
 924         uintptr_t dtms_strtok;                  /* saved strtok() pointer */
 925         uint32_t dtms_access;                   /* memory access rights */
 926         dtrace_difo_t *dtms_difo;               /* current dif object */
 927         file_t *dtms_getf;                      /* cached rval of getf() */
 928 } dtrace_mstate_t;
 929 
 930 #define DTRACE_COND_OWNER       0x1
 931 #define DTRACE_COND_USERMODE    0x2
 932 #define DTRACE_COND_ZONEOWNER   0x4
 933 
 934 #define DTRACE_PROBEKEY_MAXDEPTH        8       /* max glob recursion depth */
 935 
 936 /*
 937  * Access flag used by dtrace_mstate.dtms_access.
 938  */
 939 #define DTRACE_ACCESS_KERNEL    0x1             /* the priv to read kmem */
 940 #define DTRACE_ACCESS_PROC      0x2             /* the priv for proc state */
 941 #define DTRACE_ACCESS_ARGS      0x4             /* the priv to examine args */
 942 
 943 /*
 944  * DTrace Activity
 945  *
 946  * Each DTrace consumer is in one of several states, which (for purposes of
 947  * avoiding yet-another overloading of the noun "state") we call the current
 948  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
 949  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
 950  * only transition in one direction; the activity transition diagram is a
 951  * directed acyclic graph.  The activity transition diagram is as follows:
 952  *
 953  *
 954  * +----------+                   +--------+                   +--------+
 955  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
 956  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
 957  *                before BEGIN        |        after BEGIN       |  |  |
 958  *                                    |                          |  |  |
 959  *                      exit() action |                          |  |  |
 960  *                     from BEGIN ECB |                          |  |  |
 961  *                                    |                          |  |  |
 962  *                                    v                          |  |  |
 963  *                               +----------+     exit() action  |  |  |
 964  * +-----------------------------| DRAINING |<-------------------+  |  |
 965  * |                             +----------+                       |  |
 966  * |                                  |                             |  |
 967  * |                   dtrace_stop(), |                             |  |
 968  * |                     before END   |                             |  |
 969  * |                                  |                             |  |
 970  * |                                  v                             |  |
 971  * | +---------+                 +----------+                       |  |
 972  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
 973  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
 974  * |                after END                       before END         |
 975  * |                                                                   |
 976  * |                              +--------+                           |
 977  * +----------------------------->| KILLED |<--------------------------+
 978  *       deadman timeout or       +--------+     deadman timeout or
 979  *        killed consumer                         killed consumer
 980  *
 981  * Note that once a DTrace consumer has stopped tracing, there is no way to
 982  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
 983  * the DTrace pseudodevice.
 984  */
 985 typedef enum dtrace_activity {
 986         DTRACE_ACTIVITY_INACTIVE = 0,           /* not yet running */
 987         DTRACE_ACTIVITY_WARMUP,                 /* while starting */
 988         DTRACE_ACTIVITY_ACTIVE,                 /* running */
 989         DTRACE_ACTIVITY_DRAINING,               /* before stopping */
 990         DTRACE_ACTIVITY_COOLDOWN,               /* while stopping */
 991         DTRACE_ACTIVITY_STOPPED,                /* after stopping */
 992         DTRACE_ACTIVITY_KILLED                  /* killed */
 993 } dtrace_activity_t;
 994 
 995 /*
 996  * DTrace Helper Implementation
 997  *
 998  * A description of the helper architecture may be found in <sys/dtrace.h>.
 999  * Each process contains a pointer to its helpers in its p_dtrace_helpers
1000  * member.  This is a pointer to a dtrace_helpers structure, which contains an
1001  * array of pointers to dtrace_helper structures, helper variable state (shared
1002  * among a process's helpers) and a generation count.  (The generation count is
1003  * used to provide an identifier when a helper is added so that it may be
1004  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
1005  * containing pointers to the objects needed to execute the helper.  Note that
1006  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
1007  * than dtrace_helpers_max are allowed per-process.
1008  */
1009 #define DTRACE_HELPER_ACTION_USTACK     0
1010 #define DTRACE_NHELPER_ACTIONS          1
1011 
1012 typedef struct dtrace_helper_action {
1013         int dtha_generation;                    /* helper action generation */
1014         int dtha_nactions;                      /* number of actions */
1015         dtrace_difo_t *dtha_predicate;          /* helper action predicate */
1016         dtrace_difo_t **dtha_actions;           /* array of actions */
1017         struct dtrace_helper_action *dtha_next; /* next helper action */
1018 } dtrace_helper_action_t;
1019 
1020 typedef struct dtrace_helper_provider {
1021         int dthp_generation;                    /* helper provider generation */
1022         uint32_t dthp_ref;                      /* reference count */
1023         dof_helper_t dthp_prov;                 /* DOF w/ provider and probes */
1024 } dtrace_helper_provider_t;
1025 
1026 typedef struct dtrace_helpers {
1027         dtrace_helper_action_t **dthps_actions; /* array of helper actions */
1028         dtrace_vstate_t dthps_vstate;           /* helper action var. state */
1029         dtrace_helper_provider_t **dthps_provs; /* array of providers */
1030         uint_t dthps_nprovs;                    /* count of providers */
1031         uint_t dthps_maxprovs;                  /* provider array size */
1032         int dthps_generation;                   /* current generation */
1033         pid_t dthps_pid;                        /* pid of associated proc */
1034         int dthps_deferred;                     /* helper in deferred list */
1035         struct dtrace_helpers *dthps_next;      /* next pointer */
1036         struct dtrace_helpers *dthps_prev;      /* prev pointer */
1037 } dtrace_helpers_t;
1038 
1039 /*
1040  * DTrace Helper Action Tracing
1041  *
1042  * Debugging helper actions can be arduous.  To ease the development and
1043  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1044  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1045  * it is by default on DEBUG kernels), all helper activity will be traced to a
1046  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1047  * helper, the location within the helper, and a trace of all local variables.
1048  * The ring buffer may be displayed in a human-readable format with the
1049  * ::dtrace_helptrace mdb(1) dcmd.
1050  */
1051 #define DTRACE_HELPTRACE_NEXT   (-1)
1052 #define DTRACE_HELPTRACE_DONE   (-2)
1053 #define DTRACE_HELPTRACE_ERR    (-3)
1054 
1055 typedef struct dtrace_helptrace {
1056         dtrace_helper_action_t  *dtht_helper;   /* helper action */
1057         int dtht_where;                         /* where in helper action */
1058         int dtht_nlocals;                       /* number of locals */
1059         int dtht_fault;                         /* type of fault (if any) */
1060         int dtht_fltoffs;                       /* DIF offset */
1061         uint64_t dtht_illval;                   /* faulting value */
1062         uint64_t dtht_locals[1];                /* local variables */
1063 } dtrace_helptrace_t;
1064 
1065 /*
1066  * DTrace Credentials
1067  *
1068  * In probe context, we have limited flexibility to examine the credentials
1069  * of the DTrace consumer that created a particular enabling.  We use
1070  * the Least Privilege interfaces to cache the consumer's cred pointer and
1071  * some facts about that credential in a dtrace_cred_t structure. These
1072  * can limit the consumer's breadth of visibility and what actions the
1073  * consumer may take.
1074  */
1075 #define DTRACE_CRV_ALLPROC              0x01
1076 #define DTRACE_CRV_KERNEL               0x02
1077 #define DTRACE_CRV_ALLZONE              0x04
1078 
1079 #define DTRACE_CRV_ALL          (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1080         DTRACE_CRV_ALLZONE)
1081 
1082 #define DTRACE_CRA_PROC                         0x0001
1083 #define DTRACE_CRA_PROC_CONTROL                 0x0002
1084 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER     0x0004
1085 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE     0x0008
1086 #define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG     0x0010
1087 #define DTRACE_CRA_KERNEL                       0x0020
1088 #define DTRACE_CRA_KERNEL_DESTRUCTIVE           0x0040
1089 
1090 #define DTRACE_CRA_ALL          (DTRACE_CRA_PROC | \
1091         DTRACE_CRA_PROC_CONTROL | \
1092         DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1093         DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1094         DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1095         DTRACE_CRA_KERNEL | \
1096         DTRACE_CRA_KERNEL_DESTRUCTIVE)
1097 
1098 typedef struct dtrace_cred {
1099         cred_t                  *dcr_cred;
1100         uint8_t                 dcr_destructive;
1101         uint8_t                 dcr_visible;
1102         uint16_t                dcr_action;
1103 } dtrace_cred_t;
1104 
1105 /*
1106  * DTrace Consumer State
1107  *
1108  * Each DTrace consumer has an associated dtrace_state structure that contains
1109  * its in-kernel DTrace state -- including options, credentials, statistics and
1110  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1111  * structure is also allocated for anonymous enablings.  When anonymous state
1112  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1113  * dtrace_state structure.
1114  */
1115 struct dtrace_state {
1116         dev_t dts_dev;                          /* device */
1117         int dts_necbs;                          /* total number of ECBs */
1118         dtrace_ecb_t **dts_ecbs;                /* array of ECBs */
1119         dtrace_epid_t dts_epid;                 /* next EPID to allocate */
1120         size_t dts_needed;                      /* greatest needed space */
1121         struct dtrace_state *dts_anon;          /* anon. state, if grabbed */
1122         dtrace_activity_t dts_activity;         /* current activity */
1123         dtrace_vstate_t dts_vstate;             /* variable state */
1124         dtrace_buffer_t *dts_buffer;            /* principal buffer */
1125         dtrace_buffer_t *dts_aggbuffer;         /* aggregation buffer */
1126         dtrace_speculation_t *dts_speculations; /* speculation array */
1127         int dts_nspeculations;                  /* number of speculations */
1128         int dts_naggregations;                  /* number of aggregations */
1129         dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1130         vmem_t *dts_aggid_arena;                /* arena for aggregation IDs */
1131         uint64_t dts_errors;                    /* total number of errors */
1132         uint32_t dts_speculations_busy;         /* number of spec. busy */
1133         uint32_t dts_speculations_unavail;      /* number of spec unavail */
1134         uint32_t dts_stkstroverflows;           /* stack string tab overflows */
1135         uint32_t dts_dblerrors;                 /* errors in ERROR probes */
1136         uint32_t dts_reserve;                   /* space reserved for END */
1137         hrtime_t dts_laststatus;                /* time of last status */
1138         cyclic_id_t dts_cleaner;                /* cleaning cyclic */
1139         cyclic_id_t dts_deadman;                /* deadman cyclic */
1140         hrtime_t dts_alive;                     /* time last alive */
1141         char dts_speculates;                    /* boolean: has speculations */
1142         char dts_destructive;                   /* boolean: has dest. actions */
1143         int dts_nformats;                       /* number of formats */
1144         char **dts_formats;                     /* format string array */
1145         dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1146         dtrace_cred_t dts_cred;                 /* credentials */
1147         size_t dts_nretained;                   /* number of retained enabs */
1148         int dts_getf;                           /* number of getf() calls */
1149 };
1150 
1151 struct dtrace_provider {
1152         dtrace_pattr_t dtpv_attr;               /* provider attributes */
1153         dtrace_ppriv_t dtpv_priv;               /* provider privileges */
1154         dtrace_pops_t dtpv_pops;                /* provider operations */
1155         char *dtpv_name;                        /* provider name */
1156         void *dtpv_arg;                         /* provider argument */
1157         hrtime_t dtpv_defunct;                  /* when made defunct */
1158         struct dtrace_provider *dtpv_next;      /* next provider */
1159 };
1160 
1161 struct dtrace_meta {
1162         dtrace_mops_t dtm_mops;                 /* meta provider operations */
1163         char *dtm_name;                         /* meta provider name */
1164         void *dtm_arg;                          /* meta provider user arg */
1165         uint64_t dtm_count;                     /* no. of associated provs. */
1166 };
1167 
1168 /*
1169  * DTrace Enablings
1170  *
1171  * A dtrace_enabling structure is used to track a collection of ECB
1172  * descriptions -- before they have been turned into actual ECBs.  This is
1173  * created as a result of DOF processing, and is generally used to generate
1174  * ECBs immediately thereafter.  However, enablings are also generally
1175  * retained should the probes they describe be created at a later time; as
1176  * each new module or provider registers with the framework, the retained
1177  * enablings are reevaluated, with any new match resulting in new ECBs.  To
1178  * prevent probes from being matched more than once, the enabling tracks the
1179  * last probe generation matched, and only matches probes from subsequent
1180  * generations.
1181  */
1182 typedef struct dtrace_enabling {
1183         dtrace_ecbdesc_t **dten_desc;           /* all ECB descriptions */
1184         int dten_ndesc;                         /* number of ECB descriptions */
1185         int dten_maxdesc;                       /* size of ECB array */
1186         dtrace_vstate_t *dten_vstate;           /* associated variable state */
1187         dtrace_genid_t dten_probegen;           /* matched probe generation */
1188         dtrace_ecbdesc_t *dten_current;         /* current ECB description */
1189         int dten_error;                         /* current error value */
1190         int dten_primed;                        /* boolean: set if primed */
1191         struct dtrace_enabling *dten_prev;      /* previous enabling */
1192         struct dtrace_enabling *dten_next;      /* next enabling */
1193 } dtrace_enabling_t;
1194 
1195 /*
1196  * DTrace Anonymous Enablings
1197  *
1198  * Anonymous enablings are DTrace enablings that are not associated with a
1199  * controlling process, but rather derive their enabling from DOF stored as
1200  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1201  * DTrace consumer state and enabling are created on attach.  The state may be
1202  * subsequently grabbed by the first consumer specifying the "grabanon"
1203  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1204  * refuse to unload.
1205  */
1206 typedef struct dtrace_anon {
1207         dtrace_state_t *dta_state;              /* DTrace consumer state */
1208         dtrace_enabling_t *dta_enabling;        /* pointer to enabling */
1209         processorid_t dta_beganon;              /* which CPU BEGIN ran on */
1210 } dtrace_anon_t;
1211 
1212 /*
1213  * DTrace Error Debugging
1214  */
1215 #ifdef DEBUG
1216 #define DTRACE_ERRDEBUG
1217 #endif
1218 
1219 #ifdef DTRACE_ERRDEBUG
1220 
1221 typedef struct dtrace_errhash {
1222         const char      *dter_msg;      /* error message */
1223         int             dter_count;     /* number of times seen */
1224 } dtrace_errhash_t;
1225 
1226 #define DTRACE_ERRHASHSZ        256     /* must be > number of err msgs */
1227 
1228 #endif  /* DTRACE_ERRDEBUG */
1229 
1230 /*
1231  * DTrace Toxic Ranges
1232  *
1233  * DTrace supports safe loads from probe context; if the address turns out to
1234  * be invalid, a bit will be set by the kernel indicating that DTrace
1235  * encountered a memory error, and DTrace will propagate the error to the user
1236  * accordingly.  However, there may exist some regions of memory in which an
1237  * arbitrary load can change system state, and from which it is impossible to
1238  * recover from such a load after it has been attempted.  Examples of this may
1239  * include memory in which programmable I/O registers are mapped (for which a
1240  * read may have some implications for the device) or (in the specific case of
1241  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1242  * to make DTrace aware of these toxic ranges; DTrace will then check that
1243  * target addresses are not in a toxic range before attempting to issue a
1244  * safe load.
1245  */
1246 typedef struct dtrace_toxrange {
1247         uintptr_t       dtt_base;               /* base of toxic range */
1248         uintptr_t       dtt_limit;              /* limit of toxic range */
1249 } dtrace_toxrange_t;
1250 
1251 extern uint64_t dtrace_getarg(int, int);
1252 extern greg_t dtrace_getfp(void);
1253 extern int dtrace_getipl(void);
1254 extern uintptr_t dtrace_caller(int);
1255 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1256 extern void *dtrace_casptr(void *, void *, void *);
1257 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1258 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1259 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1260 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1261     volatile uint16_t *);
1262 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1263 extern ulong_t dtrace_getreg(struct regs *, uint_t);
1264 extern uint64_t dtrace_getvmreg(uint_t, volatile uint16_t *);
1265 extern int dtrace_getstackdepth(int);
1266 extern void dtrace_getupcstack(uint64_t *, int);
1267 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1268 extern int dtrace_getustackdepth(void);
1269 extern uintptr_t dtrace_fulword(void *);
1270 extern uint8_t dtrace_fuword8(void *);
1271 extern uint16_t dtrace_fuword16(void *);
1272 extern uint32_t dtrace_fuword32(void *);
1273 extern uint64_t dtrace_fuword64(void *);
1274 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1275     int, uintptr_t);
1276 extern int dtrace_assfail(const char *, const char *, int);
1277 extern int dtrace_attached(void);
1278 extern hrtime_t dtrace_gethrestime();
1279 
1280 #ifdef __sparc
1281 extern void dtrace_flush_windows(void);
1282 extern void dtrace_flush_user_windows(void);
1283 extern uint_t dtrace_getotherwin(void);
1284 extern uint_t dtrace_getfprs(void);
1285 #else
1286 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1287 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1288 #endif
1289 
1290 /*
1291  * DTrace Assertions
1292  *
1293  * DTrace calls ASSERT from probe context.  To assure that a failed ASSERT
1294  * does not induce a markedly more catastrophic failure (e.g., one from which
1295  * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
1296  * may safely be called from probe context.  This header file must thus be
1297  * included by any DTrace component that calls ASSERT from probe context, and
1298  * _only_ by those components.  (The only exception to this is kernel
1299  * debugging infrastructure at user-level that doesn't depend on calling
1300  * ASSERT.)
1301  */
1302 #undef ASSERT
1303 #ifdef DEBUG
1304 #define ASSERT(EX)      ((void)((EX) || \
1305                         dtrace_assfail(#EX, __FILE__, __LINE__)))
1306 #else
1307 #define ASSERT(X)       ((void)0)
1308 #endif
1309 
1310 #ifdef  __cplusplus
1311 }
1312 #endif
1313 
1314 #endif /* _SYS_DTRACE_IMPL_H */