Print this page
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/sys/dtrace.h
+++ new/usr/src/uts/common/sys/dtrace.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 24 * Use is subject to license terms.
25 25 */
26 26
27 27 /*
28 - * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28 + * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 30 */
31 31
32 32 #ifndef _SYS_DTRACE_H
33 33 #define _SYS_DTRACE_H
34 34
35 35 #ifdef __cplusplus
36 36 extern "C" {
37 37 #endif
38 38
39 39 /*
40 40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 41 *
42 42 * Note: The contents of this file are private to the implementation of the
43 43 * Solaris system and DTrace subsystem and are subject to change at any time
44 44 * without notice. Applications and drivers using these interfaces will fail
45 45 * to run on future releases. These interfaces should not be used for any
46 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 48 */
49 49
50 50 #ifndef _ASM
51 51
52 52 #include <sys/types.h>
53 53 #include <sys/modctl.h>
54 54 #include <sys/processor.h>
55 55 #include <sys/systm.h>
56 56 #include <sys/ctf_api.h>
57 57 #include <sys/cyclic.h>
58 58 #include <sys/int_limits.h>
59 59
60 60 /*
61 61 * DTrace Universal Constants and Typedefs
62 62 */
63 63 #define DTRACE_CPUALL -1 /* all CPUs */
64 64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 71 #define DTRACE_ARGNONE -1 /* invalid argument index */
72 72
73 73 #define DTRACE_PROVNAMELEN 64
74 74 #define DTRACE_MODNAMELEN 64
75 75 #define DTRACE_FUNCNAMELEN 128
76 76 #define DTRACE_NAMELEN 64
77 77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 79 #define DTRACE_ARGTYPELEN 128
80 80
81 81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 86 typedef int64_t dtrace_optval_t; /* option value */
87 87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
88 88
89 89 typedef enum dtrace_probespec {
90 90 DTRACE_PROBESPEC_NONE = -1,
91 91 DTRACE_PROBESPEC_PROVIDER = 0,
92 92 DTRACE_PROBESPEC_MOD,
93 93 DTRACE_PROBESPEC_FUNC,
94 94 DTRACE_PROBESPEC_NAME
95 95 } dtrace_probespec_t;
96 96
97 97 /*
98 98 * DTrace Intermediate Format (DIF)
99 99 *
100 100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 101 * a RISC-like instruction set and program encoding used to represent
102 102 * predicates and actions that can be bound to DTrace probes. The constants
103 103 * below defining the number of available registers are suggested minimums; the
104 104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 105 * registers provided by the current DTrace implementation.
106 106 */
107 107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
112 112
113 113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 125 #define DIF_OP_NOT 13 /* not r1, rd */
126 126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 128 #define DIF_OP_TST 16 /* tst r1 */
129 129 #define DIF_OP_BA 17 /* ba label */
130 130 #define DIF_OP_BE 18 /* be label */
131 131 #define DIF_OP_BNE 19 /* bne label */
132 132 #define DIF_OP_BG 20 /* bg label */
133 133 #define DIF_OP_BGU 21 /* bgu label */
134 134 #define DIF_OP_BGE 22 /* bge label */
135 135 #define DIF_OP_BGEU 23 /* bgeu label */
136 136 #define DIF_OP_BL 24 /* bl label */
137 137 #define DIF_OP_BLU 25 /* blu label */
138 138 #define DIF_OP_BLE 26 /* ble label */
139 139 #define DIF_OP_BLEU 27 /* bleu label */
140 140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 147 #define DIF_OP_RET 35 /* ret rd */
148 148 #define DIF_OP_NOP 36 /* nop */
149 149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 157 #define DIF_OP_STTS 45 /* stts var, rs */
158 158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 159 #define DIF_OP_CALL 47 /* call subr, rd */
160 160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 162 #define DIF_OP_POPTS 50 /* popts */
163 163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 169 #define DIF_OP_STLS 57 /* stls var, rs */
170 170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
192 192
193 193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
194 194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
195 195 #define DIF_REGISTER_MAX 0xff /* highest register number */
196 196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
197 197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
198 198
199 199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
200 200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
201 201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
202 202
203 203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
204 204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
205 205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
206 206
207 207 #define DIF_VAR_ARGS 0x0000 /* arguments array */
208 208 #define DIF_VAR_REGS 0x0001 /* registers array */
209 209 #define DIF_VAR_UREGS 0x0002 /* user registers array */
210 210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
211 211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
212 212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
213 213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
214 214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
215 215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
216 216 #define DIF_VAR_ID 0x0105 /* probe ID */
217 217 #define DIF_VAR_ARG0 0x0106 /* first argument */
218 218 #define DIF_VAR_ARG1 0x0107 /* second argument */
219 219 #define DIF_VAR_ARG2 0x0108 /* third argument */
220 220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
221 221 #define DIF_VAR_ARG4 0x010a /* fifth argument */
222 222 #define DIF_VAR_ARG5 0x010b /* sixth argument */
223 223 #define DIF_VAR_ARG6 0x010c /* seventh argument */
224 224 #define DIF_VAR_ARG7 0x010d /* eighth argument */
225 225 #define DIF_VAR_ARG8 0x010e /* ninth argument */
226 226 #define DIF_VAR_ARG9 0x010f /* tenth argument */
227 227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
228 228 #define DIF_VAR_CALLER 0x0111 /* caller */
229 229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
230 230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
231 231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
232 232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
233 233 #define DIF_VAR_PID 0x0116 /* process ID */
234 234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
235 235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
236 236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
237 237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
238 238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
239 239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
240 240 #define DIF_VAR_PPID 0x011d /* parent process ID */
241 241 #define DIF_VAR_UID 0x011e /* process user ID */
242 242 #define DIF_VAR_GID 0x011f /* process group ID */
243 243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
244 244
245 245 #define DIF_SUBR_RAND 0
246 246 #define DIF_SUBR_MUTEX_OWNED 1
247 247 #define DIF_SUBR_MUTEX_OWNER 2
248 248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
249 249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
250 250 #define DIF_SUBR_RW_READ_HELD 5
251 251 #define DIF_SUBR_RW_WRITE_HELD 6
252 252 #define DIF_SUBR_RW_ISWRITER 7
253 253 #define DIF_SUBR_COPYIN 8
254 254 #define DIF_SUBR_COPYINSTR 9
255 255 #define DIF_SUBR_SPECULATION 10
256 256 #define DIF_SUBR_PROGENYOF 11
257 257 #define DIF_SUBR_STRLEN 12
258 258 #define DIF_SUBR_COPYOUT 13
259 259 #define DIF_SUBR_COPYOUTSTR 14
260 260 #define DIF_SUBR_ALLOCA 15
261 261 #define DIF_SUBR_BCOPY 16
262 262 #define DIF_SUBR_COPYINTO 17
263 263 #define DIF_SUBR_MSGDSIZE 18
264 264 #define DIF_SUBR_MSGSIZE 19
265 265 #define DIF_SUBR_GETMAJOR 20
266 266 #define DIF_SUBR_GETMINOR 21
267 267 #define DIF_SUBR_DDI_PATHNAME 22
268 268 #define DIF_SUBR_STRJOIN 23
269 269 #define DIF_SUBR_LLTOSTR 24
270 270 #define DIF_SUBR_BASENAME 25
271 271 #define DIF_SUBR_DIRNAME 26
272 272 #define DIF_SUBR_CLEANPATH 27
273 273 #define DIF_SUBR_STRCHR 28
274 274 #define DIF_SUBR_STRRCHR 29
275 275 #define DIF_SUBR_STRSTR 30
276 276 #define DIF_SUBR_STRTOK 31
277 277 #define DIF_SUBR_SUBSTR 32
278 278 #define DIF_SUBR_INDEX 33
279 279 #define DIF_SUBR_RINDEX 34
280 280 #define DIF_SUBR_HTONS 35
↓ open down ↓ |
242 lines elided |
↑ open up ↑ |
281 281 #define DIF_SUBR_HTONL 36
282 282 #define DIF_SUBR_HTONLL 37
283 283 #define DIF_SUBR_NTOHS 38
284 284 #define DIF_SUBR_NTOHL 39
285 285 #define DIF_SUBR_NTOHLL 40
286 286 #define DIF_SUBR_INET_NTOP 41
287 287 #define DIF_SUBR_INET_NTOA 42
288 288 #define DIF_SUBR_INET_NTOA6 43
289 289 #define DIF_SUBR_TOUPPER 44
290 290 #define DIF_SUBR_TOLOWER 45
291 +#define DIF_SUBR_GETF 46
291 292
292 -#define DIF_SUBR_MAX 45 /* max subroutine value */
293 +#define DIF_SUBR_MAX 46 /* max subroutine value */
293 294
294 295 typedef uint32_t dif_instr_t;
295 296
296 297 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
297 298 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
298 299 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
299 300 #define DIF_INSTR_RD(i) ((i) & 0xff)
300 301 #define DIF_INSTR_RS(i) ((i) & 0xff)
301 302 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
302 303 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
303 304 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
304 305 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
305 306 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
306 307 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
307 308 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
308 309
309 310 #define DIF_INSTR_FMT(op, r1, r2, d) \
310 311 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
311 312
312 313 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
313 314 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
314 315 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
315 316 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
316 317 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
317 318 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
318 319 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
319 320 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
320 321 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
321 322 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
322 323 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
323 324 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
324 325 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
325 326 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
326 327 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
327 328 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
328 329 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
329 330 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
330 331 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
331 332 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
332 333 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
333 334
334 335 #define DIF_REG_R0 0 /* %r0 is always set to zero */
335 336
336 337 /*
337 338 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
338 339 * of variables, function and associative array arguments, and the return type
339 340 * for each DIF object (shown below). It contains a description of the type,
340 341 * its size in bytes, and a module identifier.
341 342 */
342 343 typedef struct dtrace_diftype {
343 344 uint8_t dtdt_kind; /* type kind (see below) */
344 345 uint8_t dtdt_ckind; /* type kind in CTF */
345 346 uint8_t dtdt_flags; /* type flags (see below) */
346 347 uint8_t dtdt_pad; /* reserved for future use */
347 348 uint32_t dtdt_size; /* type size in bytes (unless string) */
348 349 } dtrace_diftype_t;
349 350
350 351 #define DIF_TYPE_CTF 0 /* type is a CTF type */
351 352 #define DIF_TYPE_STRING 1 /* type is a D string */
352 353
353 354 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
354 355
355 356 /*
356 357 * A DTrace Intermediate Format variable record is used to describe each of the
357 358 * variables referenced by a given DIF object. It contains an integer variable
358 359 * identifier along with variable scope and properties, as shown below. The
359 360 * size of this structure must be sizeof (int) aligned.
360 361 */
361 362 typedef struct dtrace_difv {
362 363 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
363 364 uint32_t dtdv_id; /* variable reference identifier */
364 365 uint8_t dtdv_kind; /* variable kind (see below) */
365 366 uint8_t dtdv_scope; /* variable scope (see below) */
366 367 uint16_t dtdv_flags; /* variable flags (see below) */
367 368 dtrace_diftype_t dtdv_type; /* variable type (see above) */
368 369 } dtrace_difv_t;
369 370
370 371 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
371 372 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
372 373
373 374 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
374 375 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
375 376 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
376 377
377 378 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
378 379 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
379 380
380 381 /*
381 382 * DTrace Actions
382 383 *
383 384 * The upper byte determines the class of the action; the low bytes determines
384 385 * the specific action within that class. The classes of actions are as
385 386 * follows:
386 387 *
387 388 * [ no class ] <= May record process- or kernel-related data
388 389 * DTRACEACT_PROC <= Only records process-related data
389 390 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
390 391 * DTRACEACT_KERNEL <= Only records kernel-related data
391 392 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
392 393 * DTRACEACT_SPECULATIVE <= Speculation-related action
393 394 * DTRACEACT_AGGREGATION <= Aggregating action
394 395 */
395 396 #define DTRACEACT_NONE 0 /* no action */
396 397 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
397 398 #define DTRACEACT_EXIT 2 /* exit() action */
398 399 #define DTRACEACT_PRINTF 3 /* printf() action */
399 400 #define DTRACEACT_PRINTA 4 /* printa() action */
400 401 #define DTRACEACT_LIBACT 5 /* library-controlled action */
401 402 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
402 403 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
403 404
404 405 #define DTRACEACT_PROC 0x0100
405 406 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
406 407 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
407 408 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
408 409 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
409 410 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
410 411
411 412 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
412 413 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
413 414 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
414 415 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
415 416 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
416 417
417 418 #define DTRACEACT_PROC_CONTROL 0x0300
418 419
419 420 #define DTRACEACT_KERNEL 0x0400
420 421 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
421 422 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
422 423 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
423 424
424 425 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
425 426 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
426 427 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
427 428 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
428 429
429 430 #define DTRACEACT_SPECULATIVE 0x0600
430 431 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
431 432 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
432 433 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
433 434
434 435 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
435 436
436 437 #define DTRACEACT_ISDESTRUCTIVE(x) \
437 438 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
438 439 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
439 440
440 441 #define DTRACEACT_ISSPECULATIVE(x) \
441 442 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
442 443
443 444 #define DTRACEACT_ISPRINTFLIKE(x) \
444 445 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
445 446 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
446 447
447 448 /*
448 449 * DTrace Aggregating Actions
449 450 *
450 451 * These are functions f(x) for which the following is true:
451 452 *
452 453 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
453 454 *
454 455 * where x_n is a set of arbitrary data. Aggregating actions are in their own
455 456 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
456 457 * for easier processing of the aggregation argument and data payload for a few
457 458 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
458 459 */
459 460 #define DTRACEACT_AGGREGATION 0x0700
460 461 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
461 462 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
462 463 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
463 464 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
464 465 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
465 466 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
466 467 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
467 468 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
468 469 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
469 470
470 471 #define DTRACEACT_ISAGG(x) \
471 472 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
472 473
473 474 #define DTRACE_QUANTIZE_NBUCKETS \
474 475 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
475 476
476 477 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
477 478
478 479 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
479 480 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
480 481 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
481 482 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
482 483 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
483 484
484 485 #define DTRACE_LQUANTIZE_STEPSHIFT 48
485 486 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
486 487 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
487 488 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
488 489 #define DTRACE_LQUANTIZE_BASESHIFT 0
489 490 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
490 491
491 492 #define DTRACE_LQUANTIZE_STEP(x) \
492 493 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
493 494 DTRACE_LQUANTIZE_STEPSHIFT)
494 495
495 496 #define DTRACE_LQUANTIZE_LEVELS(x) \
496 497 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
497 498 DTRACE_LQUANTIZE_LEVELSHIFT)
498 499
499 500 #define DTRACE_LQUANTIZE_BASE(x) \
500 501 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
501 502 DTRACE_LQUANTIZE_BASESHIFT)
502 503
503 504 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
504 505 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
505 506 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
506 507 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
507 508 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
508 509 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
509 510 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
510 511 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
511 512
512 513 #define DTRACE_LLQUANTIZE_FACTOR(x) \
513 514 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
514 515 DTRACE_LLQUANTIZE_FACTORSHIFT)
515 516
516 517 #define DTRACE_LLQUANTIZE_LOW(x) \
517 518 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
518 519 DTRACE_LLQUANTIZE_LOWSHIFT)
519 520
520 521 #define DTRACE_LLQUANTIZE_HIGH(x) \
521 522 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
522 523 DTRACE_LLQUANTIZE_HIGHSHIFT)
523 524
524 525 #define DTRACE_LLQUANTIZE_NSTEP(x) \
525 526 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
526 527 DTRACE_LLQUANTIZE_NSTEPSHIFT)
527 528
528 529 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
529 530 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
530 531 #define DTRACE_USTACK_ARG(x, y) \
531 532 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
532 533
533 534 #ifndef _LP64
534 535 #ifndef _LITTLE_ENDIAN
535 536 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
536 537 #else
537 538 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
538 539 #endif
539 540 #else
540 541 #define DTRACE_PTR(type, name) type *name
541 542 #endif
542 543
543 544 /*
544 545 * DTrace Object Format (DOF)
545 546 *
546 547 * DTrace programs can be persistently encoded in the DOF format so that they
547 548 * may be embedded in other programs (for example, in an ELF file) or in the
548 549 * dtrace driver configuration file for use in anonymous tracing. The DOF
549 550 * format is versioned and extensible so that it can be revised and so that
550 551 * internal data structures can be modified or extended compatibly. All DOF
551 552 * structures use fixed-size types, so the 32-bit and 64-bit representations
552 553 * are identical and consumers can use either data model transparently.
553 554 *
554 555 * The file layout is structured as follows:
555 556 *
556 557 * +---------------+-------------------+----- ... ----+---- ... ------+
557 558 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
558 559 * | (file header) | (section headers) | section data | section data |
559 560 * +---------------+-------------------+----- ... ----+---- ... ------+
560 561 * |<------------ dof_hdr.dofh_loadsz --------------->| |
561 562 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
562 563 *
563 564 * The file header stores meta-data including a magic number, data model for
564 565 * the instrumentation, data encoding, and properties of the DIF code within.
565 566 * The header describes its own size and the size of the section headers. By
566 567 * convention, an array of section headers follows the file header, and then
567 568 * the data for all loadable sections and unloadable sections. This permits
568 569 * consumer code to easily download the headers and all loadable data into the
569 570 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
570 571 *
571 572 * The section headers describe the size, offset, alignment, and section type
572 573 * for each section. Sections are described using a set of #defines that tell
573 574 * the consumer what kind of data is expected. Sections can contain links to
574 575 * other sections by storing a dof_secidx_t, an index into the section header
575 576 * array, inside of the section data structures. The section header includes
576 577 * an entry size so that sections with data arrays can grow their structures.
577 578 *
578 579 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
579 580 * are represented themselves as a collection of related DOF sections. This
580 581 * permits us to change the set of sections associated with a DIFO over time,
581 582 * and also permits us to encode DIFOs that contain different sets of sections.
582 583 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
583 584 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
584 585 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
585 586 *
586 587 * This loose coupling of the file structure (header and sections) to the
587 588 * structure of the DTrace program itself (ECB descriptions, action
588 589 * descriptions, and DIFOs) permits activities such as relocation processing
589 590 * to occur in a single pass without having to understand D program structure.
590 591 *
591 592 * Finally, strings are always stored in ELF-style string tables along with a
592 593 * string table section index and string table offset. Therefore strings in
593 594 * DOF are always arbitrary-length and not bound to the current implementation.
594 595 */
595 596
596 597 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
597 598
598 599 typedef struct dof_hdr {
599 600 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
600 601 uint32_t dofh_flags; /* file attribute flags (if any) */
601 602 uint32_t dofh_hdrsize; /* size of file header in bytes */
602 603 uint32_t dofh_secsize; /* size of section header in bytes */
603 604 uint32_t dofh_secnum; /* number of section headers */
604 605 uint64_t dofh_secoff; /* file offset of section headers */
605 606 uint64_t dofh_loadsz; /* file size of loadable portion */
606 607 uint64_t dofh_filesz; /* file size of entire DOF file */
607 608 uint64_t dofh_pad; /* reserved for future use */
608 609 } dof_hdr_t;
609 610
610 611 #define DOF_ID_MAG0 0 /* first byte of magic number */
611 612 #define DOF_ID_MAG1 1 /* second byte of magic number */
612 613 #define DOF_ID_MAG2 2 /* third byte of magic number */
613 614 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
614 615 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
615 616 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
616 617 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
617 618 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
618 619 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
619 620 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
620 621 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
621 622
622 623 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
623 624 #define DOF_MAG_MAG1 'D'
624 625 #define DOF_MAG_MAG2 'O'
625 626 #define DOF_MAG_MAG3 'F'
626 627
627 628 #define DOF_MAG_STRING "\177DOF"
628 629 #define DOF_MAG_STRLEN 4
629 630
630 631 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
631 632 #define DOF_MODEL_ILP32 1
632 633 #define DOF_MODEL_LP64 2
633 634
634 635 #ifdef _LP64
635 636 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
636 637 #else
637 638 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
638 639 #endif
639 640
640 641 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
641 642 #define DOF_ENCODE_LSB 1
642 643 #define DOF_ENCODE_MSB 2
643 644
644 645 #ifdef _BIG_ENDIAN
645 646 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
646 647 #else
647 648 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
648 649 #endif
649 650
650 651 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
651 652 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
652 653 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
653 654
654 655 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
655 656
656 657 typedef uint32_t dof_secidx_t; /* section header table index type */
657 658 typedef uint32_t dof_stridx_t; /* string table index type */
658 659
659 660 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
660 661 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
661 662
662 663 typedef struct dof_sec {
663 664 uint32_t dofs_type; /* section type (see below) */
664 665 uint32_t dofs_align; /* section data memory alignment */
665 666 uint32_t dofs_flags; /* section flags (if any) */
666 667 uint32_t dofs_entsize; /* size of section entry (if table) */
667 668 uint64_t dofs_offset; /* offset of section data within file */
668 669 uint64_t dofs_size; /* size of section data in bytes */
669 670 } dof_sec_t;
670 671
671 672 #define DOF_SECT_NONE 0 /* null section */
672 673 #define DOF_SECT_COMMENTS 1 /* compiler comments */
673 674 #define DOF_SECT_SOURCE 2 /* D program source code */
674 675 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
675 676 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
676 677 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
677 678 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
678 679 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
679 680 #define DOF_SECT_STRTAB 8 /* string table */
680 681 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
681 682 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
682 683 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
683 684 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
684 685 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
685 686 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
686 687 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
687 688 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
688 689 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
689 690 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
690 691 #define DOF_SECT_INTTAB 19 /* uint64_t array */
691 692 #define DOF_SECT_UTSNAME 20 /* struct utsname */
692 693 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
693 694 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
694 695 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
695 696 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
696 697 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
697 698 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
698 699
699 700 #define DOF_SECF_LOAD 1 /* section should be loaded */
700 701
701 702 #define DOF_SEC_ISLOADABLE(x) \
702 703 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
703 704 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
704 705 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
705 706 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
706 707 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
707 708 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
708 709 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
709 710 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
710 711 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
711 712 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
712 713 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
713 714 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
714 715
715 716 typedef struct dof_ecbdesc {
716 717 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
717 718 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
718 719 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
719 720 uint32_t dofe_pad; /* reserved for future use */
720 721 uint64_t dofe_uarg; /* user-supplied library argument */
721 722 } dof_ecbdesc_t;
722 723
723 724 typedef struct dof_probedesc {
724 725 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
725 726 dof_stridx_t dofp_provider; /* provider string */
726 727 dof_stridx_t dofp_mod; /* module string */
727 728 dof_stridx_t dofp_func; /* function string */
728 729 dof_stridx_t dofp_name; /* name string */
729 730 uint32_t dofp_id; /* probe identifier (or zero) */
730 731 } dof_probedesc_t;
731 732
732 733 typedef struct dof_actdesc {
733 734 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
734 735 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
735 736 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
736 737 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
737 738 uint64_t dofa_arg; /* kind-specific argument */
738 739 uint64_t dofa_uarg; /* user-supplied argument */
739 740 } dof_actdesc_t;
740 741
741 742 typedef struct dof_difohdr {
742 743 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
743 744 dof_secidx_t dofd_links[1]; /* variable length array of indices */
744 745 } dof_difohdr_t;
745 746
746 747 typedef struct dof_relohdr {
747 748 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
748 749 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
749 750 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
750 751 } dof_relohdr_t;
751 752
752 753 typedef struct dof_relodesc {
753 754 dof_stridx_t dofr_name; /* string name of relocation symbol */
754 755 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
755 756 uint64_t dofr_offset; /* byte offset for relocation */
756 757 uint64_t dofr_data; /* additional type-specific data */
757 758 } dof_relodesc_t;
758 759
759 760 #define DOF_RELO_NONE 0 /* empty relocation entry */
760 761 #define DOF_RELO_SETX 1 /* relocate setx value */
761 762
762 763 typedef struct dof_optdesc {
763 764 uint32_t dofo_option; /* option identifier */
764 765 dof_secidx_t dofo_strtab; /* string table, if string option */
765 766 uint64_t dofo_value; /* option value or string index */
766 767 } dof_optdesc_t;
767 768
768 769 typedef uint32_t dof_attr_t; /* encoded stability attributes */
769 770
770 771 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
771 772 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
772 773 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
773 774 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
774 775
775 776 typedef struct dof_provider {
776 777 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
777 778 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
778 779 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
779 780 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
780 781 dof_stridx_t dofpv_name; /* provider name string */
781 782 dof_attr_t dofpv_provattr; /* provider attributes */
782 783 dof_attr_t dofpv_modattr; /* module attributes */
783 784 dof_attr_t dofpv_funcattr; /* function attributes */
784 785 dof_attr_t dofpv_nameattr; /* name attributes */
785 786 dof_attr_t dofpv_argsattr; /* args attributes */
786 787 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
787 788 } dof_provider_t;
788 789
789 790 typedef struct dof_probe {
790 791 uint64_t dofpr_addr; /* probe base address or offset */
791 792 dof_stridx_t dofpr_func; /* probe function string */
792 793 dof_stridx_t dofpr_name; /* probe name string */
793 794 dof_stridx_t dofpr_nargv; /* native argument type strings */
794 795 dof_stridx_t dofpr_xargv; /* translated argument type strings */
795 796 uint32_t dofpr_argidx; /* index of first argument mapping */
796 797 uint32_t dofpr_offidx; /* index of first offset entry */
797 798 uint8_t dofpr_nargc; /* native argument count */
798 799 uint8_t dofpr_xargc; /* translated argument count */
799 800 uint16_t dofpr_noffs; /* number of offset entries for probe */
800 801 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
801 802 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
802 803 uint16_t dofpr_pad1; /* reserved for future use */
803 804 uint32_t dofpr_pad2; /* reserved for future use */
804 805 } dof_probe_t;
805 806
806 807 typedef struct dof_xlator {
807 808 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
808 809 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
809 810 dof_stridx_t dofxl_argv; /* input parameter type strings */
810 811 uint32_t dofxl_argc; /* input parameter list length */
811 812 dof_stridx_t dofxl_type; /* output type string name */
812 813 dof_attr_t dofxl_attr; /* output stability attributes */
813 814 } dof_xlator_t;
814 815
815 816 typedef struct dof_xlmember {
816 817 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
817 818 dof_stridx_t dofxm_name; /* member name */
818 819 dtrace_diftype_t dofxm_type; /* member type */
819 820 } dof_xlmember_t;
820 821
821 822 typedef struct dof_xlref {
822 823 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
823 824 uint32_t dofxr_member; /* index of referenced dof_xlmember */
824 825 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
825 826 } dof_xlref_t;
826 827
827 828 /*
828 829 * DTrace Intermediate Format Object (DIFO)
829 830 *
830 831 * A DIFO is used to store the compiled DIF for a D expression, its return
831 832 * type, and its string and variable tables. The string table is a single
832 833 * buffer of character data into which sets instructions and variable
833 834 * references can reference strings using a byte offset. The variable table
834 835 * is an array of dtrace_difv_t structures that describe the name and type of
835 836 * each variable and the id used in the DIF code. This structure is described
836 837 * above in the DIF section of this header file. The DIFO is used at both
837 838 * user-level (in the library) and in the kernel, but the structure is never
838 839 * passed between the two: the DOF structures form the only interface. As a
839 840 * result, the definition can change depending on the presence of _KERNEL.
840 841 */
841 842 typedef struct dtrace_difo {
842 843 dif_instr_t *dtdo_buf; /* instruction buffer */
843 844 uint64_t *dtdo_inttab; /* integer table (optional) */
844 845 char *dtdo_strtab; /* string table (optional) */
845 846 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
846 847 uint_t dtdo_len; /* length of instruction buffer */
847 848 uint_t dtdo_intlen; /* length of integer table */
848 849 uint_t dtdo_strlen; /* length of string table */
849 850 uint_t dtdo_varlen; /* length of variable table */
850 851 dtrace_diftype_t dtdo_rtype; /* return type */
851 852 uint_t dtdo_refcnt; /* owner reference count */
852 853 uint_t dtdo_destructive; /* invokes destructive subroutines */
853 854 #ifndef _KERNEL
854 855 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
855 856 dof_relodesc_t *dtdo_ureltab; /* user relocations */
856 857 struct dt_node **dtdo_xlmtab; /* translator references */
857 858 uint_t dtdo_krelen; /* length of krelo table */
858 859 uint_t dtdo_urelen; /* length of urelo table */
859 860 uint_t dtdo_xlmlen; /* length of translator table */
860 861 #endif
861 862 } dtrace_difo_t;
862 863
863 864 /*
864 865 * DTrace Enabling Description Structures
865 866 *
866 867 * When DTrace is tracking the description of a DTrace enabling entity (probe,
867 868 * predicate, action, ECB, record, etc.), it does so in a description
868 869 * structure. These structures all end in "desc", and are used at both
869 870 * user-level and in the kernel -- but (with the exception of
870 871 * dtrace_probedesc_t) they are never passed between them. Typically,
871 872 * user-level will use the description structures when assembling an enabling.
872 873 * It will then distill those description structures into a DOF object (see
873 874 * above), and send it into the kernel. The kernel will again use the
874 875 * description structures to create a description of the enabling as it reads
875 876 * the DOF. When the description is complete, the enabling will be actually
876 877 * created -- turning it into the structures that represent the enabling
877 878 * instead of merely describing it. Not surprisingly, the description
878 879 * structures bear a strong resemblance to the DOF structures that act as their
879 880 * conduit.
880 881 */
881 882 struct dtrace_predicate;
882 883
883 884 typedef struct dtrace_probedesc {
884 885 dtrace_id_t dtpd_id; /* probe identifier */
885 886 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
886 887 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
887 888 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
888 889 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
889 890 } dtrace_probedesc_t;
890 891
891 892 typedef struct dtrace_repldesc {
892 893 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
893 894 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
894 895 } dtrace_repldesc_t;
895 896
896 897 typedef struct dtrace_preddesc {
897 898 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
898 899 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
899 900 } dtrace_preddesc_t;
900 901
901 902 typedef struct dtrace_actdesc {
902 903 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
903 904 struct dtrace_actdesc *dtad_next; /* next action */
904 905 dtrace_actkind_t dtad_kind; /* kind of action */
905 906 uint32_t dtad_ntuple; /* number in tuple */
906 907 uint64_t dtad_arg; /* action argument */
907 908 uint64_t dtad_uarg; /* user argument */
908 909 int dtad_refcnt; /* reference count */
909 910 } dtrace_actdesc_t;
910 911
911 912 typedef struct dtrace_ecbdesc {
912 913 dtrace_actdesc_t *dted_action; /* action description(s) */
913 914 dtrace_preddesc_t dted_pred; /* predicate description */
914 915 dtrace_probedesc_t dted_probe; /* probe description */
915 916 uint64_t dted_uarg; /* library argument */
916 917 int dted_refcnt; /* reference count */
917 918 } dtrace_ecbdesc_t;
918 919
919 920 /*
920 921 * DTrace Metadata Description Structures
921 922 *
922 923 * DTrace separates the trace data stream from the metadata stream. The only
923 924 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
924 925 * timestamp) or (in the case of aggregations) aggregation identifiers. To
925 926 * determine the structure of the data, DTrace consumers pass the token to the
926 927 * kernel, and receive in return a corresponding description of the enabled
927 928 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
928 929 * dtrace_aggdesc structure). Both of these structures are expressed in terms
929 930 * of record descriptions (via the dtrace_recdesc structure) that describe the
930 931 * exact structure of the data. Some record descriptions may also contain a
931 932 * format identifier; this additional bit of metadata can be retrieved from the
932 933 * kernel, for which a format description is returned via the dtrace_fmtdesc
933 934 * structure. Note that all four of these structures must be bitness-neutral
934 935 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
935 936 */
936 937 typedef struct dtrace_recdesc {
937 938 dtrace_actkind_t dtrd_action; /* kind of action */
938 939 uint32_t dtrd_size; /* size of record */
939 940 uint32_t dtrd_offset; /* offset in ECB's data */
940 941 uint16_t dtrd_alignment; /* required alignment */
941 942 uint16_t dtrd_format; /* format, if any */
942 943 uint64_t dtrd_arg; /* action argument */
943 944 uint64_t dtrd_uarg; /* user argument */
944 945 } dtrace_recdesc_t;
945 946
946 947 typedef struct dtrace_eprobedesc {
947 948 dtrace_epid_t dtepd_epid; /* enabled probe ID */
948 949 dtrace_id_t dtepd_probeid; /* probe ID */
949 950 uint64_t dtepd_uarg; /* library argument */
950 951 uint32_t dtepd_size; /* total size */
951 952 int dtepd_nrecs; /* number of records */
952 953 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
953 954 } dtrace_eprobedesc_t;
954 955
955 956 typedef struct dtrace_aggdesc {
956 957 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
957 958 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
958 959 int dtagd_flags; /* not filled in by kernel */
959 960 dtrace_aggid_t dtagd_id; /* aggregation ID */
960 961 dtrace_epid_t dtagd_epid; /* enabled probe ID */
961 962 uint32_t dtagd_size; /* size in bytes */
962 963 int dtagd_nrecs; /* number of records */
963 964 uint32_t dtagd_pad; /* explicit padding */
964 965 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
965 966 } dtrace_aggdesc_t;
966 967
967 968 typedef struct dtrace_fmtdesc {
968 969 DTRACE_PTR(char, dtfd_string); /* format string */
969 970 int dtfd_length; /* length of format string */
970 971 uint16_t dtfd_format; /* format identifier */
971 972 } dtrace_fmtdesc_t;
972 973
973 974 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
974 975 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
975 976 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
976 977
977 978 #define DTRACE_SIZEOF_AGGDESC(desc) \
978 979 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
979 980 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
980 981
981 982 /*
982 983 * DTrace Option Interface
983 984 *
984 985 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
985 986 * in a DOF image. The dof_optdesc structure contains an option identifier and
986 987 * an option value. The valid option identifiers are found below; the mapping
987 988 * between option identifiers and option identifying strings is maintained at
988 989 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
989 990 * following are potentially valid option values: all positive integers, zero
990 991 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
991 992 * predefined tokens as their values; these are defined with
992 993 * DTRACEOPT_{option}_{token}.
993 994 */
994 995 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
995 996 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
996 997 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
997 998 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
998 999 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
999 1000 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1000 1001 #define DTRACEOPT_STRSIZE 6 /* string size */
1001 1002 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1002 1003 #define DTRACEOPT_CPU 8 /* CPU to trace */
1003 1004 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1004 1005 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1005 1006 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1006 1007 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1007 1008 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1008 1009 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1009 1010 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1010 1011 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1011 1012 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1012 1013 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1013 1014 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1014 1015 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1015 1016 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1016 1017 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1017 1018 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1018 1019 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1019 1020 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1020 1021 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1021 1022 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1022 1023 #define DTRACEOPT_MAX 28 /* number of options */
1023 1024
1024 1025 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1025 1026
1026 1027 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1027 1028 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1028 1029 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1029 1030
1030 1031 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1031 1032 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1032 1033
1033 1034 /*
1034 1035 * DTrace Buffer Interface
1035 1036 *
1036 1037 * In order to get a snapshot of the principal or aggregation buffer,
1037 1038 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1038 1039 * structure. This describes which CPU user-level is interested in, and
1039 1040 * where user-level wishes the kernel to snapshot the buffer to (the
1040 1041 * dtbd_data field). The kernel uses the same structure to pass back some
1041 1042 * information regarding the buffer: the size of data actually copied out, the
1042 1043 * number of drops, the number of errors, the offset of the oldest record,
1043 1044 * and the time of the snapshot.
1044 1045 *
1045 1046 * If the buffer policy is a "switch" policy, taking a snapshot of the
1046 1047 * principal buffer has the additional effect of switching the active and
1047 1048 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1048 1049 * the additional effect of switching the active and inactive buffers.
1049 1050 */
1050 1051 typedef struct dtrace_bufdesc {
1051 1052 uint64_t dtbd_size; /* size of buffer */
1052 1053 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1053 1054 uint32_t dtbd_errors; /* number of errors */
1054 1055 uint64_t dtbd_drops; /* number of drops */
1055 1056 DTRACE_PTR(char, dtbd_data); /* data */
1056 1057 uint64_t dtbd_oldest; /* offset of oldest record */
1057 1058 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1058 1059 } dtrace_bufdesc_t;
1059 1060
1060 1061 /*
1061 1062 * Each record in the buffer (dtbd_data) begins with a header that includes
1062 1063 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1063 1064 * so that we do not require 8-byte alignment.
1064 1065 */
1065 1066 typedef struct dtrace_rechdr {
1066 1067 dtrace_epid_t dtrh_epid; /* enabled probe id */
1067 1068 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1068 1069 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1069 1070 } dtrace_rechdr_t;
1070 1071
1071 1072 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1072 1073 ((dtrh)->dtrh_timestamp_lo + \
1073 1074 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1074 1075
1075 1076 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1076 1077 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1077 1078 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1078 1079 }
1079 1080
1080 1081 /*
1081 1082 * DTrace Status
1082 1083 *
1083 1084 * The status of DTrace is relayed via the dtrace_status structure. This
1084 1085 * structure contains members to count drops other than the capacity drops
1085 1086 * available via the buffer interface (see above). This consists of dynamic
1086 1087 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1087 1088 * speculative drops (including capacity speculative drops, drops due to busy
1088 1089 * speculative buffers and drops due to unavailable speculative buffers).
1089 1090 * Additionally, the status structure contains a field to indicate the number
1090 1091 * of "fill"-policy buffers have been filled and a boolean field to indicate
1091 1092 * that exit() has been called. If the dtst_exiting field is non-zero, no
1092 1093 * further data will be generated until tracing is stopped (at which time any
1093 1094 * enablings of the END action will be processed); if user-level sees that
1094 1095 * this field is non-zero, tracing should be stopped as soon as possible.
1095 1096 */
1096 1097 typedef struct dtrace_status {
1097 1098 uint64_t dtst_dyndrops; /* dynamic drops */
1098 1099 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1099 1100 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1100 1101 uint64_t dtst_specdrops; /* speculative drops */
1101 1102 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1102 1103 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1103 1104 uint64_t dtst_errors; /* total errors */
1104 1105 uint64_t dtst_filled; /* number of filled bufs */
1105 1106 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1106 1107 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1107 1108 char dtst_killed; /* non-zero if killed */
1108 1109 char dtst_exiting; /* non-zero if exit() called */
1109 1110 char dtst_pad[6]; /* pad out to 64-bit align */
1110 1111 } dtrace_status_t;
1111 1112
1112 1113 /*
1113 1114 * DTrace Configuration
1114 1115 *
1115 1116 * User-level may need to understand some elements of the kernel DTrace
1116 1117 * configuration in order to generate correct DIF. This information is
1117 1118 * conveyed via the dtrace_conf structure.
1118 1119 */
1119 1120 typedef struct dtrace_conf {
1120 1121 uint_t dtc_difversion; /* supported DIF version */
1121 1122 uint_t dtc_difintregs; /* # of DIF integer registers */
1122 1123 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1123 1124 uint_t dtc_ctfmodel; /* CTF data model */
1124 1125 uint_t dtc_pad[8]; /* reserved for future use */
1125 1126 } dtrace_conf_t;
1126 1127
1127 1128 /*
1128 1129 * DTrace Faults
1129 1130 *
1130 1131 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1131 1132 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1132 1133 * postprocessing at user-level. Probe processing faults induce an ERROR
1133 1134 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1134 1135 * the error condition using thse symbolic labels.
1135 1136 */
1136 1137 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1137 1138 #define DTRACEFLT_BADADDR 1 /* Bad address */
1138 1139 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1139 1140 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1140 1141 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1141 1142 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1142 1143 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1143 1144 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1144 1145 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1145 1146 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1146 1147
1147 1148 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1148 1149
1149 1150 /*
1150 1151 * DTrace Argument Types
1151 1152 *
1152 1153 * Because it would waste both space and time, argument types do not reside
1153 1154 * with the probe. In order to determine argument types for args[X]
1154 1155 * variables, the D compiler queries for argument types on a probe-by-probe
1155 1156 * basis. (This optimizes for the common case that arguments are either not
1156 1157 * used or used in an untyped fashion.) Typed arguments are specified with a
1157 1158 * string of the type name in the dtragd_native member of the argument
1158 1159 * description structure. Typed arguments may be further translated to types
1159 1160 * of greater stability; the provider indicates such a translated argument by
1160 1161 * filling in the dtargd_xlate member with the string of the translated type.
1161 1162 * Finally, the provider may indicate which argument value a given argument
1162 1163 * maps to by setting the dtargd_mapping member -- allowing a single argument
1163 1164 * to map to multiple args[X] variables.
1164 1165 */
1165 1166 typedef struct dtrace_argdesc {
1166 1167 dtrace_id_t dtargd_id; /* probe identifier */
1167 1168 int dtargd_ndx; /* arg number (-1 iff none) */
1168 1169 int dtargd_mapping; /* value mapping */
1169 1170 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1170 1171 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1171 1172 } dtrace_argdesc_t;
1172 1173
1173 1174 /*
1174 1175 * DTrace Stability Attributes
1175 1176 *
1176 1177 * Each DTrace provider advertises the name and data stability of each of its
1177 1178 * probe description components, as well as its architectural dependencies.
1178 1179 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1179 1180 * order to compute the properties of an input program and report them.
1180 1181 */
1181 1182 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1182 1183 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1183 1184
1184 1185 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1185 1186 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1186 1187 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1187 1188 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1188 1189 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1189 1190 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1190 1191 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1191 1192 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1192 1193 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1193 1194
1194 1195 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1195 1196 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1196 1197 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1197 1198 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1198 1199 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1199 1200 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1200 1201 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1201 1202
1202 1203 #define DTRACE_PRIV_NONE 0x0000
1203 1204 #define DTRACE_PRIV_KERNEL 0x0001
1204 1205 #define DTRACE_PRIV_USER 0x0002
1205 1206 #define DTRACE_PRIV_PROC 0x0004
1206 1207 #define DTRACE_PRIV_OWNER 0x0008
1207 1208 #define DTRACE_PRIV_ZONEOWNER 0x0010
1208 1209
1209 1210 #define DTRACE_PRIV_ALL \
1210 1211 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1211 1212 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1212 1213
1213 1214 typedef struct dtrace_ppriv {
1214 1215 uint32_t dtpp_flags; /* privilege flags */
1215 1216 uid_t dtpp_uid; /* user ID */
1216 1217 zoneid_t dtpp_zoneid; /* zone ID */
1217 1218 } dtrace_ppriv_t;
1218 1219
1219 1220 typedef struct dtrace_attribute {
1220 1221 dtrace_stability_t dtat_name; /* entity name stability */
1221 1222 dtrace_stability_t dtat_data; /* entity data stability */
1222 1223 dtrace_class_t dtat_class; /* entity data dependency */
1223 1224 } dtrace_attribute_t;
1224 1225
1225 1226 typedef struct dtrace_pattr {
1226 1227 dtrace_attribute_t dtpa_provider; /* provider attributes */
1227 1228 dtrace_attribute_t dtpa_mod; /* module attributes */
1228 1229 dtrace_attribute_t dtpa_func; /* function attributes */
1229 1230 dtrace_attribute_t dtpa_name; /* name attributes */
1230 1231 dtrace_attribute_t dtpa_args; /* args[] attributes */
1231 1232 } dtrace_pattr_t;
1232 1233
1233 1234 typedef struct dtrace_providerdesc {
1234 1235 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1235 1236 dtrace_pattr_t dtvd_attr; /* stability attributes */
1236 1237 dtrace_ppriv_t dtvd_priv; /* privileges required */
1237 1238 } dtrace_providerdesc_t;
1238 1239
1239 1240 /*
1240 1241 * DTrace Pseudodevice Interface
1241 1242 *
1242 1243 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1243 1244 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1244 1245 * DTrace.
1245 1246 */
1246 1247 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1247 1248 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1248 1249 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1249 1250 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1250 1251 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1251 1252 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1252 1253 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1253 1254 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1254 1255 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1255 1256 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1256 1257 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1257 1258 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1258 1259 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1259 1260 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1260 1261 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1261 1262 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1262 1263 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1263 1264
1264 1265 /*
1265 1266 * DTrace Helpers
1266 1267 *
1267 1268 * In general, DTrace establishes probes in processes and takes actions on
1268 1269 * processes without knowing their specific user-level structures. Instead of
1269 1270 * existing in the framework, process-specific knowledge is contained by the
1270 1271 * enabling D program -- which can apply process-specific knowledge by making
1271 1272 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1272 1273 * operate on user-level data. However, there may exist some specific probes
1273 1274 * of particular semantic relevance that the application developer may wish to
1274 1275 * explicitly export. For example, an application may wish to export a probe
1275 1276 * at the point that it begins and ends certain well-defined transactions. In
1276 1277 * addition to providing probes, programs may wish to offer assistance for
1277 1278 * certain actions. For example, in highly dynamic environments (e.g., Java),
1278 1279 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1279 1280 * names (the translation from instruction addresses to corresponding symbol
1280 1281 * names may only be possible in situ); these environments may wish to define
1281 1282 * a series of actions to be applied in situ to obtain a meaningful stack
1282 1283 * trace.
1283 1284 *
1284 1285 * These two mechanisms -- user-level statically defined tracing and assisting
1285 1286 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1286 1287 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1287 1288 * providers, probes and their arguments. If a helper wishes to provide
1288 1289 * action assistance, probe descriptions and corresponding DIF actions may be
1289 1290 * specified in the helper DOF. For such helper actions, however, the probe
1290 1291 * description describes the specific helper: all DTrace helpers have the
1291 1292 * provider name "dtrace" and the module name "helper", and the name of the
1292 1293 * helper is contained in the function name (for example, the ustack() helper
1293 1294 * is named "ustack"). Any helper-specific name may be contained in the name
1294 1295 * (for example, if a helper were to have a constructor, it might be named
1295 1296 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1296 1297 * action that they are helping is taken. Helper actions may only return DIF
1297 1298 * expressions, and may only call the following subroutines:
1298 1299 *
1299 1300 * alloca() <= Allocates memory out of the consumer's scratch space
1300 1301 * bcopy() <= Copies memory to scratch space
1301 1302 * copyin() <= Copies memory from user-level into consumer's scratch
1302 1303 * copyinto() <= Copies memory into a specific location in scratch
1303 1304 * copyinstr() <= Copies a string into a specific location in scratch
1304 1305 *
1305 1306 * Helper actions may only access the following built-in variables:
1306 1307 *
1307 1308 * curthread <= Current kthread_t pointer
1308 1309 * tid <= Current thread identifier
1309 1310 * pid <= Current process identifier
1310 1311 * ppid <= Parent process identifier
1311 1312 * uid <= Current user ID
1312 1313 * gid <= Current group ID
1313 1314 * execname <= Current executable name
1314 1315 * zonename <= Current zone name
1315 1316 *
1316 1317 * Helper actions may not manipulate or allocate dynamic variables, but they
1317 1318 * may have clause-local and statically-allocated global variables. The
1318 1319 * helper action variable state is specific to the helper action -- variables
1319 1320 * used by the helper action may not be accessed outside of the helper
1320 1321 * action, and the helper action may not access variables that like outside
1321 1322 * of it. Helper actions may not load from kernel memory at-large; they are
1322 1323 * restricting to loading current user state (via copyin() and variants) and
1323 1324 * scratch space. As with probe enablings, helper actions are executed in
1324 1325 * program order. The result of the helper action is the result of the last
1325 1326 * executing helper expression.
1326 1327 *
1327 1328 * Helpers -- composed of either providers/probes or probes/actions (or both)
1328 1329 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1329 1330 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1330 1331 * encapsulates the name and base address of the user-level library or
1331 1332 * executable publishing the helpers and probes as well as the DOF that
1332 1333 * contains the definitions of those helpers and probes.
1333 1334 *
1334 1335 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1335 1336 * helpers and should no longer be used. No other ioctls are valid on the
1336 1337 * helper minor node.
1337 1338 */
1338 1339 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1339 1340 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1340 1341 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1341 1342 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1342 1343
1343 1344 typedef struct dof_helper {
1344 1345 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1345 1346 uint64_t dofhp_addr; /* base address of object */
1346 1347 uint64_t dofhp_dof; /* address of helper DOF */
1347 1348 } dof_helper_t;
1348 1349
1349 1350 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1350 1351 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1351 1352 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1352 1353 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1353 1354 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1354 1355
1355 1356 #ifdef _KERNEL
1356 1357
1357 1358 /*
1358 1359 * DTrace Provider API
1359 1360 *
1360 1361 * The following functions are implemented by the DTrace framework and are
1361 1362 * used to implement separate in-kernel DTrace providers. Common functions
1362 1363 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1363 1364 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1364 1365 *
1365 1366 * The provider API has two halves: the API that the providers consume from
1366 1367 * DTrace, and the API that providers make available to DTrace.
1367 1368 *
1368 1369 * 1 Framework-to-Provider API
1369 1370 *
1370 1371 * 1.1 Overview
1371 1372 *
1372 1373 * The Framework-to-Provider API is represented by the dtrace_pops structure
1373 1374 * that the provider passes to the framework when registering itself. This
1374 1375 * structure consists of the following members:
1375 1376 *
1376 1377 * dtps_provide() <-- Provide all probes, all modules
1377 1378 * dtps_provide_module() <-- Provide all probes in specified module
1378 1379 * dtps_enable() <-- Enable specified probe
1379 1380 * dtps_disable() <-- Disable specified probe
1380 1381 * dtps_suspend() <-- Suspend specified probe
1381 1382 * dtps_resume() <-- Resume specified probe
1382 1383 * dtps_getargdesc() <-- Get the argument description for args[X]
1383 1384 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1384 1385 * dtps_mode() <-- Return the mode of the fired probe
1385 1386 * dtps_destroy() <-- Destroy all state associated with this probe
1386 1387 *
1387 1388 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1388 1389 *
1389 1390 * 1.2.1 Overview
1390 1391 *
1391 1392 * Called to indicate that the provider should provide all probes. If the
1392 1393 * specified description is non-NULL, dtps_provide() is being called because
1393 1394 * no probe matched a specified probe -- if the provider has the ability to
1394 1395 * create custom probes, it may wish to create a probe that matches the
1395 1396 * specified description.
1396 1397 *
1397 1398 * 1.2.2 Arguments and notes
1398 1399 *
1399 1400 * The first argument is the cookie as passed to dtrace_register(). The
1400 1401 * second argument is a pointer to a probe description that the provider may
1401 1402 * wish to consider when creating custom probes. The provider is expected to
1402 1403 * call back into the DTrace framework via dtrace_probe_create() to create
1403 1404 * any necessary probes. dtps_provide() may be called even if the provider
1404 1405 * has made available all probes; the provider should check the return value
1405 1406 * of dtrace_probe_create() to handle this case. Note that the provider need
1406 1407 * not implement both dtps_provide() and dtps_provide_module(); see
1407 1408 * "Arguments and Notes" for dtrace_register(), below.
1408 1409 *
1409 1410 * 1.2.3 Return value
1410 1411 *
1411 1412 * None.
1412 1413 *
1413 1414 * 1.2.4 Caller's context
1414 1415 *
1415 1416 * dtps_provide() is typically called from open() or ioctl() context, but may
1416 1417 * be called from other contexts as well. The DTrace framework is locked in
1417 1418 * such a way that providers may not register or unregister. This means that
1418 1419 * the provider may not call any DTrace API that affects its registration with
1419 1420 * the framework, including dtrace_register(), dtrace_unregister(),
1420 1421 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1421 1422 * that the provider may (and indeed, is expected to) call probe-related
1422 1423 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1423 1424 * and dtrace_probe_arg().
1424 1425 *
1425 1426 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1426 1427 *
1427 1428 * 1.3.1 Overview
1428 1429 *
1429 1430 * Called to indicate that the provider should provide all probes in the
1430 1431 * specified module.
1431 1432 *
1432 1433 * 1.3.2 Arguments and notes
1433 1434 *
1434 1435 * The first argument is the cookie as passed to dtrace_register(). The
1435 1436 * second argument is a pointer to a modctl structure that indicates the
1436 1437 * module for which probes should be created.
1437 1438 *
1438 1439 * 1.3.3 Return value
1439 1440 *
1440 1441 * None.
1441 1442 *
1442 1443 * 1.3.4 Caller's context
1443 1444 *
1444 1445 * dtps_provide_module() may be called from open() or ioctl() context, but
1445 1446 * may also be called from a module loading context. mod_lock is held, and
1446 1447 * the DTrace framework is locked in such a way that providers may not
1447 1448 * register or unregister. This means that the provider may not call any
1448 1449 * DTrace API that affects its registration with the framework, including
1449 1450 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1450 1451 * dtrace_condense(). However, the context is such that the provider may (and
1451 1452 * indeed, is expected to) call probe-related DTrace routines, including
1452 1453 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1453 1454 * that the provider need not implement both dtps_provide() and
1454 1455 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1455 1456 * below.
1456 1457 *
1457 1458 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1458 1459 *
1459 1460 * 1.4.1 Overview
1460 1461 *
1461 1462 * Called to enable the specified probe.
1462 1463 *
1463 1464 * 1.4.2 Arguments and notes
1464 1465 *
1465 1466 * The first argument is the cookie as passed to dtrace_register(). The
1466 1467 * second argument is the identifier of the probe to be enabled. The third
1467 1468 * argument is the probe argument as passed to dtrace_probe_create().
1468 1469 * dtps_enable() will be called when a probe transitions from not being
1469 1470 * enabled at all to having one or more ECB. The number of ECBs associated
1470 1471 * with the probe may change without subsequent calls into the provider.
1471 1472 * When the number of ECBs drops to zero, the provider will be explicitly
1472 1473 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1473 1474 * be called for a probe identifier that hasn't been explicitly enabled via
1474 1475 * dtps_enable().
1475 1476 *
1476 1477 * 1.4.3 Return value
1477 1478 *
1478 1479 * On success, dtps_enable() should return 0. On failure, -1 should be
1479 1480 * returned.
1480 1481 *
1481 1482 * 1.4.4 Caller's context
1482 1483 *
1483 1484 * The DTrace framework is locked in such a way that it may not be called
1484 1485 * back into at all. cpu_lock is held. mod_lock is not held and may not
1485 1486 * be acquired.
1486 1487 *
1487 1488 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1488 1489 *
1489 1490 * 1.5.1 Overview
1490 1491 *
1491 1492 * Called to disable the specified probe.
1492 1493 *
1493 1494 * 1.5.2 Arguments and notes
1494 1495 *
1495 1496 * The first argument is the cookie as passed to dtrace_register(). The
1496 1497 * second argument is the identifier of the probe to be disabled. The third
1497 1498 * argument is the probe argument as passed to dtrace_probe_create().
1498 1499 * dtps_disable() will be called when a probe transitions from being enabled
1499 1500 * to having zero ECBs. dtrace_probe() should never be called for a probe
1500 1501 * identifier that has been explicitly enabled via dtps_disable().
1501 1502 *
1502 1503 * 1.5.3 Return value
1503 1504 *
1504 1505 * None.
1505 1506 *
1506 1507 * 1.5.4 Caller's context
1507 1508 *
1508 1509 * The DTrace framework is locked in such a way that it may not be called
1509 1510 * back into at all. cpu_lock is held. mod_lock is not held and may not
1510 1511 * be acquired.
1511 1512 *
1512 1513 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1513 1514 *
1514 1515 * 1.6.1 Overview
1515 1516 *
1516 1517 * Called to suspend the specified enabled probe. This entry point is for
1517 1518 * providers that may need to suspend some or all of their probes when CPUs
1518 1519 * are being powered on or when the boot monitor is being entered for a
1519 1520 * prolonged period of time.
1520 1521 *
1521 1522 * 1.6.2 Arguments and notes
1522 1523 *
1523 1524 * The first argument is the cookie as passed to dtrace_register(). The
1524 1525 * second argument is the identifier of the probe to be suspended. The
1525 1526 * third argument is the probe argument as passed to dtrace_probe_create().
1526 1527 * dtps_suspend will only be called on an enabled probe. Providers that
1527 1528 * provide a dtps_suspend entry point will want to take roughly the action
1528 1529 * that it takes for dtps_disable.
1529 1530 *
1530 1531 * 1.6.3 Return value
1531 1532 *
1532 1533 * None.
1533 1534 *
1534 1535 * 1.6.4 Caller's context
1535 1536 *
1536 1537 * Interrupts are disabled. The DTrace framework is in a state such that the
1537 1538 * specified probe cannot be disabled or destroyed for the duration of
1538 1539 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1539 1540 * little latitude; the provider is expected to do no more than a store to
1540 1541 * memory.
1541 1542 *
1542 1543 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1543 1544 *
1544 1545 * 1.7.1 Overview
1545 1546 *
1546 1547 * Called to resume the specified enabled probe. This entry point is for
1547 1548 * providers that may need to resume some or all of their probes after the
1548 1549 * completion of an event that induced a call to dtps_suspend().
1549 1550 *
1550 1551 * 1.7.2 Arguments and notes
1551 1552 *
1552 1553 * The first argument is the cookie as passed to dtrace_register(). The
1553 1554 * second argument is the identifier of the probe to be resumed. The
1554 1555 * third argument is the probe argument as passed to dtrace_probe_create().
1555 1556 * dtps_resume will only be called on an enabled probe. Providers that
1556 1557 * provide a dtps_resume entry point will want to take roughly the action
1557 1558 * that it takes for dtps_enable.
1558 1559 *
1559 1560 * 1.7.3 Return value
1560 1561 *
1561 1562 * None.
1562 1563 *
1563 1564 * 1.7.4 Caller's context
1564 1565 *
1565 1566 * Interrupts are disabled. The DTrace framework is in a state such that the
1566 1567 * specified probe cannot be disabled or destroyed for the duration of
1567 1568 * dtps_resume(). As interrupts are disabled, the provider is afforded
1568 1569 * little latitude; the provider is expected to do no more than a store to
1569 1570 * memory.
1570 1571 *
1571 1572 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1572 1573 * dtrace_argdesc_t *desc)
1573 1574 *
1574 1575 * 1.8.1 Overview
1575 1576 *
1576 1577 * Called to retrieve the argument description for an args[X] variable.
1577 1578 *
1578 1579 * 1.8.2 Arguments and notes
1579 1580 *
1580 1581 * The first argument is the cookie as passed to dtrace_register(). The
1581 1582 * second argument is the identifier of the current probe. The third
1582 1583 * argument is the probe argument as passed to dtrace_probe_create(). The
1583 1584 * fourth argument is a pointer to the argument description. This
1584 1585 * description is both an input and output parameter: it contains the
1585 1586 * index of the desired argument in the dtargd_ndx field, and expects
1586 1587 * the other fields to be filled in upon return. If there is no argument
1587 1588 * corresponding to the specified index, the dtargd_ndx field should be set
1588 1589 * to DTRACE_ARGNONE.
1589 1590 *
1590 1591 * 1.8.3 Return value
1591 1592 *
1592 1593 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1593 1594 * members of the dtrace_argdesc_t structure are all output values.
1594 1595 *
1595 1596 * 1.8.4 Caller's context
1596 1597 *
1597 1598 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1598 1599 * the DTrace framework is locked in such a way that providers may not
1599 1600 * register or unregister. This means that the provider may not call any
1600 1601 * DTrace API that affects its registration with the framework, including
1601 1602 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1602 1603 * dtrace_condense().
1603 1604 *
1604 1605 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1605 1606 * int argno, int aframes)
1606 1607 *
1607 1608 * 1.9.1 Overview
1608 1609 *
1609 1610 * Called to retrieve a value for an argX or args[X] variable.
1610 1611 *
1611 1612 * 1.9.2 Arguments and notes
1612 1613 *
1613 1614 * The first argument is the cookie as passed to dtrace_register(). The
1614 1615 * second argument is the identifier of the current probe. The third
1615 1616 * argument is the probe argument as passed to dtrace_probe_create(). The
1616 1617 * fourth argument is the number of the argument (the X in the example in
1617 1618 * 1.9.1). The fifth argument is the number of stack frames that were used
1618 1619 * to get from the actual place in the code that fired the probe to
1619 1620 * dtrace_probe() itself, the so-called artificial frames. This argument may
1620 1621 * be used to descend an appropriate number of frames to find the correct
1621 1622 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1622 1623 * function is used.
1623 1624 *
1624 1625 * 1.9.3 Return value
1625 1626 *
1626 1627 * The value of the argument.
1627 1628 *
1628 1629 * 1.9.4 Caller's context
1629 1630 *
1630 1631 * This is called from within dtrace_probe() meaning that interrupts
1631 1632 * are disabled. No locks should be taken within this entry point.
1632 1633 *
1633 1634 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1634 1635 *
1635 1636 * 1.10.1 Overview
1636 1637 *
1637 1638 * Called to determine the mode of a fired probe.
1638 1639 *
1639 1640 * 1.10.2 Arguments and notes
1640 1641 *
1641 1642 * The first argument is the cookie as passed to dtrace_register(). The
↓ open down ↓ |
1339 lines elided |
↑ open up ↑ |
1642 1643 * second argument is the identifier of the current probe. The third
1643 1644 * argument is the probe argument as passed to dtrace_probe_create(). This
1644 1645 * entry point must not be left NULL for providers whose probes allow for
1645 1646 * mixed mode tracing, that is to say those unanchored probes that can fire
1646 1647 * during kernel- or user-mode execution.
1647 1648 *
1648 1649 * 1.10.3 Return value
1649 1650 *
1650 1651 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1651 1652 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1652 - * is insufficient for that mode (either DTRACE_MODE_NOPRIV_DROP or
1653 - * DTRACE_MODE_NOPRIV_RESTRICT). If the policy is DTRACE_MODE_NOPRIV_DROP,
1654 - * insufficient privilege will result in the probe firing being silently
1655 - * ignored for the enabling; if the policy is DTRACE_NODE_NOPRIV_RESTRICT,
1656 - * insufficient privilege will not prevent probe processing for the
1657 - * enabling, but restrictions will be in place that induce a UPRIV fault
1658 - * upon attempt to examine probe arguments or current process state.
1653 + * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1654 + * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1655 + * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1656 + * in the probe firing being silently ignored for the enabling; if the
1657 + * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1658 + * prevent probe processing for the enabling, but restrictions will be in
1659 + * place that induce a UPRIV fault upon attempt to examine probe arguments
1660 + * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1661 + * is set, similar restrictions will be placed upon operation if the
1662 + * privilege is sufficient to process the enabling, but does not otherwise
1663 + * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1664 + * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1665 + * two policies must be specified), but either may be combined (or not)
1666 + * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1659 1667 *
1660 1668 * 1.10.4 Caller's context
1661 1669 *
1662 1670 * This is called from within dtrace_probe() meaning that interrupts
1663 1671 * are disabled. No locks should be taken within this entry point.
1664 1672 *
1665 1673 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1666 1674 *
1667 1675 * 1.11.1 Overview
1668 1676 *
1669 1677 * Called to destroy the specified probe.
1670 1678 *
1671 1679 * 1.11.2 Arguments and notes
1672 1680 *
1673 1681 * The first argument is the cookie as passed to dtrace_register(). The
1674 1682 * second argument is the identifier of the probe to be destroyed. The third
1675 1683 * argument is the probe argument as passed to dtrace_probe_create(). The
1676 1684 * provider should free all state associated with the probe. The framework
1677 1685 * guarantees that dtps_destroy() is only called for probes that have either
1678 1686 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1679 1687 * Once dtps_disable() has been called for a probe, no further call will be
1680 1688 * made specifying the probe.
1681 1689 *
1682 1690 * 1.11.3 Return value
1683 1691 *
1684 1692 * None.
1685 1693 *
1686 1694 * 1.11.4 Caller's context
1687 1695 *
1688 1696 * The DTrace framework is locked in such a way that it may not be called
1689 1697 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1690 1698 * acquired.
1691 1699 *
1692 1700 *
1693 1701 * 2 Provider-to-Framework API
1694 1702 *
1695 1703 * 2.1 Overview
1696 1704 *
1697 1705 * The Provider-to-Framework API provides the mechanism for the provider to
1698 1706 * register itself with the DTrace framework, to create probes, to lookup
1699 1707 * probes and (most importantly) to fire probes. The Provider-to-Framework
1700 1708 * consists of:
1701 1709 *
1702 1710 * dtrace_register() <-- Register a provider with the DTrace framework
1703 1711 * dtrace_unregister() <-- Remove a provider's DTrace registration
1704 1712 * dtrace_invalidate() <-- Invalidate the specified provider
1705 1713 * dtrace_condense() <-- Remove a provider's unenabled probes
1706 1714 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1707 1715 * dtrace_probe_create() <-- Create a DTrace probe
1708 1716 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1709 1717 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1710 1718 * dtrace_probe() <-- Fire the specified probe
1711 1719 *
1712 1720 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1713 1721 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1714 1722 * dtrace_provider_id_t *idp)
1715 1723 *
1716 1724 * 2.2.1 Overview
1717 1725 *
1718 1726 * dtrace_register() registers the calling provider with the DTrace
1719 1727 * framework. It should generally be called by DTrace providers in their
1720 1728 * attach(9E) entry point.
1721 1729 *
1722 1730 * 2.2.2 Arguments and Notes
1723 1731 *
1724 1732 * The first argument is the name of the provider. The second argument is a
1725 1733 * pointer to the stability attributes for the provider. The third argument
1726 1734 * is the privilege flags for the provider, and must be some combination of:
1727 1735 *
1728 1736 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1729 1737 *
1730 1738 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1731 1739 * enable probes from this provider
1732 1740 *
1733 1741 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1734 1742 * enable probes from this provider
1735 1743 *
1736 1744 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1737 1745 * may enable probes from this provider
1738 1746 *
1739 1747 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1740 1748 * the privilege requirements above. These probes
1741 1749 * require either (a) a user ID matching the user
1742 1750 * ID of the cred passed in the fourth argument
1743 1751 * or (b) the PRIV_PROC_OWNER privilege.
1744 1752 *
1745 1753 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1746 1754 * the privilege requirements above. These probes
1747 1755 * require either (a) a zone ID matching the zone
1748 1756 * ID of the cred passed in the fourth argument
1749 1757 * or (b) the PRIV_PROC_ZONE privilege.
1750 1758 *
1751 1759 * Note that these flags designate the _visibility_ of the probes, not
1752 1760 * the conditions under which they may or may not fire.
1753 1761 *
1754 1762 * The fourth argument is the credential that is associated with the
1755 1763 * provider. This argument should be NULL if the privilege flags don't
1756 1764 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1757 1765 * framework stashes the uid and zoneid represented by this credential
1758 1766 * for use at probe-time, in implicit predicates. These limit visibility
1759 1767 * of the probes to users and/or zones which have sufficient privilege to
1760 1768 * access them.
1761 1769 *
1762 1770 * The fifth argument is a DTrace provider operations vector, which provides
1763 1771 * the implementation for the Framework-to-Provider API. (See Section 1,
1764 1772 * above.) This must be non-NULL, and each member must be non-NULL. The
1765 1773 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1766 1774 * members (if the provider so desires, _one_ of these members may be left
1767 1775 * NULL -- denoting that the provider only implements the other) and (2)
1768 1776 * the dtps_suspend() and dtps_resume() members, which must either both be
1769 1777 * NULL or both be non-NULL.
1770 1778 *
1771 1779 * The sixth argument is a cookie to be specified as the first argument for
1772 1780 * each function in the Framework-to-Provider API. This argument may have
1773 1781 * any value.
1774 1782 *
1775 1783 * The final argument is a pointer to dtrace_provider_id_t. If
1776 1784 * dtrace_register() successfully completes, the provider identifier will be
1777 1785 * stored in the memory pointed to be this argument. This argument must be
1778 1786 * non-NULL.
1779 1787 *
1780 1788 * 2.2.3 Return value
1781 1789 *
1782 1790 * On success, dtrace_register() returns 0 and stores the new provider's
1783 1791 * identifier into the memory pointed to by the idp argument. On failure,
1784 1792 * dtrace_register() returns an errno:
1785 1793 *
1786 1794 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1787 1795 * This may because a parameter that must be non-NULL was NULL,
1788 1796 * because the name was invalid (either empty or an illegal
1789 1797 * provider name) or because the attributes were invalid.
1790 1798 *
1791 1799 * No other failure code is returned.
1792 1800 *
1793 1801 * 2.2.4 Caller's context
1794 1802 *
1795 1803 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1796 1804 * hold no locks across dtrace_register() that may also be acquired by
1797 1805 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1798 1806 *
1799 1807 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1800 1808 *
1801 1809 * 2.3.1 Overview
1802 1810 *
1803 1811 * Unregisters the specified provider from the DTrace framework. It should
1804 1812 * generally be called by DTrace providers in their detach(9E) entry point.
1805 1813 *
1806 1814 * 2.3.2 Arguments and Notes
1807 1815 *
1808 1816 * The only argument is the provider identifier, as returned from a
1809 1817 * successful call to dtrace_register(). As a result of calling
1810 1818 * dtrace_unregister(), the DTrace framework will call back into the provider
1811 1819 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1812 1820 * completes, however, the DTrace framework will no longer make calls through
1813 1821 * the Framework-to-Provider API.
1814 1822 *
1815 1823 * 2.3.3 Return value
1816 1824 *
1817 1825 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1818 1826 * returns an errno:
1819 1827 *
1820 1828 * EBUSY There are currently processes that have the DTrace pseudodevice
1821 1829 * open, or there exists an anonymous enabling that hasn't yet
1822 1830 * been claimed.
1823 1831 *
1824 1832 * No other failure code is returned.
1825 1833 *
1826 1834 * 2.3.4 Caller's context
1827 1835 *
1828 1836 * Because a call to dtrace_unregister() may induce calls through the
1829 1837 * Framework-to-Provider API, the caller may not hold any lock across
1830 1838 * dtrace_register() that is also acquired in any of the Framework-to-
1831 1839 * Provider API functions. Additionally, mod_lock may not be held.
1832 1840 *
1833 1841 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1834 1842 *
1835 1843 * 2.4.1 Overview
1836 1844 *
1837 1845 * Invalidates the specified provider. All subsequent probe lookups for the
1838 1846 * specified provider will fail, but its probes will not be removed.
1839 1847 *
1840 1848 * 2.4.2 Arguments and note
1841 1849 *
1842 1850 * The only argument is the provider identifier, as returned from a
1843 1851 * successful call to dtrace_register(). In general, a provider's probes
1844 1852 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1845 1853 * an entire provider, regardless of whether or not probes are enabled or
1846 1854 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1847 1855 * probes from firing -- it will merely prevent any new enablings of the
1848 1856 * provider's probes.
1849 1857 *
1850 1858 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1851 1859 *
1852 1860 * 2.5.1 Overview
1853 1861 *
1854 1862 * Removes all the unenabled probes for the given provider. This function is
1855 1863 * not unlike dtrace_unregister(), except that it doesn't remove the
1856 1864 * provider just as many of its associated probes as it can.
1857 1865 *
1858 1866 * 2.5.2 Arguments and Notes
1859 1867 *
1860 1868 * As with dtrace_unregister(), the sole argument is the provider identifier
1861 1869 * as returned from a successful call to dtrace_register(). As a result of
1862 1870 * calling dtrace_condense(), the DTrace framework will call back into the
1863 1871 * given provider's dtps_destroy() entry point for each of the provider's
1864 1872 * unenabled probes.
1865 1873 *
1866 1874 * 2.5.3 Return value
1867 1875 *
1868 1876 * Currently, dtrace_condense() always returns 0. However, consumers of this
1869 1877 * function should check the return value as appropriate; its behavior may
1870 1878 * change in the future.
1871 1879 *
1872 1880 * 2.5.4 Caller's context
1873 1881 *
1874 1882 * As with dtrace_unregister(), the caller may not hold any lock across
1875 1883 * dtrace_condense() that is also acquired in the provider's entry points.
1876 1884 * Also, mod_lock may not be held.
1877 1885 *
1878 1886 * 2.6 int dtrace_attached()
1879 1887 *
1880 1888 * 2.6.1 Overview
1881 1889 *
1882 1890 * Indicates whether or not DTrace has attached.
1883 1891 *
1884 1892 * 2.6.2 Arguments and Notes
1885 1893 *
1886 1894 * For most providers, DTrace makes initial contact beyond registration.
1887 1895 * That is, once a provider has registered with DTrace, it waits to hear
1888 1896 * from DTrace to create probes. However, some providers may wish to
1889 1897 * proactively create probes without first being told by DTrace to do so.
1890 1898 * If providers wish to do this, they must first call dtrace_attached() to
1891 1899 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1892 1900 * the provider must not make any other Provider-to-Framework API call.
1893 1901 *
1894 1902 * 2.6.3 Return value
1895 1903 *
1896 1904 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1897 1905 *
1898 1906 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1899 1907 * const char *func, const char *name, int aframes, void *arg)
1900 1908 *
1901 1909 * 2.7.1 Overview
1902 1910 *
1903 1911 * Creates a probe with specified module name, function name, and name.
1904 1912 *
1905 1913 * 2.7.2 Arguments and Notes
1906 1914 *
1907 1915 * The first argument is the provider identifier, as returned from a
1908 1916 * successful call to dtrace_register(). The second, third, and fourth
1909 1917 * arguments are the module name, function name, and probe name,
1910 1918 * respectively. Of these, module name and function name may both be NULL
1911 1919 * (in which case the probe is considered to be unanchored), or they may both
1912 1920 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1913 1921 * string.
1914 1922 *
1915 1923 * The fifth argument is the number of artificial stack frames that will be
1916 1924 * found on the stack when dtrace_probe() is called for the new probe. These
1917 1925 * artificial frames will be automatically be pruned should the stack() or
1918 1926 * stackdepth() functions be called as part of one of the probe's ECBs. If
1919 1927 * the parameter doesn't add an artificial frame, this parameter should be
1920 1928 * zero.
1921 1929 *
1922 1930 * The final argument is a probe argument that will be passed back to the
1923 1931 * provider when a probe-specific operation is called. (e.g., via
1924 1932 * dtps_enable(), dtps_disable(), etc.)
1925 1933 *
1926 1934 * Note that it is up to the provider to be sure that the probe that it
1927 1935 * creates does not already exist -- if the provider is unsure of the probe's
1928 1936 * existence, it should assure its absence with dtrace_probe_lookup() before
1929 1937 * calling dtrace_probe_create().
1930 1938 *
1931 1939 * 2.7.3 Return value
1932 1940 *
1933 1941 * dtrace_probe_create() always succeeds, and always returns the identifier
1934 1942 * of the newly-created probe.
1935 1943 *
1936 1944 * 2.7.4 Caller's context
1937 1945 *
1938 1946 * While dtrace_probe_create() is generally expected to be called from
1939 1947 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1940 1948 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1941 1949 *
1942 1950 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1943 1951 * const char *func, const char *name)
1944 1952 *
1945 1953 * 2.8.1 Overview
1946 1954 *
1947 1955 * Looks up a probe based on provdider and one or more of module name,
1948 1956 * function name and probe name.
1949 1957 *
1950 1958 * 2.8.2 Arguments and Notes
1951 1959 *
1952 1960 * The first argument is the provider identifier, as returned from a
1953 1961 * successful call to dtrace_register(). The second, third, and fourth
1954 1962 * arguments are the module name, function name, and probe name,
1955 1963 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1956 1964 * the identifier of the first probe that is provided by the specified
1957 1965 * provider and matches all of the non-NULL matching criteria.
1958 1966 * dtrace_probe_lookup() is generally used by a provider to be check the
1959 1967 * existence of a probe before creating it with dtrace_probe_create().
1960 1968 *
1961 1969 * 2.8.3 Return value
1962 1970 *
1963 1971 * If the probe exists, returns its identifier. If the probe does not exist,
1964 1972 * return DTRACE_IDNONE.
1965 1973 *
1966 1974 * 2.8.4 Caller's context
1967 1975 *
1968 1976 * While dtrace_probe_lookup() is generally expected to be called from
1969 1977 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1970 1978 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1971 1979 *
1972 1980 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1973 1981 *
1974 1982 * 2.9.1 Overview
1975 1983 *
1976 1984 * Returns the probe argument associated with the specified probe.
1977 1985 *
1978 1986 * 2.9.2 Arguments and Notes
1979 1987 *
1980 1988 * The first argument is the provider identifier, as returned from a
1981 1989 * successful call to dtrace_register(). The second argument is a probe
1982 1990 * identifier, as returned from dtrace_probe_lookup() or
1983 1991 * dtrace_probe_create(). This is useful if a probe has multiple
1984 1992 * provider-specific components to it: the provider can create the probe
1985 1993 * once with provider-specific state, and then add to the state by looking
1986 1994 * up the probe based on probe identifier.
1987 1995 *
1988 1996 * 2.9.3 Return value
1989 1997 *
1990 1998 * Returns the argument associated with the specified probe. If the
1991 1999 * specified probe does not exist, or if the specified probe is not provided
1992 2000 * by the specified provider, NULL is returned.
1993 2001 *
1994 2002 * 2.9.4 Caller's context
1995 2003 *
1996 2004 * While dtrace_probe_arg() is generally expected to be called from
1997 2005 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1998 2006 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1999 2007 *
2000 2008 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2001 2009 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2002 2010 *
2003 2011 * 2.10.1 Overview
2004 2012 *
2005 2013 * The epicenter of DTrace: fires the specified probes with the specified
2006 2014 * arguments.
2007 2015 *
2008 2016 * 2.10.2 Arguments and Notes
2009 2017 *
2010 2018 * The first argument is a probe identifier as returned by
2011 2019 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2012 2020 * arguments are the values to which the D variables "arg0" through "arg4"
2013 2021 * will be mapped.
2014 2022 *
2015 2023 * dtrace_probe() should be called whenever the specified probe has fired --
2016 2024 * however the provider defines it.
2017 2025 *
2018 2026 * 2.10.3 Return value
2019 2027 *
2020 2028 * None.
2021 2029 *
2022 2030 * 2.10.4 Caller's context
2023 2031 *
2024 2032 * dtrace_probe() may be called in virtually any context: kernel, user,
2025 2033 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2026 2034 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2027 2035 * that must be afforded to DTrace is the ability to make calls within
2028 2036 * itself (and to its in-kernel subroutines) and the ability to access
2029 2037 * arbitrary (but mapped) memory. On some platforms, this constrains
2030 2038 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2031 2039 * from any context in which TL is greater than zero. dtrace_probe() may
2032 2040 * also not be called from any routine which may be called by dtrace_probe()
2033 2041 * -- which includes functions in the DTrace framework and some in-kernel
2034 2042 * DTrace subroutines. All such functions "dtrace_"; providers that
2035 2043 * instrument the kernel arbitrarily should be sure to not instrument these
2036 2044 * routines.
2037 2045 */
2038 2046 typedef struct dtrace_pops {
2039 2047 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2040 2048 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2041 2049 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2042 2050 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2043 2051 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2044 2052 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2045 2053 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2046 2054 dtrace_argdesc_t *desc);
↓ open down ↓ |
378 lines elided |
↑ open up ↑ |
2047 2055 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2048 2056 int argno, int aframes);
2049 2057 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2050 2058 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2051 2059 } dtrace_pops_t;
2052 2060
2053 2061 #define DTRACE_MODE_KERNEL 0x01
2054 2062 #define DTRACE_MODE_USER 0x02
2055 2063 #define DTRACE_MODE_NOPRIV_DROP 0x10
2056 2064 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2065 +#define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2057 2066
2058 2067 typedef uintptr_t dtrace_provider_id_t;
2059 2068
2060 2069 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2061 2070 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2062 2071 extern int dtrace_unregister(dtrace_provider_id_t);
2063 2072 extern int dtrace_condense(dtrace_provider_id_t);
2064 2073 extern void dtrace_invalidate(dtrace_provider_id_t);
2065 2074 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2066 2075 const char *, const char *);
2067 2076 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2068 2077 const char *, const char *, int, void *);
2069 2078 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2070 2079 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2071 2080 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2072 2081
2073 2082 /*
2074 2083 * DTrace Meta Provider API
2075 2084 *
2076 2085 * The following functions are implemented by the DTrace framework and are
2077 2086 * used to implement meta providers. Meta providers plug into the DTrace
2078 2087 * framework and are used to instantiate new providers on the fly. At
2079 2088 * present, there is only one type of meta provider and only one meta
2080 2089 * provider may be registered with the DTrace framework at a time. The
2081 2090 * sole meta provider type provides user-land static tracing facilities
2082 2091 * by taking meta probe descriptions and adding a corresponding provider
2083 2092 * into the DTrace framework.
2084 2093 *
2085 2094 * 1 Framework-to-Provider
2086 2095 *
2087 2096 * 1.1 Overview
2088 2097 *
2089 2098 * The Framework-to-Provider API is represented by the dtrace_mops structure
2090 2099 * that the meta provider passes to the framework when registering itself as
2091 2100 * a meta provider. This structure consists of the following members:
2092 2101 *
2093 2102 * dtms_create_probe() <-- Add a new probe to a created provider
2094 2103 * dtms_provide_pid() <-- Create a new provider for a given process
2095 2104 * dtms_remove_pid() <-- Remove a previously created provider
2096 2105 *
2097 2106 * 1.2 void dtms_create_probe(void *arg, void *parg,
2098 2107 * dtrace_helper_probedesc_t *probedesc);
2099 2108 *
2100 2109 * 1.2.1 Overview
2101 2110 *
2102 2111 * Called by the DTrace framework to create a new probe in a provider
2103 2112 * created by this meta provider.
2104 2113 *
2105 2114 * 1.2.2 Arguments and notes
2106 2115 *
2107 2116 * The first argument is the cookie as passed to dtrace_meta_register().
2108 2117 * The second argument is the provider cookie for the associated provider;
2109 2118 * this is obtained from the return value of dtms_provide_pid(). The third
2110 2119 * argument is the helper probe description.
2111 2120 *
2112 2121 * 1.2.3 Return value
2113 2122 *
2114 2123 * None
2115 2124 *
2116 2125 * 1.2.4 Caller's context
2117 2126 *
2118 2127 * dtms_create_probe() is called from either ioctl() or module load context.
2119 2128 * The DTrace framework is locked in such a way that meta providers may not
2120 2129 * register or unregister. This means that the meta provider cannot call
2121 2130 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2122 2131 * such that the provider may (and is expected to) call provider-related
2123 2132 * DTrace provider APIs including dtrace_probe_create().
2124 2133 *
2125 2134 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2126 2135 * pid_t pid)
2127 2136 *
2128 2137 * 1.3.1 Overview
2129 2138 *
2130 2139 * Called by the DTrace framework to instantiate a new provider given the
2131 2140 * description of the provider and probes in the mprov argument. The
2132 2141 * meta provider should call dtrace_register() to insert the new provider
2133 2142 * into the DTrace framework.
2134 2143 *
2135 2144 * 1.3.2 Arguments and notes
2136 2145 *
2137 2146 * The first argument is the cookie as passed to dtrace_meta_register().
2138 2147 * The second argument is a pointer to a structure describing the new
2139 2148 * helper provider. The third argument is the process identifier for
2140 2149 * process associated with this new provider. Note that the name of the
2141 2150 * provider as passed to dtrace_register() should be the contatenation of
2142 2151 * the dtmpb_provname member of the mprov argument and the processs
2143 2152 * identifier as a string.
2144 2153 *
2145 2154 * 1.3.3 Return value
2146 2155 *
2147 2156 * The cookie for the provider that the meta provider creates. This is
2148 2157 * the same value that it passed to dtrace_register().
2149 2158 *
2150 2159 * 1.3.4 Caller's context
2151 2160 *
2152 2161 * dtms_provide_pid() is called from either ioctl() or module load context.
2153 2162 * The DTrace framework is locked in such a way that meta providers may not
2154 2163 * register or unregister. This means that the meta provider cannot call
2155 2164 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2156 2165 * is such that the provider may -- and is expected to -- call
2157 2166 * provider-related DTrace provider APIs including dtrace_register().
2158 2167 *
2159 2168 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2160 2169 * pid_t pid)
2161 2170 *
2162 2171 * 1.4.1 Overview
2163 2172 *
2164 2173 * Called by the DTrace framework to remove a provider that had previously
2165 2174 * been instantiated via the dtms_provide_pid() entry point. The meta
2166 2175 * provider need not remove the provider immediately, but this entry
2167 2176 * point indicates that the provider should be removed as soon as possible
2168 2177 * using the dtrace_unregister() API.
2169 2178 *
2170 2179 * 1.4.2 Arguments and notes
2171 2180 *
2172 2181 * The first argument is the cookie as passed to dtrace_meta_register().
2173 2182 * The second argument is a pointer to a structure describing the helper
2174 2183 * provider. The third argument is the process identifier for process
2175 2184 * associated with this new provider.
2176 2185 *
2177 2186 * 1.4.3 Return value
2178 2187 *
2179 2188 * None
2180 2189 *
2181 2190 * 1.4.4 Caller's context
2182 2191 *
2183 2192 * dtms_remove_pid() is called from either ioctl() or exit() context.
2184 2193 * The DTrace framework is locked in such a way that meta providers may not
2185 2194 * register or unregister. This means that the meta provider cannot call
2186 2195 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2187 2196 * is such that the provider may -- and is expected to -- call
2188 2197 * provider-related DTrace provider APIs including dtrace_unregister().
2189 2198 */
2190 2199 typedef struct dtrace_helper_probedesc {
2191 2200 char *dthpb_mod; /* probe module */
2192 2201 char *dthpb_func; /* probe function */
2193 2202 char *dthpb_name; /* probe name */
2194 2203 uint64_t dthpb_base; /* base address */
2195 2204 uint32_t *dthpb_offs; /* offsets array */
2196 2205 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2197 2206 uint32_t dthpb_noffs; /* offsets count */
2198 2207 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2199 2208 uint8_t *dthpb_args; /* argument mapping array */
2200 2209 uint8_t dthpb_xargc; /* translated argument count */
2201 2210 uint8_t dthpb_nargc; /* native argument count */
2202 2211 char *dthpb_xtypes; /* translated types strings */
2203 2212 char *dthpb_ntypes; /* native types strings */
2204 2213 } dtrace_helper_probedesc_t;
2205 2214
2206 2215 typedef struct dtrace_helper_provdesc {
2207 2216 char *dthpv_provname; /* provider name */
2208 2217 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2209 2218 } dtrace_helper_provdesc_t;
2210 2219
2211 2220 typedef struct dtrace_mops {
2212 2221 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2213 2222 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2214 2223 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2215 2224 } dtrace_mops_t;
2216 2225
2217 2226 typedef uintptr_t dtrace_meta_provider_id_t;
2218 2227
2219 2228 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2220 2229 dtrace_meta_provider_id_t *);
2221 2230 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2222 2231
2223 2232 /*
2224 2233 * DTrace Kernel Hooks
2225 2234 *
2226 2235 * The following functions are implemented by the base kernel and form a set of
2227 2236 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2228 2237 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2229 2238 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2230 2239 */
2231 2240
2232 2241 typedef enum dtrace_vtime_state {
2233 2242 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2234 2243 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2235 2244 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2236 2245 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2237 2246 } dtrace_vtime_state_t;
2238 2247
2239 2248 extern dtrace_vtime_state_t dtrace_vtime_active;
2240 2249 extern void dtrace_vtime_switch(kthread_t *next);
2241 2250 extern void dtrace_vtime_enable_tnf(void);
2242 2251 extern void dtrace_vtime_disable_tnf(void);
2243 2252 extern void dtrace_vtime_enable(void);
2244 2253 extern void dtrace_vtime_disable(void);
2245 2254
2246 2255 struct regs;
2247 2256
2248 2257 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2249 2258 extern int (*dtrace_return_probe_ptr)(struct regs *);
2250 2259 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2251 2260 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2252 2261 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2253 2262 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2254 2263
2255 2264 typedef uintptr_t dtrace_icookie_t;
2256 2265 typedef void (*dtrace_xcall_t)(void *);
2257 2266
2258 2267 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2259 2268 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2260 2269
↓ open down ↓ |
194 lines elided |
↑ open up ↑ |
2261 2270 extern void dtrace_membar_producer(void);
2262 2271 extern void dtrace_membar_consumer(void);
2263 2272
2264 2273 extern void (*dtrace_cpu_init)(processorid_t);
2265 2274 extern void (*dtrace_modload)(struct modctl *);
2266 2275 extern void (*dtrace_modunload)(struct modctl *);
2267 2276 extern void (*dtrace_helpers_cleanup)();
2268 2277 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2269 2278 extern void (*dtrace_cpustart_init)();
2270 2279 extern void (*dtrace_cpustart_fini)();
2280 +extern void (*dtrace_closef)();
2271 2281
2272 2282 extern void (*dtrace_debugger_init)();
2273 2283 extern void (*dtrace_debugger_fini)();
2274 2284 extern dtrace_cacheid_t dtrace_predcache_id;
2275 2285
2276 2286 extern hrtime_t dtrace_gethrtime(void);
2277 2287 extern void dtrace_sync(void);
2278 2288 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2279 2289 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2280 2290 extern void dtrace_vpanic(const char *, __va_list);
2281 2291 extern void dtrace_panic(const char *, ...);
2282 2292
2283 2293 extern int dtrace_safe_defer_signal(void);
2284 2294 extern void dtrace_safe_synchronous_signal(void);
2285 2295
2286 2296 extern int dtrace_mach_aframes(void);
2287 2297
2288 2298 #if defined(__i386) || defined(__amd64)
2289 2299 extern int dtrace_instr_size(uchar_t *instr);
2290 2300 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2291 2301 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2292 2302 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2293 2303 extern void dtrace_invop_callsite(void);
2294 2304 #endif
2295 2305
2296 2306 #ifdef __sparc
2297 2307 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2298 2308 extern void dtrace_getfsr(uint64_t *);
2299 2309 #endif
2300 2310
2301 2311 #define DTRACE_CPUFLAG_ISSET(flag) \
2302 2312 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2303 2313
2304 2314 #define DTRACE_CPUFLAG_SET(flag) \
2305 2315 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2306 2316
2307 2317 #define DTRACE_CPUFLAG_CLEAR(flag) \
2308 2318 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2309 2319
2310 2320 #endif /* _KERNEL */
2311 2321
2312 2322 #endif /* _ASM */
2313 2323
2314 2324 #if defined(__i386) || defined(__amd64)
2315 2325
2316 2326 #define DTRACE_INVOP_PUSHL_EBP 1
2317 2327 #define DTRACE_INVOP_POPL_EBP 2
2318 2328 #define DTRACE_INVOP_LEAVE 3
2319 2329 #define DTRACE_INVOP_NOP 4
2320 2330 #define DTRACE_INVOP_RET 5
2321 2331
2322 2332 #endif
2323 2333
2324 2334 #ifdef __cplusplus
2325 2335 }
2326 2336 #endif
2327 2337
2328 2338 #endif /* _SYS_DTRACE_H */
↓ open down ↓ |
48 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX