Print this page
4478 dtrace_dof_maxsize is far too small
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/dtrace/dtrace.c
+++ new/usr/src/uts/common/dtrace/dtrace.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * DTrace - Dynamic Tracing for Solaris
30 30 *
31 31 * This is the implementation of the Solaris Dynamic Tracing framework
32 32 * (DTrace). The user-visible interface to DTrace is described at length in
33 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 35 * described in the block comments in the <sys/dtrace.h> header file. The
36 36 * internal architecture of DTrace is described in the block comments in the
37 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 38 * implementation very much assume mastery of all of these sources; if one has
39 39 * an unanswered question about the implementation, one should consult them
40 40 * first.
41 41 *
42 42 * The functions here are ordered roughly as follows:
43 43 *
44 44 * - Probe context functions
45 45 * - Probe hashing functions
46 46 * - Non-probe context utility functions
47 47 * - Matching functions
48 48 * - Provider-to-Framework API functions
49 49 * - Probe management functions
50 50 * - DIF object functions
51 51 * - Format functions
52 52 * - Predicate functions
53 53 * - ECB functions
54 54 * - Buffer functions
55 55 * - Enabling functions
56 56 * - DOF functions
57 57 * - Anonymous enabling functions
58 58 * - Consumer state functions
59 59 * - Helper functions
60 60 * - Hook functions
61 61 * - Driver cookbook functions
62 62 *
63 63 * Each group of functions begins with a block comment labelled the "DTrace
64 64 * [Group] Functions", allowing one to find each block by searching forward
65 65 * on capital-f functions.
66 66 */
67 67 #include <sys/errno.h>
68 68 #include <sys/stat.h>
69 69 #include <sys/modctl.h>
70 70 #include <sys/conf.h>
71 71 #include <sys/systm.h>
72 72 #include <sys/ddi.h>
73 73 #include <sys/sunddi.h>
74 74 #include <sys/cpuvar.h>
75 75 #include <sys/kmem.h>
76 76 #include <sys/strsubr.h>
77 77 #include <sys/sysmacros.h>
78 78 #include <sys/dtrace_impl.h>
79 79 #include <sys/atomic.h>
80 80 #include <sys/cmn_err.h>
81 81 #include <sys/mutex_impl.h>
82 82 #include <sys/rwlock_impl.h>
83 83 #include <sys/ctf_api.h>
84 84 #include <sys/panic.h>
85 85 #include <sys/priv_impl.h>
86 86 #include <sys/policy.h>
87 87 #include <sys/cred_impl.h>
88 88 #include <sys/procfs_isa.h>
89 89 #include <sys/taskq.h>
90 90 #include <sys/mkdev.h>
91 91 #include <sys/kdi.h>
92 92 #include <sys/zone.h>
93 93 #include <sys/socket.h>
94 94 #include <netinet/in.h>
95 95 #include "strtolctype.h"
96 96
97 97 /*
98 98 * DTrace Tunable Variables
99 99 *
100 100 * The following variables may be tuned by adding a line to /etc/system that
101 101 * includes both the name of the DTrace module ("dtrace") and the name of the
102 102 * variable. For example:
103 103 *
104 104 * set dtrace:dtrace_destructive_disallow = 1
105 105 *
106 106 * In general, the only variables that one should be tuning this way are those
107 107 * that affect system-wide DTrace behavior, and for which the default behavior
108 108 * is undesirable. Most of these variables are tunable on a per-consumer
109 109 * basis using DTrace options, and need not be tuned on a system-wide basis.
↓ open down ↓ |
109 lines elided |
↑ open up ↑ |
110 110 * When tuning these variables, avoid pathological values; while some attempt
111 111 * is made to verify the integrity of these variables, they are not considered
112 112 * part of the supported interface to DTrace, and they are therefore not
113 113 * checked comprehensively. Further, these variables should not be tuned
114 114 * dynamically via "mdb -kw" or other means; they should only be tuned via
115 115 * /etc/system.
116 116 */
117 117 int dtrace_destructive_disallow = 0;
118 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 119 size_t dtrace_difo_maxsize = (256 * 1024);
120 -dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
120 +dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
121 121 size_t dtrace_global_maxsize = (16 * 1024);
122 122 size_t dtrace_actions_max = (16 * 1024);
123 123 size_t dtrace_retain_max = 1024;
124 124 dtrace_optval_t dtrace_helper_actions_max = 1024;
125 125 dtrace_optval_t dtrace_helper_providers_max = 32;
126 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
127 127 size_t dtrace_strsize_default = 256;
128 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
129 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
130 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
131 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
132 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
133 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
134 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
135 135 dtrace_optval_t dtrace_nspec_default = 1;
136 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
137 137 dtrace_optval_t dtrace_stackframes_default = 20;
138 138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 141 int dtrace_msgdsize_max = 128;
142 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */
143 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
144 144 int dtrace_devdepth_max = 32;
145 145 int dtrace_err_verbose;
146 146 hrtime_t dtrace_deadman_interval = NANOSEC;
147 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 150
151 151 /*
152 152 * DTrace External Variables
153 153 *
154 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155 155 * available to DTrace consumers via the backtick (`) syntax. One of these,
156 156 * dtrace_zero, is made deliberately so: it is provided as a source of
157 157 * well-known, zero-filled memory. While this variable is not documented,
158 158 * it is used by some translators as an implementation detail.
159 159 */
160 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
161 161
162 162 /*
163 163 * DTrace Internal Variables
164 164 */
165 165 static dev_info_t *dtrace_devi; /* device info */
166 166 static vmem_t *dtrace_arena; /* probe ID arena */
167 167 static vmem_t *dtrace_minor; /* minor number arena */
168 168 static taskq_t *dtrace_taskq; /* task queue */
169 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */
170 170 static int dtrace_nprobes; /* number of probes */
171 171 static dtrace_provider_t *dtrace_provider; /* provider list */
172 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
173 173 static int dtrace_opens; /* number of opens */
174 174 static int dtrace_helpers; /* number of helpers */
175 175 static int dtrace_getf; /* number of unpriv getf()s */
176 176 static void *dtrace_softstate; /* softstate pointer */
177 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
178 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
179 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
180 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
181 181 static int dtrace_toxranges; /* number of toxic ranges */
182 182 static int dtrace_toxranges_max; /* size of toxic range array */
183 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
184 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
185 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
186 186 static kthread_t *dtrace_panicked; /* panicking thread */
187 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
188 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */
189 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
190 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
191 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
192 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
193 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
194 194
195 195 /*
196 196 * DTrace Locking
197 197 * DTrace is protected by three (relatively coarse-grained) locks:
198 198 *
199 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200 200 * including enabling state, probes, ECBs, consumer state, helper state,
201 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
202 202 * probe context is lock-free -- synchronization is handled via the
203 203 * dtrace_sync() cross call mechanism.
204 204 *
205 205 * (2) dtrace_provider_lock is required when manipulating provider state, or
206 206 * when provider state must be held constant.
207 207 *
208 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209 209 * when meta provider state must be held constant.
210 210 *
211 211 * The lock ordering between these three locks is dtrace_meta_lock before
212 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are
213 213 * several places where dtrace_provider_lock is held by the framework as it
214 214 * calls into the providers -- which then call back into the framework,
215 215 * grabbing dtrace_lock.)
216 216 *
217 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
218 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219 219 * role as a coarse-grained lock; it is acquired before both of these locks.
220 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
221 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223 223 * acquired _between_ dtrace_provider_lock and dtrace_lock.
224 224 */
225 225 static kmutex_t dtrace_lock; /* probe state lock */
226 226 static kmutex_t dtrace_provider_lock; /* provider state lock */
227 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
228 228
229 229 /*
230 230 * DTrace Provider Variables
231 231 *
232 232 * These are the variables relating to DTrace as a provider (that is, the
233 233 * provider of the BEGIN, END, and ERROR probes).
234 234 */
235 235 static dtrace_pattr_t dtrace_provider_attr = {
236 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 241 };
242 242
243 243 static void
244 244 dtrace_nullop(void)
245 245 {}
246 246
247 247 static int
248 248 dtrace_enable_nullop(void)
249 249 {
250 250 return (0);
251 251 }
252 252
253 253 static dtrace_pops_t dtrace_provider_ops = {
254 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 255 (void (*)(void *, struct modctl *))dtrace_nullop,
256 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 260 NULL,
261 261 NULL,
262 262 NULL,
263 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 264 };
265 265
266 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
267 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */
268 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
269 269
270 270 /*
271 271 * DTrace Helper Tracing Variables
272 272 */
273 273 uint32_t dtrace_helptrace_next = 0;
274 274 uint32_t dtrace_helptrace_nlocals;
275 275 char *dtrace_helptrace_buffer;
276 276 int dtrace_helptrace_bufsize = 512 * 1024;
277 277
278 278 #ifdef DEBUG
279 279 int dtrace_helptrace_enabled = 1;
280 280 #else
281 281 int dtrace_helptrace_enabled = 0;
282 282 #endif
283 283
284 284 /*
285 285 * DTrace Error Hashing
286 286 *
287 287 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
288 288 * table. This is very useful for checking coverage of tests that are
289 289 * expected to induce DIF or DOF processing errors, and may be useful for
290 290 * debugging problems in the DIF code generator or in DOF generation . The
291 291 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
292 292 */
293 293 #ifdef DEBUG
294 294 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
295 295 static const char *dtrace_errlast;
296 296 static kthread_t *dtrace_errthread;
297 297 static kmutex_t dtrace_errlock;
298 298 #endif
299 299
300 300 /*
301 301 * DTrace Macros and Constants
302 302 *
303 303 * These are various macros that are useful in various spots in the
304 304 * implementation, along with a few random constants that have no meaning
305 305 * outside of the implementation. There is no real structure to this cpp
306 306 * mishmash -- but is there ever?
307 307 */
308 308 #define DTRACE_HASHSTR(hash, probe) \
309 309 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
310 310
311 311 #define DTRACE_HASHNEXT(hash, probe) \
312 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
313 313
314 314 #define DTRACE_HASHPREV(hash, probe) \
315 315 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
316 316
317 317 #define DTRACE_HASHEQ(hash, lhs, rhs) \
318 318 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
319 319 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
320 320
321 321 #define DTRACE_AGGHASHSIZE_SLEW 17
322 322
323 323 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
324 324
325 325 /*
326 326 * The key for a thread-local variable consists of the lower 61 bits of the
327 327 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
328 328 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
329 329 * equal to a variable identifier. This is necessary (but not sufficient) to
330 330 * assure that global associative arrays never collide with thread-local
331 331 * variables. To guarantee that they cannot collide, we must also define the
332 332 * order for keying dynamic variables. That order is:
333 333 *
334 334 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
335 335 *
336 336 * Because the variable-key and the tls-key are in orthogonal spaces, there is
337 337 * no way for a global variable key signature to match a thread-local key
338 338 * signature.
339 339 */
340 340 #define DTRACE_TLS_THRKEY(where) { \
341 341 uint_t intr = 0; \
342 342 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
343 343 for (; actv; actv >>= 1) \
344 344 intr++; \
345 345 ASSERT(intr < (1 << 3)); \
346 346 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
347 347 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
348 348 }
349 349
350 350 #define DT_BSWAP_8(x) ((x) & 0xff)
351 351 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
352 352 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
353 353 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
354 354
355 355 #define DT_MASK_LO 0x00000000FFFFFFFFULL
356 356
357 357 #define DTRACE_STORE(type, tomax, offset, what) \
358 358 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
359 359
360 360 #ifndef __x86
361 361 #define DTRACE_ALIGNCHECK(addr, size, flags) \
362 362 if (addr & (size - 1)) { \
363 363 *flags |= CPU_DTRACE_BADALIGN; \
364 364 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
365 365 return (0); \
366 366 }
367 367 #else
368 368 #define DTRACE_ALIGNCHECK(addr, size, flags)
369 369 #endif
370 370
371 371 /*
372 372 * Test whether a range of memory starting at testaddr of size testsz falls
373 373 * within the range of memory described by addr, sz. We take care to avoid
374 374 * problems with overflow and underflow of the unsigned quantities, and
375 375 * disallow all negative sizes. Ranges of size 0 are allowed.
376 376 */
377 377 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
378 378 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
379 379 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
380 380 (testaddr) + (testsz) >= (testaddr))
381 381
382 382 /*
383 383 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
384 384 * alloc_sz on the righthand side of the comparison in order to avoid overflow
385 385 * or underflow in the comparison with it. This is simpler than the INRANGE
386 386 * check above, because we know that the dtms_scratch_ptr is valid in the
387 387 * range. Allocations of size zero are allowed.
388 388 */
389 389 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
390 390 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
391 391 (mstate)->dtms_scratch_ptr >= (alloc_sz))
392 392
393 393 #define DTRACE_LOADFUNC(bits) \
394 394 /*CSTYLED*/ \
395 395 uint##bits##_t \
396 396 dtrace_load##bits(uintptr_t addr) \
397 397 { \
398 398 size_t size = bits / NBBY; \
399 399 /*CSTYLED*/ \
400 400 uint##bits##_t rval; \
401 401 int i; \
402 402 volatile uint16_t *flags = (volatile uint16_t *) \
403 403 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
404 404 \
405 405 DTRACE_ALIGNCHECK(addr, size, flags); \
406 406 \
407 407 for (i = 0; i < dtrace_toxranges; i++) { \
408 408 if (addr >= dtrace_toxrange[i].dtt_limit) \
409 409 continue; \
410 410 \
411 411 if (addr + size <= dtrace_toxrange[i].dtt_base) \
412 412 continue; \
413 413 \
414 414 /* \
415 415 * This address falls within a toxic region; return 0. \
416 416 */ \
417 417 *flags |= CPU_DTRACE_BADADDR; \
418 418 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
419 419 return (0); \
420 420 } \
421 421 \
422 422 *flags |= CPU_DTRACE_NOFAULT; \
423 423 /*CSTYLED*/ \
424 424 rval = *((volatile uint##bits##_t *)addr); \
425 425 *flags &= ~CPU_DTRACE_NOFAULT; \
426 426 \
427 427 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
428 428 }
429 429
430 430 #ifdef _LP64
431 431 #define dtrace_loadptr dtrace_load64
432 432 #else
433 433 #define dtrace_loadptr dtrace_load32
434 434 #endif
435 435
436 436 #define DTRACE_DYNHASH_FREE 0
437 437 #define DTRACE_DYNHASH_SINK 1
438 438 #define DTRACE_DYNHASH_VALID 2
439 439
440 440 #define DTRACE_MATCH_FAIL -1
441 441 #define DTRACE_MATCH_NEXT 0
442 442 #define DTRACE_MATCH_DONE 1
443 443 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
444 444 #define DTRACE_STATE_ALIGN 64
445 445
446 446 #define DTRACE_FLAGS2FLT(flags) \
447 447 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
448 448 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
449 449 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
450 450 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
451 451 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
452 452 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
453 453 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
454 454 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
455 455 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
456 456 DTRACEFLT_UNKNOWN)
457 457
458 458 #define DTRACEACT_ISSTRING(act) \
459 459 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
460 460 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
461 461
462 462 static size_t dtrace_strlen(const char *, size_t);
463 463 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
464 464 static void dtrace_enabling_provide(dtrace_provider_t *);
465 465 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
466 466 static void dtrace_enabling_matchall(void);
467 467 static void dtrace_enabling_reap(void);
468 468 static dtrace_state_t *dtrace_anon_grab(void);
469 469 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
470 470 dtrace_state_t *, uint64_t, uint64_t);
471 471 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
472 472 static void dtrace_buffer_drop(dtrace_buffer_t *);
473 473 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
474 474 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
475 475 dtrace_state_t *, dtrace_mstate_t *);
476 476 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
477 477 dtrace_optval_t);
478 478 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
479 479 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
480 480 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
481 481 static void dtrace_getf_barrier(void);
482 482
483 483 /*
484 484 * DTrace Probe Context Functions
485 485 *
486 486 * These functions are called from probe context. Because probe context is
487 487 * any context in which C may be called, arbitrarily locks may be held,
488 488 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
489 489 * As a result, functions called from probe context may only call other DTrace
490 490 * support functions -- they may not interact at all with the system at large.
491 491 * (Note that the ASSERT macro is made probe-context safe by redefining it in
492 492 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
493 493 * loads are to be performed from probe context, they _must_ be in terms of
494 494 * the safe dtrace_load*() variants.
495 495 *
496 496 * Some functions in this block are not actually called from probe context;
497 497 * for these functions, there will be a comment above the function reading
498 498 * "Note: not called from probe context."
499 499 */
500 500 void
501 501 dtrace_panic(const char *format, ...)
502 502 {
503 503 va_list alist;
504 504
505 505 va_start(alist, format);
506 506 dtrace_vpanic(format, alist);
507 507 va_end(alist);
508 508 }
509 509
510 510 int
511 511 dtrace_assfail(const char *a, const char *f, int l)
512 512 {
513 513 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
514 514
515 515 /*
516 516 * We just need something here that even the most clever compiler
517 517 * cannot optimize away.
518 518 */
519 519 return (a[(uintptr_t)f]);
520 520 }
521 521
522 522 /*
523 523 * Atomically increment a specified error counter from probe context.
524 524 */
525 525 static void
526 526 dtrace_error(uint32_t *counter)
527 527 {
528 528 /*
529 529 * Most counters stored to in probe context are per-CPU counters.
530 530 * However, there are some error conditions that are sufficiently
531 531 * arcane that they don't merit per-CPU storage. If these counters
532 532 * are incremented concurrently on different CPUs, scalability will be
533 533 * adversely affected -- but we don't expect them to be white-hot in a
534 534 * correctly constructed enabling...
535 535 */
536 536 uint32_t oval, nval;
537 537
538 538 do {
539 539 oval = *counter;
540 540
541 541 if ((nval = oval + 1) == 0) {
542 542 /*
543 543 * If the counter would wrap, set it to 1 -- assuring
544 544 * that the counter is never zero when we have seen
545 545 * errors. (The counter must be 32-bits because we
546 546 * aren't guaranteed a 64-bit compare&swap operation.)
547 547 * To save this code both the infamy of being fingered
548 548 * by a priggish news story and the indignity of being
549 549 * the target of a neo-puritan witch trial, we're
550 550 * carefully avoiding any colorful description of the
551 551 * likelihood of this condition -- but suffice it to
552 552 * say that it is only slightly more likely than the
553 553 * overflow of predicate cache IDs, as discussed in
554 554 * dtrace_predicate_create().
555 555 */
556 556 nval = 1;
557 557 }
558 558 } while (dtrace_cas32(counter, oval, nval) != oval);
559 559 }
560 560
561 561 /*
562 562 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
563 563 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
564 564 */
565 565 DTRACE_LOADFUNC(8)
566 566 DTRACE_LOADFUNC(16)
567 567 DTRACE_LOADFUNC(32)
568 568 DTRACE_LOADFUNC(64)
569 569
570 570 static int
571 571 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
572 572 {
573 573 if (dest < mstate->dtms_scratch_base)
574 574 return (0);
575 575
576 576 if (dest + size < dest)
577 577 return (0);
578 578
579 579 if (dest + size > mstate->dtms_scratch_ptr)
580 580 return (0);
581 581
582 582 return (1);
583 583 }
584 584
585 585 static int
586 586 dtrace_canstore_statvar(uint64_t addr, size_t sz,
587 587 dtrace_statvar_t **svars, int nsvars)
588 588 {
589 589 int i;
590 590
591 591 for (i = 0; i < nsvars; i++) {
592 592 dtrace_statvar_t *svar = svars[i];
593 593
594 594 if (svar == NULL || svar->dtsv_size == 0)
595 595 continue;
596 596
597 597 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
598 598 return (1);
599 599 }
600 600
601 601 return (0);
602 602 }
603 603
604 604 /*
605 605 * Check to see if the address is within a memory region to which a store may
606 606 * be issued. This includes the DTrace scratch areas, and any DTrace variable
607 607 * region. The caller of dtrace_canstore() is responsible for performing any
608 608 * alignment checks that are needed before stores are actually executed.
609 609 */
610 610 static int
611 611 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
612 612 dtrace_vstate_t *vstate)
613 613 {
614 614 /*
615 615 * First, check to see if the address is in scratch space...
616 616 */
617 617 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
618 618 mstate->dtms_scratch_size))
619 619 return (1);
620 620
621 621 /*
622 622 * Now check to see if it's a dynamic variable. This check will pick
623 623 * up both thread-local variables and any global dynamically-allocated
624 624 * variables.
625 625 */
626 626 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
627 627 vstate->dtvs_dynvars.dtds_size)) {
628 628 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
629 629 uintptr_t base = (uintptr_t)dstate->dtds_base +
630 630 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
631 631 uintptr_t chunkoffs;
632 632
633 633 /*
634 634 * Before we assume that we can store here, we need to make
635 635 * sure that it isn't in our metadata -- storing to our
636 636 * dynamic variable metadata would corrupt our state. For
637 637 * the range to not include any dynamic variable metadata,
638 638 * it must:
639 639 *
640 640 * (1) Start above the hash table that is at the base of
641 641 * the dynamic variable space
642 642 *
643 643 * (2) Have a starting chunk offset that is beyond the
644 644 * dtrace_dynvar_t that is at the base of every chunk
645 645 *
646 646 * (3) Not span a chunk boundary
647 647 *
648 648 */
649 649 if (addr < base)
650 650 return (0);
651 651
652 652 chunkoffs = (addr - base) % dstate->dtds_chunksize;
653 653
654 654 if (chunkoffs < sizeof (dtrace_dynvar_t))
655 655 return (0);
656 656
657 657 if (chunkoffs + sz > dstate->dtds_chunksize)
658 658 return (0);
659 659
660 660 return (1);
661 661 }
662 662
663 663 /*
664 664 * Finally, check the static local and global variables. These checks
665 665 * take the longest, so we perform them last.
666 666 */
667 667 if (dtrace_canstore_statvar(addr, sz,
668 668 vstate->dtvs_locals, vstate->dtvs_nlocals))
669 669 return (1);
670 670
671 671 if (dtrace_canstore_statvar(addr, sz,
672 672 vstate->dtvs_globals, vstate->dtvs_nglobals))
673 673 return (1);
674 674
675 675 return (0);
676 676 }
677 677
678 678
679 679 /*
680 680 * Convenience routine to check to see if the address is within a memory
681 681 * region in which a load may be issued given the user's privilege level;
682 682 * if not, it sets the appropriate error flags and loads 'addr' into the
683 683 * illegal value slot.
684 684 *
685 685 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
686 686 * appropriate memory access protection.
687 687 */
688 688 static int
689 689 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
690 690 dtrace_vstate_t *vstate)
691 691 {
692 692 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
693 693 file_t *fp;
694 694
695 695 /*
696 696 * If we hold the privilege to read from kernel memory, then
697 697 * everything is readable.
698 698 */
699 699 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
700 700 return (1);
701 701
702 702 /*
703 703 * You can obviously read that which you can store.
704 704 */
705 705 if (dtrace_canstore(addr, sz, mstate, vstate))
706 706 return (1);
707 707
708 708 /*
709 709 * We're allowed to read from our own string table.
710 710 */
711 711 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
712 712 mstate->dtms_difo->dtdo_strlen))
713 713 return (1);
714 714
715 715 if (vstate->dtvs_state != NULL &&
716 716 dtrace_priv_proc(vstate->dtvs_state, mstate)) {
717 717 proc_t *p;
718 718
719 719 /*
720 720 * When we have privileges to the current process, there are
721 721 * several context-related kernel structures that are safe to
722 722 * read, even absent the privilege to read from kernel memory.
723 723 * These reads are safe because these structures contain only
724 724 * state that (1) we're permitted to read, (2) is harmless or
725 725 * (3) contains pointers to additional kernel state that we're
726 726 * not permitted to read (and as such, do not present an
727 727 * opportunity for privilege escalation). Finally (and
728 728 * critically), because of the nature of their relation with
729 729 * the current thread context, the memory associated with these
730 730 * structures cannot change over the duration of probe context,
731 731 * and it is therefore impossible for this memory to be
732 732 * deallocated and reallocated as something else while it's
733 733 * being operated upon.
734 734 */
735 735 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
736 736 return (1);
737 737
738 738 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
739 739 sz, curthread->t_procp, sizeof (proc_t))) {
740 740 return (1);
741 741 }
742 742
743 743 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
744 744 curthread->t_cred, sizeof (cred_t))) {
745 745 return (1);
746 746 }
747 747
748 748 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
749 749 &(p->p_pidp->pid_id), sizeof (pid_t))) {
750 750 return (1);
751 751 }
752 752
753 753 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
754 754 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
755 755 return (1);
756 756 }
757 757 }
758 758
759 759 if ((fp = mstate->dtms_getf) != NULL) {
760 760 uintptr_t psz = sizeof (void *);
761 761 vnode_t *vp;
762 762 vnodeops_t *op;
763 763
764 764 /*
765 765 * When getf() returns a file_t, the enabling is implicitly
766 766 * granted the (transient) right to read the returned file_t
767 767 * as well as the v_path and v_op->vnop_name of the underlying
768 768 * vnode. These accesses are allowed after a successful
769 769 * getf() because the members that they refer to cannot change
770 770 * once set -- and the barrier logic in the kernel's closef()
771 771 * path assures that the file_t and its referenced vode_t
772 772 * cannot themselves be stale (that is, it impossible for
773 773 * either dtms_getf itself or its f_vnode member to reference
774 774 * freed memory).
775 775 */
776 776 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
777 777 return (1);
778 778
779 779 if ((vp = fp->f_vnode) != NULL) {
780 780 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
781 781 return (1);
782 782
783 783 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
784 784 vp->v_path, strlen(vp->v_path) + 1)) {
785 785 return (1);
786 786 }
787 787
788 788 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
789 789 return (1);
790 790
791 791 if ((op = vp->v_op) != NULL &&
792 792 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
793 793 return (1);
794 794 }
795 795
796 796 if (op != NULL && op->vnop_name != NULL &&
797 797 DTRACE_INRANGE(addr, sz, op->vnop_name,
798 798 strlen(op->vnop_name) + 1)) {
799 799 return (1);
800 800 }
801 801 }
802 802 }
803 803
804 804 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805 805 *illval = addr;
806 806 return (0);
807 807 }
808 808
809 809 /*
810 810 * Convenience routine to check to see if a given string is within a memory
811 811 * region in which a load may be issued given the user's privilege level;
812 812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 813 * calls in the event that the user has all privileges.
814 814 */
815 815 static int
816 816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817 817 dtrace_vstate_t *vstate)
818 818 {
819 819 size_t strsz;
820 820
821 821 /*
822 822 * If we hold the privilege to read from kernel memory, then
823 823 * everything is readable.
824 824 */
825 825 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826 826 return (1);
827 827
828 828 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829 829 if (dtrace_canload(addr, strsz, mstate, vstate))
830 830 return (1);
831 831
832 832 return (0);
833 833 }
834 834
835 835 /*
836 836 * Convenience routine to check to see if a given variable is within a memory
837 837 * region in which a load may be issued given the user's privilege level.
838 838 */
839 839 static int
840 840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841 841 dtrace_vstate_t *vstate)
842 842 {
843 843 size_t sz;
844 844 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845 845
846 846 /*
847 847 * If we hold the privilege to read from kernel memory, then
848 848 * everything is readable.
849 849 */
850 850 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851 851 return (1);
852 852
853 853 if (type->dtdt_kind == DIF_TYPE_STRING)
854 854 sz = dtrace_strlen(src,
855 855 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856 856 else
857 857 sz = type->dtdt_size;
858 858
859 859 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860 860 }
861 861
862 862 /*
863 863 * Convert a string to a signed integer using safe loads.
864 864 *
865 865 * NOTE: This function uses various macros from strtolctype.h to manipulate
866 866 * digit values, etc -- these have all been checked to ensure they make
867 867 * no additional function calls.
868 868 */
869 869 static int64_t
870 870 dtrace_strtoll(char *input, int base, size_t limit)
871 871 {
872 872 uintptr_t pos = (uintptr_t)input;
873 873 int64_t val = 0;
874 874 int x;
875 875 boolean_t neg = B_FALSE;
876 876 char c, cc, ccc;
877 877 uintptr_t end = pos + limit;
878 878
879 879 /*
880 880 * Consume any whitespace preceding digits.
881 881 */
882 882 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
883 883 pos++;
884 884
885 885 /*
886 886 * Handle an explicit sign if one is present.
887 887 */
888 888 if (c == '-' || c == '+') {
889 889 if (c == '-')
890 890 neg = B_TRUE;
891 891 c = dtrace_load8(++pos);
892 892 }
893 893
894 894 /*
895 895 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
896 896 * if present.
897 897 */
898 898 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
899 899 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
900 900 pos += 2;
901 901 c = ccc;
902 902 }
903 903
904 904 /*
905 905 * Read in contiguous digits until the first non-digit character.
906 906 */
907 907 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
908 908 c = dtrace_load8(++pos))
909 909 val = val * base + x;
910 910
911 911 return (neg ? -val : val);
912 912 }
913 913
914 914 /*
915 915 * Compare two strings using safe loads.
916 916 */
917 917 static int
918 918 dtrace_strncmp(char *s1, char *s2, size_t limit)
919 919 {
920 920 uint8_t c1, c2;
921 921 volatile uint16_t *flags;
922 922
923 923 if (s1 == s2 || limit == 0)
924 924 return (0);
925 925
926 926 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
927 927
928 928 do {
929 929 if (s1 == NULL) {
930 930 c1 = '\0';
931 931 } else {
932 932 c1 = dtrace_load8((uintptr_t)s1++);
933 933 }
934 934
935 935 if (s2 == NULL) {
936 936 c2 = '\0';
937 937 } else {
938 938 c2 = dtrace_load8((uintptr_t)s2++);
939 939 }
940 940
941 941 if (c1 != c2)
942 942 return (c1 - c2);
943 943 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
944 944
945 945 return (0);
946 946 }
947 947
948 948 /*
949 949 * Compute strlen(s) for a string using safe memory accesses. The additional
950 950 * len parameter is used to specify a maximum length to ensure completion.
951 951 */
952 952 static size_t
953 953 dtrace_strlen(const char *s, size_t lim)
954 954 {
955 955 uint_t len;
956 956
957 957 for (len = 0; len != lim; len++) {
958 958 if (dtrace_load8((uintptr_t)s++) == '\0')
959 959 break;
960 960 }
961 961
962 962 return (len);
963 963 }
964 964
965 965 /*
966 966 * Check if an address falls within a toxic region.
967 967 */
968 968 static int
969 969 dtrace_istoxic(uintptr_t kaddr, size_t size)
970 970 {
971 971 uintptr_t taddr, tsize;
972 972 int i;
973 973
974 974 for (i = 0; i < dtrace_toxranges; i++) {
975 975 taddr = dtrace_toxrange[i].dtt_base;
976 976 tsize = dtrace_toxrange[i].dtt_limit - taddr;
977 977
978 978 if (kaddr - taddr < tsize) {
979 979 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
980 980 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
981 981 return (1);
982 982 }
983 983
984 984 if (taddr - kaddr < size) {
985 985 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
986 986 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
987 987 return (1);
988 988 }
989 989 }
990 990
991 991 return (0);
992 992 }
993 993
994 994 /*
995 995 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
996 996 * memory specified by the DIF program. The dst is assumed to be safe memory
997 997 * that we can store to directly because it is managed by DTrace. As with
998 998 * standard bcopy, overlapping copies are handled properly.
999 999 */
1000 1000 static void
1001 1001 dtrace_bcopy(const void *src, void *dst, size_t len)
1002 1002 {
1003 1003 if (len != 0) {
1004 1004 uint8_t *s1 = dst;
1005 1005 const uint8_t *s2 = src;
1006 1006
1007 1007 if (s1 <= s2) {
1008 1008 do {
1009 1009 *s1++ = dtrace_load8((uintptr_t)s2++);
1010 1010 } while (--len != 0);
1011 1011 } else {
1012 1012 s2 += len;
1013 1013 s1 += len;
1014 1014
1015 1015 do {
1016 1016 *--s1 = dtrace_load8((uintptr_t)--s2);
1017 1017 } while (--len != 0);
1018 1018 }
1019 1019 }
1020 1020 }
1021 1021
1022 1022 /*
1023 1023 * Copy src to dst using safe memory accesses, up to either the specified
1024 1024 * length, or the point that a nul byte is encountered. The src is assumed to
1025 1025 * be unsafe memory specified by the DIF program. The dst is assumed to be
1026 1026 * safe memory that we can store to directly because it is managed by DTrace.
1027 1027 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1028 1028 */
1029 1029 static void
1030 1030 dtrace_strcpy(const void *src, void *dst, size_t len)
1031 1031 {
1032 1032 if (len != 0) {
1033 1033 uint8_t *s1 = dst, c;
1034 1034 const uint8_t *s2 = src;
1035 1035
1036 1036 do {
1037 1037 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1038 1038 } while (--len != 0 && c != '\0');
1039 1039 }
1040 1040 }
1041 1041
1042 1042 /*
1043 1043 * Copy src to dst, deriving the size and type from the specified (BYREF)
1044 1044 * variable type. The src is assumed to be unsafe memory specified by the DIF
1045 1045 * program. The dst is assumed to be DTrace variable memory that is of the
1046 1046 * specified type; we assume that we can store to directly.
1047 1047 */
1048 1048 static void
1049 1049 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1050 1050 {
1051 1051 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1052 1052
1053 1053 if (type->dtdt_kind == DIF_TYPE_STRING) {
1054 1054 dtrace_strcpy(src, dst, type->dtdt_size);
1055 1055 } else {
1056 1056 dtrace_bcopy(src, dst, type->dtdt_size);
1057 1057 }
1058 1058 }
1059 1059
1060 1060 /*
1061 1061 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1062 1062 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1063 1063 * safe memory that we can access directly because it is managed by DTrace.
1064 1064 */
1065 1065 static int
1066 1066 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1067 1067 {
1068 1068 volatile uint16_t *flags;
1069 1069
1070 1070 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1071 1071
1072 1072 if (s1 == s2)
1073 1073 return (0);
1074 1074
1075 1075 if (s1 == NULL || s2 == NULL)
1076 1076 return (1);
1077 1077
1078 1078 if (s1 != s2 && len != 0) {
1079 1079 const uint8_t *ps1 = s1;
1080 1080 const uint8_t *ps2 = s2;
1081 1081
1082 1082 do {
1083 1083 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1084 1084 return (1);
1085 1085 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1086 1086 }
1087 1087 return (0);
1088 1088 }
1089 1089
1090 1090 /*
1091 1091 * Zero the specified region using a simple byte-by-byte loop. Note that this
1092 1092 * is for safe DTrace-managed memory only.
1093 1093 */
1094 1094 static void
1095 1095 dtrace_bzero(void *dst, size_t len)
1096 1096 {
1097 1097 uchar_t *cp;
1098 1098
1099 1099 for (cp = dst; len != 0; len--)
1100 1100 *cp++ = 0;
1101 1101 }
1102 1102
1103 1103 static void
1104 1104 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1105 1105 {
1106 1106 uint64_t result[2];
1107 1107
1108 1108 result[0] = addend1[0] + addend2[0];
1109 1109 result[1] = addend1[1] + addend2[1] +
1110 1110 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1111 1111
1112 1112 sum[0] = result[0];
1113 1113 sum[1] = result[1];
1114 1114 }
1115 1115
1116 1116 /*
1117 1117 * Shift the 128-bit value in a by b. If b is positive, shift left.
1118 1118 * If b is negative, shift right.
1119 1119 */
1120 1120 static void
1121 1121 dtrace_shift_128(uint64_t *a, int b)
1122 1122 {
1123 1123 uint64_t mask;
1124 1124
1125 1125 if (b == 0)
1126 1126 return;
1127 1127
1128 1128 if (b < 0) {
1129 1129 b = -b;
1130 1130 if (b >= 64) {
1131 1131 a[0] = a[1] >> (b - 64);
1132 1132 a[1] = 0;
1133 1133 } else {
1134 1134 a[0] >>= b;
1135 1135 mask = 1LL << (64 - b);
1136 1136 mask -= 1;
1137 1137 a[0] |= ((a[1] & mask) << (64 - b));
1138 1138 a[1] >>= b;
1139 1139 }
1140 1140 } else {
1141 1141 if (b >= 64) {
1142 1142 a[1] = a[0] << (b - 64);
1143 1143 a[0] = 0;
1144 1144 } else {
1145 1145 a[1] <<= b;
1146 1146 mask = a[0] >> (64 - b);
1147 1147 a[1] |= mask;
1148 1148 a[0] <<= b;
1149 1149 }
1150 1150 }
1151 1151 }
1152 1152
1153 1153 /*
1154 1154 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1155 1155 * use native multiplication on those, and then re-combine into the
1156 1156 * resulting 128-bit value.
1157 1157 *
1158 1158 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1159 1159 * hi1 * hi2 << 64 +
1160 1160 * hi1 * lo2 << 32 +
1161 1161 * hi2 * lo1 << 32 +
1162 1162 * lo1 * lo2
1163 1163 */
1164 1164 static void
1165 1165 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1166 1166 {
1167 1167 uint64_t hi1, hi2, lo1, lo2;
1168 1168 uint64_t tmp[2];
1169 1169
1170 1170 hi1 = factor1 >> 32;
1171 1171 hi2 = factor2 >> 32;
1172 1172
1173 1173 lo1 = factor1 & DT_MASK_LO;
1174 1174 lo2 = factor2 & DT_MASK_LO;
1175 1175
1176 1176 product[0] = lo1 * lo2;
1177 1177 product[1] = hi1 * hi2;
1178 1178
1179 1179 tmp[0] = hi1 * lo2;
1180 1180 tmp[1] = 0;
1181 1181 dtrace_shift_128(tmp, 32);
1182 1182 dtrace_add_128(product, tmp, product);
1183 1183
1184 1184 tmp[0] = hi2 * lo1;
1185 1185 tmp[1] = 0;
1186 1186 dtrace_shift_128(tmp, 32);
1187 1187 dtrace_add_128(product, tmp, product);
1188 1188 }
1189 1189
1190 1190 /*
1191 1191 * This privilege check should be used by actions and subroutines to
1192 1192 * verify that the user credentials of the process that enabled the
1193 1193 * invoking ECB match the target credentials
1194 1194 */
1195 1195 static int
1196 1196 dtrace_priv_proc_common_user(dtrace_state_t *state)
1197 1197 {
1198 1198 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1199 1199
1200 1200 /*
1201 1201 * We should always have a non-NULL state cred here, since if cred
1202 1202 * is null (anonymous tracing), we fast-path bypass this routine.
1203 1203 */
1204 1204 ASSERT(s_cr != NULL);
1205 1205
1206 1206 if ((cr = CRED()) != NULL &&
1207 1207 s_cr->cr_uid == cr->cr_uid &&
1208 1208 s_cr->cr_uid == cr->cr_ruid &&
1209 1209 s_cr->cr_uid == cr->cr_suid &&
1210 1210 s_cr->cr_gid == cr->cr_gid &&
1211 1211 s_cr->cr_gid == cr->cr_rgid &&
1212 1212 s_cr->cr_gid == cr->cr_sgid)
1213 1213 return (1);
1214 1214
1215 1215 return (0);
1216 1216 }
1217 1217
1218 1218 /*
1219 1219 * This privilege check should be used by actions and subroutines to
1220 1220 * verify that the zone of the process that enabled the invoking ECB
1221 1221 * matches the target credentials
1222 1222 */
1223 1223 static int
1224 1224 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1225 1225 {
1226 1226 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1227 1227
1228 1228 /*
1229 1229 * We should always have a non-NULL state cred here, since if cred
1230 1230 * is null (anonymous tracing), we fast-path bypass this routine.
1231 1231 */
1232 1232 ASSERT(s_cr != NULL);
1233 1233
1234 1234 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1235 1235 return (1);
1236 1236
1237 1237 return (0);
1238 1238 }
1239 1239
1240 1240 /*
1241 1241 * This privilege check should be used by actions and subroutines to
1242 1242 * verify that the process has not setuid or changed credentials.
1243 1243 */
1244 1244 static int
1245 1245 dtrace_priv_proc_common_nocd()
1246 1246 {
1247 1247 proc_t *proc;
1248 1248
1249 1249 if ((proc = ttoproc(curthread)) != NULL &&
1250 1250 !(proc->p_flag & SNOCD))
1251 1251 return (1);
1252 1252
1253 1253 return (0);
1254 1254 }
1255 1255
1256 1256 static int
1257 1257 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1258 1258 {
1259 1259 int action = state->dts_cred.dcr_action;
1260 1260
1261 1261 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1262 1262 goto bad;
1263 1263
1264 1264 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1265 1265 dtrace_priv_proc_common_zone(state) == 0)
1266 1266 goto bad;
1267 1267
1268 1268 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1269 1269 dtrace_priv_proc_common_user(state) == 0)
1270 1270 goto bad;
1271 1271
1272 1272 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1273 1273 dtrace_priv_proc_common_nocd() == 0)
1274 1274 goto bad;
1275 1275
1276 1276 return (1);
1277 1277
1278 1278 bad:
1279 1279 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1280 1280
1281 1281 return (0);
1282 1282 }
1283 1283
1284 1284 static int
1285 1285 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1286 1286 {
1287 1287 if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1288 1288 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1289 1289 return (1);
1290 1290
1291 1291 if (dtrace_priv_proc_common_zone(state) &&
1292 1292 dtrace_priv_proc_common_user(state) &&
1293 1293 dtrace_priv_proc_common_nocd())
1294 1294 return (1);
1295 1295 }
1296 1296
1297 1297 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1298 1298
1299 1299 return (0);
1300 1300 }
1301 1301
1302 1302 static int
1303 1303 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1304 1304 {
1305 1305 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1306 1306 (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1307 1307 return (1);
1308 1308
1309 1309 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1310 1310
1311 1311 return (0);
1312 1312 }
1313 1313
1314 1314 static int
1315 1315 dtrace_priv_kernel(dtrace_state_t *state)
1316 1316 {
1317 1317 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1318 1318 return (1);
1319 1319
1320 1320 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1321 1321
1322 1322 return (0);
1323 1323 }
1324 1324
1325 1325 static int
1326 1326 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1327 1327 {
1328 1328 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1329 1329 return (1);
1330 1330
1331 1331 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1332 1332
1333 1333 return (0);
1334 1334 }
1335 1335
1336 1336 /*
1337 1337 * Determine if the dte_cond of the specified ECB allows for processing of
1338 1338 * the current probe to continue. Note that this routine may allow continued
1339 1339 * processing, but with access(es) stripped from the mstate's dtms_access
1340 1340 * field.
1341 1341 */
1342 1342 static int
1343 1343 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1344 1344 dtrace_ecb_t *ecb)
1345 1345 {
1346 1346 dtrace_probe_t *probe = ecb->dte_probe;
1347 1347 dtrace_provider_t *prov = probe->dtpr_provider;
1348 1348 dtrace_pops_t *pops = &prov->dtpv_pops;
1349 1349 int mode = DTRACE_MODE_NOPRIV_DROP;
1350 1350
1351 1351 ASSERT(ecb->dte_cond);
1352 1352
1353 1353 if (pops->dtps_mode != NULL) {
1354 1354 mode = pops->dtps_mode(prov->dtpv_arg,
1355 1355 probe->dtpr_id, probe->dtpr_arg);
1356 1356
1357 1357 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1358 1358 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1359 1359 DTRACE_MODE_NOPRIV_DROP));
1360 1360 }
1361 1361
1362 1362 /*
1363 1363 * If the dte_cond bits indicate that this consumer is only allowed to
1364 1364 * see user-mode firings of this probe, check that the probe was fired
1365 1365 * while in a user context. If that's not the case, use the policy
1366 1366 * specified by the provider to determine if we drop the probe or
1367 1367 * merely restrict operation.
1368 1368 */
1369 1369 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1370 1370 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1371 1371
1372 1372 if (!(mode & DTRACE_MODE_USER)) {
1373 1373 if (mode & DTRACE_MODE_NOPRIV_DROP)
1374 1374 return (0);
1375 1375
1376 1376 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1377 1377 }
1378 1378 }
1379 1379
1380 1380 /*
1381 1381 * This is more subtle than it looks. We have to be absolutely certain
1382 1382 * that CRED() isn't going to change out from under us so it's only
1383 1383 * legit to examine that structure if we're in constrained situations.
1384 1384 * Currently, the only times we'll this check is if a non-super-user
1385 1385 * has enabled the profile or syscall providers -- providers that
1386 1386 * allow visibility of all processes. For the profile case, the check
1387 1387 * above will ensure that we're examining a user context.
1388 1388 */
1389 1389 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1390 1390 cred_t *cr;
1391 1391 cred_t *s_cr = state->dts_cred.dcr_cred;
1392 1392 proc_t *proc;
1393 1393
1394 1394 ASSERT(s_cr != NULL);
1395 1395
1396 1396 if ((cr = CRED()) == NULL ||
1397 1397 s_cr->cr_uid != cr->cr_uid ||
1398 1398 s_cr->cr_uid != cr->cr_ruid ||
1399 1399 s_cr->cr_uid != cr->cr_suid ||
1400 1400 s_cr->cr_gid != cr->cr_gid ||
1401 1401 s_cr->cr_gid != cr->cr_rgid ||
1402 1402 s_cr->cr_gid != cr->cr_sgid ||
1403 1403 (proc = ttoproc(curthread)) == NULL ||
1404 1404 (proc->p_flag & SNOCD)) {
1405 1405 if (mode & DTRACE_MODE_NOPRIV_DROP)
1406 1406 return (0);
1407 1407
1408 1408 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1409 1409 }
1410 1410 }
1411 1411
1412 1412 /*
1413 1413 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1414 1414 * in our zone, check to see if our mode policy is to restrict rather
1415 1415 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1416 1416 * and DTRACE_ACCESS_ARGS
1417 1417 */
1418 1418 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1419 1419 cred_t *cr;
1420 1420 cred_t *s_cr = state->dts_cred.dcr_cred;
1421 1421
1422 1422 ASSERT(s_cr != NULL);
1423 1423
1424 1424 if ((cr = CRED()) == NULL ||
1425 1425 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1426 1426 if (mode & DTRACE_MODE_NOPRIV_DROP)
1427 1427 return (0);
1428 1428
1429 1429 mstate->dtms_access &=
1430 1430 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1431 1431 }
1432 1432 }
1433 1433
1434 1434 /*
1435 1435 * By merits of being in this code path at all, we have limited
1436 1436 * privileges. If the provider has indicated that limited privileges
1437 1437 * are to denote restricted operation, strip off the ability to access
1438 1438 * arguments.
1439 1439 */
1440 1440 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1441 1441 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1442 1442
1443 1443 return (1);
1444 1444 }
1445 1445
1446 1446 /*
1447 1447 * Note: not called from probe context. This function is called
1448 1448 * asynchronously (and at a regular interval) from outside of probe context to
1449 1449 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1450 1450 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1451 1451 */
1452 1452 void
1453 1453 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1454 1454 {
1455 1455 dtrace_dynvar_t *dirty;
1456 1456 dtrace_dstate_percpu_t *dcpu;
1457 1457 dtrace_dynvar_t **rinsep;
1458 1458 int i, j, work = 0;
1459 1459
1460 1460 for (i = 0; i < NCPU; i++) {
1461 1461 dcpu = &dstate->dtds_percpu[i];
1462 1462 rinsep = &dcpu->dtdsc_rinsing;
1463 1463
1464 1464 /*
1465 1465 * If the dirty list is NULL, there is no dirty work to do.
1466 1466 */
1467 1467 if (dcpu->dtdsc_dirty == NULL)
1468 1468 continue;
1469 1469
1470 1470 if (dcpu->dtdsc_rinsing != NULL) {
1471 1471 /*
1472 1472 * If the rinsing list is non-NULL, then it is because
1473 1473 * this CPU was selected to accept another CPU's
1474 1474 * dirty list -- and since that time, dirty buffers
1475 1475 * have accumulated. This is a highly unlikely
1476 1476 * condition, but we choose to ignore the dirty
1477 1477 * buffers -- they'll be picked up a future cleanse.
1478 1478 */
1479 1479 continue;
1480 1480 }
1481 1481
1482 1482 if (dcpu->dtdsc_clean != NULL) {
1483 1483 /*
1484 1484 * If the clean list is non-NULL, then we're in a
1485 1485 * situation where a CPU has done deallocations (we
1486 1486 * have a non-NULL dirty list) but no allocations (we
1487 1487 * also have a non-NULL clean list). We can't simply
1488 1488 * move the dirty list into the clean list on this
1489 1489 * CPU, yet we also don't want to allow this condition
1490 1490 * to persist, lest a short clean list prevent a
1491 1491 * massive dirty list from being cleaned (which in
1492 1492 * turn could lead to otherwise avoidable dynamic
1493 1493 * drops). To deal with this, we look for some CPU
1494 1494 * with a NULL clean list, NULL dirty list, and NULL
1495 1495 * rinsing list -- and then we borrow this CPU to
1496 1496 * rinse our dirty list.
1497 1497 */
1498 1498 for (j = 0; j < NCPU; j++) {
1499 1499 dtrace_dstate_percpu_t *rinser;
1500 1500
1501 1501 rinser = &dstate->dtds_percpu[j];
1502 1502
1503 1503 if (rinser->dtdsc_rinsing != NULL)
1504 1504 continue;
1505 1505
1506 1506 if (rinser->dtdsc_dirty != NULL)
1507 1507 continue;
1508 1508
1509 1509 if (rinser->dtdsc_clean != NULL)
1510 1510 continue;
1511 1511
1512 1512 rinsep = &rinser->dtdsc_rinsing;
1513 1513 break;
1514 1514 }
1515 1515
1516 1516 if (j == NCPU) {
1517 1517 /*
1518 1518 * We were unable to find another CPU that
1519 1519 * could accept this dirty list -- we are
1520 1520 * therefore unable to clean it now.
1521 1521 */
1522 1522 dtrace_dynvar_failclean++;
1523 1523 continue;
1524 1524 }
1525 1525 }
1526 1526
1527 1527 work = 1;
1528 1528
1529 1529 /*
1530 1530 * Atomically move the dirty list aside.
1531 1531 */
1532 1532 do {
1533 1533 dirty = dcpu->dtdsc_dirty;
1534 1534
1535 1535 /*
1536 1536 * Before we zap the dirty list, set the rinsing list.
1537 1537 * (This allows for a potential assertion in
1538 1538 * dtrace_dynvar(): if a free dynamic variable appears
1539 1539 * on a hash chain, either the dirty list or the
1540 1540 * rinsing list for some CPU must be non-NULL.)
1541 1541 */
1542 1542 *rinsep = dirty;
1543 1543 dtrace_membar_producer();
1544 1544 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1545 1545 dirty, NULL) != dirty);
1546 1546 }
1547 1547
1548 1548 if (!work) {
1549 1549 /*
1550 1550 * We have no work to do; we can simply return.
1551 1551 */
1552 1552 return;
1553 1553 }
1554 1554
1555 1555 dtrace_sync();
1556 1556
1557 1557 for (i = 0; i < NCPU; i++) {
1558 1558 dcpu = &dstate->dtds_percpu[i];
1559 1559
1560 1560 if (dcpu->dtdsc_rinsing == NULL)
1561 1561 continue;
1562 1562
1563 1563 /*
1564 1564 * We are now guaranteed that no hash chain contains a pointer
1565 1565 * into this dirty list; we can make it clean.
1566 1566 */
1567 1567 ASSERT(dcpu->dtdsc_clean == NULL);
1568 1568 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1569 1569 dcpu->dtdsc_rinsing = NULL;
1570 1570 }
1571 1571
1572 1572 /*
1573 1573 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1574 1574 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1575 1575 * This prevents a race whereby a CPU incorrectly decides that
1576 1576 * the state should be something other than DTRACE_DSTATE_CLEAN
1577 1577 * after dtrace_dynvar_clean() has completed.
1578 1578 */
1579 1579 dtrace_sync();
1580 1580
1581 1581 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1582 1582 }
1583 1583
1584 1584 /*
1585 1585 * Depending on the value of the op parameter, this function looks-up,
1586 1586 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1587 1587 * allocation is requested, this function will return a pointer to a
1588 1588 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1589 1589 * variable can be allocated. If NULL is returned, the appropriate counter
1590 1590 * will be incremented.
1591 1591 */
1592 1592 dtrace_dynvar_t *
1593 1593 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1594 1594 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1595 1595 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1596 1596 {
1597 1597 uint64_t hashval = DTRACE_DYNHASH_VALID;
1598 1598 dtrace_dynhash_t *hash = dstate->dtds_hash;
1599 1599 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1600 1600 processorid_t me = CPU->cpu_id, cpu = me;
1601 1601 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1602 1602 size_t bucket, ksize;
1603 1603 size_t chunksize = dstate->dtds_chunksize;
1604 1604 uintptr_t kdata, lock, nstate;
1605 1605 uint_t i;
1606 1606
1607 1607 ASSERT(nkeys != 0);
1608 1608
1609 1609 /*
1610 1610 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1611 1611 * algorithm. For the by-value portions, we perform the algorithm in
1612 1612 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1613 1613 * bit, and seems to have only a minute effect on distribution. For
1614 1614 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1615 1615 * over each referenced byte. It's painful to do this, but it's much
1616 1616 * better than pathological hash distribution. The efficacy of the
1617 1617 * hashing algorithm (and a comparison with other algorithms) may be
1618 1618 * found by running the ::dtrace_dynstat MDB dcmd.
1619 1619 */
1620 1620 for (i = 0; i < nkeys; i++) {
1621 1621 if (key[i].dttk_size == 0) {
1622 1622 uint64_t val = key[i].dttk_value;
1623 1623
1624 1624 hashval += (val >> 48) & 0xffff;
1625 1625 hashval += (hashval << 10);
1626 1626 hashval ^= (hashval >> 6);
1627 1627
1628 1628 hashval += (val >> 32) & 0xffff;
1629 1629 hashval += (hashval << 10);
1630 1630 hashval ^= (hashval >> 6);
1631 1631
1632 1632 hashval += (val >> 16) & 0xffff;
1633 1633 hashval += (hashval << 10);
1634 1634 hashval ^= (hashval >> 6);
1635 1635
1636 1636 hashval += val & 0xffff;
1637 1637 hashval += (hashval << 10);
1638 1638 hashval ^= (hashval >> 6);
1639 1639 } else {
1640 1640 /*
1641 1641 * This is incredibly painful, but it beats the hell
1642 1642 * out of the alternative.
1643 1643 */
1644 1644 uint64_t j, size = key[i].dttk_size;
1645 1645 uintptr_t base = (uintptr_t)key[i].dttk_value;
1646 1646
1647 1647 if (!dtrace_canload(base, size, mstate, vstate))
1648 1648 break;
1649 1649
1650 1650 for (j = 0; j < size; j++) {
1651 1651 hashval += dtrace_load8(base + j);
1652 1652 hashval += (hashval << 10);
1653 1653 hashval ^= (hashval >> 6);
1654 1654 }
1655 1655 }
1656 1656 }
1657 1657
1658 1658 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1659 1659 return (NULL);
1660 1660
1661 1661 hashval += (hashval << 3);
1662 1662 hashval ^= (hashval >> 11);
1663 1663 hashval += (hashval << 15);
1664 1664
1665 1665 /*
1666 1666 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1667 1667 * comes out to be one of our two sentinel hash values. If this
1668 1668 * actually happens, we set the hashval to be a value known to be a
1669 1669 * non-sentinel value.
1670 1670 */
1671 1671 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1672 1672 hashval = DTRACE_DYNHASH_VALID;
1673 1673
1674 1674 /*
1675 1675 * Yes, it's painful to do a divide here. If the cycle count becomes
1676 1676 * important here, tricks can be pulled to reduce it. (However, it's
1677 1677 * critical that hash collisions be kept to an absolute minimum;
1678 1678 * they're much more painful than a divide.) It's better to have a
1679 1679 * solution that generates few collisions and still keeps things
1680 1680 * relatively simple.
1681 1681 */
1682 1682 bucket = hashval % dstate->dtds_hashsize;
1683 1683
1684 1684 if (op == DTRACE_DYNVAR_DEALLOC) {
1685 1685 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1686 1686
1687 1687 for (;;) {
1688 1688 while ((lock = *lockp) & 1)
1689 1689 continue;
1690 1690
1691 1691 if (dtrace_casptr((void *)lockp,
1692 1692 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1693 1693 break;
1694 1694 }
1695 1695
1696 1696 dtrace_membar_producer();
1697 1697 }
1698 1698
1699 1699 top:
1700 1700 prev = NULL;
1701 1701 lock = hash[bucket].dtdh_lock;
1702 1702
1703 1703 dtrace_membar_consumer();
1704 1704
1705 1705 start = hash[bucket].dtdh_chain;
1706 1706 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1707 1707 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1708 1708 op != DTRACE_DYNVAR_DEALLOC));
1709 1709
1710 1710 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1711 1711 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1712 1712 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1713 1713
1714 1714 if (dvar->dtdv_hashval != hashval) {
1715 1715 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1716 1716 /*
1717 1717 * We've reached the sink, and therefore the
1718 1718 * end of the hash chain; we can kick out of
1719 1719 * the loop knowing that we have seen a valid
1720 1720 * snapshot of state.
1721 1721 */
1722 1722 ASSERT(dvar->dtdv_next == NULL);
1723 1723 ASSERT(dvar == &dtrace_dynhash_sink);
1724 1724 break;
1725 1725 }
1726 1726
1727 1727 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1728 1728 /*
1729 1729 * We've gone off the rails: somewhere along
1730 1730 * the line, one of the members of this hash
1731 1731 * chain was deleted. Note that we could also
1732 1732 * detect this by simply letting this loop run
1733 1733 * to completion, as we would eventually hit
1734 1734 * the end of the dirty list. However, we
1735 1735 * want to avoid running the length of the
1736 1736 * dirty list unnecessarily (it might be quite
1737 1737 * long), so we catch this as early as
1738 1738 * possible by detecting the hash marker. In
1739 1739 * this case, we simply set dvar to NULL and
1740 1740 * break; the conditional after the loop will
1741 1741 * send us back to top.
1742 1742 */
1743 1743 dvar = NULL;
1744 1744 break;
1745 1745 }
1746 1746
1747 1747 goto next;
1748 1748 }
1749 1749
1750 1750 if (dtuple->dtt_nkeys != nkeys)
1751 1751 goto next;
1752 1752
1753 1753 for (i = 0; i < nkeys; i++, dkey++) {
1754 1754 if (dkey->dttk_size != key[i].dttk_size)
1755 1755 goto next; /* size or type mismatch */
1756 1756
1757 1757 if (dkey->dttk_size != 0) {
1758 1758 if (dtrace_bcmp(
1759 1759 (void *)(uintptr_t)key[i].dttk_value,
1760 1760 (void *)(uintptr_t)dkey->dttk_value,
1761 1761 dkey->dttk_size))
1762 1762 goto next;
1763 1763 } else {
1764 1764 if (dkey->dttk_value != key[i].dttk_value)
1765 1765 goto next;
1766 1766 }
1767 1767 }
1768 1768
1769 1769 if (op != DTRACE_DYNVAR_DEALLOC)
1770 1770 return (dvar);
1771 1771
1772 1772 ASSERT(dvar->dtdv_next == NULL ||
1773 1773 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1774 1774
1775 1775 if (prev != NULL) {
1776 1776 ASSERT(hash[bucket].dtdh_chain != dvar);
1777 1777 ASSERT(start != dvar);
1778 1778 ASSERT(prev->dtdv_next == dvar);
1779 1779 prev->dtdv_next = dvar->dtdv_next;
1780 1780 } else {
1781 1781 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1782 1782 start, dvar->dtdv_next) != start) {
1783 1783 /*
1784 1784 * We have failed to atomically swing the
1785 1785 * hash table head pointer, presumably because
1786 1786 * of a conflicting allocation on another CPU.
1787 1787 * We need to reread the hash chain and try
1788 1788 * again.
1789 1789 */
1790 1790 goto top;
1791 1791 }
1792 1792 }
1793 1793
1794 1794 dtrace_membar_producer();
1795 1795
1796 1796 /*
1797 1797 * Now set the hash value to indicate that it's free.
1798 1798 */
1799 1799 ASSERT(hash[bucket].dtdh_chain != dvar);
1800 1800 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1801 1801
1802 1802 dtrace_membar_producer();
1803 1803
1804 1804 /*
1805 1805 * Set the next pointer to point at the dirty list, and
1806 1806 * atomically swing the dirty pointer to the newly freed dvar.
1807 1807 */
1808 1808 do {
1809 1809 next = dcpu->dtdsc_dirty;
1810 1810 dvar->dtdv_next = next;
1811 1811 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1812 1812
1813 1813 /*
1814 1814 * Finally, unlock this hash bucket.
1815 1815 */
1816 1816 ASSERT(hash[bucket].dtdh_lock == lock);
1817 1817 ASSERT(lock & 1);
1818 1818 hash[bucket].dtdh_lock++;
1819 1819
1820 1820 return (NULL);
1821 1821 next:
1822 1822 prev = dvar;
1823 1823 continue;
1824 1824 }
1825 1825
1826 1826 if (dvar == NULL) {
1827 1827 /*
1828 1828 * If dvar is NULL, it is because we went off the rails:
1829 1829 * one of the elements that we traversed in the hash chain
1830 1830 * was deleted while we were traversing it. In this case,
1831 1831 * we assert that we aren't doing a dealloc (deallocs lock
1832 1832 * the hash bucket to prevent themselves from racing with
1833 1833 * one another), and retry the hash chain traversal.
1834 1834 */
1835 1835 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1836 1836 goto top;
1837 1837 }
1838 1838
1839 1839 if (op != DTRACE_DYNVAR_ALLOC) {
1840 1840 /*
1841 1841 * If we are not to allocate a new variable, we want to
1842 1842 * return NULL now. Before we return, check that the value
1843 1843 * of the lock word hasn't changed. If it has, we may have
1844 1844 * seen an inconsistent snapshot.
1845 1845 */
1846 1846 if (op == DTRACE_DYNVAR_NOALLOC) {
1847 1847 if (hash[bucket].dtdh_lock != lock)
1848 1848 goto top;
1849 1849 } else {
1850 1850 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1851 1851 ASSERT(hash[bucket].dtdh_lock == lock);
1852 1852 ASSERT(lock & 1);
1853 1853 hash[bucket].dtdh_lock++;
1854 1854 }
1855 1855
1856 1856 return (NULL);
1857 1857 }
1858 1858
1859 1859 /*
1860 1860 * We need to allocate a new dynamic variable. The size we need is the
1861 1861 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1862 1862 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1863 1863 * the size of any referred-to data (dsize). We then round the final
1864 1864 * size up to the chunksize for allocation.
1865 1865 */
1866 1866 for (ksize = 0, i = 0; i < nkeys; i++)
1867 1867 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1868 1868
1869 1869 /*
1870 1870 * This should be pretty much impossible, but could happen if, say,
1871 1871 * strange DIF specified the tuple. Ideally, this should be an
1872 1872 * assertion and not an error condition -- but that requires that the
1873 1873 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1874 1874 * bullet-proof. (That is, it must not be able to be fooled by
1875 1875 * malicious DIF.) Given the lack of backwards branches in DIF,
1876 1876 * solving this would presumably not amount to solving the Halting
1877 1877 * Problem -- but it still seems awfully hard.
1878 1878 */
1879 1879 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1880 1880 ksize + dsize > chunksize) {
1881 1881 dcpu->dtdsc_drops++;
1882 1882 return (NULL);
1883 1883 }
1884 1884
1885 1885 nstate = DTRACE_DSTATE_EMPTY;
1886 1886
1887 1887 do {
1888 1888 retry:
1889 1889 free = dcpu->dtdsc_free;
1890 1890
1891 1891 if (free == NULL) {
1892 1892 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1893 1893 void *rval;
1894 1894
1895 1895 if (clean == NULL) {
1896 1896 /*
1897 1897 * We're out of dynamic variable space on
1898 1898 * this CPU. Unless we have tried all CPUs,
1899 1899 * we'll try to allocate from a different
1900 1900 * CPU.
1901 1901 */
1902 1902 switch (dstate->dtds_state) {
1903 1903 case DTRACE_DSTATE_CLEAN: {
1904 1904 void *sp = &dstate->dtds_state;
1905 1905
1906 1906 if (++cpu >= NCPU)
1907 1907 cpu = 0;
1908 1908
1909 1909 if (dcpu->dtdsc_dirty != NULL &&
1910 1910 nstate == DTRACE_DSTATE_EMPTY)
1911 1911 nstate = DTRACE_DSTATE_DIRTY;
1912 1912
1913 1913 if (dcpu->dtdsc_rinsing != NULL)
1914 1914 nstate = DTRACE_DSTATE_RINSING;
1915 1915
1916 1916 dcpu = &dstate->dtds_percpu[cpu];
1917 1917
1918 1918 if (cpu != me)
1919 1919 goto retry;
1920 1920
1921 1921 (void) dtrace_cas32(sp,
1922 1922 DTRACE_DSTATE_CLEAN, nstate);
1923 1923
1924 1924 /*
1925 1925 * To increment the correct bean
1926 1926 * counter, take another lap.
1927 1927 */
1928 1928 goto retry;
1929 1929 }
1930 1930
1931 1931 case DTRACE_DSTATE_DIRTY:
1932 1932 dcpu->dtdsc_dirty_drops++;
1933 1933 break;
1934 1934
1935 1935 case DTRACE_DSTATE_RINSING:
1936 1936 dcpu->dtdsc_rinsing_drops++;
1937 1937 break;
1938 1938
1939 1939 case DTRACE_DSTATE_EMPTY:
1940 1940 dcpu->dtdsc_drops++;
1941 1941 break;
1942 1942 }
1943 1943
1944 1944 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1945 1945 return (NULL);
1946 1946 }
1947 1947
1948 1948 /*
1949 1949 * The clean list appears to be non-empty. We want to
1950 1950 * move the clean list to the free list; we start by
1951 1951 * moving the clean pointer aside.
1952 1952 */
1953 1953 if (dtrace_casptr(&dcpu->dtdsc_clean,
1954 1954 clean, NULL) != clean) {
1955 1955 /*
1956 1956 * We are in one of two situations:
1957 1957 *
1958 1958 * (a) The clean list was switched to the
1959 1959 * free list by another CPU.
1960 1960 *
1961 1961 * (b) The clean list was added to by the
1962 1962 * cleansing cyclic.
1963 1963 *
1964 1964 * In either of these situations, we can
1965 1965 * just reattempt the free list allocation.
1966 1966 */
1967 1967 goto retry;
1968 1968 }
1969 1969
1970 1970 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1971 1971
1972 1972 /*
1973 1973 * Now we'll move the clean list to our free list.
1974 1974 * It's impossible for this to fail: the only way
1975 1975 * the free list can be updated is through this
1976 1976 * code path, and only one CPU can own the clean list.
1977 1977 * Thus, it would only be possible for this to fail if
1978 1978 * this code were racing with dtrace_dynvar_clean().
1979 1979 * (That is, if dtrace_dynvar_clean() updated the clean
1980 1980 * list, and we ended up racing to update the free
1981 1981 * list.) This race is prevented by the dtrace_sync()
1982 1982 * in dtrace_dynvar_clean() -- which flushes the
1983 1983 * owners of the clean lists out before resetting
1984 1984 * the clean lists.
1985 1985 */
1986 1986 dcpu = &dstate->dtds_percpu[me];
1987 1987 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1988 1988 ASSERT(rval == NULL);
1989 1989 goto retry;
1990 1990 }
1991 1991
1992 1992 dvar = free;
1993 1993 new_free = dvar->dtdv_next;
1994 1994 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1995 1995
1996 1996 /*
1997 1997 * We have now allocated a new chunk. We copy the tuple keys into the
1998 1998 * tuple array and copy any referenced key data into the data space
1999 1999 * following the tuple array. As we do this, we relocate dttk_value
2000 2000 * in the final tuple to point to the key data address in the chunk.
2001 2001 */
2002 2002 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2003 2003 dvar->dtdv_data = (void *)(kdata + ksize);
2004 2004 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2005 2005
2006 2006 for (i = 0; i < nkeys; i++) {
2007 2007 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2008 2008 size_t kesize = key[i].dttk_size;
2009 2009
2010 2010 if (kesize != 0) {
2011 2011 dtrace_bcopy(
2012 2012 (const void *)(uintptr_t)key[i].dttk_value,
2013 2013 (void *)kdata, kesize);
2014 2014 dkey->dttk_value = kdata;
2015 2015 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2016 2016 } else {
2017 2017 dkey->dttk_value = key[i].dttk_value;
2018 2018 }
2019 2019
2020 2020 dkey->dttk_size = kesize;
2021 2021 }
2022 2022
2023 2023 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2024 2024 dvar->dtdv_hashval = hashval;
2025 2025 dvar->dtdv_next = start;
2026 2026
2027 2027 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2028 2028 return (dvar);
2029 2029
2030 2030 /*
2031 2031 * The cas has failed. Either another CPU is adding an element to
2032 2032 * this hash chain, or another CPU is deleting an element from this
2033 2033 * hash chain. The simplest way to deal with both of these cases
2034 2034 * (though not necessarily the most efficient) is to free our
2035 2035 * allocated block and tail-call ourselves. Note that the free is
2036 2036 * to the dirty list and _not_ to the free list. This is to prevent
2037 2037 * races with allocators, above.
2038 2038 */
2039 2039 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2040 2040
2041 2041 dtrace_membar_producer();
2042 2042
2043 2043 do {
2044 2044 free = dcpu->dtdsc_dirty;
2045 2045 dvar->dtdv_next = free;
2046 2046 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2047 2047
2048 2048 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2049 2049 }
2050 2050
2051 2051 /*ARGSUSED*/
2052 2052 static void
2053 2053 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2054 2054 {
2055 2055 if ((int64_t)nval < (int64_t)*oval)
2056 2056 *oval = nval;
2057 2057 }
2058 2058
2059 2059 /*ARGSUSED*/
2060 2060 static void
2061 2061 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2062 2062 {
2063 2063 if ((int64_t)nval > (int64_t)*oval)
2064 2064 *oval = nval;
2065 2065 }
2066 2066
2067 2067 static void
2068 2068 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2069 2069 {
2070 2070 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2071 2071 int64_t val = (int64_t)nval;
2072 2072
2073 2073 if (val < 0) {
2074 2074 for (i = 0; i < zero; i++) {
2075 2075 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2076 2076 quanta[i] += incr;
2077 2077 return;
2078 2078 }
2079 2079 }
2080 2080 } else {
2081 2081 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2082 2082 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2083 2083 quanta[i - 1] += incr;
2084 2084 return;
2085 2085 }
2086 2086 }
2087 2087
2088 2088 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2089 2089 return;
2090 2090 }
2091 2091
2092 2092 ASSERT(0);
2093 2093 }
2094 2094
2095 2095 static void
2096 2096 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2097 2097 {
2098 2098 uint64_t arg = *lquanta++;
2099 2099 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2100 2100 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2101 2101 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2102 2102 int32_t val = (int32_t)nval, level;
2103 2103
2104 2104 ASSERT(step != 0);
2105 2105 ASSERT(levels != 0);
2106 2106
2107 2107 if (val < base) {
2108 2108 /*
2109 2109 * This is an underflow.
2110 2110 */
2111 2111 lquanta[0] += incr;
2112 2112 return;
2113 2113 }
2114 2114
2115 2115 level = (val - base) / step;
2116 2116
2117 2117 if (level < levels) {
2118 2118 lquanta[level + 1] += incr;
2119 2119 return;
2120 2120 }
2121 2121
2122 2122 /*
2123 2123 * This is an overflow.
2124 2124 */
2125 2125 lquanta[levels + 1] += incr;
2126 2126 }
2127 2127
2128 2128 static int
2129 2129 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2130 2130 uint16_t high, uint16_t nsteps, int64_t value)
2131 2131 {
2132 2132 int64_t this = 1, last, next;
2133 2133 int base = 1, order;
2134 2134
2135 2135 ASSERT(factor <= nsteps);
2136 2136 ASSERT(nsteps % factor == 0);
2137 2137
2138 2138 for (order = 0; order < low; order++)
2139 2139 this *= factor;
2140 2140
2141 2141 /*
2142 2142 * If our value is less than our factor taken to the power of the
2143 2143 * low order of magnitude, it goes into the zeroth bucket.
2144 2144 */
2145 2145 if (value < (last = this))
2146 2146 return (0);
2147 2147
2148 2148 for (this *= factor; order <= high; order++) {
2149 2149 int nbuckets = this > nsteps ? nsteps : this;
2150 2150
2151 2151 if ((next = this * factor) < this) {
2152 2152 /*
2153 2153 * We should not generally get log/linear quantizations
2154 2154 * with a high magnitude that allows 64-bits to
2155 2155 * overflow, but we nonetheless protect against this
2156 2156 * by explicitly checking for overflow, and clamping
2157 2157 * our value accordingly.
2158 2158 */
2159 2159 value = this - 1;
2160 2160 }
2161 2161
2162 2162 if (value < this) {
2163 2163 /*
2164 2164 * If our value lies within this order of magnitude,
2165 2165 * determine its position by taking the offset within
2166 2166 * the order of magnitude, dividing by the bucket
2167 2167 * width, and adding to our (accumulated) base.
2168 2168 */
2169 2169 return (base + (value - last) / (this / nbuckets));
2170 2170 }
2171 2171
2172 2172 base += nbuckets - (nbuckets / factor);
2173 2173 last = this;
2174 2174 this = next;
2175 2175 }
2176 2176
2177 2177 /*
2178 2178 * Our value is greater than or equal to our factor taken to the
2179 2179 * power of one plus the high magnitude -- return the top bucket.
2180 2180 */
2181 2181 return (base);
2182 2182 }
2183 2183
2184 2184 static void
2185 2185 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2186 2186 {
2187 2187 uint64_t arg = *llquanta++;
2188 2188 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2189 2189 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2190 2190 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2191 2191 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2192 2192
2193 2193 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2194 2194 low, high, nsteps, nval)] += incr;
2195 2195 }
2196 2196
2197 2197 /*ARGSUSED*/
2198 2198 static void
2199 2199 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2200 2200 {
2201 2201 data[0]++;
2202 2202 data[1] += nval;
2203 2203 }
2204 2204
2205 2205 /*ARGSUSED*/
2206 2206 static void
2207 2207 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2208 2208 {
2209 2209 int64_t snval = (int64_t)nval;
2210 2210 uint64_t tmp[2];
2211 2211
2212 2212 data[0]++;
2213 2213 data[1] += nval;
2214 2214
2215 2215 /*
2216 2216 * What we want to say here is:
2217 2217 *
2218 2218 * data[2] += nval * nval;
2219 2219 *
2220 2220 * But given that nval is 64-bit, we could easily overflow, so
2221 2221 * we do this as 128-bit arithmetic.
2222 2222 */
2223 2223 if (snval < 0)
2224 2224 snval = -snval;
2225 2225
2226 2226 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2227 2227 dtrace_add_128(data + 2, tmp, data + 2);
2228 2228 }
2229 2229
2230 2230 /*ARGSUSED*/
2231 2231 static void
2232 2232 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2233 2233 {
2234 2234 *oval = *oval + 1;
2235 2235 }
2236 2236
2237 2237 /*ARGSUSED*/
2238 2238 static void
2239 2239 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2240 2240 {
2241 2241 *oval += nval;
2242 2242 }
2243 2243
2244 2244 /*
2245 2245 * Aggregate given the tuple in the principal data buffer, and the aggregating
2246 2246 * action denoted by the specified dtrace_aggregation_t. The aggregation
2247 2247 * buffer is specified as the buf parameter. This routine does not return
2248 2248 * failure; if there is no space in the aggregation buffer, the data will be
2249 2249 * dropped, and a corresponding counter incremented.
2250 2250 */
2251 2251 static void
2252 2252 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2253 2253 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2254 2254 {
2255 2255 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2256 2256 uint32_t i, ndx, size, fsize;
2257 2257 uint32_t align = sizeof (uint64_t) - 1;
2258 2258 dtrace_aggbuffer_t *agb;
2259 2259 dtrace_aggkey_t *key;
2260 2260 uint32_t hashval = 0, limit, isstr;
2261 2261 caddr_t tomax, data, kdata;
2262 2262 dtrace_actkind_t action;
2263 2263 dtrace_action_t *act;
2264 2264 uintptr_t offs;
2265 2265
2266 2266 if (buf == NULL)
2267 2267 return;
2268 2268
2269 2269 if (!agg->dtag_hasarg) {
2270 2270 /*
2271 2271 * Currently, only quantize() and lquantize() take additional
2272 2272 * arguments, and they have the same semantics: an increment
2273 2273 * value that defaults to 1 when not present. If additional
2274 2274 * aggregating actions take arguments, the setting of the
2275 2275 * default argument value will presumably have to become more
2276 2276 * sophisticated...
2277 2277 */
2278 2278 arg = 1;
2279 2279 }
2280 2280
2281 2281 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2282 2282 size = rec->dtrd_offset - agg->dtag_base;
2283 2283 fsize = size + rec->dtrd_size;
2284 2284
2285 2285 ASSERT(dbuf->dtb_tomax != NULL);
2286 2286 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2287 2287
2288 2288 if ((tomax = buf->dtb_tomax) == NULL) {
2289 2289 dtrace_buffer_drop(buf);
2290 2290 return;
2291 2291 }
2292 2292
2293 2293 /*
2294 2294 * The metastructure is always at the bottom of the buffer.
2295 2295 */
2296 2296 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2297 2297 sizeof (dtrace_aggbuffer_t));
2298 2298
2299 2299 if (buf->dtb_offset == 0) {
2300 2300 /*
2301 2301 * We just kludge up approximately 1/8th of the size to be
2302 2302 * buckets. If this guess ends up being routinely
2303 2303 * off-the-mark, we may need to dynamically readjust this
2304 2304 * based on past performance.
2305 2305 */
2306 2306 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2307 2307
2308 2308 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2309 2309 (uintptr_t)tomax || hashsize == 0) {
2310 2310 /*
2311 2311 * We've been given a ludicrously small buffer;
2312 2312 * increment our drop count and leave.
2313 2313 */
2314 2314 dtrace_buffer_drop(buf);
2315 2315 return;
2316 2316 }
2317 2317
2318 2318 /*
2319 2319 * And now, a pathetic attempt to try to get a an odd (or
2320 2320 * perchance, a prime) hash size for better hash distribution.
2321 2321 */
2322 2322 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2323 2323 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2324 2324
2325 2325 agb->dtagb_hashsize = hashsize;
2326 2326 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2327 2327 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2328 2328 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2329 2329
2330 2330 for (i = 0; i < agb->dtagb_hashsize; i++)
2331 2331 agb->dtagb_hash[i] = NULL;
2332 2332 }
2333 2333
2334 2334 ASSERT(agg->dtag_first != NULL);
2335 2335 ASSERT(agg->dtag_first->dta_intuple);
2336 2336
2337 2337 /*
2338 2338 * Calculate the hash value based on the key. Note that we _don't_
2339 2339 * include the aggid in the hashing (but we will store it as part of
2340 2340 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2341 2341 * algorithm: a simple, quick algorithm that has no known funnels, and
2342 2342 * gets good distribution in practice. The efficacy of the hashing
2343 2343 * algorithm (and a comparison with other algorithms) may be found by
2344 2344 * running the ::dtrace_aggstat MDB dcmd.
2345 2345 */
2346 2346 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2347 2347 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2348 2348 limit = i + act->dta_rec.dtrd_size;
2349 2349 ASSERT(limit <= size);
2350 2350 isstr = DTRACEACT_ISSTRING(act);
2351 2351
2352 2352 for (; i < limit; i++) {
2353 2353 hashval += data[i];
2354 2354 hashval += (hashval << 10);
2355 2355 hashval ^= (hashval >> 6);
2356 2356
2357 2357 if (isstr && data[i] == '\0')
2358 2358 break;
2359 2359 }
2360 2360 }
2361 2361
2362 2362 hashval += (hashval << 3);
2363 2363 hashval ^= (hashval >> 11);
2364 2364 hashval += (hashval << 15);
2365 2365
2366 2366 /*
2367 2367 * Yes, the divide here is expensive -- but it's generally the least
2368 2368 * of the performance issues given the amount of data that we iterate
2369 2369 * over to compute hash values, compare data, etc.
2370 2370 */
2371 2371 ndx = hashval % agb->dtagb_hashsize;
2372 2372
2373 2373 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2374 2374 ASSERT((caddr_t)key >= tomax);
2375 2375 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2376 2376
2377 2377 if (hashval != key->dtak_hashval || key->dtak_size != size)
2378 2378 continue;
2379 2379
2380 2380 kdata = key->dtak_data;
2381 2381 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2382 2382
2383 2383 for (act = agg->dtag_first; act->dta_intuple;
2384 2384 act = act->dta_next) {
2385 2385 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2386 2386 limit = i + act->dta_rec.dtrd_size;
2387 2387 ASSERT(limit <= size);
2388 2388 isstr = DTRACEACT_ISSTRING(act);
2389 2389
2390 2390 for (; i < limit; i++) {
2391 2391 if (kdata[i] != data[i])
2392 2392 goto next;
2393 2393
2394 2394 if (isstr && data[i] == '\0')
2395 2395 break;
2396 2396 }
2397 2397 }
2398 2398
2399 2399 if (action != key->dtak_action) {
2400 2400 /*
2401 2401 * We are aggregating on the same value in the same
2402 2402 * aggregation with two different aggregating actions.
2403 2403 * (This should have been picked up in the compiler,
2404 2404 * so we may be dealing with errant or devious DIF.)
2405 2405 * This is an error condition; we indicate as much,
2406 2406 * and return.
2407 2407 */
2408 2408 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2409 2409 return;
2410 2410 }
2411 2411
2412 2412 /*
2413 2413 * This is a hit: we need to apply the aggregator to
2414 2414 * the value at this key.
2415 2415 */
2416 2416 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2417 2417 return;
2418 2418 next:
2419 2419 continue;
2420 2420 }
2421 2421
2422 2422 /*
2423 2423 * We didn't find it. We need to allocate some zero-filled space,
2424 2424 * link it into the hash table appropriately, and apply the aggregator
2425 2425 * to the (zero-filled) value.
2426 2426 */
2427 2427 offs = buf->dtb_offset;
2428 2428 while (offs & (align - 1))
2429 2429 offs += sizeof (uint32_t);
2430 2430
2431 2431 /*
2432 2432 * If we don't have enough room to both allocate a new key _and_
2433 2433 * its associated data, increment the drop count and return.
2434 2434 */
2435 2435 if ((uintptr_t)tomax + offs + fsize >
2436 2436 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2437 2437 dtrace_buffer_drop(buf);
2438 2438 return;
2439 2439 }
2440 2440
2441 2441 /*CONSTCOND*/
2442 2442 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2443 2443 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2444 2444 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2445 2445
2446 2446 key->dtak_data = kdata = tomax + offs;
2447 2447 buf->dtb_offset = offs + fsize;
2448 2448
2449 2449 /*
2450 2450 * Now copy the data across.
2451 2451 */
2452 2452 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2453 2453
2454 2454 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2455 2455 kdata[i] = data[i];
2456 2456
2457 2457 /*
2458 2458 * Because strings are not zeroed out by default, we need to iterate
2459 2459 * looking for actions that store strings, and we need to explicitly
2460 2460 * pad these strings out with zeroes.
2461 2461 */
2462 2462 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2463 2463 int nul;
2464 2464
2465 2465 if (!DTRACEACT_ISSTRING(act))
2466 2466 continue;
2467 2467
2468 2468 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2469 2469 limit = i + act->dta_rec.dtrd_size;
2470 2470 ASSERT(limit <= size);
2471 2471
2472 2472 for (nul = 0; i < limit; i++) {
2473 2473 if (nul) {
2474 2474 kdata[i] = '\0';
2475 2475 continue;
2476 2476 }
2477 2477
2478 2478 if (data[i] != '\0')
2479 2479 continue;
2480 2480
2481 2481 nul = 1;
2482 2482 }
2483 2483 }
2484 2484
2485 2485 for (i = size; i < fsize; i++)
2486 2486 kdata[i] = 0;
2487 2487
2488 2488 key->dtak_hashval = hashval;
2489 2489 key->dtak_size = size;
2490 2490 key->dtak_action = action;
2491 2491 key->dtak_next = agb->dtagb_hash[ndx];
2492 2492 agb->dtagb_hash[ndx] = key;
2493 2493
2494 2494 /*
2495 2495 * Finally, apply the aggregator.
2496 2496 */
2497 2497 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2498 2498 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2499 2499 }
2500 2500
2501 2501 /*
2502 2502 * Given consumer state, this routine finds a speculation in the INACTIVE
2503 2503 * state and transitions it into the ACTIVE state. If there is no speculation
2504 2504 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2505 2505 * incremented -- it is up to the caller to take appropriate action.
2506 2506 */
2507 2507 static int
2508 2508 dtrace_speculation(dtrace_state_t *state)
2509 2509 {
2510 2510 int i = 0;
2511 2511 dtrace_speculation_state_t current;
2512 2512 uint32_t *stat = &state->dts_speculations_unavail, count;
2513 2513
2514 2514 while (i < state->dts_nspeculations) {
2515 2515 dtrace_speculation_t *spec = &state->dts_speculations[i];
2516 2516
2517 2517 current = spec->dtsp_state;
2518 2518
2519 2519 if (current != DTRACESPEC_INACTIVE) {
2520 2520 if (current == DTRACESPEC_COMMITTINGMANY ||
2521 2521 current == DTRACESPEC_COMMITTING ||
2522 2522 current == DTRACESPEC_DISCARDING)
2523 2523 stat = &state->dts_speculations_busy;
2524 2524 i++;
2525 2525 continue;
2526 2526 }
2527 2527
2528 2528 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2529 2529 current, DTRACESPEC_ACTIVE) == current)
2530 2530 return (i + 1);
2531 2531 }
2532 2532
2533 2533 /*
2534 2534 * We couldn't find a speculation. If we found as much as a single
2535 2535 * busy speculation buffer, we'll attribute this failure as "busy"
2536 2536 * instead of "unavail".
2537 2537 */
2538 2538 do {
2539 2539 count = *stat;
2540 2540 } while (dtrace_cas32(stat, count, count + 1) != count);
2541 2541
2542 2542 return (0);
2543 2543 }
2544 2544
2545 2545 /*
2546 2546 * This routine commits an active speculation. If the specified speculation
2547 2547 * is not in a valid state to perform a commit(), this routine will silently do
2548 2548 * nothing. The state of the specified speculation is transitioned according
2549 2549 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2550 2550 */
2551 2551 static void
2552 2552 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2553 2553 dtrace_specid_t which)
2554 2554 {
2555 2555 dtrace_speculation_t *spec;
2556 2556 dtrace_buffer_t *src, *dest;
2557 2557 uintptr_t daddr, saddr, dlimit, slimit;
2558 2558 dtrace_speculation_state_t current, new;
2559 2559 intptr_t offs;
2560 2560 uint64_t timestamp;
2561 2561
2562 2562 if (which == 0)
2563 2563 return;
2564 2564
2565 2565 if (which > state->dts_nspeculations) {
2566 2566 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2567 2567 return;
2568 2568 }
2569 2569
2570 2570 spec = &state->dts_speculations[which - 1];
2571 2571 src = &spec->dtsp_buffer[cpu];
2572 2572 dest = &state->dts_buffer[cpu];
2573 2573
2574 2574 do {
2575 2575 current = spec->dtsp_state;
2576 2576
2577 2577 if (current == DTRACESPEC_COMMITTINGMANY)
2578 2578 break;
2579 2579
2580 2580 switch (current) {
2581 2581 case DTRACESPEC_INACTIVE:
2582 2582 case DTRACESPEC_DISCARDING:
2583 2583 return;
2584 2584
2585 2585 case DTRACESPEC_COMMITTING:
2586 2586 /*
2587 2587 * This is only possible if we are (a) commit()'ing
2588 2588 * without having done a prior speculate() on this CPU
2589 2589 * and (b) racing with another commit() on a different
2590 2590 * CPU. There's nothing to do -- we just assert that
2591 2591 * our offset is 0.
2592 2592 */
2593 2593 ASSERT(src->dtb_offset == 0);
2594 2594 return;
2595 2595
2596 2596 case DTRACESPEC_ACTIVE:
2597 2597 new = DTRACESPEC_COMMITTING;
2598 2598 break;
2599 2599
2600 2600 case DTRACESPEC_ACTIVEONE:
2601 2601 /*
2602 2602 * This speculation is active on one CPU. If our
2603 2603 * buffer offset is non-zero, we know that the one CPU
2604 2604 * must be us. Otherwise, we are committing on a
2605 2605 * different CPU from the speculate(), and we must
2606 2606 * rely on being asynchronously cleaned.
2607 2607 */
2608 2608 if (src->dtb_offset != 0) {
2609 2609 new = DTRACESPEC_COMMITTING;
2610 2610 break;
2611 2611 }
2612 2612 /*FALLTHROUGH*/
2613 2613
2614 2614 case DTRACESPEC_ACTIVEMANY:
2615 2615 new = DTRACESPEC_COMMITTINGMANY;
2616 2616 break;
2617 2617
2618 2618 default:
2619 2619 ASSERT(0);
2620 2620 }
2621 2621 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2622 2622 current, new) != current);
2623 2623
2624 2624 /*
2625 2625 * We have set the state to indicate that we are committing this
2626 2626 * speculation. Now reserve the necessary space in the destination
2627 2627 * buffer.
2628 2628 */
2629 2629 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2630 2630 sizeof (uint64_t), state, NULL)) < 0) {
2631 2631 dtrace_buffer_drop(dest);
2632 2632 goto out;
2633 2633 }
2634 2634
2635 2635 /*
2636 2636 * We have sufficient space to copy the speculative buffer into the
2637 2637 * primary buffer. First, modify the speculative buffer, filling
2638 2638 * in the timestamp of all entries with the current time. The data
2639 2639 * must have the commit() time rather than the time it was traced,
2640 2640 * so that all entries in the primary buffer are in timestamp order.
2641 2641 */
2642 2642 timestamp = dtrace_gethrtime();
2643 2643 saddr = (uintptr_t)src->dtb_tomax;
2644 2644 slimit = saddr + src->dtb_offset;
2645 2645 while (saddr < slimit) {
2646 2646 size_t size;
2647 2647 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2648 2648
2649 2649 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2650 2650 saddr += sizeof (dtrace_epid_t);
2651 2651 continue;
2652 2652 }
2653 2653 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2654 2654 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2655 2655
2656 2656 ASSERT3U(saddr + size, <=, slimit);
2657 2657 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2658 2658 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2659 2659
2660 2660 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2661 2661
2662 2662 saddr += size;
2663 2663 }
2664 2664
2665 2665 /*
2666 2666 * Copy the buffer across. (Note that this is a
2667 2667 * highly subobtimal bcopy(); in the unlikely event that this becomes
2668 2668 * a serious performance issue, a high-performance DTrace-specific
2669 2669 * bcopy() should obviously be invented.)
2670 2670 */
2671 2671 daddr = (uintptr_t)dest->dtb_tomax + offs;
2672 2672 dlimit = daddr + src->dtb_offset;
2673 2673 saddr = (uintptr_t)src->dtb_tomax;
2674 2674
2675 2675 /*
2676 2676 * First, the aligned portion.
2677 2677 */
2678 2678 while (dlimit - daddr >= sizeof (uint64_t)) {
2679 2679 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2680 2680
2681 2681 daddr += sizeof (uint64_t);
2682 2682 saddr += sizeof (uint64_t);
2683 2683 }
2684 2684
2685 2685 /*
2686 2686 * Now any left-over bit...
2687 2687 */
2688 2688 while (dlimit - daddr)
2689 2689 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2690 2690
2691 2691 /*
2692 2692 * Finally, commit the reserved space in the destination buffer.
2693 2693 */
2694 2694 dest->dtb_offset = offs + src->dtb_offset;
2695 2695
2696 2696 out:
2697 2697 /*
2698 2698 * If we're lucky enough to be the only active CPU on this speculation
2699 2699 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2700 2700 */
2701 2701 if (current == DTRACESPEC_ACTIVE ||
2702 2702 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2703 2703 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2704 2704 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2705 2705
2706 2706 ASSERT(rval == DTRACESPEC_COMMITTING);
2707 2707 }
2708 2708
2709 2709 src->dtb_offset = 0;
2710 2710 src->dtb_xamot_drops += src->dtb_drops;
2711 2711 src->dtb_drops = 0;
2712 2712 }
2713 2713
2714 2714 /*
2715 2715 * This routine discards an active speculation. If the specified speculation
2716 2716 * is not in a valid state to perform a discard(), this routine will silently
2717 2717 * do nothing. The state of the specified speculation is transitioned
2718 2718 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2719 2719 */
2720 2720 static void
2721 2721 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2722 2722 dtrace_specid_t which)
2723 2723 {
2724 2724 dtrace_speculation_t *spec;
2725 2725 dtrace_speculation_state_t current, new;
2726 2726 dtrace_buffer_t *buf;
2727 2727
2728 2728 if (which == 0)
2729 2729 return;
2730 2730
2731 2731 if (which > state->dts_nspeculations) {
2732 2732 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2733 2733 return;
2734 2734 }
2735 2735
2736 2736 spec = &state->dts_speculations[which - 1];
2737 2737 buf = &spec->dtsp_buffer[cpu];
2738 2738
2739 2739 do {
2740 2740 current = spec->dtsp_state;
2741 2741
2742 2742 switch (current) {
2743 2743 case DTRACESPEC_INACTIVE:
2744 2744 case DTRACESPEC_COMMITTINGMANY:
2745 2745 case DTRACESPEC_COMMITTING:
2746 2746 case DTRACESPEC_DISCARDING:
2747 2747 return;
2748 2748
2749 2749 case DTRACESPEC_ACTIVE:
2750 2750 case DTRACESPEC_ACTIVEMANY:
2751 2751 new = DTRACESPEC_DISCARDING;
2752 2752 break;
2753 2753
2754 2754 case DTRACESPEC_ACTIVEONE:
2755 2755 if (buf->dtb_offset != 0) {
2756 2756 new = DTRACESPEC_INACTIVE;
2757 2757 } else {
2758 2758 new = DTRACESPEC_DISCARDING;
2759 2759 }
2760 2760 break;
2761 2761
2762 2762 default:
2763 2763 ASSERT(0);
2764 2764 }
2765 2765 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2766 2766 current, new) != current);
2767 2767
2768 2768 buf->dtb_offset = 0;
2769 2769 buf->dtb_drops = 0;
2770 2770 }
2771 2771
2772 2772 /*
2773 2773 * Note: not called from probe context. This function is called
2774 2774 * asynchronously from cross call context to clean any speculations that are
2775 2775 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2776 2776 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2777 2777 * speculation.
2778 2778 */
2779 2779 static void
2780 2780 dtrace_speculation_clean_here(dtrace_state_t *state)
2781 2781 {
2782 2782 dtrace_icookie_t cookie;
2783 2783 processorid_t cpu = CPU->cpu_id;
2784 2784 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2785 2785 dtrace_specid_t i;
2786 2786
2787 2787 cookie = dtrace_interrupt_disable();
2788 2788
2789 2789 if (dest->dtb_tomax == NULL) {
2790 2790 dtrace_interrupt_enable(cookie);
2791 2791 return;
2792 2792 }
2793 2793
2794 2794 for (i = 0; i < state->dts_nspeculations; i++) {
2795 2795 dtrace_speculation_t *spec = &state->dts_speculations[i];
2796 2796 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2797 2797
2798 2798 if (src->dtb_tomax == NULL)
2799 2799 continue;
2800 2800
2801 2801 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2802 2802 src->dtb_offset = 0;
2803 2803 continue;
2804 2804 }
2805 2805
2806 2806 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2807 2807 continue;
2808 2808
2809 2809 if (src->dtb_offset == 0)
2810 2810 continue;
2811 2811
2812 2812 dtrace_speculation_commit(state, cpu, i + 1);
2813 2813 }
2814 2814
2815 2815 dtrace_interrupt_enable(cookie);
2816 2816 }
2817 2817
2818 2818 /*
2819 2819 * Note: not called from probe context. This function is called
2820 2820 * asynchronously (and at a regular interval) to clean any speculations that
2821 2821 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2822 2822 * is work to be done, it cross calls all CPUs to perform that work;
2823 2823 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2824 2824 * INACTIVE state until they have been cleaned by all CPUs.
2825 2825 */
2826 2826 static void
2827 2827 dtrace_speculation_clean(dtrace_state_t *state)
2828 2828 {
2829 2829 int work = 0, rv;
2830 2830 dtrace_specid_t i;
2831 2831
2832 2832 for (i = 0; i < state->dts_nspeculations; i++) {
2833 2833 dtrace_speculation_t *spec = &state->dts_speculations[i];
2834 2834
2835 2835 ASSERT(!spec->dtsp_cleaning);
2836 2836
2837 2837 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2838 2838 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2839 2839 continue;
2840 2840
2841 2841 work++;
2842 2842 spec->dtsp_cleaning = 1;
2843 2843 }
2844 2844
2845 2845 if (!work)
2846 2846 return;
2847 2847
2848 2848 dtrace_xcall(DTRACE_CPUALL,
2849 2849 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2850 2850
2851 2851 /*
2852 2852 * We now know that all CPUs have committed or discarded their
2853 2853 * speculation buffers, as appropriate. We can now set the state
2854 2854 * to inactive.
2855 2855 */
2856 2856 for (i = 0; i < state->dts_nspeculations; i++) {
2857 2857 dtrace_speculation_t *spec = &state->dts_speculations[i];
2858 2858 dtrace_speculation_state_t current, new;
2859 2859
2860 2860 if (!spec->dtsp_cleaning)
2861 2861 continue;
2862 2862
2863 2863 current = spec->dtsp_state;
2864 2864 ASSERT(current == DTRACESPEC_DISCARDING ||
2865 2865 current == DTRACESPEC_COMMITTINGMANY);
2866 2866
2867 2867 new = DTRACESPEC_INACTIVE;
2868 2868
2869 2869 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2870 2870 ASSERT(rv == current);
2871 2871 spec->dtsp_cleaning = 0;
2872 2872 }
2873 2873 }
2874 2874
2875 2875 /*
2876 2876 * Called as part of a speculate() to get the speculative buffer associated
2877 2877 * with a given speculation. Returns NULL if the specified speculation is not
2878 2878 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2879 2879 * the active CPU is not the specified CPU -- the speculation will be
2880 2880 * atomically transitioned into the ACTIVEMANY state.
2881 2881 */
2882 2882 static dtrace_buffer_t *
2883 2883 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2884 2884 dtrace_specid_t which)
2885 2885 {
2886 2886 dtrace_speculation_t *spec;
2887 2887 dtrace_speculation_state_t current, new;
2888 2888 dtrace_buffer_t *buf;
2889 2889
2890 2890 if (which == 0)
2891 2891 return (NULL);
2892 2892
2893 2893 if (which > state->dts_nspeculations) {
2894 2894 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2895 2895 return (NULL);
2896 2896 }
2897 2897
2898 2898 spec = &state->dts_speculations[which - 1];
2899 2899 buf = &spec->dtsp_buffer[cpuid];
2900 2900
2901 2901 do {
2902 2902 current = spec->dtsp_state;
2903 2903
2904 2904 switch (current) {
2905 2905 case DTRACESPEC_INACTIVE:
2906 2906 case DTRACESPEC_COMMITTINGMANY:
2907 2907 case DTRACESPEC_DISCARDING:
2908 2908 return (NULL);
2909 2909
2910 2910 case DTRACESPEC_COMMITTING:
2911 2911 ASSERT(buf->dtb_offset == 0);
2912 2912 return (NULL);
2913 2913
2914 2914 case DTRACESPEC_ACTIVEONE:
2915 2915 /*
2916 2916 * This speculation is currently active on one CPU.
2917 2917 * Check the offset in the buffer; if it's non-zero,
2918 2918 * that CPU must be us (and we leave the state alone).
2919 2919 * If it's zero, assume that we're starting on a new
2920 2920 * CPU -- and change the state to indicate that the
2921 2921 * speculation is active on more than one CPU.
2922 2922 */
2923 2923 if (buf->dtb_offset != 0)
2924 2924 return (buf);
2925 2925
2926 2926 new = DTRACESPEC_ACTIVEMANY;
2927 2927 break;
2928 2928
2929 2929 case DTRACESPEC_ACTIVEMANY:
2930 2930 return (buf);
2931 2931
2932 2932 case DTRACESPEC_ACTIVE:
2933 2933 new = DTRACESPEC_ACTIVEONE;
2934 2934 break;
2935 2935
2936 2936 default:
2937 2937 ASSERT(0);
2938 2938 }
2939 2939 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2940 2940 current, new) != current);
2941 2941
2942 2942 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2943 2943 return (buf);
2944 2944 }
2945 2945
2946 2946 /*
2947 2947 * Return a string. In the event that the user lacks the privilege to access
2948 2948 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2949 2949 * don't fail access checking.
2950 2950 *
2951 2951 * dtrace_dif_variable() uses this routine as a helper for various
2952 2952 * builtin values such as 'execname' and 'probefunc.'
2953 2953 */
2954 2954 uintptr_t
2955 2955 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2956 2956 dtrace_mstate_t *mstate)
2957 2957 {
2958 2958 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2959 2959 uintptr_t ret;
2960 2960 size_t strsz;
2961 2961
2962 2962 /*
2963 2963 * The easy case: this probe is allowed to read all of memory, so
2964 2964 * we can just return this as a vanilla pointer.
2965 2965 */
2966 2966 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2967 2967 return (addr);
2968 2968
2969 2969 /*
2970 2970 * This is the tougher case: we copy the string in question from
2971 2971 * kernel memory into scratch memory and return it that way: this
2972 2972 * ensures that we won't trip up when access checking tests the
2973 2973 * BYREF return value.
2974 2974 */
2975 2975 strsz = dtrace_strlen((char *)addr, size) + 1;
2976 2976
2977 2977 if (mstate->dtms_scratch_ptr + strsz >
2978 2978 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2979 2979 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2980 2980 return (NULL);
2981 2981 }
2982 2982
2983 2983 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2984 2984 strsz);
2985 2985 ret = mstate->dtms_scratch_ptr;
2986 2986 mstate->dtms_scratch_ptr += strsz;
2987 2987 return (ret);
2988 2988 }
2989 2989
2990 2990 /*
2991 2991 * This function implements the DIF emulator's variable lookups. The emulator
2992 2992 * passes a reserved variable identifier and optional built-in array index.
2993 2993 */
2994 2994 static uint64_t
2995 2995 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2996 2996 uint64_t ndx)
2997 2997 {
2998 2998 /*
2999 2999 * If we're accessing one of the uncached arguments, we'll turn this
3000 3000 * into a reference in the args array.
3001 3001 */
3002 3002 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3003 3003 ndx = v - DIF_VAR_ARG0;
3004 3004 v = DIF_VAR_ARGS;
3005 3005 }
3006 3006
3007 3007 switch (v) {
3008 3008 case DIF_VAR_ARGS:
3009 3009 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3010 3010 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3011 3011 CPU_DTRACE_KPRIV;
3012 3012 return (0);
3013 3013 }
3014 3014
3015 3015 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3016 3016 if (ndx >= sizeof (mstate->dtms_arg) /
3017 3017 sizeof (mstate->dtms_arg[0])) {
3018 3018 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3019 3019 dtrace_provider_t *pv;
3020 3020 uint64_t val;
3021 3021
3022 3022 pv = mstate->dtms_probe->dtpr_provider;
3023 3023 if (pv->dtpv_pops.dtps_getargval != NULL)
3024 3024 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3025 3025 mstate->dtms_probe->dtpr_id,
3026 3026 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3027 3027 else
3028 3028 val = dtrace_getarg(ndx, aframes);
3029 3029
3030 3030 /*
3031 3031 * This is regrettably required to keep the compiler
3032 3032 * from tail-optimizing the call to dtrace_getarg().
3033 3033 * The condition always evaluates to true, but the
3034 3034 * compiler has no way of figuring that out a priori.
3035 3035 * (None of this would be necessary if the compiler
3036 3036 * could be relied upon to _always_ tail-optimize
3037 3037 * the call to dtrace_getarg() -- but it can't.)
3038 3038 */
3039 3039 if (mstate->dtms_probe != NULL)
3040 3040 return (val);
3041 3041
3042 3042 ASSERT(0);
3043 3043 }
3044 3044
3045 3045 return (mstate->dtms_arg[ndx]);
3046 3046
3047 3047 case DIF_VAR_UREGS: {
3048 3048 klwp_t *lwp;
3049 3049
3050 3050 if (!dtrace_priv_proc(state, mstate))
3051 3051 return (0);
3052 3052
3053 3053 if ((lwp = curthread->t_lwp) == NULL) {
3054 3054 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3055 3055 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3056 3056 return (0);
3057 3057 }
3058 3058
3059 3059 return (dtrace_getreg(lwp->lwp_regs, ndx));
3060 3060 }
3061 3061
3062 3062 case DIF_VAR_VMREGS: {
3063 3063 uint64_t rval;
3064 3064
3065 3065 if (!dtrace_priv_kernel(state))
3066 3066 return (0);
3067 3067
3068 3068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3069 3069
3070 3070 rval = dtrace_getvmreg(ndx,
3071 3071 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3072 3072
3073 3073 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3074 3074
3075 3075 return (rval);
3076 3076 }
3077 3077
3078 3078 case DIF_VAR_CURTHREAD:
3079 3079 if (!dtrace_priv_proc(state, mstate))
3080 3080 return (0);
3081 3081 return ((uint64_t)(uintptr_t)curthread);
3082 3082
3083 3083 case DIF_VAR_TIMESTAMP:
3084 3084 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3085 3085 mstate->dtms_timestamp = dtrace_gethrtime();
3086 3086 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3087 3087 }
3088 3088 return (mstate->dtms_timestamp);
3089 3089
3090 3090 case DIF_VAR_VTIMESTAMP:
3091 3091 ASSERT(dtrace_vtime_references != 0);
3092 3092 return (curthread->t_dtrace_vtime);
3093 3093
3094 3094 case DIF_VAR_WALLTIMESTAMP:
3095 3095 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3096 3096 mstate->dtms_walltimestamp = dtrace_gethrestime();
3097 3097 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3098 3098 }
3099 3099 return (mstate->dtms_walltimestamp);
3100 3100
3101 3101 case DIF_VAR_IPL:
3102 3102 if (!dtrace_priv_kernel(state))
3103 3103 return (0);
3104 3104 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3105 3105 mstate->dtms_ipl = dtrace_getipl();
3106 3106 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3107 3107 }
3108 3108 return (mstate->dtms_ipl);
3109 3109
3110 3110 case DIF_VAR_EPID:
3111 3111 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3112 3112 return (mstate->dtms_epid);
3113 3113
3114 3114 case DIF_VAR_ID:
3115 3115 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3116 3116 return (mstate->dtms_probe->dtpr_id);
3117 3117
3118 3118 case DIF_VAR_STACKDEPTH:
3119 3119 if (!dtrace_priv_kernel(state))
3120 3120 return (0);
3121 3121 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3122 3122 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3123 3123
3124 3124 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3125 3125 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3126 3126 }
3127 3127 return (mstate->dtms_stackdepth);
3128 3128
3129 3129 case DIF_VAR_USTACKDEPTH:
3130 3130 if (!dtrace_priv_proc(state, mstate))
3131 3131 return (0);
3132 3132 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3133 3133 /*
3134 3134 * See comment in DIF_VAR_PID.
3135 3135 */
3136 3136 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3137 3137 CPU_ON_INTR(CPU)) {
3138 3138 mstate->dtms_ustackdepth = 0;
3139 3139 } else {
3140 3140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3141 3141 mstate->dtms_ustackdepth =
3142 3142 dtrace_getustackdepth();
3143 3143 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3144 3144 }
3145 3145 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3146 3146 }
3147 3147 return (mstate->dtms_ustackdepth);
3148 3148
3149 3149 case DIF_VAR_CALLER:
3150 3150 if (!dtrace_priv_kernel(state))
3151 3151 return (0);
3152 3152 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3153 3153 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3154 3154
3155 3155 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3156 3156 /*
3157 3157 * If this is an unanchored probe, we are
3158 3158 * required to go through the slow path:
3159 3159 * dtrace_caller() only guarantees correct
3160 3160 * results for anchored probes.
3161 3161 */
3162 3162 pc_t caller[2];
3163 3163
3164 3164 dtrace_getpcstack(caller, 2, aframes,
3165 3165 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3166 3166 mstate->dtms_caller = caller[1];
3167 3167 } else if ((mstate->dtms_caller =
3168 3168 dtrace_caller(aframes)) == -1) {
3169 3169 /*
3170 3170 * We have failed to do this the quick way;
3171 3171 * we must resort to the slower approach of
3172 3172 * calling dtrace_getpcstack().
3173 3173 */
3174 3174 pc_t caller;
3175 3175
3176 3176 dtrace_getpcstack(&caller, 1, aframes, NULL);
3177 3177 mstate->dtms_caller = caller;
3178 3178 }
3179 3179
3180 3180 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3181 3181 }
3182 3182 return (mstate->dtms_caller);
3183 3183
3184 3184 case DIF_VAR_UCALLER:
3185 3185 if (!dtrace_priv_proc(state, mstate))
3186 3186 return (0);
3187 3187
3188 3188 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3189 3189 uint64_t ustack[3];
3190 3190
3191 3191 /*
3192 3192 * dtrace_getupcstack() fills in the first uint64_t
3193 3193 * with the current PID. The second uint64_t will
3194 3194 * be the program counter at user-level. The third
3195 3195 * uint64_t will contain the caller, which is what
3196 3196 * we're after.
3197 3197 */
3198 3198 ustack[2] = NULL;
3199 3199 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3200 3200 dtrace_getupcstack(ustack, 3);
3201 3201 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3202 3202 mstate->dtms_ucaller = ustack[2];
3203 3203 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3204 3204 }
3205 3205
3206 3206 return (mstate->dtms_ucaller);
3207 3207
3208 3208 case DIF_VAR_PROBEPROV:
3209 3209 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3210 3210 return (dtrace_dif_varstr(
3211 3211 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3212 3212 state, mstate));
3213 3213
3214 3214 case DIF_VAR_PROBEMOD:
3215 3215 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3216 3216 return (dtrace_dif_varstr(
3217 3217 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3218 3218 state, mstate));
3219 3219
3220 3220 case DIF_VAR_PROBEFUNC:
3221 3221 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3222 3222 return (dtrace_dif_varstr(
3223 3223 (uintptr_t)mstate->dtms_probe->dtpr_func,
3224 3224 state, mstate));
3225 3225
3226 3226 case DIF_VAR_PROBENAME:
3227 3227 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3228 3228 return (dtrace_dif_varstr(
3229 3229 (uintptr_t)mstate->dtms_probe->dtpr_name,
3230 3230 state, mstate));
3231 3231
3232 3232 case DIF_VAR_PID:
3233 3233 if (!dtrace_priv_proc(state, mstate))
3234 3234 return (0);
3235 3235
3236 3236 /*
3237 3237 * Note that we are assuming that an unanchored probe is
3238 3238 * always due to a high-level interrupt. (And we're assuming
3239 3239 * that there is only a single high level interrupt.)
3240 3240 */
3241 3241 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3242 3242 return (pid0.pid_id);
3243 3243
3244 3244 /*
3245 3245 * It is always safe to dereference one's own t_procp pointer:
3246 3246 * it always points to a valid, allocated proc structure.
3247 3247 * Further, it is always safe to dereference the p_pidp member
3248 3248 * of one's own proc structure. (These are truisms becuase
3249 3249 * threads and processes don't clean up their own state --
3250 3250 * they leave that task to whomever reaps them.)
3251 3251 */
3252 3252 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3253 3253
3254 3254 case DIF_VAR_PPID:
3255 3255 if (!dtrace_priv_proc(state, mstate))
3256 3256 return (0);
3257 3257
3258 3258 /*
3259 3259 * See comment in DIF_VAR_PID.
3260 3260 */
3261 3261 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3262 3262 return (pid0.pid_id);
3263 3263
3264 3264 /*
3265 3265 * It is always safe to dereference one's own t_procp pointer:
3266 3266 * it always points to a valid, allocated proc structure.
3267 3267 * (This is true because threads don't clean up their own
3268 3268 * state -- they leave that task to whomever reaps them.)
3269 3269 */
3270 3270 return ((uint64_t)curthread->t_procp->p_ppid);
3271 3271
3272 3272 case DIF_VAR_TID:
3273 3273 /*
3274 3274 * See comment in DIF_VAR_PID.
3275 3275 */
3276 3276 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3277 3277 return (0);
3278 3278
3279 3279 return ((uint64_t)curthread->t_tid);
3280 3280
3281 3281 case DIF_VAR_EXECNAME:
3282 3282 if (!dtrace_priv_proc(state, mstate))
3283 3283 return (0);
3284 3284
3285 3285 /*
3286 3286 * See comment in DIF_VAR_PID.
3287 3287 */
3288 3288 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3289 3289 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3290 3290
3291 3291 /*
3292 3292 * It is always safe to dereference one's own t_procp pointer:
3293 3293 * it always points to a valid, allocated proc structure.
3294 3294 * (This is true because threads don't clean up their own
3295 3295 * state -- they leave that task to whomever reaps them.)
3296 3296 */
3297 3297 return (dtrace_dif_varstr(
3298 3298 (uintptr_t)curthread->t_procp->p_user.u_comm,
3299 3299 state, mstate));
3300 3300
3301 3301 case DIF_VAR_ZONENAME:
3302 3302 if (!dtrace_priv_proc(state, mstate))
3303 3303 return (0);
3304 3304
3305 3305 /*
3306 3306 * See comment in DIF_VAR_PID.
3307 3307 */
3308 3308 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3309 3309 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3310 3310
3311 3311 /*
3312 3312 * It is always safe to dereference one's own t_procp pointer:
3313 3313 * it always points to a valid, allocated proc structure.
3314 3314 * (This is true because threads don't clean up their own
3315 3315 * state -- they leave that task to whomever reaps them.)
3316 3316 */
3317 3317 return (dtrace_dif_varstr(
3318 3318 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3319 3319 state, mstate));
3320 3320
3321 3321 case DIF_VAR_UID:
3322 3322 if (!dtrace_priv_proc(state, mstate))
3323 3323 return (0);
3324 3324
3325 3325 /*
3326 3326 * See comment in DIF_VAR_PID.
3327 3327 */
3328 3328 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3329 3329 return ((uint64_t)p0.p_cred->cr_uid);
3330 3330
3331 3331 /*
3332 3332 * It is always safe to dereference one's own t_procp pointer:
3333 3333 * it always points to a valid, allocated proc structure.
3334 3334 * (This is true because threads don't clean up their own
3335 3335 * state -- they leave that task to whomever reaps them.)
3336 3336 *
3337 3337 * Additionally, it is safe to dereference one's own process
3338 3338 * credential, since this is never NULL after process birth.
3339 3339 */
3340 3340 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3341 3341
3342 3342 case DIF_VAR_GID:
3343 3343 if (!dtrace_priv_proc(state, mstate))
3344 3344 return (0);
3345 3345
3346 3346 /*
3347 3347 * See comment in DIF_VAR_PID.
3348 3348 */
3349 3349 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3350 3350 return ((uint64_t)p0.p_cred->cr_gid);
3351 3351
3352 3352 /*
3353 3353 * It is always safe to dereference one's own t_procp pointer:
3354 3354 * it always points to a valid, allocated proc structure.
3355 3355 * (This is true because threads don't clean up their own
3356 3356 * state -- they leave that task to whomever reaps them.)
3357 3357 *
3358 3358 * Additionally, it is safe to dereference one's own process
3359 3359 * credential, since this is never NULL after process birth.
3360 3360 */
3361 3361 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3362 3362
3363 3363 case DIF_VAR_ERRNO: {
3364 3364 klwp_t *lwp;
3365 3365 if (!dtrace_priv_proc(state, mstate))
3366 3366 return (0);
3367 3367
3368 3368 /*
3369 3369 * See comment in DIF_VAR_PID.
3370 3370 */
3371 3371 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3372 3372 return (0);
3373 3373
3374 3374 /*
3375 3375 * It is always safe to dereference one's own t_lwp pointer in
3376 3376 * the event that this pointer is non-NULL. (This is true
3377 3377 * because threads and lwps don't clean up their own state --
3378 3378 * they leave that task to whomever reaps them.)
3379 3379 */
3380 3380 if ((lwp = curthread->t_lwp) == NULL)
3381 3381 return (0);
3382 3382
3383 3383 return ((uint64_t)lwp->lwp_errno);
3384 3384 }
3385 3385 default:
3386 3386 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3387 3387 return (0);
3388 3388 }
3389 3389 }
3390 3390
3391 3391
3392 3392 typedef enum dtrace_json_state {
3393 3393 DTRACE_JSON_REST = 1,
3394 3394 DTRACE_JSON_OBJECT,
3395 3395 DTRACE_JSON_STRING,
3396 3396 DTRACE_JSON_STRING_ESCAPE,
3397 3397 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3398 3398 DTRACE_JSON_COLON,
3399 3399 DTRACE_JSON_COMMA,
3400 3400 DTRACE_JSON_VALUE,
3401 3401 DTRACE_JSON_IDENTIFIER,
3402 3402 DTRACE_JSON_NUMBER,
3403 3403 DTRACE_JSON_NUMBER_FRAC,
3404 3404 DTRACE_JSON_NUMBER_EXP,
3405 3405 DTRACE_JSON_COLLECT_OBJECT
3406 3406 } dtrace_json_state_t;
3407 3407
3408 3408 /*
3409 3409 * This function possesses just enough knowledge about JSON to extract a single
3410 3410 * value from a JSON string and store it in the scratch buffer. It is able
3411 3411 * to extract nested object values, and members of arrays by index.
3412 3412 *
3413 3413 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3414 3414 * be looked up as we descend into the object tree. e.g.
3415 3415 *
3416 3416 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3417 3417 * with nelems = 5.
3418 3418 *
3419 3419 * The run time of this function must be bounded above by strsize to limit the
3420 3420 * amount of work done in probe context. As such, it is implemented as a
3421 3421 * simple state machine, reading one character at a time using safe loads
3422 3422 * until we find the requested element, hit a parsing error or run off the
3423 3423 * end of the object or string.
3424 3424 *
3425 3425 * As there is no way for a subroutine to return an error without interrupting
3426 3426 * clause execution, we simply return NULL in the event of a missing key or any
3427 3427 * other error condition. Each NULL return in this function is commented with
3428 3428 * the error condition it represents -- parsing or otherwise.
3429 3429 *
3430 3430 * The set of states for the state machine closely matches the JSON
3431 3431 * specification (http://json.org/). Briefly:
3432 3432 *
3433 3433 * DTRACE_JSON_REST:
3434 3434 * Skip whitespace until we find either a top-level Object, moving
3435 3435 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3436 3436 *
3437 3437 * DTRACE_JSON_OBJECT:
3438 3438 * Locate the next key String in an Object. Sets a flag to denote
3439 3439 * the next String as a key string and moves to DTRACE_JSON_STRING.
3440 3440 *
3441 3441 * DTRACE_JSON_COLON:
3442 3442 * Skip whitespace until we find the colon that separates key Strings
3443 3443 * from their values. Once found, move to DTRACE_JSON_VALUE.
3444 3444 *
3445 3445 * DTRACE_JSON_VALUE:
3446 3446 * Detects the type of the next value (String, Number, Identifier, Object
3447 3447 * or Array) and routes to the states that process that type. Here we also
3448 3448 * deal with the element selector list if we are requested to traverse down
3449 3449 * into the object tree.
3450 3450 *
3451 3451 * DTRACE_JSON_COMMA:
3452 3452 * Skip whitespace until we find the comma that separates key-value pairs
3453 3453 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3454 3454 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3455 3455 * states return to this state at the end of their value, unless otherwise
3456 3456 * noted.
3457 3457 *
3458 3458 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3459 3459 * Processes a Number literal from the JSON, including any exponent
3460 3460 * component that may be present. Numbers are returned as strings, which
3461 3461 * may be passed to strtoll() if an integer is required.
3462 3462 *
3463 3463 * DTRACE_JSON_IDENTIFIER:
3464 3464 * Processes a "true", "false" or "null" literal in the JSON.
3465 3465 *
3466 3466 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3467 3467 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3468 3468 * Processes a String literal from the JSON, whether the String denotes
3469 3469 * a key, a value or part of a larger Object. Handles all escape sequences
3470 3470 * present in the specification, including four-digit unicode characters,
3471 3471 * but merely includes the escape sequence without converting it to the
3472 3472 * actual escaped character. If the String is flagged as a key, we
3473 3473 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3474 3474 *
3475 3475 * DTRACE_JSON_COLLECT_OBJECT:
3476 3476 * This state collects an entire Object (or Array), correctly handling
3477 3477 * embedded strings. If the full element selector list matches this nested
3478 3478 * object, we return the Object in full as a string. If not, we use this
3479 3479 * state to skip to the next value at this level and continue processing.
3480 3480 *
3481 3481 * NOTE: This function uses various macros from strtolctype.h to manipulate
3482 3482 * digit values, etc -- these have all been checked to ensure they make
3483 3483 * no additional function calls.
3484 3484 */
3485 3485 static char *
3486 3486 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3487 3487 char *dest)
3488 3488 {
3489 3489 dtrace_json_state_t state = DTRACE_JSON_REST;
3490 3490 int64_t array_elem = INT64_MIN;
3491 3491 int64_t array_pos = 0;
3492 3492 uint8_t escape_unicount = 0;
3493 3493 boolean_t string_is_key = B_FALSE;
3494 3494 boolean_t collect_object = B_FALSE;
3495 3495 boolean_t found_key = B_FALSE;
3496 3496 boolean_t in_array = B_FALSE;
3497 3497 uint32_t braces = 0, brackets = 0;
3498 3498 char *elem = elemlist;
3499 3499 char *dd = dest;
3500 3500 uintptr_t cur;
3501 3501
3502 3502 for (cur = json; cur < json + size; cur++) {
3503 3503 char cc = dtrace_load8(cur);
3504 3504 if (cc == '\0')
3505 3505 return (NULL);
3506 3506
3507 3507 switch (state) {
3508 3508 case DTRACE_JSON_REST:
3509 3509 if (isspace(cc))
3510 3510 break;
3511 3511
3512 3512 if (cc == '{') {
3513 3513 state = DTRACE_JSON_OBJECT;
3514 3514 break;
3515 3515 }
3516 3516
3517 3517 if (cc == '[') {
3518 3518 in_array = B_TRUE;
3519 3519 array_pos = 0;
3520 3520 array_elem = dtrace_strtoll(elem, 10, size);
3521 3521 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3522 3522 state = DTRACE_JSON_VALUE;
3523 3523 break;
3524 3524 }
3525 3525
3526 3526 /*
3527 3527 * ERROR: expected to find a top-level object or array.
3528 3528 */
3529 3529 return (NULL);
3530 3530 case DTRACE_JSON_OBJECT:
3531 3531 if (isspace(cc))
3532 3532 break;
3533 3533
3534 3534 if (cc == '"') {
3535 3535 state = DTRACE_JSON_STRING;
3536 3536 string_is_key = B_TRUE;
3537 3537 break;
3538 3538 }
3539 3539
3540 3540 /*
3541 3541 * ERROR: either the object did not start with a key
3542 3542 * string, or we've run off the end of the object
3543 3543 * without finding the requested key.
3544 3544 */
3545 3545 return (NULL);
3546 3546 case DTRACE_JSON_STRING:
3547 3547 if (cc == '\\') {
3548 3548 *dd++ = '\\';
3549 3549 state = DTRACE_JSON_STRING_ESCAPE;
3550 3550 break;
3551 3551 }
3552 3552
3553 3553 if (cc == '"') {
3554 3554 if (collect_object) {
3555 3555 /*
3556 3556 * We don't reset the dest here, as
3557 3557 * the string is part of a larger
3558 3558 * object being collected.
3559 3559 */
3560 3560 *dd++ = cc;
3561 3561 collect_object = B_FALSE;
3562 3562 state = DTRACE_JSON_COLLECT_OBJECT;
3563 3563 break;
3564 3564 }
3565 3565 *dd = '\0';
3566 3566 dd = dest; /* reset string buffer */
3567 3567 if (string_is_key) {
3568 3568 if (dtrace_strncmp(dest, elem,
3569 3569 size) == 0)
3570 3570 found_key = B_TRUE;
3571 3571 } else if (found_key) {
3572 3572 if (nelems > 1) {
3573 3573 /*
3574 3574 * We expected an object, not
3575 3575 * this string.
3576 3576 */
3577 3577 return (NULL);
3578 3578 }
3579 3579 return (dest);
3580 3580 }
3581 3581 state = string_is_key ? DTRACE_JSON_COLON :
3582 3582 DTRACE_JSON_COMMA;
3583 3583 string_is_key = B_FALSE;
3584 3584 break;
3585 3585 }
3586 3586
3587 3587 *dd++ = cc;
3588 3588 break;
3589 3589 case DTRACE_JSON_STRING_ESCAPE:
3590 3590 *dd++ = cc;
3591 3591 if (cc == 'u') {
3592 3592 escape_unicount = 0;
3593 3593 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3594 3594 } else {
3595 3595 state = DTRACE_JSON_STRING;
3596 3596 }
3597 3597 break;
3598 3598 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3599 3599 if (!isxdigit(cc)) {
3600 3600 /*
3601 3601 * ERROR: invalid unicode escape, expected
3602 3602 * four valid hexidecimal digits.
3603 3603 */
3604 3604 return (NULL);
3605 3605 }
3606 3606
3607 3607 *dd++ = cc;
3608 3608 if (++escape_unicount == 4)
3609 3609 state = DTRACE_JSON_STRING;
3610 3610 break;
3611 3611 case DTRACE_JSON_COLON:
3612 3612 if (isspace(cc))
3613 3613 break;
3614 3614
3615 3615 if (cc == ':') {
3616 3616 state = DTRACE_JSON_VALUE;
3617 3617 break;
3618 3618 }
3619 3619
3620 3620 /*
3621 3621 * ERROR: expected a colon.
3622 3622 */
3623 3623 return (NULL);
3624 3624 case DTRACE_JSON_COMMA:
3625 3625 if (isspace(cc))
3626 3626 break;
3627 3627
3628 3628 if (cc == ',') {
3629 3629 if (in_array) {
3630 3630 state = DTRACE_JSON_VALUE;
3631 3631 if (++array_pos == array_elem)
3632 3632 found_key = B_TRUE;
3633 3633 } else {
3634 3634 state = DTRACE_JSON_OBJECT;
3635 3635 }
3636 3636 break;
3637 3637 }
3638 3638
3639 3639 /*
3640 3640 * ERROR: either we hit an unexpected character, or
3641 3641 * we reached the end of the object or array without
3642 3642 * finding the requested key.
3643 3643 */
3644 3644 return (NULL);
3645 3645 case DTRACE_JSON_IDENTIFIER:
3646 3646 if (islower(cc)) {
3647 3647 *dd++ = cc;
3648 3648 break;
3649 3649 }
3650 3650
3651 3651 *dd = '\0';
3652 3652 dd = dest; /* reset string buffer */
3653 3653
3654 3654 if (dtrace_strncmp(dest, "true", 5) == 0 ||
3655 3655 dtrace_strncmp(dest, "false", 6) == 0 ||
3656 3656 dtrace_strncmp(dest, "null", 5) == 0) {
3657 3657 if (found_key) {
3658 3658 if (nelems > 1) {
3659 3659 /*
3660 3660 * ERROR: We expected an object,
3661 3661 * not this identifier.
3662 3662 */
3663 3663 return (NULL);
3664 3664 }
3665 3665 return (dest);
3666 3666 } else {
3667 3667 cur--;
3668 3668 state = DTRACE_JSON_COMMA;
3669 3669 break;
3670 3670 }
3671 3671 }
3672 3672
3673 3673 /*
3674 3674 * ERROR: we did not recognise the identifier as one
3675 3675 * of those in the JSON specification.
3676 3676 */
3677 3677 return (NULL);
3678 3678 case DTRACE_JSON_NUMBER:
3679 3679 if (cc == '.') {
3680 3680 *dd++ = cc;
3681 3681 state = DTRACE_JSON_NUMBER_FRAC;
3682 3682 break;
3683 3683 }
3684 3684
3685 3685 if (cc == 'x' || cc == 'X') {
3686 3686 /*
3687 3687 * ERROR: specification explicitly excludes
3688 3688 * hexidecimal or octal numbers.
3689 3689 */
3690 3690 return (NULL);
3691 3691 }
3692 3692
3693 3693 /* FALLTHRU */
3694 3694 case DTRACE_JSON_NUMBER_FRAC:
3695 3695 if (cc == 'e' || cc == 'E') {
3696 3696 *dd++ = cc;
3697 3697 state = DTRACE_JSON_NUMBER_EXP;
3698 3698 break;
3699 3699 }
3700 3700
3701 3701 if (cc == '+' || cc == '-') {
3702 3702 /*
3703 3703 * ERROR: expect sign as part of exponent only.
3704 3704 */
3705 3705 return (NULL);
3706 3706 }
3707 3707 /* FALLTHRU */
3708 3708 case DTRACE_JSON_NUMBER_EXP:
3709 3709 if (isdigit(cc) || cc == '+' || cc == '-') {
3710 3710 *dd++ = cc;
3711 3711 break;
3712 3712 }
3713 3713
3714 3714 *dd = '\0';
3715 3715 dd = dest; /* reset string buffer */
3716 3716 if (found_key) {
3717 3717 if (nelems > 1) {
3718 3718 /*
3719 3719 * ERROR: We expected an object, not
3720 3720 * this number.
3721 3721 */
3722 3722 return (NULL);
3723 3723 }
3724 3724 return (dest);
3725 3725 }
3726 3726
3727 3727 cur--;
3728 3728 state = DTRACE_JSON_COMMA;
3729 3729 break;
3730 3730 case DTRACE_JSON_VALUE:
3731 3731 if (isspace(cc))
3732 3732 break;
3733 3733
3734 3734 if (cc == '{' || cc == '[') {
3735 3735 if (nelems > 1 && found_key) {
3736 3736 in_array = cc == '[' ? B_TRUE : B_FALSE;
3737 3737 /*
3738 3738 * If our element selector directs us
3739 3739 * to descend into this nested object,
3740 3740 * then move to the next selector
3741 3741 * element in the list and restart the
3742 3742 * state machine.
3743 3743 */
3744 3744 while (*elem != '\0')
3745 3745 elem++;
3746 3746 elem++; /* skip the inter-element NUL */
3747 3747 nelems--;
3748 3748 dd = dest;
3749 3749 if (in_array) {
3750 3750 state = DTRACE_JSON_VALUE;
3751 3751 array_pos = 0;
3752 3752 array_elem = dtrace_strtoll(
3753 3753 elem, 10, size);
3754 3754 found_key = array_elem == 0 ?
3755 3755 B_TRUE : B_FALSE;
3756 3756 } else {
3757 3757 found_key = B_FALSE;
3758 3758 state = DTRACE_JSON_OBJECT;
3759 3759 }
3760 3760 break;
3761 3761 }
3762 3762
3763 3763 /*
3764 3764 * Otherwise, we wish to either skip this
3765 3765 * nested object or return it in full.
3766 3766 */
3767 3767 if (cc == '[')
3768 3768 brackets = 1;
3769 3769 else
3770 3770 braces = 1;
3771 3771 *dd++ = cc;
3772 3772 state = DTRACE_JSON_COLLECT_OBJECT;
3773 3773 break;
3774 3774 }
3775 3775
3776 3776 if (cc == '"') {
3777 3777 state = DTRACE_JSON_STRING;
3778 3778 break;
3779 3779 }
3780 3780
3781 3781 if (islower(cc)) {
3782 3782 /*
3783 3783 * Here we deal with true, false and null.
3784 3784 */
3785 3785 *dd++ = cc;
3786 3786 state = DTRACE_JSON_IDENTIFIER;
3787 3787 break;
3788 3788 }
3789 3789
3790 3790 if (cc == '-' || isdigit(cc)) {
3791 3791 *dd++ = cc;
3792 3792 state = DTRACE_JSON_NUMBER;
3793 3793 break;
3794 3794 }
3795 3795
3796 3796 /*
3797 3797 * ERROR: unexpected character at start of value.
3798 3798 */
3799 3799 return (NULL);
3800 3800 case DTRACE_JSON_COLLECT_OBJECT:
3801 3801 if (cc == '\0')
3802 3802 /*
3803 3803 * ERROR: unexpected end of input.
3804 3804 */
3805 3805 return (NULL);
3806 3806
3807 3807 *dd++ = cc;
3808 3808 if (cc == '"') {
3809 3809 collect_object = B_TRUE;
3810 3810 state = DTRACE_JSON_STRING;
3811 3811 break;
3812 3812 }
3813 3813
3814 3814 if (cc == ']') {
3815 3815 if (brackets-- == 0) {
3816 3816 /*
3817 3817 * ERROR: unbalanced brackets.
3818 3818 */
3819 3819 return (NULL);
3820 3820 }
3821 3821 } else if (cc == '}') {
3822 3822 if (braces-- == 0) {
3823 3823 /*
3824 3824 * ERROR: unbalanced braces.
3825 3825 */
3826 3826 return (NULL);
3827 3827 }
3828 3828 } else if (cc == '{') {
3829 3829 braces++;
3830 3830 } else if (cc == '[') {
3831 3831 brackets++;
3832 3832 }
3833 3833
3834 3834 if (brackets == 0 && braces == 0) {
3835 3835 if (found_key) {
3836 3836 *dd = '\0';
3837 3837 return (dest);
3838 3838 }
3839 3839 dd = dest; /* reset string buffer */
3840 3840 state = DTRACE_JSON_COMMA;
3841 3841 }
3842 3842 break;
3843 3843 }
3844 3844 }
3845 3845 return (NULL);
3846 3846 }
3847 3847
3848 3848 /*
3849 3849 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3850 3850 * Notice that we don't bother validating the proper number of arguments or
3851 3851 * their types in the tuple stack. This isn't needed because all argument
3852 3852 * interpretation is safe because of our load safety -- the worst that can
3853 3853 * happen is that a bogus program can obtain bogus results.
3854 3854 */
3855 3855 static void
3856 3856 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3857 3857 dtrace_key_t *tupregs, int nargs,
3858 3858 dtrace_mstate_t *mstate, dtrace_state_t *state)
3859 3859 {
3860 3860 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3861 3861 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3862 3862 dtrace_vstate_t *vstate = &state->dts_vstate;
3863 3863
3864 3864 union {
3865 3865 mutex_impl_t mi;
3866 3866 uint64_t mx;
3867 3867 } m;
3868 3868
3869 3869 union {
3870 3870 krwlock_t ri;
3871 3871 uintptr_t rw;
3872 3872 } r;
3873 3873
3874 3874 switch (subr) {
3875 3875 case DIF_SUBR_RAND:
3876 3876 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3877 3877 break;
3878 3878
3879 3879 case DIF_SUBR_MUTEX_OWNED:
3880 3880 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3881 3881 mstate, vstate)) {
3882 3882 regs[rd] = NULL;
3883 3883 break;
3884 3884 }
3885 3885
3886 3886 m.mx = dtrace_load64(tupregs[0].dttk_value);
3887 3887 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3888 3888 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3889 3889 else
3890 3890 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3891 3891 break;
3892 3892
3893 3893 case DIF_SUBR_MUTEX_OWNER:
3894 3894 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3895 3895 mstate, vstate)) {
3896 3896 regs[rd] = NULL;
3897 3897 break;
3898 3898 }
3899 3899
3900 3900 m.mx = dtrace_load64(tupregs[0].dttk_value);
3901 3901 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3902 3902 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3903 3903 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3904 3904 else
3905 3905 regs[rd] = 0;
3906 3906 break;
3907 3907
3908 3908 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3909 3909 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3910 3910 mstate, vstate)) {
3911 3911 regs[rd] = NULL;
3912 3912 break;
3913 3913 }
3914 3914
3915 3915 m.mx = dtrace_load64(tupregs[0].dttk_value);
3916 3916 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3917 3917 break;
3918 3918
3919 3919 case DIF_SUBR_MUTEX_TYPE_SPIN:
3920 3920 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3921 3921 mstate, vstate)) {
3922 3922 regs[rd] = NULL;
3923 3923 break;
3924 3924 }
3925 3925
3926 3926 m.mx = dtrace_load64(tupregs[0].dttk_value);
3927 3927 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3928 3928 break;
3929 3929
3930 3930 case DIF_SUBR_RW_READ_HELD: {
3931 3931 uintptr_t tmp;
3932 3932
3933 3933 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3934 3934 mstate, vstate)) {
3935 3935 regs[rd] = NULL;
3936 3936 break;
3937 3937 }
3938 3938
3939 3939 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3940 3940 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3941 3941 break;
3942 3942 }
3943 3943
3944 3944 case DIF_SUBR_RW_WRITE_HELD:
3945 3945 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3946 3946 mstate, vstate)) {
3947 3947 regs[rd] = NULL;
3948 3948 break;
3949 3949 }
3950 3950
3951 3951 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3952 3952 regs[rd] = _RW_WRITE_HELD(&r.ri);
3953 3953 break;
3954 3954
3955 3955 case DIF_SUBR_RW_ISWRITER:
3956 3956 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3957 3957 mstate, vstate)) {
3958 3958 regs[rd] = NULL;
3959 3959 break;
3960 3960 }
3961 3961
3962 3962 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3963 3963 regs[rd] = _RW_ISWRITER(&r.ri);
3964 3964 break;
3965 3965
3966 3966 case DIF_SUBR_BCOPY: {
3967 3967 /*
3968 3968 * We need to be sure that the destination is in the scratch
3969 3969 * region -- no other region is allowed.
3970 3970 */
3971 3971 uintptr_t src = tupregs[0].dttk_value;
3972 3972 uintptr_t dest = tupregs[1].dttk_value;
3973 3973 size_t size = tupregs[2].dttk_value;
3974 3974
3975 3975 if (!dtrace_inscratch(dest, size, mstate)) {
3976 3976 *flags |= CPU_DTRACE_BADADDR;
3977 3977 *illval = regs[rd];
3978 3978 break;
3979 3979 }
3980 3980
3981 3981 if (!dtrace_canload(src, size, mstate, vstate)) {
3982 3982 regs[rd] = NULL;
3983 3983 break;
3984 3984 }
3985 3985
3986 3986 dtrace_bcopy((void *)src, (void *)dest, size);
3987 3987 break;
3988 3988 }
3989 3989
3990 3990 case DIF_SUBR_ALLOCA:
3991 3991 case DIF_SUBR_COPYIN: {
3992 3992 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3993 3993 uint64_t size =
3994 3994 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3995 3995 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3996 3996
3997 3997 /*
3998 3998 * This action doesn't require any credential checks since
3999 3999 * probes will not activate in user contexts to which the
4000 4000 * enabling user does not have permissions.
4001 4001 */
4002 4002
4003 4003 /*
4004 4004 * Rounding up the user allocation size could have overflowed
4005 4005 * a large, bogus allocation (like -1ULL) to 0.
4006 4006 */
4007 4007 if (scratch_size < size ||
4008 4008 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4009 4009 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4010 4010 regs[rd] = NULL;
4011 4011 break;
4012 4012 }
4013 4013
4014 4014 if (subr == DIF_SUBR_COPYIN) {
4015 4015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4016 4016 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4017 4017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4018 4018 }
4019 4019
4020 4020 mstate->dtms_scratch_ptr += scratch_size;
4021 4021 regs[rd] = dest;
4022 4022 break;
4023 4023 }
4024 4024
4025 4025 case DIF_SUBR_COPYINTO: {
4026 4026 uint64_t size = tupregs[1].dttk_value;
4027 4027 uintptr_t dest = tupregs[2].dttk_value;
4028 4028
4029 4029 /*
4030 4030 * This action doesn't require any credential checks since
4031 4031 * probes will not activate in user contexts to which the
4032 4032 * enabling user does not have permissions.
4033 4033 */
4034 4034 if (!dtrace_inscratch(dest, size, mstate)) {
4035 4035 *flags |= CPU_DTRACE_BADADDR;
4036 4036 *illval = regs[rd];
4037 4037 break;
4038 4038 }
4039 4039
4040 4040 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4041 4041 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4042 4042 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4043 4043 break;
4044 4044 }
4045 4045
4046 4046 case DIF_SUBR_COPYINSTR: {
4047 4047 uintptr_t dest = mstate->dtms_scratch_ptr;
4048 4048 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4049 4049
4050 4050 if (nargs > 1 && tupregs[1].dttk_value < size)
4051 4051 size = tupregs[1].dttk_value + 1;
4052 4052
4053 4053 /*
4054 4054 * This action doesn't require any credential checks since
4055 4055 * probes will not activate in user contexts to which the
4056 4056 * enabling user does not have permissions.
4057 4057 */
4058 4058 if (!DTRACE_INSCRATCH(mstate, size)) {
4059 4059 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4060 4060 regs[rd] = NULL;
4061 4061 break;
4062 4062 }
4063 4063
4064 4064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4065 4065 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4066 4066 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4067 4067
4068 4068 ((char *)dest)[size - 1] = '\0';
4069 4069 mstate->dtms_scratch_ptr += size;
4070 4070 regs[rd] = dest;
4071 4071 break;
4072 4072 }
4073 4073
4074 4074 case DIF_SUBR_MSGSIZE:
4075 4075 case DIF_SUBR_MSGDSIZE: {
4076 4076 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4077 4077 uintptr_t wptr, rptr;
4078 4078 size_t count = 0;
4079 4079 int cont = 0;
4080 4080
4081 4081 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4082 4082
4083 4083 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4084 4084 vstate)) {
4085 4085 regs[rd] = NULL;
4086 4086 break;
4087 4087 }
4088 4088
4089 4089 wptr = dtrace_loadptr(baddr +
4090 4090 offsetof(mblk_t, b_wptr));
4091 4091
4092 4092 rptr = dtrace_loadptr(baddr +
4093 4093 offsetof(mblk_t, b_rptr));
4094 4094
4095 4095 if (wptr < rptr) {
4096 4096 *flags |= CPU_DTRACE_BADADDR;
4097 4097 *illval = tupregs[0].dttk_value;
4098 4098 break;
4099 4099 }
4100 4100
4101 4101 daddr = dtrace_loadptr(baddr +
4102 4102 offsetof(mblk_t, b_datap));
4103 4103
4104 4104 baddr = dtrace_loadptr(baddr +
4105 4105 offsetof(mblk_t, b_cont));
4106 4106
4107 4107 /*
4108 4108 * We want to prevent against denial-of-service here,
4109 4109 * so we're only going to search the list for
4110 4110 * dtrace_msgdsize_max mblks.
4111 4111 */
4112 4112 if (cont++ > dtrace_msgdsize_max) {
4113 4113 *flags |= CPU_DTRACE_ILLOP;
4114 4114 break;
4115 4115 }
4116 4116
4117 4117 if (subr == DIF_SUBR_MSGDSIZE) {
4118 4118 if (dtrace_load8(daddr +
4119 4119 offsetof(dblk_t, db_type)) != M_DATA)
4120 4120 continue;
4121 4121 }
4122 4122
4123 4123 count += wptr - rptr;
4124 4124 }
4125 4125
4126 4126 if (!(*flags & CPU_DTRACE_FAULT))
4127 4127 regs[rd] = count;
4128 4128
4129 4129 break;
4130 4130 }
4131 4131
4132 4132 case DIF_SUBR_PROGENYOF: {
4133 4133 pid_t pid = tupregs[0].dttk_value;
4134 4134 proc_t *p;
4135 4135 int rval = 0;
4136 4136
4137 4137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4138 4138
4139 4139 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4140 4140 if (p->p_pidp->pid_id == pid) {
4141 4141 rval = 1;
4142 4142 break;
4143 4143 }
4144 4144 }
4145 4145
4146 4146 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4147 4147
4148 4148 regs[rd] = rval;
4149 4149 break;
4150 4150 }
4151 4151
4152 4152 case DIF_SUBR_SPECULATION:
4153 4153 regs[rd] = dtrace_speculation(state);
4154 4154 break;
4155 4155
4156 4156 case DIF_SUBR_COPYOUT: {
4157 4157 uintptr_t kaddr = tupregs[0].dttk_value;
4158 4158 uintptr_t uaddr = tupregs[1].dttk_value;
4159 4159 uint64_t size = tupregs[2].dttk_value;
4160 4160
4161 4161 if (!dtrace_destructive_disallow &&
4162 4162 dtrace_priv_proc_control(state, mstate) &&
4163 4163 !dtrace_istoxic(kaddr, size)) {
4164 4164 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4165 4165 dtrace_copyout(kaddr, uaddr, size, flags);
4166 4166 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4167 4167 }
4168 4168 break;
4169 4169 }
4170 4170
4171 4171 case DIF_SUBR_COPYOUTSTR: {
4172 4172 uintptr_t kaddr = tupregs[0].dttk_value;
4173 4173 uintptr_t uaddr = tupregs[1].dttk_value;
4174 4174 uint64_t size = tupregs[2].dttk_value;
4175 4175
4176 4176 if (!dtrace_destructive_disallow &&
4177 4177 dtrace_priv_proc_control(state, mstate) &&
4178 4178 !dtrace_istoxic(kaddr, size)) {
4179 4179 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4180 4180 dtrace_copyoutstr(kaddr, uaddr, size, flags);
4181 4181 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4182 4182 }
4183 4183 break;
4184 4184 }
4185 4185
4186 4186 case DIF_SUBR_STRLEN: {
4187 4187 size_t sz;
4188 4188 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4189 4189 sz = dtrace_strlen((char *)addr,
4190 4190 state->dts_options[DTRACEOPT_STRSIZE]);
4191 4191
4192 4192 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4193 4193 regs[rd] = NULL;
4194 4194 break;
4195 4195 }
4196 4196
4197 4197 regs[rd] = sz;
4198 4198
4199 4199 break;
4200 4200 }
4201 4201
4202 4202 case DIF_SUBR_STRCHR:
4203 4203 case DIF_SUBR_STRRCHR: {
4204 4204 /*
4205 4205 * We're going to iterate over the string looking for the
4206 4206 * specified character. We will iterate until we have reached
4207 4207 * the string length or we have found the character. If this
4208 4208 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4209 4209 * of the specified character instead of the first.
4210 4210 */
4211 4211 uintptr_t saddr = tupregs[0].dttk_value;
4212 4212 uintptr_t addr = tupregs[0].dttk_value;
4213 4213 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4214 4214 char c, target = (char)tupregs[1].dttk_value;
4215 4215
4216 4216 for (regs[rd] = NULL; addr < limit; addr++) {
4217 4217 if ((c = dtrace_load8(addr)) == target) {
4218 4218 regs[rd] = addr;
4219 4219
4220 4220 if (subr == DIF_SUBR_STRCHR)
4221 4221 break;
4222 4222 }
4223 4223
4224 4224 if (c == '\0')
4225 4225 break;
4226 4226 }
4227 4227
4228 4228 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4229 4229 regs[rd] = NULL;
4230 4230 break;
4231 4231 }
4232 4232
4233 4233 break;
4234 4234 }
4235 4235
4236 4236 case DIF_SUBR_STRSTR:
4237 4237 case DIF_SUBR_INDEX:
4238 4238 case DIF_SUBR_RINDEX: {
4239 4239 /*
4240 4240 * We're going to iterate over the string looking for the
4241 4241 * specified string. We will iterate until we have reached
4242 4242 * the string length or we have found the string. (Yes, this
4243 4243 * is done in the most naive way possible -- but considering
4244 4244 * that the string we're searching for is likely to be
4245 4245 * relatively short, the complexity of Rabin-Karp or similar
4246 4246 * hardly seems merited.)
4247 4247 */
4248 4248 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4249 4249 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4250 4250 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4251 4251 size_t len = dtrace_strlen(addr, size);
4252 4252 size_t sublen = dtrace_strlen(substr, size);
4253 4253 char *limit = addr + len, *orig = addr;
4254 4254 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4255 4255 int inc = 1;
4256 4256
4257 4257 regs[rd] = notfound;
4258 4258
4259 4259 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4260 4260 regs[rd] = NULL;
4261 4261 break;
4262 4262 }
4263 4263
4264 4264 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4265 4265 vstate)) {
4266 4266 regs[rd] = NULL;
4267 4267 break;
4268 4268 }
4269 4269
4270 4270 /*
4271 4271 * strstr() and index()/rindex() have similar semantics if
4272 4272 * both strings are the empty string: strstr() returns a
4273 4273 * pointer to the (empty) string, and index() and rindex()
4274 4274 * both return index 0 (regardless of any position argument).
4275 4275 */
4276 4276 if (sublen == 0 && len == 0) {
4277 4277 if (subr == DIF_SUBR_STRSTR)
4278 4278 regs[rd] = (uintptr_t)addr;
4279 4279 else
4280 4280 regs[rd] = 0;
4281 4281 break;
4282 4282 }
4283 4283
4284 4284 if (subr != DIF_SUBR_STRSTR) {
4285 4285 if (subr == DIF_SUBR_RINDEX) {
4286 4286 limit = orig - 1;
4287 4287 addr += len;
4288 4288 inc = -1;
4289 4289 }
4290 4290
4291 4291 /*
4292 4292 * Both index() and rindex() take an optional position
4293 4293 * argument that denotes the starting position.
4294 4294 */
4295 4295 if (nargs == 3) {
4296 4296 int64_t pos = (int64_t)tupregs[2].dttk_value;
4297 4297
4298 4298 /*
4299 4299 * If the position argument to index() is
4300 4300 * negative, Perl implicitly clamps it at
4301 4301 * zero. This semantic is a little surprising
4302 4302 * given the special meaning of negative
4303 4303 * positions to similar Perl functions like
4304 4304 * substr(), but it appears to reflect a
4305 4305 * notion that index() can start from a
4306 4306 * negative index and increment its way up to
4307 4307 * the string. Given this notion, Perl's
4308 4308 * rindex() is at least self-consistent in
4309 4309 * that it implicitly clamps positions greater
4310 4310 * than the string length to be the string
4311 4311 * length. Where Perl completely loses
4312 4312 * coherence, however, is when the specified
4313 4313 * substring is the empty string (""). In
4314 4314 * this case, even if the position is
4315 4315 * negative, rindex() returns 0 -- and even if
4316 4316 * the position is greater than the length,
4317 4317 * index() returns the string length. These
4318 4318 * semantics violate the notion that index()
4319 4319 * should never return a value less than the
4320 4320 * specified position and that rindex() should
4321 4321 * never return a value greater than the
4322 4322 * specified position. (One assumes that
4323 4323 * these semantics are artifacts of Perl's
4324 4324 * implementation and not the results of
4325 4325 * deliberate design -- it beggars belief that
4326 4326 * even Larry Wall could desire such oddness.)
4327 4327 * While in the abstract one would wish for
4328 4328 * consistent position semantics across
4329 4329 * substr(), index() and rindex() -- or at the
4330 4330 * very least self-consistent position
4331 4331 * semantics for index() and rindex() -- we
4332 4332 * instead opt to keep with the extant Perl
4333 4333 * semantics, in all their broken glory. (Do
4334 4334 * we have more desire to maintain Perl's
4335 4335 * semantics than Perl does? Probably.)
4336 4336 */
4337 4337 if (subr == DIF_SUBR_RINDEX) {
4338 4338 if (pos < 0) {
4339 4339 if (sublen == 0)
4340 4340 regs[rd] = 0;
4341 4341 break;
4342 4342 }
4343 4343
4344 4344 if (pos > len)
4345 4345 pos = len;
4346 4346 } else {
4347 4347 if (pos < 0)
4348 4348 pos = 0;
4349 4349
4350 4350 if (pos >= len) {
4351 4351 if (sublen == 0)
4352 4352 regs[rd] = len;
4353 4353 break;
4354 4354 }
4355 4355 }
4356 4356
4357 4357 addr = orig + pos;
4358 4358 }
4359 4359 }
4360 4360
4361 4361 for (regs[rd] = notfound; addr != limit; addr += inc) {
4362 4362 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4363 4363 if (subr != DIF_SUBR_STRSTR) {
4364 4364 /*
4365 4365 * As D index() and rindex() are
4366 4366 * modeled on Perl (and not on awk),
4367 4367 * we return a zero-based (and not a
4368 4368 * one-based) index. (For you Perl
4369 4369 * weenies: no, we're not going to add
4370 4370 * $[ -- and shouldn't you be at a con
4371 4371 * or something?)
4372 4372 */
4373 4373 regs[rd] = (uintptr_t)(addr - orig);
4374 4374 break;
4375 4375 }
4376 4376
4377 4377 ASSERT(subr == DIF_SUBR_STRSTR);
4378 4378 regs[rd] = (uintptr_t)addr;
4379 4379 break;
4380 4380 }
4381 4381 }
4382 4382
4383 4383 break;
4384 4384 }
4385 4385
4386 4386 case DIF_SUBR_STRTOK: {
4387 4387 uintptr_t addr = tupregs[0].dttk_value;
4388 4388 uintptr_t tokaddr = tupregs[1].dttk_value;
4389 4389 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4390 4390 uintptr_t limit, toklimit = tokaddr + size;
4391 4391 uint8_t c, tokmap[32]; /* 256 / 8 */
4392 4392 char *dest = (char *)mstate->dtms_scratch_ptr;
4393 4393 int i;
4394 4394
4395 4395 /*
4396 4396 * Check both the token buffer and (later) the input buffer,
4397 4397 * since both could be non-scratch addresses.
4398 4398 */
4399 4399 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4400 4400 regs[rd] = NULL;
4401 4401 break;
4402 4402 }
4403 4403
4404 4404 if (!DTRACE_INSCRATCH(mstate, size)) {
4405 4405 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4406 4406 regs[rd] = NULL;
4407 4407 break;
4408 4408 }
4409 4409
4410 4410 if (addr == NULL) {
4411 4411 /*
4412 4412 * If the address specified is NULL, we use our saved
4413 4413 * strtok pointer from the mstate. Note that this
4414 4414 * means that the saved strtok pointer is _only_
4415 4415 * valid within multiple enablings of the same probe --
4416 4416 * it behaves like an implicit clause-local variable.
4417 4417 */
4418 4418 addr = mstate->dtms_strtok;
4419 4419 } else {
4420 4420 /*
4421 4421 * If the user-specified address is non-NULL we must
4422 4422 * access check it. This is the only time we have
4423 4423 * a chance to do so, since this address may reside
4424 4424 * in the string table of this clause-- future calls
4425 4425 * (when we fetch addr from mstate->dtms_strtok)
4426 4426 * would fail this access check.
4427 4427 */
4428 4428 if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4429 4429 regs[rd] = NULL;
4430 4430 break;
4431 4431 }
4432 4432 }
4433 4433
4434 4434 /*
4435 4435 * First, zero the token map, and then process the token
4436 4436 * string -- setting a bit in the map for every character
4437 4437 * found in the token string.
4438 4438 */
4439 4439 for (i = 0; i < sizeof (tokmap); i++)
4440 4440 tokmap[i] = 0;
4441 4441
4442 4442 for (; tokaddr < toklimit; tokaddr++) {
4443 4443 if ((c = dtrace_load8(tokaddr)) == '\0')
4444 4444 break;
4445 4445
4446 4446 ASSERT((c >> 3) < sizeof (tokmap));
4447 4447 tokmap[c >> 3] |= (1 << (c & 0x7));
4448 4448 }
4449 4449
4450 4450 for (limit = addr + size; addr < limit; addr++) {
4451 4451 /*
4452 4452 * We're looking for a character that is _not_ contained
4453 4453 * in the token string.
4454 4454 */
4455 4455 if ((c = dtrace_load8(addr)) == '\0')
4456 4456 break;
4457 4457
4458 4458 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4459 4459 break;
4460 4460 }
4461 4461
4462 4462 if (c == '\0') {
4463 4463 /*
4464 4464 * We reached the end of the string without finding
4465 4465 * any character that was not in the token string.
4466 4466 * We return NULL in this case, and we set the saved
4467 4467 * address to NULL as well.
4468 4468 */
4469 4469 regs[rd] = NULL;
4470 4470 mstate->dtms_strtok = NULL;
4471 4471 break;
4472 4472 }
4473 4473
4474 4474 /*
4475 4475 * From here on, we're copying into the destination string.
4476 4476 */
4477 4477 for (i = 0; addr < limit && i < size - 1; addr++) {
4478 4478 if ((c = dtrace_load8(addr)) == '\0')
4479 4479 break;
4480 4480
4481 4481 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4482 4482 break;
4483 4483
4484 4484 ASSERT(i < size);
4485 4485 dest[i++] = c;
4486 4486 }
4487 4487
4488 4488 ASSERT(i < size);
4489 4489 dest[i] = '\0';
4490 4490 regs[rd] = (uintptr_t)dest;
4491 4491 mstate->dtms_scratch_ptr += size;
4492 4492 mstate->dtms_strtok = addr;
4493 4493 break;
4494 4494 }
4495 4495
4496 4496 case DIF_SUBR_SUBSTR: {
4497 4497 uintptr_t s = tupregs[0].dttk_value;
4498 4498 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4499 4499 char *d = (char *)mstate->dtms_scratch_ptr;
4500 4500 int64_t index = (int64_t)tupregs[1].dttk_value;
4501 4501 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4502 4502 size_t len = dtrace_strlen((char *)s, size);
4503 4503 int64_t i;
4504 4504
4505 4505 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4506 4506 regs[rd] = NULL;
4507 4507 break;
4508 4508 }
4509 4509
4510 4510 if (!DTRACE_INSCRATCH(mstate, size)) {
4511 4511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4512 4512 regs[rd] = NULL;
4513 4513 break;
4514 4514 }
4515 4515
4516 4516 if (nargs <= 2)
4517 4517 remaining = (int64_t)size;
4518 4518
4519 4519 if (index < 0) {
4520 4520 index += len;
4521 4521
4522 4522 if (index < 0 && index + remaining > 0) {
4523 4523 remaining += index;
4524 4524 index = 0;
4525 4525 }
4526 4526 }
4527 4527
4528 4528 if (index >= len || index < 0) {
4529 4529 remaining = 0;
4530 4530 } else if (remaining < 0) {
4531 4531 remaining += len - index;
4532 4532 } else if (index + remaining > size) {
4533 4533 remaining = size - index;
4534 4534 }
4535 4535
4536 4536 for (i = 0; i < remaining; i++) {
4537 4537 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4538 4538 break;
4539 4539 }
4540 4540
4541 4541 d[i] = '\0';
4542 4542
4543 4543 mstate->dtms_scratch_ptr += size;
4544 4544 regs[rd] = (uintptr_t)d;
4545 4545 break;
4546 4546 }
4547 4547
4548 4548 case DIF_SUBR_JSON: {
4549 4549 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4550 4550 uintptr_t json = tupregs[0].dttk_value;
4551 4551 size_t jsonlen = dtrace_strlen((char *)json, size);
4552 4552 uintptr_t elem = tupregs[1].dttk_value;
4553 4553 size_t elemlen = dtrace_strlen((char *)elem, size);
4554 4554
4555 4555 char *dest = (char *)mstate->dtms_scratch_ptr;
4556 4556 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4557 4557 char *ee = elemlist;
4558 4558 int nelems = 1;
4559 4559 uintptr_t cur;
4560 4560
4561 4561 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4562 4562 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4563 4563 regs[rd] = NULL;
4564 4564 break;
4565 4565 }
4566 4566
4567 4567 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4568 4568 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4569 4569 regs[rd] = NULL;
4570 4570 break;
4571 4571 }
4572 4572
4573 4573 /*
4574 4574 * Read the element selector and split it up into a packed list
4575 4575 * of strings.
4576 4576 */
4577 4577 for (cur = elem; cur < elem + elemlen; cur++) {
4578 4578 char cc = dtrace_load8(cur);
4579 4579
4580 4580 if (cur == elem && cc == '[') {
4581 4581 /*
4582 4582 * If the first element selector key is
4583 4583 * actually an array index then ignore the
4584 4584 * bracket.
4585 4585 */
4586 4586 continue;
4587 4587 }
4588 4588
4589 4589 if (cc == ']')
4590 4590 continue;
4591 4591
4592 4592 if (cc == '.' || cc == '[') {
4593 4593 nelems++;
4594 4594 cc = '\0';
4595 4595 }
4596 4596
4597 4597 *ee++ = cc;
4598 4598 }
4599 4599 *ee++ = '\0';
4600 4600
4601 4601 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4602 4602 nelems, dest)) != NULL)
4603 4603 mstate->dtms_scratch_ptr += jsonlen + 1;
4604 4604 break;
4605 4605 }
4606 4606
4607 4607 case DIF_SUBR_TOUPPER:
4608 4608 case DIF_SUBR_TOLOWER: {
4609 4609 uintptr_t s = tupregs[0].dttk_value;
4610 4610 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4611 4611 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4612 4612 size_t len = dtrace_strlen((char *)s, size);
4613 4613 char lower, upper, convert;
4614 4614 int64_t i;
4615 4615
4616 4616 if (subr == DIF_SUBR_TOUPPER) {
4617 4617 lower = 'a';
4618 4618 upper = 'z';
4619 4619 convert = 'A';
4620 4620 } else {
4621 4621 lower = 'A';
4622 4622 upper = 'Z';
4623 4623 convert = 'a';
4624 4624 }
4625 4625
4626 4626 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4627 4627 regs[rd] = NULL;
4628 4628 break;
4629 4629 }
4630 4630
4631 4631 if (!DTRACE_INSCRATCH(mstate, size)) {
4632 4632 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4633 4633 regs[rd] = NULL;
4634 4634 break;
4635 4635 }
4636 4636
4637 4637 for (i = 0; i < size - 1; i++) {
4638 4638 if ((c = dtrace_load8(s + i)) == '\0')
4639 4639 break;
4640 4640
4641 4641 if (c >= lower && c <= upper)
4642 4642 c = convert + (c - lower);
4643 4643
4644 4644 dest[i] = c;
4645 4645 }
4646 4646
4647 4647 ASSERT(i < size);
4648 4648 dest[i] = '\0';
4649 4649 regs[rd] = (uintptr_t)dest;
4650 4650 mstate->dtms_scratch_ptr += size;
4651 4651 break;
4652 4652 }
4653 4653
4654 4654 case DIF_SUBR_GETMAJOR:
4655 4655 #ifdef _LP64
4656 4656 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4657 4657 #else
4658 4658 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4659 4659 #endif
4660 4660 break;
4661 4661
4662 4662 case DIF_SUBR_GETMINOR:
4663 4663 #ifdef _LP64
4664 4664 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4665 4665 #else
4666 4666 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4667 4667 #endif
4668 4668 break;
4669 4669
4670 4670 case DIF_SUBR_DDI_PATHNAME: {
4671 4671 /*
4672 4672 * This one is a galactic mess. We are going to roughly
4673 4673 * emulate ddi_pathname(), but it's made more complicated
4674 4674 * by the fact that we (a) want to include the minor name and
4675 4675 * (b) must proceed iteratively instead of recursively.
4676 4676 */
4677 4677 uintptr_t dest = mstate->dtms_scratch_ptr;
4678 4678 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4679 4679 char *start = (char *)dest, *end = start + size - 1;
4680 4680 uintptr_t daddr = tupregs[0].dttk_value;
4681 4681 int64_t minor = (int64_t)tupregs[1].dttk_value;
4682 4682 char *s;
4683 4683 int i, len, depth = 0;
4684 4684
4685 4685 /*
4686 4686 * Due to all the pointer jumping we do and context we must
4687 4687 * rely upon, we just mandate that the user must have kernel
4688 4688 * read privileges to use this routine.
4689 4689 */
4690 4690 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4691 4691 *flags |= CPU_DTRACE_KPRIV;
4692 4692 *illval = daddr;
4693 4693 regs[rd] = NULL;
4694 4694 }
4695 4695
4696 4696 if (!DTRACE_INSCRATCH(mstate, size)) {
4697 4697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4698 4698 regs[rd] = NULL;
4699 4699 break;
4700 4700 }
4701 4701
4702 4702 *end = '\0';
4703 4703
4704 4704 /*
4705 4705 * We want to have a name for the minor. In order to do this,
4706 4706 * we need to walk the minor list from the devinfo. We want
4707 4707 * to be sure that we don't infinitely walk a circular list,
4708 4708 * so we check for circularity by sending a scout pointer
4709 4709 * ahead two elements for every element that we iterate over;
4710 4710 * if the list is circular, these will ultimately point to the
4711 4711 * same element. You may recognize this little trick as the
4712 4712 * answer to a stupid interview question -- one that always
4713 4713 * seems to be asked by those who had to have it laboriously
4714 4714 * explained to them, and who can't even concisely describe
4715 4715 * the conditions under which one would be forced to resort to
4716 4716 * this technique. Needless to say, those conditions are
4717 4717 * found here -- and probably only here. Is this the only use
4718 4718 * of this infamous trick in shipping, production code? If it
4719 4719 * isn't, it probably should be...
4720 4720 */
4721 4721 if (minor != -1) {
4722 4722 uintptr_t maddr = dtrace_loadptr(daddr +
4723 4723 offsetof(struct dev_info, devi_minor));
4724 4724
4725 4725 uintptr_t next = offsetof(struct ddi_minor_data, next);
4726 4726 uintptr_t name = offsetof(struct ddi_minor_data,
4727 4727 d_minor) + offsetof(struct ddi_minor, name);
4728 4728 uintptr_t dev = offsetof(struct ddi_minor_data,
4729 4729 d_minor) + offsetof(struct ddi_minor, dev);
4730 4730 uintptr_t scout;
4731 4731
4732 4732 if (maddr != NULL)
4733 4733 scout = dtrace_loadptr(maddr + next);
4734 4734
4735 4735 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4736 4736 uint64_t m;
4737 4737 #ifdef _LP64
4738 4738 m = dtrace_load64(maddr + dev) & MAXMIN64;
4739 4739 #else
4740 4740 m = dtrace_load32(maddr + dev) & MAXMIN;
4741 4741 #endif
4742 4742 if (m != minor) {
4743 4743 maddr = dtrace_loadptr(maddr + next);
4744 4744
4745 4745 if (scout == NULL)
4746 4746 continue;
4747 4747
4748 4748 scout = dtrace_loadptr(scout + next);
4749 4749
4750 4750 if (scout == NULL)
4751 4751 continue;
4752 4752
4753 4753 scout = dtrace_loadptr(scout + next);
4754 4754
4755 4755 if (scout == NULL)
4756 4756 continue;
4757 4757
4758 4758 if (scout == maddr) {
4759 4759 *flags |= CPU_DTRACE_ILLOP;
4760 4760 break;
4761 4761 }
4762 4762
4763 4763 continue;
4764 4764 }
4765 4765
4766 4766 /*
4767 4767 * We have the minor data. Now we need to
4768 4768 * copy the minor's name into the end of the
4769 4769 * pathname.
4770 4770 */
4771 4771 s = (char *)dtrace_loadptr(maddr + name);
4772 4772 len = dtrace_strlen(s, size);
4773 4773
4774 4774 if (*flags & CPU_DTRACE_FAULT)
4775 4775 break;
4776 4776
4777 4777 if (len != 0) {
4778 4778 if ((end -= (len + 1)) < start)
4779 4779 break;
4780 4780
4781 4781 *end = ':';
4782 4782 }
4783 4783
4784 4784 for (i = 1; i <= len; i++)
4785 4785 end[i] = dtrace_load8((uintptr_t)s++);
4786 4786 break;
4787 4787 }
4788 4788 }
4789 4789
4790 4790 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4791 4791 ddi_node_state_t devi_state;
4792 4792
4793 4793 devi_state = dtrace_load32(daddr +
4794 4794 offsetof(struct dev_info, devi_node_state));
4795 4795
4796 4796 if (*flags & CPU_DTRACE_FAULT)
4797 4797 break;
4798 4798
4799 4799 if (devi_state >= DS_INITIALIZED) {
4800 4800 s = (char *)dtrace_loadptr(daddr +
4801 4801 offsetof(struct dev_info, devi_addr));
4802 4802 len = dtrace_strlen(s, size);
4803 4803
4804 4804 if (*flags & CPU_DTRACE_FAULT)
4805 4805 break;
4806 4806
4807 4807 if (len != 0) {
4808 4808 if ((end -= (len + 1)) < start)
4809 4809 break;
4810 4810
4811 4811 *end = '@';
4812 4812 }
4813 4813
4814 4814 for (i = 1; i <= len; i++)
4815 4815 end[i] = dtrace_load8((uintptr_t)s++);
4816 4816 }
4817 4817
4818 4818 /*
4819 4819 * Now for the node name...
4820 4820 */
4821 4821 s = (char *)dtrace_loadptr(daddr +
4822 4822 offsetof(struct dev_info, devi_node_name));
4823 4823
4824 4824 daddr = dtrace_loadptr(daddr +
4825 4825 offsetof(struct dev_info, devi_parent));
4826 4826
4827 4827 /*
4828 4828 * If our parent is NULL (that is, if we're the root
4829 4829 * node), we're going to use the special path
4830 4830 * "devices".
4831 4831 */
4832 4832 if (daddr == NULL)
4833 4833 s = "devices";
4834 4834
4835 4835 len = dtrace_strlen(s, size);
4836 4836 if (*flags & CPU_DTRACE_FAULT)
4837 4837 break;
4838 4838
4839 4839 if ((end -= (len + 1)) < start)
4840 4840 break;
4841 4841
4842 4842 for (i = 1; i <= len; i++)
4843 4843 end[i] = dtrace_load8((uintptr_t)s++);
4844 4844 *end = '/';
4845 4845
4846 4846 if (depth++ > dtrace_devdepth_max) {
4847 4847 *flags |= CPU_DTRACE_ILLOP;
4848 4848 break;
4849 4849 }
4850 4850 }
4851 4851
4852 4852 if (end < start)
4853 4853 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4854 4854
4855 4855 if (daddr == NULL) {
4856 4856 regs[rd] = (uintptr_t)end;
4857 4857 mstate->dtms_scratch_ptr += size;
4858 4858 }
4859 4859
4860 4860 break;
4861 4861 }
4862 4862
4863 4863 case DIF_SUBR_STRJOIN: {
4864 4864 char *d = (char *)mstate->dtms_scratch_ptr;
4865 4865 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4866 4866 uintptr_t s1 = tupregs[0].dttk_value;
4867 4867 uintptr_t s2 = tupregs[1].dttk_value;
4868 4868 int i = 0;
4869 4869
4870 4870 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4871 4871 !dtrace_strcanload(s2, size, mstate, vstate)) {
4872 4872 regs[rd] = NULL;
4873 4873 break;
4874 4874 }
4875 4875
4876 4876 if (!DTRACE_INSCRATCH(mstate, size)) {
4877 4877 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4878 4878 regs[rd] = NULL;
4879 4879 break;
4880 4880 }
4881 4881
4882 4882 for (;;) {
4883 4883 if (i >= size) {
4884 4884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4885 4885 regs[rd] = NULL;
4886 4886 break;
4887 4887 }
4888 4888
4889 4889 if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4890 4890 i--;
4891 4891 break;
4892 4892 }
4893 4893 }
4894 4894
4895 4895 for (;;) {
4896 4896 if (i >= size) {
4897 4897 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4898 4898 regs[rd] = NULL;
4899 4899 break;
4900 4900 }
4901 4901
4902 4902 if ((d[i++] = dtrace_load8(s2++)) == '\0')
4903 4903 break;
4904 4904 }
4905 4905
4906 4906 if (i < size) {
4907 4907 mstate->dtms_scratch_ptr += i;
4908 4908 regs[rd] = (uintptr_t)d;
4909 4909 }
4910 4910
4911 4911 break;
4912 4912 }
4913 4913
4914 4914 case DIF_SUBR_STRTOLL: {
4915 4915 uintptr_t s = tupregs[0].dttk_value;
4916 4916 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4917 4917 int base = 10;
4918 4918
4919 4919 if (nargs > 1) {
4920 4920 if ((base = tupregs[1].dttk_value) <= 1 ||
4921 4921 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4922 4922 *flags |= CPU_DTRACE_ILLOP;
4923 4923 break;
4924 4924 }
4925 4925 }
4926 4926
4927 4927 if (!dtrace_strcanload(s, size, mstate, vstate)) {
4928 4928 regs[rd] = INT64_MIN;
4929 4929 break;
4930 4930 }
4931 4931
4932 4932 regs[rd] = dtrace_strtoll((char *)s, base, size);
4933 4933 break;
4934 4934 }
4935 4935
4936 4936 case DIF_SUBR_LLTOSTR: {
4937 4937 int64_t i = (int64_t)tupregs[0].dttk_value;
4938 4938 uint64_t val, digit;
4939 4939 uint64_t size = 65; /* enough room for 2^64 in binary */
4940 4940 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4941 4941 int base = 10;
4942 4942
4943 4943 if (nargs > 1) {
4944 4944 if ((base = tupregs[1].dttk_value) <= 1 ||
4945 4945 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4946 4946 *flags |= CPU_DTRACE_ILLOP;
4947 4947 break;
4948 4948 }
4949 4949 }
4950 4950
4951 4951 val = (base == 10 && i < 0) ? i * -1 : i;
4952 4952
4953 4953 if (!DTRACE_INSCRATCH(mstate, size)) {
4954 4954 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4955 4955 regs[rd] = NULL;
4956 4956 break;
4957 4957 }
4958 4958
4959 4959 for (*end-- = '\0'; val; val /= base) {
4960 4960 if ((digit = val % base) <= '9' - '0') {
4961 4961 *end-- = '0' + digit;
4962 4962 } else {
4963 4963 *end-- = 'a' + (digit - ('9' - '0') - 1);
4964 4964 }
4965 4965 }
4966 4966
4967 4967 if (i == 0 && base == 16)
4968 4968 *end-- = '0';
4969 4969
4970 4970 if (base == 16)
4971 4971 *end-- = 'x';
4972 4972
4973 4973 if (i == 0 || base == 8 || base == 16)
4974 4974 *end-- = '0';
4975 4975
4976 4976 if (i < 0 && base == 10)
4977 4977 *end-- = '-';
4978 4978
4979 4979 regs[rd] = (uintptr_t)end + 1;
4980 4980 mstate->dtms_scratch_ptr += size;
4981 4981 break;
4982 4982 }
4983 4983
4984 4984 case DIF_SUBR_HTONS:
4985 4985 case DIF_SUBR_NTOHS:
4986 4986 #ifdef _BIG_ENDIAN
4987 4987 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4988 4988 #else
4989 4989 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4990 4990 #endif
4991 4991 break;
4992 4992
4993 4993
4994 4994 case DIF_SUBR_HTONL:
4995 4995 case DIF_SUBR_NTOHL:
4996 4996 #ifdef _BIG_ENDIAN
4997 4997 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4998 4998 #else
4999 4999 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5000 5000 #endif
5001 5001 break;
5002 5002
5003 5003
5004 5004 case DIF_SUBR_HTONLL:
5005 5005 case DIF_SUBR_NTOHLL:
5006 5006 #ifdef _BIG_ENDIAN
5007 5007 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5008 5008 #else
5009 5009 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5010 5010 #endif
5011 5011 break;
5012 5012
5013 5013
5014 5014 case DIF_SUBR_DIRNAME:
5015 5015 case DIF_SUBR_BASENAME: {
5016 5016 char *dest = (char *)mstate->dtms_scratch_ptr;
5017 5017 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5018 5018 uintptr_t src = tupregs[0].dttk_value;
5019 5019 int i, j, len = dtrace_strlen((char *)src, size);
5020 5020 int lastbase = -1, firstbase = -1, lastdir = -1;
5021 5021 int start, end;
5022 5022
5023 5023 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5024 5024 regs[rd] = NULL;
5025 5025 break;
5026 5026 }
5027 5027
5028 5028 if (!DTRACE_INSCRATCH(mstate, size)) {
5029 5029 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5030 5030 regs[rd] = NULL;
5031 5031 break;
5032 5032 }
5033 5033
5034 5034 /*
5035 5035 * The basename and dirname for a zero-length string is
5036 5036 * defined to be "."
5037 5037 */
5038 5038 if (len == 0) {
5039 5039 len = 1;
5040 5040 src = (uintptr_t)".";
5041 5041 }
5042 5042
5043 5043 /*
5044 5044 * Start from the back of the string, moving back toward the
5045 5045 * front until we see a character that isn't a slash. That
5046 5046 * character is the last character in the basename.
5047 5047 */
5048 5048 for (i = len - 1; i >= 0; i--) {
5049 5049 if (dtrace_load8(src + i) != '/')
5050 5050 break;
5051 5051 }
5052 5052
5053 5053 if (i >= 0)
5054 5054 lastbase = i;
5055 5055
5056 5056 /*
5057 5057 * Starting from the last character in the basename, move
5058 5058 * towards the front until we find a slash. The character
5059 5059 * that we processed immediately before that is the first
5060 5060 * character in the basename.
5061 5061 */
5062 5062 for (; i >= 0; i--) {
5063 5063 if (dtrace_load8(src + i) == '/')
5064 5064 break;
5065 5065 }
5066 5066
5067 5067 if (i >= 0)
5068 5068 firstbase = i + 1;
5069 5069
5070 5070 /*
5071 5071 * Now keep going until we find a non-slash character. That
5072 5072 * character is the last character in the dirname.
5073 5073 */
5074 5074 for (; i >= 0; i--) {
5075 5075 if (dtrace_load8(src + i) != '/')
5076 5076 break;
5077 5077 }
5078 5078
5079 5079 if (i >= 0)
5080 5080 lastdir = i;
5081 5081
5082 5082 ASSERT(!(lastbase == -1 && firstbase != -1));
5083 5083 ASSERT(!(firstbase == -1 && lastdir != -1));
5084 5084
5085 5085 if (lastbase == -1) {
5086 5086 /*
5087 5087 * We didn't find a non-slash character. We know that
5088 5088 * the length is non-zero, so the whole string must be
5089 5089 * slashes. In either the dirname or the basename
5090 5090 * case, we return '/'.
5091 5091 */
5092 5092 ASSERT(firstbase == -1);
5093 5093 firstbase = lastbase = lastdir = 0;
5094 5094 }
5095 5095
5096 5096 if (firstbase == -1) {
5097 5097 /*
5098 5098 * The entire string consists only of a basename
5099 5099 * component. If we're looking for dirname, we need
5100 5100 * to change our string to be just "."; if we're
5101 5101 * looking for a basename, we'll just set the first
5102 5102 * character of the basename to be 0.
5103 5103 */
5104 5104 if (subr == DIF_SUBR_DIRNAME) {
5105 5105 ASSERT(lastdir == -1);
5106 5106 src = (uintptr_t)".";
5107 5107 lastdir = 0;
5108 5108 } else {
5109 5109 firstbase = 0;
5110 5110 }
5111 5111 }
5112 5112
5113 5113 if (subr == DIF_SUBR_DIRNAME) {
5114 5114 if (lastdir == -1) {
5115 5115 /*
5116 5116 * We know that we have a slash in the name --
5117 5117 * or lastdir would be set to 0, above. And
5118 5118 * because lastdir is -1, we know that this
5119 5119 * slash must be the first character. (That
5120 5120 * is, the full string must be of the form
5121 5121 * "/basename".) In this case, the last
5122 5122 * character of the directory name is 0.
5123 5123 */
5124 5124 lastdir = 0;
5125 5125 }
5126 5126
5127 5127 start = 0;
5128 5128 end = lastdir;
5129 5129 } else {
5130 5130 ASSERT(subr == DIF_SUBR_BASENAME);
5131 5131 ASSERT(firstbase != -1 && lastbase != -1);
5132 5132 start = firstbase;
5133 5133 end = lastbase;
5134 5134 }
5135 5135
5136 5136 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5137 5137 dest[j] = dtrace_load8(src + i);
5138 5138
5139 5139 dest[j] = '\0';
5140 5140 regs[rd] = (uintptr_t)dest;
5141 5141 mstate->dtms_scratch_ptr += size;
5142 5142 break;
5143 5143 }
5144 5144
5145 5145 case DIF_SUBR_GETF: {
5146 5146 uintptr_t fd = tupregs[0].dttk_value;
5147 5147 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5148 5148 file_t *fp;
5149 5149
5150 5150 if (!dtrace_priv_proc(state, mstate)) {
5151 5151 regs[rd] = NULL;
5152 5152 break;
5153 5153 }
5154 5154
5155 5155 /*
5156 5156 * This is safe because fi_nfiles only increases, and the
5157 5157 * fi_list array is not freed when the array size doubles.
5158 5158 * (See the comment in flist_grow() for details on the
5159 5159 * management of the u_finfo structure.)
5160 5160 */
5161 5161 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5162 5162
5163 5163 mstate->dtms_getf = fp;
5164 5164 regs[rd] = (uintptr_t)fp;
5165 5165 break;
5166 5166 }
5167 5167
5168 5168 case DIF_SUBR_CLEANPATH: {
5169 5169 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5170 5170 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5171 5171 uintptr_t src = tupregs[0].dttk_value;
5172 5172 int i = 0, j = 0;
5173 5173 zone_t *z;
5174 5174
5175 5175 if (!dtrace_strcanload(src, size, mstate, vstate)) {
5176 5176 regs[rd] = NULL;
5177 5177 break;
5178 5178 }
5179 5179
5180 5180 if (!DTRACE_INSCRATCH(mstate, size)) {
5181 5181 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5182 5182 regs[rd] = NULL;
5183 5183 break;
5184 5184 }
5185 5185
5186 5186 /*
5187 5187 * Move forward, loading each character.
5188 5188 */
5189 5189 do {
5190 5190 c = dtrace_load8(src + i++);
5191 5191 next:
5192 5192 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5193 5193 break;
5194 5194
5195 5195 if (c != '/') {
5196 5196 dest[j++] = c;
5197 5197 continue;
5198 5198 }
5199 5199
5200 5200 c = dtrace_load8(src + i++);
5201 5201
5202 5202 if (c == '/') {
5203 5203 /*
5204 5204 * We have two slashes -- we can just advance
5205 5205 * to the next character.
5206 5206 */
5207 5207 goto next;
5208 5208 }
5209 5209
5210 5210 if (c != '.') {
5211 5211 /*
5212 5212 * This is not "." and it's not ".." -- we can
5213 5213 * just store the "/" and this character and
5214 5214 * drive on.
5215 5215 */
5216 5216 dest[j++] = '/';
5217 5217 dest[j++] = c;
5218 5218 continue;
5219 5219 }
5220 5220
5221 5221 c = dtrace_load8(src + i++);
5222 5222
5223 5223 if (c == '/') {
5224 5224 /*
5225 5225 * This is a "/./" component. We're not going
5226 5226 * to store anything in the destination buffer;
5227 5227 * we're just going to go to the next component.
5228 5228 */
5229 5229 goto next;
5230 5230 }
5231 5231
5232 5232 if (c != '.') {
5233 5233 /*
5234 5234 * This is not ".." -- we can just store the
5235 5235 * "/." and this character and continue
5236 5236 * processing.
5237 5237 */
5238 5238 dest[j++] = '/';
5239 5239 dest[j++] = '.';
5240 5240 dest[j++] = c;
5241 5241 continue;
5242 5242 }
5243 5243
5244 5244 c = dtrace_load8(src + i++);
5245 5245
5246 5246 if (c != '/' && c != '\0') {
5247 5247 /*
5248 5248 * This is not ".." -- it's "..[mumble]".
5249 5249 * We'll store the "/.." and this character
5250 5250 * and continue processing.
5251 5251 */
5252 5252 dest[j++] = '/';
5253 5253 dest[j++] = '.';
5254 5254 dest[j++] = '.';
5255 5255 dest[j++] = c;
5256 5256 continue;
5257 5257 }
5258 5258
5259 5259 /*
5260 5260 * This is "/../" or "/..\0". We need to back up
5261 5261 * our destination pointer until we find a "/".
5262 5262 */
5263 5263 i--;
5264 5264 while (j != 0 && dest[--j] != '/')
5265 5265 continue;
5266 5266
5267 5267 if (c == '\0')
5268 5268 dest[++j] = '/';
5269 5269 } while (c != '\0');
5270 5270
5271 5271 dest[j] = '\0';
5272 5272
5273 5273 if (mstate->dtms_getf != NULL &&
5274 5274 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5275 5275 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5276 5276 /*
5277 5277 * If we've done a getf() as a part of this ECB and we
5278 5278 * don't have kernel access (and we're not in the global
5279 5279 * zone), check if the path we cleaned up begins with
5280 5280 * the zone's root path, and trim it off if so. Note
5281 5281 * that this is an output cleanliness issue, not a
5282 5282 * security issue: knowing one's zone root path does
5283 5283 * not enable privilege escalation.
5284 5284 */
5285 5285 if (strstr(dest, z->zone_rootpath) == dest)
5286 5286 dest += strlen(z->zone_rootpath) - 1;
5287 5287 }
5288 5288
5289 5289 regs[rd] = (uintptr_t)dest;
5290 5290 mstate->dtms_scratch_ptr += size;
5291 5291 break;
5292 5292 }
5293 5293
5294 5294 case DIF_SUBR_INET_NTOA:
5295 5295 case DIF_SUBR_INET_NTOA6:
5296 5296 case DIF_SUBR_INET_NTOP: {
5297 5297 size_t size;
5298 5298 int af, argi, i;
5299 5299 char *base, *end;
5300 5300
5301 5301 if (subr == DIF_SUBR_INET_NTOP) {
5302 5302 af = (int)tupregs[0].dttk_value;
5303 5303 argi = 1;
5304 5304 } else {
5305 5305 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5306 5306 argi = 0;
5307 5307 }
5308 5308
5309 5309 if (af == AF_INET) {
5310 5310 ipaddr_t ip4;
5311 5311 uint8_t *ptr8, val;
5312 5312
5313 5313 /*
5314 5314 * Safely load the IPv4 address.
5315 5315 */
5316 5316 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5317 5317
5318 5318 /*
5319 5319 * Check an IPv4 string will fit in scratch.
5320 5320 */
5321 5321 size = INET_ADDRSTRLEN;
5322 5322 if (!DTRACE_INSCRATCH(mstate, size)) {
5323 5323 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5324 5324 regs[rd] = NULL;
5325 5325 break;
5326 5326 }
5327 5327 base = (char *)mstate->dtms_scratch_ptr;
5328 5328 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5329 5329
5330 5330 /*
5331 5331 * Stringify as a dotted decimal quad.
5332 5332 */
5333 5333 *end-- = '\0';
5334 5334 ptr8 = (uint8_t *)&ip4;
5335 5335 for (i = 3; i >= 0; i--) {
5336 5336 val = ptr8[i];
5337 5337
5338 5338 if (val == 0) {
5339 5339 *end-- = '0';
5340 5340 } else {
5341 5341 for (; val; val /= 10) {
5342 5342 *end-- = '0' + (val % 10);
5343 5343 }
5344 5344 }
5345 5345
5346 5346 if (i > 0)
5347 5347 *end-- = '.';
5348 5348 }
5349 5349 ASSERT(end + 1 >= base);
5350 5350
5351 5351 } else if (af == AF_INET6) {
5352 5352 struct in6_addr ip6;
5353 5353 int firstzero, tryzero, numzero, v6end;
5354 5354 uint16_t val;
5355 5355 const char digits[] = "0123456789abcdef";
5356 5356
5357 5357 /*
5358 5358 * Stringify using RFC 1884 convention 2 - 16 bit
5359 5359 * hexadecimal values with a zero-run compression.
5360 5360 * Lower case hexadecimal digits are used.
5361 5361 * eg, fe80::214:4fff:fe0b:76c8.
5362 5362 * The IPv4 embedded form is returned for inet_ntop,
5363 5363 * just the IPv4 string is returned for inet_ntoa6.
5364 5364 */
5365 5365
5366 5366 /*
5367 5367 * Safely load the IPv6 address.
5368 5368 */
5369 5369 dtrace_bcopy(
5370 5370 (void *)(uintptr_t)tupregs[argi].dttk_value,
5371 5371 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5372 5372
5373 5373 /*
5374 5374 * Check an IPv6 string will fit in scratch.
5375 5375 */
5376 5376 size = INET6_ADDRSTRLEN;
5377 5377 if (!DTRACE_INSCRATCH(mstate, size)) {
5378 5378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5379 5379 regs[rd] = NULL;
5380 5380 break;
5381 5381 }
5382 5382 base = (char *)mstate->dtms_scratch_ptr;
5383 5383 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5384 5384 *end-- = '\0';
5385 5385
5386 5386 /*
5387 5387 * Find the longest run of 16 bit zero values
5388 5388 * for the single allowed zero compression - "::".
5389 5389 */
5390 5390 firstzero = -1;
5391 5391 tryzero = -1;
5392 5392 numzero = 1;
5393 5393 for (i = 0; i < sizeof (struct in6_addr); i++) {
5394 5394 if (ip6._S6_un._S6_u8[i] == 0 &&
5395 5395 tryzero == -1 && i % 2 == 0) {
5396 5396 tryzero = i;
5397 5397 continue;
5398 5398 }
5399 5399
5400 5400 if (tryzero != -1 &&
5401 5401 (ip6._S6_un._S6_u8[i] != 0 ||
5402 5402 i == sizeof (struct in6_addr) - 1)) {
5403 5403
5404 5404 if (i - tryzero <= numzero) {
5405 5405 tryzero = -1;
5406 5406 continue;
5407 5407 }
5408 5408
5409 5409 firstzero = tryzero;
5410 5410 numzero = i - i % 2 - tryzero;
5411 5411 tryzero = -1;
5412 5412
5413 5413 if (ip6._S6_un._S6_u8[i] == 0 &&
5414 5414 i == sizeof (struct in6_addr) - 1)
5415 5415 numzero += 2;
5416 5416 }
5417 5417 }
5418 5418 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5419 5419
5420 5420 /*
5421 5421 * Check for an IPv4 embedded address.
5422 5422 */
5423 5423 v6end = sizeof (struct in6_addr) - 2;
5424 5424 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5425 5425 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5426 5426 for (i = sizeof (struct in6_addr) - 1;
5427 5427 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5428 5428 ASSERT(end >= base);
5429 5429
5430 5430 val = ip6._S6_un._S6_u8[i];
5431 5431
5432 5432 if (val == 0) {
5433 5433 *end-- = '0';
5434 5434 } else {
5435 5435 for (; val; val /= 10) {
5436 5436 *end-- = '0' + val % 10;
5437 5437 }
5438 5438 }
5439 5439
5440 5440 if (i > DTRACE_V4MAPPED_OFFSET)
5441 5441 *end-- = '.';
5442 5442 }
5443 5443
5444 5444 if (subr == DIF_SUBR_INET_NTOA6)
5445 5445 goto inetout;
5446 5446
5447 5447 /*
5448 5448 * Set v6end to skip the IPv4 address that
5449 5449 * we have already stringified.
5450 5450 */
5451 5451 v6end = 10;
5452 5452 }
5453 5453
5454 5454 /*
5455 5455 * Build the IPv6 string by working through the
5456 5456 * address in reverse.
5457 5457 */
5458 5458 for (i = v6end; i >= 0; i -= 2) {
5459 5459 ASSERT(end >= base);
5460 5460
5461 5461 if (i == firstzero + numzero - 2) {
5462 5462 *end-- = ':';
5463 5463 *end-- = ':';
5464 5464 i -= numzero - 2;
5465 5465 continue;
5466 5466 }
5467 5467
5468 5468 if (i < 14 && i != firstzero - 2)
5469 5469 *end-- = ':';
5470 5470
5471 5471 val = (ip6._S6_un._S6_u8[i] << 8) +
5472 5472 ip6._S6_un._S6_u8[i + 1];
5473 5473
5474 5474 if (val == 0) {
5475 5475 *end-- = '0';
5476 5476 } else {
5477 5477 for (; val; val /= 16) {
5478 5478 *end-- = digits[val % 16];
5479 5479 }
5480 5480 }
5481 5481 }
5482 5482 ASSERT(end + 1 >= base);
5483 5483
5484 5484 } else {
5485 5485 /*
5486 5486 * The user didn't use AH_INET or AH_INET6.
5487 5487 */
5488 5488 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5489 5489 regs[rd] = NULL;
5490 5490 break;
5491 5491 }
5492 5492
5493 5493 inetout: regs[rd] = (uintptr_t)end + 1;
5494 5494 mstate->dtms_scratch_ptr += size;
5495 5495 break;
5496 5496 }
5497 5497
5498 5498 }
5499 5499 }
5500 5500
5501 5501 /*
5502 5502 * Emulate the execution of DTrace IR instructions specified by the given
5503 5503 * DIF object. This function is deliberately void of assertions as all of
5504 5504 * the necessary checks are handled by a call to dtrace_difo_validate().
5505 5505 */
5506 5506 static uint64_t
5507 5507 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5508 5508 dtrace_vstate_t *vstate, dtrace_state_t *state)
5509 5509 {
5510 5510 const dif_instr_t *text = difo->dtdo_buf;
5511 5511 const uint_t textlen = difo->dtdo_len;
5512 5512 const char *strtab = difo->dtdo_strtab;
5513 5513 const uint64_t *inttab = difo->dtdo_inttab;
5514 5514
5515 5515 uint64_t rval = 0;
5516 5516 dtrace_statvar_t *svar;
5517 5517 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5518 5518 dtrace_difv_t *v;
5519 5519 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5520 5520 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5521 5521
5522 5522 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5523 5523 uint64_t regs[DIF_DIR_NREGS];
5524 5524 uint64_t *tmp;
5525 5525
5526 5526 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5527 5527 int64_t cc_r;
5528 5528 uint_t pc = 0, id, opc;
5529 5529 uint8_t ttop = 0;
5530 5530 dif_instr_t instr;
5531 5531 uint_t r1, r2, rd;
5532 5532
5533 5533 /*
5534 5534 * We stash the current DIF object into the machine state: we need it
5535 5535 * for subsequent access checking.
5536 5536 */
5537 5537 mstate->dtms_difo = difo;
5538 5538
5539 5539 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
5540 5540
5541 5541 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5542 5542 opc = pc;
5543 5543
5544 5544 instr = text[pc++];
5545 5545 r1 = DIF_INSTR_R1(instr);
5546 5546 r2 = DIF_INSTR_R2(instr);
5547 5547 rd = DIF_INSTR_RD(instr);
5548 5548
5549 5549 switch (DIF_INSTR_OP(instr)) {
5550 5550 case DIF_OP_OR:
5551 5551 regs[rd] = regs[r1] | regs[r2];
5552 5552 break;
5553 5553 case DIF_OP_XOR:
5554 5554 regs[rd] = regs[r1] ^ regs[r2];
5555 5555 break;
5556 5556 case DIF_OP_AND:
5557 5557 regs[rd] = regs[r1] & regs[r2];
5558 5558 break;
5559 5559 case DIF_OP_SLL:
5560 5560 regs[rd] = regs[r1] << regs[r2];
5561 5561 break;
5562 5562 case DIF_OP_SRL:
5563 5563 regs[rd] = regs[r1] >> regs[r2];
5564 5564 break;
5565 5565 case DIF_OP_SUB:
5566 5566 regs[rd] = regs[r1] - regs[r2];
5567 5567 break;
5568 5568 case DIF_OP_ADD:
5569 5569 regs[rd] = regs[r1] + regs[r2];
5570 5570 break;
5571 5571 case DIF_OP_MUL:
5572 5572 regs[rd] = regs[r1] * regs[r2];
5573 5573 break;
5574 5574 case DIF_OP_SDIV:
5575 5575 if (regs[r2] == 0) {
5576 5576 regs[rd] = 0;
5577 5577 *flags |= CPU_DTRACE_DIVZERO;
5578 5578 } else {
5579 5579 regs[rd] = (int64_t)regs[r1] /
5580 5580 (int64_t)regs[r2];
5581 5581 }
5582 5582 break;
5583 5583
5584 5584 case DIF_OP_UDIV:
5585 5585 if (regs[r2] == 0) {
5586 5586 regs[rd] = 0;
5587 5587 *flags |= CPU_DTRACE_DIVZERO;
5588 5588 } else {
5589 5589 regs[rd] = regs[r1] / regs[r2];
5590 5590 }
5591 5591 break;
5592 5592
5593 5593 case DIF_OP_SREM:
5594 5594 if (regs[r2] == 0) {
5595 5595 regs[rd] = 0;
5596 5596 *flags |= CPU_DTRACE_DIVZERO;
5597 5597 } else {
5598 5598 regs[rd] = (int64_t)regs[r1] %
5599 5599 (int64_t)regs[r2];
5600 5600 }
5601 5601 break;
5602 5602
5603 5603 case DIF_OP_UREM:
5604 5604 if (regs[r2] == 0) {
5605 5605 regs[rd] = 0;
5606 5606 *flags |= CPU_DTRACE_DIVZERO;
5607 5607 } else {
5608 5608 regs[rd] = regs[r1] % regs[r2];
5609 5609 }
5610 5610 break;
5611 5611
5612 5612 case DIF_OP_NOT:
5613 5613 regs[rd] = ~regs[r1];
5614 5614 break;
5615 5615 case DIF_OP_MOV:
5616 5616 regs[rd] = regs[r1];
5617 5617 break;
5618 5618 case DIF_OP_CMP:
5619 5619 cc_r = regs[r1] - regs[r2];
5620 5620 cc_n = cc_r < 0;
5621 5621 cc_z = cc_r == 0;
5622 5622 cc_v = 0;
5623 5623 cc_c = regs[r1] < regs[r2];
5624 5624 break;
5625 5625 case DIF_OP_TST:
5626 5626 cc_n = cc_v = cc_c = 0;
5627 5627 cc_z = regs[r1] == 0;
5628 5628 break;
5629 5629 case DIF_OP_BA:
5630 5630 pc = DIF_INSTR_LABEL(instr);
5631 5631 break;
5632 5632 case DIF_OP_BE:
5633 5633 if (cc_z)
5634 5634 pc = DIF_INSTR_LABEL(instr);
5635 5635 break;
5636 5636 case DIF_OP_BNE:
5637 5637 if (cc_z == 0)
5638 5638 pc = DIF_INSTR_LABEL(instr);
5639 5639 break;
5640 5640 case DIF_OP_BG:
5641 5641 if ((cc_z | (cc_n ^ cc_v)) == 0)
5642 5642 pc = DIF_INSTR_LABEL(instr);
5643 5643 break;
5644 5644 case DIF_OP_BGU:
5645 5645 if ((cc_c | cc_z) == 0)
5646 5646 pc = DIF_INSTR_LABEL(instr);
5647 5647 break;
5648 5648 case DIF_OP_BGE:
5649 5649 if ((cc_n ^ cc_v) == 0)
5650 5650 pc = DIF_INSTR_LABEL(instr);
5651 5651 break;
5652 5652 case DIF_OP_BGEU:
5653 5653 if (cc_c == 0)
5654 5654 pc = DIF_INSTR_LABEL(instr);
5655 5655 break;
5656 5656 case DIF_OP_BL:
5657 5657 if (cc_n ^ cc_v)
5658 5658 pc = DIF_INSTR_LABEL(instr);
5659 5659 break;
5660 5660 case DIF_OP_BLU:
5661 5661 if (cc_c)
5662 5662 pc = DIF_INSTR_LABEL(instr);
5663 5663 break;
5664 5664 case DIF_OP_BLE:
5665 5665 if (cc_z | (cc_n ^ cc_v))
5666 5666 pc = DIF_INSTR_LABEL(instr);
5667 5667 break;
5668 5668 case DIF_OP_BLEU:
5669 5669 if (cc_c | cc_z)
5670 5670 pc = DIF_INSTR_LABEL(instr);
5671 5671 break;
5672 5672 case DIF_OP_RLDSB:
5673 5673 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5674 5674 break;
5675 5675 /*FALLTHROUGH*/
5676 5676 case DIF_OP_LDSB:
5677 5677 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5678 5678 break;
5679 5679 case DIF_OP_RLDSH:
5680 5680 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5681 5681 break;
5682 5682 /*FALLTHROUGH*/
5683 5683 case DIF_OP_LDSH:
5684 5684 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5685 5685 break;
5686 5686 case DIF_OP_RLDSW:
5687 5687 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5688 5688 break;
5689 5689 /*FALLTHROUGH*/
5690 5690 case DIF_OP_LDSW:
5691 5691 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5692 5692 break;
5693 5693 case DIF_OP_RLDUB:
5694 5694 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5695 5695 break;
5696 5696 /*FALLTHROUGH*/
5697 5697 case DIF_OP_LDUB:
5698 5698 regs[rd] = dtrace_load8(regs[r1]);
5699 5699 break;
5700 5700 case DIF_OP_RLDUH:
5701 5701 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5702 5702 break;
5703 5703 /*FALLTHROUGH*/
5704 5704 case DIF_OP_LDUH:
5705 5705 regs[rd] = dtrace_load16(regs[r1]);
5706 5706 break;
5707 5707 case DIF_OP_RLDUW:
5708 5708 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5709 5709 break;
5710 5710 /*FALLTHROUGH*/
5711 5711 case DIF_OP_LDUW:
5712 5712 regs[rd] = dtrace_load32(regs[r1]);
5713 5713 break;
5714 5714 case DIF_OP_RLDX:
5715 5715 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5716 5716 break;
5717 5717 /*FALLTHROUGH*/
5718 5718 case DIF_OP_LDX:
5719 5719 regs[rd] = dtrace_load64(regs[r1]);
5720 5720 break;
5721 5721 case DIF_OP_ULDSB:
5722 5722 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5723 5723 regs[rd] = (int8_t)
5724 5724 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5725 5725 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5726 5726 break;
5727 5727 case DIF_OP_ULDSH:
5728 5728 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5729 5729 regs[rd] = (int16_t)
5730 5730 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5731 5731 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5732 5732 break;
5733 5733 case DIF_OP_ULDSW:
5734 5734 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5735 5735 regs[rd] = (int32_t)
5736 5736 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5737 5737 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5738 5738 break;
5739 5739 case DIF_OP_ULDUB:
5740 5740 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5741 5741 regs[rd] =
5742 5742 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5743 5743 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5744 5744 break;
5745 5745 case DIF_OP_ULDUH:
5746 5746 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5747 5747 regs[rd] =
5748 5748 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5749 5749 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5750 5750 break;
5751 5751 case DIF_OP_ULDUW:
5752 5752 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5753 5753 regs[rd] =
5754 5754 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5755 5755 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5756 5756 break;
5757 5757 case DIF_OP_ULDX:
5758 5758 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5759 5759 regs[rd] =
5760 5760 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5761 5761 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5762 5762 break;
5763 5763 case DIF_OP_RET:
5764 5764 rval = regs[rd];
5765 5765 pc = textlen;
5766 5766 break;
5767 5767 case DIF_OP_NOP:
5768 5768 break;
5769 5769 case DIF_OP_SETX:
5770 5770 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5771 5771 break;
5772 5772 case DIF_OP_SETS:
5773 5773 regs[rd] = (uint64_t)(uintptr_t)
5774 5774 (strtab + DIF_INSTR_STRING(instr));
5775 5775 break;
5776 5776 case DIF_OP_SCMP: {
5777 5777 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5778 5778 uintptr_t s1 = regs[r1];
5779 5779 uintptr_t s2 = regs[r2];
5780 5780
5781 5781 if (s1 != NULL &&
5782 5782 !dtrace_strcanload(s1, sz, mstate, vstate))
5783 5783 break;
5784 5784 if (s2 != NULL &&
5785 5785 !dtrace_strcanload(s2, sz, mstate, vstate))
5786 5786 break;
5787 5787
5788 5788 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5789 5789
5790 5790 cc_n = cc_r < 0;
5791 5791 cc_z = cc_r == 0;
5792 5792 cc_v = cc_c = 0;
5793 5793 break;
5794 5794 }
5795 5795 case DIF_OP_LDGA:
5796 5796 regs[rd] = dtrace_dif_variable(mstate, state,
5797 5797 r1, regs[r2]);
5798 5798 break;
5799 5799 case DIF_OP_LDGS:
5800 5800 id = DIF_INSTR_VAR(instr);
5801 5801
5802 5802 if (id >= DIF_VAR_OTHER_UBASE) {
5803 5803 uintptr_t a;
5804 5804
5805 5805 id -= DIF_VAR_OTHER_UBASE;
5806 5806 svar = vstate->dtvs_globals[id];
5807 5807 ASSERT(svar != NULL);
5808 5808 v = &svar->dtsv_var;
5809 5809
5810 5810 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5811 5811 regs[rd] = svar->dtsv_data;
5812 5812 break;
5813 5813 }
5814 5814
5815 5815 a = (uintptr_t)svar->dtsv_data;
5816 5816
5817 5817 if (*(uint8_t *)a == UINT8_MAX) {
5818 5818 /*
5819 5819 * If the 0th byte is set to UINT8_MAX
5820 5820 * then this is to be treated as a
5821 5821 * reference to a NULL variable.
5822 5822 */
5823 5823 regs[rd] = NULL;
5824 5824 } else {
5825 5825 regs[rd] = a + sizeof (uint64_t);
5826 5826 }
5827 5827
5828 5828 break;
5829 5829 }
5830 5830
5831 5831 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5832 5832 break;
5833 5833
5834 5834 case DIF_OP_STGS:
5835 5835 id = DIF_INSTR_VAR(instr);
5836 5836
5837 5837 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5838 5838 id -= DIF_VAR_OTHER_UBASE;
5839 5839
5840 5840 svar = vstate->dtvs_globals[id];
5841 5841 ASSERT(svar != NULL);
5842 5842 v = &svar->dtsv_var;
5843 5843
5844 5844 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5845 5845 uintptr_t a = (uintptr_t)svar->dtsv_data;
5846 5846
5847 5847 ASSERT(a != NULL);
5848 5848 ASSERT(svar->dtsv_size != 0);
5849 5849
5850 5850 if (regs[rd] == NULL) {
5851 5851 *(uint8_t *)a = UINT8_MAX;
5852 5852 break;
5853 5853 } else {
5854 5854 *(uint8_t *)a = 0;
5855 5855 a += sizeof (uint64_t);
5856 5856 }
5857 5857 if (!dtrace_vcanload(
5858 5858 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5859 5859 mstate, vstate))
5860 5860 break;
5861 5861
5862 5862 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5863 5863 (void *)a, &v->dtdv_type);
5864 5864 break;
5865 5865 }
5866 5866
5867 5867 svar->dtsv_data = regs[rd];
5868 5868 break;
5869 5869
5870 5870 case DIF_OP_LDTA:
5871 5871 /*
5872 5872 * There are no DTrace built-in thread-local arrays at
5873 5873 * present. This opcode is saved for future work.
5874 5874 */
5875 5875 *flags |= CPU_DTRACE_ILLOP;
5876 5876 regs[rd] = 0;
5877 5877 break;
5878 5878
5879 5879 case DIF_OP_LDLS:
5880 5880 id = DIF_INSTR_VAR(instr);
5881 5881
5882 5882 if (id < DIF_VAR_OTHER_UBASE) {
5883 5883 /*
5884 5884 * For now, this has no meaning.
5885 5885 */
5886 5886 regs[rd] = 0;
5887 5887 break;
5888 5888 }
5889 5889
5890 5890 id -= DIF_VAR_OTHER_UBASE;
5891 5891
5892 5892 ASSERT(id < vstate->dtvs_nlocals);
5893 5893 ASSERT(vstate->dtvs_locals != NULL);
5894 5894
5895 5895 svar = vstate->dtvs_locals[id];
5896 5896 ASSERT(svar != NULL);
5897 5897 v = &svar->dtsv_var;
5898 5898
5899 5899 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5900 5900 uintptr_t a = (uintptr_t)svar->dtsv_data;
5901 5901 size_t sz = v->dtdv_type.dtdt_size;
5902 5902
5903 5903 sz += sizeof (uint64_t);
5904 5904 ASSERT(svar->dtsv_size == NCPU * sz);
5905 5905 a += CPU->cpu_id * sz;
5906 5906
5907 5907 if (*(uint8_t *)a == UINT8_MAX) {
5908 5908 /*
5909 5909 * If the 0th byte is set to UINT8_MAX
5910 5910 * then this is to be treated as a
5911 5911 * reference to a NULL variable.
5912 5912 */
5913 5913 regs[rd] = NULL;
5914 5914 } else {
5915 5915 regs[rd] = a + sizeof (uint64_t);
5916 5916 }
5917 5917
5918 5918 break;
5919 5919 }
5920 5920
5921 5921 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5922 5922 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5923 5923 regs[rd] = tmp[CPU->cpu_id];
5924 5924 break;
5925 5925
5926 5926 case DIF_OP_STLS:
5927 5927 id = DIF_INSTR_VAR(instr);
5928 5928
5929 5929 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5930 5930 id -= DIF_VAR_OTHER_UBASE;
5931 5931 ASSERT(id < vstate->dtvs_nlocals);
5932 5932
5933 5933 ASSERT(vstate->dtvs_locals != NULL);
5934 5934 svar = vstate->dtvs_locals[id];
5935 5935 ASSERT(svar != NULL);
5936 5936 v = &svar->dtsv_var;
5937 5937
5938 5938 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5939 5939 uintptr_t a = (uintptr_t)svar->dtsv_data;
5940 5940 size_t sz = v->dtdv_type.dtdt_size;
5941 5941
5942 5942 sz += sizeof (uint64_t);
5943 5943 ASSERT(svar->dtsv_size == NCPU * sz);
5944 5944 a += CPU->cpu_id * sz;
5945 5945
5946 5946 if (regs[rd] == NULL) {
5947 5947 *(uint8_t *)a = UINT8_MAX;
5948 5948 break;
5949 5949 } else {
5950 5950 *(uint8_t *)a = 0;
5951 5951 a += sizeof (uint64_t);
5952 5952 }
5953 5953
5954 5954 if (!dtrace_vcanload(
5955 5955 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5956 5956 mstate, vstate))
5957 5957 break;
5958 5958
5959 5959 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5960 5960 (void *)a, &v->dtdv_type);
5961 5961 break;
5962 5962 }
5963 5963
5964 5964 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5965 5965 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5966 5966 tmp[CPU->cpu_id] = regs[rd];
5967 5967 break;
5968 5968
5969 5969 case DIF_OP_LDTS: {
5970 5970 dtrace_dynvar_t *dvar;
5971 5971 dtrace_key_t *key;
5972 5972
5973 5973 id = DIF_INSTR_VAR(instr);
5974 5974 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5975 5975 id -= DIF_VAR_OTHER_UBASE;
5976 5976 v = &vstate->dtvs_tlocals[id];
5977 5977
5978 5978 key = &tupregs[DIF_DTR_NREGS];
5979 5979 key[0].dttk_value = (uint64_t)id;
5980 5980 key[0].dttk_size = 0;
5981 5981 DTRACE_TLS_THRKEY(key[1].dttk_value);
5982 5982 key[1].dttk_size = 0;
5983 5983
5984 5984 dvar = dtrace_dynvar(dstate, 2, key,
5985 5985 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5986 5986 mstate, vstate);
5987 5987
5988 5988 if (dvar == NULL) {
5989 5989 regs[rd] = 0;
5990 5990 break;
5991 5991 }
5992 5992
5993 5993 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5994 5994 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5995 5995 } else {
5996 5996 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5997 5997 }
5998 5998
5999 5999 break;
6000 6000 }
6001 6001
6002 6002 case DIF_OP_STTS: {
6003 6003 dtrace_dynvar_t *dvar;
6004 6004 dtrace_key_t *key;
6005 6005
6006 6006 id = DIF_INSTR_VAR(instr);
6007 6007 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6008 6008 id -= DIF_VAR_OTHER_UBASE;
6009 6009
6010 6010 key = &tupregs[DIF_DTR_NREGS];
6011 6011 key[0].dttk_value = (uint64_t)id;
6012 6012 key[0].dttk_size = 0;
6013 6013 DTRACE_TLS_THRKEY(key[1].dttk_value);
6014 6014 key[1].dttk_size = 0;
6015 6015 v = &vstate->dtvs_tlocals[id];
6016 6016
6017 6017 dvar = dtrace_dynvar(dstate, 2, key,
6018 6018 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6019 6019 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6020 6020 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6021 6021 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6022 6022
6023 6023 /*
6024 6024 * Given that we're storing to thread-local data,
6025 6025 * we need to flush our predicate cache.
6026 6026 */
6027 6027 curthread->t_predcache = NULL;
6028 6028
6029 6029 if (dvar == NULL)
6030 6030 break;
6031 6031
6032 6032 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6033 6033 if (!dtrace_vcanload(
6034 6034 (void *)(uintptr_t)regs[rd],
6035 6035 &v->dtdv_type, mstate, vstate))
6036 6036 break;
6037 6037
6038 6038 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6039 6039 dvar->dtdv_data, &v->dtdv_type);
6040 6040 } else {
6041 6041 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6042 6042 }
6043 6043
6044 6044 break;
6045 6045 }
6046 6046
6047 6047 case DIF_OP_SRA:
6048 6048 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6049 6049 break;
6050 6050
6051 6051 case DIF_OP_CALL:
6052 6052 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6053 6053 regs, tupregs, ttop, mstate, state);
6054 6054 break;
6055 6055
6056 6056 case DIF_OP_PUSHTR:
6057 6057 if (ttop == DIF_DTR_NREGS) {
6058 6058 *flags |= CPU_DTRACE_TUPOFLOW;
6059 6059 break;
6060 6060 }
6061 6061
6062 6062 if (r1 == DIF_TYPE_STRING) {
6063 6063 /*
6064 6064 * If this is a string type and the size is 0,
6065 6065 * we'll use the system-wide default string
6066 6066 * size. Note that we are _not_ looking at
6067 6067 * the value of the DTRACEOPT_STRSIZE option;
6068 6068 * had this been set, we would expect to have
6069 6069 * a non-zero size value in the "pushtr".
6070 6070 */
6071 6071 tupregs[ttop].dttk_size =
6072 6072 dtrace_strlen((char *)(uintptr_t)regs[rd],
6073 6073 regs[r2] ? regs[r2] :
6074 6074 dtrace_strsize_default) + 1;
6075 6075 } else {
6076 6076 tupregs[ttop].dttk_size = regs[r2];
6077 6077 }
6078 6078
6079 6079 tupregs[ttop++].dttk_value = regs[rd];
6080 6080 break;
6081 6081
6082 6082 case DIF_OP_PUSHTV:
6083 6083 if (ttop == DIF_DTR_NREGS) {
6084 6084 *flags |= CPU_DTRACE_TUPOFLOW;
6085 6085 break;
6086 6086 }
6087 6087
6088 6088 tupregs[ttop].dttk_value = regs[rd];
6089 6089 tupregs[ttop++].dttk_size = 0;
6090 6090 break;
6091 6091
6092 6092 case DIF_OP_POPTS:
6093 6093 if (ttop != 0)
6094 6094 ttop--;
6095 6095 break;
6096 6096
6097 6097 case DIF_OP_FLUSHTS:
6098 6098 ttop = 0;
6099 6099 break;
6100 6100
6101 6101 case DIF_OP_LDGAA:
6102 6102 case DIF_OP_LDTAA: {
6103 6103 dtrace_dynvar_t *dvar;
6104 6104 dtrace_key_t *key = tupregs;
6105 6105 uint_t nkeys = ttop;
6106 6106
6107 6107 id = DIF_INSTR_VAR(instr);
6108 6108 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6109 6109 id -= DIF_VAR_OTHER_UBASE;
6110 6110
6111 6111 key[nkeys].dttk_value = (uint64_t)id;
6112 6112 key[nkeys++].dttk_size = 0;
6113 6113
6114 6114 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6115 6115 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6116 6116 key[nkeys++].dttk_size = 0;
6117 6117 v = &vstate->dtvs_tlocals[id];
6118 6118 } else {
6119 6119 v = &vstate->dtvs_globals[id]->dtsv_var;
6120 6120 }
6121 6121
6122 6122 dvar = dtrace_dynvar(dstate, nkeys, key,
6123 6123 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6124 6124 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6125 6125 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6126 6126
6127 6127 if (dvar == NULL) {
6128 6128 regs[rd] = 0;
6129 6129 break;
6130 6130 }
6131 6131
6132 6132 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6133 6133 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6134 6134 } else {
6135 6135 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6136 6136 }
6137 6137
6138 6138 break;
6139 6139 }
6140 6140
6141 6141 case DIF_OP_STGAA:
6142 6142 case DIF_OP_STTAA: {
6143 6143 dtrace_dynvar_t *dvar;
6144 6144 dtrace_key_t *key = tupregs;
6145 6145 uint_t nkeys = ttop;
6146 6146
6147 6147 id = DIF_INSTR_VAR(instr);
6148 6148 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6149 6149 id -= DIF_VAR_OTHER_UBASE;
6150 6150
6151 6151 key[nkeys].dttk_value = (uint64_t)id;
6152 6152 key[nkeys++].dttk_size = 0;
6153 6153
6154 6154 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6155 6155 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6156 6156 key[nkeys++].dttk_size = 0;
6157 6157 v = &vstate->dtvs_tlocals[id];
6158 6158 } else {
6159 6159 v = &vstate->dtvs_globals[id]->dtsv_var;
6160 6160 }
6161 6161
6162 6162 dvar = dtrace_dynvar(dstate, nkeys, key,
6163 6163 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6164 6164 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6165 6165 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6166 6166 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6167 6167
6168 6168 if (dvar == NULL)
6169 6169 break;
6170 6170
6171 6171 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6172 6172 if (!dtrace_vcanload(
6173 6173 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6174 6174 mstate, vstate))
6175 6175 break;
6176 6176
6177 6177 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6178 6178 dvar->dtdv_data, &v->dtdv_type);
6179 6179 } else {
6180 6180 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6181 6181 }
6182 6182
6183 6183 break;
6184 6184 }
6185 6185
6186 6186 case DIF_OP_ALLOCS: {
6187 6187 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6188 6188 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6189 6189
6190 6190 /*
6191 6191 * Rounding up the user allocation size could have
6192 6192 * overflowed large, bogus allocations (like -1ULL) to
6193 6193 * 0.
6194 6194 */
6195 6195 if (size < regs[r1] ||
6196 6196 !DTRACE_INSCRATCH(mstate, size)) {
6197 6197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6198 6198 regs[rd] = NULL;
6199 6199 break;
6200 6200 }
6201 6201
6202 6202 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6203 6203 mstate->dtms_scratch_ptr += size;
6204 6204 regs[rd] = ptr;
6205 6205 break;
6206 6206 }
6207 6207
6208 6208 case DIF_OP_COPYS:
6209 6209 if (!dtrace_canstore(regs[rd], regs[r2],
6210 6210 mstate, vstate)) {
6211 6211 *flags |= CPU_DTRACE_BADADDR;
6212 6212 *illval = regs[rd];
6213 6213 break;
6214 6214 }
6215 6215
6216 6216 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6217 6217 break;
6218 6218
6219 6219 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6220 6220 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6221 6221 break;
6222 6222
6223 6223 case DIF_OP_STB:
6224 6224 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6225 6225 *flags |= CPU_DTRACE_BADADDR;
6226 6226 *illval = regs[rd];
6227 6227 break;
6228 6228 }
6229 6229 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6230 6230 break;
6231 6231
6232 6232 case DIF_OP_STH:
6233 6233 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6234 6234 *flags |= CPU_DTRACE_BADADDR;
6235 6235 *illval = regs[rd];
6236 6236 break;
6237 6237 }
6238 6238 if (regs[rd] & 1) {
6239 6239 *flags |= CPU_DTRACE_BADALIGN;
6240 6240 *illval = regs[rd];
6241 6241 break;
6242 6242 }
6243 6243 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6244 6244 break;
6245 6245
6246 6246 case DIF_OP_STW:
6247 6247 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6248 6248 *flags |= CPU_DTRACE_BADADDR;
6249 6249 *illval = regs[rd];
6250 6250 break;
6251 6251 }
6252 6252 if (regs[rd] & 3) {
6253 6253 *flags |= CPU_DTRACE_BADALIGN;
6254 6254 *illval = regs[rd];
6255 6255 break;
6256 6256 }
6257 6257 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6258 6258 break;
6259 6259
6260 6260 case DIF_OP_STX:
6261 6261 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6262 6262 *flags |= CPU_DTRACE_BADADDR;
6263 6263 *illval = regs[rd];
6264 6264 break;
6265 6265 }
6266 6266 if (regs[rd] & 7) {
6267 6267 *flags |= CPU_DTRACE_BADALIGN;
6268 6268 *illval = regs[rd];
6269 6269 break;
6270 6270 }
6271 6271 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6272 6272 break;
6273 6273 }
6274 6274 }
6275 6275
6276 6276 if (!(*flags & CPU_DTRACE_FAULT))
6277 6277 return (rval);
6278 6278
6279 6279 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6280 6280 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6281 6281
6282 6282 return (0);
6283 6283 }
6284 6284
6285 6285 static void
6286 6286 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6287 6287 {
6288 6288 dtrace_probe_t *probe = ecb->dte_probe;
6289 6289 dtrace_provider_t *prov = probe->dtpr_provider;
6290 6290 char c[DTRACE_FULLNAMELEN + 80], *str;
6291 6291 char *msg = "dtrace: breakpoint action at probe ";
6292 6292 char *ecbmsg = " (ecb ";
6293 6293 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6294 6294 uintptr_t val = (uintptr_t)ecb;
6295 6295 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6296 6296
6297 6297 if (dtrace_destructive_disallow)
6298 6298 return;
6299 6299
6300 6300 /*
6301 6301 * It's impossible to be taking action on the NULL probe.
6302 6302 */
6303 6303 ASSERT(probe != NULL);
6304 6304
6305 6305 /*
6306 6306 * This is a poor man's (destitute man's?) sprintf(): we want to
6307 6307 * print the provider name, module name, function name and name of
6308 6308 * the probe, along with the hex address of the ECB with the breakpoint
6309 6309 * action -- all of which we must place in the character buffer by
6310 6310 * hand.
6311 6311 */
6312 6312 while (*msg != '\0')
6313 6313 c[i++] = *msg++;
6314 6314
6315 6315 for (str = prov->dtpv_name; *str != '\0'; str++)
6316 6316 c[i++] = *str;
6317 6317 c[i++] = ':';
6318 6318
6319 6319 for (str = probe->dtpr_mod; *str != '\0'; str++)
6320 6320 c[i++] = *str;
6321 6321 c[i++] = ':';
6322 6322
6323 6323 for (str = probe->dtpr_func; *str != '\0'; str++)
6324 6324 c[i++] = *str;
6325 6325 c[i++] = ':';
6326 6326
6327 6327 for (str = probe->dtpr_name; *str != '\0'; str++)
6328 6328 c[i++] = *str;
6329 6329
6330 6330 while (*ecbmsg != '\0')
6331 6331 c[i++] = *ecbmsg++;
6332 6332
6333 6333 while (shift >= 0) {
6334 6334 mask = (uintptr_t)0xf << shift;
6335 6335
6336 6336 if (val >= ((uintptr_t)1 << shift))
6337 6337 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6338 6338 shift -= 4;
6339 6339 }
6340 6340
6341 6341 c[i++] = ')';
6342 6342 c[i] = '\0';
6343 6343
6344 6344 debug_enter(c);
6345 6345 }
6346 6346
6347 6347 static void
6348 6348 dtrace_action_panic(dtrace_ecb_t *ecb)
6349 6349 {
6350 6350 dtrace_probe_t *probe = ecb->dte_probe;
6351 6351
6352 6352 /*
6353 6353 * It's impossible to be taking action on the NULL probe.
6354 6354 */
6355 6355 ASSERT(probe != NULL);
6356 6356
6357 6357 if (dtrace_destructive_disallow)
6358 6358 return;
6359 6359
6360 6360 if (dtrace_panicked != NULL)
6361 6361 return;
6362 6362
6363 6363 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6364 6364 return;
6365 6365
6366 6366 /*
6367 6367 * We won the right to panic. (We want to be sure that only one
6368 6368 * thread calls panic() from dtrace_probe(), and that panic() is
6369 6369 * called exactly once.)
6370 6370 */
6371 6371 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6372 6372 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6373 6373 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6374 6374 }
6375 6375
6376 6376 static void
6377 6377 dtrace_action_raise(uint64_t sig)
6378 6378 {
6379 6379 if (dtrace_destructive_disallow)
6380 6380 return;
6381 6381
6382 6382 if (sig >= NSIG) {
6383 6383 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6384 6384 return;
6385 6385 }
6386 6386
6387 6387 /*
6388 6388 * raise() has a queue depth of 1 -- we ignore all subsequent
6389 6389 * invocations of the raise() action.
6390 6390 */
6391 6391 if (curthread->t_dtrace_sig == 0)
6392 6392 curthread->t_dtrace_sig = (uint8_t)sig;
6393 6393
6394 6394 curthread->t_sig_check = 1;
6395 6395 aston(curthread);
6396 6396 }
6397 6397
6398 6398 static void
6399 6399 dtrace_action_stop(void)
6400 6400 {
6401 6401 if (dtrace_destructive_disallow)
6402 6402 return;
6403 6403
6404 6404 if (!curthread->t_dtrace_stop) {
6405 6405 curthread->t_dtrace_stop = 1;
6406 6406 curthread->t_sig_check = 1;
6407 6407 aston(curthread);
6408 6408 }
6409 6409 }
6410 6410
6411 6411 static void
6412 6412 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6413 6413 {
6414 6414 hrtime_t now;
6415 6415 volatile uint16_t *flags;
6416 6416 cpu_t *cpu = CPU;
6417 6417
6418 6418 if (dtrace_destructive_disallow)
6419 6419 return;
6420 6420
6421 6421 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6422 6422
6423 6423 now = dtrace_gethrtime();
6424 6424
6425 6425 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6426 6426 /*
6427 6427 * We need to advance the mark to the current time.
6428 6428 */
6429 6429 cpu->cpu_dtrace_chillmark = now;
6430 6430 cpu->cpu_dtrace_chilled = 0;
6431 6431 }
6432 6432
6433 6433 /*
6434 6434 * Now check to see if the requested chill time would take us over
6435 6435 * the maximum amount of time allowed in the chill interval. (Or
6436 6436 * worse, if the calculation itself induces overflow.)
6437 6437 */
6438 6438 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6439 6439 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6440 6440 *flags |= CPU_DTRACE_ILLOP;
6441 6441 return;
6442 6442 }
6443 6443
6444 6444 while (dtrace_gethrtime() - now < val)
6445 6445 continue;
6446 6446
6447 6447 /*
6448 6448 * Normally, we assure that the value of the variable "timestamp" does
6449 6449 * not change within an ECB. The presence of chill() represents an
6450 6450 * exception to this rule, however.
6451 6451 */
6452 6452 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6453 6453 cpu->cpu_dtrace_chilled += val;
6454 6454 }
6455 6455
6456 6456 static void
6457 6457 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6458 6458 uint64_t *buf, uint64_t arg)
6459 6459 {
6460 6460 int nframes = DTRACE_USTACK_NFRAMES(arg);
6461 6461 int strsize = DTRACE_USTACK_STRSIZE(arg);
6462 6462 uint64_t *pcs = &buf[1], *fps;
6463 6463 char *str = (char *)&pcs[nframes];
6464 6464 int size, offs = 0, i, j;
6465 6465 uintptr_t old = mstate->dtms_scratch_ptr, saved;
6466 6466 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6467 6467 char *sym;
6468 6468
6469 6469 /*
6470 6470 * Should be taking a faster path if string space has not been
6471 6471 * allocated.
6472 6472 */
6473 6473 ASSERT(strsize != 0);
6474 6474
6475 6475 /*
6476 6476 * We will first allocate some temporary space for the frame pointers.
6477 6477 */
6478 6478 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6479 6479 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6480 6480 (nframes * sizeof (uint64_t));
6481 6481
6482 6482 if (!DTRACE_INSCRATCH(mstate, size)) {
6483 6483 /*
6484 6484 * Not enough room for our frame pointers -- need to indicate
6485 6485 * that we ran out of scratch space.
6486 6486 */
6487 6487 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6488 6488 return;
6489 6489 }
6490 6490
6491 6491 mstate->dtms_scratch_ptr += size;
6492 6492 saved = mstate->dtms_scratch_ptr;
6493 6493
6494 6494 /*
6495 6495 * Now get a stack with both program counters and frame pointers.
6496 6496 */
6497 6497 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6498 6498 dtrace_getufpstack(buf, fps, nframes + 1);
6499 6499 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6500 6500
6501 6501 /*
6502 6502 * If that faulted, we're cooked.
6503 6503 */
6504 6504 if (*flags & CPU_DTRACE_FAULT)
6505 6505 goto out;
6506 6506
6507 6507 /*
6508 6508 * Now we want to walk up the stack, calling the USTACK helper. For
6509 6509 * each iteration, we restore the scratch pointer.
6510 6510 */
6511 6511 for (i = 0; i < nframes; i++) {
6512 6512 mstate->dtms_scratch_ptr = saved;
6513 6513
6514 6514 if (offs >= strsize)
6515 6515 break;
6516 6516
6517 6517 sym = (char *)(uintptr_t)dtrace_helper(
6518 6518 DTRACE_HELPER_ACTION_USTACK,
6519 6519 mstate, state, pcs[i], fps[i]);
6520 6520
6521 6521 /*
6522 6522 * If we faulted while running the helper, we're going to
6523 6523 * clear the fault and null out the corresponding string.
6524 6524 */
6525 6525 if (*flags & CPU_DTRACE_FAULT) {
6526 6526 *flags &= ~CPU_DTRACE_FAULT;
6527 6527 str[offs++] = '\0';
6528 6528 continue;
6529 6529 }
6530 6530
6531 6531 if (sym == NULL) {
6532 6532 str[offs++] = '\0';
6533 6533 continue;
6534 6534 }
6535 6535
6536 6536 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6537 6537
6538 6538 /*
6539 6539 * Now copy in the string that the helper returned to us.
6540 6540 */
6541 6541 for (j = 0; offs + j < strsize; j++) {
6542 6542 if ((str[offs + j] = sym[j]) == '\0')
6543 6543 break;
6544 6544 }
6545 6545
6546 6546 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6547 6547
6548 6548 offs += j + 1;
6549 6549 }
6550 6550
6551 6551 if (offs >= strsize) {
6552 6552 /*
6553 6553 * If we didn't have room for all of the strings, we don't
6554 6554 * abort processing -- this needn't be a fatal error -- but we
6555 6555 * still want to increment a counter (dts_stkstroverflows) to
6556 6556 * allow this condition to be warned about. (If this is from
6557 6557 * a jstack() action, it is easily tuned via jstackstrsize.)
6558 6558 */
6559 6559 dtrace_error(&state->dts_stkstroverflows);
6560 6560 }
6561 6561
6562 6562 while (offs < strsize)
6563 6563 str[offs++] = '\0';
6564 6564
6565 6565 out:
6566 6566 mstate->dtms_scratch_ptr = old;
6567 6567 }
6568 6568
6569 6569 static void
6570 6570 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6571 6571 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6572 6572 {
6573 6573 volatile uint16_t *flags;
6574 6574 uint64_t val = *valp;
6575 6575 size_t valoffs = *valoffsp;
6576 6576
6577 6577 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6578 6578 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6579 6579
6580 6580 /*
6581 6581 * If this is a string, we're going to only load until we find the zero
6582 6582 * byte -- after which we'll store zero bytes.
6583 6583 */
6584 6584 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6585 6585 char c = '\0' + 1;
6586 6586 size_t s;
6587 6587
6588 6588 for (s = 0; s < size; s++) {
6589 6589 if (c != '\0' && dtkind == DIF_TF_BYREF) {
6590 6590 c = dtrace_load8(val++);
6591 6591 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6592 6592 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6593 6593 c = dtrace_fuword8((void *)(uintptr_t)val++);
6594 6594 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6595 6595 if (*flags & CPU_DTRACE_FAULT)
6596 6596 break;
6597 6597 }
6598 6598
6599 6599 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6600 6600
6601 6601 if (c == '\0' && intuple)
6602 6602 break;
6603 6603 }
6604 6604 } else {
6605 6605 uint8_t c;
6606 6606 while (valoffs < end) {
6607 6607 if (dtkind == DIF_TF_BYREF) {
6608 6608 c = dtrace_load8(val++);
6609 6609 } else if (dtkind == DIF_TF_BYUREF) {
6610 6610 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6611 6611 c = dtrace_fuword8((void *)(uintptr_t)val++);
6612 6612 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6613 6613 if (*flags & CPU_DTRACE_FAULT)
6614 6614 break;
6615 6615 }
6616 6616
6617 6617 DTRACE_STORE(uint8_t, tomax,
6618 6618 valoffs++, c);
6619 6619 }
6620 6620 }
6621 6621
6622 6622 *valp = val;
6623 6623 *valoffsp = valoffs;
6624 6624 }
6625 6625
6626 6626 /*
6627 6627 * If you're looking for the epicenter of DTrace, you just found it. This
6628 6628 * is the function called by the provider to fire a probe -- from which all
6629 6629 * subsequent probe-context DTrace activity emanates.
6630 6630 */
6631 6631 void
6632 6632 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6633 6633 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6634 6634 {
6635 6635 processorid_t cpuid;
6636 6636 dtrace_icookie_t cookie;
6637 6637 dtrace_probe_t *probe;
6638 6638 dtrace_mstate_t mstate;
6639 6639 dtrace_ecb_t *ecb;
6640 6640 dtrace_action_t *act;
6641 6641 intptr_t offs;
6642 6642 size_t size;
6643 6643 int vtime, onintr;
6644 6644 volatile uint16_t *flags;
6645 6645 hrtime_t now, end;
6646 6646
6647 6647 /*
6648 6648 * Kick out immediately if this CPU is still being born (in which case
6649 6649 * curthread will be set to -1) or the current thread can't allow
6650 6650 * probes in its current context.
6651 6651 */
6652 6652 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6653 6653 return;
6654 6654
6655 6655 cookie = dtrace_interrupt_disable();
6656 6656 probe = dtrace_probes[id - 1];
6657 6657 cpuid = CPU->cpu_id;
6658 6658 onintr = CPU_ON_INTR(CPU);
6659 6659
6660 6660 CPU->cpu_dtrace_probes++;
6661 6661
6662 6662 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6663 6663 probe->dtpr_predcache == curthread->t_predcache) {
6664 6664 /*
6665 6665 * We have hit in the predicate cache; we know that
6666 6666 * this predicate would evaluate to be false.
6667 6667 */
6668 6668 dtrace_interrupt_enable(cookie);
6669 6669 return;
6670 6670 }
6671 6671
6672 6672 if (panic_quiesce) {
6673 6673 /*
6674 6674 * We don't trace anything if we're panicking.
6675 6675 */
6676 6676 dtrace_interrupt_enable(cookie);
6677 6677 return;
6678 6678 }
6679 6679
6680 6680 now = dtrace_gethrtime();
6681 6681 vtime = dtrace_vtime_references != 0;
6682 6682
6683 6683 if (vtime && curthread->t_dtrace_start)
6684 6684 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6685 6685
6686 6686 mstate.dtms_difo = NULL;
6687 6687 mstate.dtms_probe = probe;
6688 6688 mstate.dtms_strtok = NULL;
6689 6689 mstate.dtms_arg[0] = arg0;
6690 6690 mstate.dtms_arg[1] = arg1;
6691 6691 mstate.dtms_arg[2] = arg2;
6692 6692 mstate.dtms_arg[3] = arg3;
6693 6693 mstate.dtms_arg[4] = arg4;
6694 6694
6695 6695 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6696 6696
6697 6697 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6698 6698 dtrace_predicate_t *pred = ecb->dte_predicate;
6699 6699 dtrace_state_t *state = ecb->dte_state;
6700 6700 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6701 6701 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6702 6702 dtrace_vstate_t *vstate = &state->dts_vstate;
6703 6703 dtrace_provider_t *prov = probe->dtpr_provider;
6704 6704 uint64_t tracememsize = 0;
6705 6705 int committed = 0;
6706 6706 caddr_t tomax;
6707 6707
6708 6708 /*
6709 6709 * A little subtlety with the following (seemingly innocuous)
6710 6710 * declaration of the automatic 'val': by looking at the
6711 6711 * code, you might think that it could be declared in the
6712 6712 * action processing loop, below. (That is, it's only used in
6713 6713 * the action processing loop.) However, it must be declared
6714 6714 * out of that scope because in the case of DIF expression
6715 6715 * arguments to aggregating actions, one iteration of the
6716 6716 * action loop will use the last iteration's value.
6717 6717 */
6718 6718 #ifdef lint
6719 6719 uint64_t val = 0;
6720 6720 #else
6721 6721 uint64_t val;
6722 6722 #endif
6723 6723
6724 6724 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6725 6725 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6726 6726 mstate.dtms_getf = NULL;
6727 6727
6728 6728 *flags &= ~CPU_DTRACE_ERROR;
6729 6729
6730 6730 if (prov == dtrace_provider) {
6731 6731 /*
6732 6732 * If dtrace itself is the provider of this probe,
6733 6733 * we're only going to continue processing the ECB if
6734 6734 * arg0 (the dtrace_state_t) is equal to the ECB's
6735 6735 * creating state. (This prevents disjoint consumers
6736 6736 * from seeing one another's metaprobes.)
6737 6737 */
6738 6738 if (arg0 != (uint64_t)(uintptr_t)state)
6739 6739 continue;
6740 6740 }
6741 6741
6742 6742 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6743 6743 /*
6744 6744 * We're not currently active. If our provider isn't
6745 6745 * the dtrace pseudo provider, we're not interested.
6746 6746 */
6747 6747 if (prov != dtrace_provider)
6748 6748 continue;
6749 6749
6750 6750 /*
6751 6751 * Now we must further check if we are in the BEGIN
6752 6752 * probe. If we are, we will only continue processing
6753 6753 * if we're still in WARMUP -- if one BEGIN enabling
6754 6754 * has invoked the exit() action, we don't want to
6755 6755 * evaluate subsequent BEGIN enablings.
6756 6756 */
6757 6757 if (probe->dtpr_id == dtrace_probeid_begin &&
6758 6758 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6759 6759 ASSERT(state->dts_activity ==
6760 6760 DTRACE_ACTIVITY_DRAINING);
6761 6761 continue;
6762 6762 }
6763 6763 }
6764 6764
6765 6765 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6766 6766 continue;
6767 6767
6768 6768 if (now - state->dts_alive > dtrace_deadman_timeout) {
6769 6769 /*
6770 6770 * We seem to be dead. Unless we (a) have kernel
6771 6771 * destructive permissions (b) have explicitly enabled
6772 6772 * destructive actions and (c) destructive actions have
6773 6773 * not been disabled, we're going to transition into
6774 6774 * the KILLED state, from which no further processing
6775 6775 * on this state will be performed.
6776 6776 */
6777 6777 if (!dtrace_priv_kernel_destructive(state) ||
6778 6778 !state->dts_cred.dcr_destructive ||
6779 6779 dtrace_destructive_disallow) {
6780 6780 void *activity = &state->dts_activity;
6781 6781 dtrace_activity_t current;
6782 6782
6783 6783 do {
6784 6784 current = state->dts_activity;
6785 6785 } while (dtrace_cas32(activity, current,
6786 6786 DTRACE_ACTIVITY_KILLED) != current);
6787 6787
6788 6788 continue;
6789 6789 }
6790 6790 }
6791 6791
6792 6792 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6793 6793 ecb->dte_alignment, state, &mstate)) < 0)
6794 6794 continue;
6795 6795
6796 6796 tomax = buf->dtb_tomax;
6797 6797 ASSERT(tomax != NULL);
6798 6798
6799 6799 if (ecb->dte_size != 0) {
6800 6800 dtrace_rechdr_t dtrh;
6801 6801 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6802 6802 mstate.dtms_timestamp = dtrace_gethrtime();
6803 6803 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6804 6804 }
6805 6805 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6806 6806 dtrh.dtrh_epid = ecb->dte_epid;
6807 6807 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6808 6808 mstate.dtms_timestamp);
6809 6809 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6810 6810 }
6811 6811
6812 6812 mstate.dtms_epid = ecb->dte_epid;
6813 6813 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6814 6814
6815 6815 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6816 6816 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6817 6817
6818 6818 if (pred != NULL) {
6819 6819 dtrace_difo_t *dp = pred->dtp_difo;
6820 6820 int rval;
6821 6821
6822 6822 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6823 6823
6824 6824 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6825 6825 dtrace_cacheid_t cid = probe->dtpr_predcache;
6826 6826
6827 6827 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6828 6828 /*
6829 6829 * Update the predicate cache...
6830 6830 */
6831 6831 ASSERT(cid == pred->dtp_cacheid);
6832 6832 curthread->t_predcache = cid;
6833 6833 }
6834 6834
6835 6835 continue;
6836 6836 }
6837 6837 }
6838 6838
6839 6839 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6840 6840 act != NULL; act = act->dta_next) {
6841 6841 size_t valoffs;
6842 6842 dtrace_difo_t *dp;
6843 6843 dtrace_recdesc_t *rec = &act->dta_rec;
6844 6844
6845 6845 size = rec->dtrd_size;
6846 6846 valoffs = offs + rec->dtrd_offset;
6847 6847
6848 6848 if (DTRACEACT_ISAGG(act->dta_kind)) {
6849 6849 uint64_t v = 0xbad;
6850 6850 dtrace_aggregation_t *agg;
6851 6851
6852 6852 agg = (dtrace_aggregation_t *)act;
6853 6853
6854 6854 if ((dp = act->dta_difo) != NULL)
6855 6855 v = dtrace_dif_emulate(dp,
6856 6856 &mstate, vstate, state);
6857 6857
6858 6858 if (*flags & CPU_DTRACE_ERROR)
6859 6859 continue;
6860 6860
6861 6861 /*
6862 6862 * Note that we always pass the expression
6863 6863 * value from the previous iteration of the
6864 6864 * action loop. This value will only be used
6865 6865 * if there is an expression argument to the
6866 6866 * aggregating action, denoted by the
6867 6867 * dtag_hasarg field.
6868 6868 */
6869 6869 dtrace_aggregate(agg, buf,
6870 6870 offs, aggbuf, v, val);
6871 6871 continue;
6872 6872 }
6873 6873
6874 6874 switch (act->dta_kind) {
6875 6875 case DTRACEACT_STOP:
6876 6876 if (dtrace_priv_proc_destructive(state,
6877 6877 &mstate))
6878 6878 dtrace_action_stop();
6879 6879 continue;
6880 6880
6881 6881 case DTRACEACT_BREAKPOINT:
6882 6882 if (dtrace_priv_kernel_destructive(state))
6883 6883 dtrace_action_breakpoint(ecb);
6884 6884 continue;
6885 6885
6886 6886 case DTRACEACT_PANIC:
6887 6887 if (dtrace_priv_kernel_destructive(state))
6888 6888 dtrace_action_panic(ecb);
6889 6889 continue;
6890 6890
6891 6891 case DTRACEACT_STACK:
6892 6892 if (!dtrace_priv_kernel(state))
6893 6893 continue;
6894 6894
6895 6895 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6896 6896 size / sizeof (pc_t), probe->dtpr_aframes,
6897 6897 DTRACE_ANCHORED(probe) ? NULL :
6898 6898 (uint32_t *)arg0);
6899 6899
6900 6900 continue;
6901 6901
6902 6902 case DTRACEACT_JSTACK:
6903 6903 case DTRACEACT_USTACK:
6904 6904 if (!dtrace_priv_proc(state, &mstate))
6905 6905 continue;
6906 6906
6907 6907 /*
6908 6908 * See comment in DIF_VAR_PID.
6909 6909 */
6910 6910 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6911 6911 CPU_ON_INTR(CPU)) {
6912 6912 int depth = DTRACE_USTACK_NFRAMES(
6913 6913 rec->dtrd_arg) + 1;
6914 6914
6915 6915 dtrace_bzero((void *)(tomax + valoffs),
6916 6916 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6917 6917 + depth * sizeof (uint64_t));
6918 6918
6919 6919 continue;
6920 6920 }
6921 6921
6922 6922 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6923 6923 curproc->p_dtrace_helpers != NULL) {
6924 6924 /*
6925 6925 * This is the slow path -- we have
6926 6926 * allocated string space, and we're
6927 6927 * getting the stack of a process that
6928 6928 * has helpers. Call into a separate
6929 6929 * routine to perform this processing.
6930 6930 */
6931 6931 dtrace_action_ustack(&mstate, state,
6932 6932 (uint64_t *)(tomax + valoffs),
6933 6933 rec->dtrd_arg);
6934 6934 continue;
6935 6935 }
6936 6936
6937 6937 /*
6938 6938 * Clear the string space, since there's no
6939 6939 * helper to do it for us.
6940 6940 */
6941 6941 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6942 6942 int depth = DTRACE_USTACK_NFRAMES(
6943 6943 rec->dtrd_arg);
6944 6944 size_t strsize = DTRACE_USTACK_STRSIZE(
6945 6945 rec->dtrd_arg);
6946 6946 uint64_t *buf = (uint64_t *)(tomax +
6947 6947 valoffs);
6948 6948 void *strspace = &buf[depth + 1];
6949 6949
6950 6950 dtrace_bzero(strspace,
6951 6951 MIN(depth, strsize));
6952 6952 }
6953 6953
6954 6954 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6955 6955 dtrace_getupcstack((uint64_t *)
6956 6956 (tomax + valoffs),
6957 6957 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6958 6958 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6959 6959 continue;
6960 6960
6961 6961 default:
6962 6962 break;
6963 6963 }
6964 6964
6965 6965 dp = act->dta_difo;
6966 6966 ASSERT(dp != NULL);
6967 6967
6968 6968 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6969 6969
6970 6970 if (*flags & CPU_DTRACE_ERROR)
6971 6971 continue;
6972 6972
6973 6973 switch (act->dta_kind) {
6974 6974 case DTRACEACT_SPECULATE: {
6975 6975 dtrace_rechdr_t *dtrh;
6976 6976
6977 6977 ASSERT(buf == &state->dts_buffer[cpuid]);
6978 6978 buf = dtrace_speculation_buffer(state,
6979 6979 cpuid, val);
6980 6980
6981 6981 if (buf == NULL) {
6982 6982 *flags |= CPU_DTRACE_DROP;
6983 6983 continue;
6984 6984 }
6985 6985
6986 6986 offs = dtrace_buffer_reserve(buf,
6987 6987 ecb->dte_needed, ecb->dte_alignment,
6988 6988 state, NULL);
6989 6989
6990 6990 if (offs < 0) {
6991 6991 *flags |= CPU_DTRACE_DROP;
6992 6992 continue;
6993 6993 }
6994 6994
6995 6995 tomax = buf->dtb_tomax;
6996 6996 ASSERT(tomax != NULL);
6997 6997
6998 6998 if (ecb->dte_size == 0)
6999 6999 continue;
7000 7000
7001 7001 ASSERT3U(ecb->dte_size, >=,
7002 7002 sizeof (dtrace_rechdr_t));
7003 7003 dtrh = ((void *)(tomax + offs));
7004 7004 dtrh->dtrh_epid = ecb->dte_epid;
7005 7005 /*
7006 7006 * When the speculation is committed, all of
7007 7007 * the records in the speculative buffer will
7008 7008 * have their timestamps set to the commit
7009 7009 * time. Until then, it is set to a sentinel
7010 7010 * value, for debugability.
7011 7011 */
7012 7012 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7013 7013 continue;
7014 7014 }
7015 7015
7016 7016 case DTRACEACT_CHILL:
7017 7017 if (dtrace_priv_kernel_destructive(state))
7018 7018 dtrace_action_chill(&mstate, val);
7019 7019 continue;
7020 7020
7021 7021 case DTRACEACT_RAISE:
7022 7022 if (dtrace_priv_proc_destructive(state,
7023 7023 &mstate))
7024 7024 dtrace_action_raise(val);
7025 7025 continue;
7026 7026
7027 7027 case DTRACEACT_COMMIT:
7028 7028 ASSERT(!committed);
7029 7029
7030 7030 /*
7031 7031 * We need to commit our buffer state.
7032 7032 */
7033 7033 if (ecb->dte_size)
7034 7034 buf->dtb_offset = offs + ecb->dte_size;
7035 7035 buf = &state->dts_buffer[cpuid];
7036 7036 dtrace_speculation_commit(state, cpuid, val);
7037 7037 committed = 1;
7038 7038 continue;
7039 7039
7040 7040 case DTRACEACT_DISCARD:
7041 7041 dtrace_speculation_discard(state, cpuid, val);
7042 7042 continue;
7043 7043
7044 7044 case DTRACEACT_DIFEXPR:
7045 7045 case DTRACEACT_LIBACT:
7046 7046 case DTRACEACT_PRINTF:
7047 7047 case DTRACEACT_PRINTA:
7048 7048 case DTRACEACT_SYSTEM:
7049 7049 case DTRACEACT_FREOPEN:
7050 7050 case DTRACEACT_TRACEMEM:
7051 7051 break;
7052 7052
7053 7053 case DTRACEACT_TRACEMEM_DYNSIZE:
7054 7054 tracememsize = val;
7055 7055 break;
7056 7056
7057 7057 case DTRACEACT_SYM:
7058 7058 case DTRACEACT_MOD:
7059 7059 if (!dtrace_priv_kernel(state))
7060 7060 continue;
7061 7061 break;
7062 7062
7063 7063 case DTRACEACT_USYM:
7064 7064 case DTRACEACT_UMOD:
7065 7065 case DTRACEACT_UADDR: {
7066 7066 struct pid *pid = curthread->t_procp->p_pidp;
7067 7067
7068 7068 if (!dtrace_priv_proc(state, &mstate))
7069 7069 continue;
7070 7070
7071 7071 DTRACE_STORE(uint64_t, tomax,
7072 7072 valoffs, (uint64_t)pid->pid_id);
7073 7073 DTRACE_STORE(uint64_t, tomax,
7074 7074 valoffs + sizeof (uint64_t), val);
7075 7075
7076 7076 continue;
7077 7077 }
7078 7078
7079 7079 case DTRACEACT_EXIT: {
7080 7080 /*
7081 7081 * For the exit action, we are going to attempt
7082 7082 * to atomically set our activity to be
7083 7083 * draining. If this fails (either because
7084 7084 * another CPU has beat us to the exit action,
7085 7085 * or because our current activity is something
7086 7086 * other than ACTIVE or WARMUP), we will
7087 7087 * continue. This assures that the exit action
7088 7088 * can be successfully recorded at most once
7089 7089 * when we're in the ACTIVE state. If we're
7090 7090 * encountering the exit() action while in
7091 7091 * COOLDOWN, however, we want to honor the new
7092 7092 * status code. (We know that we're the only
7093 7093 * thread in COOLDOWN, so there is no race.)
7094 7094 */
7095 7095 void *activity = &state->dts_activity;
7096 7096 dtrace_activity_t current = state->dts_activity;
7097 7097
7098 7098 if (current == DTRACE_ACTIVITY_COOLDOWN)
7099 7099 break;
7100 7100
7101 7101 if (current != DTRACE_ACTIVITY_WARMUP)
7102 7102 current = DTRACE_ACTIVITY_ACTIVE;
7103 7103
7104 7104 if (dtrace_cas32(activity, current,
7105 7105 DTRACE_ACTIVITY_DRAINING) != current) {
7106 7106 *flags |= CPU_DTRACE_DROP;
7107 7107 continue;
7108 7108 }
7109 7109
7110 7110 break;
7111 7111 }
7112 7112
7113 7113 default:
7114 7114 ASSERT(0);
7115 7115 }
7116 7116
7117 7117 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7118 7118 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7119 7119 uintptr_t end = valoffs + size;
7120 7120
7121 7121 if (tracememsize != 0 &&
7122 7122 valoffs + tracememsize < end) {
7123 7123 end = valoffs + tracememsize;
7124 7124 tracememsize = 0;
7125 7125 }
7126 7126
7127 7127 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7128 7128 !dtrace_vcanload((void *)(uintptr_t)val,
7129 7129 &dp->dtdo_rtype, &mstate, vstate))
7130 7130 continue;
7131 7131
7132 7132 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7133 7133 &val, end, act->dta_intuple,
7134 7134 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7135 7135 DIF_TF_BYREF: DIF_TF_BYUREF);
7136 7136 continue;
7137 7137 }
7138 7138
7139 7139 switch (size) {
7140 7140 case 0:
7141 7141 break;
7142 7142
7143 7143 case sizeof (uint8_t):
7144 7144 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7145 7145 break;
7146 7146 case sizeof (uint16_t):
7147 7147 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7148 7148 break;
7149 7149 case sizeof (uint32_t):
7150 7150 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7151 7151 break;
7152 7152 case sizeof (uint64_t):
7153 7153 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7154 7154 break;
7155 7155 default:
7156 7156 /*
7157 7157 * Any other size should have been returned by
7158 7158 * reference, not by value.
7159 7159 */
7160 7160 ASSERT(0);
7161 7161 break;
7162 7162 }
7163 7163 }
7164 7164
7165 7165 if (*flags & CPU_DTRACE_DROP)
7166 7166 continue;
7167 7167
7168 7168 if (*flags & CPU_DTRACE_FAULT) {
7169 7169 int ndx;
7170 7170 dtrace_action_t *err;
7171 7171
7172 7172 buf->dtb_errors++;
7173 7173
7174 7174 if (probe->dtpr_id == dtrace_probeid_error) {
7175 7175 /*
7176 7176 * There's nothing we can do -- we had an
7177 7177 * error on the error probe. We bump an
7178 7178 * error counter to at least indicate that
7179 7179 * this condition happened.
7180 7180 */
7181 7181 dtrace_error(&state->dts_dblerrors);
7182 7182 continue;
7183 7183 }
7184 7184
7185 7185 if (vtime) {
7186 7186 /*
7187 7187 * Before recursing on dtrace_probe(), we
7188 7188 * need to explicitly clear out our start
7189 7189 * time to prevent it from being accumulated
7190 7190 * into t_dtrace_vtime.
7191 7191 */
7192 7192 curthread->t_dtrace_start = 0;
7193 7193 }
7194 7194
7195 7195 /*
7196 7196 * Iterate over the actions to figure out which action
7197 7197 * we were processing when we experienced the error.
7198 7198 * Note that act points _past_ the faulting action; if
7199 7199 * act is ecb->dte_action, the fault was in the
7200 7200 * predicate, if it's ecb->dte_action->dta_next it's
7201 7201 * in action #1, and so on.
7202 7202 */
7203 7203 for (err = ecb->dte_action, ndx = 0;
7204 7204 err != act; err = err->dta_next, ndx++)
7205 7205 continue;
7206 7206
7207 7207 dtrace_probe_error(state, ecb->dte_epid, ndx,
7208 7208 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7209 7209 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7210 7210 cpu_core[cpuid].cpuc_dtrace_illval);
7211 7211
7212 7212 continue;
7213 7213 }
7214 7214
7215 7215 if (!committed)
7216 7216 buf->dtb_offset = offs + ecb->dte_size;
7217 7217 }
7218 7218
7219 7219 end = dtrace_gethrtime();
7220 7220 if (vtime)
7221 7221 curthread->t_dtrace_start = end;
7222 7222
7223 7223 CPU->cpu_dtrace_nsec += end - now;
7224 7224
7225 7225 dtrace_interrupt_enable(cookie);
7226 7226 }
7227 7227
7228 7228 /*
7229 7229 * DTrace Probe Hashing Functions
7230 7230 *
7231 7231 * The functions in this section (and indeed, the functions in remaining
7232 7232 * sections) are not _called_ from probe context. (Any exceptions to this are
7233 7233 * marked with a "Note:".) Rather, they are called from elsewhere in the
7234 7234 * DTrace framework to look-up probes in, add probes to and remove probes from
7235 7235 * the DTrace probe hashes. (Each probe is hashed by each element of the
7236 7236 * probe tuple -- allowing for fast lookups, regardless of what was
7237 7237 * specified.)
7238 7238 */
7239 7239 static uint_t
7240 7240 dtrace_hash_str(char *p)
7241 7241 {
7242 7242 unsigned int g;
7243 7243 uint_t hval = 0;
7244 7244
7245 7245 while (*p) {
7246 7246 hval = (hval << 4) + *p++;
7247 7247 if ((g = (hval & 0xf0000000)) != 0)
7248 7248 hval ^= g >> 24;
7249 7249 hval &= ~g;
7250 7250 }
7251 7251 return (hval);
7252 7252 }
7253 7253
7254 7254 static dtrace_hash_t *
7255 7255 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7256 7256 {
7257 7257 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7258 7258
7259 7259 hash->dth_stroffs = stroffs;
7260 7260 hash->dth_nextoffs = nextoffs;
7261 7261 hash->dth_prevoffs = prevoffs;
7262 7262
7263 7263 hash->dth_size = 1;
7264 7264 hash->dth_mask = hash->dth_size - 1;
7265 7265
7266 7266 hash->dth_tab = kmem_zalloc(hash->dth_size *
7267 7267 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7268 7268
7269 7269 return (hash);
7270 7270 }
7271 7271
7272 7272 static void
7273 7273 dtrace_hash_destroy(dtrace_hash_t *hash)
7274 7274 {
7275 7275 #ifdef DEBUG
7276 7276 int i;
7277 7277
7278 7278 for (i = 0; i < hash->dth_size; i++)
7279 7279 ASSERT(hash->dth_tab[i] == NULL);
7280 7280 #endif
7281 7281
7282 7282 kmem_free(hash->dth_tab,
7283 7283 hash->dth_size * sizeof (dtrace_hashbucket_t *));
7284 7284 kmem_free(hash, sizeof (dtrace_hash_t));
7285 7285 }
7286 7286
7287 7287 static void
7288 7288 dtrace_hash_resize(dtrace_hash_t *hash)
7289 7289 {
7290 7290 int size = hash->dth_size, i, ndx;
7291 7291 int new_size = hash->dth_size << 1;
7292 7292 int new_mask = new_size - 1;
7293 7293 dtrace_hashbucket_t **new_tab, *bucket, *next;
7294 7294
7295 7295 ASSERT((new_size & new_mask) == 0);
7296 7296
7297 7297 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7298 7298
7299 7299 for (i = 0; i < size; i++) {
7300 7300 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7301 7301 dtrace_probe_t *probe = bucket->dthb_chain;
7302 7302
7303 7303 ASSERT(probe != NULL);
7304 7304 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7305 7305
7306 7306 next = bucket->dthb_next;
7307 7307 bucket->dthb_next = new_tab[ndx];
7308 7308 new_tab[ndx] = bucket;
7309 7309 }
7310 7310 }
7311 7311
7312 7312 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7313 7313 hash->dth_tab = new_tab;
7314 7314 hash->dth_size = new_size;
7315 7315 hash->dth_mask = new_mask;
7316 7316 }
7317 7317
7318 7318 static void
7319 7319 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7320 7320 {
7321 7321 int hashval = DTRACE_HASHSTR(hash, new);
7322 7322 int ndx = hashval & hash->dth_mask;
7323 7323 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7324 7324 dtrace_probe_t **nextp, **prevp;
7325 7325
7326 7326 for (; bucket != NULL; bucket = bucket->dthb_next) {
7327 7327 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7328 7328 goto add;
7329 7329 }
7330 7330
7331 7331 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7332 7332 dtrace_hash_resize(hash);
7333 7333 dtrace_hash_add(hash, new);
7334 7334 return;
7335 7335 }
7336 7336
7337 7337 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7338 7338 bucket->dthb_next = hash->dth_tab[ndx];
7339 7339 hash->dth_tab[ndx] = bucket;
7340 7340 hash->dth_nbuckets++;
7341 7341
7342 7342 add:
7343 7343 nextp = DTRACE_HASHNEXT(hash, new);
7344 7344 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7345 7345 *nextp = bucket->dthb_chain;
7346 7346
7347 7347 if (bucket->dthb_chain != NULL) {
7348 7348 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7349 7349 ASSERT(*prevp == NULL);
7350 7350 *prevp = new;
7351 7351 }
7352 7352
7353 7353 bucket->dthb_chain = new;
7354 7354 bucket->dthb_len++;
7355 7355 }
7356 7356
7357 7357 static dtrace_probe_t *
7358 7358 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7359 7359 {
7360 7360 int hashval = DTRACE_HASHSTR(hash, template);
7361 7361 int ndx = hashval & hash->dth_mask;
7362 7362 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7363 7363
7364 7364 for (; bucket != NULL; bucket = bucket->dthb_next) {
7365 7365 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7366 7366 return (bucket->dthb_chain);
7367 7367 }
7368 7368
7369 7369 return (NULL);
7370 7370 }
7371 7371
7372 7372 static int
7373 7373 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7374 7374 {
7375 7375 int hashval = DTRACE_HASHSTR(hash, template);
7376 7376 int ndx = hashval & hash->dth_mask;
7377 7377 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7378 7378
7379 7379 for (; bucket != NULL; bucket = bucket->dthb_next) {
7380 7380 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7381 7381 return (bucket->dthb_len);
7382 7382 }
7383 7383
7384 7384 return (NULL);
7385 7385 }
7386 7386
7387 7387 static void
7388 7388 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7389 7389 {
7390 7390 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7391 7391 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7392 7392
7393 7393 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7394 7394 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7395 7395
7396 7396 /*
7397 7397 * Find the bucket that we're removing this probe from.
7398 7398 */
7399 7399 for (; bucket != NULL; bucket = bucket->dthb_next) {
7400 7400 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7401 7401 break;
7402 7402 }
7403 7403
7404 7404 ASSERT(bucket != NULL);
7405 7405
7406 7406 if (*prevp == NULL) {
7407 7407 if (*nextp == NULL) {
7408 7408 /*
7409 7409 * The removed probe was the only probe on this
7410 7410 * bucket; we need to remove the bucket.
7411 7411 */
7412 7412 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7413 7413
7414 7414 ASSERT(bucket->dthb_chain == probe);
7415 7415 ASSERT(b != NULL);
7416 7416
7417 7417 if (b == bucket) {
7418 7418 hash->dth_tab[ndx] = bucket->dthb_next;
7419 7419 } else {
7420 7420 while (b->dthb_next != bucket)
7421 7421 b = b->dthb_next;
7422 7422 b->dthb_next = bucket->dthb_next;
7423 7423 }
7424 7424
7425 7425 ASSERT(hash->dth_nbuckets > 0);
7426 7426 hash->dth_nbuckets--;
7427 7427 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7428 7428 return;
7429 7429 }
7430 7430
7431 7431 bucket->dthb_chain = *nextp;
7432 7432 } else {
7433 7433 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7434 7434 }
7435 7435
7436 7436 if (*nextp != NULL)
7437 7437 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7438 7438 }
7439 7439
7440 7440 /*
7441 7441 * DTrace Utility Functions
7442 7442 *
7443 7443 * These are random utility functions that are _not_ called from probe context.
7444 7444 */
7445 7445 static int
7446 7446 dtrace_badattr(const dtrace_attribute_t *a)
7447 7447 {
7448 7448 return (a->dtat_name > DTRACE_STABILITY_MAX ||
7449 7449 a->dtat_data > DTRACE_STABILITY_MAX ||
7450 7450 a->dtat_class > DTRACE_CLASS_MAX);
7451 7451 }
7452 7452
7453 7453 /*
7454 7454 * Return a duplicate copy of a string. If the specified string is NULL,
7455 7455 * this function returns a zero-length string.
7456 7456 */
7457 7457 static char *
7458 7458 dtrace_strdup(const char *str)
7459 7459 {
7460 7460 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7461 7461
7462 7462 if (str != NULL)
7463 7463 (void) strcpy(new, str);
7464 7464
7465 7465 return (new);
7466 7466 }
7467 7467
7468 7468 #define DTRACE_ISALPHA(c) \
7469 7469 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7470 7470
7471 7471 static int
7472 7472 dtrace_badname(const char *s)
7473 7473 {
7474 7474 char c;
7475 7475
7476 7476 if (s == NULL || (c = *s++) == '\0')
7477 7477 return (0);
7478 7478
7479 7479 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7480 7480 return (1);
7481 7481
7482 7482 while ((c = *s++) != '\0') {
7483 7483 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7484 7484 c != '-' && c != '_' && c != '.' && c != '`')
7485 7485 return (1);
7486 7486 }
7487 7487
7488 7488 return (0);
7489 7489 }
7490 7490
7491 7491 static void
7492 7492 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7493 7493 {
7494 7494 uint32_t priv;
7495 7495
7496 7496 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7497 7497 /*
7498 7498 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7499 7499 */
7500 7500 priv = DTRACE_PRIV_ALL;
7501 7501 } else {
7502 7502 *uidp = crgetuid(cr);
7503 7503 *zoneidp = crgetzoneid(cr);
7504 7504
7505 7505 priv = 0;
7506 7506 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7507 7507 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7508 7508 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7509 7509 priv |= DTRACE_PRIV_USER;
7510 7510 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7511 7511 priv |= DTRACE_PRIV_PROC;
7512 7512 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7513 7513 priv |= DTRACE_PRIV_OWNER;
7514 7514 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7515 7515 priv |= DTRACE_PRIV_ZONEOWNER;
7516 7516 }
7517 7517
7518 7518 *privp = priv;
7519 7519 }
7520 7520
7521 7521 #ifdef DTRACE_ERRDEBUG
7522 7522 static void
7523 7523 dtrace_errdebug(const char *str)
7524 7524 {
7525 7525 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7526 7526 int occupied = 0;
7527 7527
7528 7528 mutex_enter(&dtrace_errlock);
7529 7529 dtrace_errlast = str;
7530 7530 dtrace_errthread = curthread;
7531 7531
7532 7532 while (occupied++ < DTRACE_ERRHASHSZ) {
7533 7533 if (dtrace_errhash[hval].dter_msg == str) {
7534 7534 dtrace_errhash[hval].dter_count++;
7535 7535 goto out;
7536 7536 }
7537 7537
7538 7538 if (dtrace_errhash[hval].dter_msg != NULL) {
7539 7539 hval = (hval + 1) % DTRACE_ERRHASHSZ;
7540 7540 continue;
7541 7541 }
7542 7542
7543 7543 dtrace_errhash[hval].dter_msg = str;
7544 7544 dtrace_errhash[hval].dter_count = 1;
7545 7545 goto out;
7546 7546 }
7547 7547
7548 7548 panic("dtrace: undersized error hash");
7549 7549 out:
7550 7550 mutex_exit(&dtrace_errlock);
7551 7551 }
7552 7552 #endif
7553 7553
7554 7554 /*
7555 7555 * DTrace Matching Functions
7556 7556 *
7557 7557 * These functions are used to match groups of probes, given some elements of
7558 7558 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7559 7559 */
7560 7560 static int
7561 7561 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7562 7562 zoneid_t zoneid)
7563 7563 {
7564 7564 if (priv != DTRACE_PRIV_ALL) {
7565 7565 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7566 7566 uint32_t match = priv & ppriv;
7567 7567
7568 7568 /*
7569 7569 * No PRIV_DTRACE_* privileges...
7570 7570 */
7571 7571 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7572 7572 DTRACE_PRIV_KERNEL)) == 0)
7573 7573 return (0);
7574 7574
7575 7575 /*
7576 7576 * No matching bits, but there were bits to match...
7577 7577 */
7578 7578 if (match == 0 && ppriv != 0)
7579 7579 return (0);
7580 7580
7581 7581 /*
7582 7582 * Need to have permissions to the process, but don't...
7583 7583 */
7584 7584 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7585 7585 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7586 7586 return (0);
7587 7587 }
7588 7588
7589 7589 /*
7590 7590 * Need to be in the same zone unless we possess the
7591 7591 * privilege to examine all zones.
7592 7592 */
7593 7593 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7594 7594 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7595 7595 return (0);
7596 7596 }
7597 7597 }
7598 7598
7599 7599 return (1);
7600 7600 }
7601 7601
7602 7602 /*
7603 7603 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7604 7604 * consists of input pattern strings and an ops-vector to evaluate them.
7605 7605 * This function returns >0 for match, 0 for no match, and <0 for error.
7606 7606 */
7607 7607 static int
7608 7608 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7609 7609 uint32_t priv, uid_t uid, zoneid_t zoneid)
7610 7610 {
7611 7611 dtrace_provider_t *pvp = prp->dtpr_provider;
7612 7612 int rv;
7613 7613
7614 7614 if (pvp->dtpv_defunct)
7615 7615 return (0);
7616 7616
7617 7617 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7618 7618 return (rv);
7619 7619
7620 7620 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7621 7621 return (rv);
7622 7622
7623 7623 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7624 7624 return (rv);
7625 7625
7626 7626 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7627 7627 return (rv);
7628 7628
7629 7629 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7630 7630 return (0);
7631 7631
7632 7632 return (rv);
7633 7633 }
7634 7634
7635 7635 /*
7636 7636 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7637 7637 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7638 7638 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7639 7639 * In addition, all of the recursion cases except for '*' matching have been
7640 7640 * unwound. For '*', we still implement recursive evaluation, but a depth
7641 7641 * counter is maintained and matching is aborted if we recurse too deep.
7642 7642 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7643 7643 */
7644 7644 static int
7645 7645 dtrace_match_glob(const char *s, const char *p, int depth)
7646 7646 {
7647 7647 const char *olds;
7648 7648 char s1, c;
7649 7649 int gs;
7650 7650
7651 7651 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7652 7652 return (-1);
7653 7653
7654 7654 if (s == NULL)
7655 7655 s = ""; /* treat NULL as empty string */
7656 7656
7657 7657 top:
7658 7658 olds = s;
7659 7659 s1 = *s++;
7660 7660
7661 7661 if (p == NULL)
7662 7662 return (0);
7663 7663
7664 7664 if ((c = *p++) == '\0')
7665 7665 return (s1 == '\0');
7666 7666
7667 7667 switch (c) {
7668 7668 case '[': {
7669 7669 int ok = 0, notflag = 0;
7670 7670 char lc = '\0';
7671 7671
7672 7672 if (s1 == '\0')
7673 7673 return (0);
7674 7674
7675 7675 if (*p == '!') {
7676 7676 notflag = 1;
7677 7677 p++;
7678 7678 }
7679 7679
7680 7680 if ((c = *p++) == '\0')
7681 7681 return (0);
7682 7682
7683 7683 do {
7684 7684 if (c == '-' && lc != '\0' && *p != ']') {
7685 7685 if ((c = *p++) == '\0')
7686 7686 return (0);
7687 7687 if (c == '\\' && (c = *p++) == '\0')
7688 7688 return (0);
7689 7689
7690 7690 if (notflag) {
7691 7691 if (s1 < lc || s1 > c)
7692 7692 ok++;
7693 7693 else
7694 7694 return (0);
7695 7695 } else if (lc <= s1 && s1 <= c)
7696 7696 ok++;
7697 7697
7698 7698 } else if (c == '\\' && (c = *p++) == '\0')
7699 7699 return (0);
7700 7700
7701 7701 lc = c; /* save left-hand 'c' for next iteration */
7702 7702
7703 7703 if (notflag) {
7704 7704 if (s1 != c)
7705 7705 ok++;
7706 7706 else
7707 7707 return (0);
7708 7708 } else if (s1 == c)
7709 7709 ok++;
7710 7710
7711 7711 if ((c = *p++) == '\0')
7712 7712 return (0);
7713 7713
7714 7714 } while (c != ']');
7715 7715
7716 7716 if (ok)
7717 7717 goto top;
7718 7718
7719 7719 return (0);
7720 7720 }
7721 7721
7722 7722 case '\\':
7723 7723 if ((c = *p++) == '\0')
7724 7724 return (0);
7725 7725 /*FALLTHRU*/
7726 7726
7727 7727 default:
7728 7728 if (c != s1)
7729 7729 return (0);
7730 7730 /*FALLTHRU*/
7731 7731
7732 7732 case '?':
7733 7733 if (s1 != '\0')
7734 7734 goto top;
7735 7735 return (0);
7736 7736
7737 7737 case '*':
7738 7738 while (*p == '*')
7739 7739 p++; /* consecutive *'s are identical to a single one */
7740 7740
7741 7741 if (*p == '\0')
7742 7742 return (1);
7743 7743
7744 7744 for (s = olds; *s != '\0'; s++) {
7745 7745 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7746 7746 return (gs);
7747 7747 }
7748 7748
7749 7749 return (0);
7750 7750 }
7751 7751 }
7752 7752
7753 7753 /*ARGSUSED*/
7754 7754 static int
7755 7755 dtrace_match_string(const char *s, const char *p, int depth)
7756 7756 {
7757 7757 return (s != NULL && strcmp(s, p) == 0);
7758 7758 }
7759 7759
7760 7760 /*ARGSUSED*/
7761 7761 static int
7762 7762 dtrace_match_nul(const char *s, const char *p, int depth)
7763 7763 {
7764 7764 return (1); /* always match the empty pattern */
7765 7765 }
7766 7766
7767 7767 /*ARGSUSED*/
7768 7768 static int
7769 7769 dtrace_match_nonzero(const char *s, const char *p, int depth)
7770 7770 {
7771 7771 return (s != NULL && s[0] != '\0');
7772 7772 }
7773 7773
7774 7774 static int
7775 7775 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7776 7776 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7777 7777 {
7778 7778 dtrace_probe_t template, *probe;
7779 7779 dtrace_hash_t *hash = NULL;
7780 7780 int len, rc, best = INT_MAX, nmatched = 0;
7781 7781 dtrace_id_t i;
7782 7782
7783 7783 ASSERT(MUTEX_HELD(&dtrace_lock));
7784 7784
7785 7785 /*
7786 7786 * If the probe ID is specified in the key, just lookup by ID and
7787 7787 * invoke the match callback once if a matching probe is found.
7788 7788 */
7789 7789 if (pkp->dtpk_id != DTRACE_IDNONE) {
7790 7790 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7791 7791 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7792 7792 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7793 7793 return (DTRACE_MATCH_FAIL);
7794 7794 nmatched++;
7795 7795 }
7796 7796 return (nmatched);
7797 7797 }
7798 7798
7799 7799 template.dtpr_mod = (char *)pkp->dtpk_mod;
7800 7800 template.dtpr_func = (char *)pkp->dtpk_func;
7801 7801 template.dtpr_name = (char *)pkp->dtpk_name;
7802 7802
7803 7803 /*
7804 7804 * We want to find the most distinct of the module name, function
7805 7805 * name, and name. So for each one that is not a glob pattern or
7806 7806 * empty string, we perform a lookup in the corresponding hash and
7807 7807 * use the hash table with the fewest collisions to do our search.
7808 7808 */
7809 7809 if (pkp->dtpk_mmatch == &dtrace_match_string &&
7810 7810 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7811 7811 best = len;
7812 7812 hash = dtrace_bymod;
7813 7813 }
7814 7814
7815 7815 if (pkp->dtpk_fmatch == &dtrace_match_string &&
7816 7816 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7817 7817 best = len;
7818 7818 hash = dtrace_byfunc;
7819 7819 }
7820 7820
7821 7821 if (pkp->dtpk_nmatch == &dtrace_match_string &&
7822 7822 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7823 7823 best = len;
7824 7824 hash = dtrace_byname;
7825 7825 }
7826 7826
7827 7827 /*
7828 7828 * If we did not select a hash table, iterate over every probe and
7829 7829 * invoke our callback for each one that matches our input probe key.
7830 7830 */
7831 7831 if (hash == NULL) {
7832 7832 for (i = 0; i < dtrace_nprobes; i++) {
7833 7833 if ((probe = dtrace_probes[i]) == NULL ||
7834 7834 dtrace_match_probe(probe, pkp, priv, uid,
7835 7835 zoneid) <= 0)
7836 7836 continue;
7837 7837
7838 7838 nmatched++;
7839 7839
7840 7840 if ((rc = (*matched)(probe, arg)) !=
7841 7841 DTRACE_MATCH_NEXT) {
7842 7842 if (rc == DTRACE_MATCH_FAIL)
7843 7843 return (DTRACE_MATCH_FAIL);
7844 7844 break;
7845 7845 }
7846 7846 }
7847 7847
7848 7848 return (nmatched);
7849 7849 }
7850 7850
7851 7851 /*
7852 7852 * If we selected a hash table, iterate over each probe of the same key
7853 7853 * name and invoke the callback for every probe that matches the other
7854 7854 * attributes of our input probe key.
7855 7855 */
7856 7856 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7857 7857 probe = *(DTRACE_HASHNEXT(hash, probe))) {
7858 7858
7859 7859 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7860 7860 continue;
7861 7861
7862 7862 nmatched++;
7863 7863
7864 7864 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7865 7865 if (rc == DTRACE_MATCH_FAIL)
7866 7866 return (DTRACE_MATCH_FAIL);
7867 7867 break;
7868 7868 }
7869 7869 }
7870 7870
7871 7871 return (nmatched);
7872 7872 }
7873 7873
7874 7874 /*
7875 7875 * Return the function pointer dtrace_probecmp() should use to compare the
7876 7876 * specified pattern with a string. For NULL or empty patterns, we select
7877 7877 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7878 7878 * For non-empty non-glob strings, we use dtrace_match_string().
7879 7879 */
7880 7880 static dtrace_probekey_f *
7881 7881 dtrace_probekey_func(const char *p)
7882 7882 {
7883 7883 char c;
7884 7884
7885 7885 if (p == NULL || *p == '\0')
7886 7886 return (&dtrace_match_nul);
7887 7887
7888 7888 while ((c = *p++) != '\0') {
7889 7889 if (c == '[' || c == '?' || c == '*' || c == '\\')
7890 7890 return (&dtrace_match_glob);
7891 7891 }
7892 7892
7893 7893 return (&dtrace_match_string);
7894 7894 }
7895 7895
7896 7896 /*
7897 7897 * Build a probe comparison key for use with dtrace_match_probe() from the
7898 7898 * given probe description. By convention, a null key only matches anchored
7899 7899 * probes: if each field is the empty string, reset dtpk_fmatch to
7900 7900 * dtrace_match_nonzero().
7901 7901 */
7902 7902 static void
7903 7903 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7904 7904 {
7905 7905 pkp->dtpk_prov = pdp->dtpd_provider;
7906 7906 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7907 7907
7908 7908 pkp->dtpk_mod = pdp->dtpd_mod;
7909 7909 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7910 7910
7911 7911 pkp->dtpk_func = pdp->dtpd_func;
7912 7912 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7913 7913
7914 7914 pkp->dtpk_name = pdp->dtpd_name;
7915 7915 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7916 7916
7917 7917 pkp->dtpk_id = pdp->dtpd_id;
7918 7918
7919 7919 if (pkp->dtpk_id == DTRACE_IDNONE &&
7920 7920 pkp->dtpk_pmatch == &dtrace_match_nul &&
7921 7921 pkp->dtpk_mmatch == &dtrace_match_nul &&
7922 7922 pkp->dtpk_fmatch == &dtrace_match_nul &&
7923 7923 pkp->dtpk_nmatch == &dtrace_match_nul)
7924 7924 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7925 7925 }
7926 7926
7927 7927 /*
7928 7928 * DTrace Provider-to-Framework API Functions
7929 7929 *
7930 7930 * These functions implement much of the Provider-to-Framework API, as
7931 7931 * described in <sys/dtrace.h>. The parts of the API not in this section are
7932 7932 * the functions in the API for probe management (found below), and
7933 7933 * dtrace_probe() itself (found above).
7934 7934 */
7935 7935
7936 7936 /*
7937 7937 * Register the calling provider with the DTrace framework. This should
7938 7938 * generally be called by DTrace providers in their attach(9E) entry point.
7939 7939 */
7940 7940 int
7941 7941 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7942 7942 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7943 7943 {
7944 7944 dtrace_provider_t *provider;
7945 7945
7946 7946 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7947 7947 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7948 7948 "arguments", name ? name : "<NULL>");
7949 7949 return (EINVAL);
7950 7950 }
7951 7951
7952 7952 if (name[0] == '\0' || dtrace_badname(name)) {
7953 7953 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7954 7954 "provider name", name);
7955 7955 return (EINVAL);
7956 7956 }
7957 7957
7958 7958 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7959 7959 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7960 7960 pops->dtps_destroy == NULL ||
7961 7961 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7962 7962 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7963 7963 "provider ops", name);
7964 7964 return (EINVAL);
7965 7965 }
7966 7966
7967 7967 if (dtrace_badattr(&pap->dtpa_provider) ||
7968 7968 dtrace_badattr(&pap->dtpa_mod) ||
7969 7969 dtrace_badattr(&pap->dtpa_func) ||
7970 7970 dtrace_badattr(&pap->dtpa_name) ||
7971 7971 dtrace_badattr(&pap->dtpa_args)) {
7972 7972 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7973 7973 "provider attributes", name);
7974 7974 return (EINVAL);
7975 7975 }
7976 7976
7977 7977 if (priv & ~DTRACE_PRIV_ALL) {
7978 7978 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7979 7979 "privilege attributes", name);
7980 7980 return (EINVAL);
7981 7981 }
7982 7982
7983 7983 if ((priv & DTRACE_PRIV_KERNEL) &&
7984 7984 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7985 7985 pops->dtps_mode == NULL) {
7986 7986 cmn_err(CE_WARN, "failed to register provider '%s': need "
7987 7987 "dtps_mode() op for given privilege attributes", name);
7988 7988 return (EINVAL);
7989 7989 }
7990 7990
7991 7991 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7992 7992 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7993 7993 (void) strcpy(provider->dtpv_name, name);
7994 7994
7995 7995 provider->dtpv_attr = *pap;
7996 7996 provider->dtpv_priv.dtpp_flags = priv;
7997 7997 if (cr != NULL) {
7998 7998 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7999 7999 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8000 8000 }
8001 8001 provider->dtpv_pops = *pops;
8002 8002
8003 8003 if (pops->dtps_provide == NULL) {
8004 8004 ASSERT(pops->dtps_provide_module != NULL);
8005 8005 provider->dtpv_pops.dtps_provide =
8006 8006 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8007 8007 }
8008 8008
8009 8009 if (pops->dtps_provide_module == NULL) {
8010 8010 ASSERT(pops->dtps_provide != NULL);
8011 8011 provider->dtpv_pops.dtps_provide_module =
8012 8012 (void (*)(void *, struct modctl *))dtrace_nullop;
8013 8013 }
8014 8014
8015 8015 if (pops->dtps_suspend == NULL) {
8016 8016 ASSERT(pops->dtps_resume == NULL);
8017 8017 provider->dtpv_pops.dtps_suspend =
8018 8018 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8019 8019 provider->dtpv_pops.dtps_resume =
8020 8020 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8021 8021 }
8022 8022
8023 8023 provider->dtpv_arg = arg;
8024 8024 *idp = (dtrace_provider_id_t)provider;
8025 8025
8026 8026 if (pops == &dtrace_provider_ops) {
8027 8027 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8028 8028 ASSERT(MUTEX_HELD(&dtrace_lock));
8029 8029 ASSERT(dtrace_anon.dta_enabling == NULL);
8030 8030
8031 8031 /*
8032 8032 * We make sure that the DTrace provider is at the head of
8033 8033 * the provider chain.
8034 8034 */
8035 8035 provider->dtpv_next = dtrace_provider;
8036 8036 dtrace_provider = provider;
8037 8037 return (0);
8038 8038 }
8039 8039
8040 8040 mutex_enter(&dtrace_provider_lock);
8041 8041 mutex_enter(&dtrace_lock);
8042 8042
8043 8043 /*
8044 8044 * If there is at least one provider registered, we'll add this
8045 8045 * provider after the first provider.
8046 8046 */
8047 8047 if (dtrace_provider != NULL) {
8048 8048 provider->dtpv_next = dtrace_provider->dtpv_next;
8049 8049 dtrace_provider->dtpv_next = provider;
8050 8050 } else {
8051 8051 dtrace_provider = provider;
8052 8052 }
8053 8053
8054 8054 if (dtrace_retained != NULL) {
8055 8055 dtrace_enabling_provide(provider);
8056 8056
8057 8057 /*
8058 8058 * Now we need to call dtrace_enabling_matchall() -- which
8059 8059 * will acquire cpu_lock and dtrace_lock. We therefore need
8060 8060 * to drop all of our locks before calling into it...
8061 8061 */
8062 8062 mutex_exit(&dtrace_lock);
8063 8063 mutex_exit(&dtrace_provider_lock);
8064 8064 dtrace_enabling_matchall();
8065 8065
8066 8066 return (0);
8067 8067 }
8068 8068
8069 8069 mutex_exit(&dtrace_lock);
8070 8070 mutex_exit(&dtrace_provider_lock);
8071 8071
8072 8072 return (0);
8073 8073 }
8074 8074
8075 8075 /*
8076 8076 * Unregister the specified provider from the DTrace framework. This should
8077 8077 * generally be called by DTrace providers in their detach(9E) entry point.
8078 8078 */
8079 8079 int
8080 8080 dtrace_unregister(dtrace_provider_id_t id)
8081 8081 {
8082 8082 dtrace_provider_t *old = (dtrace_provider_t *)id;
8083 8083 dtrace_provider_t *prev = NULL;
8084 8084 int i, self = 0, noreap = 0;
8085 8085 dtrace_probe_t *probe, *first = NULL;
8086 8086
8087 8087 if (old->dtpv_pops.dtps_enable ==
8088 8088 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8089 8089 /*
8090 8090 * If DTrace itself is the provider, we're called with locks
8091 8091 * already held.
8092 8092 */
8093 8093 ASSERT(old == dtrace_provider);
8094 8094 ASSERT(dtrace_devi != NULL);
8095 8095 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8096 8096 ASSERT(MUTEX_HELD(&dtrace_lock));
8097 8097 self = 1;
8098 8098
8099 8099 if (dtrace_provider->dtpv_next != NULL) {
8100 8100 /*
8101 8101 * There's another provider here; return failure.
8102 8102 */
8103 8103 return (EBUSY);
8104 8104 }
8105 8105 } else {
8106 8106 mutex_enter(&dtrace_provider_lock);
8107 8107 mutex_enter(&mod_lock);
8108 8108 mutex_enter(&dtrace_lock);
8109 8109 }
8110 8110
8111 8111 /*
8112 8112 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8113 8113 * probes, we refuse to let providers slither away, unless this
8114 8114 * provider has already been explicitly invalidated.
8115 8115 */
8116 8116 if (!old->dtpv_defunct &&
8117 8117 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8118 8118 dtrace_anon.dta_state->dts_necbs > 0))) {
8119 8119 if (!self) {
8120 8120 mutex_exit(&dtrace_lock);
8121 8121 mutex_exit(&mod_lock);
8122 8122 mutex_exit(&dtrace_provider_lock);
8123 8123 }
8124 8124 return (EBUSY);
8125 8125 }
8126 8126
8127 8127 /*
8128 8128 * Attempt to destroy the probes associated with this provider.
8129 8129 */
8130 8130 for (i = 0; i < dtrace_nprobes; i++) {
8131 8131 if ((probe = dtrace_probes[i]) == NULL)
8132 8132 continue;
8133 8133
8134 8134 if (probe->dtpr_provider != old)
8135 8135 continue;
8136 8136
8137 8137 if (probe->dtpr_ecb == NULL)
8138 8138 continue;
8139 8139
8140 8140 /*
8141 8141 * If we are trying to unregister a defunct provider, and the
8142 8142 * provider was made defunct within the interval dictated by
8143 8143 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8144 8144 * attempt to reap our enablings. To denote that the provider
8145 8145 * should reattempt to unregister itself at some point in the
8146 8146 * future, we will return a differentiable error code (EAGAIN
8147 8147 * instead of EBUSY) in this case.
8148 8148 */
8149 8149 if (dtrace_gethrtime() - old->dtpv_defunct >
8150 8150 dtrace_unregister_defunct_reap)
8151 8151 noreap = 1;
8152 8152
8153 8153 if (!self) {
8154 8154 mutex_exit(&dtrace_lock);
8155 8155 mutex_exit(&mod_lock);
8156 8156 mutex_exit(&dtrace_provider_lock);
8157 8157 }
8158 8158
8159 8159 if (noreap)
8160 8160 return (EBUSY);
8161 8161
8162 8162 (void) taskq_dispatch(dtrace_taskq,
8163 8163 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8164 8164
8165 8165 return (EAGAIN);
8166 8166 }
8167 8167
8168 8168 /*
8169 8169 * All of the probes for this provider are disabled; we can safely
8170 8170 * remove all of them from their hash chains and from the probe array.
8171 8171 */
8172 8172 for (i = 0; i < dtrace_nprobes; i++) {
8173 8173 if ((probe = dtrace_probes[i]) == NULL)
8174 8174 continue;
8175 8175
8176 8176 if (probe->dtpr_provider != old)
8177 8177 continue;
8178 8178
8179 8179 dtrace_probes[i] = NULL;
8180 8180
8181 8181 dtrace_hash_remove(dtrace_bymod, probe);
8182 8182 dtrace_hash_remove(dtrace_byfunc, probe);
8183 8183 dtrace_hash_remove(dtrace_byname, probe);
8184 8184
8185 8185 if (first == NULL) {
8186 8186 first = probe;
8187 8187 probe->dtpr_nextmod = NULL;
8188 8188 } else {
8189 8189 probe->dtpr_nextmod = first;
8190 8190 first = probe;
8191 8191 }
8192 8192 }
8193 8193
8194 8194 /*
8195 8195 * The provider's probes have been removed from the hash chains and
8196 8196 * from the probe array. Now issue a dtrace_sync() to be sure that
8197 8197 * everyone has cleared out from any probe array processing.
8198 8198 */
8199 8199 dtrace_sync();
8200 8200
8201 8201 for (probe = first; probe != NULL; probe = first) {
8202 8202 first = probe->dtpr_nextmod;
8203 8203
8204 8204 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8205 8205 probe->dtpr_arg);
8206 8206 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8207 8207 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8208 8208 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8209 8209 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8210 8210 kmem_free(probe, sizeof (dtrace_probe_t));
8211 8211 }
8212 8212
8213 8213 if ((prev = dtrace_provider) == old) {
8214 8214 ASSERT(self || dtrace_devi == NULL);
8215 8215 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8216 8216 dtrace_provider = old->dtpv_next;
8217 8217 } else {
8218 8218 while (prev != NULL && prev->dtpv_next != old)
8219 8219 prev = prev->dtpv_next;
8220 8220
8221 8221 if (prev == NULL) {
8222 8222 panic("attempt to unregister non-existent "
8223 8223 "dtrace provider %p\n", (void *)id);
8224 8224 }
8225 8225
8226 8226 prev->dtpv_next = old->dtpv_next;
8227 8227 }
8228 8228
8229 8229 if (!self) {
8230 8230 mutex_exit(&dtrace_lock);
8231 8231 mutex_exit(&mod_lock);
8232 8232 mutex_exit(&dtrace_provider_lock);
8233 8233 }
8234 8234
8235 8235 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8236 8236 kmem_free(old, sizeof (dtrace_provider_t));
8237 8237
8238 8238 return (0);
8239 8239 }
8240 8240
8241 8241 /*
8242 8242 * Invalidate the specified provider. All subsequent probe lookups for the
8243 8243 * specified provider will fail, but its probes will not be removed.
8244 8244 */
8245 8245 void
8246 8246 dtrace_invalidate(dtrace_provider_id_t id)
8247 8247 {
8248 8248 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8249 8249
8250 8250 ASSERT(pvp->dtpv_pops.dtps_enable !=
8251 8251 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8252 8252
8253 8253 mutex_enter(&dtrace_provider_lock);
8254 8254 mutex_enter(&dtrace_lock);
8255 8255
8256 8256 pvp->dtpv_defunct = dtrace_gethrtime();
8257 8257
8258 8258 mutex_exit(&dtrace_lock);
8259 8259 mutex_exit(&dtrace_provider_lock);
8260 8260 }
8261 8261
8262 8262 /*
8263 8263 * Indicate whether or not DTrace has attached.
8264 8264 */
8265 8265 int
8266 8266 dtrace_attached(void)
8267 8267 {
8268 8268 /*
8269 8269 * dtrace_provider will be non-NULL iff the DTrace driver has
8270 8270 * attached. (It's non-NULL because DTrace is always itself a
8271 8271 * provider.)
8272 8272 */
8273 8273 return (dtrace_provider != NULL);
8274 8274 }
8275 8275
8276 8276 /*
8277 8277 * Remove all the unenabled probes for the given provider. This function is
8278 8278 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8279 8279 * -- just as many of its associated probes as it can.
8280 8280 */
8281 8281 int
8282 8282 dtrace_condense(dtrace_provider_id_t id)
8283 8283 {
8284 8284 dtrace_provider_t *prov = (dtrace_provider_t *)id;
8285 8285 int i;
8286 8286 dtrace_probe_t *probe;
8287 8287
8288 8288 /*
8289 8289 * Make sure this isn't the dtrace provider itself.
8290 8290 */
8291 8291 ASSERT(prov->dtpv_pops.dtps_enable !=
8292 8292 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8293 8293
8294 8294 mutex_enter(&dtrace_provider_lock);
8295 8295 mutex_enter(&dtrace_lock);
8296 8296
8297 8297 /*
8298 8298 * Attempt to destroy the probes associated with this provider.
8299 8299 */
8300 8300 for (i = 0; i < dtrace_nprobes; i++) {
8301 8301 if ((probe = dtrace_probes[i]) == NULL)
8302 8302 continue;
8303 8303
8304 8304 if (probe->dtpr_provider != prov)
8305 8305 continue;
8306 8306
8307 8307 if (probe->dtpr_ecb != NULL)
8308 8308 continue;
8309 8309
8310 8310 dtrace_probes[i] = NULL;
8311 8311
8312 8312 dtrace_hash_remove(dtrace_bymod, probe);
8313 8313 dtrace_hash_remove(dtrace_byfunc, probe);
8314 8314 dtrace_hash_remove(dtrace_byname, probe);
8315 8315
8316 8316 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8317 8317 probe->dtpr_arg);
8318 8318 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8319 8319 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8320 8320 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8321 8321 kmem_free(probe, sizeof (dtrace_probe_t));
8322 8322 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8323 8323 }
8324 8324
8325 8325 mutex_exit(&dtrace_lock);
8326 8326 mutex_exit(&dtrace_provider_lock);
8327 8327
8328 8328 return (0);
8329 8329 }
8330 8330
8331 8331 /*
8332 8332 * DTrace Probe Management Functions
8333 8333 *
8334 8334 * The functions in this section perform the DTrace probe management,
8335 8335 * including functions to create probes, look-up probes, and call into the
8336 8336 * providers to request that probes be provided. Some of these functions are
8337 8337 * in the Provider-to-Framework API; these functions can be identified by the
8338 8338 * fact that they are not declared "static".
8339 8339 */
8340 8340
8341 8341 /*
8342 8342 * Create a probe with the specified module name, function name, and name.
8343 8343 */
8344 8344 dtrace_id_t
8345 8345 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8346 8346 const char *func, const char *name, int aframes, void *arg)
8347 8347 {
8348 8348 dtrace_probe_t *probe, **probes;
8349 8349 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8350 8350 dtrace_id_t id;
8351 8351
8352 8352 if (provider == dtrace_provider) {
8353 8353 ASSERT(MUTEX_HELD(&dtrace_lock));
8354 8354 } else {
8355 8355 mutex_enter(&dtrace_lock);
8356 8356 }
8357 8357
8358 8358 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8359 8359 VM_BESTFIT | VM_SLEEP);
8360 8360 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8361 8361
8362 8362 probe->dtpr_id = id;
8363 8363 probe->dtpr_gen = dtrace_probegen++;
8364 8364 probe->dtpr_mod = dtrace_strdup(mod);
8365 8365 probe->dtpr_func = dtrace_strdup(func);
8366 8366 probe->dtpr_name = dtrace_strdup(name);
8367 8367 probe->dtpr_arg = arg;
8368 8368 probe->dtpr_aframes = aframes;
8369 8369 probe->dtpr_provider = provider;
8370 8370
8371 8371 dtrace_hash_add(dtrace_bymod, probe);
8372 8372 dtrace_hash_add(dtrace_byfunc, probe);
8373 8373 dtrace_hash_add(dtrace_byname, probe);
8374 8374
8375 8375 if (id - 1 >= dtrace_nprobes) {
8376 8376 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8377 8377 size_t nsize = osize << 1;
8378 8378
8379 8379 if (nsize == 0) {
8380 8380 ASSERT(osize == 0);
8381 8381 ASSERT(dtrace_probes == NULL);
8382 8382 nsize = sizeof (dtrace_probe_t *);
8383 8383 }
8384 8384
8385 8385 probes = kmem_zalloc(nsize, KM_SLEEP);
8386 8386
8387 8387 if (dtrace_probes == NULL) {
8388 8388 ASSERT(osize == 0);
8389 8389 dtrace_probes = probes;
8390 8390 dtrace_nprobes = 1;
8391 8391 } else {
8392 8392 dtrace_probe_t **oprobes = dtrace_probes;
8393 8393
8394 8394 bcopy(oprobes, probes, osize);
8395 8395 dtrace_membar_producer();
8396 8396 dtrace_probes = probes;
8397 8397
8398 8398 dtrace_sync();
8399 8399
8400 8400 /*
8401 8401 * All CPUs are now seeing the new probes array; we can
8402 8402 * safely free the old array.
8403 8403 */
8404 8404 kmem_free(oprobes, osize);
8405 8405 dtrace_nprobes <<= 1;
8406 8406 }
8407 8407
8408 8408 ASSERT(id - 1 < dtrace_nprobes);
8409 8409 }
8410 8410
8411 8411 ASSERT(dtrace_probes[id - 1] == NULL);
8412 8412 dtrace_probes[id - 1] = probe;
8413 8413
8414 8414 if (provider != dtrace_provider)
8415 8415 mutex_exit(&dtrace_lock);
8416 8416
8417 8417 return (id);
8418 8418 }
8419 8419
8420 8420 static dtrace_probe_t *
8421 8421 dtrace_probe_lookup_id(dtrace_id_t id)
8422 8422 {
8423 8423 ASSERT(MUTEX_HELD(&dtrace_lock));
8424 8424
8425 8425 if (id == 0 || id > dtrace_nprobes)
8426 8426 return (NULL);
8427 8427
8428 8428 return (dtrace_probes[id - 1]);
8429 8429 }
8430 8430
8431 8431 static int
8432 8432 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8433 8433 {
8434 8434 *((dtrace_id_t *)arg) = probe->dtpr_id;
8435 8435
8436 8436 return (DTRACE_MATCH_DONE);
8437 8437 }
8438 8438
8439 8439 /*
8440 8440 * Look up a probe based on provider and one or more of module name, function
8441 8441 * name and probe name.
8442 8442 */
8443 8443 dtrace_id_t
8444 8444 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8445 8445 const char *func, const char *name)
8446 8446 {
8447 8447 dtrace_probekey_t pkey;
8448 8448 dtrace_id_t id;
8449 8449 int match;
8450 8450
8451 8451 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8452 8452 pkey.dtpk_pmatch = &dtrace_match_string;
8453 8453 pkey.dtpk_mod = mod;
8454 8454 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8455 8455 pkey.dtpk_func = func;
8456 8456 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8457 8457 pkey.dtpk_name = name;
8458 8458 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8459 8459 pkey.dtpk_id = DTRACE_IDNONE;
8460 8460
8461 8461 mutex_enter(&dtrace_lock);
8462 8462 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8463 8463 dtrace_probe_lookup_match, &id);
8464 8464 mutex_exit(&dtrace_lock);
8465 8465
8466 8466 ASSERT(match == 1 || match == 0);
8467 8467 return (match ? id : 0);
8468 8468 }
8469 8469
8470 8470 /*
8471 8471 * Returns the probe argument associated with the specified probe.
8472 8472 */
8473 8473 void *
8474 8474 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8475 8475 {
8476 8476 dtrace_probe_t *probe;
8477 8477 void *rval = NULL;
8478 8478
8479 8479 mutex_enter(&dtrace_lock);
8480 8480
8481 8481 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8482 8482 probe->dtpr_provider == (dtrace_provider_t *)id)
8483 8483 rval = probe->dtpr_arg;
8484 8484
8485 8485 mutex_exit(&dtrace_lock);
8486 8486
8487 8487 return (rval);
8488 8488 }
8489 8489
8490 8490 /*
8491 8491 * Copy a probe into a probe description.
8492 8492 */
8493 8493 static void
8494 8494 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8495 8495 {
8496 8496 bzero(pdp, sizeof (dtrace_probedesc_t));
8497 8497 pdp->dtpd_id = prp->dtpr_id;
8498 8498
8499 8499 (void) strncpy(pdp->dtpd_provider,
8500 8500 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8501 8501
8502 8502 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8503 8503 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8504 8504 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8505 8505 }
8506 8506
8507 8507 /*
8508 8508 * Called to indicate that a probe -- or probes -- should be provided by a
8509 8509 * specfied provider. If the specified description is NULL, the provider will
8510 8510 * be told to provide all of its probes. (This is done whenever a new
8511 8511 * consumer comes along, or whenever a retained enabling is to be matched.) If
8512 8512 * the specified description is non-NULL, the provider is given the
8513 8513 * opportunity to dynamically provide the specified probe, allowing providers
8514 8514 * to support the creation of probes on-the-fly. (So-called _autocreated_
8515 8515 * probes.) If the provider is NULL, the operations will be applied to all
8516 8516 * providers; if the provider is non-NULL the operations will only be applied
8517 8517 * to the specified provider. The dtrace_provider_lock must be held, and the
8518 8518 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8519 8519 * will need to grab the dtrace_lock when it reenters the framework through
8520 8520 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8521 8521 */
8522 8522 static void
8523 8523 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8524 8524 {
8525 8525 struct modctl *ctl;
8526 8526 int all = 0;
8527 8527
8528 8528 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8529 8529
8530 8530 if (prv == NULL) {
8531 8531 all = 1;
8532 8532 prv = dtrace_provider;
8533 8533 }
8534 8534
8535 8535 do {
8536 8536 /*
8537 8537 * First, call the blanket provide operation.
8538 8538 */
8539 8539 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8540 8540
8541 8541 /*
8542 8542 * Now call the per-module provide operation. We will grab
8543 8543 * mod_lock to prevent the list from being modified. Note
8544 8544 * that this also prevents the mod_busy bits from changing.
8545 8545 * (mod_busy can only be changed with mod_lock held.)
8546 8546 */
8547 8547 mutex_enter(&mod_lock);
8548 8548
8549 8549 ctl = &modules;
8550 8550 do {
8551 8551 if (ctl->mod_busy || ctl->mod_mp == NULL)
8552 8552 continue;
8553 8553
8554 8554 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8555 8555
8556 8556 } while ((ctl = ctl->mod_next) != &modules);
8557 8557
8558 8558 mutex_exit(&mod_lock);
8559 8559 } while (all && (prv = prv->dtpv_next) != NULL);
8560 8560 }
8561 8561
8562 8562 /*
8563 8563 * Iterate over each probe, and call the Framework-to-Provider API function
8564 8564 * denoted by offs.
8565 8565 */
8566 8566 static void
8567 8567 dtrace_probe_foreach(uintptr_t offs)
8568 8568 {
8569 8569 dtrace_provider_t *prov;
8570 8570 void (*func)(void *, dtrace_id_t, void *);
8571 8571 dtrace_probe_t *probe;
8572 8572 dtrace_icookie_t cookie;
8573 8573 int i;
8574 8574
8575 8575 /*
8576 8576 * We disable interrupts to walk through the probe array. This is
8577 8577 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8578 8578 * won't see stale data.
8579 8579 */
8580 8580 cookie = dtrace_interrupt_disable();
8581 8581
8582 8582 for (i = 0; i < dtrace_nprobes; i++) {
8583 8583 if ((probe = dtrace_probes[i]) == NULL)
8584 8584 continue;
8585 8585
8586 8586 if (probe->dtpr_ecb == NULL) {
8587 8587 /*
8588 8588 * This probe isn't enabled -- don't call the function.
8589 8589 */
8590 8590 continue;
8591 8591 }
8592 8592
8593 8593 prov = probe->dtpr_provider;
8594 8594 func = *((void(**)(void *, dtrace_id_t, void *))
8595 8595 ((uintptr_t)&prov->dtpv_pops + offs));
8596 8596
8597 8597 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8598 8598 }
8599 8599
8600 8600 dtrace_interrupt_enable(cookie);
8601 8601 }
8602 8602
8603 8603 static int
8604 8604 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8605 8605 {
8606 8606 dtrace_probekey_t pkey;
8607 8607 uint32_t priv;
8608 8608 uid_t uid;
8609 8609 zoneid_t zoneid;
8610 8610
8611 8611 ASSERT(MUTEX_HELD(&dtrace_lock));
8612 8612 dtrace_ecb_create_cache = NULL;
8613 8613
8614 8614 if (desc == NULL) {
8615 8615 /*
8616 8616 * If we're passed a NULL description, we're being asked to
8617 8617 * create an ECB with a NULL probe.
8618 8618 */
8619 8619 (void) dtrace_ecb_create_enable(NULL, enab);
8620 8620 return (0);
8621 8621 }
8622 8622
8623 8623 dtrace_probekey(desc, &pkey);
8624 8624 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8625 8625 &priv, &uid, &zoneid);
8626 8626
8627 8627 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8628 8628 enab));
8629 8629 }
8630 8630
8631 8631 /*
8632 8632 * DTrace Helper Provider Functions
8633 8633 */
8634 8634 static void
8635 8635 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8636 8636 {
8637 8637 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8638 8638 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8639 8639 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8640 8640 }
8641 8641
8642 8642 static void
8643 8643 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8644 8644 const dof_provider_t *dofprov, char *strtab)
8645 8645 {
8646 8646 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8647 8647 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8648 8648 dofprov->dofpv_provattr);
8649 8649 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8650 8650 dofprov->dofpv_modattr);
8651 8651 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8652 8652 dofprov->dofpv_funcattr);
8653 8653 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8654 8654 dofprov->dofpv_nameattr);
8655 8655 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8656 8656 dofprov->dofpv_argsattr);
8657 8657 }
8658 8658
8659 8659 static void
8660 8660 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8661 8661 {
8662 8662 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8663 8663 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8664 8664 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8665 8665 dof_provider_t *provider;
8666 8666 dof_probe_t *probe;
8667 8667 uint32_t *off, *enoff;
8668 8668 uint8_t *arg;
8669 8669 char *strtab;
8670 8670 uint_t i, nprobes;
8671 8671 dtrace_helper_provdesc_t dhpv;
8672 8672 dtrace_helper_probedesc_t dhpb;
8673 8673 dtrace_meta_t *meta = dtrace_meta_pid;
8674 8674 dtrace_mops_t *mops = &meta->dtm_mops;
8675 8675 void *parg;
8676 8676
8677 8677 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8678 8678 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8679 8679 provider->dofpv_strtab * dof->dofh_secsize);
8680 8680 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8681 8681 provider->dofpv_probes * dof->dofh_secsize);
8682 8682 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8683 8683 provider->dofpv_prargs * dof->dofh_secsize);
8684 8684 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8685 8685 provider->dofpv_proffs * dof->dofh_secsize);
8686 8686
8687 8687 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8688 8688 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8689 8689 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8690 8690 enoff = NULL;
8691 8691
8692 8692 /*
8693 8693 * See dtrace_helper_provider_validate().
8694 8694 */
8695 8695 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8696 8696 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8697 8697 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8698 8698 provider->dofpv_prenoffs * dof->dofh_secsize);
8699 8699 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8700 8700 }
8701 8701
8702 8702 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8703 8703
8704 8704 /*
8705 8705 * Create the provider.
8706 8706 */
8707 8707 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8708 8708
8709 8709 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8710 8710 return;
8711 8711
8712 8712 meta->dtm_count++;
8713 8713
8714 8714 /*
8715 8715 * Create the probes.
8716 8716 */
8717 8717 for (i = 0; i < nprobes; i++) {
8718 8718 probe = (dof_probe_t *)(uintptr_t)(daddr +
8719 8719 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8720 8720
8721 8721 dhpb.dthpb_mod = dhp->dofhp_mod;
8722 8722 dhpb.dthpb_func = strtab + probe->dofpr_func;
8723 8723 dhpb.dthpb_name = strtab + probe->dofpr_name;
8724 8724 dhpb.dthpb_base = probe->dofpr_addr;
8725 8725 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8726 8726 dhpb.dthpb_noffs = probe->dofpr_noffs;
8727 8727 if (enoff != NULL) {
8728 8728 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8729 8729 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8730 8730 } else {
8731 8731 dhpb.dthpb_enoffs = NULL;
8732 8732 dhpb.dthpb_nenoffs = 0;
8733 8733 }
8734 8734 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8735 8735 dhpb.dthpb_nargc = probe->dofpr_nargc;
8736 8736 dhpb.dthpb_xargc = probe->dofpr_xargc;
8737 8737 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8738 8738 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8739 8739
8740 8740 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8741 8741 }
8742 8742 }
8743 8743
8744 8744 static void
8745 8745 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8746 8746 {
8747 8747 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8748 8748 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8749 8749 int i;
8750 8750
8751 8751 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8752 8752
8753 8753 for (i = 0; i < dof->dofh_secnum; i++) {
8754 8754 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8755 8755 dof->dofh_secoff + i * dof->dofh_secsize);
8756 8756
8757 8757 if (sec->dofs_type != DOF_SECT_PROVIDER)
8758 8758 continue;
8759 8759
8760 8760 dtrace_helper_provide_one(dhp, sec, pid);
8761 8761 }
8762 8762
8763 8763 /*
8764 8764 * We may have just created probes, so we must now rematch against
8765 8765 * any retained enablings. Note that this call will acquire both
8766 8766 * cpu_lock and dtrace_lock; the fact that we are holding
8767 8767 * dtrace_meta_lock now is what defines the ordering with respect to
8768 8768 * these three locks.
8769 8769 */
8770 8770 dtrace_enabling_matchall();
8771 8771 }
8772 8772
8773 8773 static void
8774 8774 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8775 8775 {
8776 8776 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8777 8777 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8778 8778 dof_sec_t *str_sec;
8779 8779 dof_provider_t *provider;
8780 8780 char *strtab;
8781 8781 dtrace_helper_provdesc_t dhpv;
8782 8782 dtrace_meta_t *meta = dtrace_meta_pid;
8783 8783 dtrace_mops_t *mops = &meta->dtm_mops;
8784 8784
8785 8785 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8786 8786 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8787 8787 provider->dofpv_strtab * dof->dofh_secsize);
8788 8788
8789 8789 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8790 8790
8791 8791 /*
8792 8792 * Create the provider.
8793 8793 */
8794 8794 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8795 8795
8796 8796 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8797 8797
8798 8798 meta->dtm_count--;
8799 8799 }
8800 8800
8801 8801 static void
8802 8802 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8803 8803 {
8804 8804 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8805 8805 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8806 8806 int i;
8807 8807
8808 8808 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8809 8809
8810 8810 for (i = 0; i < dof->dofh_secnum; i++) {
8811 8811 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8812 8812 dof->dofh_secoff + i * dof->dofh_secsize);
8813 8813
8814 8814 if (sec->dofs_type != DOF_SECT_PROVIDER)
8815 8815 continue;
8816 8816
8817 8817 dtrace_helper_provider_remove_one(dhp, sec, pid);
8818 8818 }
8819 8819 }
8820 8820
8821 8821 /*
8822 8822 * DTrace Meta Provider-to-Framework API Functions
8823 8823 *
8824 8824 * These functions implement the Meta Provider-to-Framework API, as described
8825 8825 * in <sys/dtrace.h>.
8826 8826 */
8827 8827 int
8828 8828 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8829 8829 dtrace_meta_provider_id_t *idp)
8830 8830 {
8831 8831 dtrace_meta_t *meta;
8832 8832 dtrace_helpers_t *help, *next;
8833 8833 int i;
8834 8834
8835 8835 *idp = DTRACE_METAPROVNONE;
8836 8836
8837 8837 /*
8838 8838 * We strictly don't need the name, but we hold onto it for
8839 8839 * debuggability. All hail error queues!
8840 8840 */
8841 8841 if (name == NULL) {
8842 8842 cmn_err(CE_WARN, "failed to register meta-provider: "
8843 8843 "invalid name");
8844 8844 return (EINVAL);
8845 8845 }
8846 8846
8847 8847 if (mops == NULL ||
8848 8848 mops->dtms_create_probe == NULL ||
8849 8849 mops->dtms_provide_pid == NULL ||
8850 8850 mops->dtms_remove_pid == NULL) {
8851 8851 cmn_err(CE_WARN, "failed to register meta-register %s: "
8852 8852 "invalid ops", name);
8853 8853 return (EINVAL);
8854 8854 }
8855 8855
8856 8856 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8857 8857 meta->dtm_mops = *mops;
8858 8858 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8859 8859 (void) strcpy(meta->dtm_name, name);
8860 8860 meta->dtm_arg = arg;
8861 8861
8862 8862 mutex_enter(&dtrace_meta_lock);
8863 8863 mutex_enter(&dtrace_lock);
8864 8864
8865 8865 if (dtrace_meta_pid != NULL) {
8866 8866 mutex_exit(&dtrace_lock);
8867 8867 mutex_exit(&dtrace_meta_lock);
8868 8868 cmn_err(CE_WARN, "failed to register meta-register %s: "
8869 8869 "user-land meta-provider exists", name);
8870 8870 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8871 8871 kmem_free(meta, sizeof (dtrace_meta_t));
8872 8872 return (EINVAL);
8873 8873 }
8874 8874
8875 8875 dtrace_meta_pid = meta;
8876 8876 *idp = (dtrace_meta_provider_id_t)meta;
8877 8877
8878 8878 /*
8879 8879 * If there are providers and probes ready to go, pass them
8880 8880 * off to the new meta provider now.
8881 8881 */
8882 8882
8883 8883 help = dtrace_deferred_pid;
8884 8884 dtrace_deferred_pid = NULL;
8885 8885
8886 8886 mutex_exit(&dtrace_lock);
8887 8887
8888 8888 while (help != NULL) {
8889 8889 for (i = 0; i < help->dthps_nprovs; i++) {
8890 8890 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8891 8891 help->dthps_pid);
8892 8892 }
8893 8893
8894 8894 next = help->dthps_next;
8895 8895 help->dthps_next = NULL;
8896 8896 help->dthps_prev = NULL;
8897 8897 help->dthps_deferred = 0;
8898 8898 help = next;
8899 8899 }
8900 8900
8901 8901 mutex_exit(&dtrace_meta_lock);
8902 8902
8903 8903 return (0);
8904 8904 }
8905 8905
8906 8906 int
8907 8907 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8908 8908 {
8909 8909 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8910 8910
8911 8911 mutex_enter(&dtrace_meta_lock);
8912 8912 mutex_enter(&dtrace_lock);
8913 8913
8914 8914 if (old == dtrace_meta_pid) {
8915 8915 pp = &dtrace_meta_pid;
8916 8916 } else {
8917 8917 panic("attempt to unregister non-existent "
8918 8918 "dtrace meta-provider %p\n", (void *)old);
8919 8919 }
8920 8920
8921 8921 if (old->dtm_count != 0) {
8922 8922 mutex_exit(&dtrace_lock);
8923 8923 mutex_exit(&dtrace_meta_lock);
8924 8924 return (EBUSY);
8925 8925 }
8926 8926
8927 8927 *pp = NULL;
8928 8928
8929 8929 mutex_exit(&dtrace_lock);
8930 8930 mutex_exit(&dtrace_meta_lock);
8931 8931
8932 8932 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8933 8933 kmem_free(old, sizeof (dtrace_meta_t));
8934 8934
8935 8935 return (0);
8936 8936 }
8937 8937
8938 8938
8939 8939 /*
8940 8940 * DTrace DIF Object Functions
8941 8941 */
8942 8942 static int
8943 8943 dtrace_difo_err(uint_t pc, const char *format, ...)
8944 8944 {
8945 8945 if (dtrace_err_verbose) {
8946 8946 va_list alist;
8947 8947
8948 8948 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8949 8949 va_start(alist, format);
8950 8950 (void) vuprintf(format, alist);
8951 8951 va_end(alist);
8952 8952 }
8953 8953
8954 8954 #ifdef DTRACE_ERRDEBUG
8955 8955 dtrace_errdebug(format);
8956 8956 #endif
8957 8957 return (1);
8958 8958 }
8959 8959
8960 8960 /*
8961 8961 * Validate a DTrace DIF object by checking the IR instructions. The following
8962 8962 * rules are currently enforced by dtrace_difo_validate():
8963 8963 *
8964 8964 * 1. Each instruction must have a valid opcode
8965 8965 * 2. Each register, string, variable, or subroutine reference must be valid
8966 8966 * 3. No instruction can modify register %r0 (must be zero)
8967 8967 * 4. All instruction reserved bits must be set to zero
8968 8968 * 5. The last instruction must be a "ret" instruction
8969 8969 * 6. All branch targets must reference a valid instruction _after_ the branch
8970 8970 */
8971 8971 static int
8972 8972 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8973 8973 cred_t *cr)
8974 8974 {
8975 8975 int err = 0, i;
8976 8976 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8977 8977 int kcheckload;
8978 8978 uint_t pc;
8979 8979
8980 8980 kcheckload = cr == NULL ||
8981 8981 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8982 8982
8983 8983 dp->dtdo_destructive = 0;
8984 8984
8985 8985 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8986 8986 dif_instr_t instr = dp->dtdo_buf[pc];
8987 8987
8988 8988 uint_t r1 = DIF_INSTR_R1(instr);
8989 8989 uint_t r2 = DIF_INSTR_R2(instr);
8990 8990 uint_t rd = DIF_INSTR_RD(instr);
8991 8991 uint_t rs = DIF_INSTR_RS(instr);
8992 8992 uint_t label = DIF_INSTR_LABEL(instr);
8993 8993 uint_t v = DIF_INSTR_VAR(instr);
8994 8994 uint_t subr = DIF_INSTR_SUBR(instr);
8995 8995 uint_t type = DIF_INSTR_TYPE(instr);
8996 8996 uint_t op = DIF_INSTR_OP(instr);
8997 8997
8998 8998 switch (op) {
8999 8999 case DIF_OP_OR:
9000 9000 case DIF_OP_XOR:
9001 9001 case DIF_OP_AND:
9002 9002 case DIF_OP_SLL:
9003 9003 case DIF_OP_SRL:
9004 9004 case DIF_OP_SRA:
9005 9005 case DIF_OP_SUB:
9006 9006 case DIF_OP_ADD:
9007 9007 case DIF_OP_MUL:
9008 9008 case DIF_OP_SDIV:
9009 9009 case DIF_OP_UDIV:
9010 9010 case DIF_OP_SREM:
9011 9011 case DIF_OP_UREM:
9012 9012 case DIF_OP_COPYS:
9013 9013 if (r1 >= nregs)
9014 9014 err += efunc(pc, "invalid register %u\n", r1);
9015 9015 if (r2 >= nregs)
9016 9016 err += efunc(pc, "invalid register %u\n", r2);
9017 9017 if (rd >= nregs)
9018 9018 err += efunc(pc, "invalid register %u\n", rd);
9019 9019 if (rd == 0)
9020 9020 err += efunc(pc, "cannot write to %r0\n");
9021 9021 break;
9022 9022 case DIF_OP_NOT:
9023 9023 case DIF_OP_MOV:
9024 9024 case DIF_OP_ALLOCS:
9025 9025 if (r1 >= nregs)
9026 9026 err += efunc(pc, "invalid register %u\n", r1);
9027 9027 if (r2 != 0)
9028 9028 err += efunc(pc, "non-zero reserved bits\n");
9029 9029 if (rd >= nregs)
9030 9030 err += efunc(pc, "invalid register %u\n", rd);
9031 9031 if (rd == 0)
9032 9032 err += efunc(pc, "cannot write to %r0\n");
9033 9033 break;
9034 9034 case DIF_OP_LDSB:
9035 9035 case DIF_OP_LDSH:
9036 9036 case DIF_OP_LDSW:
9037 9037 case DIF_OP_LDUB:
9038 9038 case DIF_OP_LDUH:
9039 9039 case DIF_OP_LDUW:
9040 9040 case DIF_OP_LDX:
9041 9041 if (r1 >= nregs)
9042 9042 err += efunc(pc, "invalid register %u\n", r1);
9043 9043 if (r2 != 0)
9044 9044 err += efunc(pc, "non-zero reserved bits\n");
9045 9045 if (rd >= nregs)
9046 9046 err += efunc(pc, "invalid register %u\n", rd);
9047 9047 if (rd == 0)
9048 9048 err += efunc(pc, "cannot write to %r0\n");
9049 9049 if (kcheckload)
9050 9050 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9051 9051 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9052 9052 break;
9053 9053 case DIF_OP_RLDSB:
9054 9054 case DIF_OP_RLDSH:
9055 9055 case DIF_OP_RLDSW:
9056 9056 case DIF_OP_RLDUB:
9057 9057 case DIF_OP_RLDUH:
9058 9058 case DIF_OP_RLDUW:
9059 9059 case DIF_OP_RLDX:
9060 9060 if (r1 >= nregs)
9061 9061 err += efunc(pc, "invalid register %u\n", r1);
9062 9062 if (r2 != 0)
9063 9063 err += efunc(pc, "non-zero reserved bits\n");
9064 9064 if (rd >= nregs)
9065 9065 err += efunc(pc, "invalid register %u\n", rd);
9066 9066 if (rd == 0)
9067 9067 err += efunc(pc, "cannot write to %r0\n");
9068 9068 break;
9069 9069 case DIF_OP_ULDSB:
9070 9070 case DIF_OP_ULDSH:
9071 9071 case DIF_OP_ULDSW:
9072 9072 case DIF_OP_ULDUB:
9073 9073 case DIF_OP_ULDUH:
9074 9074 case DIF_OP_ULDUW:
9075 9075 case DIF_OP_ULDX:
9076 9076 if (r1 >= nregs)
9077 9077 err += efunc(pc, "invalid register %u\n", r1);
9078 9078 if (r2 != 0)
9079 9079 err += efunc(pc, "non-zero reserved bits\n");
9080 9080 if (rd >= nregs)
9081 9081 err += efunc(pc, "invalid register %u\n", rd);
9082 9082 if (rd == 0)
9083 9083 err += efunc(pc, "cannot write to %r0\n");
9084 9084 break;
9085 9085 case DIF_OP_STB:
9086 9086 case DIF_OP_STH:
9087 9087 case DIF_OP_STW:
9088 9088 case DIF_OP_STX:
9089 9089 if (r1 >= nregs)
9090 9090 err += efunc(pc, "invalid register %u\n", r1);
9091 9091 if (r2 != 0)
9092 9092 err += efunc(pc, "non-zero reserved bits\n");
9093 9093 if (rd >= nregs)
9094 9094 err += efunc(pc, "invalid register %u\n", rd);
9095 9095 if (rd == 0)
9096 9096 err += efunc(pc, "cannot write to 0 address\n");
9097 9097 break;
9098 9098 case DIF_OP_CMP:
9099 9099 case DIF_OP_SCMP:
9100 9100 if (r1 >= nregs)
9101 9101 err += efunc(pc, "invalid register %u\n", r1);
9102 9102 if (r2 >= nregs)
9103 9103 err += efunc(pc, "invalid register %u\n", r2);
9104 9104 if (rd != 0)
9105 9105 err += efunc(pc, "non-zero reserved bits\n");
9106 9106 break;
9107 9107 case DIF_OP_TST:
9108 9108 if (r1 >= nregs)
9109 9109 err += efunc(pc, "invalid register %u\n", r1);
9110 9110 if (r2 != 0 || rd != 0)
9111 9111 err += efunc(pc, "non-zero reserved bits\n");
9112 9112 break;
9113 9113 case DIF_OP_BA:
9114 9114 case DIF_OP_BE:
9115 9115 case DIF_OP_BNE:
9116 9116 case DIF_OP_BG:
9117 9117 case DIF_OP_BGU:
9118 9118 case DIF_OP_BGE:
9119 9119 case DIF_OP_BGEU:
9120 9120 case DIF_OP_BL:
9121 9121 case DIF_OP_BLU:
9122 9122 case DIF_OP_BLE:
9123 9123 case DIF_OP_BLEU:
9124 9124 if (label >= dp->dtdo_len) {
9125 9125 err += efunc(pc, "invalid branch target %u\n",
9126 9126 label);
9127 9127 }
9128 9128 if (label <= pc) {
9129 9129 err += efunc(pc, "backward branch to %u\n",
9130 9130 label);
9131 9131 }
9132 9132 break;
9133 9133 case DIF_OP_RET:
9134 9134 if (r1 != 0 || r2 != 0)
9135 9135 err += efunc(pc, "non-zero reserved bits\n");
9136 9136 if (rd >= nregs)
9137 9137 err += efunc(pc, "invalid register %u\n", rd);
9138 9138 break;
9139 9139 case DIF_OP_NOP:
9140 9140 case DIF_OP_POPTS:
9141 9141 case DIF_OP_FLUSHTS:
9142 9142 if (r1 != 0 || r2 != 0 || rd != 0)
9143 9143 err += efunc(pc, "non-zero reserved bits\n");
9144 9144 break;
9145 9145 case DIF_OP_SETX:
9146 9146 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9147 9147 err += efunc(pc, "invalid integer ref %u\n",
9148 9148 DIF_INSTR_INTEGER(instr));
9149 9149 }
9150 9150 if (rd >= nregs)
9151 9151 err += efunc(pc, "invalid register %u\n", rd);
9152 9152 if (rd == 0)
9153 9153 err += efunc(pc, "cannot write to %r0\n");
9154 9154 break;
9155 9155 case DIF_OP_SETS:
9156 9156 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9157 9157 err += efunc(pc, "invalid string ref %u\n",
9158 9158 DIF_INSTR_STRING(instr));
9159 9159 }
9160 9160 if (rd >= nregs)
9161 9161 err += efunc(pc, "invalid register %u\n", rd);
9162 9162 if (rd == 0)
9163 9163 err += efunc(pc, "cannot write to %r0\n");
9164 9164 break;
9165 9165 case DIF_OP_LDGA:
9166 9166 case DIF_OP_LDTA:
9167 9167 if (r1 > DIF_VAR_ARRAY_MAX)
9168 9168 err += efunc(pc, "invalid array %u\n", r1);
9169 9169 if (r2 >= nregs)
9170 9170 err += efunc(pc, "invalid register %u\n", r2);
9171 9171 if (rd >= nregs)
9172 9172 err += efunc(pc, "invalid register %u\n", rd);
9173 9173 if (rd == 0)
9174 9174 err += efunc(pc, "cannot write to %r0\n");
9175 9175 break;
9176 9176 case DIF_OP_LDGS:
9177 9177 case DIF_OP_LDTS:
9178 9178 case DIF_OP_LDLS:
9179 9179 case DIF_OP_LDGAA:
9180 9180 case DIF_OP_LDTAA:
9181 9181 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9182 9182 err += efunc(pc, "invalid variable %u\n", v);
9183 9183 if (rd >= nregs)
9184 9184 err += efunc(pc, "invalid register %u\n", rd);
9185 9185 if (rd == 0)
9186 9186 err += efunc(pc, "cannot write to %r0\n");
9187 9187 break;
9188 9188 case DIF_OP_STGS:
9189 9189 case DIF_OP_STTS:
9190 9190 case DIF_OP_STLS:
9191 9191 case DIF_OP_STGAA:
9192 9192 case DIF_OP_STTAA:
9193 9193 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9194 9194 err += efunc(pc, "invalid variable %u\n", v);
9195 9195 if (rs >= nregs)
9196 9196 err += efunc(pc, "invalid register %u\n", rd);
9197 9197 break;
9198 9198 case DIF_OP_CALL:
9199 9199 if (subr > DIF_SUBR_MAX)
9200 9200 err += efunc(pc, "invalid subr %u\n", subr);
9201 9201 if (rd >= nregs)
9202 9202 err += efunc(pc, "invalid register %u\n", rd);
9203 9203 if (rd == 0)
9204 9204 err += efunc(pc, "cannot write to %r0\n");
9205 9205
9206 9206 if (subr == DIF_SUBR_COPYOUT ||
9207 9207 subr == DIF_SUBR_COPYOUTSTR) {
9208 9208 dp->dtdo_destructive = 1;
9209 9209 }
9210 9210
9211 9211 if (subr == DIF_SUBR_GETF) {
9212 9212 /*
9213 9213 * If we have a getf() we need to record that
9214 9214 * in our state. Note that our state can be
9215 9215 * NULL if this is a helper -- but in that
9216 9216 * case, the call to getf() is itself illegal,
9217 9217 * and will be caught (slightly later) when
9218 9218 * the helper is validated.
9219 9219 */
9220 9220 if (vstate->dtvs_state != NULL)
9221 9221 vstate->dtvs_state->dts_getf++;
9222 9222 }
9223 9223
9224 9224 break;
9225 9225 case DIF_OP_PUSHTR:
9226 9226 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9227 9227 err += efunc(pc, "invalid ref type %u\n", type);
9228 9228 if (r2 >= nregs)
9229 9229 err += efunc(pc, "invalid register %u\n", r2);
9230 9230 if (rs >= nregs)
9231 9231 err += efunc(pc, "invalid register %u\n", rs);
9232 9232 break;
9233 9233 case DIF_OP_PUSHTV:
9234 9234 if (type != DIF_TYPE_CTF)
9235 9235 err += efunc(pc, "invalid val type %u\n", type);
9236 9236 if (r2 >= nregs)
9237 9237 err += efunc(pc, "invalid register %u\n", r2);
9238 9238 if (rs >= nregs)
9239 9239 err += efunc(pc, "invalid register %u\n", rs);
9240 9240 break;
9241 9241 default:
9242 9242 err += efunc(pc, "invalid opcode %u\n",
9243 9243 DIF_INSTR_OP(instr));
9244 9244 }
9245 9245 }
9246 9246
9247 9247 if (dp->dtdo_len != 0 &&
9248 9248 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9249 9249 err += efunc(dp->dtdo_len - 1,
9250 9250 "expected 'ret' as last DIF instruction\n");
9251 9251 }
9252 9252
9253 9253 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9254 9254 /*
9255 9255 * If we're not returning by reference, the size must be either
9256 9256 * 0 or the size of one of the base types.
9257 9257 */
9258 9258 switch (dp->dtdo_rtype.dtdt_size) {
9259 9259 case 0:
9260 9260 case sizeof (uint8_t):
9261 9261 case sizeof (uint16_t):
9262 9262 case sizeof (uint32_t):
9263 9263 case sizeof (uint64_t):
9264 9264 break;
9265 9265
9266 9266 default:
9267 9267 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9268 9268 }
9269 9269 }
9270 9270
9271 9271 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9272 9272 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9273 9273 dtrace_diftype_t *vt, *et;
9274 9274 uint_t id, ndx;
9275 9275
9276 9276 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9277 9277 v->dtdv_scope != DIFV_SCOPE_THREAD &&
9278 9278 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9279 9279 err += efunc(i, "unrecognized variable scope %d\n",
9280 9280 v->dtdv_scope);
9281 9281 break;
9282 9282 }
9283 9283
9284 9284 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9285 9285 v->dtdv_kind != DIFV_KIND_SCALAR) {
9286 9286 err += efunc(i, "unrecognized variable type %d\n",
9287 9287 v->dtdv_kind);
9288 9288 break;
9289 9289 }
9290 9290
9291 9291 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9292 9292 err += efunc(i, "%d exceeds variable id limit\n", id);
9293 9293 break;
9294 9294 }
9295 9295
9296 9296 if (id < DIF_VAR_OTHER_UBASE)
9297 9297 continue;
9298 9298
9299 9299 /*
9300 9300 * For user-defined variables, we need to check that this
9301 9301 * definition is identical to any previous definition that we
9302 9302 * encountered.
9303 9303 */
9304 9304 ndx = id - DIF_VAR_OTHER_UBASE;
9305 9305
9306 9306 switch (v->dtdv_scope) {
9307 9307 case DIFV_SCOPE_GLOBAL:
9308 9308 if (ndx < vstate->dtvs_nglobals) {
9309 9309 dtrace_statvar_t *svar;
9310 9310
9311 9311 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9312 9312 existing = &svar->dtsv_var;
9313 9313 }
9314 9314
9315 9315 break;
9316 9316
9317 9317 case DIFV_SCOPE_THREAD:
9318 9318 if (ndx < vstate->dtvs_ntlocals)
9319 9319 existing = &vstate->dtvs_tlocals[ndx];
9320 9320 break;
9321 9321
9322 9322 case DIFV_SCOPE_LOCAL:
9323 9323 if (ndx < vstate->dtvs_nlocals) {
9324 9324 dtrace_statvar_t *svar;
9325 9325
9326 9326 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9327 9327 existing = &svar->dtsv_var;
9328 9328 }
9329 9329
9330 9330 break;
9331 9331 }
9332 9332
9333 9333 vt = &v->dtdv_type;
9334 9334
9335 9335 if (vt->dtdt_flags & DIF_TF_BYREF) {
9336 9336 if (vt->dtdt_size == 0) {
9337 9337 err += efunc(i, "zero-sized variable\n");
9338 9338 break;
9339 9339 }
9340 9340
9341 9341 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9342 9342 vt->dtdt_size > dtrace_global_maxsize) {
9343 9343 err += efunc(i, "oversized by-ref global\n");
9344 9344 break;
9345 9345 }
9346 9346 }
9347 9347
9348 9348 if (existing == NULL || existing->dtdv_id == 0)
9349 9349 continue;
9350 9350
9351 9351 ASSERT(existing->dtdv_id == v->dtdv_id);
9352 9352 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9353 9353
9354 9354 if (existing->dtdv_kind != v->dtdv_kind)
9355 9355 err += efunc(i, "%d changed variable kind\n", id);
9356 9356
9357 9357 et = &existing->dtdv_type;
9358 9358
9359 9359 if (vt->dtdt_flags != et->dtdt_flags) {
9360 9360 err += efunc(i, "%d changed variable type flags\n", id);
9361 9361 break;
9362 9362 }
9363 9363
9364 9364 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9365 9365 err += efunc(i, "%d changed variable type size\n", id);
9366 9366 break;
9367 9367 }
9368 9368 }
9369 9369
9370 9370 return (err);
9371 9371 }
9372 9372
9373 9373 /*
9374 9374 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9375 9375 * are much more constrained than normal DIFOs. Specifically, they may
9376 9376 * not:
9377 9377 *
9378 9378 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9379 9379 * miscellaneous string routines
9380 9380 * 2. Access DTrace variables other than the args[] array, and the
9381 9381 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9382 9382 * 3. Have thread-local variables.
9383 9383 * 4. Have dynamic variables.
9384 9384 */
9385 9385 static int
9386 9386 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9387 9387 {
9388 9388 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9389 9389 int err = 0;
9390 9390 uint_t pc;
9391 9391
9392 9392 for (pc = 0; pc < dp->dtdo_len; pc++) {
9393 9393 dif_instr_t instr = dp->dtdo_buf[pc];
9394 9394
9395 9395 uint_t v = DIF_INSTR_VAR(instr);
9396 9396 uint_t subr = DIF_INSTR_SUBR(instr);
9397 9397 uint_t op = DIF_INSTR_OP(instr);
9398 9398
9399 9399 switch (op) {
9400 9400 case DIF_OP_OR:
9401 9401 case DIF_OP_XOR:
9402 9402 case DIF_OP_AND:
9403 9403 case DIF_OP_SLL:
9404 9404 case DIF_OP_SRL:
9405 9405 case DIF_OP_SRA:
9406 9406 case DIF_OP_SUB:
9407 9407 case DIF_OP_ADD:
9408 9408 case DIF_OP_MUL:
9409 9409 case DIF_OP_SDIV:
9410 9410 case DIF_OP_UDIV:
9411 9411 case DIF_OP_SREM:
9412 9412 case DIF_OP_UREM:
9413 9413 case DIF_OP_COPYS:
9414 9414 case DIF_OP_NOT:
9415 9415 case DIF_OP_MOV:
9416 9416 case DIF_OP_RLDSB:
9417 9417 case DIF_OP_RLDSH:
9418 9418 case DIF_OP_RLDSW:
9419 9419 case DIF_OP_RLDUB:
9420 9420 case DIF_OP_RLDUH:
9421 9421 case DIF_OP_RLDUW:
9422 9422 case DIF_OP_RLDX:
9423 9423 case DIF_OP_ULDSB:
9424 9424 case DIF_OP_ULDSH:
9425 9425 case DIF_OP_ULDSW:
9426 9426 case DIF_OP_ULDUB:
9427 9427 case DIF_OP_ULDUH:
9428 9428 case DIF_OP_ULDUW:
9429 9429 case DIF_OP_ULDX:
9430 9430 case DIF_OP_STB:
9431 9431 case DIF_OP_STH:
9432 9432 case DIF_OP_STW:
9433 9433 case DIF_OP_STX:
9434 9434 case DIF_OP_ALLOCS:
9435 9435 case DIF_OP_CMP:
9436 9436 case DIF_OP_SCMP:
9437 9437 case DIF_OP_TST:
9438 9438 case DIF_OP_BA:
9439 9439 case DIF_OP_BE:
9440 9440 case DIF_OP_BNE:
9441 9441 case DIF_OP_BG:
9442 9442 case DIF_OP_BGU:
9443 9443 case DIF_OP_BGE:
9444 9444 case DIF_OP_BGEU:
9445 9445 case DIF_OP_BL:
9446 9446 case DIF_OP_BLU:
9447 9447 case DIF_OP_BLE:
9448 9448 case DIF_OP_BLEU:
9449 9449 case DIF_OP_RET:
9450 9450 case DIF_OP_NOP:
9451 9451 case DIF_OP_POPTS:
9452 9452 case DIF_OP_FLUSHTS:
9453 9453 case DIF_OP_SETX:
9454 9454 case DIF_OP_SETS:
9455 9455 case DIF_OP_LDGA:
9456 9456 case DIF_OP_LDLS:
9457 9457 case DIF_OP_STGS:
9458 9458 case DIF_OP_STLS:
9459 9459 case DIF_OP_PUSHTR:
9460 9460 case DIF_OP_PUSHTV:
9461 9461 break;
9462 9462
9463 9463 case DIF_OP_LDGS:
9464 9464 if (v >= DIF_VAR_OTHER_UBASE)
9465 9465 break;
9466 9466
9467 9467 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9468 9468 break;
9469 9469
9470 9470 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9471 9471 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9472 9472 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9473 9473 v == DIF_VAR_UID || v == DIF_VAR_GID)
9474 9474 break;
9475 9475
9476 9476 err += efunc(pc, "illegal variable %u\n", v);
9477 9477 break;
9478 9478
9479 9479 case DIF_OP_LDTA:
9480 9480 case DIF_OP_LDTS:
9481 9481 case DIF_OP_LDGAA:
9482 9482 case DIF_OP_LDTAA:
9483 9483 err += efunc(pc, "illegal dynamic variable load\n");
9484 9484 break;
9485 9485
9486 9486 case DIF_OP_STTS:
9487 9487 case DIF_OP_STGAA:
9488 9488 case DIF_OP_STTAA:
9489 9489 err += efunc(pc, "illegal dynamic variable store\n");
9490 9490 break;
9491 9491
9492 9492 case DIF_OP_CALL:
9493 9493 if (subr == DIF_SUBR_ALLOCA ||
9494 9494 subr == DIF_SUBR_BCOPY ||
9495 9495 subr == DIF_SUBR_COPYIN ||
9496 9496 subr == DIF_SUBR_COPYINTO ||
9497 9497 subr == DIF_SUBR_COPYINSTR ||
9498 9498 subr == DIF_SUBR_INDEX ||
9499 9499 subr == DIF_SUBR_INET_NTOA ||
9500 9500 subr == DIF_SUBR_INET_NTOA6 ||
9501 9501 subr == DIF_SUBR_INET_NTOP ||
9502 9502 subr == DIF_SUBR_JSON ||
9503 9503 subr == DIF_SUBR_LLTOSTR ||
9504 9504 subr == DIF_SUBR_STRTOLL ||
9505 9505 subr == DIF_SUBR_RINDEX ||
9506 9506 subr == DIF_SUBR_STRCHR ||
9507 9507 subr == DIF_SUBR_STRJOIN ||
9508 9508 subr == DIF_SUBR_STRRCHR ||
9509 9509 subr == DIF_SUBR_STRSTR ||
9510 9510 subr == DIF_SUBR_HTONS ||
9511 9511 subr == DIF_SUBR_HTONL ||
9512 9512 subr == DIF_SUBR_HTONLL ||
9513 9513 subr == DIF_SUBR_NTOHS ||
9514 9514 subr == DIF_SUBR_NTOHL ||
9515 9515 subr == DIF_SUBR_NTOHLL)
9516 9516 break;
9517 9517
9518 9518 err += efunc(pc, "invalid subr %u\n", subr);
9519 9519 break;
9520 9520
9521 9521 default:
9522 9522 err += efunc(pc, "invalid opcode %u\n",
9523 9523 DIF_INSTR_OP(instr));
9524 9524 }
9525 9525 }
9526 9526
9527 9527 return (err);
9528 9528 }
9529 9529
9530 9530 /*
9531 9531 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9532 9532 * basis; 0 if not.
9533 9533 */
9534 9534 static int
9535 9535 dtrace_difo_cacheable(dtrace_difo_t *dp)
9536 9536 {
9537 9537 int i;
9538 9538
9539 9539 if (dp == NULL)
9540 9540 return (0);
9541 9541
9542 9542 for (i = 0; i < dp->dtdo_varlen; i++) {
9543 9543 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9544 9544
9545 9545 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9546 9546 continue;
9547 9547
9548 9548 switch (v->dtdv_id) {
9549 9549 case DIF_VAR_CURTHREAD:
9550 9550 case DIF_VAR_PID:
9551 9551 case DIF_VAR_TID:
9552 9552 case DIF_VAR_EXECNAME:
9553 9553 case DIF_VAR_ZONENAME:
9554 9554 break;
9555 9555
9556 9556 default:
9557 9557 return (0);
9558 9558 }
9559 9559 }
9560 9560
9561 9561 /*
9562 9562 * This DIF object may be cacheable. Now we need to look for any
9563 9563 * array loading instructions, any memory loading instructions, or
9564 9564 * any stores to thread-local variables.
9565 9565 */
9566 9566 for (i = 0; i < dp->dtdo_len; i++) {
9567 9567 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9568 9568
9569 9569 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9570 9570 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9571 9571 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9572 9572 op == DIF_OP_LDGA || op == DIF_OP_STTS)
9573 9573 return (0);
9574 9574 }
9575 9575
9576 9576 return (1);
9577 9577 }
9578 9578
9579 9579 static void
9580 9580 dtrace_difo_hold(dtrace_difo_t *dp)
9581 9581 {
9582 9582 int i;
9583 9583
9584 9584 ASSERT(MUTEX_HELD(&dtrace_lock));
9585 9585
9586 9586 dp->dtdo_refcnt++;
9587 9587 ASSERT(dp->dtdo_refcnt != 0);
9588 9588
9589 9589 /*
9590 9590 * We need to check this DIF object for references to the variable
9591 9591 * DIF_VAR_VTIMESTAMP.
9592 9592 */
9593 9593 for (i = 0; i < dp->dtdo_varlen; i++) {
9594 9594 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9595 9595
9596 9596 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9597 9597 continue;
9598 9598
9599 9599 if (dtrace_vtime_references++ == 0)
9600 9600 dtrace_vtime_enable();
9601 9601 }
9602 9602 }
9603 9603
9604 9604 /*
9605 9605 * This routine calculates the dynamic variable chunksize for a given DIF
9606 9606 * object. The calculation is not fool-proof, and can probably be tricked by
9607 9607 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9608 9608 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9609 9609 * if a dynamic variable size exceeds the chunksize.
9610 9610 */
9611 9611 static void
9612 9612 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9613 9613 {
9614 9614 uint64_t sval;
9615 9615 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9616 9616 const dif_instr_t *text = dp->dtdo_buf;
9617 9617 uint_t pc, srd = 0;
9618 9618 uint_t ttop = 0;
9619 9619 size_t size, ksize;
9620 9620 uint_t id, i;
9621 9621
9622 9622 for (pc = 0; pc < dp->dtdo_len; pc++) {
9623 9623 dif_instr_t instr = text[pc];
9624 9624 uint_t op = DIF_INSTR_OP(instr);
9625 9625 uint_t rd = DIF_INSTR_RD(instr);
9626 9626 uint_t r1 = DIF_INSTR_R1(instr);
9627 9627 uint_t nkeys = 0;
9628 9628 uchar_t scope;
9629 9629
9630 9630 dtrace_key_t *key = tupregs;
9631 9631
9632 9632 switch (op) {
9633 9633 case DIF_OP_SETX:
9634 9634 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9635 9635 srd = rd;
9636 9636 continue;
9637 9637
9638 9638 case DIF_OP_STTS:
9639 9639 key = &tupregs[DIF_DTR_NREGS];
9640 9640 key[0].dttk_size = 0;
9641 9641 key[1].dttk_size = 0;
9642 9642 nkeys = 2;
9643 9643 scope = DIFV_SCOPE_THREAD;
9644 9644 break;
9645 9645
9646 9646 case DIF_OP_STGAA:
9647 9647 case DIF_OP_STTAA:
9648 9648 nkeys = ttop;
9649 9649
9650 9650 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9651 9651 key[nkeys++].dttk_size = 0;
9652 9652
9653 9653 key[nkeys++].dttk_size = 0;
9654 9654
9655 9655 if (op == DIF_OP_STTAA) {
9656 9656 scope = DIFV_SCOPE_THREAD;
9657 9657 } else {
9658 9658 scope = DIFV_SCOPE_GLOBAL;
9659 9659 }
9660 9660
9661 9661 break;
9662 9662
9663 9663 case DIF_OP_PUSHTR:
9664 9664 if (ttop == DIF_DTR_NREGS)
9665 9665 return;
9666 9666
9667 9667 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9668 9668 /*
9669 9669 * If the register for the size of the "pushtr"
9670 9670 * is %r0 (or the value is 0) and the type is
9671 9671 * a string, we'll use the system-wide default
9672 9672 * string size.
9673 9673 */
9674 9674 tupregs[ttop++].dttk_size =
9675 9675 dtrace_strsize_default;
9676 9676 } else {
9677 9677 if (srd == 0)
9678 9678 return;
9679 9679
9680 9680 tupregs[ttop++].dttk_size = sval;
9681 9681 }
9682 9682
9683 9683 break;
9684 9684
9685 9685 case DIF_OP_PUSHTV:
9686 9686 if (ttop == DIF_DTR_NREGS)
9687 9687 return;
9688 9688
9689 9689 tupregs[ttop++].dttk_size = 0;
9690 9690 break;
9691 9691
9692 9692 case DIF_OP_FLUSHTS:
9693 9693 ttop = 0;
9694 9694 break;
9695 9695
9696 9696 case DIF_OP_POPTS:
9697 9697 if (ttop != 0)
9698 9698 ttop--;
9699 9699 break;
9700 9700 }
9701 9701
9702 9702 sval = 0;
9703 9703 srd = 0;
9704 9704
9705 9705 if (nkeys == 0)
9706 9706 continue;
9707 9707
9708 9708 /*
9709 9709 * We have a dynamic variable allocation; calculate its size.
9710 9710 */
9711 9711 for (ksize = 0, i = 0; i < nkeys; i++)
9712 9712 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9713 9713
9714 9714 size = sizeof (dtrace_dynvar_t);
9715 9715 size += sizeof (dtrace_key_t) * (nkeys - 1);
9716 9716 size += ksize;
9717 9717
9718 9718 /*
9719 9719 * Now we need to determine the size of the stored data.
9720 9720 */
9721 9721 id = DIF_INSTR_VAR(instr);
9722 9722
9723 9723 for (i = 0; i < dp->dtdo_varlen; i++) {
9724 9724 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9725 9725
9726 9726 if (v->dtdv_id == id && v->dtdv_scope == scope) {
9727 9727 size += v->dtdv_type.dtdt_size;
9728 9728 break;
9729 9729 }
9730 9730 }
9731 9731
9732 9732 if (i == dp->dtdo_varlen)
9733 9733 return;
9734 9734
9735 9735 /*
9736 9736 * We have the size. If this is larger than the chunk size
9737 9737 * for our dynamic variable state, reset the chunk size.
9738 9738 */
9739 9739 size = P2ROUNDUP(size, sizeof (uint64_t));
9740 9740
9741 9741 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9742 9742 vstate->dtvs_dynvars.dtds_chunksize = size;
9743 9743 }
9744 9744 }
9745 9745
9746 9746 static void
9747 9747 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9748 9748 {
9749 9749 int i, oldsvars, osz, nsz, otlocals, ntlocals;
9750 9750 uint_t id;
9751 9751
9752 9752 ASSERT(MUTEX_HELD(&dtrace_lock));
9753 9753 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9754 9754
9755 9755 for (i = 0; i < dp->dtdo_varlen; i++) {
9756 9756 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9757 9757 dtrace_statvar_t *svar, ***svarp;
9758 9758 size_t dsize = 0;
9759 9759 uint8_t scope = v->dtdv_scope;
9760 9760 int *np;
9761 9761
9762 9762 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9763 9763 continue;
9764 9764
9765 9765 id -= DIF_VAR_OTHER_UBASE;
9766 9766
9767 9767 switch (scope) {
9768 9768 case DIFV_SCOPE_THREAD:
9769 9769 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9770 9770 dtrace_difv_t *tlocals;
9771 9771
9772 9772 if ((ntlocals = (otlocals << 1)) == 0)
9773 9773 ntlocals = 1;
9774 9774
9775 9775 osz = otlocals * sizeof (dtrace_difv_t);
9776 9776 nsz = ntlocals * sizeof (dtrace_difv_t);
9777 9777
9778 9778 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9779 9779
9780 9780 if (osz != 0) {
9781 9781 bcopy(vstate->dtvs_tlocals,
9782 9782 tlocals, osz);
9783 9783 kmem_free(vstate->dtvs_tlocals, osz);
9784 9784 }
9785 9785
9786 9786 vstate->dtvs_tlocals = tlocals;
9787 9787 vstate->dtvs_ntlocals = ntlocals;
9788 9788 }
9789 9789
9790 9790 vstate->dtvs_tlocals[id] = *v;
9791 9791 continue;
9792 9792
9793 9793 case DIFV_SCOPE_LOCAL:
9794 9794 np = &vstate->dtvs_nlocals;
9795 9795 svarp = &vstate->dtvs_locals;
9796 9796
9797 9797 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9798 9798 dsize = NCPU * (v->dtdv_type.dtdt_size +
9799 9799 sizeof (uint64_t));
9800 9800 else
9801 9801 dsize = NCPU * sizeof (uint64_t);
9802 9802
9803 9803 break;
9804 9804
9805 9805 case DIFV_SCOPE_GLOBAL:
9806 9806 np = &vstate->dtvs_nglobals;
9807 9807 svarp = &vstate->dtvs_globals;
9808 9808
9809 9809 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9810 9810 dsize = v->dtdv_type.dtdt_size +
9811 9811 sizeof (uint64_t);
9812 9812
9813 9813 break;
9814 9814
9815 9815 default:
9816 9816 ASSERT(0);
9817 9817 }
9818 9818
9819 9819 while (id >= (oldsvars = *np)) {
9820 9820 dtrace_statvar_t **statics;
9821 9821 int newsvars, oldsize, newsize;
9822 9822
9823 9823 if ((newsvars = (oldsvars << 1)) == 0)
9824 9824 newsvars = 1;
9825 9825
9826 9826 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9827 9827 newsize = newsvars * sizeof (dtrace_statvar_t *);
9828 9828
9829 9829 statics = kmem_zalloc(newsize, KM_SLEEP);
9830 9830
9831 9831 if (oldsize != 0) {
9832 9832 bcopy(*svarp, statics, oldsize);
9833 9833 kmem_free(*svarp, oldsize);
9834 9834 }
9835 9835
9836 9836 *svarp = statics;
9837 9837 *np = newsvars;
9838 9838 }
9839 9839
9840 9840 if ((svar = (*svarp)[id]) == NULL) {
9841 9841 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9842 9842 svar->dtsv_var = *v;
9843 9843
9844 9844 if ((svar->dtsv_size = dsize) != 0) {
9845 9845 svar->dtsv_data = (uint64_t)(uintptr_t)
9846 9846 kmem_zalloc(dsize, KM_SLEEP);
9847 9847 }
9848 9848
9849 9849 (*svarp)[id] = svar;
9850 9850 }
9851 9851
9852 9852 svar->dtsv_refcnt++;
9853 9853 }
9854 9854
9855 9855 dtrace_difo_chunksize(dp, vstate);
9856 9856 dtrace_difo_hold(dp);
9857 9857 }
9858 9858
9859 9859 static dtrace_difo_t *
9860 9860 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9861 9861 {
9862 9862 dtrace_difo_t *new;
9863 9863 size_t sz;
9864 9864
9865 9865 ASSERT(dp->dtdo_buf != NULL);
9866 9866 ASSERT(dp->dtdo_refcnt != 0);
9867 9867
9868 9868 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9869 9869
9870 9870 ASSERT(dp->dtdo_buf != NULL);
9871 9871 sz = dp->dtdo_len * sizeof (dif_instr_t);
9872 9872 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9873 9873 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9874 9874 new->dtdo_len = dp->dtdo_len;
9875 9875
9876 9876 if (dp->dtdo_strtab != NULL) {
9877 9877 ASSERT(dp->dtdo_strlen != 0);
9878 9878 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9879 9879 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9880 9880 new->dtdo_strlen = dp->dtdo_strlen;
9881 9881 }
9882 9882
9883 9883 if (dp->dtdo_inttab != NULL) {
9884 9884 ASSERT(dp->dtdo_intlen != 0);
9885 9885 sz = dp->dtdo_intlen * sizeof (uint64_t);
9886 9886 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9887 9887 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9888 9888 new->dtdo_intlen = dp->dtdo_intlen;
9889 9889 }
9890 9890
9891 9891 if (dp->dtdo_vartab != NULL) {
9892 9892 ASSERT(dp->dtdo_varlen != 0);
9893 9893 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9894 9894 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9895 9895 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9896 9896 new->dtdo_varlen = dp->dtdo_varlen;
9897 9897 }
9898 9898
9899 9899 dtrace_difo_init(new, vstate);
9900 9900 return (new);
9901 9901 }
9902 9902
9903 9903 static void
9904 9904 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9905 9905 {
9906 9906 int i;
9907 9907
9908 9908 ASSERT(dp->dtdo_refcnt == 0);
9909 9909
9910 9910 for (i = 0; i < dp->dtdo_varlen; i++) {
9911 9911 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9912 9912 dtrace_statvar_t *svar, **svarp;
9913 9913 uint_t id;
9914 9914 uint8_t scope = v->dtdv_scope;
9915 9915 int *np;
9916 9916
9917 9917 switch (scope) {
9918 9918 case DIFV_SCOPE_THREAD:
9919 9919 continue;
9920 9920
9921 9921 case DIFV_SCOPE_LOCAL:
9922 9922 np = &vstate->dtvs_nlocals;
9923 9923 svarp = vstate->dtvs_locals;
9924 9924 break;
9925 9925
9926 9926 case DIFV_SCOPE_GLOBAL:
9927 9927 np = &vstate->dtvs_nglobals;
9928 9928 svarp = vstate->dtvs_globals;
9929 9929 break;
9930 9930
9931 9931 default:
9932 9932 ASSERT(0);
9933 9933 }
9934 9934
9935 9935 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9936 9936 continue;
9937 9937
9938 9938 id -= DIF_VAR_OTHER_UBASE;
9939 9939 ASSERT(id < *np);
9940 9940
9941 9941 svar = svarp[id];
9942 9942 ASSERT(svar != NULL);
9943 9943 ASSERT(svar->dtsv_refcnt > 0);
9944 9944
9945 9945 if (--svar->dtsv_refcnt > 0)
9946 9946 continue;
9947 9947
9948 9948 if (svar->dtsv_size != 0) {
9949 9949 ASSERT(svar->dtsv_data != NULL);
9950 9950 kmem_free((void *)(uintptr_t)svar->dtsv_data,
9951 9951 svar->dtsv_size);
9952 9952 }
9953 9953
9954 9954 kmem_free(svar, sizeof (dtrace_statvar_t));
9955 9955 svarp[id] = NULL;
9956 9956 }
9957 9957
9958 9958 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9959 9959 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9960 9960 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9961 9961 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9962 9962
9963 9963 kmem_free(dp, sizeof (dtrace_difo_t));
9964 9964 }
9965 9965
9966 9966 static void
9967 9967 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9968 9968 {
9969 9969 int i;
9970 9970
9971 9971 ASSERT(MUTEX_HELD(&dtrace_lock));
9972 9972 ASSERT(dp->dtdo_refcnt != 0);
9973 9973
9974 9974 for (i = 0; i < dp->dtdo_varlen; i++) {
9975 9975 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9976 9976
9977 9977 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9978 9978 continue;
9979 9979
9980 9980 ASSERT(dtrace_vtime_references > 0);
9981 9981 if (--dtrace_vtime_references == 0)
9982 9982 dtrace_vtime_disable();
9983 9983 }
9984 9984
9985 9985 if (--dp->dtdo_refcnt == 0)
9986 9986 dtrace_difo_destroy(dp, vstate);
9987 9987 }
9988 9988
9989 9989 /*
9990 9990 * DTrace Format Functions
9991 9991 */
9992 9992 static uint16_t
9993 9993 dtrace_format_add(dtrace_state_t *state, char *str)
9994 9994 {
9995 9995 char *fmt, **new;
9996 9996 uint16_t ndx, len = strlen(str) + 1;
9997 9997
9998 9998 fmt = kmem_zalloc(len, KM_SLEEP);
9999 9999 bcopy(str, fmt, len);
10000 10000
10001 10001 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10002 10002 if (state->dts_formats[ndx] == NULL) {
10003 10003 state->dts_formats[ndx] = fmt;
10004 10004 return (ndx + 1);
10005 10005 }
10006 10006 }
10007 10007
10008 10008 if (state->dts_nformats == USHRT_MAX) {
10009 10009 /*
10010 10010 * This is only likely if a denial-of-service attack is being
10011 10011 * attempted. As such, it's okay to fail silently here.
10012 10012 */
10013 10013 kmem_free(fmt, len);
10014 10014 return (0);
10015 10015 }
10016 10016
10017 10017 /*
10018 10018 * For simplicity, we always resize the formats array to be exactly the
10019 10019 * number of formats.
10020 10020 */
10021 10021 ndx = state->dts_nformats++;
10022 10022 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10023 10023
10024 10024 if (state->dts_formats != NULL) {
10025 10025 ASSERT(ndx != 0);
10026 10026 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10027 10027 kmem_free(state->dts_formats, ndx * sizeof (char *));
10028 10028 }
10029 10029
10030 10030 state->dts_formats = new;
10031 10031 state->dts_formats[ndx] = fmt;
10032 10032
10033 10033 return (ndx + 1);
10034 10034 }
10035 10035
10036 10036 static void
10037 10037 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10038 10038 {
10039 10039 char *fmt;
10040 10040
10041 10041 ASSERT(state->dts_formats != NULL);
10042 10042 ASSERT(format <= state->dts_nformats);
10043 10043 ASSERT(state->dts_formats[format - 1] != NULL);
10044 10044
10045 10045 fmt = state->dts_formats[format - 1];
10046 10046 kmem_free(fmt, strlen(fmt) + 1);
10047 10047 state->dts_formats[format - 1] = NULL;
10048 10048 }
10049 10049
10050 10050 static void
10051 10051 dtrace_format_destroy(dtrace_state_t *state)
10052 10052 {
10053 10053 int i;
10054 10054
10055 10055 if (state->dts_nformats == 0) {
10056 10056 ASSERT(state->dts_formats == NULL);
10057 10057 return;
10058 10058 }
10059 10059
10060 10060 ASSERT(state->dts_formats != NULL);
10061 10061
10062 10062 for (i = 0; i < state->dts_nformats; i++) {
10063 10063 char *fmt = state->dts_formats[i];
10064 10064
10065 10065 if (fmt == NULL)
10066 10066 continue;
10067 10067
10068 10068 kmem_free(fmt, strlen(fmt) + 1);
10069 10069 }
10070 10070
10071 10071 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10072 10072 state->dts_nformats = 0;
10073 10073 state->dts_formats = NULL;
10074 10074 }
10075 10075
10076 10076 /*
10077 10077 * DTrace Predicate Functions
10078 10078 */
10079 10079 static dtrace_predicate_t *
10080 10080 dtrace_predicate_create(dtrace_difo_t *dp)
10081 10081 {
10082 10082 dtrace_predicate_t *pred;
10083 10083
10084 10084 ASSERT(MUTEX_HELD(&dtrace_lock));
10085 10085 ASSERT(dp->dtdo_refcnt != 0);
10086 10086
10087 10087 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10088 10088 pred->dtp_difo = dp;
10089 10089 pred->dtp_refcnt = 1;
10090 10090
10091 10091 if (!dtrace_difo_cacheable(dp))
10092 10092 return (pred);
10093 10093
10094 10094 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10095 10095 /*
10096 10096 * This is only theoretically possible -- we have had 2^32
10097 10097 * cacheable predicates on this machine. We cannot allow any
10098 10098 * more predicates to become cacheable: as unlikely as it is,
10099 10099 * there may be a thread caching a (now stale) predicate cache
10100 10100 * ID. (N.B.: the temptation is being successfully resisted to
10101 10101 * have this cmn_err() "Holy shit -- we executed this code!")
10102 10102 */
10103 10103 return (pred);
10104 10104 }
10105 10105
10106 10106 pred->dtp_cacheid = dtrace_predcache_id++;
10107 10107
10108 10108 return (pred);
10109 10109 }
10110 10110
10111 10111 static void
10112 10112 dtrace_predicate_hold(dtrace_predicate_t *pred)
10113 10113 {
10114 10114 ASSERT(MUTEX_HELD(&dtrace_lock));
10115 10115 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10116 10116 ASSERT(pred->dtp_refcnt > 0);
10117 10117
10118 10118 pred->dtp_refcnt++;
10119 10119 }
10120 10120
10121 10121 static void
10122 10122 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10123 10123 {
10124 10124 dtrace_difo_t *dp = pred->dtp_difo;
10125 10125
10126 10126 ASSERT(MUTEX_HELD(&dtrace_lock));
10127 10127 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10128 10128 ASSERT(pred->dtp_refcnt > 0);
10129 10129
10130 10130 if (--pred->dtp_refcnt == 0) {
10131 10131 dtrace_difo_release(pred->dtp_difo, vstate);
10132 10132 kmem_free(pred, sizeof (dtrace_predicate_t));
10133 10133 }
10134 10134 }
10135 10135
10136 10136 /*
10137 10137 * DTrace Action Description Functions
10138 10138 */
10139 10139 static dtrace_actdesc_t *
10140 10140 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10141 10141 uint64_t uarg, uint64_t arg)
10142 10142 {
10143 10143 dtrace_actdesc_t *act;
10144 10144
10145 10145 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10146 10146 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10147 10147
10148 10148 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10149 10149 act->dtad_kind = kind;
10150 10150 act->dtad_ntuple = ntuple;
10151 10151 act->dtad_uarg = uarg;
10152 10152 act->dtad_arg = arg;
10153 10153 act->dtad_refcnt = 1;
10154 10154
10155 10155 return (act);
10156 10156 }
10157 10157
10158 10158 static void
10159 10159 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10160 10160 {
10161 10161 ASSERT(act->dtad_refcnt >= 1);
10162 10162 act->dtad_refcnt++;
10163 10163 }
10164 10164
10165 10165 static void
10166 10166 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10167 10167 {
10168 10168 dtrace_actkind_t kind = act->dtad_kind;
10169 10169 dtrace_difo_t *dp;
10170 10170
10171 10171 ASSERT(act->dtad_refcnt >= 1);
10172 10172
10173 10173 if (--act->dtad_refcnt != 0)
10174 10174 return;
10175 10175
10176 10176 if ((dp = act->dtad_difo) != NULL)
10177 10177 dtrace_difo_release(dp, vstate);
10178 10178
10179 10179 if (DTRACEACT_ISPRINTFLIKE(kind)) {
10180 10180 char *str = (char *)(uintptr_t)act->dtad_arg;
10181 10181
10182 10182 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10183 10183 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10184 10184
10185 10185 if (str != NULL)
10186 10186 kmem_free(str, strlen(str) + 1);
10187 10187 }
10188 10188
10189 10189 kmem_free(act, sizeof (dtrace_actdesc_t));
10190 10190 }
10191 10191
10192 10192 /*
10193 10193 * DTrace ECB Functions
10194 10194 */
10195 10195 static dtrace_ecb_t *
10196 10196 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10197 10197 {
10198 10198 dtrace_ecb_t *ecb;
10199 10199 dtrace_epid_t epid;
10200 10200
10201 10201 ASSERT(MUTEX_HELD(&dtrace_lock));
10202 10202
10203 10203 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10204 10204 ecb->dte_predicate = NULL;
10205 10205 ecb->dte_probe = probe;
10206 10206
10207 10207 /*
10208 10208 * The default size is the size of the default action: recording
10209 10209 * the header.
10210 10210 */
10211 10211 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10212 10212 ecb->dte_alignment = sizeof (dtrace_epid_t);
10213 10213
10214 10214 epid = state->dts_epid++;
10215 10215
10216 10216 if (epid - 1 >= state->dts_necbs) {
10217 10217 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10218 10218 int necbs = state->dts_necbs << 1;
10219 10219
10220 10220 ASSERT(epid == state->dts_necbs + 1);
10221 10221
10222 10222 if (necbs == 0) {
10223 10223 ASSERT(oecbs == NULL);
10224 10224 necbs = 1;
10225 10225 }
10226 10226
10227 10227 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10228 10228
10229 10229 if (oecbs != NULL)
10230 10230 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10231 10231
10232 10232 dtrace_membar_producer();
10233 10233 state->dts_ecbs = ecbs;
10234 10234
10235 10235 if (oecbs != NULL) {
10236 10236 /*
10237 10237 * If this state is active, we must dtrace_sync()
10238 10238 * before we can free the old dts_ecbs array: we're
10239 10239 * coming in hot, and there may be active ring
10240 10240 * buffer processing (which indexes into the dts_ecbs
10241 10241 * array) on another CPU.
10242 10242 */
10243 10243 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10244 10244 dtrace_sync();
10245 10245
10246 10246 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10247 10247 }
10248 10248
10249 10249 dtrace_membar_producer();
10250 10250 state->dts_necbs = necbs;
10251 10251 }
10252 10252
10253 10253 ecb->dte_state = state;
10254 10254
10255 10255 ASSERT(state->dts_ecbs[epid - 1] == NULL);
10256 10256 dtrace_membar_producer();
10257 10257 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10258 10258
10259 10259 return (ecb);
10260 10260 }
10261 10261
10262 10262 static int
10263 10263 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10264 10264 {
10265 10265 dtrace_probe_t *probe = ecb->dte_probe;
10266 10266
10267 10267 ASSERT(MUTEX_HELD(&cpu_lock));
10268 10268 ASSERT(MUTEX_HELD(&dtrace_lock));
10269 10269 ASSERT(ecb->dte_next == NULL);
10270 10270
10271 10271 if (probe == NULL) {
10272 10272 /*
10273 10273 * This is the NULL probe -- there's nothing to do.
10274 10274 */
10275 10275 return (0);
10276 10276 }
10277 10277
10278 10278 if (probe->dtpr_ecb == NULL) {
10279 10279 dtrace_provider_t *prov = probe->dtpr_provider;
10280 10280
10281 10281 /*
10282 10282 * We're the first ECB on this probe.
10283 10283 */
10284 10284 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10285 10285
10286 10286 if (ecb->dte_predicate != NULL)
10287 10287 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10288 10288
10289 10289 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10290 10290 probe->dtpr_id, probe->dtpr_arg));
10291 10291 } else {
10292 10292 /*
10293 10293 * This probe is already active. Swing the last pointer to
10294 10294 * point to the new ECB, and issue a dtrace_sync() to assure
10295 10295 * that all CPUs have seen the change.
10296 10296 */
10297 10297 ASSERT(probe->dtpr_ecb_last != NULL);
10298 10298 probe->dtpr_ecb_last->dte_next = ecb;
10299 10299 probe->dtpr_ecb_last = ecb;
10300 10300 probe->dtpr_predcache = 0;
10301 10301
10302 10302 dtrace_sync();
10303 10303 return (0);
10304 10304 }
10305 10305 }
10306 10306
10307 10307 static void
10308 10308 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10309 10309 {
10310 10310 dtrace_action_t *act;
10311 10311 uint32_t curneeded = UINT32_MAX;
10312 10312 uint32_t aggbase = UINT32_MAX;
10313 10313
10314 10314 /*
10315 10315 * If we record anything, we always record the dtrace_rechdr_t. (And
10316 10316 * we always record it first.)
10317 10317 */
10318 10318 ecb->dte_size = sizeof (dtrace_rechdr_t);
10319 10319 ecb->dte_alignment = sizeof (dtrace_epid_t);
10320 10320
10321 10321 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10322 10322 dtrace_recdesc_t *rec = &act->dta_rec;
10323 10323 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10324 10324
10325 10325 ecb->dte_alignment = MAX(ecb->dte_alignment,
10326 10326 rec->dtrd_alignment);
10327 10327
10328 10328 if (DTRACEACT_ISAGG(act->dta_kind)) {
10329 10329 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10330 10330
10331 10331 ASSERT(rec->dtrd_size != 0);
10332 10332 ASSERT(agg->dtag_first != NULL);
10333 10333 ASSERT(act->dta_prev->dta_intuple);
10334 10334 ASSERT(aggbase != UINT32_MAX);
10335 10335 ASSERT(curneeded != UINT32_MAX);
10336 10336
10337 10337 agg->dtag_base = aggbase;
10338 10338
10339 10339 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10340 10340 rec->dtrd_offset = curneeded;
10341 10341 curneeded += rec->dtrd_size;
10342 10342 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10343 10343
10344 10344 aggbase = UINT32_MAX;
10345 10345 curneeded = UINT32_MAX;
10346 10346 } else if (act->dta_intuple) {
10347 10347 if (curneeded == UINT32_MAX) {
10348 10348 /*
10349 10349 * This is the first record in a tuple. Align
10350 10350 * curneeded to be at offset 4 in an 8-byte
10351 10351 * aligned block.
10352 10352 */
10353 10353 ASSERT(act->dta_prev == NULL ||
10354 10354 !act->dta_prev->dta_intuple);
10355 10355 ASSERT3U(aggbase, ==, UINT32_MAX);
10356 10356 curneeded = P2PHASEUP(ecb->dte_size,
10357 10357 sizeof (uint64_t), sizeof (dtrace_aggid_t));
10358 10358
10359 10359 aggbase = curneeded - sizeof (dtrace_aggid_t);
10360 10360 ASSERT(IS_P2ALIGNED(aggbase,
10361 10361 sizeof (uint64_t)));
10362 10362 }
10363 10363 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10364 10364 rec->dtrd_offset = curneeded;
10365 10365 curneeded += rec->dtrd_size;
10366 10366 } else {
10367 10367 /* tuples must be followed by an aggregation */
10368 10368 ASSERT(act->dta_prev == NULL ||
10369 10369 !act->dta_prev->dta_intuple);
10370 10370
10371 10371 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10372 10372 rec->dtrd_alignment);
10373 10373 rec->dtrd_offset = ecb->dte_size;
10374 10374 ecb->dte_size += rec->dtrd_size;
10375 10375 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10376 10376 }
10377 10377 }
10378 10378
10379 10379 if ((act = ecb->dte_action) != NULL &&
10380 10380 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10381 10381 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10382 10382 /*
10383 10383 * If the size is still sizeof (dtrace_rechdr_t), then all
10384 10384 * actions store no data; set the size to 0.
10385 10385 */
10386 10386 ecb->dte_size = 0;
10387 10387 }
10388 10388
10389 10389 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10390 10390 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10391 10391 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10392 10392 ecb->dte_needed);
10393 10393 }
10394 10394
10395 10395 static dtrace_action_t *
10396 10396 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10397 10397 {
10398 10398 dtrace_aggregation_t *agg;
10399 10399 size_t size = sizeof (uint64_t);
10400 10400 int ntuple = desc->dtad_ntuple;
10401 10401 dtrace_action_t *act;
10402 10402 dtrace_recdesc_t *frec;
10403 10403 dtrace_aggid_t aggid;
10404 10404 dtrace_state_t *state = ecb->dte_state;
10405 10405
10406 10406 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10407 10407 agg->dtag_ecb = ecb;
10408 10408
10409 10409 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10410 10410
10411 10411 switch (desc->dtad_kind) {
10412 10412 case DTRACEAGG_MIN:
10413 10413 agg->dtag_initial = INT64_MAX;
10414 10414 agg->dtag_aggregate = dtrace_aggregate_min;
10415 10415 break;
10416 10416
10417 10417 case DTRACEAGG_MAX:
10418 10418 agg->dtag_initial = INT64_MIN;
10419 10419 agg->dtag_aggregate = dtrace_aggregate_max;
10420 10420 break;
10421 10421
10422 10422 case DTRACEAGG_COUNT:
10423 10423 agg->dtag_aggregate = dtrace_aggregate_count;
10424 10424 break;
10425 10425
10426 10426 case DTRACEAGG_QUANTIZE:
10427 10427 agg->dtag_aggregate = dtrace_aggregate_quantize;
10428 10428 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10429 10429 sizeof (uint64_t);
10430 10430 break;
10431 10431
10432 10432 case DTRACEAGG_LQUANTIZE: {
10433 10433 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10434 10434 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10435 10435
10436 10436 agg->dtag_initial = desc->dtad_arg;
10437 10437 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10438 10438
10439 10439 if (step == 0 || levels == 0)
10440 10440 goto err;
10441 10441
10442 10442 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10443 10443 break;
10444 10444 }
10445 10445
10446 10446 case DTRACEAGG_LLQUANTIZE: {
10447 10447 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10448 10448 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10449 10449 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10450 10450 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10451 10451 int64_t v;
10452 10452
10453 10453 agg->dtag_initial = desc->dtad_arg;
10454 10454 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10455 10455
10456 10456 if (factor < 2 || low >= high || nsteps < factor)
10457 10457 goto err;
10458 10458
10459 10459 /*
10460 10460 * Now check that the number of steps evenly divides a power
10461 10461 * of the factor. (This assures both integer bucket size and
10462 10462 * linearity within each magnitude.)
10463 10463 */
10464 10464 for (v = factor; v < nsteps; v *= factor)
10465 10465 continue;
10466 10466
10467 10467 if ((v % nsteps) || (nsteps % factor))
10468 10468 goto err;
10469 10469
10470 10470 size = (dtrace_aggregate_llquantize_bucket(factor,
10471 10471 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10472 10472 break;
10473 10473 }
10474 10474
10475 10475 case DTRACEAGG_AVG:
10476 10476 agg->dtag_aggregate = dtrace_aggregate_avg;
10477 10477 size = sizeof (uint64_t) * 2;
10478 10478 break;
10479 10479
10480 10480 case DTRACEAGG_STDDEV:
10481 10481 agg->dtag_aggregate = dtrace_aggregate_stddev;
10482 10482 size = sizeof (uint64_t) * 4;
10483 10483 break;
10484 10484
10485 10485 case DTRACEAGG_SUM:
10486 10486 agg->dtag_aggregate = dtrace_aggregate_sum;
10487 10487 break;
10488 10488
10489 10489 default:
10490 10490 goto err;
10491 10491 }
10492 10492
10493 10493 agg->dtag_action.dta_rec.dtrd_size = size;
10494 10494
10495 10495 if (ntuple == 0)
10496 10496 goto err;
10497 10497
10498 10498 /*
10499 10499 * We must make sure that we have enough actions for the n-tuple.
10500 10500 */
10501 10501 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10502 10502 if (DTRACEACT_ISAGG(act->dta_kind))
10503 10503 break;
10504 10504
10505 10505 if (--ntuple == 0) {
10506 10506 /*
10507 10507 * This is the action with which our n-tuple begins.
10508 10508 */
10509 10509 agg->dtag_first = act;
10510 10510 goto success;
10511 10511 }
10512 10512 }
10513 10513
10514 10514 /*
10515 10515 * This n-tuple is short by ntuple elements. Return failure.
10516 10516 */
10517 10517 ASSERT(ntuple != 0);
10518 10518 err:
10519 10519 kmem_free(agg, sizeof (dtrace_aggregation_t));
10520 10520 return (NULL);
10521 10521
10522 10522 success:
10523 10523 /*
10524 10524 * If the last action in the tuple has a size of zero, it's actually
10525 10525 * an expression argument for the aggregating action.
10526 10526 */
10527 10527 ASSERT(ecb->dte_action_last != NULL);
10528 10528 act = ecb->dte_action_last;
10529 10529
10530 10530 if (act->dta_kind == DTRACEACT_DIFEXPR) {
10531 10531 ASSERT(act->dta_difo != NULL);
10532 10532
10533 10533 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10534 10534 agg->dtag_hasarg = 1;
10535 10535 }
10536 10536
10537 10537 /*
10538 10538 * We need to allocate an id for this aggregation.
10539 10539 */
10540 10540 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10541 10541 VM_BESTFIT | VM_SLEEP);
10542 10542
10543 10543 if (aggid - 1 >= state->dts_naggregations) {
10544 10544 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10545 10545 dtrace_aggregation_t **aggs;
10546 10546 int naggs = state->dts_naggregations << 1;
10547 10547 int onaggs = state->dts_naggregations;
10548 10548
10549 10549 ASSERT(aggid == state->dts_naggregations + 1);
10550 10550
10551 10551 if (naggs == 0) {
10552 10552 ASSERT(oaggs == NULL);
10553 10553 naggs = 1;
10554 10554 }
10555 10555
10556 10556 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10557 10557
10558 10558 if (oaggs != NULL) {
10559 10559 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10560 10560 kmem_free(oaggs, onaggs * sizeof (*aggs));
10561 10561 }
10562 10562
10563 10563 state->dts_aggregations = aggs;
10564 10564 state->dts_naggregations = naggs;
10565 10565 }
10566 10566
10567 10567 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10568 10568 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10569 10569
10570 10570 frec = &agg->dtag_first->dta_rec;
10571 10571 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10572 10572 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10573 10573
10574 10574 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10575 10575 ASSERT(!act->dta_intuple);
10576 10576 act->dta_intuple = 1;
10577 10577 }
10578 10578
10579 10579 return (&agg->dtag_action);
10580 10580 }
10581 10581
10582 10582 static void
10583 10583 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10584 10584 {
10585 10585 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10586 10586 dtrace_state_t *state = ecb->dte_state;
10587 10587 dtrace_aggid_t aggid = agg->dtag_id;
10588 10588
10589 10589 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10590 10590 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10591 10591
10592 10592 ASSERT(state->dts_aggregations[aggid - 1] == agg);
10593 10593 state->dts_aggregations[aggid - 1] = NULL;
10594 10594
10595 10595 kmem_free(agg, sizeof (dtrace_aggregation_t));
10596 10596 }
10597 10597
10598 10598 static int
10599 10599 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10600 10600 {
10601 10601 dtrace_action_t *action, *last;
10602 10602 dtrace_difo_t *dp = desc->dtad_difo;
10603 10603 uint32_t size = 0, align = sizeof (uint8_t), mask;
10604 10604 uint16_t format = 0;
10605 10605 dtrace_recdesc_t *rec;
10606 10606 dtrace_state_t *state = ecb->dte_state;
10607 10607 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10608 10608 uint64_t arg = desc->dtad_arg;
10609 10609
10610 10610 ASSERT(MUTEX_HELD(&dtrace_lock));
10611 10611 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10612 10612
10613 10613 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10614 10614 /*
10615 10615 * If this is an aggregating action, there must be neither
10616 10616 * a speculate nor a commit on the action chain.
10617 10617 */
10618 10618 dtrace_action_t *act;
10619 10619
10620 10620 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10621 10621 if (act->dta_kind == DTRACEACT_COMMIT)
10622 10622 return (EINVAL);
10623 10623
10624 10624 if (act->dta_kind == DTRACEACT_SPECULATE)
10625 10625 return (EINVAL);
10626 10626 }
10627 10627
10628 10628 action = dtrace_ecb_aggregation_create(ecb, desc);
10629 10629
10630 10630 if (action == NULL)
10631 10631 return (EINVAL);
10632 10632 } else {
10633 10633 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10634 10634 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10635 10635 dp != NULL && dp->dtdo_destructive)) {
10636 10636 state->dts_destructive = 1;
10637 10637 }
10638 10638
10639 10639 switch (desc->dtad_kind) {
10640 10640 case DTRACEACT_PRINTF:
10641 10641 case DTRACEACT_PRINTA:
10642 10642 case DTRACEACT_SYSTEM:
10643 10643 case DTRACEACT_FREOPEN:
10644 10644 case DTRACEACT_DIFEXPR:
10645 10645 /*
10646 10646 * We know that our arg is a string -- turn it into a
10647 10647 * format.
10648 10648 */
10649 10649 if (arg == NULL) {
10650 10650 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10651 10651 desc->dtad_kind == DTRACEACT_DIFEXPR);
10652 10652 format = 0;
10653 10653 } else {
10654 10654 ASSERT(arg != NULL);
10655 10655 ASSERT(arg > KERNELBASE);
10656 10656 format = dtrace_format_add(state,
10657 10657 (char *)(uintptr_t)arg);
10658 10658 }
10659 10659
10660 10660 /*FALLTHROUGH*/
10661 10661 case DTRACEACT_LIBACT:
10662 10662 case DTRACEACT_TRACEMEM:
10663 10663 case DTRACEACT_TRACEMEM_DYNSIZE:
10664 10664 if (dp == NULL)
10665 10665 return (EINVAL);
10666 10666
10667 10667 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10668 10668 break;
10669 10669
10670 10670 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10671 10671 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10672 10672 return (EINVAL);
10673 10673
10674 10674 size = opt[DTRACEOPT_STRSIZE];
10675 10675 }
10676 10676
10677 10677 break;
10678 10678
10679 10679 case DTRACEACT_STACK:
10680 10680 if ((nframes = arg) == 0) {
10681 10681 nframes = opt[DTRACEOPT_STACKFRAMES];
10682 10682 ASSERT(nframes > 0);
10683 10683 arg = nframes;
10684 10684 }
10685 10685
10686 10686 size = nframes * sizeof (pc_t);
10687 10687 break;
10688 10688
10689 10689 case DTRACEACT_JSTACK:
10690 10690 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10691 10691 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10692 10692
10693 10693 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10694 10694 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10695 10695
10696 10696 arg = DTRACE_USTACK_ARG(nframes, strsize);
10697 10697
10698 10698 /*FALLTHROUGH*/
10699 10699 case DTRACEACT_USTACK:
10700 10700 if (desc->dtad_kind != DTRACEACT_JSTACK &&
10701 10701 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10702 10702 strsize = DTRACE_USTACK_STRSIZE(arg);
10703 10703 nframes = opt[DTRACEOPT_USTACKFRAMES];
10704 10704 ASSERT(nframes > 0);
10705 10705 arg = DTRACE_USTACK_ARG(nframes, strsize);
10706 10706 }
10707 10707
10708 10708 /*
10709 10709 * Save a slot for the pid.
10710 10710 */
10711 10711 size = (nframes + 1) * sizeof (uint64_t);
10712 10712 size += DTRACE_USTACK_STRSIZE(arg);
10713 10713 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10714 10714
10715 10715 break;
10716 10716
10717 10717 case DTRACEACT_SYM:
10718 10718 case DTRACEACT_MOD:
10719 10719 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10720 10720 sizeof (uint64_t)) ||
10721 10721 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10722 10722 return (EINVAL);
10723 10723 break;
10724 10724
10725 10725 case DTRACEACT_USYM:
10726 10726 case DTRACEACT_UMOD:
10727 10727 case DTRACEACT_UADDR:
10728 10728 if (dp == NULL ||
10729 10729 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10730 10730 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10731 10731 return (EINVAL);
10732 10732
10733 10733 /*
10734 10734 * We have a slot for the pid, plus a slot for the
10735 10735 * argument. To keep things simple (aligned with
10736 10736 * bitness-neutral sizing), we store each as a 64-bit
10737 10737 * quantity.
10738 10738 */
10739 10739 size = 2 * sizeof (uint64_t);
10740 10740 break;
10741 10741
10742 10742 case DTRACEACT_STOP:
10743 10743 case DTRACEACT_BREAKPOINT:
10744 10744 case DTRACEACT_PANIC:
10745 10745 break;
10746 10746
10747 10747 case DTRACEACT_CHILL:
10748 10748 case DTRACEACT_DISCARD:
10749 10749 case DTRACEACT_RAISE:
10750 10750 if (dp == NULL)
10751 10751 return (EINVAL);
10752 10752 break;
10753 10753
10754 10754 case DTRACEACT_EXIT:
10755 10755 if (dp == NULL ||
10756 10756 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10757 10757 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10758 10758 return (EINVAL);
10759 10759 break;
10760 10760
10761 10761 case DTRACEACT_SPECULATE:
10762 10762 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10763 10763 return (EINVAL);
10764 10764
10765 10765 if (dp == NULL)
10766 10766 return (EINVAL);
10767 10767
10768 10768 state->dts_speculates = 1;
10769 10769 break;
10770 10770
10771 10771 case DTRACEACT_COMMIT: {
10772 10772 dtrace_action_t *act = ecb->dte_action;
10773 10773
10774 10774 for (; act != NULL; act = act->dta_next) {
10775 10775 if (act->dta_kind == DTRACEACT_COMMIT)
10776 10776 return (EINVAL);
10777 10777 }
10778 10778
10779 10779 if (dp == NULL)
10780 10780 return (EINVAL);
10781 10781 break;
10782 10782 }
10783 10783
10784 10784 default:
10785 10785 return (EINVAL);
10786 10786 }
10787 10787
10788 10788 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10789 10789 /*
10790 10790 * If this is a data-storing action or a speculate,
10791 10791 * we must be sure that there isn't a commit on the
10792 10792 * action chain.
10793 10793 */
10794 10794 dtrace_action_t *act = ecb->dte_action;
10795 10795
10796 10796 for (; act != NULL; act = act->dta_next) {
10797 10797 if (act->dta_kind == DTRACEACT_COMMIT)
10798 10798 return (EINVAL);
10799 10799 }
10800 10800 }
10801 10801
10802 10802 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10803 10803 action->dta_rec.dtrd_size = size;
10804 10804 }
10805 10805
10806 10806 action->dta_refcnt = 1;
10807 10807 rec = &action->dta_rec;
10808 10808 size = rec->dtrd_size;
10809 10809
10810 10810 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10811 10811 if (!(size & mask)) {
10812 10812 align = mask + 1;
10813 10813 break;
10814 10814 }
10815 10815 }
10816 10816
10817 10817 action->dta_kind = desc->dtad_kind;
10818 10818
10819 10819 if ((action->dta_difo = dp) != NULL)
10820 10820 dtrace_difo_hold(dp);
10821 10821
10822 10822 rec->dtrd_action = action->dta_kind;
10823 10823 rec->dtrd_arg = arg;
10824 10824 rec->dtrd_uarg = desc->dtad_uarg;
10825 10825 rec->dtrd_alignment = (uint16_t)align;
10826 10826 rec->dtrd_format = format;
10827 10827
10828 10828 if ((last = ecb->dte_action_last) != NULL) {
10829 10829 ASSERT(ecb->dte_action != NULL);
10830 10830 action->dta_prev = last;
10831 10831 last->dta_next = action;
10832 10832 } else {
10833 10833 ASSERT(ecb->dte_action == NULL);
10834 10834 ecb->dte_action = action;
10835 10835 }
10836 10836
10837 10837 ecb->dte_action_last = action;
10838 10838
10839 10839 return (0);
10840 10840 }
10841 10841
10842 10842 static void
10843 10843 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10844 10844 {
10845 10845 dtrace_action_t *act = ecb->dte_action, *next;
10846 10846 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10847 10847 dtrace_difo_t *dp;
10848 10848 uint16_t format;
10849 10849
10850 10850 if (act != NULL && act->dta_refcnt > 1) {
10851 10851 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10852 10852 act->dta_refcnt--;
10853 10853 } else {
10854 10854 for (; act != NULL; act = next) {
10855 10855 next = act->dta_next;
10856 10856 ASSERT(next != NULL || act == ecb->dte_action_last);
10857 10857 ASSERT(act->dta_refcnt == 1);
10858 10858
10859 10859 if ((format = act->dta_rec.dtrd_format) != 0)
10860 10860 dtrace_format_remove(ecb->dte_state, format);
10861 10861
10862 10862 if ((dp = act->dta_difo) != NULL)
10863 10863 dtrace_difo_release(dp, vstate);
10864 10864
10865 10865 if (DTRACEACT_ISAGG(act->dta_kind)) {
10866 10866 dtrace_ecb_aggregation_destroy(ecb, act);
10867 10867 } else {
10868 10868 kmem_free(act, sizeof (dtrace_action_t));
10869 10869 }
10870 10870 }
10871 10871 }
10872 10872
10873 10873 ecb->dte_action = NULL;
10874 10874 ecb->dte_action_last = NULL;
10875 10875 ecb->dte_size = 0;
10876 10876 }
10877 10877
10878 10878 static void
10879 10879 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10880 10880 {
10881 10881 /*
10882 10882 * We disable the ECB by removing it from its probe.
10883 10883 */
10884 10884 dtrace_ecb_t *pecb, *prev = NULL;
10885 10885 dtrace_probe_t *probe = ecb->dte_probe;
10886 10886
10887 10887 ASSERT(MUTEX_HELD(&dtrace_lock));
10888 10888
10889 10889 if (probe == NULL) {
10890 10890 /*
10891 10891 * This is the NULL probe; there is nothing to disable.
10892 10892 */
10893 10893 return;
10894 10894 }
10895 10895
10896 10896 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10897 10897 if (pecb == ecb)
10898 10898 break;
10899 10899 prev = pecb;
10900 10900 }
10901 10901
10902 10902 ASSERT(pecb != NULL);
10903 10903
10904 10904 if (prev == NULL) {
10905 10905 probe->dtpr_ecb = ecb->dte_next;
10906 10906 } else {
10907 10907 prev->dte_next = ecb->dte_next;
10908 10908 }
10909 10909
10910 10910 if (ecb == probe->dtpr_ecb_last) {
10911 10911 ASSERT(ecb->dte_next == NULL);
10912 10912 probe->dtpr_ecb_last = prev;
10913 10913 }
10914 10914
10915 10915 /*
10916 10916 * The ECB has been disconnected from the probe; now sync to assure
10917 10917 * that all CPUs have seen the change before returning.
10918 10918 */
10919 10919 dtrace_sync();
10920 10920
10921 10921 if (probe->dtpr_ecb == NULL) {
10922 10922 /*
10923 10923 * That was the last ECB on the probe; clear the predicate
10924 10924 * cache ID for the probe, disable it and sync one more time
10925 10925 * to assure that we'll never hit it again.
10926 10926 */
10927 10927 dtrace_provider_t *prov = probe->dtpr_provider;
10928 10928
10929 10929 ASSERT(ecb->dte_next == NULL);
10930 10930 ASSERT(probe->dtpr_ecb_last == NULL);
10931 10931 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10932 10932 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10933 10933 probe->dtpr_id, probe->dtpr_arg);
10934 10934 dtrace_sync();
10935 10935 } else {
10936 10936 /*
10937 10937 * There is at least one ECB remaining on the probe. If there
10938 10938 * is _exactly_ one, set the probe's predicate cache ID to be
10939 10939 * the predicate cache ID of the remaining ECB.
10940 10940 */
10941 10941 ASSERT(probe->dtpr_ecb_last != NULL);
10942 10942 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10943 10943
10944 10944 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10945 10945 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10946 10946
10947 10947 ASSERT(probe->dtpr_ecb->dte_next == NULL);
10948 10948
10949 10949 if (p != NULL)
10950 10950 probe->dtpr_predcache = p->dtp_cacheid;
10951 10951 }
10952 10952
10953 10953 ecb->dte_next = NULL;
10954 10954 }
10955 10955 }
10956 10956
10957 10957 static void
10958 10958 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10959 10959 {
10960 10960 dtrace_state_t *state = ecb->dte_state;
10961 10961 dtrace_vstate_t *vstate = &state->dts_vstate;
10962 10962 dtrace_predicate_t *pred;
10963 10963 dtrace_epid_t epid = ecb->dte_epid;
10964 10964
10965 10965 ASSERT(MUTEX_HELD(&dtrace_lock));
10966 10966 ASSERT(ecb->dte_next == NULL);
10967 10967 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10968 10968
10969 10969 if ((pred = ecb->dte_predicate) != NULL)
10970 10970 dtrace_predicate_release(pred, vstate);
10971 10971
10972 10972 dtrace_ecb_action_remove(ecb);
10973 10973
10974 10974 ASSERT(state->dts_ecbs[epid - 1] == ecb);
10975 10975 state->dts_ecbs[epid - 1] = NULL;
10976 10976
10977 10977 kmem_free(ecb, sizeof (dtrace_ecb_t));
10978 10978 }
10979 10979
10980 10980 static dtrace_ecb_t *
10981 10981 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10982 10982 dtrace_enabling_t *enab)
10983 10983 {
10984 10984 dtrace_ecb_t *ecb;
10985 10985 dtrace_predicate_t *pred;
10986 10986 dtrace_actdesc_t *act;
10987 10987 dtrace_provider_t *prov;
10988 10988 dtrace_ecbdesc_t *desc = enab->dten_current;
10989 10989
10990 10990 ASSERT(MUTEX_HELD(&dtrace_lock));
10991 10991 ASSERT(state != NULL);
10992 10992
10993 10993 ecb = dtrace_ecb_add(state, probe);
10994 10994 ecb->dte_uarg = desc->dted_uarg;
10995 10995
10996 10996 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10997 10997 dtrace_predicate_hold(pred);
10998 10998 ecb->dte_predicate = pred;
10999 10999 }
11000 11000
11001 11001 if (probe != NULL) {
11002 11002 /*
11003 11003 * If the provider shows more leg than the consumer is old
11004 11004 * enough to see, we need to enable the appropriate implicit
11005 11005 * predicate bits to prevent the ecb from activating at
11006 11006 * revealing times.
11007 11007 *
11008 11008 * Providers specifying DTRACE_PRIV_USER at register time
11009 11009 * are stating that they need the /proc-style privilege
11010 11010 * model to be enforced, and this is what DTRACE_COND_OWNER
11011 11011 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11012 11012 */
11013 11013 prov = probe->dtpr_provider;
11014 11014 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11015 11015 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11016 11016 ecb->dte_cond |= DTRACE_COND_OWNER;
11017 11017
11018 11018 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11019 11019 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11020 11020 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11021 11021
11022 11022 /*
11023 11023 * If the provider shows us kernel innards and the user
11024 11024 * is lacking sufficient privilege, enable the
11025 11025 * DTRACE_COND_USERMODE implicit predicate.
11026 11026 */
11027 11027 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11028 11028 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11029 11029 ecb->dte_cond |= DTRACE_COND_USERMODE;
11030 11030 }
11031 11031
11032 11032 if (dtrace_ecb_create_cache != NULL) {
11033 11033 /*
11034 11034 * If we have a cached ecb, we'll use its action list instead
11035 11035 * of creating our own (saving both time and space).
11036 11036 */
11037 11037 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11038 11038 dtrace_action_t *act = cached->dte_action;
11039 11039
11040 11040 if (act != NULL) {
11041 11041 ASSERT(act->dta_refcnt > 0);
11042 11042 act->dta_refcnt++;
11043 11043 ecb->dte_action = act;
11044 11044 ecb->dte_action_last = cached->dte_action_last;
11045 11045 ecb->dte_needed = cached->dte_needed;
11046 11046 ecb->dte_size = cached->dte_size;
11047 11047 ecb->dte_alignment = cached->dte_alignment;
11048 11048 }
11049 11049
11050 11050 return (ecb);
11051 11051 }
11052 11052
11053 11053 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11054 11054 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11055 11055 dtrace_ecb_destroy(ecb);
11056 11056 return (NULL);
11057 11057 }
11058 11058 }
11059 11059
11060 11060 dtrace_ecb_resize(ecb);
11061 11061
11062 11062 return (dtrace_ecb_create_cache = ecb);
11063 11063 }
11064 11064
11065 11065 static int
11066 11066 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11067 11067 {
11068 11068 dtrace_ecb_t *ecb;
11069 11069 dtrace_enabling_t *enab = arg;
11070 11070 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11071 11071
11072 11072 ASSERT(state != NULL);
11073 11073
11074 11074 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11075 11075 /*
11076 11076 * This probe was created in a generation for which this
11077 11077 * enabling has previously created ECBs; we don't want to
11078 11078 * enable it again, so just kick out.
11079 11079 */
11080 11080 return (DTRACE_MATCH_NEXT);
11081 11081 }
11082 11082
11083 11083 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11084 11084 return (DTRACE_MATCH_DONE);
11085 11085
11086 11086 if (dtrace_ecb_enable(ecb) < 0)
11087 11087 return (DTRACE_MATCH_FAIL);
11088 11088
11089 11089 return (DTRACE_MATCH_NEXT);
11090 11090 }
11091 11091
11092 11092 static dtrace_ecb_t *
11093 11093 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11094 11094 {
11095 11095 dtrace_ecb_t *ecb;
11096 11096
11097 11097 ASSERT(MUTEX_HELD(&dtrace_lock));
11098 11098
11099 11099 if (id == 0 || id > state->dts_necbs)
11100 11100 return (NULL);
11101 11101
11102 11102 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11103 11103 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11104 11104
11105 11105 return (state->dts_ecbs[id - 1]);
11106 11106 }
11107 11107
11108 11108 static dtrace_aggregation_t *
11109 11109 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11110 11110 {
11111 11111 dtrace_aggregation_t *agg;
11112 11112
11113 11113 ASSERT(MUTEX_HELD(&dtrace_lock));
11114 11114
11115 11115 if (id == 0 || id > state->dts_naggregations)
11116 11116 return (NULL);
11117 11117
11118 11118 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11119 11119 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11120 11120 agg->dtag_id == id);
11121 11121
11122 11122 return (state->dts_aggregations[id - 1]);
11123 11123 }
11124 11124
11125 11125 /*
11126 11126 * DTrace Buffer Functions
11127 11127 *
11128 11128 * The following functions manipulate DTrace buffers. Most of these functions
11129 11129 * are called in the context of establishing or processing consumer state;
11130 11130 * exceptions are explicitly noted.
11131 11131 */
11132 11132
11133 11133 /*
11134 11134 * Note: called from cross call context. This function switches the two
11135 11135 * buffers on a given CPU. The atomicity of this operation is assured by
11136 11136 * disabling interrupts while the actual switch takes place; the disabling of
11137 11137 * interrupts serializes the execution with any execution of dtrace_probe() on
11138 11138 * the same CPU.
11139 11139 */
11140 11140 static void
11141 11141 dtrace_buffer_switch(dtrace_buffer_t *buf)
11142 11142 {
11143 11143 caddr_t tomax = buf->dtb_tomax;
11144 11144 caddr_t xamot = buf->dtb_xamot;
11145 11145 dtrace_icookie_t cookie;
11146 11146 hrtime_t now;
11147 11147
11148 11148 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11149 11149 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11150 11150
11151 11151 cookie = dtrace_interrupt_disable();
11152 11152 now = dtrace_gethrtime();
11153 11153 buf->dtb_tomax = xamot;
11154 11154 buf->dtb_xamot = tomax;
11155 11155 buf->dtb_xamot_drops = buf->dtb_drops;
11156 11156 buf->dtb_xamot_offset = buf->dtb_offset;
11157 11157 buf->dtb_xamot_errors = buf->dtb_errors;
11158 11158 buf->dtb_xamot_flags = buf->dtb_flags;
11159 11159 buf->dtb_offset = 0;
11160 11160 buf->dtb_drops = 0;
11161 11161 buf->dtb_errors = 0;
11162 11162 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11163 11163 buf->dtb_interval = now - buf->dtb_switched;
11164 11164 buf->dtb_switched = now;
11165 11165 dtrace_interrupt_enable(cookie);
11166 11166 }
11167 11167
11168 11168 /*
11169 11169 * Note: called from cross call context. This function activates a buffer
11170 11170 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11171 11171 * is guaranteed by the disabling of interrupts.
11172 11172 */
11173 11173 static void
11174 11174 dtrace_buffer_activate(dtrace_state_t *state)
11175 11175 {
11176 11176 dtrace_buffer_t *buf;
11177 11177 dtrace_icookie_t cookie = dtrace_interrupt_disable();
11178 11178
11179 11179 buf = &state->dts_buffer[CPU->cpu_id];
11180 11180
11181 11181 if (buf->dtb_tomax != NULL) {
11182 11182 /*
11183 11183 * We might like to assert that the buffer is marked inactive,
11184 11184 * but this isn't necessarily true: the buffer for the CPU
11185 11185 * that processes the BEGIN probe has its buffer activated
11186 11186 * manually. In this case, we take the (harmless) action
11187 11187 * re-clearing the bit INACTIVE bit.
11188 11188 */
11189 11189 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11190 11190 }
11191 11191
11192 11192 dtrace_interrupt_enable(cookie);
11193 11193 }
11194 11194
11195 11195 static int
11196 11196 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11197 11197 processorid_t cpu, int *factor)
11198 11198 {
11199 11199 cpu_t *cp;
11200 11200 dtrace_buffer_t *buf;
11201 11201 int allocated = 0, desired = 0;
11202 11202
11203 11203 ASSERT(MUTEX_HELD(&cpu_lock));
11204 11204 ASSERT(MUTEX_HELD(&dtrace_lock));
11205 11205
11206 11206 *factor = 1;
11207 11207
11208 11208 if (size > dtrace_nonroot_maxsize &&
11209 11209 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11210 11210 return (EFBIG);
11211 11211
11212 11212 cp = cpu_list;
11213 11213
11214 11214 do {
11215 11215 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11216 11216 continue;
11217 11217
11218 11218 buf = &bufs[cp->cpu_id];
11219 11219
11220 11220 /*
11221 11221 * If there is already a buffer allocated for this CPU, it
11222 11222 * is only possible that this is a DR event. In this case,
11223 11223 * the buffer size must match our specified size.
11224 11224 */
11225 11225 if (buf->dtb_tomax != NULL) {
11226 11226 ASSERT(buf->dtb_size == size);
11227 11227 continue;
11228 11228 }
11229 11229
11230 11230 ASSERT(buf->dtb_xamot == NULL);
11231 11231
11232 11232 if ((buf->dtb_tomax = kmem_zalloc(size,
11233 11233 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11234 11234 goto err;
11235 11235
11236 11236 buf->dtb_size = size;
11237 11237 buf->dtb_flags = flags;
11238 11238 buf->dtb_offset = 0;
11239 11239 buf->dtb_drops = 0;
11240 11240
11241 11241 if (flags & DTRACEBUF_NOSWITCH)
11242 11242 continue;
11243 11243
11244 11244 if ((buf->dtb_xamot = kmem_zalloc(size,
11245 11245 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11246 11246 goto err;
11247 11247 } while ((cp = cp->cpu_next) != cpu_list);
11248 11248
11249 11249 return (0);
11250 11250
11251 11251 err:
11252 11252 cp = cpu_list;
11253 11253
11254 11254 do {
11255 11255 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11256 11256 continue;
11257 11257
11258 11258 buf = &bufs[cp->cpu_id];
11259 11259 desired += 2;
11260 11260
11261 11261 if (buf->dtb_xamot != NULL) {
11262 11262 ASSERT(buf->dtb_tomax != NULL);
11263 11263 ASSERT(buf->dtb_size == size);
11264 11264 kmem_free(buf->dtb_xamot, size);
11265 11265 allocated++;
11266 11266 }
11267 11267
11268 11268 if (buf->dtb_tomax != NULL) {
11269 11269 ASSERT(buf->dtb_size == size);
11270 11270 kmem_free(buf->dtb_tomax, size);
11271 11271 allocated++;
11272 11272 }
11273 11273
11274 11274 buf->dtb_tomax = NULL;
11275 11275 buf->dtb_xamot = NULL;
11276 11276 buf->dtb_size = 0;
11277 11277 } while ((cp = cp->cpu_next) != cpu_list);
11278 11278
11279 11279 *factor = desired / (allocated > 0 ? allocated : 1);
11280 11280
11281 11281 return (ENOMEM);
11282 11282 }
11283 11283
11284 11284 /*
11285 11285 * Note: called from probe context. This function just increments the drop
11286 11286 * count on a buffer. It has been made a function to allow for the
11287 11287 * possibility of understanding the source of mysterious drop counts. (A
11288 11288 * problem for which one may be particularly disappointed that DTrace cannot
11289 11289 * be used to understand DTrace.)
11290 11290 */
11291 11291 static void
11292 11292 dtrace_buffer_drop(dtrace_buffer_t *buf)
11293 11293 {
11294 11294 buf->dtb_drops++;
11295 11295 }
11296 11296
11297 11297 /*
11298 11298 * Note: called from probe context. This function is called to reserve space
11299 11299 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11300 11300 * mstate. Returns the new offset in the buffer, or a negative value if an
11301 11301 * error has occurred.
11302 11302 */
11303 11303 static intptr_t
11304 11304 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11305 11305 dtrace_state_t *state, dtrace_mstate_t *mstate)
11306 11306 {
11307 11307 intptr_t offs = buf->dtb_offset, soffs;
11308 11308 intptr_t woffs;
11309 11309 caddr_t tomax;
11310 11310 size_t total;
11311 11311
11312 11312 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11313 11313 return (-1);
11314 11314
11315 11315 if ((tomax = buf->dtb_tomax) == NULL) {
11316 11316 dtrace_buffer_drop(buf);
11317 11317 return (-1);
11318 11318 }
11319 11319
11320 11320 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11321 11321 while (offs & (align - 1)) {
11322 11322 /*
11323 11323 * Assert that our alignment is off by a number which
11324 11324 * is itself sizeof (uint32_t) aligned.
11325 11325 */
11326 11326 ASSERT(!((align - (offs & (align - 1))) &
11327 11327 (sizeof (uint32_t) - 1)));
11328 11328 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11329 11329 offs += sizeof (uint32_t);
11330 11330 }
11331 11331
11332 11332 if ((soffs = offs + needed) > buf->dtb_size) {
11333 11333 dtrace_buffer_drop(buf);
11334 11334 return (-1);
11335 11335 }
11336 11336
11337 11337 if (mstate == NULL)
11338 11338 return (offs);
11339 11339
11340 11340 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11341 11341 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11342 11342 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11343 11343
11344 11344 return (offs);
11345 11345 }
11346 11346
11347 11347 if (buf->dtb_flags & DTRACEBUF_FILL) {
11348 11348 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11349 11349 (buf->dtb_flags & DTRACEBUF_FULL))
11350 11350 return (-1);
11351 11351 goto out;
11352 11352 }
11353 11353
11354 11354 total = needed + (offs & (align - 1));
11355 11355
11356 11356 /*
11357 11357 * For a ring buffer, life is quite a bit more complicated. Before
11358 11358 * we can store any padding, we need to adjust our wrapping offset.
11359 11359 * (If we've never before wrapped or we're not about to, no adjustment
11360 11360 * is required.)
11361 11361 */
11362 11362 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11363 11363 offs + total > buf->dtb_size) {
11364 11364 woffs = buf->dtb_xamot_offset;
11365 11365
11366 11366 if (offs + total > buf->dtb_size) {
11367 11367 /*
11368 11368 * We can't fit in the end of the buffer. First, a
11369 11369 * sanity check that we can fit in the buffer at all.
11370 11370 */
11371 11371 if (total > buf->dtb_size) {
11372 11372 dtrace_buffer_drop(buf);
11373 11373 return (-1);
11374 11374 }
11375 11375
11376 11376 /*
11377 11377 * We're going to be storing at the top of the buffer,
11378 11378 * so now we need to deal with the wrapped offset. We
11379 11379 * only reset our wrapped offset to 0 if it is
11380 11380 * currently greater than the current offset. If it
11381 11381 * is less than the current offset, it is because a
11382 11382 * previous allocation induced a wrap -- but the
11383 11383 * allocation didn't subsequently take the space due
11384 11384 * to an error or false predicate evaluation. In this
11385 11385 * case, we'll just leave the wrapped offset alone: if
11386 11386 * the wrapped offset hasn't been advanced far enough
11387 11387 * for this allocation, it will be adjusted in the
11388 11388 * lower loop.
11389 11389 */
11390 11390 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11391 11391 if (woffs >= offs)
11392 11392 woffs = 0;
11393 11393 } else {
11394 11394 woffs = 0;
11395 11395 }
11396 11396
11397 11397 /*
11398 11398 * Now we know that we're going to be storing to the
11399 11399 * top of the buffer and that there is room for us
11400 11400 * there. We need to clear the buffer from the current
11401 11401 * offset to the end (there may be old gunk there).
11402 11402 */
11403 11403 while (offs < buf->dtb_size)
11404 11404 tomax[offs++] = 0;
11405 11405
11406 11406 /*
11407 11407 * We need to set our offset to zero. And because we
11408 11408 * are wrapping, we need to set the bit indicating as
11409 11409 * much. We can also adjust our needed space back
11410 11410 * down to the space required by the ECB -- we know
11411 11411 * that the top of the buffer is aligned.
11412 11412 */
11413 11413 offs = 0;
11414 11414 total = needed;
11415 11415 buf->dtb_flags |= DTRACEBUF_WRAPPED;
11416 11416 } else {
11417 11417 /*
11418 11418 * There is room for us in the buffer, so we simply
11419 11419 * need to check the wrapped offset.
11420 11420 */
11421 11421 if (woffs < offs) {
11422 11422 /*
11423 11423 * The wrapped offset is less than the offset.
11424 11424 * This can happen if we allocated buffer space
11425 11425 * that induced a wrap, but then we didn't
11426 11426 * subsequently take the space due to an error
11427 11427 * or false predicate evaluation. This is
11428 11428 * okay; we know that _this_ allocation isn't
11429 11429 * going to induce a wrap. We still can't
11430 11430 * reset the wrapped offset to be zero,
11431 11431 * however: the space may have been trashed in
11432 11432 * the previous failed probe attempt. But at
11433 11433 * least the wrapped offset doesn't need to
11434 11434 * be adjusted at all...
11435 11435 */
11436 11436 goto out;
11437 11437 }
11438 11438 }
11439 11439
11440 11440 while (offs + total > woffs) {
11441 11441 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11442 11442 size_t size;
11443 11443
11444 11444 if (epid == DTRACE_EPIDNONE) {
11445 11445 size = sizeof (uint32_t);
11446 11446 } else {
11447 11447 ASSERT3U(epid, <=, state->dts_necbs);
11448 11448 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11449 11449
11450 11450 size = state->dts_ecbs[epid - 1]->dte_size;
11451 11451 }
11452 11452
11453 11453 ASSERT(woffs + size <= buf->dtb_size);
11454 11454 ASSERT(size != 0);
11455 11455
11456 11456 if (woffs + size == buf->dtb_size) {
11457 11457 /*
11458 11458 * We've reached the end of the buffer; we want
11459 11459 * to set the wrapped offset to 0 and break
11460 11460 * out. However, if the offs is 0, then we're
11461 11461 * in a strange edge-condition: the amount of
11462 11462 * space that we want to reserve plus the size
11463 11463 * of the record that we're overwriting is
11464 11464 * greater than the size of the buffer. This
11465 11465 * is problematic because if we reserve the
11466 11466 * space but subsequently don't consume it (due
11467 11467 * to a failed predicate or error) the wrapped
11468 11468 * offset will be 0 -- yet the EPID at offset 0
11469 11469 * will not be committed. This situation is
11470 11470 * relatively easy to deal with: if we're in
11471 11471 * this case, the buffer is indistinguishable
11472 11472 * from one that hasn't wrapped; we need only
11473 11473 * finish the job by clearing the wrapped bit,
11474 11474 * explicitly setting the offset to be 0, and
11475 11475 * zero'ing out the old data in the buffer.
11476 11476 */
11477 11477 if (offs == 0) {
11478 11478 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11479 11479 buf->dtb_offset = 0;
11480 11480 woffs = total;
11481 11481
11482 11482 while (woffs < buf->dtb_size)
11483 11483 tomax[woffs++] = 0;
11484 11484 }
11485 11485
11486 11486 woffs = 0;
11487 11487 break;
11488 11488 }
11489 11489
11490 11490 woffs += size;
11491 11491 }
11492 11492
11493 11493 /*
11494 11494 * We have a wrapped offset. It may be that the wrapped offset
11495 11495 * has become zero -- that's okay.
11496 11496 */
11497 11497 buf->dtb_xamot_offset = woffs;
11498 11498 }
11499 11499
11500 11500 out:
11501 11501 /*
11502 11502 * Now we can plow the buffer with any necessary padding.
11503 11503 */
11504 11504 while (offs & (align - 1)) {
11505 11505 /*
11506 11506 * Assert that our alignment is off by a number which
11507 11507 * is itself sizeof (uint32_t) aligned.
11508 11508 */
11509 11509 ASSERT(!((align - (offs & (align - 1))) &
11510 11510 (sizeof (uint32_t) - 1)));
11511 11511 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11512 11512 offs += sizeof (uint32_t);
11513 11513 }
11514 11514
11515 11515 if (buf->dtb_flags & DTRACEBUF_FILL) {
11516 11516 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11517 11517 buf->dtb_flags |= DTRACEBUF_FULL;
11518 11518 return (-1);
11519 11519 }
11520 11520 }
11521 11521
11522 11522 if (mstate == NULL)
11523 11523 return (offs);
11524 11524
11525 11525 /*
11526 11526 * For ring buffers and fill buffers, the scratch space is always
11527 11527 * the inactive buffer.
11528 11528 */
11529 11529 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11530 11530 mstate->dtms_scratch_size = buf->dtb_size;
11531 11531 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11532 11532
11533 11533 return (offs);
11534 11534 }
11535 11535
11536 11536 static void
11537 11537 dtrace_buffer_polish(dtrace_buffer_t *buf)
11538 11538 {
11539 11539 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11540 11540 ASSERT(MUTEX_HELD(&dtrace_lock));
11541 11541
11542 11542 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11543 11543 return;
11544 11544
11545 11545 /*
11546 11546 * We need to polish the ring buffer. There are three cases:
11547 11547 *
11548 11548 * - The first (and presumably most common) is that there is no gap
11549 11549 * between the buffer offset and the wrapped offset. In this case,
11550 11550 * there is nothing in the buffer that isn't valid data; we can
11551 11551 * mark the buffer as polished and return.
11552 11552 *
11553 11553 * - The second (less common than the first but still more common
11554 11554 * than the third) is that there is a gap between the buffer offset
11555 11555 * and the wrapped offset, and the wrapped offset is larger than the
11556 11556 * buffer offset. This can happen because of an alignment issue, or
11557 11557 * can happen because of a call to dtrace_buffer_reserve() that
11558 11558 * didn't subsequently consume the buffer space. In this case,
11559 11559 * we need to zero the data from the buffer offset to the wrapped
11560 11560 * offset.
11561 11561 *
11562 11562 * - The third (and least common) is that there is a gap between the
11563 11563 * buffer offset and the wrapped offset, but the wrapped offset is
11564 11564 * _less_ than the buffer offset. This can only happen because a
11565 11565 * call to dtrace_buffer_reserve() induced a wrap, but the space
11566 11566 * was not subsequently consumed. In this case, we need to zero the
11567 11567 * space from the offset to the end of the buffer _and_ from the
11568 11568 * top of the buffer to the wrapped offset.
11569 11569 */
11570 11570 if (buf->dtb_offset < buf->dtb_xamot_offset) {
11571 11571 bzero(buf->dtb_tomax + buf->dtb_offset,
11572 11572 buf->dtb_xamot_offset - buf->dtb_offset);
11573 11573 }
11574 11574
11575 11575 if (buf->dtb_offset > buf->dtb_xamot_offset) {
11576 11576 bzero(buf->dtb_tomax + buf->dtb_offset,
11577 11577 buf->dtb_size - buf->dtb_offset);
11578 11578 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11579 11579 }
11580 11580 }
11581 11581
11582 11582 /*
11583 11583 * This routine determines if data generated at the specified time has likely
11584 11584 * been entirely consumed at user-level. This routine is called to determine
11585 11585 * if an ECB on a defunct probe (but for an active enabling) can be safely
11586 11586 * disabled and destroyed.
11587 11587 */
11588 11588 static int
11589 11589 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11590 11590 {
11591 11591 int i;
11592 11592
11593 11593 for (i = 0; i < NCPU; i++) {
11594 11594 dtrace_buffer_t *buf = &bufs[i];
11595 11595
11596 11596 if (buf->dtb_size == 0)
11597 11597 continue;
11598 11598
11599 11599 if (buf->dtb_flags & DTRACEBUF_RING)
11600 11600 return (0);
11601 11601
11602 11602 if (!buf->dtb_switched && buf->dtb_offset != 0)
11603 11603 return (0);
11604 11604
11605 11605 if (buf->dtb_switched - buf->dtb_interval < when)
11606 11606 return (0);
11607 11607 }
11608 11608
11609 11609 return (1);
11610 11610 }
11611 11611
11612 11612 static void
11613 11613 dtrace_buffer_free(dtrace_buffer_t *bufs)
11614 11614 {
11615 11615 int i;
11616 11616
11617 11617 for (i = 0; i < NCPU; i++) {
11618 11618 dtrace_buffer_t *buf = &bufs[i];
11619 11619
11620 11620 if (buf->dtb_tomax == NULL) {
11621 11621 ASSERT(buf->dtb_xamot == NULL);
11622 11622 ASSERT(buf->dtb_size == 0);
11623 11623 continue;
11624 11624 }
11625 11625
11626 11626 if (buf->dtb_xamot != NULL) {
11627 11627 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11628 11628 kmem_free(buf->dtb_xamot, buf->dtb_size);
11629 11629 }
11630 11630
11631 11631 kmem_free(buf->dtb_tomax, buf->dtb_size);
11632 11632 buf->dtb_size = 0;
11633 11633 buf->dtb_tomax = NULL;
11634 11634 buf->dtb_xamot = NULL;
11635 11635 }
11636 11636 }
11637 11637
11638 11638 /*
11639 11639 * DTrace Enabling Functions
11640 11640 */
11641 11641 static dtrace_enabling_t *
11642 11642 dtrace_enabling_create(dtrace_vstate_t *vstate)
11643 11643 {
11644 11644 dtrace_enabling_t *enab;
11645 11645
11646 11646 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11647 11647 enab->dten_vstate = vstate;
11648 11648
11649 11649 return (enab);
11650 11650 }
11651 11651
11652 11652 static void
11653 11653 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11654 11654 {
11655 11655 dtrace_ecbdesc_t **ndesc;
11656 11656 size_t osize, nsize;
11657 11657
11658 11658 /*
11659 11659 * We can't add to enablings after we've enabled them, or after we've
11660 11660 * retained them.
11661 11661 */
11662 11662 ASSERT(enab->dten_probegen == 0);
11663 11663 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11664 11664
11665 11665 if (enab->dten_ndesc < enab->dten_maxdesc) {
11666 11666 enab->dten_desc[enab->dten_ndesc++] = ecb;
11667 11667 return;
11668 11668 }
11669 11669
11670 11670 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11671 11671
11672 11672 if (enab->dten_maxdesc == 0) {
11673 11673 enab->dten_maxdesc = 1;
11674 11674 } else {
11675 11675 enab->dten_maxdesc <<= 1;
11676 11676 }
11677 11677
11678 11678 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11679 11679
11680 11680 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11681 11681 ndesc = kmem_zalloc(nsize, KM_SLEEP);
11682 11682 bcopy(enab->dten_desc, ndesc, osize);
11683 11683 kmem_free(enab->dten_desc, osize);
11684 11684
11685 11685 enab->dten_desc = ndesc;
11686 11686 enab->dten_desc[enab->dten_ndesc++] = ecb;
11687 11687 }
11688 11688
11689 11689 static void
11690 11690 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11691 11691 dtrace_probedesc_t *pd)
11692 11692 {
11693 11693 dtrace_ecbdesc_t *new;
11694 11694 dtrace_predicate_t *pred;
11695 11695 dtrace_actdesc_t *act;
11696 11696
11697 11697 /*
11698 11698 * We're going to create a new ECB description that matches the
11699 11699 * specified ECB in every way, but has the specified probe description.
11700 11700 */
11701 11701 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11702 11702
11703 11703 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11704 11704 dtrace_predicate_hold(pred);
11705 11705
11706 11706 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11707 11707 dtrace_actdesc_hold(act);
11708 11708
11709 11709 new->dted_action = ecb->dted_action;
11710 11710 new->dted_pred = ecb->dted_pred;
11711 11711 new->dted_probe = *pd;
11712 11712 new->dted_uarg = ecb->dted_uarg;
11713 11713
11714 11714 dtrace_enabling_add(enab, new);
11715 11715 }
11716 11716
11717 11717 static void
11718 11718 dtrace_enabling_dump(dtrace_enabling_t *enab)
11719 11719 {
11720 11720 int i;
11721 11721
11722 11722 for (i = 0; i < enab->dten_ndesc; i++) {
11723 11723 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11724 11724
11725 11725 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11726 11726 desc->dtpd_provider, desc->dtpd_mod,
11727 11727 desc->dtpd_func, desc->dtpd_name);
11728 11728 }
11729 11729 }
11730 11730
11731 11731 static void
11732 11732 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11733 11733 {
11734 11734 int i;
11735 11735 dtrace_ecbdesc_t *ep;
11736 11736 dtrace_vstate_t *vstate = enab->dten_vstate;
11737 11737
11738 11738 ASSERT(MUTEX_HELD(&dtrace_lock));
11739 11739
11740 11740 for (i = 0; i < enab->dten_ndesc; i++) {
11741 11741 dtrace_actdesc_t *act, *next;
11742 11742 dtrace_predicate_t *pred;
11743 11743
11744 11744 ep = enab->dten_desc[i];
11745 11745
11746 11746 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11747 11747 dtrace_predicate_release(pred, vstate);
11748 11748
11749 11749 for (act = ep->dted_action; act != NULL; act = next) {
11750 11750 next = act->dtad_next;
11751 11751 dtrace_actdesc_release(act, vstate);
11752 11752 }
11753 11753
11754 11754 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11755 11755 }
11756 11756
11757 11757 kmem_free(enab->dten_desc,
11758 11758 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11759 11759
11760 11760 /*
11761 11761 * If this was a retained enabling, decrement the dts_nretained count
11762 11762 * and take it off of the dtrace_retained list.
11763 11763 */
11764 11764 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11765 11765 dtrace_retained == enab) {
11766 11766 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11767 11767 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11768 11768 enab->dten_vstate->dtvs_state->dts_nretained--;
11769 11769 dtrace_retained_gen++;
11770 11770 }
11771 11771
11772 11772 if (enab->dten_prev == NULL) {
11773 11773 if (dtrace_retained == enab) {
11774 11774 dtrace_retained = enab->dten_next;
11775 11775
11776 11776 if (dtrace_retained != NULL)
11777 11777 dtrace_retained->dten_prev = NULL;
11778 11778 }
11779 11779 } else {
11780 11780 ASSERT(enab != dtrace_retained);
11781 11781 ASSERT(dtrace_retained != NULL);
11782 11782 enab->dten_prev->dten_next = enab->dten_next;
11783 11783 }
11784 11784
11785 11785 if (enab->dten_next != NULL) {
11786 11786 ASSERT(dtrace_retained != NULL);
11787 11787 enab->dten_next->dten_prev = enab->dten_prev;
11788 11788 }
11789 11789
11790 11790 kmem_free(enab, sizeof (dtrace_enabling_t));
11791 11791 }
11792 11792
11793 11793 static int
11794 11794 dtrace_enabling_retain(dtrace_enabling_t *enab)
11795 11795 {
11796 11796 dtrace_state_t *state;
11797 11797
11798 11798 ASSERT(MUTEX_HELD(&dtrace_lock));
11799 11799 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11800 11800 ASSERT(enab->dten_vstate != NULL);
11801 11801
11802 11802 state = enab->dten_vstate->dtvs_state;
11803 11803 ASSERT(state != NULL);
11804 11804
11805 11805 /*
11806 11806 * We only allow each state to retain dtrace_retain_max enablings.
11807 11807 */
11808 11808 if (state->dts_nretained >= dtrace_retain_max)
11809 11809 return (ENOSPC);
11810 11810
11811 11811 state->dts_nretained++;
11812 11812 dtrace_retained_gen++;
11813 11813
11814 11814 if (dtrace_retained == NULL) {
11815 11815 dtrace_retained = enab;
11816 11816 return (0);
11817 11817 }
11818 11818
11819 11819 enab->dten_next = dtrace_retained;
11820 11820 dtrace_retained->dten_prev = enab;
11821 11821 dtrace_retained = enab;
11822 11822
11823 11823 return (0);
11824 11824 }
11825 11825
11826 11826 static int
11827 11827 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11828 11828 dtrace_probedesc_t *create)
11829 11829 {
11830 11830 dtrace_enabling_t *new, *enab;
11831 11831 int found = 0, err = ENOENT;
11832 11832
11833 11833 ASSERT(MUTEX_HELD(&dtrace_lock));
11834 11834 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11835 11835 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11836 11836 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11837 11837 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11838 11838
11839 11839 new = dtrace_enabling_create(&state->dts_vstate);
11840 11840
11841 11841 /*
11842 11842 * Iterate over all retained enablings, looking for enablings that
11843 11843 * match the specified state.
11844 11844 */
11845 11845 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11846 11846 int i;
11847 11847
11848 11848 /*
11849 11849 * dtvs_state can only be NULL for helper enablings -- and
11850 11850 * helper enablings can't be retained.
11851 11851 */
11852 11852 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11853 11853
11854 11854 if (enab->dten_vstate->dtvs_state != state)
11855 11855 continue;
11856 11856
11857 11857 /*
11858 11858 * Now iterate over each probe description; we're looking for
11859 11859 * an exact match to the specified probe description.
11860 11860 */
11861 11861 for (i = 0; i < enab->dten_ndesc; i++) {
11862 11862 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11863 11863 dtrace_probedesc_t *pd = &ep->dted_probe;
11864 11864
11865 11865 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11866 11866 continue;
11867 11867
11868 11868 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11869 11869 continue;
11870 11870
11871 11871 if (strcmp(pd->dtpd_func, match->dtpd_func))
11872 11872 continue;
11873 11873
11874 11874 if (strcmp(pd->dtpd_name, match->dtpd_name))
11875 11875 continue;
11876 11876
11877 11877 /*
11878 11878 * We have a winning probe! Add it to our growing
11879 11879 * enabling.
11880 11880 */
11881 11881 found = 1;
11882 11882 dtrace_enabling_addlike(new, ep, create);
11883 11883 }
11884 11884 }
11885 11885
11886 11886 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11887 11887 dtrace_enabling_destroy(new);
11888 11888 return (err);
11889 11889 }
11890 11890
11891 11891 return (0);
11892 11892 }
11893 11893
11894 11894 static void
11895 11895 dtrace_enabling_retract(dtrace_state_t *state)
11896 11896 {
11897 11897 dtrace_enabling_t *enab, *next;
11898 11898
11899 11899 ASSERT(MUTEX_HELD(&dtrace_lock));
11900 11900
11901 11901 /*
11902 11902 * Iterate over all retained enablings, destroy the enablings retained
11903 11903 * for the specified state.
11904 11904 */
11905 11905 for (enab = dtrace_retained; enab != NULL; enab = next) {
11906 11906 next = enab->dten_next;
11907 11907
11908 11908 /*
11909 11909 * dtvs_state can only be NULL for helper enablings -- and
11910 11910 * helper enablings can't be retained.
11911 11911 */
11912 11912 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11913 11913
11914 11914 if (enab->dten_vstate->dtvs_state == state) {
11915 11915 ASSERT(state->dts_nretained > 0);
11916 11916 dtrace_enabling_destroy(enab);
11917 11917 }
11918 11918 }
11919 11919
11920 11920 ASSERT(state->dts_nretained == 0);
11921 11921 }
11922 11922
11923 11923 static int
11924 11924 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11925 11925 {
11926 11926 int i = 0;
11927 11927 int total_matched = 0, matched = 0;
11928 11928
11929 11929 ASSERT(MUTEX_HELD(&cpu_lock));
11930 11930 ASSERT(MUTEX_HELD(&dtrace_lock));
11931 11931
11932 11932 for (i = 0; i < enab->dten_ndesc; i++) {
11933 11933 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11934 11934
11935 11935 enab->dten_current = ep;
11936 11936 enab->dten_error = 0;
11937 11937
11938 11938 /*
11939 11939 * If a provider failed to enable a probe then get out and
11940 11940 * let the consumer know we failed.
11941 11941 */
11942 11942 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11943 11943 return (EBUSY);
11944 11944
11945 11945 total_matched += matched;
11946 11946
11947 11947 if (enab->dten_error != 0) {
11948 11948 /*
11949 11949 * If we get an error half-way through enabling the
11950 11950 * probes, we kick out -- perhaps with some number of
11951 11951 * them enabled. Leaving enabled probes enabled may
11952 11952 * be slightly confusing for user-level, but we expect
11953 11953 * that no one will attempt to actually drive on in
11954 11954 * the face of such errors. If this is an anonymous
11955 11955 * enabling (indicated with a NULL nmatched pointer),
11956 11956 * we cmn_err() a message. We aren't expecting to
11957 11957 * get such an error -- such as it can exist at all,
11958 11958 * it would be a result of corrupted DOF in the driver
11959 11959 * properties.
11960 11960 */
11961 11961 if (nmatched == NULL) {
11962 11962 cmn_err(CE_WARN, "dtrace_enabling_match() "
11963 11963 "error on %p: %d", (void *)ep,
11964 11964 enab->dten_error);
11965 11965 }
11966 11966
11967 11967 return (enab->dten_error);
11968 11968 }
11969 11969 }
11970 11970
11971 11971 enab->dten_probegen = dtrace_probegen;
11972 11972 if (nmatched != NULL)
11973 11973 *nmatched = total_matched;
11974 11974
11975 11975 return (0);
11976 11976 }
11977 11977
11978 11978 static void
11979 11979 dtrace_enabling_matchall(void)
11980 11980 {
11981 11981 dtrace_enabling_t *enab;
11982 11982
11983 11983 mutex_enter(&cpu_lock);
11984 11984 mutex_enter(&dtrace_lock);
11985 11985
11986 11986 /*
11987 11987 * Iterate over all retained enablings to see if any probes match
11988 11988 * against them. We only perform this operation on enablings for which
11989 11989 * we have sufficient permissions by virtue of being in the global zone
11990 11990 * or in the same zone as the DTrace client. Because we can be called
11991 11991 * after dtrace_detach() has been called, we cannot assert that there
11992 11992 * are retained enablings. We can safely load from dtrace_retained,
11993 11993 * however: the taskq_destroy() at the end of dtrace_detach() will
11994 11994 * block pending our completion.
11995 11995 */
11996 11996 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11997 11997 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11998 11998 cred_t *cr = dcr->dcr_cred;
11999 11999 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12000 12000
12001 12001 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12002 12002 (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12003 12003 (void) dtrace_enabling_match(enab, NULL);
12004 12004 }
12005 12005
12006 12006 mutex_exit(&dtrace_lock);
12007 12007 mutex_exit(&cpu_lock);
12008 12008 }
12009 12009
12010 12010 /*
12011 12011 * If an enabling is to be enabled without having matched probes (that is, if
12012 12012 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12013 12013 * enabling must be _primed_ by creating an ECB for every ECB description.
12014 12014 * This must be done to assure that we know the number of speculations, the
12015 12015 * number of aggregations, the minimum buffer size needed, etc. before we
12016 12016 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
12017 12017 * enabling any probes, we create ECBs for every ECB decription, but with a
12018 12018 * NULL probe -- which is exactly what this function does.
12019 12019 */
12020 12020 static void
12021 12021 dtrace_enabling_prime(dtrace_state_t *state)
12022 12022 {
12023 12023 dtrace_enabling_t *enab;
12024 12024 int i;
12025 12025
12026 12026 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12027 12027 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12028 12028
12029 12029 if (enab->dten_vstate->dtvs_state != state)
12030 12030 continue;
12031 12031
12032 12032 /*
12033 12033 * We don't want to prime an enabling more than once, lest
12034 12034 * we allow a malicious user to induce resource exhaustion.
12035 12035 * (The ECBs that result from priming an enabling aren't
12036 12036 * leaked -- but they also aren't deallocated until the
12037 12037 * consumer state is destroyed.)
12038 12038 */
12039 12039 if (enab->dten_primed)
12040 12040 continue;
12041 12041
12042 12042 for (i = 0; i < enab->dten_ndesc; i++) {
12043 12043 enab->dten_current = enab->dten_desc[i];
12044 12044 (void) dtrace_probe_enable(NULL, enab);
12045 12045 }
12046 12046
12047 12047 enab->dten_primed = 1;
12048 12048 }
12049 12049 }
12050 12050
12051 12051 /*
12052 12052 * Called to indicate that probes should be provided due to retained
12053 12053 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12054 12054 * must take an initial lap through the enabling calling the dtps_provide()
12055 12055 * entry point explicitly to allow for autocreated probes.
12056 12056 */
12057 12057 static void
12058 12058 dtrace_enabling_provide(dtrace_provider_t *prv)
12059 12059 {
12060 12060 int i, all = 0;
12061 12061 dtrace_probedesc_t desc;
12062 12062 dtrace_genid_t gen;
12063 12063
12064 12064 ASSERT(MUTEX_HELD(&dtrace_lock));
12065 12065 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12066 12066
12067 12067 if (prv == NULL) {
12068 12068 all = 1;
12069 12069 prv = dtrace_provider;
12070 12070 }
12071 12071
12072 12072 do {
12073 12073 dtrace_enabling_t *enab;
12074 12074 void *parg = prv->dtpv_arg;
12075 12075
12076 12076 retry:
12077 12077 gen = dtrace_retained_gen;
12078 12078 for (enab = dtrace_retained; enab != NULL;
12079 12079 enab = enab->dten_next) {
12080 12080 for (i = 0; i < enab->dten_ndesc; i++) {
12081 12081 desc = enab->dten_desc[i]->dted_probe;
12082 12082 mutex_exit(&dtrace_lock);
12083 12083 prv->dtpv_pops.dtps_provide(parg, &desc);
12084 12084 mutex_enter(&dtrace_lock);
12085 12085 /*
12086 12086 * Process the retained enablings again if
12087 12087 * they have changed while we weren't holding
12088 12088 * dtrace_lock.
12089 12089 */
12090 12090 if (gen != dtrace_retained_gen)
12091 12091 goto retry;
12092 12092 }
12093 12093 }
12094 12094 } while (all && (prv = prv->dtpv_next) != NULL);
12095 12095
12096 12096 mutex_exit(&dtrace_lock);
12097 12097 dtrace_probe_provide(NULL, all ? NULL : prv);
12098 12098 mutex_enter(&dtrace_lock);
12099 12099 }
12100 12100
12101 12101 /*
12102 12102 * Called to reap ECBs that are attached to probes from defunct providers.
12103 12103 */
12104 12104 static void
12105 12105 dtrace_enabling_reap(void)
12106 12106 {
12107 12107 dtrace_provider_t *prov;
12108 12108 dtrace_probe_t *probe;
12109 12109 dtrace_ecb_t *ecb;
12110 12110 hrtime_t when;
12111 12111 int i;
12112 12112
12113 12113 mutex_enter(&cpu_lock);
12114 12114 mutex_enter(&dtrace_lock);
12115 12115
12116 12116 for (i = 0; i < dtrace_nprobes; i++) {
12117 12117 if ((probe = dtrace_probes[i]) == NULL)
12118 12118 continue;
12119 12119
12120 12120 if (probe->dtpr_ecb == NULL)
12121 12121 continue;
12122 12122
12123 12123 prov = probe->dtpr_provider;
12124 12124
12125 12125 if ((when = prov->dtpv_defunct) == 0)
12126 12126 continue;
12127 12127
12128 12128 /*
12129 12129 * We have ECBs on a defunct provider: we want to reap these
12130 12130 * ECBs to allow the provider to unregister. The destruction
12131 12131 * of these ECBs must be done carefully: if we destroy the ECB
12132 12132 * and the consumer later wishes to consume an EPID that
12133 12133 * corresponds to the destroyed ECB (and if the EPID metadata
12134 12134 * has not been previously consumed), the consumer will abort
12135 12135 * processing on the unknown EPID. To reduce (but not, sadly,
12136 12136 * eliminate) the possibility of this, we will only destroy an
12137 12137 * ECB for a defunct provider if, for the state that
12138 12138 * corresponds to the ECB:
12139 12139 *
12140 12140 * (a) There is no speculative tracing (which can effectively
12141 12141 * cache an EPID for an arbitrary amount of time).
12142 12142 *
12143 12143 * (b) The principal buffers have been switched twice since the
12144 12144 * provider became defunct.
12145 12145 *
12146 12146 * (c) The aggregation buffers are of zero size or have been
12147 12147 * switched twice since the provider became defunct.
12148 12148 *
12149 12149 * We use dts_speculates to determine (a) and call a function
12150 12150 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12151 12151 * that as soon as we've been unable to destroy one of the ECBs
12152 12152 * associated with the probe, we quit trying -- reaping is only
12153 12153 * fruitful in as much as we can destroy all ECBs associated
12154 12154 * with the defunct provider's probes.
12155 12155 */
12156 12156 while ((ecb = probe->dtpr_ecb) != NULL) {
12157 12157 dtrace_state_t *state = ecb->dte_state;
12158 12158 dtrace_buffer_t *buf = state->dts_buffer;
12159 12159 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12160 12160
12161 12161 if (state->dts_speculates)
12162 12162 break;
12163 12163
12164 12164 if (!dtrace_buffer_consumed(buf, when))
12165 12165 break;
12166 12166
12167 12167 if (!dtrace_buffer_consumed(aggbuf, when))
12168 12168 break;
12169 12169
12170 12170 dtrace_ecb_disable(ecb);
12171 12171 ASSERT(probe->dtpr_ecb != ecb);
12172 12172 dtrace_ecb_destroy(ecb);
12173 12173 }
12174 12174 }
12175 12175
12176 12176 mutex_exit(&dtrace_lock);
12177 12177 mutex_exit(&cpu_lock);
12178 12178 }
12179 12179
12180 12180 /*
12181 12181 * DTrace DOF Functions
12182 12182 */
12183 12183 /*ARGSUSED*/
12184 12184 static void
12185 12185 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12186 12186 {
12187 12187 if (dtrace_err_verbose)
12188 12188 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12189 12189
12190 12190 #ifdef DTRACE_ERRDEBUG
12191 12191 dtrace_errdebug(str);
12192 12192 #endif
12193 12193 }
12194 12194
12195 12195 /*
12196 12196 * Create DOF out of a currently enabled state. Right now, we only create
12197 12197 * DOF containing the run-time options -- but this could be expanded to create
12198 12198 * complete DOF representing the enabled state.
12199 12199 */
12200 12200 static dof_hdr_t *
12201 12201 dtrace_dof_create(dtrace_state_t *state)
12202 12202 {
12203 12203 dof_hdr_t *dof;
12204 12204 dof_sec_t *sec;
12205 12205 dof_optdesc_t *opt;
12206 12206 int i, len = sizeof (dof_hdr_t) +
12207 12207 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12208 12208 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12209 12209
12210 12210 ASSERT(MUTEX_HELD(&dtrace_lock));
12211 12211
12212 12212 dof = kmem_zalloc(len, KM_SLEEP);
12213 12213 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12214 12214 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12215 12215 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12216 12216 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12217 12217
12218 12218 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12219 12219 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12220 12220 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12221 12221 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12222 12222 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12223 12223 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12224 12224
12225 12225 dof->dofh_flags = 0;
12226 12226 dof->dofh_hdrsize = sizeof (dof_hdr_t);
12227 12227 dof->dofh_secsize = sizeof (dof_sec_t);
12228 12228 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
12229 12229 dof->dofh_secoff = sizeof (dof_hdr_t);
12230 12230 dof->dofh_loadsz = len;
12231 12231 dof->dofh_filesz = len;
12232 12232 dof->dofh_pad = 0;
12233 12233
12234 12234 /*
12235 12235 * Fill in the option section header...
12236 12236 */
12237 12237 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12238 12238 sec->dofs_type = DOF_SECT_OPTDESC;
12239 12239 sec->dofs_align = sizeof (uint64_t);
12240 12240 sec->dofs_flags = DOF_SECF_LOAD;
12241 12241 sec->dofs_entsize = sizeof (dof_optdesc_t);
12242 12242
12243 12243 opt = (dof_optdesc_t *)((uintptr_t)sec +
12244 12244 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12245 12245
12246 12246 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12247 12247 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12248 12248
12249 12249 for (i = 0; i < DTRACEOPT_MAX; i++) {
12250 12250 opt[i].dofo_option = i;
12251 12251 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12252 12252 opt[i].dofo_value = state->dts_options[i];
12253 12253 }
12254 12254
12255 12255 return (dof);
12256 12256 }
12257 12257
12258 12258 static dof_hdr_t *
12259 12259 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12260 12260 {
12261 12261 dof_hdr_t hdr, *dof;
12262 12262
12263 12263 ASSERT(!MUTEX_HELD(&dtrace_lock));
12264 12264
12265 12265 /*
12266 12266 * First, we're going to copyin() the sizeof (dof_hdr_t).
12267 12267 */
12268 12268 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12269 12269 dtrace_dof_error(NULL, "failed to copyin DOF header");
12270 12270 *errp = EFAULT;
12271 12271 return (NULL);
12272 12272 }
12273 12273
12274 12274 /*
12275 12275 * Now we'll allocate the entire DOF and copy it in -- provided
12276 12276 * that the length isn't outrageous.
12277 12277 */
12278 12278 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12279 12279 dtrace_dof_error(&hdr, "load size exceeds maximum");
12280 12280 *errp = E2BIG;
12281 12281 return (NULL);
12282 12282 }
12283 12283
12284 12284 if (hdr.dofh_loadsz < sizeof (hdr)) {
12285 12285 dtrace_dof_error(&hdr, "invalid load size");
12286 12286 *errp = EINVAL;
12287 12287 return (NULL);
12288 12288 }
12289 12289
12290 12290 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12291 12291
12292 12292 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12293 12293 dof->dofh_loadsz != hdr.dofh_loadsz) {
12294 12294 kmem_free(dof, hdr.dofh_loadsz);
12295 12295 *errp = EFAULT;
12296 12296 return (NULL);
12297 12297 }
12298 12298
12299 12299 return (dof);
12300 12300 }
12301 12301
12302 12302 static dof_hdr_t *
12303 12303 dtrace_dof_property(const char *name)
12304 12304 {
12305 12305 uchar_t *buf;
12306 12306 uint64_t loadsz;
12307 12307 unsigned int len, i;
12308 12308 dof_hdr_t *dof;
12309 12309
12310 12310 /*
12311 12311 * Unfortunately, array of values in .conf files are always (and
12312 12312 * only) interpreted to be integer arrays. We must read our DOF
12313 12313 * as an integer array, and then squeeze it into a byte array.
12314 12314 */
12315 12315 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12316 12316 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12317 12317 return (NULL);
12318 12318
12319 12319 for (i = 0; i < len; i++)
12320 12320 buf[i] = (uchar_t)(((int *)buf)[i]);
12321 12321
12322 12322 if (len < sizeof (dof_hdr_t)) {
12323 12323 ddi_prop_free(buf);
12324 12324 dtrace_dof_error(NULL, "truncated header");
12325 12325 return (NULL);
12326 12326 }
12327 12327
12328 12328 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12329 12329 ddi_prop_free(buf);
12330 12330 dtrace_dof_error(NULL, "truncated DOF");
12331 12331 return (NULL);
12332 12332 }
12333 12333
12334 12334 if (loadsz >= dtrace_dof_maxsize) {
12335 12335 ddi_prop_free(buf);
12336 12336 dtrace_dof_error(NULL, "oversized DOF");
12337 12337 return (NULL);
12338 12338 }
12339 12339
12340 12340 dof = kmem_alloc(loadsz, KM_SLEEP);
12341 12341 bcopy(buf, dof, loadsz);
12342 12342 ddi_prop_free(buf);
12343 12343
12344 12344 return (dof);
12345 12345 }
12346 12346
12347 12347 static void
12348 12348 dtrace_dof_destroy(dof_hdr_t *dof)
12349 12349 {
12350 12350 kmem_free(dof, dof->dofh_loadsz);
12351 12351 }
12352 12352
12353 12353 /*
12354 12354 * Return the dof_sec_t pointer corresponding to a given section index. If the
12355 12355 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12356 12356 * a type other than DOF_SECT_NONE is specified, the header is checked against
12357 12357 * this type and NULL is returned if the types do not match.
12358 12358 */
12359 12359 static dof_sec_t *
12360 12360 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12361 12361 {
12362 12362 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12363 12363 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12364 12364
12365 12365 if (i >= dof->dofh_secnum) {
12366 12366 dtrace_dof_error(dof, "referenced section index is invalid");
12367 12367 return (NULL);
12368 12368 }
12369 12369
12370 12370 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12371 12371 dtrace_dof_error(dof, "referenced section is not loadable");
12372 12372 return (NULL);
12373 12373 }
12374 12374
12375 12375 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12376 12376 dtrace_dof_error(dof, "referenced section is the wrong type");
12377 12377 return (NULL);
12378 12378 }
12379 12379
12380 12380 return (sec);
12381 12381 }
12382 12382
12383 12383 static dtrace_probedesc_t *
12384 12384 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12385 12385 {
12386 12386 dof_probedesc_t *probe;
12387 12387 dof_sec_t *strtab;
12388 12388 uintptr_t daddr = (uintptr_t)dof;
12389 12389 uintptr_t str;
12390 12390 size_t size;
12391 12391
12392 12392 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12393 12393 dtrace_dof_error(dof, "invalid probe section");
12394 12394 return (NULL);
12395 12395 }
12396 12396
12397 12397 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12398 12398 dtrace_dof_error(dof, "bad alignment in probe description");
12399 12399 return (NULL);
12400 12400 }
12401 12401
12402 12402 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12403 12403 dtrace_dof_error(dof, "truncated probe description");
12404 12404 return (NULL);
12405 12405 }
12406 12406
12407 12407 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12408 12408 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12409 12409
12410 12410 if (strtab == NULL)
12411 12411 return (NULL);
12412 12412
12413 12413 str = daddr + strtab->dofs_offset;
12414 12414 size = strtab->dofs_size;
12415 12415
12416 12416 if (probe->dofp_provider >= strtab->dofs_size) {
12417 12417 dtrace_dof_error(dof, "corrupt probe provider");
12418 12418 return (NULL);
12419 12419 }
12420 12420
12421 12421 (void) strncpy(desc->dtpd_provider,
12422 12422 (char *)(str + probe->dofp_provider),
12423 12423 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12424 12424
12425 12425 if (probe->dofp_mod >= strtab->dofs_size) {
12426 12426 dtrace_dof_error(dof, "corrupt probe module");
12427 12427 return (NULL);
12428 12428 }
12429 12429
12430 12430 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12431 12431 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12432 12432
12433 12433 if (probe->dofp_func >= strtab->dofs_size) {
12434 12434 dtrace_dof_error(dof, "corrupt probe function");
12435 12435 return (NULL);
12436 12436 }
12437 12437
12438 12438 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12439 12439 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12440 12440
12441 12441 if (probe->dofp_name >= strtab->dofs_size) {
12442 12442 dtrace_dof_error(dof, "corrupt probe name");
12443 12443 return (NULL);
12444 12444 }
12445 12445
12446 12446 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12447 12447 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12448 12448
12449 12449 return (desc);
12450 12450 }
12451 12451
12452 12452 static dtrace_difo_t *
12453 12453 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12454 12454 cred_t *cr)
12455 12455 {
12456 12456 dtrace_difo_t *dp;
12457 12457 size_t ttl = 0;
12458 12458 dof_difohdr_t *dofd;
12459 12459 uintptr_t daddr = (uintptr_t)dof;
12460 12460 size_t max = dtrace_difo_maxsize;
12461 12461 int i, l, n;
12462 12462
12463 12463 static const struct {
12464 12464 int section;
12465 12465 int bufoffs;
12466 12466 int lenoffs;
12467 12467 int entsize;
12468 12468 int align;
12469 12469 const char *msg;
12470 12470 } difo[] = {
12471 12471 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12472 12472 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12473 12473 sizeof (dif_instr_t), "multiple DIF sections" },
12474 12474
12475 12475 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12476 12476 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12477 12477 sizeof (uint64_t), "multiple integer tables" },
12478 12478
12479 12479 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12480 12480 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12481 12481 sizeof (char), "multiple string tables" },
12482 12482
12483 12483 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12484 12484 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12485 12485 sizeof (uint_t), "multiple variable tables" },
12486 12486
12487 12487 { DOF_SECT_NONE, 0, 0, 0, NULL }
12488 12488 };
12489 12489
12490 12490 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12491 12491 dtrace_dof_error(dof, "invalid DIFO header section");
12492 12492 return (NULL);
12493 12493 }
12494 12494
12495 12495 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12496 12496 dtrace_dof_error(dof, "bad alignment in DIFO header");
12497 12497 return (NULL);
12498 12498 }
12499 12499
12500 12500 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12501 12501 sec->dofs_size % sizeof (dof_secidx_t)) {
12502 12502 dtrace_dof_error(dof, "bad size in DIFO header");
12503 12503 return (NULL);
12504 12504 }
12505 12505
12506 12506 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12507 12507 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12508 12508
12509 12509 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12510 12510 dp->dtdo_rtype = dofd->dofd_rtype;
12511 12511
12512 12512 for (l = 0; l < n; l++) {
12513 12513 dof_sec_t *subsec;
12514 12514 void **bufp;
12515 12515 uint32_t *lenp;
12516 12516
12517 12517 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12518 12518 dofd->dofd_links[l])) == NULL)
12519 12519 goto err; /* invalid section link */
12520 12520
12521 12521 if (ttl + subsec->dofs_size > max) {
12522 12522 dtrace_dof_error(dof, "exceeds maximum size");
12523 12523 goto err;
12524 12524 }
12525 12525
12526 12526 ttl += subsec->dofs_size;
12527 12527
12528 12528 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12529 12529 if (subsec->dofs_type != difo[i].section)
12530 12530 continue;
12531 12531
12532 12532 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12533 12533 dtrace_dof_error(dof, "section not loaded");
12534 12534 goto err;
12535 12535 }
12536 12536
12537 12537 if (subsec->dofs_align != difo[i].align) {
12538 12538 dtrace_dof_error(dof, "bad alignment");
12539 12539 goto err;
12540 12540 }
12541 12541
12542 12542 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12543 12543 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12544 12544
12545 12545 if (*bufp != NULL) {
12546 12546 dtrace_dof_error(dof, difo[i].msg);
12547 12547 goto err;
12548 12548 }
12549 12549
12550 12550 if (difo[i].entsize != subsec->dofs_entsize) {
12551 12551 dtrace_dof_error(dof, "entry size mismatch");
12552 12552 goto err;
12553 12553 }
12554 12554
12555 12555 if (subsec->dofs_entsize != 0 &&
12556 12556 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12557 12557 dtrace_dof_error(dof, "corrupt entry size");
12558 12558 goto err;
12559 12559 }
12560 12560
12561 12561 *lenp = subsec->dofs_size;
12562 12562 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12563 12563 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12564 12564 *bufp, subsec->dofs_size);
12565 12565
12566 12566 if (subsec->dofs_entsize != 0)
12567 12567 *lenp /= subsec->dofs_entsize;
12568 12568
12569 12569 break;
12570 12570 }
12571 12571
12572 12572 /*
12573 12573 * If we encounter a loadable DIFO sub-section that is not
12574 12574 * known to us, assume this is a broken program and fail.
12575 12575 */
12576 12576 if (difo[i].section == DOF_SECT_NONE &&
12577 12577 (subsec->dofs_flags & DOF_SECF_LOAD)) {
12578 12578 dtrace_dof_error(dof, "unrecognized DIFO subsection");
12579 12579 goto err;
12580 12580 }
12581 12581 }
12582 12582
12583 12583 if (dp->dtdo_buf == NULL) {
12584 12584 /*
12585 12585 * We can't have a DIF object without DIF text.
12586 12586 */
12587 12587 dtrace_dof_error(dof, "missing DIF text");
12588 12588 goto err;
12589 12589 }
12590 12590
12591 12591 /*
12592 12592 * Before we validate the DIF object, run through the variable table
12593 12593 * looking for the strings -- if any of their size are under, we'll set
12594 12594 * their size to be the system-wide default string size. Note that
12595 12595 * this should _not_ happen if the "strsize" option has been set --
12596 12596 * in this case, the compiler should have set the size to reflect the
12597 12597 * setting of the option.
12598 12598 */
12599 12599 for (i = 0; i < dp->dtdo_varlen; i++) {
12600 12600 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12601 12601 dtrace_diftype_t *t = &v->dtdv_type;
12602 12602
12603 12603 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12604 12604 continue;
12605 12605
12606 12606 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12607 12607 t->dtdt_size = dtrace_strsize_default;
12608 12608 }
12609 12609
12610 12610 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12611 12611 goto err;
12612 12612
12613 12613 dtrace_difo_init(dp, vstate);
12614 12614 return (dp);
12615 12615
12616 12616 err:
12617 12617 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12618 12618 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12619 12619 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12620 12620 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12621 12621
12622 12622 kmem_free(dp, sizeof (dtrace_difo_t));
12623 12623 return (NULL);
12624 12624 }
12625 12625
12626 12626 static dtrace_predicate_t *
12627 12627 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12628 12628 cred_t *cr)
12629 12629 {
12630 12630 dtrace_difo_t *dp;
12631 12631
12632 12632 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12633 12633 return (NULL);
12634 12634
12635 12635 return (dtrace_predicate_create(dp));
12636 12636 }
12637 12637
12638 12638 static dtrace_actdesc_t *
12639 12639 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12640 12640 cred_t *cr)
12641 12641 {
12642 12642 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12643 12643 dof_actdesc_t *desc;
12644 12644 dof_sec_t *difosec;
12645 12645 size_t offs;
12646 12646 uintptr_t daddr = (uintptr_t)dof;
12647 12647 uint64_t arg;
12648 12648 dtrace_actkind_t kind;
12649 12649
12650 12650 if (sec->dofs_type != DOF_SECT_ACTDESC) {
12651 12651 dtrace_dof_error(dof, "invalid action section");
12652 12652 return (NULL);
12653 12653 }
12654 12654
12655 12655 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12656 12656 dtrace_dof_error(dof, "truncated action description");
12657 12657 return (NULL);
12658 12658 }
12659 12659
12660 12660 if (sec->dofs_align != sizeof (uint64_t)) {
12661 12661 dtrace_dof_error(dof, "bad alignment in action description");
12662 12662 return (NULL);
12663 12663 }
12664 12664
12665 12665 if (sec->dofs_size < sec->dofs_entsize) {
12666 12666 dtrace_dof_error(dof, "section entry size exceeds total size");
12667 12667 return (NULL);
12668 12668 }
12669 12669
12670 12670 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12671 12671 dtrace_dof_error(dof, "bad entry size in action description");
12672 12672 return (NULL);
12673 12673 }
12674 12674
12675 12675 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12676 12676 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12677 12677 return (NULL);
12678 12678 }
12679 12679
12680 12680 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12681 12681 desc = (dof_actdesc_t *)(daddr +
12682 12682 (uintptr_t)sec->dofs_offset + offs);
12683 12683 kind = (dtrace_actkind_t)desc->dofa_kind;
12684 12684
12685 12685 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12686 12686 (kind != DTRACEACT_PRINTA ||
12687 12687 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12688 12688 (kind == DTRACEACT_DIFEXPR &&
12689 12689 desc->dofa_strtab != DOF_SECIDX_NONE)) {
12690 12690 dof_sec_t *strtab;
12691 12691 char *str, *fmt;
12692 12692 uint64_t i;
12693 12693
12694 12694 /*
12695 12695 * The argument to these actions is an index into the
12696 12696 * DOF string table. For printf()-like actions, this
12697 12697 * is the format string. For print(), this is the
12698 12698 * CTF type of the expression result.
12699 12699 */
12700 12700 if ((strtab = dtrace_dof_sect(dof,
12701 12701 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12702 12702 goto err;
12703 12703
12704 12704 str = (char *)((uintptr_t)dof +
12705 12705 (uintptr_t)strtab->dofs_offset);
12706 12706
12707 12707 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12708 12708 if (str[i] == '\0')
12709 12709 break;
12710 12710 }
12711 12711
12712 12712 if (i >= strtab->dofs_size) {
12713 12713 dtrace_dof_error(dof, "bogus format string");
12714 12714 goto err;
12715 12715 }
12716 12716
12717 12717 if (i == desc->dofa_arg) {
12718 12718 dtrace_dof_error(dof, "empty format string");
12719 12719 goto err;
12720 12720 }
12721 12721
12722 12722 i -= desc->dofa_arg;
12723 12723 fmt = kmem_alloc(i + 1, KM_SLEEP);
12724 12724 bcopy(&str[desc->dofa_arg], fmt, i + 1);
12725 12725 arg = (uint64_t)(uintptr_t)fmt;
12726 12726 } else {
12727 12727 if (kind == DTRACEACT_PRINTA) {
12728 12728 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12729 12729 arg = 0;
12730 12730 } else {
12731 12731 arg = desc->dofa_arg;
12732 12732 }
12733 12733 }
12734 12734
12735 12735 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12736 12736 desc->dofa_uarg, arg);
12737 12737
12738 12738 if (last != NULL) {
12739 12739 last->dtad_next = act;
12740 12740 } else {
12741 12741 first = act;
12742 12742 }
12743 12743
12744 12744 last = act;
12745 12745
12746 12746 if (desc->dofa_difo == DOF_SECIDX_NONE)
12747 12747 continue;
12748 12748
12749 12749 if ((difosec = dtrace_dof_sect(dof,
12750 12750 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12751 12751 goto err;
12752 12752
12753 12753 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12754 12754
12755 12755 if (act->dtad_difo == NULL)
12756 12756 goto err;
12757 12757 }
12758 12758
12759 12759 ASSERT(first != NULL);
12760 12760 return (first);
12761 12761
12762 12762 err:
12763 12763 for (act = first; act != NULL; act = next) {
12764 12764 next = act->dtad_next;
12765 12765 dtrace_actdesc_release(act, vstate);
12766 12766 }
12767 12767
12768 12768 return (NULL);
12769 12769 }
12770 12770
12771 12771 static dtrace_ecbdesc_t *
12772 12772 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12773 12773 cred_t *cr)
12774 12774 {
12775 12775 dtrace_ecbdesc_t *ep;
12776 12776 dof_ecbdesc_t *ecb;
12777 12777 dtrace_probedesc_t *desc;
12778 12778 dtrace_predicate_t *pred = NULL;
12779 12779
12780 12780 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12781 12781 dtrace_dof_error(dof, "truncated ECB description");
12782 12782 return (NULL);
12783 12783 }
12784 12784
12785 12785 if (sec->dofs_align != sizeof (uint64_t)) {
12786 12786 dtrace_dof_error(dof, "bad alignment in ECB description");
12787 12787 return (NULL);
12788 12788 }
12789 12789
12790 12790 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12791 12791 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12792 12792
12793 12793 if (sec == NULL)
12794 12794 return (NULL);
12795 12795
12796 12796 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12797 12797 ep->dted_uarg = ecb->dofe_uarg;
12798 12798 desc = &ep->dted_probe;
12799 12799
12800 12800 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12801 12801 goto err;
12802 12802
12803 12803 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12804 12804 if ((sec = dtrace_dof_sect(dof,
12805 12805 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12806 12806 goto err;
12807 12807
12808 12808 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12809 12809 goto err;
12810 12810
12811 12811 ep->dted_pred.dtpdd_predicate = pred;
12812 12812 }
12813 12813
12814 12814 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12815 12815 if ((sec = dtrace_dof_sect(dof,
12816 12816 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12817 12817 goto err;
12818 12818
12819 12819 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12820 12820
12821 12821 if (ep->dted_action == NULL)
12822 12822 goto err;
12823 12823 }
12824 12824
12825 12825 return (ep);
12826 12826
12827 12827 err:
12828 12828 if (pred != NULL)
12829 12829 dtrace_predicate_release(pred, vstate);
12830 12830 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12831 12831 return (NULL);
12832 12832 }
12833 12833
12834 12834 /*
12835 12835 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12836 12836 * specified DOF. At present, this amounts to simply adding 'ubase' to the
12837 12837 * site of any user SETX relocations to account for load object base address.
12838 12838 * In the future, if we need other relocations, this function can be extended.
12839 12839 */
12840 12840 static int
12841 12841 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12842 12842 {
12843 12843 uintptr_t daddr = (uintptr_t)dof;
12844 12844 dof_relohdr_t *dofr =
12845 12845 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12846 12846 dof_sec_t *ss, *rs, *ts;
12847 12847 dof_relodesc_t *r;
12848 12848 uint_t i, n;
12849 12849
12850 12850 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12851 12851 sec->dofs_align != sizeof (dof_secidx_t)) {
12852 12852 dtrace_dof_error(dof, "invalid relocation header");
12853 12853 return (-1);
12854 12854 }
12855 12855
12856 12856 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12857 12857 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12858 12858 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12859 12859
12860 12860 if (ss == NULL || rs == NULL || ts == NULL)
12861 12861 return (-1); /* dtrace_dof_error() has been called already */
12862 12862
12863 12863 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12864 12864 rs->dofs_align != sizeof (uint64_t)) {
12865 12865 dtrace_dof_error(dof, "invalid relocation section");
12866 12866 return (-1);
12867 12867 }
12868 12868
12869 12869 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12870 12870 n = rs->dofs_size / rs->dofs_entsize;
12871 12871
12872 12872 for (i = 0; i < n; i++) {
12873 12873 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12874 12874
12875 12875 switch (r->dofr_type) {
12876 12876 case DOF_RELO_NONE:
12877 12877 break;
12878 12878 case DOF_RELO_SETX:
12879 12879 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12880 12880 sizeof (uint64_t) > ts->dofs_size) {
12881 12881 dtrace_dof_error(dof, "bad relocation offset");
12882 12882 return (-1);
12883 12883 }
12884 12884
12885 12885 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12886 12886 dtrace_dof_error(dof, "misaligned setx relo");
12887 12887 return (-1);
12888 12888 }
12889 12889
12890 12890 *(uint64_t *)taddr += ubase;
12891 12891 break;
12892 12892 default:
12893 12893 dtrace_dof_error(dof, "invalid relocation type");
12894 12894 return (-1);
12895 12895 }
12896 12896
12897 12897 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12898 12898 }
12899 12899
12900 12900 return (0);
12901 12901 }
12902 12902
12903 12903 /*
12904 12904 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12905 12905 * header: it should be at the front of a memory region that is at least
12906 12906 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12907 12907 * size. It need not be validated in any other way.
12908 12908 */
12909 12909 static int
12910 12910 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12911 12911 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12912 12912 {
12913 12913 uint64_t len = dof->dofh_loadsz, seclen;
12914 12914 uintptr_t daddr = (uintptr_t)dof;
12915 12915 dtrace_ecbdesc_t *ep;
12916 12916 dtrace_enabling_t *enab;
12917 12917 uint_t i;
12918 12918
12919 12919 ASSERT(MUTEX_HELD(&dtrace_lock));
12920 12920 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12921 12921
12922 12922 /*
12923 12923 * Check the DOF header identification bytes. In addition to checking
12924 12924 * valid settings, we also verify that unused bits/bytes are zeroed so
12925 12925 * we can use them later without fear of regressing existing binaries.
12926 12926 */
12927 12927 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12928 12928 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12929 12929 dtrace_dof_error(dof, "DOF magic string mismatch");
12930 12930 return (-1);
12931 12931 }
12932 12932
12933 12933 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12934 12934 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12935 12935 dtrace_dof_error(dof, "DOF has invalid data model");
12936 12936 return (-1);
12937 12937 }
12938 12938
12939 12939 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12940 12940 dtrace_dof_error(dof, "DOF encoding mismatch");
12941 12941 return (-1);
12942 12942 }
12943 12943
12944 12944 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12945 12945 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12946 12946 dtrace_dof_error(dof, "DOF version mismatch");
12947 12947 return (-1);
12948 12948 }
12949 12949
12950 12950 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12951 12951 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12952 12952 return (-1);
12953 12953 }
12954 12954
12955 12955 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12956 12956 dtrace_dof_error(dof, "DOF uses too many integer registers");
12957 12957 return (-1);
12958 12958 }
12959 12959
12960 12960 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12961 12961 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12962 12962 return (-1);
12963 12963 }
12964 12964
12965 12965 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12966 12966 if (dof->dofh_ident[i] != 0) {
12967 12967 dtrace_dof_error(dof, "DOF has invalid ident byte set");
12968 12968 return (-1);
12969 12969 }
12970 12970 }
12971 12971
12972 12972 if (dof->dofh_flags & ~DOF_FL_VALID) {
12973 12973 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12974 12974 return (-1);
12975 12975 }
12976 12976
12977 12977 if (dof->dofh_secsize == 0) {
12978 12978 dtrace_dof_error(dof, "zero section header size");
12979 12979 return (-1);
12980 12980 }
12981 12981
12982 12982 /*
12983 12983 * Check that the section headers don't exceed the amount of DOF
12984 12984 * data. Note that we cast the section size and number of sections
12985 12985 * to uint64_t's to prevent possible overflow in the multiplication.
12986 12986 */
12987 12987 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12988 12988
12989 12989 if (dof->dofh_secoff > len || seclen > len ||
12990 12990 dof->dofh_secoff + seclen > len) {
12991 12991 dtrace_dof_error(dof, "truncated section headers");
12992 12992 return (-1);
12993 12993 }
12994 12994
12995 12995 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12996 12996 dtrace_dof_error(dof, "misaligned section headers");
12997 12997 return (-1);
12998 12998 }
12999 12999
13000 13000 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13001 13001 dtrace_dof_error(dof, "misaligned section size");
13002 13002 return (-1);
13003 13003 }
13004 13004
13005 13005 /*
13006 13006 * Take an initial pass through the section headers to be sure that
13007 13007 * the headers don't have stray offsets. If the 'noprobes' flag is
13008 13008 * set, do not permit sections relating to providers, probes, or args.
13009 13009 */
13010 13010 for (i = 0; i < dof->dofh_secnum; i++) {
13011 13011 dof_sec_t *sec = (dof_sec_t *)(daddr +
13012 13012 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13013 13013
13014 13014 if (noprobes) {
13015 13015 switch (sec->dofs_type) {
13016 13016 case DOF_SECT_PROVIDER:
13017 13017 case DOF_SECT_PROBES:
13018 13018 case DOF_SECT_PRARGS:
13019 13019 case DOF_SECT_PROFFS:
13020 13020 dtrace_dof_error(dof, "illegal sections "
13021 13021 "for enabling");
13022 13022 return (-1);
13023 13023 }
13024 13024 }
13025 13025
13026 13026 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13027 13027 !(sec->dofs_flags & DOF_SECF_LOAD)) {
13028 13028 dtrace_dof_error(dof, "loadable section with load "
13029 13029 "flag unset");
13030 13030 return (-1);
13031 13031 }
13032 13032
13033 13033 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13034 13034 continue; /* just ignore non-loadable sections */
13035 13035
13036 13036 if (sec->dofs_align & (sec->dofs_align - 1)) {
13037 13037 dtrace_dof_error(dof, "bad section alignment");
13038 13038 return (-1);
13039 13039 }
13040 13040
13041 13041 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13042 13042 dtrace_dof_error(dof, "misaligned section");
13043 13043 return (-1);
13044 13044 }
13045 13045
13046 13046 if (sec->dofs_offset > len || sec->dofs_size > len ||
13047 13047 sec->dofs_offset + sec->dofs_size > len) {
13048 13048 dtrace_dof_error(dof, "corrupt section header");
13049 13049 return (-1);
13050 13050 }
13051 13051
13052 13052 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13053 13053 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13054 13054 dtrace_dof_error(dof, "non-terminating string table");
13055 13055 return (-1);
13056 13056 }
13057 13057 }
13058 13058
13059 13059 /*
13060 13060 * Take a second pass through the sections and locate and perform any
13061 13061 * relocations that are present. We do this after the first pass to
13062 13062 * be sure that all sections have had their headers validated.
13063 13063 */
13064 13064 for (i = 0; i < dof->dofh_secnum; i++) {
13065 13065 dof_sec_t *sec = (dof_sec_t *)(daddr +
13066 13066 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13067 13067
13068 13068 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13069 13069 continue; /* skip sections that are not loadable */
13070 13070
13071 13071 switch (sec->dofs_type) {
13072 13072 case DOF_SECT_URELHDR:
13073 13073 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13074 13074 return (-1);
13075 13075 break;
13076 13076 }
13077 13077 }
13078 13078
13079 13079 if ((enab = *enabp) == NULL)
13080 13080 enab = *enabp = dtrace_enabling_create(vstate);
13081 13081
13082 13082 for (i = 0; i < dof->dofh_secnum; i++) {
13083 13083 dof_sec_t *sec = (dof_sec_t *)(daddr +
13084 13084 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13085 13085
13086 13086 if (sec->dofs_type != DOF_SECT_ECBDESC)
13087 13087 continue;
13088 13088
13089 13089 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13090 13090 dtrace_enabling_destroy(enab);
13091 13091 *enabp = NULL;
13092 13092 return (-1);
13093 13093 }
13094 13094
13095 13095 dtrace_enabling_add(enab, ep);
13096 13096 }
13097 13097
13098 13098 return (0);
13099 13099 }
13100 13100
13101 13101 /*
13102 13102 * Process DOF for any options. This routine assumes that the DOF has been
13103 13103 * at least processed by dtrace_dof_slurp().
13104 13104 */
13105 13105 static int
13106 13106 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13107 13107 {
13108 13108 int i, rval;
13109 13109 uint32_t entsize;
13110 13110 size_t offs;
13111 13111 dof_optdesc_t *desc;
13112 13112
13113 13113 for (i = 0; i < dof->dofh_secnum; i++) {
13114 13114 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13115 13115 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13116 13116
13117 13117 if (sec->dofs_type != DOF_SECT_OPTDESC)
13118 13118 continue;
13119 13119
13120 13120 if (sec->dofs_align != sizeof (uint64_t)) {
13121 13121 dtrace_dof_error(dof, "bad alignment in "
13122 13122 "option description");
13123 13123 return (EINVAL);
13124 13124 }
13125 13125
13126 13126 if ((entsize = sec->dofs_entsize) == 0) {
13127 13127 dtrace_dof_error(dof, "zeroed option entry size");
13128 13128 return (EINVAL);
13129 13129 }
13130 13130
13131 13131 if (entsize < sizeof (dof_optdesc_t)) {
13132 13132 dtrace_dof_error(dof, "bad option entry size");
13133 13133 return (EINVAL);
13134 13134 }
13135 13135
13136 13136 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13137 13137 desc = (dof_optdesc_t *)((uintptr_t)dof +
13138 13138 (uintptr_t)sec->dofs_offset + offs);
13139 13139
13140 13140 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13141 13141 dtrace_dof_error(dof, "non-zero option string");
13142 13142 return (EINVAL);
13143 13143 }
13144 13144
13145 13145 if (desc->dofo_value == DTRACEOPT_UNSET) {
13146 13146 dtrace_dof_error(dof, "unset option");
13147 13147 return (EINVAL);
13148 13148 }
13149 13149
13150 13150 if ((rval = dtrace_state_option(state,
13151 13151 desc->dofo_option, desc->dofo_value)) != 0) {
13152 13152 dtrace_dof_error(dof, "rejected option");
13153 13153 return (rval);
13154 13154 }
13155 13155 }
13156 13156 }
13157 13157
13158 13158 return (0);
13159 13159 }
13160 13160
13161 13161 /*
13162 13162 * DTrace Consumer State Functions
13163 13163 */
13164 13164 int
13165 13165 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13166 13166 {
13167 13167 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13168 13168 void *base;
13169 13169 uintptr_t limit;
13170 13170 dtrace_dynvar_t *dvar, *next, *start;
13171 13171 int i;
13172 13172
13173 13173 ASSERT(MUTEX_HELD(&dtrace_lock));
13174 13174 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13175 13175
13176 13176 bzero(dstate, sizeof (dtrace_dstate_t));
13177 13177
13178 13178 if ((dstate->dtds_chunksize = chunksize) == 0)
13179 13179 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13180 13180
13181 13181 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13182 13182 size = min;
13183 13183
13184 13184 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13185 13185 return (ENOMEM);
13186 13186
13187 13187 dstate->dtds_size = size;
13188 13188 dstate->dtds_base = base;
13189 13189 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13190 13190 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13191 13191
13192 13192 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13193 13193
13194 13194 if (hashsize != 1 && (hashsize & 1))
13195 13195 hashsize--;
13196 13196
13197 13197 dstate->dtds_hashsize = hashsize;
13198 13198 dstate->dtds_hash = dstate->dtds_base;
13199 13199
13200 13200 /*
13201 13201 * Set all of our hash buckets to point to the single sink, and (if
13202 13202 * it hasn't already been set), set the sink's hash value to be the
13203 13203 * sink sentinel value. The sink is needed for dynamic variable
13204 13204 * lookups to know that they have iterated over an entire, valid hash
13205 13205 * chain.
13206 13206 */
13207 13207 for (i = 0; i < hashsize; i++)
13208 13208 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13209 13209
13210 13210 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13211 13211 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13212 13212
13213 13213 /*
13214 13214 * Determine number of active CPUs. Divide free list evenly among
13215 13215 * active CPUs.
13216 13216 */
13217 13217 start = (dtrace_dynvar_t *)
13218 13218 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13219 13219 limit = (uintptr_t)base + size;
13220 13220
13221 13221 maxper = (limit - (uintptr_t)start) / NCPU;
13222 13222 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13223 13223
13224 13224 for (i = 0; i < NCPU; i++) {
13225 13225 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13226 13226
13227 13227 /*
13228 13228 * If we don't even have enough chunks to make it once through
13229 13229 * NCPUs, we're just going to allocate everything to the first
13230 13230 * CPU. And if we're on the last CPU, we're going to allocate
13231 13231 * whatever is left over. In either case, we set the limit to
13232 13232 * be the limit of the dynamic variable space.
13233 13233 */
13234 13234 if (maxper == 0 || i == NCPU - 1) {
13235 13235 limit = (uintptr_t)base + size;
13236 13236 start = NULL;
13237 13237 } else {
13238 13238 limit = (uintptr_t)start + maxper;
13239 13239 start = (dtrace_dynvar_t *)limit;
13240 13240 }
13241 13241
13242 13242 ASSERT(limit <= (uintptr_t)base + size);
13243 13243
13244 13244 for (;;) {
13245 13245 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13246 13246 dstate->dtds_chunksize);
13247 13247
13248 13248 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13249 13249 break;
13250 13250
13251 13251 dvar->dtdv_next = next;
13252 13252 dvar = next;
13253 13253 }
13254 13254
13255 13255 if (maxper == 0)
13256 13256 break;
13257 13257 }
13258 13258
13259 13259 return (0);
13260 13260 }
13261 13261
13262 13262 void
13263 13263 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13264 13264 {
13265 13265 ASSERT(MUTEX_HELD(&cpu_lock));
13266 13266
13267 13267 if (dstate->dtds_base == NULL)
13268 13268 return;
13269 13269
13270 13270 kmem_free(dstate->dtds_base, dstate->dtds_size);
13271 13271 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13272 13272 }
13273 13273
13274 13274 static void
13275 13275 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13276 13276 {
13277 13277 /*
13278 13278 * Logical XOR, where are you?
13279 13279 */
13280 13280 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13281 13281
13282 13282 if (vstate->dtvs_nglobals > 0) {
13283 13283 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13284 13284 sizeof (dtrace_statvar_t *));
13285 13285 }
13286 13286
13287 13287 if (vstate->dtvs_ntlocals > 0) {
13288 13288 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13289 13289 sizeof (dtrace_difv_t));
13290 13290 }
13291 13291
13292 13292 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13293 13293
13294 13294 if (vstate->dtvs_nlocals > 0) {
13295 13295 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13296 13296 sizeof (dtrace_statvar_t *));
13297 13297 }
13298 13298 }
13299 13299
13300 13300 static void
13301 13301 dtrace_state_clean(dtrace_state_t *state)
13302 13302 {
13303 13303 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13304 13304 return;
13305 13305
13306 13306 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13307 13307 dtrace_speculation_clean(state);
13308 13308 }
13309 13309
13310 13310 static void
13311 13311 dtrace_state_deadman(dtrace_state_t *state)
13312 13312 {
13313 13313 hrtime_t now;
13314 13314
13315 13315 dtrace_sync();
13316 13316
13317 13317 now = dtrace_gethrtime();
13318 13318
13319 13319 if (state != dtrace_anon.dta_state &&
13320 13320 now - state->dts_laststatus >= dtrace_deadman_user)
13321 13321 return;
13322 13322
13323 13323 /*
13324 13324 * We must be sure that dts_alive never appears to be less than the
13325 13325 * value upon entry to dtrace_state_deadman(), and because we lack a
13326 13326 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13327 13327 * store INT64_MAX to it, followed by a memory barrier, followed by
13328 13328 * the new value. This assures that dts_alive never appears to be
13329 13329 * less than its true value, regardless of the order in which the
13330 13330 * stores to the underlying storage are issued.
13331 13331 */
13332 13332 state->dts_alive = INT64_MAX;
13333 13333 dtrace_membar_producer();
13334 13334 state->dts_alive = now;
13335 13335 }
13336 13336
13337 13337 dtrace_state_t *
13338 13338 dtrace_state_create(dev_t *devp, cred_t *cr)
13339 13339 {
13340 13340 minor_t minor;
13341 13341 major_t major;
13342 13342 char c[30];
13343 13343 dtrace_state_t *state;
13344 13344 dtrace_optval_t *opt;
13345 13345 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13346 13346
13347 13347 ASSERT(MUTEX_HELD(&dtrace_lock));
13348 13348 ASSERT(MUTEX_HELD(&cpu_lock));
13349 13349
13350 13350 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13351 13351 VM_BESTFIT | VM_SLEEP);
13352 13352
13353 13353 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13354 13354 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13355 13355 return (NULL);
13356 13356 }
13357 13357
13358 13358 state = ddi_get_soft_state(dtrace_softstate, minor);
13359 13359 state->dts_epid = DTRACE_EPIDNONE + 1;
13360 13360
13361 13361 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13362 13362 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13363 13363 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13364 13364
13365 13365 if (devp != NULL) {
13366 13366 major = getemajor(*devp);
13367 13367 } else {
13368 13368 major = ddi_driver_major(dtrace_devi);
13369 13369 }
13370 13370
13371 13371 state->dts_dev = makedevice(major, minor);
13372 13372
13373 13373 if (devp != NULL)
13374 13374 *devp = state->dts_dev;
13375 13375
13376 13376 /*
13377 13377 * We allocate NCPU buffers. On the one hand, this can be quite
13378 13378 * a bit of memory per instance (nearly 36K on a Starcat). On the
13379 13379 * other hand, it saves an additional memory reference in the probe
13380 13380 * path.
13381 13381 */
13382 13382 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13383 13383 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13384 13384 state->dts_cleaner = CYCLIC_NONE;
13385 13385 state->dts_deadman = CYCLIC_NONE;
13386 13386 state->dts_vstate.dtvs_state = state;
13387 13387
13388 13388 for (i = 0; i < DTRACEOPT_MAX; i++)
13389 13389 state->dts_options[i] = DTRACEOPT_UNSET;
13390 13390
13391 13391 /*
13392 13392 * Set the default options.
13393 13393 */
13394 13394 opt = state->dts_options;
13395 13395 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13396 13396 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13397 13397 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13398 13398 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13399 13399 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13400 13400 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13401 13401 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13402 13402 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13403 13403 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13404 13404 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13405 13405 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13406 13406 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13407 13407 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13408 13408 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13409 13409
13410 13410 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13411 13411
13412 13412 /*
13413 13413 * Depending on the user credentials, we set flag bits which alter probe
13414 13414 * visibility or the amount of destructiveness allowed. In the case of
13415 13415 * actual anonymous tracing, or the possession of all privileges, all of
13416 13416 * the normal checks are bypassed.
13417 13417 */
13418 13418 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13419 13419 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13420 13420 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13421 13421 } else {
13422 13422 /*
13423 13423 * Set up the credentials for this instantiation. We take a
13424 13424 * hold on the credential to prevent it from disappearing on
13425 13425 * us; this in turn prevents the zone_t referenced by this
13426 13426 * credential from disappearing. This means that we can
13427 13427 * examine the credential and the zone from probe context.
13428 13428 */
13429 13429 crhold(cr);
13430 13430 state->dts_cred.dcr_cred = cr;
13431 13431
13432 13432 /*
13433 13433 * CRA_PROC means "we have *some* privilege for dtrace" and
13434 13434 * unlocks the use of variables like pid, zonename, etc.
13435 13435 */
13436 13436 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13437 13437 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13438 13438 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13439 13439 }
13440 13440
13441 13441 /*
13442 13442 * dtrace_user allows use of syscall and profile providers.
13443 13443 * If the user also has proc_owner and/or proc_zone, we
13444 13444 * extend the scope to include additional visibility and
13445 13445 * destructive power.
13446 13446 */
13447 13447 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13448 13448 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13449 13449 state->dts_cred.dcr_visible |=
13450 13450 DTRACE_CRV_ALLPROC;
13451 13451
13452 13452 state->dts_cred.dcr_action |=
13453 13453 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13454 13454 }
13455 13455
13456 13456 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13457 13457 state->dts_cred.dcr_visible |=
13458 13458 DTRACE_CRV_ALLZONE;
13459 13459
13460 13460 state->dts_cred.dcr_action |=
13461 13461 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13462 13462 }
13463 13463
13464 13464 /*
13465 13465 * If we have all privs in whatever zone this is,
13466 13466 * we can do destructive things to processes which
13467 13467 * have altered credentials.
13468 13468 */
13469 13469 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13470 13470 cr->cr_zone->zone_privset)) {
13471 13471 state->dts_cred.dcr_action |=
13472 13472 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13473 13473 }
13474 13474 }
13475 13475
13476 13476 /*
13477 13477 * Holding the dtrace_kernel privilege also implies that
13478 13478 * the user has the dtrace_user privilege from a visibility
13479 13479 * perspective. But without further privileges, some
13480 13480 * destructive actions are not available.
13481 13481 */
13482 13482 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13483 13483 /*
13484 13484 * Make all probes in all zones visible. However,
13485 13485 * this doesn't mean that all actions become available
13486 13486 * to all zones.
13487 13487 */
13488 13488 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13489 13489 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13490 13490
13491 13491 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13492 13492 DTRACE_CRA_PROC;
13493 13493 /*
13494 13494 * Holding proc_owner means that destructive actions
13495 13495 * for *this* zone are allowed.
13496 13496 */
13497 13497 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13498 13498 state->dts_cred.dcr_action |=
13499 13499 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13500 13500
13501 13501 /*
13502 13502 * Holding proc_zone means that destructive actions
13503 13503 * for this user/group ID in all zones is allowed.
13504 13504 */
13505 13505 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13506 13506 state->dts_cred.dcr_action |=
13507 13507 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13508 13508
13509 13509 /*
13510 13510 * If we have all privs in whatever zone this is,
13511 13511 * we can do destructive things to processes which
13512 13512 * have altered credentials.
13513 13513 */
13514 13514 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13515 13515 cr->cr_zone->zone_privset)) {
13516 13516 state->dts_cred.dcr_action |=
13517 13517 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13518 13518 }
13519 13519 }
13520 13520
13521 13521 /*
13522 13522 * Holding the dtrace_proc privilege gives control over fasttrap
13523 13523 * and pid providers. We need to grant wider destructive
13524 13524 * privileges in the event that the user has proc_owner and/or
13525 13525 * proc_zone.
13526 13526 */
13527 13527 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13528 13528 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13529 13529 state->dts_cred.dcr_action |=
13530 13530 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13531 13531
13532 13532 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13533 13533 state->dts_cred.dcr_action |=
13534 13534 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13535 13535 }
13536 13536 }
13537 13537
13538 13538 return (state);
13539 13539 }
13540 13540
13541 13541 static int
13542 13542 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13543 13543 {
13544 13544 dtrace_optval_t *opt = state->dts_options, size;
13545 13545 processorid_t cpu;
13546 13546 int flags = 0, rval, factor, divisor = 1;
13547 13547
13548 13548 ASSERT(MUTEX_HELD(&dtrace_lock));
13549 13549 ASSERT(MUTEX_HELD(&cpu_lock));
13550 13550 ASSERT(which < DTRACEOPT_MAX);
13551 13551 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13552 13552 (state == dtrace_anon.dta_state &&
13553 13553 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13554 13554
13555 13555 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13556 13556 return (0);
13557 13557
13558 13558 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13559 13559 cpu = opt[DTRACEOPT_CPU];
13560 13560
13561 13561 if (which == DTRACEOPT_SPECSIZE)
13562 13562 flags |= DTRACEBUF_NOSWITCH;
13563 13563
13564 13564 if (which == DTRACEOPT_BUFSIZE) {
13565 13565 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13566 13566 flags |= DTRACEBUF_RING;
13567 13567
13568 13568 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13569 13569 flags |= DTRACEBUF_FILL;
13570 13570
13571 13571 if (state != dtrace_anon.dta_state ||
13572 13572 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13573 13573 flags |= DTRACEBUF_INACTIVE;
13574 13574 }
13575 13575
13576 13576 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13577 13577 /*
13578 13578 * The size must be 8-byte aligned. If the size is not 8-byte
13579 13579 * aligned, drop it down by the difference.
13580 13580 */
13581 13581 if (size & (sizeof (uint64_t) - 1))
13582 13582 size -= size & (sizeof (uint64_t) - 1);
13583 13583
13584 13584 if (size < state->dts_reserve) {
13585 13585 /*
13586 13586 * Buffers always must be large enough to accommodate
13587 13587 * their prereserved space. We return E2BIG instead
13588 13588 * of ENOMEM in this case to allow for user-level
13589 13589 * software to differentiate the cases.
13590 13590 */
13591 13591 return (E2BIG);
13592 13592 }
13593 13593
13594 13594 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13595 13595
13596 13596 if (rval != ENOMEM) {
13597 13597 opt[which] = size;
13598 13598 return (rval);
13599 13599 }
13600 13600
13601 13601 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13602 13602 return (rval);
13603 13603
13604 13604 for (divisor = 2; divisor < factor; divisor <<= 1)
13605 13605 continue;
13606 13606 }
13607 13607
13608 13608 return (ENOMEM);
13609 13609 }
13610 13610
13611 13611 static int
13612 13612 dtrace_state_buffers(dtrace_state_t *state)
13613 13613 {
13614 13614 dtrace_speculation_t *spec = state->dts_speculations;
13615 13615 int rval, i;
13616 13616
13617 13617 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13618 13618 DTRACEOPT_BUFSIZE)) != 0)
13619 13619 return (rval);
13620 13620
13621 13621 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13622 13622 DTRACEOPT_AGGSIZE)) != 0)
13623 13623 return (rval);
13624 13624
13625 13625 for (i = 0; i < state->dts_nspeculations; i++) {
13626 13626 if ((rval = dtrace_state_buffer(state,
13627 13627 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13628 13628 return (rval);
13629 13629 }
13630 13630
13631 13631 return (0);
13632 13632 }
13633 13633
13634 13634 static void
13635 13635 dtrace_state_prereserve(dtrace_state_t *state)
13636 13636 {
13637 13637 dtrace_ecb_t *ecb;
13638 13638 dtrace_probe_t *probe;
13639 13639
13640 13640 state->dts_reserve = 0;
13641 13641
13642 13642 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13643 13643 return;
13644 13644
13645 13645 /*
13646 13646 * If our buffer policy is a "fill" buffer policy, we need to set the
13647 13647 * prereserved space to be the space required by the END probes.
13648 13648 */
13649 13649 probe = dtrace_probes[dtrace_probeid_end - 1];
13650 13650 ASSERT(probe != NULL);
13651 13651
13652 13652 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13653 13653 if (ecb->dte_state != state)
13654 13654 continue;
13655 13655
13656 13656 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13657 13657 }
13658 13658 }
13659 13659
13660 13660 static int
13661 13661 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13662 13662 {
13663 13663 dtrace_optval_t *opt = state->dts_options, sz, nspec;
13664 13664 dtrace_speculation_t *spec;
13665 13665 dtrace_buffer_t *buf;
13666 13666 cyc_handler_t hdlr;
13667 13667 cyc_time_t when;
13668 13668 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13669 13669 dtrace_icookie_t cookie;
13670 13670
13671 13671 mutex_enter(&cpu_lock);
13672 13672 mutex_enter(&dtrace_lock);
13673 13673
13674 13674 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13675 13675 rval = EBUSY;
13676 13676 goto out;
13677 13677 }
13678 13678
13679 13679 /*
13680 13680 * Before we can perform any checks, we must prime all of the
13681 13681 * retained enablings that correspond to this state.
13682 13682 */
13683 13683 dtrace_enabling_prime(state);
13684 13684
13685 13685 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13686 13686 rval = EACCES;
13687 13687 goto out;
13688 13688 }
13689 13689
13690 13690 dtrace_state_prereserve(state);
13691 13691
13692 13692 /*
13693 13693 * Now we want to do is try to allocate our speculations.
13694 13694 * We do not automatically resize the number of speculations; if
13695 13695 * this fails, we will fail the operation.
13696 13696 */
13697 13697 nspec = opt[DTRACEOPT_NSPEC];
13698 13698 ASSERT(nspec != DTRACEOPT_UNSET);
13699 13699
13700 13700 if (nspec > INT_MAX) {
13701 13701 rval = ENOMEM;
13702 13702 goto out;
13703 13703 }
13704 13704
13705 13705 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13706 13706 KM_NOSLEEP | KM_NORMALPRI);
13707 13707
13708 13708 if (spec == NULL) {
13709 13709 rval = ENOMEM;
13710 13710 goto out;
13711 13711 }
13712 13712
13713 13713 state->dts_speculations = spec;
13714 13714 state->dts_nspeculations = (int)nspec;
13715 13715
13716 13716 for (i = 0; i < nspec; i++) {
13717 13717 if ((buf = kmem_zalloc(bufsize,
13718 13718 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13719 13719 rval = ENOMEM;
13720 13720 goto err;
13721 13721 }
13722 13722
13723 13723 spec[i].dtsp_buffer = buf;
13724 13724 }
13725 13725
13726 13726 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13727 13727 if (dtrace_anon.dta_state == NULL) {
13728 13728 rval = ENOENT;
13729 13729 goto out;
13730 13730 }
13731 13731
13732 13732 if (state->dts_necbs != 0) {
13733 13733 rval = EALREADY;
13734 13734 goto out;
13735 13735 }
13736 13736
13737 13737 state->dts_anon = dtrace_anon_grab();
13738 13738 ASSERT(state->dts_anon != NULL);
13739 13739 state = state->dts_anon;
13740 13740
13741 13741 /*
13742 13742 * We want "grabanon" to be set in the grabbed state, so we'll
13743 13743 * copy that option value from the grabbing state into the
13744 13744 * grabbed state.
13745 13745 */
13746 13746 state->dts_options[DTRACEOPT_GRABANON] =
13747 13747 opt[DTRACEOPT_GRABANON];
13748 13748
13749 13749 *cpu = dtrace_anon.dta_beganon;
13750 13750
13751 13751 /*
13752 13752 * If the anonymous state is active (as it almost certainly
13753 13753 * is if the anonymous enabling ultimately matched anything),
13754 13754 * we don't allow any further option processing -- but we
13755 13755 * don't return failure.
13756 13756 */
13757 13757 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13758 13758 goto out;
13759 13759 }
13760 13760
13761 13761 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13762 13762 opt[DTRACEOPT_AGGSIZE] != 0) {
13763 13763 if (state->dts_aggregations == NULL) {
13764 13764 /*
13765 13765 * We're not going to create an aggregation buffer
13766 13766 * because we don't have any ECBs that contain
13767 13767 * aggregations -- set this option to 0.
13768 13768 */
13769 13769 opt[DTRACEOPT_AGGSIZE] = 0;
13770 13770 } else {
13771 13771 /*
13772 13772 * If we have an aggregation buffer, we must also have
13773 13773 * a buffer to use as scratch.
13774 13774 */
13775 13775 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13776 13776 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13777 13777 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13778 13778 }
13779 13779 }
13780 13780 }
13781 13781
13782 13782 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13783 13783 opt[DTRACEOPT_SPECSIZE] != 0) {
13784 13784 if (!state->dts_speculates) {
13785 13785 /*
13786 13786 * We're not going to create speculation buffers
13787 13787 * because we don't have any ECBs that actually
13788 13788 * speculate -- set the speculation size to 0.
13789 13789 */
13790 13790 opt[DTRACEOPT_SPECSIZE] = 0;
13791 13791 }
13792 13792 }
13793 13793
13794 13794 /*
13795 13795 * The bare minimum size for any buffer that we're actually going to
13796 13796 * do anything to is sizeof (uint64_t).
13797 13797 */
13798 13798 sz = sizeof (uint64_t);
13799 13799
13800 13800 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13801 13801 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13802 13802 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13803 13803 /*
13804 13804 * A buffer size has been explicitly set to 0 (or to a size
13805 13805 * that will be adjusted to 0) and we need the space -- we
13806 13806 * need to return failure. We return ENOSPC to differentiate
13807 13807 * it from failing to allocate a buffer due to failure to meet
13808 13808 * the reserve (for which we return E2BIG).
13809 13809 */
13810 13810 rval = ENOSPC;
13811 13811 goto out;
13812 13812 }
13813 13813
13814 13814 if ((rval = dtrace_state_buffers(state)) != 0)
13815 13815 goto err;
13816 13816
13817 13817 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13818 13818 sz = dtrace_dstate_defsize;
13819 13819
13820 13820 do {
13821 13821 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13822 13822
13823 13823 if (rval == 0)
13824 13824 break;
13825 13825
13826 13826 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13827 13827 goto err;
13828 13828 } while (sz >>= 1);
13829 13829
13830 13830 opt[DTRACEOPT_DYNVARSIZE] = sz;
13831 13831
13832 13832 if (rval != 0)
13833 13833 goto err;
13834 13834
13835 13835 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13836 13836 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13837 13837
13838 13838 if (opt[DTRACEOPT_CLEANRATE] == 0)
13839 13839 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13840 13840
13841 13841 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13842 13842 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13843 13843
13844 13844 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13845 13845 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13846 13846
13847 13847 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13848 13848 hdlr.cyh_arg = state;
13849 13849 hdlr.cyh_level = CY_LOW_LEVEL;
13850 13850
13851 13851 when.cyt_when = 0;
13852 13852 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13853 13853
13854 13854 state->dts_cleaner = cyclic_add(&hdlr, &when);
13855 13855
13856 13856 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13857 13857 hdlr.cyh_arg = state;
13858 13858 hdlr.cyh_level = CY_LOW_LEVEL;
13859 13859
13860 13860 when.cyt_when = 0;
13861 13861 when.cyt_interval = dtrace_deadman_interval;
13862 13862
13863 13863 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13864 13864 state->dts_deadman = cyclic_add(&hdlr, &when);
13865 13865
13866 13866 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13867 13867
13868 13868 if (state->dts_getf != 0 &&
13869 13869 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13870 13870 /*
13871 13871 * We don't have kernel privs but we have at least one call
13872 13872 * to getf(); we need to bump our zone's count, and (if
13873 13873 * this is the first enabling to have an unprivileged call
13874 13874 * to getf()) we need to hook into closef().
13875 13875 */
13876 13876 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13877 13877
13878 13878 if (dtrace_getf++ == 0) {
13879 13879 ASSERT(dtrace_closef == NULL);
13880 13880 dtrace_closef = dtrace_getf_barrier;
13881 13881 }
13882 13882 }
13883 13883
13884 13884 /*
13885 13885 * Now it's time to actually fire the BEGIN probe. We need to disable
13886 13886 * interrupts here both to record the CPU on which we fired the BEGIN
13887 13887 * probe (the data from this CPU will be processed first at user
13888 13888 * level) and to manually activate the buffer for this CPU.
13889 13889 */
13890 13890 cookie = dtrace_interrupt_disable();
13891 13891 *cpu = CPU->cpu_id;
13892 13892 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13893 13893 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13894 13894
13895 13895 dtrace_probe(dtrace_probeid_begin,
13896 13896 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13897 13897 dtrace_interrupt_enable(cookie);
13898 13898 /*
13899 13899 * We may have had an exit action from a BEGIN probe; only change our
13900 13900 * state to ACTIVE if we're still in WARMUP.
13901 13901 */
13902 13902 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13903 13903 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13904 13904
13905 13905 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13906 13906 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13907 13907
13908 13908 /*
13909 13909 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13910 13910 * want each CPU to transition its principal buffer out of the
13911 13911 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13912 13912 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13913 13913 * atomically transition from processing none of a state's ECBs to
13914 13914 * processing all of them.
13915 13915 */
13916 13916 dtrace_xcall(DTRACE_CPUALL,
13917 13917 (dtrace_xcall_t)dtrace_buffer_activate, state);
13918 13918 goto out;
13919 13919
13920 13920 err:
13921 13921 dtrace_buffer_free(state->dts_buffer);
13922 13922 dtrace_buffer_free(state->dts_aggbuffer);
13923 13923
13924 13924 if ((nspec = state->dts_nspeculations) == 0) {
13925 13925 ASSERT(state->dts_speculations == NULL);
13926 13926 goto out;
13927 13927 }
13928 13928
13929 13929 spec = state->dts_speculations;
13930 13930 ASSERT(spec != NULL);
13931 13931
13932 13932 for (i = 0; i < state->dts_nspeculations; i++) {
13933 13933 if ((buf = spec[i].dtsp_buffer) == NULL)
13934 13934 break;
13935 13935
13936 13936 dtrace_buffer_free(buf);
13937 13937 kmem_free(buf, bufsize);
13938 13938 }
13939 13939
13940 13940 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13941 13941 state->dts_nspeculations = 0;
13942 13942 state->dts_speculations = NULL;
13943 13943
13944 13944 out:
13945 13945 mutex_exit(&dtrace_lock);
13946 13946 mutex_exit(&cpu_lock);
13947 13947
13948 13948 return (rval);
13949 13949 }
13950 13950
13951 13951 static int
13952 13952 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13953 13953 {
13954 13954 dtrace_icookie_t cookie;
13955 13955
13956 13956 ASSERT(MUTEX_HELD(&dtrace_lock));
13957 13957
13958 13958 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13959 13959 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13960 13960 return (EINVAL);
13961 13961
13962 13962 /*
13963 13963 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13964 13964 * to be sure that every CPU has seen it. See below for the details
13965 13965 * on why this is done.
13966 13966 */
13967 13967 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13968 13968 dtrace_sync();
13969 13969
13970 13970 /*
13971 13971 * By this point, it is impossible for any CPU to be still processing
13972 13972 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13973 13973 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13974 13974 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13975 13975 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13976 13976 * iff we're in the END probe.
13977 13977 */
13978 13978 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13979 13979 dtrace_sync();
13980 13980 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13981 13981
13982 13982 /*
13983 13983 * Finally, we can release the reserve and call the END probe. We
13984 13984 * disable interrupts across calling the END probe to allow us to
13985 13985 * return the CPU on which we actually called the END probe. This
13986 13986 * allows user-land to be sure that this CPU's principal buffer is
13987 13987 * processed last.
13988 13988 */
13989 13989 state->dts_reserve = 0;
13990 13990
13991 13991 cookie = dtrace_interrupt_disable();
13992 13992 *cpu = CPU->cpu_id;
13993 13993 dtrace_probe(dtrace_probeid_end,
13994 13994 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13995 13995 dtrace_interrupt_enable(cookie);
13996 13996
13997 13997 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13998 13998 dtrace_sync();
13999 13999
14000 14000 if (state->dts_getf != 0 &&
14001 14001 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14002 14002 /*
14003 14003 * We don't have kernel privs but we have at least one call
14004 14004 * to getf(); we need to lower our zone's count, and (if
14005 14005 * this is the last enabling to have an unprivileged call
14006 14006 * to getf()) we need to clear the closef() hook.
14007 14007 */
14008 14008 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14009 14009 ASSERT(dtrace_closef == dtrace_getf_barrier);
14010 14010 ASSERT(dtrace_getf > 0);
14011 14011
14012 14012 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14013 14013
14014 14014 if (--dtrace_getf == 0)
14015 14015 dtrace_closef = NULL;
14016 14016 }
14017 14017
14018 14018 return (0);
14019 14019 }
14020 14020
14021 14021 static int
14022 14022 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14023 14023 dtrace_optval_t val)
14024 14024 {
14025 14025 ASSERT(MUTEX_HELD(&dtrace_lock));
14026 14026
14027 14027 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14028 14028 return (EBUSY);
14029 14029
14030 14030 if (option >= DTRACEOPT_MAX)
14031 14031 return (EINVAL);
14032 14032
14033 14033 if (option != DTRACEOPT_CPU && val < 0)
14034 14034 return (EINVAL);
14035 14035
14036 14036 switch (option) {
14037 14037 case DTRACEOPT_DESTRUCTIVE:
14038 14038 if (dtrace_destructive_disallow)
14039 14039 return (EACCES);
14040 14040
14041 14041 state->dts_cred.dcr_destructive = 1;
14042 14042 break;
14043 14043
14044 14044 case DTRACEOPT_BUFSIZE:
14045 14045 case DTRACEOPT_DYNVARSIZE:
14046 14046 case DTRACEOPT_AGGSIZE:
14047 14047 case DTRACEOPT_SPECSIZE:
14048 14048 case DTRACEOPT_STRSIZE:
14049 14049 if (val < 0)
14050 14050 return (EINVAL);
14051 14051
14052 14052 if (val >= LONG_MAX) {
14053 14053 /*
14054 14054 * If this is an otherwise negative value, set it to
14055 14055 * the highest multiple of 128m less than LONG_MAX.
14056 14056 * Technically, we're adjusting the size without
14057 14057 * regard to the buffer resizing policy, but in fact,
14058 14058 * this has no effect -- if we set the buffer size to
14059 14059 * ~LONG_MAX and the buffer policy is ultimately set to
14060 14060 * be "manual", the buffer allocation is guaranteed to
14061 14061 * fail, if only because the allocation requires two
14062 14062 * buffers. (We set the the size to the highest
14063 14063 * multiple of 128m because it ensures that the size
14064 14064 * will remain a multiple of a megabyte when
14065 14065 * repeatedly halved -- all the way down to 15m.)
14066 14066 */
14067 14067 val = LONG_MAX - (1 << 27) + 1;
14068 14068 }
14069 14069 }
14070 14070
14071 14071 state->dts_options[option] = val;
14072 14072
14073 14073 return (0);
14074 14074 }
14075 14075
14076 14076 static void
14077 14077 dtrace_state_destroy(dtrace_state_t *state)
14078 14078 {
14079 14079 dtrace_ecb_t *ecb;
14080 14080 dtrace_vstate_t *vstate = &state->dts_vstate;
14081 14081 minor_t minor = getminor(state->dts_dev);
14082 14082 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14083 14083 dtrace_speculation_t *spec = state->dts_speculations;
14084 14084 int nspec = state->dts_nspeculations;
14085 14085 uint32_t match;
14086 14086
14087 14087 ASSERT(MUTEX_HELD(&dtrace_lock));
14088 14088 ASSERT(MUTEX_HELD(&cpu_lock));
14089 14089
14090 14090 /*
14091 14091 * First, retract any retained enablings for this state.
14092 14092 */
14093 14093 dtrace_enabling_retract(state);
14094 14094 ASSERT(state->dts_nretained == 0);
14095 14095
14096 14096 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14097 14097 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14098 14098 /*
14099 14099 * We have managed to come into dtrace_state_destroy() on a
14100 14100 * hot enabling -- almost certainly because of a disorderly
14101 14101 * shutdown of a consumer. (That is, a consumer that is
14102 14102 * exiting without having called dtrace_stop().) In this case,
14103 14103 * we're going to set our activity to be KILLED, and then
14104 14104 * issue a sync to be sure that everyone is out of probe
14105 14105 * context before we start blowing away ECBs.
14106 14106 */
14107 14107 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14108 14108 dtrace_sync();
14109 14109 }
14110 14110
14111 14111 /*
14112 14112 * Release the credential hold we took in dtrace_state_create().
14113 14113 */
14114 14114 if (state->dts_cred.dcr_cred != NULL)
14115 14115 crfree(state->dts_cred.dcr_cred);
14116 14116
14117 14117 /*
14118 14118 * Now we can safely disable and destroy any enabled probes. Because
14119 14119 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14120 14120 * (especially if they're all enabled), we take two passes through the
14121 14121 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14122 14122 * in the second we disable whatever is left over.
14123 14123 */
14124 14124 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14125 14125 for (i = 0; i < state->dts_necbs; i++) {
14126 14126 if ((ecb = state->dts_ecbs[i]) == NULL)
14127 14127 continue;
14128 14128
14129 14129 if (match && ecb->dte_probe != NULL) {
14130 14130 dtrace_probe_t *probe = ecb->dte_probe;
14131 14131 dtrace_provider_t *prov = probe->dtpr_provider;
14132 14132
14133 14133 if (!(prov->dtpv_priv.dtpp_flags & match))
14134 14134 continue;
14135 14135 }
14136 14136
14137 14137 dtrace_ecb_disable(ecb);
14138 14138 dtrace_ecb_destroy(ecb);
14139 14139 }
14140 14140
14141 14141 if (!match)
14142 14142 break;
14143 14143 }
14144 14144
14145 14145 /*
14146 14146 * Before we free the buffers, perform one more sync to assure that
14147 14147 * every CPU is out of probe context.
14148 14148 */
14149 14149 dtrace_sync();
14150 14150
14151 14151 dtrace_buffer_free(state->dts_buffer);
14152 14152 dtrace_buffer_free(state->dts_aggbuffer);
14153 14153
14154 14154 for (i = 0; i < nspec; i++)
14155 14155 dtrace_buffer_free(spec[i].dtsp_buffer);
14156 14156
14157 14157 if (state->dts_cleaner != CYCLIC_NONE)
14158 14158 cyclic_remove(state->dts_cleaner);
14159 14159
14160 14160 if (state->dts_deadman != CYCLIC_NONE)
14161 14161 cyclic_remove(state->dts_deadman);
14162 14162
14163 14163 dtrace_dstate_fini(&vstate->dtvs_dynvars);
14164 14164 dtrace_vstate_fini(vstate);
14165 14165 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14166 14166
14167 14167 if (state->dts_aggregations != NULL) {
14168 14168 #ifdef DEBUG
14169 14169 for (i = 0; i < state->dts_naggregations; i++)
14170 14170 ASSERT(state->dts_aggregations[i] == NULL);
14171 14171 #endif
14172 14172 ASSERT(state->dts_naggregations > 0);
14173 14173 kmem_free(state->dts_aggregations,
14174 14174 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14175 14175 }
14176 14176
14177 14177 kmem_free(state->dts_buffer, bufsize);
14178 14178 kmem_free(state->dts_aggbuffer, bufsize);
14179 14179
14180 14180 for (i = 0; i < nspec; i++)
14181 14181 kmem_free(spec[i].dtsp_buffer, bufsize);
14182 14182
14183 14183 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14184 14184
14185 14185 dtrace_format_destroy(state);
14186 14186
14187 14187 vmem_destroy(state->dts_aggid_arena);
14188 14188 ddi_soft_state_free(dtrace_softstate, minor);
14189 14189 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14190 14190 }
14191 14191
14192 14192 /*
14193 14193 * DTrace Anonymous Enabling Functions
14194 14194 */
14195 14195 static dtrace_state_t *
14196 14196 dtrace_anon_grab(void)
14197 14197 {
14198 14198 dtrace_state_t *state;
14199 14199
14200 14200 ASSERT(MUTEX_HELD(&dtrace_lock));
14201 14201
14202 14202 if ((state = dtrace_anon.dta_state) == NULL) {
14203 14203 ASSERT(dtrace_anon.dta_enabling == NULL);
14204 14204 return (NULL);
14205 14205 }
14206 14206
14207 14207 ASSERT(dtrace_anon.dta_enabling != NULL);
14208 14208 ASSERT(dtrace_retained != NULL);
14209 14209
14210 14210 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14211 14211 dtrace_anon.dta_enabling = NULL;
14212 14212 dtrace_anon.dta_state = NULL;
14213 14213
14214 14214 return (state);
14215 14215 }
14216 14216
14217 14217 static void
14218 14218 dtrace_anon_property(void)
14219 14219 {
14220 14220 int i, rv;
14221 14221 dtrace_state_t *state;
14222 14222 dof_hdr_t *dof;
14223 14223 char c[32]; /* enough for "dof-data-" + digits */
14224 14224
14225 14225 ASSERT(MUTEX_HELD(&dtrace_lock));
14226 14226 ASSERT(MUTEX_HELD(&cpu_lock));
14227 14227
14228 14228 for (i = 0; ; i++) {
14229 14229 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14230 14230
14231 14231 dtrace_err_verbose = 1;
14232 14232
14233 14233 if ((dof = dtrace_dof_property(c)) == NULL) {
14234 14234 dtrace_err_verbose = 0;
14235 14235 break;
14236 14236 }
14237 14237
14238 14238 /*
14239 14239 * We want to create anonymous state, so we need to transition
14240 14240 * the kernel debugger to indicate that DTrace is active. If
14241 14241 * this fails (e.g. because the debugger has modified text in
14242 14242 * some way), we won't continue with the processing.
14243 14243 */
14244 14244 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14245 14245 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14246 14246 "enabling ignored.");
14247 14247 dtrace_dof_destroy(dof);
14248 14248 break;
14249 14249 }
14250 14250
14251 14251 /*
14252 14252 * If we haven't allocated an anonymous state, we'll do so now.
14253 14253 */
14254 14254 if ((state = dtrace_anon.dta_state) == NULL) {
14255 14255 state = dtrace_state_create(NULL, NULL);
14256 14256 dtrace_anon.dta_state = state;
14257 14257
14258 14258 if (state == NULL) {
14259 14259 /*
14260 14260 * This basically shouldn't happen: the only
14261 14261 * failure mode from dtrace_state_create() is a
14262 14262 * failure of ddi_soft_state_zalloc() that
14263 14263 * itself should never happen. Still, the
14264 14264 * interface allows for a failure mode, and
14265 14265 * we want to fail as gracefully as possible:
14266 14266 * we'll emit an error message and cease
14267 14267 * processing anonymous state in this case.
14268 14268 */
14269 14269 cmn_err(CE_WARN, "failed to create "
14270 14270 "anonymous state");
14271 14271 dtrace_dof_destroy(dof);
14272 14272 break;
14273 14273 }
14274 14274 }
14275 14275
14276 14276 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14277 14277 &dtrace_anon.dta_enabling, 0, B_TRUE);
14278 14278
14279 14279 if (rv == 0)
14280 14280 rv = dtrace_dof_options(dof, state);
14281 14281
14282 14282 dtrace_err_verbose = 0;
14283 14283 dtrace_dof_destroy(dof);
14284 14284
14285 14285 if (rv != 0) {
14286 14286 /*
14287 14287 * This is malformed DOF; chuck any anonymous state
14288 14288 * that we created.
14289 14289 */
14290 14290 ASSERT(dtrace_anon.dta_enabling == NULL);
14291 14291 dtrace_state_destroy(state);
14292 14292 dtrace_anon.dta_state = NULL;
14293 14293 break;
14294 14294 }
14295 14295
14296 14296 ASSERT(dtrace_anon.dta_enabling != NULL);
14297 14297 }
14298 14298
14299 14299 if (dtrace_anon.dta_enabling != NULL) {
14300 14300 int rval;
14301 14301
14302 14302 /*
14303 14303 * dtrace_enabling_retain() can only fail because we are
14304 14304 * trying to retain more enablings than are allowed -- but
14305 14305 * we only have one anonymous enabling, and we are guaranteed
14306 14306 * to be allowed at least one retained enabling; we assert
14307 14307 * that dtrace_enabling_retain() returns success.
14308 14308 */
14309 14309 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14310 14310 ASSERT(rval == 0);
14311 14311
14312 14312 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14313 14313 }
14314 14314 }
14315 14315
14316 14316 /*
14317 14317 * DTrace Helper Functions
14318 14318 */
14319 14319 static void
14320 14320 dtrace_helper_trace(dtrace_helper_action_t *helper,
14321 14321 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14322 14322 {
14323 14323 uint32_t size, next, nnext, i;
14324 14324 dtrace_helptrace_t *ent;
14325 14325 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14326 14326
14327 14327 if (!dtrace_helptrace_enabled)
14328 14328 return;
14329 14329
14330 14330 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14331 14331
14332 14332 /*
14333 14333 * What would a tracing framework be without its own tracing
14334 14334 * framework? (Well, a hell of a lot simpler, for starters...)
14335 14335 */
14336 14336 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14337 14337 sizeof (uint64_t) - sizeof (uint64_t);
14338 14338
14339 14339 /*
14340 14340 * Iterate until we can allocate a slot in the trace buffer.
14341 14341 */
14342 14342 do {
14343 14343 next = dtrace_helptrace_next;
14344 14344
14345 14345 if (next + size < dtrace_helptrace_bufsize) {
14346 14346 nnext = next + size;
14347 14347 } else {
14348 14348 nnext = size;
14349 14349 }
14350 14350 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14351 14351
14352 14352 /*
14353 14353 * We have our slot; fill it in.
14354 14354 */
14355 14355 if (nnext == size)
14356 14356 next = 0;
14357 14357
14358 14358 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14359 14359 ent->dtht_helper = helper;
14360 14360 ent->dtht_where = where;
14361 14361 ent->dtht_nlocals = vstate->dtvs_nlocals;
14362 14362
14363 14363 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14364 14364 mstate->dtms_fltoffs : -1;
14365 14365 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14366 14366 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14367 14367
14368 14368 for (i = 0; i < vstate->dtvs_nlocals; i++) {
14369 14369 dtrace_statvar_t *svar;
14370 14370
14371 14371 if ((svar = vstate->dtvs_locals[i]) == NULL)
14372 14372 continue;
14373 14373
14374 14374 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14375 14375 ent->dtht_locals[i] =
14376 14376 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14377 14377 }
14378 14378 }
14379 14379
14380 14380 static uint64_t
14381 14381 dtrace_helper(int which, dtrace_mstate_t *mstate,
14382 14382 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14383 14383 {
14384 14384 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14385 14385 uint64_t sarg0 = mstate->dtms_arg[0];
14386 14386 uint64_t sarg1 = mstate->dtms_arg[1];
14387 14387 uint64_t rval;
14388 14388 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14389 14389 dtrace_helper_action_t *helper;
14390 14390 dtrace_vstate_t *vstate;
14391 14391 dtrace_difo_t *pred;
14392 14392 int i, trace = dtrace_helptrace_enabled;
14393 14393
14394 14394 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14395 14395
14396 14396 if (helpers == NULL)
14397 14397 return (0);
14398 14398
14399 14399 if ((helper = helpers->dthps_actions[which]) == NULL)
14400 14400 return (0);
14401 14401
14402 14402 vstate = &helpers->dthps_vstate;
14403 14403 mstate->dtms_arg[0] = arg0;
14404 14404 mstate->dtms_arg[1] = arg1;
14405 14405
14406 14406 /*
14407 14407 * Now iterate over each helper. If its predicate evaluates to 'true',
14408 14408 * we'll call the corresponding actions. Note that the below calls
14409 14409 * to dtrace_dif_emulate() may set faults in machine state. This is
14410 14410 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14411 14411 * the stored DIF offset with its own (which is the desired behavior).
14412 14412 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14413 14413 * from machine state; this is okay, too.
14414 14414 */
14415 14415 for (; helper != NULL; helper = helper->dtha_next) {
14416 14416 if ((pred = helper->dtha_predicate) != NULL) {
14417 14417 if (trace)
14418 14418 dtrace_helper_trace(helper, mstate, vstate, 0);
14419 14419
14420 14420 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14421 14421 goto next;
14422 14422
14423 14423 if (*flags & CPU_DTRACE_FAULT)
14424 14424 goto err;
14425 14425 }
14426 14426
14427 14427 for (i = 0; i < helper->dtha_nactions; i++) {
14428 14428 if (trace)
14429 14429 dtrace_helper_trace(helper,
14430 14430 mstate, vstate, i + 1);
14431 14431
14432 14432 rval = dtrace_dif_emulate(helper->dtha_actions[i],
14433 14433 mstate, vstate, state);
14434 14434
14435 14435 if (*flags & CPU_DTRACE_FAULT)
14436 14436 goto err;
14437 14437 }
14438 14438
14439 14439 next:
14440 14440 if (trace)
14441 14441 dtrace_helper_trace(helper, mstate, vstate,
14442 14442 DTRACE_HELPTRACE_NEXT);
14443 14443 }
14444 14444
14445 14445 if (trace)
14446 14446 dtrace_helper_trace(helper, mstate, vstate,
14447 14447 DTRACE_HELPTRACE_DONE);
14448 14448
14449 14449 /*
14450 14450 * Restore the arg0 that we saved upon entry.
14451 14451 */
14452 14452 mstate->dtms_arg[0] = sarg0;
14453 14453 mstate->dtms_arg[1] = sarg1;
14454 14454
14455 14455 return (rval);
14456 14456
14457 14457 err:
14458 14458 if (trace)
14459 14459 dtrace_helper_trace(helper, mstate, vstate,
14460 14460 DTRACE_HELPTRACE_ERR);
14461 14461
14462 14462 /*
14463 14463 * Restore the arg0 that we saved upon entry.
14464 14464 */
14465 14465 mstate->dtms_arg[0] = sarg0;
14466 14466 mstate->dtms_arg[1] = sarg1;
14467 14467
14468 14468 return (NULL);
14469 14469 }
14470 14470
14471 14471 static void
14472 14472 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14473 14473 dtrace_vstate_t *vstate)
14474 14474 {
14475 14475 int i;
14476 14476
14477 14477 if (helper->dtha_predicate != NULL)
14478 14478 dtrace_difo_release(helper->dtha_predicate, vstate);
14479 14479
14480 14480 for (i = 0; i < helper->dtha_nactions; i++) {
14481 14481 ASSERT(helper->dtha_actions[i] != NULL);
14482 14482 dtrace_difo_release(helper->dtha_actions[i], vstate);
14483 14483 }
14484 14484
14485 14485 kmem_free(helper->dtha_actions,
14486 14486 helper->dtha_nactions * sizeof (dtrace_difo_t *));
14487 14487 kmem_free(helper, sizeof (dtrace_helper_action_t));
14488 14488 }
14489 14489
14490 14490 static int
14491 14491 dtrace_helper_destroygen(int gen)
14492 14492 {
14493 14493 proc_t *p = curproc;
14494 14494 dtrace_helpers_t *help = p->p_dtrace_helpers;
14495 14495 dtrace_vstate_t *vstate;
14496 14496 int i;
14497 14497
14498 14498 ASSERT(MUTEX_HELD(&dtrace_lock));
14499 14499
14500 14500 if (help == NULL || gen > help->dthps_generation)
14501 14501 return (EINVAL);
14502 14502
14503 14503 vstate = &help->dthps_vstate;
14504 14504
14505 14505 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14506 14506 dtrace_helper_action_t *last = NULL, *h, *next;
14507 14507
14508 14508 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14509 14509 next = h->dtha_next;
14510 14510
14511 14511 if (h->dtha_generation == gen) {
14512 14512 if (last != NULL) {
14513 14513 last->dtha_next = next;
14514 14514 } else {
14515 14515 help->dthps_actions[i] = next;
14516 14516 }
14517 14517
14518 14518 dtrace_helper_action_destroy(h, vstate);
14519 14519 } else {
14520 14520 last = h;
14521 14521 }
14522 14522 }
14523 14523 }
14524 14524
14525 14525 /*
14526 14526 * Interate until we've cleared out all helper providers with the
14527 14527 * given generation number.
14528 14528 */
14529 14529 for (;;) {
14530 14530 dtrace_helper_provider_t *prov;
14531 14531
14532 14532 /*
14533 14533 * Look for a helper provider with the right generation. We
14534 14534 * have to start back at the beginning of the list each time
14535 14535 * because we drop dtrace_lock. It's unlikely that we'll make
14536 14536 * more than two passes.
14537 14537 */
14538 14538 for (i = 0; i < help->dthps_nprovs; i++) {
14539 14539 prov = help->dthps_provs[i];
14540 14540
14541 14541 if (prov->dthp_generation == gen)
14542 14542 break;
14543 14543 }
14544 14544
14545 14545 /*
14546 14546 * If there were no matches, we're done.
14547 14547 */
14548 14548 if (i == help->dthps_nprovs)
14549 14549 break;
14550 14550
14551 14551 /*
14552 14552 * Move the last helper provider into this slot.
14553 14553 */
14554 14554 help->dthps_nprovs--;
14555 14555 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14556 14556 help->dthps_provs[help->dthps_nprovs] = NULL;
14557 14557
14558 14558 mutex_exit(&dtrace_lock);
14559 14559
14560 14560 /*
14561 14561 * If we have a meta provider, remove this helper provider.
14562 14562 */
14563 14563 mutex_enter(&dtrace_meta_lock);
14564 14564 if (dtrace_meta_pid != NULL) {
14565 14565 ASSERT(dtrace_deferred_pid == NULL);
14566 14566 dtrace_helper_provider_remove(&prov->dthp_prov,
14567 14567 p->p_pid);
14568 14568 }
14569 14569 mutex_exit(&dtrace_meta_lock);
14570 14570
14571 14571 dtrace_helper_provider_destroy(prov);
14572 14572
14573 14573 mutex_enter(&dtrace_lock);
14574 14574 }
14575 14575
14576 14576 return (0);
14577 14577 }
14578 14578
14579 14579 static int
14580 14580 dtrace_helper_validate(dtrace_helper_action_t *helper)
14581 14581 {
14582 14582 int err = 0, i;
14583 14583 dtrace_difo_t *dp;
14584 14584
14585 14585 if ((dp = helper->dtha_predicate) != NULL)
14586 14586 err += dtrace_difo_validate_helper(dp);
14587 14587
14588 14588 for (i = 0; i < helper->dtha_nactions; i++)
14589 14589 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14590 14590
14591 14591 return (err == 0);
14592 14592 }
14593 14593
14594 14594 static int
14595 14595 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14596 14596 {
14597 14597 dtrace_helpers_t *help;
14598 14598 dtrace_helper_action_t *helper, *last;
14599 14599 dtrace_actdesc_t *act;
14600 14600 dtrace_vstate_t *vstate;
14601 14601 dtrace_predicate_t *pred;
14602 14602 int count = 0, nactions = 0, i;
14603 14603
14604 14604 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14605 14605 return (EINVAL);
14606 14606
14607 14607 help = curproc->p_dtrace_helpers;
14608 14608 last = help->dthps_actions[which];
14609 14609 vstate = &help->dthps_vstate;
14610 14610
14611 14611 for (count = 0; last != NULL; last = last->dtha_next) {
14612 14612 count++;
14613 14613 if (last->dtha_next == NULL)
14614 14614 break;
14615 14615 }
14616 14616
14617 14617 /*
14618 14618 * If we already have dtrace_helper_actions_max helper actions for this
14619 14619 * helper action type, we'll refuse to add a new one.
14620 14620 */
14621 14621 if (count >= dtrace_helper_actions_max)
14622 14622 return (ENOSPC);
14623 14623
14624 14624 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14625 14625 helper->dtha_generation = help->dthps_generation;
14626 14626
14627 14627 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14628 14628 ASSERT(pred->dtp_difo != NULL);
14629 14629 dtrace_difo_hold(pred->dtp_difo);
14630 14630 helper->dtha_predicate = pred->dtp_difo;
14631 14631 }
14632 14632
14633 14633 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14634 14634 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14635 14635 goto err;
14636 14636
14637 14637 if (act->dtad_difo == NULL)
14638 14638 goto err;
14639 14639
14640 14640 nactions++;
14641 14641 }
14642 14642
14643 14643 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14644 14644 (helper->dtha_nactions = nactions), KM_SLEEP);
14645 14645
14646 14646 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14647 14647 dtrace_difo_hold(act->dtad_difo);
14648 14648 helper->dtha_actions[i++] = act->dtad_difo;
14649 14649 }
14650 14650
14651 14651 if (!dtrace_helper_validate(helper))
14652 14652 goto err;
14653 14653
14654 14654 if (last == NULL) {
14655 14655 help->dthps_actions[which] = helper;
14656 14656 } else {
14657 14657 last->dtha_next = helper;
14658 14658 }
14659 14659
14660 14660 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14661 14661 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14662 14662 dtrace_helptrace_next = 0;
14663 14663 }
14664 14664
14665 14665 return (0);
14666 14666 err:
14667 14667 dtrace_helper_action_destroy(helper, vstate);
14668 14668 return (EINVAL);
14669 14669 }
14670 14670
14671 14671 static void
14672 14672 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14673 14673 dof_helper_t *dofhp)
14674 14674 {
14675 14675 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14676 14676
14677 14677 mutex_enter(&dtrace_meta_lock);
14678 14678 mutex_enter(&dtrace_lock);
14679 14679
14680 14680 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14681 14681 /*
14682 14682 * If the dtrace module is loaded but not attached, or if
14683 14683 * there aren't isn't a meta provider registered to deal with
14684 14684 * these provider descriptions, we need to postpone creating
14685 14685 * the actual providers until later.
14686 14686 */
14687 14687
14688 14688 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14689 14689 dtrace_deferred_pid != help) {
14690 14690 help->dthps_deferred = 1;
14691 14691 help->dthps_pid = p->p_pid;
14692 14692 help->dthps_next = dtrace_deferred_pid;
14693 14693 help->dthps_prev = NULL;
14694 14694 if (dtrace_deferred_pid != NULL)
14695 14695 dtrace_deferred_pid->dthps_prev = help;
14696 14696 dtrace_deferred_pid = help;
14697 14697 }
14698 14698
14699 14699 mutex_exit(&dtrace_lock);
14700 14700
14701 14701 } else if (dofhp != NULL) {
14702 14702 /*
14703 14703 * If the dtrace module is loaded and we have a particular
14704 14704 * helper provider description, pass that off to the
14705 14705 * meta provider.
14706 14706 */
14707 14707
14708 14708 mutex_exit(&dtrace_lock);
14709 14709
14710 14710 dtrace_helper_provide(dofhp, p->p_pid);
14711 14711
14712 14712 } else {
14713 14713 /*
14714 14714 * Otherwise, just pass all the helper provider descriptions
14715 14715 * off to the meta provider.
14716 14716 */
14717 14717
14718 14718 int i;
14719 14719 mutex_exit(&dtrace_lock);
14720 14720
14721 14721 for (i = 0; i < help->dthps_nprovs; i++) {
14722 14722 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14723 14723 p->p_pid);
14724 14724 }
14725 14725 }
14726 14726
14727 14727 mutex_exit(&dtrace_meta_lock);
14728 14728 }
14729 14729
14730 14730 static int
14731 14731 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14732 14732 {
14733 14733 dtrace_helpers_t *help;
14734 14734 dtrace_helper_provider_t *hprov, **tmp_provs;
14735 14735 uint_t tmp_maxprovs, i;
14736 14736
14737 14737 ASSERT(MUTEX_HELD(&dtrace_lock));
14738 14738
14739 14739 help = curproc->p_dtrace_helpers;
14740 14740 ASSERT(help != NULL);
14741 14741
14742 14742 /*
14743 14743 * If we already have dtrace_helper_providers_max helper providers,
14744 14744 * we're refuse to add a new one.
14745 14745 */
14746 14746 if (help->dthps_nprovs >= dtrace_helper_providers_max)
14747 14747 return (ENOSPC);
14748 14748
14749 14749 /*
14750 14750 * Check to make sure this isn't a duplicate.
14751 14751 */
14752 14752 for (i = 0; i < help->dthps_nprovs; i++) {
14753 14753 if (dofhp->dofhp_dof ==
14754 14754 help->dthps_provs[i]->dthp_prov.dofhp_dof)
14755 14755 return (EALREADY);
14756 14756 }
14757 14757
14758 14758 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14759 14759 hprov->dthp_prov = *dofhp;
14760 14760 hprov->dthp_ref = 1;
14761 14761 hprov->dthp_generation = gen;
14762 14762
14763 14763 /*
14764 14764 * Allocate a bigger table for helper providers if it's already full.
14765 14765 */
14766 14766 if (help->dthps_maxprovs == help->dthps_nprovs) {
14767 14767 tmp_maxprovs = help->dthps_maxprovs;
14768 14768 tmp_provs = help->dthps_provs;
14769 14769
14770 14770 if (help->dthps_maxprovs == 0)
14771 14771 help->dthps_maxprovs = 2;
14772 14772 else
14773 14773 help->dthps_maxprovs *= 2;
14774 14774 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14775 14775 help->dthps_maxprovs = dtrace_helper_providers_max;
14776 14776
14777 14777 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14778 14778
14779 14779 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14780 14780 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14781 14781
14782 14782 if (tmp_provs != NULL) {
14783 14783 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14784 14784 sizeof (dtrace_helper_provider_t *));
14785 14785 kmem_free(tmp_provs, tmp_maxprovs *
14786 14786 sizeof (dtrace_helper_provider_t *));
14787 14787 }
14788 14788 }
14789 14789
14790 14790 help->dthps_provs[help->dthps_nprovs] = hprov;
14791 14791 help->dthps_nprovs++;
14792 14792
14793 14793 return (0);
14794 14794 }
14795 14795
14796 14796 static void
14797 14797 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14798 14798 {
14799 14799 mutex_enter(&dtrace_lock);
14800 14800
14801 14801 if (--hprov->dthp_ref == 0) {
14802 14802 dof_hdr_t *dof;
14803 14803 mutex_exit(&dtrace_lock);
14804 14804 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14805 14805 dtrace_dof_destroy(dof);
14806 14806 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14807 14807 } else {
14808 14808 mutex_exit(&dtrace_lock);
14809 14809 }
14810 14810 }
14811 14811
14812 14812 static int
14813 14813 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14814 14814 {
14815 14815 uintptr_t daddr = (uintptr_t)dof;
14816 14816 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14817 14817 dof_provider_t *provider;
14818 14818 dof_probe_t *probe;
14819 14819 uint8_t *arg;
14820 14820 char *strtab, *typestr;
14821 14821 dof_stridx_t typeidx;
14822 14822 size_t typesz;
14823 14823 uint_t nprobes, j, k;
14824 14824
14825 14825 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14826 14826
14827 14827 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14828 14828 dtrace_dof_error(dof, "misaligned section offset");
14829 14829 return (-1);
14830 14830 }
14831 14831
14832 14832 /*
14833 14833 * The section needs to be large enough to contain the DOF provider
14834 14834 * structure appropriate for the given version.
14835 14835 */
14836 14836 if (sec->dofs_size <
14837 14837 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14838 14838 offsetof(dof_provider_t, dofpv_prenoffs) :
14839 14839 sizeof (dof_provider_t))) {
14840 14840 dtrace_dof_error(dof, "provider section too small");
14841 14841 return (-1);
14842 14842 }
14843 14843
14844 14844 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14845 14845 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14846 14846 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14847 14847 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14848 14848 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14849 14849
14850 14850 if (str_sec == NULL || prb_sec == NULL ||
14851 14851 arg_sec == NULL || off_sec == NULL)
14852 14852 return (-1);
14853 14853
14854 14854 enoff_sec = NULL;
14855 14855
14856 14856 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14857 14857 provider->dofpv_prenoffs != DOF_SECT_NONE &&
14858 14858 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14859 14859 provider->dofpv_prenoffs)) == NULL)
14860 14860 return (-1);
14861 14861
14862 14862 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14863 14863
14864 14864 if (provider->dofpv_name >= str_sec->dofs_size ||
14865 14865 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14866 14866 dtrace_dof_error(dof, "invalid provider name");
14867 14867 return (-1);
14868 14868 }
14869 14869
14870 14870 if (prb_sec->dofs_entsize == 0 ||
14871 14871 prb_sec->dofs_entsize > prb_sec->dofs_size) {
14872 14872 dtrace_dof_error(dof, "invalid entry size");
14873 14873 return (-1);
14874 14874 }
14875 14875
14876 14876 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14877 14877 dtrace_dof_error(dof, "misaligned entry size");
14878 14878 return (-1);
14879 14879 }
14880 14880
14881 14881 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14882 14882 dtrace_dof_error(dof, "invalid entry size");
14883 14883 return (-1);
14884 14884 }
14885 14885
14886 14886 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14887 14887 dtrace_dof_error(dof, "misaligned section offset");
14888 14888 return (-1);
14889 14889 }
14890 14890
14891 14891 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14892 14892 dtrace_dof_error(dof, "invalid entry size");
14893 14893 return (-1);
14894 14894 }
14895 14895
14896 14896 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14897 14897
14898 14898 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14899 14899
14900 14900 /*
14901 14901 * Take a pass through the probes to check for errors.
14902 14902 */
14903 14903 for (j = 0; j < nprobes; j++) {
14904 14904 probe = (dof_probe_t *)(uintptr_t)(daddr +
14905 14905 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14906 14906
14907 14907 if (probe->dofpr_func >= str_sec->dofs_size) {
14908 14908 dtrace_dof_error(dof, "invalid function name");
14909 14909 return (-1);
14910 14910 }
14911 14911
14912 14912 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14913 14913 dtrace_dof_error(dof, "function name too long");
14914 14914 return (-1);
14915 14915 }
14916 14916
14917 14917 if (probe->dofpr_name >= str_sec->dofs_size ||
14918 14918 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14919 14919 dtrace_dof_error(dof, "invalid probe name");
14920 14920 return (-1);
14921 14921 }
14922 14922
14923 14923 /*
14924 14924 * The offset count must not wrap the index, and the offsets
14925 14925 * must also not overflow the section's data.
14926 14926 */
14927 14927 if (probe->dofpr_offidx + probe->dofpr_noffs <
14928 14928 probe->dofpr_offidx ||
14929 14929 (probe->dofpr_offidx + probe->dofpr_noffs) *
14930 14930 off_sec->dofs_entsize > off_sec->dofs_size) {
14931 14931 dtrace_dof_error(dof, "invalid probe offset");
14932 14932 return (-1);
14933 14933 }
14934 14934
14935 14935 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14936 14936 /*
14937 14937 * If there's no is-enabled offset section, make sure
14938 14938 * there aren't any is-enabled offsets. Otherwise
14939 14939 * perform the same checks as for probe offsets
14940 14940 * (immediately above).
14941 14941 */
14942 14942 if (enoff_sec == NULL) {
14943 14943 if (probe->dofpr_enoffidx != 0 ||
14944 14944 probe->dofpr_nenoffs != 0) {
14945 14945 dtrace_dof_error(dof, "is-enabled "
14946 14946 "offsets with null section");
14947 14947 return (-1);
14948 14948 }
14949 14949 } else if (probe->dofpr_enoffidx +
14950 14950 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14951 14951 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14952 14952 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14953 14953 dtrace_dof_error(dof, "invalid is-enabled "
14954 14954 "offset");
14955 14955 return (-1);
14956 14956 }
14957 14957
14958 14958 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14959 14959 dtrace_dof_error(dof, "zero probe and "
14960 14960 "is-enabled offsets");
14961 14961 return (-1);
14962 14962 }
14963 14963 } else if (probe->dofpr_noffs == 0) {
14964 14964 dtrace_dof_error(dof, "zero probe offsets");
14965 14965 return (-1);
14966 14966 }
14967 14967
14968 14968 if (probe->dofpr_argidx + probe->dofpr_xargc <
14969 14969 probe->dofpr_argidx ||
14970 14970 (probe->dofpr_argidx + probe->dofpr_xargc) *
14971 14971 arg_sec->dofs_entsize > arg_sec->dofs_size) {
14972 14972 dtrace_dof_error(dof, "invalid args");
14973 14973 return (-1);
14974 14974 }
14975 14975
14976 14976 typeidx = probe->dofpr_nargv;
14977 14977 typestr = strtab + probe->dofpr_nargv;
14978 14978 for (k = 0; k < probe->dofpr_nargc; k++) {
14979 14979 if (typeidx >= str_sec->dofs_size) {
14980 14980 dtrace_dof_error(dof, "bad "
14981 14981 "native argument type");
14982 14982 return (-1);
14983 14983 }
14984 14984
14985 14985 typesz = strlen(typestr) + 1;
14986 14986 if (typesz > DTRACE_ARGTYPELEN) {
14987 14987 dtrace_dof_error(dof, "native "
14988 14988 "argument type too long");
14989 14989 return (-1);
14990 14990 }
14991 14991 typeidx += typesz;
14992 14992 typestr += typesz;
14993 14993 }
14994 14994
14995 14995 typeidx = probe->dofpr_xargv;
14996 14996 typestr = strtab + probe->dofpr_xargv;
14997 14997 for (k = 0; k < probe->dofpr_xargc; k++) {
14998 14998 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14999 14999 dtrace_dof_error(dof, "bad "
15000 15000 "native argument index");
15001 15001 return (-1);
15002 15002 }
15003 15003
15004 15004 if (typeidx >= str_sec->dofs_size) {
15005 15005 dtrace_dof_error(dof, "bad "
15006 15006 "translated argument type");
15007 15007 return (-1);
15008 15008 }
15009 15009
15010 15010 typesz = strlen(typestr) + 1;
15011 15011 if (typesz > DTRACE_ARGTYPELEN) {
15012 15012 dtrace_dof_error(dof, "translated argument "
15013 15013 "type too long");
15014 15014 return (-1);
15015 15015 }
15016 15016
15017 15017 typeidx += typesz;
15018 15018 typestr += typesz;
15019 15019 }
15020 15020 }
15021 15021
15022 15022 return (0);
15023 15023 }
15024 15024
15025 15025 static int
15026 15026 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15027 15027 {
15028 15028 dtrace_helpers_t *help;
15029 15029 dtrace_vstate_t *vstate;
15030 15030 dtrace_enabling_t *enab = NULL;
15031 15031 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15032 15032 uintptr_t daddr = (uintptr_t)dof;
15033 15033
15034 15034 ASSERT(MUTEX_HELD(&dtrace_lock));
15035 15035
15036 15036 if ((help = curproc->p_dtrace_helpers) == NULL)
15037 15037 help = dtrace_helpers_create(curproc);
15038 15038
15039 15039 vstate = &help->dthps_vstate;
15040 15040
15041 15041 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15042 15042 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15043 15043 dtrace_dof_destroy(dof);
15044 15044 return (rv);
15045 15045 }
15046 15046
15047 15047 /*
15048 15048 * Look for helper providers and validate their descriptions.
15049 15049 */
15050 15050 if (dhp != NULL) {
15051 15051 for (i = 0; i < dof->dofh_secnum; i++) {
15052 15052 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15053 15053 dof->dofh_secoff + i * dof->dofh_secsize);
15054 15054
15055 15055 if (sec->dofs_type != DOF_SECT_PROVIDER)
15056 15056 continue;
15057 15057
15058 15058 if (dtrace_helper_provider_validate(dof, sec) != 0) {
15059 15059 dtrace_enabling_destroy(enab);
15060 15060 dtrace_dof_destroy(dof);
15061 15061 return (-1);
15062 15062 }
15063 15063
15064 15064 nprovs++;
15065 15065 }
15066 15066 }
15067 15067
15068 15068 /*
15069 15069 * Now we need to walk through the ECB descriptions in the enabling.
15070 15070 */
15071 15071 for (i = 0; i < enab->dten_ndesc; i++) {
15072 15072 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15073 15073 dtrace_probedesc_t *desc = &ep->dted_probe;
15074 15074
15075 15075 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15076 15076 continue;
15077 15077
15078 15078 if (strcmp(desc->dtpd_mod, "helper") != 0)
15079 15079 continue;
15080 15080
15081 15081 if (strcmp(desc->dtpd_func, "ustack") != 0)
15082 15082 continue;
15083 15083
15084 15084 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15085 15085 ep)) != 0) {
15086 15086 /*
15087 15087 * Adding this helper action failed -- we are now going
15088 15088 * to rip out the entire generation and return failure.
15089 15089 */
15090 15090 (void) dtrace_helper_destroygen(help->dthps_generation);
15091 15091 dtrace_enabling_destroy(enab);
15092 15092 dtrace_dof_destroy(dof);
15093 15093 return (-1);
15094 15094 }
15095 15095
15096 15096 nhelpers++;
15097 15097 }
15098 15098
15099 15099 if (nhelpers < enab->dten_ndesc)
15100 15100 dtrace_dof_error(dof, "unmatched helpers");
15101 15101
15102 15102 gen = help->dthps_generation++;
15103 15103 dtrace_enabling_destroy(enab);
15104 15104
15105 15105 if (dhp != NULL && nprovs > 0) {
15106 15106 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15107 15107 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15108 15108 mutex_exit(&dtrace_lock);
15109 15109 dtrace_helper_provider_register(curproc, help, dhp);
15110 15110 mutex_enter(&dtrace_lock);
15111 15111
15112 15112 destroy = 0;
15113 15113 }
15114 15114 }
15115 15115
15116 15116 if (destroy)
15117 15117 dtrace_dof_destroy(dof);
15118 15118
15119 15119 return (gen);
15120 15120 }
15121 15121
15122 15122 static dtrace_helpers_t *
15123 15123 dtrace_helpers_create(proc_t *p)
15124 15124 {
15125 15125 dtrace_helpers_t *help;
15126 15126
15127 15127 ASSERT(MUTEX_HELD(&dtrace_lock));
15128 15128 ASSERT(p->p_dtrace_helpers == NULL);
15129 15129
15130 15130 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15131 15131 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15132 15132 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15133 15133
15134 15134 p->p_dtrace_helpers = help;
15135 15135 dtrace_helpers++;
15136 15136
15137 15137 return (help);
15138 15138 }
15139 15139
15140 15140 static void
15141 15141 dtrace_helpers_destroy(void)
15142 15142 {
15143 15143 dtrace_helpers_t *help;
15144 15144 dtrace_vstate_t *vstate;
15145 15145 proc_t *p = curproc;
15146 15146 int i;
15147 15147
15148 15148 mutex_enter(&dtrace_lock);
15149 15149
15150 15150 ASSERT(p->p_dtrace_helpers != NULL);
15151 15151 ASSERT(dtrace_helpers > 0);
15152 15152
15153 15153 help = p->p_dtrace_helpers;
15154 15154 vstate = &help->dthps_vstate;
15155 15155
15156 15156 /*
15157 15157 * We're now going to lose the help from this process.
15158 15158 */
15159 15159 p->p_dtrace_helpers = NULL;
15160 15160 dtrace_sync();
15161 15161
15162 15162 /*
15163 15163 * Destory the helper actions.
15164 15164 */
15165 15165 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15166 15166 dtrace_helper_action_t *h, *next;
15167 15167
15168 15168 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15169 15169 next = h->dtha_next;
15170 15170 dtrace_helper_action_destroy(h, vstate);
15171 15171 h = next;
15172 15172 }
15173 15173 }
15174 15174
15175 15175 mutex_exit(&dtrace_lock);
15176 15176
15177 15177 /*
15178 15178 * Destroy the helper providers.
15179 15179 */
15180 15180 if (help->dthps_maxprovs > 0) {
15181 15181 mutex_enter(&dtrace_meta_lock);
15182 15182 if (dtrace_meta_pid != NULL) {
15183 15183 ASSERT(dtrace_deferred_pid == NULL);
15184 15184
15185 15185 for (i = 0; i < help->dthps_nprovs; i++) {
15186 15186 dtrace_helper_provider_remove(
15187 15187 &help->dthps_provs[i]->dthp_prov, p->p_pid);
15188 15188 }
15189 15189 } else {
15190 15190 mutex_enter(&dtrace_lock);
15191 15191 ASSERT(help->dthps_deferred == 0 ||
15192 15192 help->dthps_next != NULL ||
15193 15193 help->dthps_prev != NULL ||
15194 15194 help == dtrace_deferred_pid);
15195 15195
15196 15196 /*
15197 15197 * Remove the helper from the deferred list.
15198 15198 */
15199 15199 if (help->dthps_next != NULL)
15200 15200 help->dthps_next->dthps_prev = help->dthps_prev;
15201 15201 if (help->dthps_prev != NULL)
15202 15202 help->dthps_prev->dthps_next = help->dthps_next;
15203 15203 if (dtrace_deferred_pid == help) {
15204 15204 dtrace_deferred_pid = help->dthps_next;
15205 15205 ASSERT(help->dthps_prev == NULL);
15206 15206 }
15207 15207
15208 15208 mutex_exit(&dtrace_lock);
15209 15209 }
15210 15210
15211 15211 mutex_exit(&dtrace_meta_lock);
15212 15212
15213 15213 for (i = 0; i < help->dthps_nprovs; i++) {
15214 15214 dtrace_helper_provider_destroy(help->dthps_provs[i]);
15215 15215 }
15216 15216
15217 15217 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15218 15218 sizeof (dtrace_helper_provider_t *));
15219 15219 }
15220 15220
15221 15221 mutex_enter(&dtrace_lock);
15222 15222
15223 15223 dtrace_vstate_fini(&help->dthps_vstate);
15224 15224 kmem_free(help->dthps_actions,
15225 15225 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15226 15226 kmem_free(help, sizeof (dtrace_helpers_t));
15227 15227
15228 15228 --dtrace_helpers;
15229 15229 mutex_exit(&dtrace_lock);
15230 15230 }
15231 15231
15232 15232 static void
15233 15233 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15234 15234 {
15235 15235 dtrace_helpers_t *help, *newhelp;
15236 15236 dtrace_helper_action_t *helper, *new, *last;
15237 15237 dtrace_difo_t *dp;
15238 15238 dtrace_vstate_t *vstate;
15239 15239 int i, j, sz, hasprovs = 0;
15240 15240
15241 15241 mutex_enter(&dtrace_lock);
15242 15242 ASSERT(from->p_dtrace_helpers != NULL);
15243 15243 ASSERT(dtrace_helpers > 0);
15244 15244
15245 15245 help = from->p_dtrace_helpers;
15246 15246 newhelp = dtrace_helpers_create(to);
15247 15247 ASSERT(to->p_dtrace_helpers != NULL);
15248 15248
15249 15249 newhelp->dthps_generation = help->dthps_generation;
15250 15250 vstate = &newhelp->dthps_vstate;
15251 15251
15252 15252 /*
15253 15253 * Duplicate the helper actions.
15254 15254 */
15255 15255 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15256 15256 if ((helper = help->dthps_actions[i]) == NULL)
15257 15257 continue;
15258 15258
15259 15259 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15260 15260 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15261 15261 KM_SLEEP);
15262 15262 new->dtha_generation = helper->dtha_generation;
15263 15263
15264 15264 if ((dp = helper->dtha_predicate) != NULL) {
15265 15265 dp = dtrace_difo_duplicate(dp, vstate);
15266 15266 new->dtha_predicate = dp;
15267 15267 }
15268 15268
15269 15269 new->dtha_nactions = helper->dtha_nactions;
15270 15270 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15271 15271 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15272 15272
15273 15273 for (j = 0; j < new->dtha_nactions; j++) {
15274 15274 dtrace_difo_t *dp = helper->dtha_actions[j];
15275 15275
15276 15276 ASSERT(dp != NULL);
15277 15277 dp = dtrace_difo_duplicate(dp, vstate);
15278 15278 new->dtha_actions[j] = dp;
15279 15279 }
15280 15280
15281 15281 if (last != NULL) {
15282 15282 last->dtha_next = new;
15283 15283 } else {
15284 15284 newhelp->dthps_actions[i] = new;
15285 15285 }
15286 15286
15287 15287 last = new;
15288 15288 }
15289 15289 }
15290 15290
15291 15291 /*
15292 15292 * Duplicate the helper providers and register them with the
15293 15293 * DTrace framework.
15294 15294 */
15295 15295 if (help->dthps_nprovs > 0) {
15296 15296 newhelp->dthps_nprovs = help->dthps_nprovs;
15297 15297 newhelp->dthps_maxprovs = help->dthps_nprovs;
15298 15298 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15299 15299 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15300 15300 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15301 15301 newhelp->dthps_provs[i] = help->dthps_provs[i];
15302 15302 newhelp->dthps_provs[i]->dthp_ref++;
15303 15303 }
15304 15304
15305 15305 hasprovs = 1;
15306 15306 }
15307 15307
15308 15308 mutex_exit(&dtrace_lock);
15309 15309
15310 15310 if (hasprovs)
15311 15311 dtrace_helper_provider_register(to, newhelp, NULL);
15312 15312 }
15313 15313
15314 15314 /*
15315 15315 * DTrace Hook Functions
15316 15316 */
15317 15317 static void
15318 15318 dtrace_module_loaded(struct modctl *ctl)
15319 15319 {
15320 15320 dtrace_provider_t *prv;
15321 15321
15322 15322 mutex_enter(&dtrace_provider_lock);
15323 15323 mutex_enter(&mod_lock);
15324 15324
15325 15325 ASSERT(ctl->mod_busy);
15326 15326
15327 15327 /*
15328 15328 * We're going to call each providers per-module provide operation
15329 15329 * specifying only this module.
15330 15330 */
15331 15331 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15332 15332 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15333 15333
15334 15334 mutex_exit(&mod_lock);
15335 15335 mutex_exit(&dtrace_provider_lock);
15336 15336
15337 15337 /*
15338 15338 * If we have any retained enablings, we need to match against them.
15339 15339 * Enabling probes requires that cpu_lock be held, and we cannot hold
15340 15340 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15341 15341 * module. (In particular, this happens when loading scheduling
15342 15342 * classes.) So if we have any retained enablings, we need to dispatch
15343 15343 * our task queue to do the match for us.
15344 15344 */
15345 15345 mutex_enter(&dtrace_lock);
15346 15346
15347 15347 if (dtrace_retained == NULL) {
15348 15348 mutex_exit(&dtrace_lock);
15349 15349 return;
15350 15350 }
15351 15351
15352 15352 (void) taskq_dispatch(dtrace_taskq,
15353 15353 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15354 15354
15355 15355 mutex_exit(&dtrace_lock);
15356 15356
15357 15357 /*
15358 15358 * And now, for a little heuristic sleaze: in general, we want to
15359 15359 * match modules as soon as they load. However, we cannot guarantee
15360 15360 * this, because it would lead us to the lock ordering violation
15361 15361 * outlined above. The common case, of course, is that cpu_lock is
15362 15362 * _not_ held -- so we delay here for a clock tick, hoping that that's
15363 15363 * long enough for the task queue to do its work. If it's not, it's
15364 15364 * not a serious problem -- it just means that the module that we
15365 15365 * just loaded may not be immediately instrumentable.
15366 15366 */
15367 15367 delay(1);
15368 15368 }
15369 15369
15370 15370 static void
15371 15371 dtrace_module_unloaded(struct modctl *ctl)
15372 15372 {
15373 15373 dtrace_probe_t template, *probe, *first, *next;
15374 15374 dtrace_provider_t *prov;
15375 15375
15376 15376 template.dtpr_mod = ctl->mod_modname;
15377 15377
15378 15378 mutex_enter(&dtrace_provider_lock);
15379 15379 mutex_enter(&mod_lock);
15380 15380 mutex_enter(&dtrace_lock);
15381 15381
15382 15382 if (dtrace_bymod == NULL) {
15383 15383 /*
15384 15384 * The DTrace module is loaded (obviously) but not attached;
15385 15385 * we don't have any work to do.
15386 15386 */
15387 15387 mutex_exit(&dtrace_provider_lock);
15388 15388 mutex_exit(&mod_lock);
15389 15389 mutex_exit(&dtrace_lock);
15390 15390 return;
15391 15391 }
15392 15392
15393 15393 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15394 15394 probe != NULL; probe = probe->dtpr_nextmod) {
15395 15395 if (probe->dtpr_ecb != NULL) {
15396 15396 mutex_exit(&dtrace_provider_lock);
15397 15397 mutex_exit(&mod_lock);
15398 15398 mutex_exit(&dtrace_lock);
15399 15399
15400 15400 /*
15401 15401 * This shouldn't _actually_ be possible -- we're
15402 15402 * unloading a module that has an enabled probe in it.
15403 15403 * (It's normally up to the provider to make sure that
15404 15404 * this can't happen.) However, because dtps_enable()
15405 15405 * doesn't have a failure mode, there can be an
15406 15406 * enable/unload race. Upshot: we don't want to
15407 15407 * assert, but we're not going to disable the
15408 15408 * probe, either.
15409 15409 */
15410 15410 if (dtrace_err_verbose) {
15411 15411 cmn_err(CE_WARN, "unloaded module '%s' had "
15412 15412 "enabled probes", ctl->mod_modname);
15413 15413 }
15414 15414
15415 15415 return;
15416 15416 }
15417 15417 }
15418 15418
15419 15419 probe = first;
15420 15420
15421 15421 for (first = NULL; probe != NULL; probe = next) {
15422 15422 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15423 15423
15424 15424 dtrace_probes[probe->dtpr_id - 1] = NULL;
15425 15425
15426 15426 next = probe->dtpr_nextmod;
15427 15427 dtrace_hash_remove(dtrace_bymod, probe);
15428 15428 dtrace_hash_remove(dtrace_byfunc, probe);
15429 15429 dtrace_hash_remove(dtrace_byname, probe);
15430 15430
15431 15431 if (first == NULL) {
15432 15432 first = probe;
15433 15433 probe->dtpr_nextmod = NULL;
15434 15434 } else {
15435 15435 probe->dtpr_nextmod = first;
15436 15436 first = probe;
15437 15437 }
15438 15438 }
15439 15439
15440 15440 /*
15441 15441 * We've removed all of the module's probes from the hash chains and
15442 15442 * from the probe array. Now issue a dtrace_sync() to be sure that
15443 15443 * everyone has cleared out from any probe array processing.
15444 15444 */
15445 15445 dtrace_sync();
15446 15446
15447 15447 for (probe = first; probe != NULL; probe = first) {
15448 15448 first = probe->dtpr_nextmod;
15449 15449 prov = probe->dtpr_provider;
15450 15450 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15451 15451 probe->dtpr_arg);
15452 15452 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15453 15453 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15454 15454 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15455 15455 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15456 15456 kmem_free(probe, sizeof (dtrace_probe_t));
15457 15457 }
15458 15458
15459 15459 mutex_exit(&dtrace_lock);
15460 15460 mutex_exit(&mod_lock);
15461 15461 mutex_exit(&dtrace_provider_lock);
15462 15462 }
15463 15463
15464 15464 void
15465 15465 dtrace_suspend(void)
15466 15466 {
15467 15467 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15468 15468 }
15469 15469
15470 15470 void
15471 15471 dtrace_resume(void)
15472 15472 {
15473 15473 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15474 15474 }
15475 15475
15476 15476 static int
15477 15477 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15478 15478 {
15479 15479 ASSERT(MUTEX_HELD(&cpu_lock));
15480 15480 mutex_enter(&dtrace_lock);
15481 15481
15482 15482 switch (what) {
15483 15483 case CPU_CONFIG: {
15484 15484 dtrace_state_t *state;
15485 15485 dtrace_optval_t *opt, rs, c;
15486 15486
15487 15487 /*
15488 15488 * For now, we only allocate a new buffer for anonymous state.
15489 15489 */
15490 15490 if ((state = dtrace_anon.dta_state) == NULL)
15491 15491 break;
15492 15492
15493 15493 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15494 15494 break;
15495 15495
15496 15496 opt = state->dts_options;
15497 15497 c = opt[DTRACEOPT_CPU];
15498 15498
15499 15499 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15500 15500 break;
15501 15501
15502 15502 /*
15503 15503 * Regardless of what the actual policy is, we're going to
15504 15504 * temporarily set our resize policy to be manual. We're
15505 15505 * also going to temporarily set our CPU option to denote
15506 15506 * the newly configured CPU.
15507 15507 */
15508 15508 rs = opt[DTRACEOPT_BUFRESIZE];
15509 15509 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15510 15510 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15511 15511
15512 15512 (void) dtrace_state_buffers(state);
15513 15513
15514 15514 opt[DTRACEOPT_BUFRESIZE] = rs;
15515 15515 opt[DTRACEOPT_CPU] = c;
15516 15516
15517 15517 break;
15518 15518 }
15519 15519
15520 15520 case CPU_UNCONFIG:
15521 15521 /*
15522 15522 * We don't free the buffer in the CPU_UNCONFIG case. (The
15523 15523 * buffer will be freed when the consumer exits.)
15524 15524 */
15525 15525 break;
15526 15526
15527 15527 default:
15528 15528 break;
15529 15529 }
15530 15530
15531 15531 mutex_exit(&dtrace_lock);
15532 15532 return (0);
15533 15533 }
15534 15534
15535 15535 static void
15536 15536 dtrace_cpu_setup_initial(processorid_t cpu)
15537 15537 {
15538 15538 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15539 15539 }
15540 15540
15541 15541 static void
15542 15542 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15543 15543 {
15544 15544 if (dtrace_toxranges >= dtrace_toxranges_max) {
15545 15545 int osize, nsize;
15546 15546 dtrace_toxrange_t *range;
15547 15547
15548 15548 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15549 15549
15550 15550 if (osize == 0) {
15551 15551 ASSERT(dtrace_toxrange == NULL);
15552 15552 ASSERT(dtrace_toxranges_max == 0);
15553 15553 dtrace_toxranges_max = 1;
15554 15554 } else {
15555 15555 dtrace_toxranges_max <<= 1;
15556 15556 }
15557 15557
15558 15558 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15559 15559 range = kmem_zalloc(nsize, KM_SLEEP);
15560 15560
15561 15561 if (dtrace_toxrange != NULL) {
15562 15562 ASSERT(osize != 0);
15563 15563 bcopy(dtrace_toxrange, range, osize);
15564 15564 kmem_free(dtrace_toxrange, osize);
15565 15565 }
15566 15566
15567 15567 dtrace_toxrange = range;
15568 15568 }
15569 15569
15570 15570 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15571 15571 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15572 15572
15573 15573 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15574 15574 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15575 15575 dtrace_toxranges++;
15576 15576 }
15577 15577
15578 15578 static void
15579 15579 dtrace_getf_barrier()
15580 15580 {
15581 15581 /*
15582 15582 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15583 15583 * that contain calls to getf(), this routine will be called on every
15584 15584 * closef() before either the underlying vnode is released or the
15585 15585 * file_t itself is freed. By the time we are here, it is essential
15586 15586 * that the file_t can no longer be accessed from a call to getf()
15587 15587 * in probe context -- that assures that a dtrace_sync() can be used
15588 15588 * to clear out any enablings referring to the old structures.
15589 15589 */
15590 15590 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15591 15591 kcred->cr_zone->zone_dtrace_getf != 0)
15592 15592 dtrace_sync();
15593 15593 }
15594 15594
15595 15595 /*
15596 15596 * DTrace Driver Cookbook Functions
15597 15597 */
15598 15598 /*ARGSUSED*/
15599 15599 static int
15600 15600 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15601 15601 {
15602 15602 dtrace_provider_id_t id;
15603 15603 dtrace_state_t *state = NULL;
15604 15604 dtrace_enabling_t *enab;
15605 15605
15606 15606 mutex_enter(&cpu_lock);
15607 15607 mutex_enter(&dtrace_provider_lock);
15608 15608 mutex_enter(&dtrace_lock);
15609 15609
15610 15610 if (ddi_soft_state_init(&dtrace_softstate,
15611 15611 sizeof (dtrace_state_t), 0) != 0) {
15612 15612 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15613 15613 mutex_exit(&cpu_lock);
15614 15614 mutex_exit(&dtrace_provider_lock);
15615 15615 mutex_exit(&dtrace_lock);
15616 15616 return (DDI_FAILURE);
15617 15617 }
15618 15618
15619 15619 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15620 15620 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15621 15621 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15622 15622 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15623 15623 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15624 15624 ddi_remove_minor_node(devi, NULL);
15625 15625 ddi_soft_state_fini(&dtrace_softstate);
15626 15626 mutex_exit(&cpu_lock);
15627 15627 mutex_exit(&dtrace_provider_lock);
15628 15628 mutex_exit(&dtrace_lock);
15629 15629 return (DDI_FAILURE);
15630 15630 }
15631 15631
15632 15632 ddi_report_dev(devi);
15633 15633 dtrace_devi = devi;
15634 15634
15635 15635 dtrace_modload = dtrace_module_loaded;
15636 15636 dtrace_modunload = dtrace_module_unloaded;
15637 15637 dtrace_cpu_init = dtrace_cpu_setup_initial;
15638 15638 dtrace_helpers_cleanup = dtrace_helpers_destroy;
15639 15639 dtrace_helpers_fork = dtrace_helpers_duplicate;
15640 15640 dtrace_cpustart_init = dtrace_suspend;
15641 15641 dtrace_cpustart_fini = dtrace_resume;
15642 15642 dtrace_debugger_init = dtrace_suspend;
15643 15643 dtrace_debugger_fini = dtrace_resume;
15644 15644
15645 15645 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15646 15646
15647 15647 ASSERT(MUTEX_HELD(&cpu_lock));
15648 15648
15649 15649 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15650 15650 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15651 15651 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15652 15652 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15653 15653 VM_SLEEP | VMC_IDENTIFIER);
15654 15654 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15655 15655 1, INT_MAX, 0);
15656 15656
15657 15657 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15658 15658 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15659 15659 NULL, NULL, NULL, NULL, NULL, 0);
15660 15660
15661 15661 ASSERT(MUTEX_HELD(&cpu_lock));
15662 15662 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15663 15663 offsetof(dtrace_probe_t, dtpr_nextmod),
15664 15664 offsetof(dtrace_probe_t, dtpr_prevmod));
15665 15665
15666 15666 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15667 15667 offsetof(dtrace_probe_t, dtpr_nextfunc),
15668 15668 offsetof(dtrace_probe_t, dtpr_prevfunc));
15669 15669
15670 15670 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15671 15671 offsetof(dtrace_probe_t, dtpr_nextname),
15672 15672 offsetof(dtrace_probe_t, dtpr_prevname));
15673 15673
15674 15674 if (dtrace_retain_max < 1) {
15675 15675 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15676 15676 "setting to 1", dtrace_retain_max);
15677 15677 dtrace_retain_max = 1;
15678 15678 }
15679 15679
15680 15680 /*
15681 15681 * Now discover our toxic ranges.
15682 15682 */
15683 15683 dtrace_toxic_ranges(dtrace_toxrange_add);
15684 15684
15685 15685 /*
15686 15686 * Before we register ourselves as a provider to our own framework,
15687 15687 * we would like to assert that dtrace_provider is NULL -- but that's
15688 15688 * not true if we were loaded as a dependency of a DTrace provider.
15689 15689 * Once we've registered, we can assert that dtrace_provider is our
15690 15690 * pseudo provider.
15691 15691 */
15692 15692 (void) dtrace_register("dtrace", &dtrace_provider_attr,
15693 15693 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15694 15694
15695 15695 ASSERT(dtrace_provider != NULL);
15696 15696 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15697 15697
15698 15698 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15699 15699 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15700 15700 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15701 15701 dtrace_provider, NULL, NULL, "END", 0, NULL);
15702 15702 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15703 15703 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15704 15704
15705 15705 dtrace_anon_property();
15706 15706 mutex_exit(&cpu_lock);
15707 15707
15708 15708 /*
15709 15709 * If DTrace helper tracing is enabled, we need to allocate the
15710 15710 * trace buffer and initialize the values.
15711 15711 */
15712 15712 if (dtrace_helptrace_enabled) {
15713 15713 ASSERT(dtrace_helptrace_buffer == NULL);
15714 15714 dtrace_helptrace_buffer =
15715 15715 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15716 15716 dtrace_helptrace_next = 0;
15717 15717 }
15718 15718
15719 15719 /*
15720 15720 * If there are already providers, we must ask them to provide their
15721 15721 * probes, and then match any anonymous enabling against them. Note
15722 15722 * that there should be no other retained enablings at this time:
15723 15723 * the only retained enablings at this time should be the anonymous
15724 15724 * enabling.
15725 15725 */
15726 15726 if (dtrace_anon.dta_enabling != NULL) {
15727 15727 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15728 15728
15729 15729 dtrace_enabling_provide(NULL);
15730 15730 state = dtrace_anon.dta_state;
15731 15731
15732 15732 /*
15733 15733 * We couldn't hold cpu_lock across the above call to
15734 15734 * dtrace_enabling_provide(), but we must hold it to actually
15735 15735 * enable the probes. We have to drop all of our locks, pick
15736 15736 * up cpu_lock, and regain our locks before matching the
15737 15737 * retained anonymous enabling.
15738 15738 */
15739 15739 mutex_exit(&dtrace_lock);
15740 15740 mutex_exit(&dtrace_provider_lock);
15741 15741
15742 15742 mutex_enter(&cpu_lock);
15743 15743 mutex_enter(&dtrace_provider_lock);
15744 15744 mutex_enter(&dtrace_lock);
15745 15745
15746 15746 if ((enab = dtrace_anon.dta_enabling) != NULL)
15747 15747 (void) dtrace_enabling_match(enab, NULL);
15748 15748
15749 15749 mutex_exit(&cpu_lock);
15750 15750 }
15751 15751
15752 15752 mutex_exit(&dtrace_lock);
15753 15753 mutex_exit(&dtrace_provider_lock);
15754 15754
15755 15755 if (state != NULL) {
15756 15756 /*
15757 15757 * If we created any anonymous state, set it going now.
15758 15758 */
15759 15759 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15760 15760 }
15761 15761
15762 15762 return (DDI_SUCCESS);
15763 15763 }
15764 15764
15765 15765 /*ARGSUSED*/
15766 15766 static int
15767 15767 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15768 15768 {
15769 15769 dtrace_state_t *state;
15770 15770 uint32_t priv;
15771 15771 uid_t uid;
15772 15772 zoneid_t zoneid;
15773 15773
15774 15774 if (getminor(*devp) == DTRACEMNRN_HELPER)
15775 15775 return (0);
15776 15776
15777 15777 /*
15778 15778 * If this wasn't an open with the "helper" minor, then it must be
15779 15779 * the "dtrace" minor.
15780 15780 */
15781 15781 if (getminor(*devp) != DTRACEMNRN_DTRACE)
15782 15782 return (ENXIO);
15783 15783
15784 15784 /*
15785 15785 * If no DTRACE_PRIV_* bits are set in the credential, then the
15786 15786 * caller lacks sufficient permission to do anything with DTrace.
15787 15787 */
15788 15788 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15789 15789 if (priv == DTRACE_PRIV_NONE)
15790 15790 return (EACCES);
15791 15791
15792 15792 /*
15793 15793 * Ask all providers to provide all their probes.
15794 15794 */
15795 15795 mutex_enter(&dtrace_provider_lock);
15796 15796 dtrace_probe_provide(NULL, NULL);
15797 15797 mutex_exit(&dtrace_provider_lock);
15798 15798
15799 15799 mutex_enter(&cpu_lock);
15800 15800 mutex_enter(&dtrace_lock);
15801 15801 dtrace_opens++;
15802 15802 dtrace_membar_producer();
15803 15803
15804 15804 /*
15805 15805 * If the kernel debugger is active (that is, if the kernel debugger
15806 15806 * modified text in some way), we won't allow the open.
15807 15807 */
15808 15808 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15809 15809 dtrace_opens--;
15810 15810 mutex_exit(&cpu_lock);
15811 15811 mutex_exit(&dtrace_lock);
15812 15812 return (EBUSY);
15813 15813 }
15814 15814
15815 15815 state = dtrace_state_create(devp, cred_p);
15816 15816 mutex_exit(&cpu_lock);
15817 15817
15818 15818 if (state == NULL) {
15819 15819 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15820 15820 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15821 15821 mutex_exit(&dtrace_lock);
15822 15822 return (EAGAIN);
15823 15823 }
15824 15824
15825 15825 mutex_exit(&dtrace_lock);
15826 15826
15827 15827 return (0);
15828 15828 }
15829 15829
15830 15830 /*ARGSUSED*/
15831 15831 static int
15832 15832 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15833 15833 {
15834 15834 minor_t minor = getminor(dev);
15835 15835 dtrace_state_t *state;
15836 15836
15837 15837 if (minor == DTRACEMNRN_HELPER)
15838 15838 return (0);
15839 15839
15840 15840 state = ddi_get_soft_state(dtrace_softstate, minor);
15841 15841
15842 15842 mutex_enter(&cpu_lock);
15843 15843 mutex_enter(&dtrace_lock);
15844 15844
15845 15845 if (state->dts_anon) {
15846 15846 /*
15847 15847 * There is anonymous state. Destroy that first.
15848 15848 */
15849 15849 ASSERT(dtrace_anon.dta_state == NULL);
15850 15850 dtrace_state_destroy(state->dts_anon);
15851 15851 }
15852 15852
15853 15853 dtrace_state_destroy(state);
15854 15854 ASSERT(dtrace_opens > 0);
15855 15855
15856 15856 /*
15857 15857 * Only relinquish control of the kernel debugger interface when there
15858 15858 * are no consumers and no anonymous enablings.
15859 15859 */
15860 15860 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15861 15861 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15862 15862
15863 15863 mutex_exit(&dtrace_lock);
15864 15864 mutex_exit(&cpu_lock);
15865 15865
15866 15866 return (0);
15867 15867 }
15868 15868
15869 15869 /*ARGSUSED*/
15870 15870 static int
15871 15871 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15872 15872 {
15873 15873 int rval;
15874 15874 dof_helper_t help, *dhp = NULL;
15875 15875
15876 15876 switch (cmd) {
15877 15877 case DTRACEHIOC_ADDDOF:
15878 15878 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15879 15879 dtrace_dof_error(NULL, "failed to copyin DOF helper");
15880 15880 return (EFAULT);
15881 15881 }
15882 15882
15883 15883 dhp = &help;
15884 15884 arg = (intptr_t)help.dofhp_dof;
15885 15885 /*FALLTHROUGH*/
15886 15886
15887 15887 case DTRACEHIOC_ADD: {
15888 15888 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15889 15889
15890 15890 if (dof == NULL)
15891 15891 return (rval);
15892 15892
15893 15893 mutex_enter(&dtrace_lock);
15894 15894
15895 15895 /*
15896 15896 * dtrace_helper_slurp() takes responsibility for the dof --
15897 15897 * it may free it now or it may save it and free it later.
15898 15898 */
15899 15899 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15900 15900 *rv = rval;
15901 15901 rval = 0;
15902 15902 } else {
15903 15903 rval = EINVAL;
15904 15904 }
15905 15905
15906 15906 mutex_exit(&dtrace_lock);
15907 15907 return (rval);
15908 15908 }
15909 15909
15910 15910 case DTRACEHIOC_REMOVE: {
15911 15911 mutex_enter(&dtrace_lock);
15912 15912 rval = dtrace_helper_destroygen(arg);
15913 15913 mutex_exit(&dtrace_lock);
15914 15914
15915 15915 return (rval);
15916 15916 }
15917 15917
15918 15918 default:
15919 15919 break;
15920 15920 }
15921 15921
15922 15922 return (ENOTTY);
15923 15923 }
15924 15924
15925 15925 /*ARGSUSED*/
15926 15926 static int
15927 15927 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15928 15928 {
15929 15929 minor_t minor = getminor(dev);
15930 15930 dtrace_state_t *state;
15931 15931 int rval;
15932 15932
15933 15933 if (minor == DTRACEMNRN_HELPER)
15934 15934 return (dtrace_ioctl_helper(cmd, arg, rv));
15935 15935
15936 15936 state = ddi_get_soft_state(dtrace_softstate, minor);
15937 15937
15938 15938 if (state->dts_anon) {
15939 15939 ASSERT(dtrace_anon.dta_state == NULL);
15940 15940 state = state->dts_anon;
15941 15941 }
15942 15942
15943 15943 switch (cmd) {
15944 15944 case DTRACEIOC_PROVIDER: {
15945 15945 dtrace_providerdesc_t pvd;
15946 15946 dtrace_provider_t *pvp;
15947 15947
15948 15948 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15949 15949 return (EFAULT);
15950 15950
15951 15951 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15952 15952 mutex_enter(&dtrace_provider_lock);
15953 15953
15954 15954 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15955 15955 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15956 15956 break;
15957 15957 }
15958 15958
15959 15959 mutex_exit(&dtrace_provider_lock);
15960 15960
15961 15961 if (pvp == NULL)
15962 15962 return (ESRCH);
15963 15963
15964 15964 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15965 15965 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15966 15966 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15967 15967 return (EFAULT);
15968 15968
15969 15969 return (0);
15970 15970 }
15971 15971
15972 15972 case DTRACEIOC_EPROBE: {
15973 15973 dtrace_eprobedesc_t epdesc;
15974 15974 dtrace_ecb_t *ecb;
15975 15975 dtrace_action_t *act;
15976 15976 void *buf;
15977 15977 size_t size;
15978 15978 uintptr_t dest;
15979 15979 int nrecs;
15980 15980
15981 15981 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15982 15982 return (EFAULT);
15983 15983
15984 15984 mutex_enter(&dtrace_lock);
15985 15985
15986 15986 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15987 15987 mutex_exit(&dtrace_lock);
15988 15988 return (EINVAL);
15989 15989 }
15990 15990
15991 15991 if (ecb->dte_probe == NULL) {
15992 15992 mutex_exit(&dtrace_lock);
15993 15993 return (EINVAL);
15994 15994 }
15995 15995
15996 15996 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15997 15997 epdesc.dtepd_uarg = ecb->dte_uarg;
15998 15998 epdesc.dtepd_size = ecb->dte_size;
15999 15999
16000 16000 nrecs = epdesc.dtepd_nrecs;
16001 16001 epdesc.dtepd_nrecs = 0;
16002 16002 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16003 16003 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16004 16004 continue;
16005 16005
16006 16006 epdesc.dtepd_nrecs++;
16007 16007 }
16008 16008
16009 16009 /*
16010 16010 * Now that we have the size, we need to allocate a temporary
16011 16011 * buffer in which to store the complete description. We need
16012 16012 * the temporary buffer to be able to drop dtrace_lock()
16013 16013 * across the copyout(), below.
16014 16014 */
16015 16015 size = sizeof (dtrace_eprobedesc_t) +
16016 16016 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16017 16017
16018 16018 buf = kmem_alloc(size, KM_SLEEP);
16019 16019 dest = (uintptr_t)buf;
16020 16020
16021 16021 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16022 16022 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16023 16023
16024 16024 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16025 16025 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16026 16026 continue;
16027 16027
16028 16028 if (nrecs-- == 0)
16029 16029 break;
16030 16030
16031 16031 bcopy(&act->dta_rec, (void *)dest,
16032 16032 sizeof (dtrace_recdesc_t));
16033 16033 dest += sizeof (dtrace_recdesc_t);
16034 16034 }
16035 16035
16036 16036 mutex_exit(&dtrace_lock);
16037 16037
16038 16038 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16039 16039 kmem_free(buf, size);
16040 16040 return (EFAULT);
16041 16041 }
16042 16042
16043 16043 kmem_free(buf, size);
16044 16044 return (0);
16045 16045 }
16046 16046
16047 16047 case DTRACEIOC_AGGDESC: {
16048 16048 dtrace_aggdesc_t aggdesc;
16049 16049 dtrace_action_t *act;
16050 16050 dtrace_aggregation_t *agg;
16051 16051 int nrecs;
16052 16052 uint32_t offs;
16053 16053 dtrace_recdesc_t *lrec;
16054 16054 void *buf;
16055 16055 size_t size;
16056 16056 uintptr_t dest;
16057 16057
16058 16058 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16059 16059 return (EFAULT);
16060 16060
16061 16061 mutex_enter(&dtrace_lock);
16062 16062
16063 16063 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16064 16064 mutex_exit(&dtrace_lock);
16065 16065 return (EINVAL);
16066 16066 }
16067 16067
16068 16068 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16069 16069
16070 16070 nrecs = aggdesc.dtagd_nrecs;
16071 16071 aggdesc.dtagd_nrecs = 0;
16072 16072
16073 16073 offs = agg->dtag_base;
16074 16074 lrec = &agg->dtag_action.dta_rec;
16075 16075 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16076 16076
16077 16077 for (act = agg->dtag_first; ; act = act->dta_next) {
16078 16078 ASSERT(act->dta_intuple ||
16079 16079 DTRACEACT_ISAGG(act->dta_kind));
16080 16080
16081 16081 /*
16082 16082 * If this action has a record size of zero, it
16083 16083 * denotes an argument to the aggregating action.
16084 16084 * Because the presence of this record doesn't (or
16085 16085 * shouldn't) affect the way the data is interpreted,
16086 16086 * we don't copy it out to save user-level the
16087 16087 * confusion of dealing with a zero-length record.
16088 16088 */
16089 16089 if (act->dta_rec.dtrd_size == 0) {
16090 16090 ASSERT(agg->dtag_hasarg);
16091 16091 continue;
16092 16092 }
16093 16093
16094 16094 aggdesc.dtagd_nrecs++;
16095 16095
16096 16096 if (act == &agg->dtag_action)
16097 16097 break;
16098 16098 }
16099 16099
16100 16100 /*
16101 16101 * Now that we have the size, we need to allocate a temporary
16102 16102 * buffer in which to store the complete description. We need
16103 16103 * the temporary buffer to be able to drop dtrace_lock()
16104 16104 * across the copyout(), below.
16105 16105 */
16106 16106 size = sizeof (dtrace_aggdesc_t) +
16107 16107 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16108 16108
16109 16109 buf = kmem_alloc(size, KM_SLEEP);
16110 16110 dest = (uintptr_t)buf;
16111 16111
16112 16112 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16113 16113 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16114 16114
16115 16115 for (act = agg->dtag_first; ; act = act->dta_next) {
16116 16116 dtrace_recdesc_t rec = act->dta_rec;
16117 16117
16118 16118 /*
16119 16119 * See the comment in the above loop for why we pass
16120 16120 * over zero-length records.
16121 16121 */
16122 16122 if (rec.dtrd_size == 0) {
16123 16123 ASSERT(agg->dtag_hasarg);
16124 16124 continue;
16125 16125 }
16126 16126
16127 16127 if (nrecs-- == 0)
16128 16128 break;
16129 16129
16130 16130 rec.dtrd_offset -= offs;
16131 16131 bcopy(&rec, (void *)dest, sizeof (rec));
16132 16132 dest += sizeof (dtrace_recdesc_t);
16133 16133
16134 16134 if (act == &agg->dtag_action)
16135 16135 break;
16136 16136 }
16137 16137
16138 16138 mutex_exit(&dtrace_lock);
16139 16139
16140 16140 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16141 16141 kmem_free(buf, size);
16142 16142 return (EFAULT);
16143 16143 }
16144 16144
16145 16145 kmem_free(buf, size);
16146 16146 return (0);
16147 16147 }
16148 16148
16149 16149 case DTRACEIOC_ENABLE: {
16150 16150 dof_hdr_t *dof;
16151 16151 dtrace_enabling_t *enab = NULL;
16152 16152 dtrace_vstate_t *vstate;
16153 16153 int err = 0;
16154 16154
16155 16155 *rv = 0;
16156 16156
16157 16157 /*
16158 16158 * If a NULL argument has been passed, we take this as our
16159 16159 * cue to reevaluate our enablings.
16160 16160 */
16161 16161 if (arg == NULL) {
16162 16162 dtrace_enabling_matchall();
16163 16163
16164 16164 return (0);
16165 16165 }
16166 16166
16167 16167 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16168 16168 return (rval);
16169 16169
16170 16170 mutex_enter(&cpu_lock);
16171 16171 mutex_enter(&dtrace_lock);
16172 16172 vstate = &state->dts_vstate;
16173 16173
16174 16174 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16175 16175 mutex_exit(&dtrace_lock);
16176 16176 mutex_exit(&cpu_lock);
16177 16177 dtrace_dof_destroy(dof);
16178 16178 return (EBUSY);
16179 16179 }
16180 16180
16181 16181 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16182 16182 mutex_exit(&dtrace_lock);
16183 16183 mutex_exit(&cpu_lock);
16184 16184 dtrace_dof_destroy(dof);
16185 16185 return (EINVAL);
16186 16186 }
16187 16187
16188 16188 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16189 16189 dtrace_enabling_destroy(enab);
16190 16190 mutex_exit(&dtrace_lock);
16191 16191 mutex_exit(&cpu_lock);
16192 16192 dtrace_dof_destroy(dof);
16193 16193 return (rval);
16194 16194 }
16195 16195
16196 16196 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16197 16197 err = dtrace_enabling_retain(enab);
16198 16198 } else {
16199 16199 dtrace_enabling_destroy(enab);
16200 16200 }
16201 16201
16202 16202 mutex_exit(&cpu_lock);
16203 16203 mutex_exit(&dtrace_lock);
16204 16204 dtrace_dof_destroy(dof);
16205 16205
16206 16206 return (err);
16207 16207 }
16208 16208
16209 16209 case DTRACEIOC_REPLICATE: {
16210 16210 dtrace_repldesc_t desc;
16211 16211 dtrace_probedesc_t *match = &desc.dtrpd_match;
16212 16212 dtrace_probedesc_t *create = &desc.dtrpd_create;
16213 16213 int err;
16214 16214
16215 16215 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16216 16216 return (EFAULT);
16217 16217
16218 16218 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16219 16219 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16220 16220 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16221 16221 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16222 16222
16223 16223 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16224 16224 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16225 16225 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16226 16226 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16227 16227
16228 16228 mutex_enter(&dtrace_lock);
16229 16229 err = dtrace_enabling_replicate(state, match, create);
16230 16230 mutex_exit(&dtrace_lock);
16231 16231
16232 16232 return (err);
16233 16233 }
16234 16234
16235 16235 case DTRACEIOC_PROBEMATCH:
16236 16236 case DTRACEIOC_PROBES: {
16237 16237 dtrace_probe_t *probe = NULL;
16238 16238 dtrace_probedesc_t desc;
16239 16239 dtrace_probekey_t pkey;
16240 16240 dtrace_id_t i;
16241 16241 int m = 0;
16242 16242 uint32_t priv;
16243 16243 uid_t uid;
16244 16244 zoneid_t zoneid;
16245 16245
16246 16246 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16247 16247 return (EFAULT);
16248 16248
16249 16249 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16250 16250 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16251 16251 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16252 16252 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16253 16253
16254 16254 /*
16255 16255 * Before we attempt to match this probe, we want to give
16256 16256 * all providers the opportunity to provide it.
16257 16257 */
16258 16258 if (desc.dtpd_id == DTRACE_IDNONE) {
16259 16259 mutex_enter(&dtrace_provider_lock);
16260 16260 dtrace_probe_provide(&desc, NULL);
16261 16261 mutex_exit(&dtrace_provider_lock);
16262 16262 desc.dtpd_id++;
16263 16263 }
16264 16264
16265 16265 if (cmd == DTRACEIOC_PROBEMATCH) {
16266 16266 dtrace_probekey(&desc, &pkey);
16267 16267 pkey.dtpk_id = DTRACE_IDNONE;
16268 16268 }
16269 16269
16270 16270 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16271 16271
16272 16272 mutex_enter(&dtrace_lock);
16273 16273
16274 16274 if (cmd == DTRACEIOC_PROBEMATCH) {
16275 16275 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16276 16276 if ((probe = dtrace_probes[i - 1]) != NULL &&
16277 16277 (m = dtrace_match_probe(probe, &pkey,
16278 16278 priv, uid, zoneid)) != 0)
16279 16279 break;
16280 16280 }
16281 16281
16282 16282 if (m < 0) {
16283 16283 mutex_exit(&dtrace_lock);
16284 16284 return (EINVAL);
16285 16285 }
16286 16286
16287 16287 } else {
16288 16288 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16289 16289 if ((probe = dtrace_probes[i - 1]) != NULL &&
16290 16290 dtrace_match_priv(probe, priv, uid, zoneid))
16291 16291 break;
16292 16292 }
16293 16293 }
16294 16294
16295 16295 if (probe == NULL) {
16296 16296 mutex_exit(&dtrace_lock);
16297 16297 return (ESRCH);
16298 16298 }
16299 16299
16300 16300 dtrace_probe_description(probe, &desc);
16301 16301 mutex_exit(&dtrace_lock);
16302 16302
16303 16303 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16304 16304 return (EFAULT);
16305 16305
16306 16306 return (0);
16307 16307 }
16308 16308
16309 16309 case DTRACEIOC_PROBEARG: {
16310 16310 dtrace_argdesc_t desc;
16311 16311 dtrace_probe_t *probe;
16312 16312 dtrace_provider_t *prov;
16313 16313
16314 16314 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16315 16315 return (EFAULT);
16316 16316
16317 16317 if (desc.dtargd_id == DTRACE_IDNONE)
16318 16318 return (EINVAL);
16319 16319
16320 16320 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16321 16321 return (EINVAL);
16322 16322
16323 16323 mutex_enter(&dtrace_provider_lock);
16324 16324 mutex_enter(&mod_lock);
16325 16325 mutex_enter(&dtrace_lock);
16326 16326
16327 16327 if (desc.dtargd_id > dtrace_nprobes) {
16328 16328 mutex_exit(&dtrace_lock);
16329 16329 mutex_exit(&mod_lock);
16330 16330 mutex_exit(&dtrace_provider_lock);
16331 16331 return (EINVAL);
16332 16332 }
16333 16333
16334 16334 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16335 16335 mutex_exit(&dtrace_lock);
16336 16336 mutex_exit(&mod_lock);
16337 16337 mutex_exit(&dtrace_provider_lock);
16338 16338 return (EINVAL);
16339 16339 }
16340 16340
16341 16341 mutex_exit(&dtrace_lock);
16342 16342
16343 16343 prov = probe->dtpr_provider;
16344 16344
16345 16345 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16346 16346 /*
16347 16347 * There isn't any typed information for this probe.
16348 16348 * Set the argument number to DTRACE_ARGNONE.
16349 16349 */
16350 16350 desc.dtargd_ndx = DTRACE_ARGNONE;
16351 16351 } else {
16352 16352 desc.dtargd_native[0] = '\0';
16353 16353 desc.dtargd_xlate[0] = '\0';
16354 16354 desc.dtargd_mapping = desc.dtargd_ndx;
16355 16355
16356 16356 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16357 16357 probe->dtpr_id, probe->dtpr_arg, &desc);
16358 16358 }
16359 16359
16360 16360 mutex_exit(&mod_lock);
16361 16361 mutex_exit(&dtrace_provider_lock);
16362 16362
16363 16363 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16364 16364 return (EFAULT);
16365 16365
16366 16366 return (0);
16367 16367 }
16368 16368
16369 16369 case DTRACEIOC_GO: {
16370 16370 processorid_t cpuid;
16371 16371 rval = dtrace_state_go(state, &cpuid);
16372 16372
16373 16373 if (rval != 0)
16374 16374 return (rval);
16375 16375
16376 16376 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16377 16377 return (EFAULT);
16378 16378
16379 16379 return (0);
16380 16380 }
16381 16381
16382 16382 case DTRACEIOC_STOP: {
16383 16383 processorid_t cpuid;
16384 16384
16385 16385 mutex_enter(&dtrace_lock);
16386 16386 rval = dtrace_state_stop(state, &cpuid);
16387 16387 mutex_exit(&dtrace_lock);
16388 16388
16389 16389 if (rval != 0)
16390 16390 return (rval);
16391 16391
16392 16392 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16393 16393 return (EFAULT);
16394 16394
16395 16395 return (0);
16396 16396 }
16397 16397
16398 16398 case DTRACEIOC_DOFGET: {
16399 16399 dof_hdr_t hdr, *dof;
16400 16400 uint64_t len;
16401 16401
16402 16402 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16403 16403 return (EFAULT);
16404 16404
16405 16405 mutex_enter(&dtrace_lock);
16406 16406 dof = dtrace_dof_create(state);
16407 16407 mutex_exit(&dtrace_lock);
16408 16408
16409 16409 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16410 16410 rval = copyout(dof, (void *)arg, len);
16411 16411 dtrace_dof_destroy(dof);
16412 16412
16413 16413 return (rval == 0 ? 0 : EFAULT);
16414 16414 }
16415 16415
16416 16416 case DTRACEIOC_AGGSNAP:
16417 16417 case DTRACEIOC_BUFSNAP: {
16418 16418 dtrace_bufdesc_t desc;
16419 16419 caddr_t cached;
16420 16420 dtrace_buffer_t *buf;
16421 16421
16422 16422 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16423 16423 return (EFAULT);
16424 16424
16425 16425 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16426 16426 return (EINVAL);
16427 16427
16428 16428 mutex_enter(&dtrace_lock);
16429 16429
16430 16430 if (cmd == DTRACEIOC_BUFSNAP) {
16431 16431 buf = &state->dts_buffer[desc.dtbd_cpu];
16432 16432 } else {
16433 16433 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16434 16434 }
16435 16435
16436 16436 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16437 16437 size_t sz = buf->dtb_offset;
16438 16438
16439 16439 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16440 16440 mutex_exit(&dtrace_lock);
16441 16441 return (EBUSY);
16442 16442 }
16443 16443
16444 16444 /*
16445 16445 * If this buffer has already been consumed, we're
16446 16446 * going to indicate that there's nothing left here
16447 16447 * to consume.
16448 16448 */
16449 16449 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16450 16450 mutex_exit(&dtrace_lock);
16451 16451
16452 16452 desc.dtbd_size = 0;
16453 16453 desc.dtbd_drops = 0;
16454 16454 desc.dtbd_errors = 0;
16455 16455 desc.dtbd_oldest = 0;
16456 16456 sz = sizeof (desc);
16457 16457
16458 16458 if (copyout(&desc, (void *)arg, sz) != 0)
16459 16459 return (EFAULT);
16460 16460
16461 16461 return (0);
16462 16462 }
16463 16463
16464 16464 /*
16465 16465 * If this is a ring buffer that has wrapped, we want
16466 16466 * to copy the whole thing out.
16467 16467 */
16468 16468 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16469 16469 dtrace_buffer_polish(buf);
16470 16470 sz = buf->dtb_size;
16471 16471 }
16472 16472
16473 16473 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16474 16474 mutex_exit(&dtrace_lock);
16475 16475 return (EFAULT);
16476 16476 }
16477 16477
16478 16478 desc.dtbd_size = sz;
16479 16479 desc.dtbd_drops = buf->dtb_drops;
16480 16480 desc.dtbd_errors = buf->dtb_errors;
16481 16481 desc.dtbd_oldest = buf->dtb_xamot_offset;
16482 16482 desc.dtbd_timestamp = dtrace_gethrtime();
16483 16483
16484 16484 mutex_exit(&dtrace_lock);
16485 16485
16486 16486 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16487 16487 return (EFAULT);
16488 16488
16489 16489 buf->dtb_flags |= DTRACEBUF_CONSUMED;
16490 16490
16491 16491 return (0);
16492 16492 }
16493 16493
16494 16494 if (buf->dtb_tomax == NULL) {
16495 16495 ASSERT(buf->dtb_xamot == NULL);
16496 16496 mutex_exit(&dtrace_lock);
16497 16497 return (ENOENT);
16498 16498 }
16499 16499
16500 16500 cached = buf->dtb_tomax;
16501 16501 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16502 16502
16503 16503 dtrace_xcall(desc.dtbd_cpu,
16504 16504 (dtrace_xcall_t)dtrace_buffer_switch, buf);
16505 16505
16506 16506 state->dts_errors += buf->dtb_xamot_errors;
16507 16507
16508 16508 /*
16509 16509 * If the buffers did not actually switch, then the cross call
16510 16510 * did not take place -- presumably because the given CPU is
16511 16511 * not in the ready set. If this is the case, we'll return
16512 16512 * ENOENT.
16513 16513 */
16514 16514 if (buf->dtb_tomax == cached) {
16515 16515 ASSERT(buf->dtb_xamot != cached);
16516 16516 mutex_exit(&dtrace_lock);
16517 16517 return (ENOENT);
16518 16518 }
16519 16519
16520 16520 ASSERT(cached == buf->dtb_xamot);
16521 16521
16522 16522 /*
16523 16523 * We have our snapshot; now copy it out.
16524 16524 */
16525 16525 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16526 16526 buf->dtb_xamot_offset) != 0) {
16527 16527 mutex_exit(&dtrace_lock);
16528 16528 return (EFAULT);
16529 16529 }
16530 16530
16531 16531 desc.dtbd_size = buf->dtb_xamot_offset;
16532 16532 desc.dtbd_drops = buf->dtb_xamot_drops;
16533 16533 desc.dtbd_errors = buf->dtb_xamot_errors;
16534 16534 desc.dtbd_oldest = 0;
16535 16535 desc.dtbd_timestamp = buf->dtb_switched;
16536 16536
16537 16537 mutex_exit(&dtrace_lock);
16538 16538
16539 16539 /*
16540 16540 * Finally, copy out the buffer description.
16541 16541 */
16542 16542 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16543 16543 return (EFAULT);
16544 16544
16545 16545 return (0);
16546 16546 }
16547 16547
16548 16548 case DTRACEIOC_CONF: {
16549 16549 dtrace_conf_t conf;
16550 16550
16551 16551 bzero(&conf, sizeof (conf));
16552 16552 conf.dtc_difversion = DIF_VERSION;
16553 16553 conf.dtc_difintregs = DIF_DIR_NREGS;
16554 16554 conf.dtc_diftupregs = DIF_DTR_NREGS;
16555 16555 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16556 16556
16557 16557 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16558 16558 return (EFAULT);
16559 16559
16560 16560 return (0);
16561 16561 }
16562 16562
16563 16563 case DTRACEIOC_STATUS: {
16564 16564 dtrace_status_t stat;
16565 16565 dtrace_dstate_t *dstate;
16566 16566 int i, j;
16567 16567 uint64_t nerrs;
16568 16568
16569 16569 /*
16570 16570 * See the comment in dtrace_state_deadman() for the reason
16571 16571 * for setting dts_laststatus to INT64_MAX before setting
16572 16572 * it to the correct value.
16573 16573 */
16574 16574 state->dts_laststatus = INT64_MAX;
16575 16575 dtrace_membar_producer();
16576 16576 state->dts_laststatus = dtrace_gethrtime();
16577 16577
16578 16578 bzero(&stat, sizeof (stat));
16579 16579
16580 16580 mutex_enter(&dtrace_lock);
16581 16581
16582 16582 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16583 16583 mutex_exit(&dtrace_lock);
16584 16584 return (ENOENT);
16585 16585 }
16586 16586
16587 16587 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16588 16588 stat.dtst_exiting = 1;
16589 16589
16590 16590 nerrs = state->dts_errors;
16591 16591 dstate = &state->dts_vstate.dtvs_dynvars;
16592 16592
16593 16593 for (i = 0; i < NCPU; i++) {
16594 16594 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16595 16595
16596 16596 stat.dtst_dyndrops += dcpu->dtdsc_drops;
16597 16597 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16598 16598 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16599 16599
16600 16600 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16601 16601 stat.dtst_filled++;
16602 16602
16603 16603 nerrs += state->dts_buffer[i].dtb_errors;
16604 16604
16605 16605 for (j = 0; j < state->dts_nspeculations; j++) {
16606 16606 dtrace_speculation_t *spec;
16607 16607 dtrace_buffer_t *buf;
16608 16608
16609 16609 spec = &state->dts_speculations[j];
16610 16610 buf = &spec->dtsp_buffer[i];
16611 16611 stat.dtst_specdrops += buf->dtb_xamot_drops;
16612 16612 }
16613 16613 }
16614 16614
16615 16615 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16616 16616 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16617 16617 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16618 16618 stat.dtst_dblerrors = state->dts_dblerrors;
16619 16619 stat.dtst_killed =
16620 16620 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16621 16621 stat.dtst_errors = nerrs;
16622 16622
16623 16623 mutex_exit(&dtrace_lock);
16624 16624
16625 16625 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16626 16626 return (EFAULT);
16627 16627
16628 16628 return (0);
16629 16629 }
16630 16630
16631 16631 case DTRACEIOC_FORMAT: {
16632 16632 dtrace_fmtdesc_t fmt;
16633 16633 char *str;
16634 16634 int len;
16635 16635
16636 16636 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16637 16637 return (EFAULT);
16638 16638
16639 16639 mutex_enter(&dtrace_lock);
16640 16640
16641 16641 if (fmt.dtfd_format == 0 ||
16642 16642 fmt.dtfd_format > state->dts_nformats) {
16643 16643 mutex_exit(&dtrace_lock);
16644 16644 return (EINVAL);
16645 16645 }
16646 16646
16647 16647 /*
16648 16648 * Format strings are allocated contiguously and they are
16649 16649 * never freed; if a format index is less than the number
16650 16650 * of formats, we can assert that the format map is non-NULL
16651 16651 * and that the format for the specified index is non-NULL.
16652 16652 */
16653 16653 ASSERT(state->dts_formats != NULL);
16654 16654 str = state->dts_formats[fmt.dtfd_format - 1];
16655 16655 ASSERT(str != NULL);
16656 16656
16657 16657 len = strlen(str) + 1;
16658 16658
16659 16659 if (len > fmt.dtfd_length) {
16660 16660 fmt.dtfd_length = len;
16661 16661
16662 16662 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16663 16663 mutex_exit(&dtrace_lock);
16664 16664 return (EINVAL);
16665 16665 }
16666 16666 } else {
16667 16667 if (copyout(str, fmt.dtfd_string, len) != 0) {
16668 16668 mutex_exit(&dtrace_lock);
16669 16669 return (EINVAL);
16670 16670 }
16671 16671 }
16672 16672
16673 16673 mutex_exit(&dtrace_lock);
16674 16674 return (0);
16675 16675 }
16676 16676
16677 16677 default:
16678 16678 break;
16679 16679 }
16680 16680
16681 16681 return (ENOTTY);
16682 16682 }
16683 16683
16684 16684 /*ARGSUSED*/
16685 16685 static int
16686 16686 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16687 16687 {
16688 16688 dtrace_state_t *state;
16689 16689
16690 16690 switch (cmd) {
16691 16691 case DDI_DETACH:
16692 16692 break;
16693 16693
16694 16694 case DDI_SUSPEND:
16695 16695 return (DDI_SUCCESS);
16696 16696
16697 16697 default:
16698 16698 return (DDI_FAILURE);
16699 16699 }
16700 16700
16701 16701 mutex_enter(&cpu_lock);
16702 16702 mutex_enter(&dtrace_provider_lock);
16703 16703 mutex_enter(&dtrace_lock);
16704 16704
16705 16705 ASSERT(dtrace_opens == 0);
16706 16706
16707 16707 if (dtrace_helpers > 0) {
16708 16708 mutex_exit(&dtrace_provider_lock);
16709 16709 mutex_exit(&dtrace_lock);
16710 16710 mutex_exit(&cpu_lock);
16711 16711 return (DDI_FAILURE);
16712 16712 }
16713 16713
16714 16714 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16715 16715 mutex_exit(&dtrace_provider_lock);
16716 16716 mutex_exit(&dtrace_lock);
16717 16717 mutex_exit(&cpu_lock);
16718 16718 return (DDI_FAILURE);
16719 16719 }
16720 16720
16721 16721 dtrace_provider = NULL;
16722 16722
16723 16723 if ((state = dtrace_anon_grab()) != NULL) {
16724 16724 /*
16725 16725 * If there were ECBs on this state, the provider should
16726 16726 * have not been allowed to detach; assert that there is
16727 16727 * none.
16728 16728 */
16729 16729 ASSERT(state->dts_necbs == 0);
16730 16730 dtrace_state_destroy(state);
16731 16731
16732 16732 /*
16733 16733 * If we're being detached with anonymous state, we need to
16734 16734 * indicate to the kernel debugger that DTrace is now inactive.
16735 16735 */
16736 16736 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16737 16737 }
16738 16738
16739 16739 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16740 16740 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16741 16741 dtrace_cpu_init = NULL;
16742 16742 dtrace_helpers_cleanup = NULL;
16743 16743 dtrace_helpers_fork = NULL;
16744 16744 dtrace_cpustart_init = NULL;
16745 16745 dtrace_cpustart_fini = NULL;
16746 16746 dtrace_debugger_init = NULL;
16747 16747 dtrace_debugger_fini = NULL;
16748 16748 dtrace_modload = NULL;
16749 16749 dtrace_modunload = NULL;
16750 16750
16751 16751 ASSERT(dtrace_getf == 0);
16752 16752 ASSERT(dtrace_closef == NULL);
16753 16753
16754 16754 mutex_exit(&cpu_lock);
16755 16755
16756 16756 if (dtrace_helptrace_enabled) {
16757 16757 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16758 16758 dtrace_helptrace_buffer = NULL;
16759 16759 }
16760 16760
16761 16761 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16762 16762 dtrace_probes = NULL;
16763 16763 dtrace_nprobes = 0;
16764 16764
16765 16765 dtrace_hash_destroy(dtrace_bymod);
16766 16766 dtrace_hash_destroy(dtrace_byfunc);
16767 16767 dtrace_hash_destroy(dtrace_byname);
16768 16768 dtrace_bymod = NULL;
16769 16769 dtrace_byfunc = NULL;
16770 16770 dtrace_byname = NULL;
16771 16771
16772 16772 kmem_cache_destroy(dtrace_state_cache);
16773 16773 vmem_destroy(dtrace_minor);
16774 16774 vmem_destroy(dtrace_arena);
16775 16775
16776 16776 if (dtrace_toxrange != NULL) {
16777 16777 kmem_free(dtrace_toxrange,
16778 16778 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16779 16779 dtrace_toxrange = NULL;
16780 16780 dtrace_toxranges = 0;
16781 16781 dtrace_toxranges_max = 0;
16782 16782 }
16783 16783
16784 16784 ddi_remove_minor_node(dtrace_devi, NULL);
16785 16785 dtrace_devi = NULL;
16786 16786
16787 16787 ddi_soft_state_fini(&dtrace_softstate);
16788 16788
16789 16789 ASSERT(dtrace_vtime_references == 0);
16790 16790 ASSERT(dtrace_opens == 0);
16791 16791 ASSERT(dtrace_retained == NULL);
16792 16792
16793 16793 mutex_exit(&dtrace_lock);
16794 16794 mutex_exit(&dtrace_provider_lock);
16795 16795
16796 16796 /*
16797 16797 * We don't destroy the task queue until after we have dropped our
16798 16798 * locks (taskq_destroy() may block on running tasks). To prevent
16799 16799 * attempting to do work after we have effectively detached but before
16800 16800 * the task queue has been destroyed, all tasks dispatched via the
16801 16801 * task queue must check that DTrace is still attached before
16802 16802 * performing any operation.
16803 16803 */
16804 16804 taskq_destroy(dtrace_taskq);
16805 16805 dtrace_taskq = NULL;
16806 16806
16807 16807 return (DDI_SUCCESS);
16808 16808 }
16809 16809
16810 16810 /*ARGSUSED*/
16811 16811 static int
16812 16812 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16813 16813 {
16814 16814 int error;
16815 16815
16816 16816 switch (infocmd) {
16817 16817 case DDI_INFO_DEVT2DEVINFO:
16818 16818 *result = (void *)dtrace_devi;
16819 16819 error = DDI_SUCCESS;
16820 16820 break;
16821 16821 case DDI_INFO_DEVT2INSTANCE:
16822 16822 *result = (void *)0;
16823 16823 error = DDI_SUCCESS;
16824 16824 break;
16825 16825 default:
16826 16826 error = DDI_FAILURE;
16827 16827 }
16828 16828 return (error);
16829 16829 }
16830 16830
16831 16831 static struct cb_ops dtrace_cb_ops = {
16832 16832 dtrace_open, /* open */
16833 16833 dtrace_close, /* close */
16834 16834 nulldev, /* strategy */
16835 16835 nulldev, /* print */
16836 16836 nodev, /* dump */
16837 16837 nodev, /* read */
16838 16838 nodev, /* write */
16839 16839 dtrace_ioctl, /* ioctl */
16840 16840 nodev, /* devmap */
16841 16841 nodev, /* mmap */
16842 16842 nodev, /* segmap */
16843 16843 nochpoll, /* poll */
16844 16844 ddi_prop_op, /* cb_prop_op */
16845 16845 0, /* streamtab */
16846 16846 D_NEW | D_MP /* Driver compatibility flag */
16847 16847 };
16848 16848
16849 16849 static struct dev_ops dtrace_ops = {
16850 16850 DEVO_REV, /* devo_rev */
16851 16851 0, /* refcnt */
16852 16852 dtrace_info, /* get_dev_info */
16853 16853 nulldev, /* identify */
16854 16854 nulldev, /* probe */
16855 16855 dtrace_attach, /* attach */
16856 16856 dtrace_detach, /* detach */
16857 16857 nodev, /* reset */
16858 16858 &dtrace_cb_ops, /* driver operations */
16859 16859 NULL, /* bus operations */
16860 16860 nodev, /* dev power */
16861 16861 ddi_quiesce_not_needed, /* quiesce */
16862 16862 };
16863 16863
16864 16864 static struct modldrv modldrv = {
16865 16865 &mod_driverops, /* module type (this is a pseudo driver) */
16866 16866 "Dynamic Tracing", /* name of module */
16867 16867 &dtrace_ops, /* driver ops */
16868 16868 };
16869 16869
16870 16870 static struct modlinkage modlinkage = {
16871 16871 MODREV_1,
16872 16872 (void *)&modldrv,
16873 16873 NULL
16874 16874 };
16875 16875
16876 16876 int
16877 16877 _init(void)
16878 16878 {
16879 16879 return (mod_install(&modlinkage));
16880 16880 }
16881 16881
16882 16882 int
16883 16883 _info(struct modinfo *modinfop)
16884 16884 {
16885 16885 return (mod_info(&modlinkage, modinfop));
16886 16886 }
16887 16887
16888 16888 int
16889 16889 _fini(void)
16890 16890 {
16891 16891 return (mod_remove(&modlinkage));
16892 16892 }
↓ open down ↓ |
16762 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX