
new/usr/src/cmd/make/Makefile.com 1

**
 625 Wed May 20 11:53:23 2015
new/usr/src/cmd/make/Makefile.com
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2015, Richard Lowe.

14 MAKE_INCLUDE= $(SRC)/cmd/make/include
15 MAKE_DEFS= -DSYSV -DINTER -DTEAMWARE_MAKE_CMN
15 MAKE_DEFS= -DSYSV -DINTER
16 $(RELEASE_BUILD)MAKE_DEFS += -DNDEBUG
17 CFLAGS += $(CCVERBOSE)
18 CPPFLAGS += -I$(MAKE_INCLUDE) $(MAKE_DEFS)

new/usr/src/cmd/make/bin/Makefile 1

**
 1740 Wed May 20 11:53:24 2015
new/usr/src/cmd/make/bin/Makefile
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2015, Richard Lowe.

14 PROG= make
15 OBJS= ar.o \
16 depvar.o \
17 dist.o \
18 doname.o \
19 dosys.o \
20 files.o \
21 globals.o \
22 implicit.o \
23 macro.o \
24 main.o \
25 make.o \
25 misc.o \
26 nse_printdep.o \
27 parallel.o \
28 pmake.o \
29 read.o \
30 read2.o \
31 rep.o \
32 state.o

34 include ../../Makefile.cmd
35 include ../Makefile.com

37 LDLIBS += ../lib/mksh/libmksh.a ../lib/mksdmsi18n/libmksdmsi18n.a ../lib/vroot/l
38 LDLIBS += ../lib/bsd/libbsd.a -lc -lnsl -lumem
39 LDLIBS += ../lib/bsd/libbsd.a -lc

40 CPPFLAGS += -D_FILE_OFFSET_BITS=64

42 ROOTLINKS = $(ROOTCCSBIN)/make $(ROOTXPG4BIN)/make $(ROOTBIN)/dmake $(ROOTCCSLIB
43 $(ROOTLIB)/svr4.make

45 ROOTRULES = $(ROOTSHLIB)/make/make.rules $(ROOTSHLIB)/make/svr4.make.rules

47 all: $(PROG)

49 install: all $(ROOTPROG) $(ROOTLINKS) $(ROOTRULES)

51 $(PROG): $(OBJS)
52 $(LINK.cc) $(OBJS) -o $@ $(LDLIBS)
53 $(POST_PROCESS)

55 $(ROOTCCSBIN)/make:
56 -$(RM) $@; $(SYMLINK) ../../bin/make $@

58 $(ROOTCCSLIB)/svr4.make:
59 -$(RM) $@; $(SYMLINK) ../../bin/make $@

new/usr/src/cmd/make/bin/Makefile 2

61 $(ROOTLIB)/svr4.make:
62 -$(RM) $@; $(SYMLINK) ../bin/make $@

64 $(ROOTXPG4BIN)/make:
65 -$(RM) $@; $(SYMLINK) ../../bin/make $@

67 $(ROOTBIN)/dmake:
68 -$(RM) $@; $(SYMLINK) ./make $@

70 $(ROOTRULES) := FILEMODE = 0444

72 $(ROOTRULES): $(ROOTSHLIB)/make

74 $(ROOTSHLIB)/make: FRC
75 $(INS.dir)

77 $(ROOTSHLIB)/make/%: %.file
78 $(INS.rename)

80 lint:

82 clean:
83 $(RM) $(OBJS)

85 FRC:

87 include ../../Makefile.targ

new/usr/src/cmd/make/bin/doname.cc 1

**
 103949 Wed May 20 11:53:24 2015
new/usr/src/cmd/make/bin/doname.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * doname.c
28 *
29 * Figure out which targets are out of date and rebuild them
30 */

32 /*
33 * Included files
34 */
35 #include <alloca.h> /* alloca() */
36 #if defined(TEAMWARE_MAKE_CMN)
37 #include <avo/util.h> /* avo_get_user(), avo_hostname() */
38 #endif

37 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
38 # include <avo/strings.h> /* AVO_STRDUP() */
39 # include <dm/Avo_MToolJobResultMsg.h>
40 # include <dm/Avo_MToolJobStartMsg.h>
41 # include <dm/Avo_MToolRsrcInfoMsg.h>
42 # include <dm/Avo_macro_defs.h> /* AVO_BLOCK_INTERUPTS & AVO_UNBLOCK_INTER
43 # include <dmthread/Avo_ServerState.h>
44 # include <rw/pstream.h>
45 # include <rw/xdrstrea.h>
46 #endif

48 #include <fcntl.h>
49 #include <mk/defs.h>
50 #include <mksh/i18n.h> /* get_char_semantics_value() */
51 #include <mksh/macro.h> /* getvar(), expand_value() */
52 #include <mksh/misc.h> /* getmem() */
53 #include <poll.h>

56 #include <signal.h>

58 # include <stropts.h>

new/usr/src/cmd/make/bin/doname.cc 2

60 #include <sys/errno.h>
61 #include <sys/stat.h>
62 #include <sys/types.h>
63 #include <sys/utsname.h> /* uname() */
64 #include <sys/wait.h>
65 #include <unistd.h> /* close() */

67 /*
68 * Defined macros
69 */
70 # define LOCALHOST "localhost"

72 #define MAXRULES 100

74 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
75 #define SEND_MTOOL_MSG(cmds) \
76 if (send_mtool_msgs) { \
77 cmds \
78 }
79 #else
80 #define SEND_MTOOL_MSG(cmds)
81 #endif

83 // Sleep for .1 seconds between stat()’s
84 const int STAT_RETRY_SLEEP_TIME = 100000;

86 /*
87 * typedefs & structs
88 */

90 /*
91 * Static variables
92 */
93 static char hostName[MAXNAMELEN] = "";
94 static char userName[MAXNAMELEN] = "";

96 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
97 static FILE *mtool_msgs_fp;
98 static XDR xdrs;
99 static int sent_rsrc_info_msg = 0;
100 #endif

102 static int second_pass = 0;

104 /*
105 * File table of contents
106 */
107 extern Doname doname_check(register Name target, register Boolean do_g
108 extern Doname doname(register Name target, register Boolean do_get, re
109 static Boolean check_dependencies(Doname *result, Property line, Boolea
110 void dynamic_dependencies(Name target);
111 static Doname run_command(register Property line, Boolean print_machin
112 extern Doname execute_serial(Property line);
113 extern Name vpath_translation(register Name cmd);
114 extern void check_state(Name temp_file_name);
115 static void read_dependency_file(register Name filename);
116 static void check_read_state_file(void);
117 static void do_assign(register Name line, register Name target);
118 static void build_command_strings(Name target, register Property lin
119 static Doname touch_command(register Property line, register Name targ
120 extern void update_target(Property line, Doname result);
121 static Doname sccs_get(register Name target, register Property *comman
122 extern void read_directory_of_file(register Name file);
123 static void add_pattern_conditionals(register Name target);
124 extern void set_locals(register Name target, register Property old_l

new/usr/src/cmd/make/bin/doname.cc 3

125 extern void reset_locals(register Name target, register Property old
126 extern Boolean check_auto_dependencies(Name target, int auto_count, Nam
127 static void delete_query_chain(Chain ch);

129 // From read2.cc
130 extern Name normalize_name(register wchar_t *name_string, register i

133 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
134 static void append_job_result_msg(Avo_MToolJobResultMsg *job
135 static int pollResults(char *outFn, char *errFn, char *host
136 static void pollResultsAction(char *outFn, char *errFn);
137 static void rxmGetNextResultsBlock(int fd);
138 static int us_sleep(unsigned int nusecs);
139 extern "C" void Avo_PollResultsAction_Sigusr1Handler(int foo);
140 #endif

142 /*
143 * DONE.
144 *
145 * doname_check(target, do_get, implicit, automatic)
146 *
147 * Will call doname() and then inspect the return value
148 *
149 * Return value:
150 * Indication if the build failed or not
151 *
152 * Parameters:
153 * target The target to build
154 * do_get Passed thru to doname()
155 * implicit Passed thru to doname()
156 * automatic Are we building a hidden dependency?
157 *
158 * Global variables used:
159 * build_failed_seen Set if -k is on and error occurs
160 * continue_after_error Indicates that -k is on
161 * report_dependencies No error msg if -P is on
162 */
163 Doname
164 doname_check(register Name target, register Boolean do_get, register Boolean imp
165 {
166 int first_time = 1;
167 (void) fflush(stdout);
168 try_again:
169 switch (doname(target, do_get, implicit, automatic)) {
170 case build_ok:
171 second_pass = 0;
172 return build_ok;
173 case build_running:
174 second_pass = 0;
175 return build_running;
176 case build_failed:
177 if (!continue_after_error) {
178 fatal(catgets(catd, 1, 13, "Target ‘%s’ not remade becau
179 target->string_mb);
180 }
181 build_failed_seen = true;
182 second_pass = 0;
183 return build_failed;
184 case build_dont_know:
185 /*
186 * If we can’t figure out how to build an automatic
187 * (hidden) dependency, we just ignore it.
188 * We later declare the target to be out of date just in
189 * case something changed.
190 * Also, don’t complain if just reporting the dependencies

new/usr/src/cmd/make/bin/doname.cc 4

191 * and not building anything.
192 */
193 if (automatic || (report_dependencies_level > 0)) {
194 second_pass = 0;
195 return build_dont_know;
196 }
197 if(first_time) {
198 first_time = 0;
199 second_pass = 1;
200 goto try_again;
201 }
202 second_pass = 0;
203 if (continue_after_error && !svr4) {
204 warning(catgets(catd, 1, 14, "Don’t know how to make tar
205 target->string_mb);
206 build_failed_seen = true;
207 return build_failed;
208 }
209 fatal(catgets(catd, 1, 15, "Don’t know how to make target ‘%s’")
210 break;
211 }
212 #ifdef lint
213 return build_failed;
214 #endif
215 }

______unchanged_portion_omitted_

3277 /*
3278 * set_locals(target, old_locals)
3279 *
3280 * Sets any conditional macros for the target.
3281 * Each target carries a possibly empty set of conditional properties.
3282 *
3283 * Parameters:
3284 * target The target to set conditional macros for
3285 * old_locals Space to store old values in
3286 *
3287 * Global variables used:
3288 * debug_level Should we trace activity?
3289 * is_conditional We need to preserve this value
3290 * recursion_level Used for tracing
3291 */
3292 void
3293 set_locals(register Name target, register Property old_locals)
3294 {
3295 register Property conditional;
3296 register int i;
3297 register Boolean saved_conditional_macro_used;
3298 Chain cond_name;
3299 Chain cond_chain;

3304 #ifdef DISTRIBUTED
3301 if (target->dont_activate_cond_values) {
3302 return;
3303 }
3308 #endif

3305 saved_conditional_macro_used = conditional_macro_used;

3307 /* Scan the list of conditional properties and apply each one */
3308 for (conditional = get_prop(target->prop, conditional_prop), i = 0;
3309 conditional != NULL;
3310 conditional = get_prop(conditional->next, conditional_prop),
3311 i++) {
3312 /* Save the old value */
3313 old_locals[i].body.macro =

new/usr/src/cmd/make/bin/doname.cc 5

3314 maybe_append_prop(conditional->body.conditional.name,
3315 macro_prop)->body.macro;
3316 if (debug_level > 1) {
3317 (void) printf(catgets(catd, 1, 38, "%*sActivating condit
3318 recursion_level,
3319 "");
3320 }
3321 /* Set the conditional value. Macros are expanded when the */
3322 /* macro is refd as usual */
3323 if ((conditional->body.conditional.name != virtual_root) ||
3324 (conditional->body.conditional.value != virtual_root)) {
3325 (void) SETVAR(conditional->body.conditional.name,
3326 conditional->body.conditional.value,
3327 (Boolean) conditional->body.conditional.ap
3328 }
3329 cond_name = ALLOC(Chain);
3330 cond_name->name = conditional->body.conditional.name;
3331 }
3332 /* Put this target on the front of the chain of conditional targets */
3333 cond_chain = ALLOC(Chain);
3334 cond_chain->name = target;
3335 cond_chain->next = conditional_targets;
3336 conditional_targets = cond_chain;
3337 conditional_macro_used = saved_conditional_macro_used;
3338 }

3340 /*
3341 * reset_locals(target, old_locals, conditional, index)
3342 *
3343 * Removes any conditional macros for the target.
3344 *
3345 * Parameters:
3346 * target The target we are retoring values for
3347 * old_locals The values to restore
3348 * conditional The first conditional block for the target
3349 * index into the old_locals vector
3350 * Global variables used:
3351 * debug_level Should we trace activities?
3352 * recursion_level Used for tracing
3353 */
3354 void
3355 reset_locals(register Name target, register Property old_locals, register Proper
3356 {
3357 register Property this_conditional;
3358 Chain cond_chain;

3365 #ifdef DISTRIBUTED
3360 if (target->dont_activate_cond_values) {
3361 return;
3362 }
3369 #endif

3364 /* Scan the list of conditional properties and restore the old value */
3365 /* to each one Reverse the order relative to when we assigned macros */
3366 this_conditional = get_prop(conditional->next, conditional_prop);
3367 if (this_conditional != NULL) {
3368 reset_locals(target, old_locals, this_conditional, index+1);
3369 } else {
3370 /* Remove conditional target from chain */
3371 if (conditional_targets == NULL ||
3372 conditional_targets->name != target) {
3373 warning(catgets(catd, 1, 39, "Internal error: reset targ
3374 } else {
3375 cond_chain = conditional_targets->next;
3376 retmem_mb((caddr_t) conditional_targets);
3377 conditional_targets = cond_chain;

new/usr/src/cmd/make/bin/doname.cc 6

3378 }
3379 }
3380 get_prop(conditional->body.conditional.name->prop,
3381 macro_prop)->body.macro = old_locals[index].body.macro;
3382 if (conditional->body.conditional.name == virtual_root) {
3383 (void) SETVAR(virtual_root, getvar(virtual_root), false);
3384 }
3385 if (debug_level > 1) {
3386 if (old_locals[index].body.macro.value != NULL) {
3387 (void) printf(catgets(catd, 1, 40, "%*sdeactivating cond
3388 recursion_level,
3389 "",
3390 conditional->body.conditional.name->
3391 string_mb,
3392 old_locals[index].body.macro.value->
3393 string_mb);
3394 } else {
3395 (void) printf(catgets(catd, 1, 41, "%*sdeactivating cond
3396 recursion_level,
3397 "",
3398 conditional->body.conditional.name->
3399 string_mb);
3400 }
3401 }
3402 }
______unchanged_portion_omitted_

new/usr/src/cmd/make/bin/main.cc 1

**
 97949 Wed May 20 11:53:25 2015
new/usr/src/cmd/make/bin/main.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * main.cc
28 *
29 * make program main routine plus some helper routines
30 */
31
32 /*
33 * Included files
34 */
35 #if defined(TEAMWARE_MAKE_CMN)
36 # include <avo/intl.h>
37 # include <avo/libcli.h> /* libcli_init() */
38 # include <avo/cli_license.h> /* avo_cli_get_license() */
39 # include <avo/find_dir.h> /* avo_find_run_dir() */
40 # include <avo/version_string.h>
41 # include <avo/util.h> /* avo_init() */
42 # include <avo/cleanup.h>
37 #endif

39 #include <bsd/bsd.h> /* bsd_signal() */

41 #ifdef DISTRIBUTED
42 # include <dm/Avo_AcknowledgeMsg.h>
43 # include <rw/xdrstrea.h>
44 # include <dmrc/dmrc.h> /* dmakerc file processing */
45 #endif

47 #include <locale.h> /* setlocale() */
48 #include <mk/defs.h>
49 #include <mksdmsi18n/mksdmsi18n.h> /* libmksdmsi18n_init() */
50 #include <mksh/macro.h> /* getvar() */
51 #include <mksh/misc.h> /* getmem(), setup_char_semantics() */

53 #if defined(TEAMWARE_MAKE_CMN)
54 #endif

new/usr/src/cmd/make/bin/main.cc 2

56 #include <pwd.h> /* getpwnam() */
57 #include <setjmp.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <sys/errno.h> /* ENOENT */
61 #include <sys/stat.h> /* fstat() */
62 #include <fcntl.h> /* open() */

64 # include <sys/systeminfo.h> /* sysinfo() */

66 #include <sys/types.h> /* stat() */
67 #include <sys/wait.h> /* wait() */
68 #include <unistd.h> /* execv(), unlink(), access() */
69 #include <vroot/report.h> /* report_dependency(), get_report_file() */

71 // From read2.cc
72 extern Name normalize_name(register wchar_t *name_string, register i

74 // From parallel.cc
75 #if defined(TEAMWARE_MAKE_CMN)
76 #define MAXJOBS_ADJUST_RFE4694000

78 #ifdef MAXJOBS_ADJUST_RFE4694000
79 extern void job_adjust_fini();
80 #endif /* MAXJOBS_ADJUST_RFE4694000 */
81 #endif /* TEAMWARE_MAKE_CMN */

84 /*
85 * Defined macros
86 */
87 #define MAKE_PREFIX NOCATGETS("/usr")
88 #define LD_SUPPORT_ENV_VAR NOCATGETS("SGS_SUPPORT_32")
89 #define LD_SUPPORT_ENV_VAR_32 NOCATGETS("SGS_SUPPORT_32")
90 #define LD_SUPPORT_ENV_VAR_64 NOCATGETS("SGS_SUPPORT_64")
93 #define LD_SUPPORT_ENV_VAR NOCATGETS("SGS_SUPPORT")
91 #define LD_SUPPORT_MAKE_LIB NOCATGETS("libmakestate.so.1")
92 #define LD_SUPPORT_MAKE_LIB_DIR NOCATGETS("/lib")
93 #define LD_SUPPORT_MAKE_LIB_DIR_64 NOCATGETS("/64")
94 #endif /* ! codereview */

96 /*
97 * typedefs & structs
98 */

100 /*
101 * Static variables
102 */
103 static char *argv_zero_string;
104 static Boolean build_failed_ever_seen;
105 static Boolean continue_after_error_ever_seen; /* ‘-k’ */
106 static Boolean dmake_group_specified; /* ‘-g’ */
107 static Boolean dmake_max_jobs_specified; /* ‘-j’ */
108 static Boolean dmake_mode_specified; /* ‘-m’ */
109 static Boolean dmake_add_mode_specified; /* ‘-x’ */
110 static Boolean dmake_output_mode_specified; /* ‘-x DMAKE_OUTPUT_MODE
111 static Boolean dmake_compat_mode_specified; /* ‘-x SUN_MAKE_COMPAT_M
112 static Boolean dmake_odir_specified; /* ‘-o’ */
113 static Boolean dmake_rcfile_specified; /* ‘-c’ */
114 static Boolean env_wins; /* ‘-e’ */
115 static Boolean ignore_default_mk; /* ‘-r’ */
116 static Boolean list_all_targets; /* ‘-T’ */
117 static int mf_argc;
118 static char **mf_argv;
119 static Dependency_rec not_auto_depen_struct;
120 static Dependency not_auto_depen = ¬_auto_depen_struct;

new/usr/src/cmd/make/bin/main.cc 3

121 static Boolean pmake_cap_r_specified; /* ‘-R’ */
122 static Boolean pmake_machinesfile_specified; /* ‘-M’ */
123 static Boolean stop_after_error_ever_seen; /* ‘-S’ */
124 static Boolean trace_status; /* ‘-p’ */

126 #ifdef DMAKE_STATISTICS
127 static Boolean getname_stat = false;
128 #endif

130 #if defined(TEAMWARE_MAKE_CMN)
131 static time_t start_time;
132 static int g_argc;
133 static char **g_argv;
95 static Avo_cleanup *cleanup = NULL;
134 #endif

136 /*
137 * File table of contents
138 */
139 extern "C" void cleanup_after_exit(void);

141 #ifdef TEAMWARE_MAKE_CMN
142 extern "C" {
143 extern void dmake_exit_callback(void);
144 extern void dmake_message_callback(char *);
145 }
146 #endif

148 extern Name normalize_name(register wchar_t *name_string, register i

150 extern int main(int, char * []);

152 static void append_makeflags_string(Name, String);
153 static void doalarm(int);
154 static void enter_argv_values(int , char **, ASCII_Dyn_Array *);
155 static void make_targets(int, char **, Boolean);
156 static int parse_command_option(char);
157 static void read_command_options(int, char **);
158 static void read_environment(Boolean);
159 static void read_files_and_state(int, char **);
160 static Boolean read_makefile(Name, Boolean, Boolean, Boolean);
161 static void report_recursion(Name);
162 static void set_sgs_support(void);
163 static void setup_for_projectdir(void);
164 static void setup_makeflags_argv(void);
165 static void report_dir_enter_leave(Boolean entering);

167 extern void expand_value(Name, register String , Boolean);

169 #ifdef DISTRIBUTED
170 extern int dmake_ofd;
171 extern FILE* dmake_ofp;
172 extern int rxmPid;
173 extern XDR xdrs_out;
174 #endif
175 #ifdef TEAMWARE_MAKE_CMN
176 static const char verstring[] = "illumos make";
138 extern char verstring[];
177 #endif

179 jmp_buf jmpbuffer;
180 extern nl_catd catd;

182 /*
183 * main(argc, argv)
184 *

new/usr/src/cmd/make/bin/main.cc 4

185 * Parameters:
186 * argc You know what this is
187 * argv You know what this is
188 *
189 * Static variables used:
190 * list_all_targets make -T seen
191 * trace_status make -p seen
192 *
193 * Global variables used:
194 * debug_level Should we trace make actions?
195 * keep_state Set if .KEEP_STATE seen
196 * makeflags The Name "MAKEFLAGS", used to get macro
197 * remote_command_name Name of remote invocation cmd ("on")
198 * running_list List of parallel running processes
199 * stdout_stderr_same true if stdout and stderr are the same
200 * auto_dependencies The Name "SUNPRO_DEPENDENCIES"
201 * temp_file_directory Set to the dir where we create tmp file
202 * trace_reader Set to reflect tracing status
203 * working_on_targets Set when building user targets
204 */
205 int
206 main(int argc, char *argv[])
207 {
208 /*
209 * cp is a -> to the value of the MAKEFLAGS env var,
210 * which has to be regular chars.
211 */
212 register char *cp;
213 char make_state_dir[MAXPATHLEN];
214 Boolean parallel_flag = false;
215 char *prognameptr;
216 char *slash_ptr;
217 mode_t um;
218 int i;
219 #ifdef TEAMWARE_MAKE_CMN
220 struct itimerval value;
221 char def_dmakerc_path[MAXPATHLEN];
222 Name dmake_name, dmake_name2;
223 Name dmake_value, dmake_value2;
224 Property prop, prop2;
225 struct stat statbuf;
226 int statval;
227 #endif

229 struct stat out_stat, err_stat;
230 hostid = gethostid();
193 #ifdef TEAMWARE_MAKE_CMN
194 avo_get_user(NULL, NULL); // Initialize user name
195 #endif
231 bsd_signals();

233 (void) setlocale(LC_ALL, "");

236 #ifdef DMAKE_STATISTICS
237 if (getenv(NOCATGETS("DMAKE_STATISTICS"))) {
238 getname_stat = true;
239 }
240 #endif

208 /*
209 * avo_init() sets the umask to 0. Save it here and restore
210 * it after the avo_init() call.
211 */
212 #if defined(TEAMWARE_MAKE_CMN) || defined(MAKETOOL)

new/usr/src/cmd/make/bin/main.cc 5

213 um = umask(0);
214 avo_init(argv[0]);
215 umask(um);

217 cleanup = new Avo_cleanup(NOCATGETS("dmake"), argc, argv);
218 #endif

242 #if defined(TEAMWARE_MAKE_CMN)
243 catd = catopen(AVO_DOMAIN_DMAKE, NL_CAT_LOCALE);
222 libcli_init();
244 #endif

246 // ---> fprintf(stderr, catgets(catd, 15, 666, "--- SUN make ---\n"));

249 #if defined(TEAMWARE_MAKE_CMN) || defined(MAKETOOL)
250 /*
251 * I put libmksdmsi18n_init() under #ifdef because it requires avo_i18n_init()
252 * from avo_util library.
253 */
254 libmksdmsi18n_init();
255 #endif

258 #ifndef TEAMWARE_MAKE_CMN
259 textdomain(NOCATGETS("SUNW_SPRO_MAKE"));
260 #endif /* TEAMWARE_MAKE_CMN */

262 #ifdef TEAMWARE_MAKE_CMN
263 g_argc = argc;
264 g_argv = (char **) malloc((g_argc + 1) * sizeof(char *));
265 for (i = 0; i < argc; i++) {
266 g_argv[i] = argv[i];
267 }
268 g_argv[i] = NULL;
269 #endif /* TEAMWARE_MAKE_CMN */

271 /*
272 * Set argv_zero_string to some form of argv[0] for
273 * recursive MAKE builds.
274 */

276 if (*argv[0] == (int) slash_char) {
277 /* argv[0] starts with a slash */
278 argv_zero_string = strdup(argv[0]);
279 } else if (strchr(argv[0], (int) slash_char) == NULL) {
280 /* argv[0] contains no slashes */
281 argv_zero_string = strdup(argv[0]);
282 } else {
283 /*
284 * argv[0] contains at least one slash,
285 * but doesn’t start with a slash
286 */
287 char *tmp_current_path;
288 char *tmp_string;

290 tmp_current_path = get_current_path();
291 tmp_string = getmem(strlen(tmp_current_path) + 1 +
292 strlen(argv[0]) + 1);
293 (void) sprintf(tmp_string,
294 "%s/%s",
295 tmp_current_path,
296 argv[0]);
297 argv_zero_string = strdup(tmp_string);
298 retmem_mb(tmp_string);
299 }

new/usr/src/cmd/make/bin/main.cc 6

301 /*
302 * The following flags are reset if we don’t have the
303 * (.nse_depinfo or .make.state) files locked and only set
304 * AFTER the file has been locked. This ensures that if the user
305 * interrupts the program while file_lock() is waiting to lock
306 * the file, the interrupt handler doesn’t remove a lock
307 * that doesn’t belong to us.
308 */
309 make_state_lockfile = NULL;
310 make_state_locked = false;

313 /*
314 * look for last slash char in the path to look at the binary
315 * name. This is to resolve the hard link and invoke make
316 * in svr4 mode.
317 */

319 /* Sun OS make standart */
320 svr4 = false;
321 posix = false;
322 if(!strcmp(argv_zero_string, NOCATGETS("/usr/xpg4/bin/make"))) {
323 svr4 = false;
324 posix = true;
325 } else {
326 prognameptr = strrchr(argv[0], ’/’);
327 if(prognameptr) {
328 prognameptr++;
329 } else {
330 prognameptr = argv[0];
331 }
332 if(!strcmp(prognameptr, NOCATGETS("svr4.make"))) {
333 svr4 = true;
334 posix = false;
335 }
336 }
337 if (getenv(USE_SVR4_MAKE) || getenv(NOCATGETS("USE_SVID"))){
338 svr4 = true;
339 posix = false;
340 }

342 /*
343 * Find the dmake_compat_mode: posix, sun, svr4, or gnu_style, .
344 */
345 char * dmake_compat_mode_var = getenv(NOCATGETS("SUN_MAKE_COMPAT_MODE"))
346 if (dmake_compat_mode_var != NULL) {
347 if (0 == strcasecmp(dmake_compat_mode_var, NOCATGETS("GNU"))) {
348 gnu_style = true;
349 }
350 //svr4 = false;
351 //posix = false;
352 }

354 /*
355 * Temporary directory set up.
356 */
357 char * tmpdir_var = getenv(NOCATGETS("TMPDIR"));
358 if (tmpdir_var != NULL && *tmpdir_var == ’/’ && strlen(tmpdir_var) < MAX
359 strcpy(mbs_buffer, tmpdir_var);
360 for (tmpdir_var = mbs_buffer+strlen(mbs_buffer);
361 *(--tmpdir_var) == ’/’ && tmpdir_var > mbs_buffer;
362 *tmpdir_var = ’\0’);
363 if (strlen(mbs_buffer) + 32 < MAXPATHLEN) { /* 32 = strlen("/dma
364 sprintf(mbs_buffer2, NOCATGETS("%s/dmake.tst.%d.XXXXXX")
365 mbs_buffer, getpid());

new/usr/src/cmd/make/bin/main.cc 7

366 int fd = mkstemp(mbs_buffer2);
367 if (fd >= 0) {
368 close(fd);
369 unlink(mbs_buffer2);
370 tmpdir = strdup(mbs_buffer);
371 }
372 }
373 }

375 /* find out if stdout and stderr point to the same place */
376 if (fstat(1, &out_stat) < 0) {
377 fatal(catgets(catd, 1, 165, "fstat of standard out failed: %s"),
378 }
379 if (fstat(2, &err_stat) < 0) {
380 fatal(catgets(catd, 1, 166, "fstat of standard error failed: %s"
381 }
382 if ((out_stat.st_dev == err_stat.st_dev) &&
383 (out_stat.st_ino == err_stat.st_ino)) {
384 stdout_stderr_same = true;
385 } else {
386 stdout_stderr_same = false;
387 }
388 /* Make the vroot package scan the path using shell semantics */
389 set_path_style(0);

391 setup_char_semantics();

393 setup_for_projectdir();

395 /*
396 * If running with .KEEP_STATE, curdir will be set with
397 * the connected directory.
398 */
399 (void) atexit(cleanup_after_exit);

401 load_cached_names();

403 /*
404 * Set command line flags
405 */
406 setup_makeflags_argv();
407 read_command_options(mf_argc, mf_argv);
408 read_command_options(argc, argv);
409 if (debug_level > 0) {
410 cp = getenv(makeflags->string_mb);
411 (void) printf(catgets(catd, 1, 167, "MAKEFLAGS value: %s\n"), cp
412 }

414 setup_interrupt(handle_interrupt);

416 read_files_and_state(argc, argv);

418 #ifdef TEAMWARE_MAKE_CMN
419 /*
420 * Find the dmake_output_mode: TXT1, TXT2 or HTML1.
421 */
422 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_OUTPUT_MODE"));
423 dmake_name2 = GETNAME(wcs_buffer, FIND_LENGTH);
424 prop2 = get_prop(dmake_name2->prop, macro_prop);
425 if (prop2 == NULL) {
426 /* DMAKE_OUTPUT_MODE not defined, default to TXT1 mode */
427 output_mode = txt1_mode;
428 } else {
429 dmake_value2 = prop2->body.macro.value;
430 if ((dmake_value2 == NULL) ||
431 (IS_EQUAL(dmake_value2->string_mb, NOCATGETS("TXT1")))) {

new/usr/src/cmd/make/bin/main.cc 8

432 output_mode = txt1_mode;
433 } else if (IS_EQUAL(dmake_value2->string_mb, NOCATGETS("TXT2")))
434 output_mode = txt2_mode;
435 } else if (IS_EQUAL(dmake_value2->string_mb, NOCATGETS("HTML1"))
436 output_mode = html1_mode;
437 } else {
438 warning(catgets(catd, 1, 352, "Unsupported value ‘%s’ fo
439 dmake_value2->string_mb);
440 }
441 }
442 /*
443 * Find the dmake_mode: distributed, parallel, or serial.
444 */
445 if ((!pmake_cap_r_specified) &&
446 (!pmake_machinesfile_specified)) {
447 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MODE"));
448 dmake_name2 = GETNAME(wcs_buffer, FIND_LENGTH);
449 prop2 = get_prop(dmake_name2->prop, macro_prop);
450 if (prop2 == NULL) {
451 /* DMAKE_MODE not defined, default to distributed mode */
452 dmake_mode_type = distributed_mode;
453 no_parallel = false;
454 } else {
455 dmake_value2 = prop2->body.macro.value;
456 if ((dmake_value2 == NULL) ||
457 (IS_EQUAL(dmake_value2->string_mb, NOCATGETS("distributed"))
458 dmake_mode_type = distributed_mode;
459 no_parallel = false;
460 } else if (IS_EQUAL(dmake_value2->string_mb, NOCATGETS("parallel
461 dmake_mode_type = parallel_mode;
462 no_parallel = false;
463 } else if (IS_EQUAL(dmake_value2->string_mb, NOCATGETS("serial")
464 dmake_mode_type = serial_mode;
465 no_parallel = true;
466 } else {
467 fatal(catgets(catd, 1, 307, "Unknown dmake mode argument
468 }
469 }

471 if ((!list_all_targets) &&
472 (report_dependencies_level == 0)) {
473 /*
474 * Check to see if either DMAKE_RCFILE or DMAKE_MODE is defined.
475 * They could be defined in the env, in the makefile, or on the
476 * command line.
477 * If neither is defined, and $(HOME)/.dmakerc does not exists,
478 * then print a message, and default to parallel mode.
479 */
480 #ifdef DISTRIBUTED
481 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_RCFILE"));
482 dmake_name = GETNAME(wcs_buffer, FIND_LENGTH);
483 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MODE"));
484 dmake_name2 = GETNAME(wcs_buffer, FIND_LENGTH);
485 if ((((prop = get_prop(dmake_name->prop, macro_prop)) == NULL) |
486 ((dmake_value = prop->body.macro.value) == NULL)) &&
487 (((prop2 = get_prop(dmake_name2->prop, macro_prop)) == NULL)
488 ((dmake_value2 = prop2->body.macro.value) == NULL))) {
489 Boolean empty_dmakerc = true;
490 char *homedir = getenv(NOCATGETS("HOME"));
491 if ((homedir != NULL) && (strlen(homedir) < (sizeof(def_
492 sprintf(def_dmakerc_path, NOCATGETS("%s/.dmakerc
493 if ((((statval = stat(def_dmakerc_path, &statbuf
494 ((statval == 0) && (statbuf.st_size == 0
495 } else {
496 Avo_dmakerc *rcfile = new Avo_dmaker
497 Avo_err *err = rcfile->read(def_

new/usr/src/cmd/make/bin/main.cc 9

498 if (err) {
499 fatal(err->str);
500 }
501 empty_dmakerc = rcfile->was_empty();
502 delete rcfile;
503 }
504 }
505 if (empty_dmakerc) {
506 if (getenv(NOCATGETS("DMAKE_DEF_PRINTED")) == NU
507 putenv(NOCATGETS("DMAKE_DEF_PRINTED=TRUE
508 (void) fprintf(stdout, catgets(catd, 1,
509 (void) fprintf(stdout, catgets(catd, 1,
510 }
511 dmake_mode_type = parallel_mode;
512 no_parallel = false;
513 }
514 }
515 #else
516 if(dmake_mode_type == distributed_mode) {
496 (void) fprintf(stdout, NOCATGETS("dmake: Distributed mod
497 (void) fprintf(stdout, NOCATGETS(" Defaulting to p
517 dmake_mode_type = parallel_mode;
518 no_parallel = false;
519 }
520 #endif /* DISTRIBUTED */
521 }
522 }
523 #endif

525 #ifdef TEAMWARE_MAKE_CMN
526 parallel_flag = true;
527 putenv(strdup(NOCATGETS("DMAKE_CHILD=TRUE")));
508 /* XXX - This is a major hack for DMake/Licensing. */
509 if (getenv(NOCATGETS("DMAKE_CHILD")) == NULL) {
510 if (!avo_cli_search_license(argv[0], dmake_exit_callback, TRUE,
511 /*
512 * If the user can not get a TeamWare license,
513 * default to serial mode.
514 */
515 dmake_mode_type = serial_mode;
516 no_parallel = true;
517 } else {
518 putenv(NOCATGETS("DMAKE_CHILD=TRUE"));
519 }
520 start_time = time(NULL);
521 /*
522 * XXX - Hack to disable SIGALRM’s from licensing library’s
523 * setitimer().
524 */
525 value.it_interval.tv_sec = 0;
526 value.it_interval.tv_usec = 0;
527 value.it_value.tv_sec = 0;
528 value.it_value.tv_usec = 0;
529 (void) setitimer(ITIMER_REAL, &value, NULL);
530 }

529 //
530 // If dmake is running with -t option, set dmake_mode_type to serial.
531 // This is done because doname() calls touch_command() that runs serially.
532 // If we do not do that, maketool will have problems.
533 //
534 if(touch) {
535 dmake_mode_type = serial_mode;
536 no_parallel = true;
537 }
538 #else

new/usr/src/cmd/make/bin/main.cc 10

539 parallel_flag = false;
540 #endif

542 #if defined (TEAMWARE_MAKE_CMN)
543 /*
544 * Check whether stdout and stderr are physically same.
545 * This is in order to decide whether we need to redirect
546 * stderr separately from stdout.
547 * This check is performed only if __DMAKE_SEPARATE_STDERR
548 * is not set. This variable may be used in order to preserve
549 * the ’old’ behaviour.
550 */
551 out_err_same = true;
552 char * dmake_sep_var = getenv(NOCATGETS("__DMAKE_SEPARATE_STDERR"));
553 if (dmake_sep_var == NULL || (0 != strcasecmp(dmake_sep_var, NOCATGETS("
554 struct stat stdout_stat;
555 struct stat stderr_stat;
556 if((fstat(1, &stdout_stat) == 0)
557 && (fstat(2, &stderr_stat) == 0))
558 {
559 if((stdout_stat.st_dev != stderr_stat.st_dev)
560 || (stdout_stat.st_ino != stderr_stat.st_ino))
561 {
562 out_err_same = false;
563 }
564 }
565 }
566 #endif

568 #ifdef DISTRIBUTED
569 /*
570 * At this point, DMake should startup an rxm with any and all
571 * DMake command line options. Rxm will, among other things,
572 * read the rc file.
573 */
574 if ((!list_all_targets) &&
575 (report_dependencies_level == 0) &&
576 (dmake_mode_type == distributed_mode)) {
577 startup_rxm();
578 }
579 #endif
580
581 /*
582 * Enable interrupt handler for alarms
583 */
584 (void) bsd_signal(SIGALRM, (SIG_PF)doalarm);

586 /*
587 * Check if make should report
588 */
589 if (getenv(sunpro_dependencies->string_mb) != NULL) {
590 FILE *report_file;

592 report_dependency("");
593 report_file = get_report_file();
594 if ((report_file != NULL) && (report_file != (FILE*)-1)) {
595 (void) fprintf(report_file, "\n");
596 }
597 }

599 /*
600 * Make sure SUNPRO_DEPENDENCIES is exported (or not) properly.
601 */
602 if (keep_state) {
603 maybe_append_prop(sunpro_dependencies, macro_prop)->
604 body.macro.exported = true;

new/usr/src/cmd/make/bin/main.cc 11

605 } else {
606 maybe_append_prop(sunpro_dependencies, macro_prop)->
607 body.macro.exported = false;
608 }

610 working_on_targets = true;
611 if (trace_status) {
612 dump_make_state();
613 fclose(stdout);
614 fclose(stderr);
615 exit_status = 0;
616 exit(0);
617 }
618 if (list_all_targets) {
619 dump_target_list();
620 fclose(stdout);
621 fclose(stderr);
622 exit_status = 0;
623 exit(0);
624 }
625 trace_reader = false;

627 /*
628 * Set temp_file_directory to the directory the .make.state
629 * file is written to.
630 */
631 if ((slash_ptr = strrchr(make_state->string_mb, (int) slash_char)) == NU
632 temp_file_directory = strdup(get_current_path());
633 } else {
634 *slash_ptr = (int) nul_char;
635 (void) strcpy(make_state_dir, make_state->string_mb);
636 *slash_ptr = (int) slash_char;
637 /* when there is only one slash and it’s the first
638 ** character, make_state_dir should point to ’/’.
639 */
640 if(make_state_dir[0] == ’\0’) {
641 make_state_dir[0] = ’/’;
642 make_state_dir[1] = ’\0’;
643 }
644 if (make_state_dir[0] == (int) slash_char) {
645 temp_file_directory = strdup(make_state_dir);
646 } else {
647 char tmp_current_path2[MAXPATHLEN];
648
649 (void) sprintf(tmp_current_path2,
650 "%s/%s",
651 get_current_path(),
652 make_state_dir);
653 temp_file_directory = strdup(tmp_current_path2);
654 }
655 }

657 #ifdef DISTRIBUTED
658 building_serial = false;
659 #endif

661 report_dir_enter_leave(true);

663 make_targets(argc, argv, parallel_flag);

665 report_dir_enter_leave(false);

667 if (build_failed_ever_seen) {
668 if (posix) {
669 exit_status = 1;
670 }

new/usr/src/cmd/make/bin/main.cc 12

671 exit(1);
672 }
673 exit_status = 0;
674 exit(0);
675 /* NOTREACHED */
676 }

______unchanged_portion_omitted_
746 #endif

748 /*
749 #ifdef DISTRIBUTED
750 if (get_parent() == TRUE) {
751 #endif
752 */

754 parallel = false;
755 /* If we used the SVR4_MAKE, don’t build .DONE or .FAILED */
756 if (!getenv(USE_SVR4_MAKE)){
757 /* Build the target .DONE or .FAILED if we caught an error */
758 if (!quest && !list_all_targets) {
759 Name failed_name;

761 MBSTOWCS(wcs_buffer, NOCATGETS(".FAILED"));
762 failed_name = GETNAME(wcs_buffer, FIND_LENGTH);
763 if ((exit_status != 0) && (failed_name->prop != NULL)) {
764 #ifdef TEAMWARE_MAKE_CMN
765 /*
766 * [tolik] switch DMake to serial mode
767 */
768 dmake_mode_type = serial_mode;
769 no_parallel = true;
770 #endif
771 (void) doname(failed_name, false, true);
772 } else {
773 if (!trace_status) {
774 #ifdef TEAMWARE_MAKE_CMN
775 /*
776 * Switch DMake to serial mode
777 */
778 dmake_mode_type = serial_mode;
779 no_parallel = true;
780 #endif
781 (void) doname(done, false, true);
782 }
783 }
784 }
785 }
786 /*
787 * Remove the temp file utilities report dependencies thru if it
788 * is still around
789 */
790 if (temp_file_name != NULL) {
791 (void) unlink(temp_file_name->string_mb);
792 }
793 /*
794 * Do not save the current command in .make.state if make
795 * was interrupted.
796 */
797 if (current_line != NULL) {
798 command_changed = true;
799 current_line->body.line.command_used = NULL;
800 }
801 /*
802 * For each parallel build process running, remove the temp files
803 * and zap the command line so it won’t be put in .make.state
804 */

new/usr/src/cmd/make/bin/main.cc 13

805 for (rp = running_list; rp != NULL; rp = rp->next) {
806 if (rp->temp_file != NULL) {
807 (void) unlink(rp->temp_file->string_mb);
808 }
809 if (rp->stdout_file != NULL) {
810 (void) unlink(rp->stdout_file);
811 retmem_mb(rp->stdout_file);
812 rp->stdout_file = NULL;
813 }
814 if (rp->stderr_file != NULL) {
815 (void) unlink(rp->stderr_file);
816 retmem_mb(rp->stderr_file);
817 rp->stderr_file = NULL;
818 }
819 command_changed = true;
820 /*
821 line = get_prop(rp->target->prop, line_prop);
822 if (line != NULL) {
823 line->body.line.command_used = NULL;
824 }
825 */
826 }
827 /* Remove the statefile lock file if the file has been locked */
828 if ((make_state_lockfile != NULL) && (make_state_locked)) {
829 (void) unlink(make_state_lockfile);
830 make_state_lockfile = NULL;
831 make_state_locked = false;
832 }
833 /* Write .make.state */
834 write_state_file(1, (Boolean) 1);

839 #ifdef TEAMWARE_MAKE_CMN
840 // Deleting the usage tracking object sends the usage mail
841 cleanup->set_exit_status(exit_status);
842 delete cleanup;
843 #endif

835 /*
836 #ifdef DISTRIBUTED
837 }
838 #endif
839 */

841 #if defined (TEAMWARE_MAKE_CMN) && defined (MAXJOBS_ADJUST_RFE4694000)
842 job_adjust_fini();
843 #endif

845 #ifdef TEAMWARE_MAKE_CMN
846 catclose(catd);
847 #endif
848 #ifdef DISTRIBUTED
849 if (rxmPid > 0) {
850 // Tell rxm to exit by sending it an Avo_AcknowledgeMsg
851 Avo_AcknowledgeMsg acknowledgeMsg;
852 RWCollectable *msg = (RWCollectable *)&acknowledgeMsg;

854 int xdrResult = xdr(&xdrs_out, msg);

856 if (xdrResult) {
857 fflush(dmake_ofp);
858 } else {
859 /*
860 fatal(catgets(catd, 1, 266, "couldn’t tell rxm to exit")
861 */
862 kill(rxmPid, SIGTERM);
863 }

new/usr/src/cmd/make/bin/main.cc 14

865 waitpid(rxmPid, NULL, 0);
866 rxmPid = 0;
867 }
868 #endif
869 }

______unchanged_portion_omitted_

1816 /*
1817 * set_sgs_support()
1818 *
1819 * Add the libmakestate.so.1 lib to the env var SGS_SUPPORT
1820 * if it’s not already in there.
1821 * The SGS_SUPPORT env var and libmakestate.so.1 is used by
1822 * the linker ld to report .make.state info back to make.
1823 *
1824 * In the new world we always will set the 32-bit and 64-bit versions of this
1825 * variable explicitly so that we can take into account the correct isa and our
1826 * prefix. So say that the prefix was /opt/local. Then we would want to search
1827 * /opt/local/lib/libmakestate.so.1:libmakestate.so.1. We still want to search
1828 * the original location just as a safety measure.
1829 #endif /* ! codereview */
1830 */
1831 static void
1832 set_sgs_support()
1833 {
1834 int len;
1835 char *newpath, *newpath64;
1836 char *oldpath, *oldpath64;
1837 static char *prev_path, *prev_path64;
1833 char *newpath;
1834 char *oldpath;
1835 static char *prev_path;

1839 oldpath = getenv(LD_SUPPORT_ENV_VAR_32);
1837 oldpath = getenv(LD_SUPPORT_ENV_VAR);
1840 if (oldpath == NULL) {
1841 len = snprintf(NULL, 0, "%s=%s/%s/%s:%s",
1842 LD_SUPPORT_ENV_VAR_32,
1843 MAKE_PREFIX,
1844 LD_SUPPORT_MAKE_LIB_DIR,
1845 LD_SUPPORT_MAKE_LIB, LD_SUPPORT_MAKE_LIB) + 1;
1839 len = strlen(LD_SUPPORT_ENV_VAR) + 1 +
1840 strlen(LD_SUPPORT_MAKE_LIB) + 1;
1846 newpath = (char *) malloc(len);
1847 sprintf(newpath, "%s=%s/%s/%s:%s",
1848 LD_SUPPORT_ENV_VAR_32,
1849 MAKE_PREFIX,
1850 LD_SUPPORT_MAKE_LIB_DIR,
1851 LD_SUPPORT_MAKE_LIB, LD_SUPPORT_MAKE_LIB);
1852 } else {
1853 len = snprintf(NULL, 0, "%s=%s:%s/%s/%s:%s",
1854 LD_SUPPORT_ENV_VAR_32, oldpath, MAKE_PREFIX,
1855 LD_SUPPORT_MAKE_LIB_DIR, LD_SUPPORT_MAKE_LIB,
1856 LD_SUPPORT_MAKE_LIB) + 1;
1842 sprintf(newpath, "%s=", LD_SUPPORT_ENV_VAR);
1843 } else {
1844 len = strlen(LD_SUPPORT_ENV_VAR) + 1 + strlen(oldpath) + 1 +
1845 strlen(LD_SUPPORT_MAKE_LIB) + 1;
1857 newpath = (char *) malloc(len);
1858 sprintf(newpath, "%s=%s:%s/%s/%s:%s",
1859 LD_SUPPORT_ENV_VAR_32, oldpath, MAKE_PREFIX,
1860 LD_SUPPORT_MAKE_LIB_DIR, LD_SUPPORT_MAKE_LIB,
1861 LD_SUPPORT_MAKE_LIB);
1862 }

new/usr/src/cmd/make/bin/main.cc 15

1864 oldpath64 = getenv(LD_SUPPORT_ENV_VAR_64);
1865 if (oldpath64 == NULL) {
1866 len = snprintf(NULL, 0, "%s=%s/%s/%s/%s:%s",
1867 LD_SUPPORT_ENV_VAR_64, MAKE_PREFIX, LD_SUPPORT_MAKE_LIB_DIR,
1868 LD_SUPPORT_MAKE_LIB_DIR_64, LD_SUPPORT_MAKE_LIB,
1869 LD_SUPPORT_MAKE_LIB) + 1;
1870 newpath64 = (char *) malloc(len);
1871 sprintf(newpath64, "%s=%s/%s/%s/%s:%s",
1872 LD_SUPPORT_ENV_VAR_64, MAKE_PREFIX, LD_SUPPORT_MAKE_LIB_DIR,
1873 LD_SUPPORT_MAKE_LIB_DIR_64, LD_SUPPORT_MAKE_LIB,
1874 LD_SUPPORT_MAKE_LIB);
1875 } else {
1876 len = snprintf(NULL, 0, "%s=%s:%s/%s/%s/%s:%s",
1877 LD_SUPPORT_ENV_VAR_64, oldpath64, MAKE_PREFIX,
1878 LD_SUPPORT_MAKE_LIB_DIR, LD_SUPPORT_MAKE_LIB_DIR_64,
1879 LD_SUPPORT_MAKE_LIB, LD_SUPPORT_MAKE_LIB) + 1;
1880 newpath64 = (char *) malloc(len);
1881 sprintf(newpath64, "%s=%s:%s/%s/%s/%s:%s",
1882 LD_SUPPORT_ENV_VAR_64, oldpath64, MAKE_PREFIX,
1883 LD_SUPPORT_MAKE_LIB_DIR, LD_SUPPORT_MAKE_LIB_DIR_64,
1884 LD_SUPPORT_MAKE_LIB, LD_SUPPORT_MAKE_LIB);
1847 sprintf(newpath, "%s=%s", LD_SUPPORT_ENV_VAR, oldpath);
1885 }

1850 #if defined(TEAMWARE_MAKE_CMN)

1852 /* function maybe_append_str_to_env_var() is defined in avo_util library
1853 * Serial make should not use this library !!!
1854 */
1855 maybe_append_str_to_env_var(newpath, LD_SUPPORT_MAKE_LIB);
1856 #else
1857 if (oldpath == NULL) {
1858 sprintf(newpath, "%s%s", newpath, LD_SUPPORT_MAKE_LIB);
1859 } else {
1860 sprintf(newpath, "%s:%s", newpath, LD_SUPPORT_MAKE_LIB);
1861 }
1862 #endif
1887 putenv(newpath);
1888 if (prev_path) {
1889 free(prev_path);
1890 }
1891 prev_path = newpath;

1893 putenv(newpath64);
1894 if (prev_path64) {
1895 free(prev_path64);
1896 }
1897 prev_path64 = newpath64;
1898 #endif /* ! codereview */
1899 }

1901 /*
1902 * read_files_and_state(argc, argv)
1903 *
1904 * Read the makefiles we care about and the environment
1905 * Also read the = style command line options
1906 *
1907 * Parameters:
1908 * argc You know what this is
1909 * argv You know what this is
1910 *
1911 * Static variables used:
1912 * env_wins make -e, determines if env vars are RO
1913 * ignore_default_mk make -r, determines if make.rules is read
1914 * not_auto_depen dwight
1915 *

new/usr/src/cmd/make/bin/main.cc 16

1916 * Global variables used:
1917 * default_target_to_build Set to first proper target from file
1918 * do_not_exec_rule Set to false when makfile is made
1919 * dot The Name ".", used to read current dir
1920 * empty_name The Name "", use as macro value
1921 * keep_state Set if KEEP_STATE is in environment
1922 * make_state The Name ".make.state", used to read file
1923 * makefile_type Set to type of file being read
1924 * makeflags The Name "MAKEFLAGS", used to set macro value
1925 * not_auto dwight
1926 * read_trace_level Checked to se if the reader should trace
1927 * report_dependencies If -P is on we do not read .make.state
1928 * trace_reader Set if reader should trace
1929 * virtual_root The Name "VIRTUAL_ROOT", used to check value
1930 */
1931 static void
1932 read_files_and_state(int argc, char **argv)
1933 {
1934 wchar_t buffer[1000];
1935 wchar_t buffer_posix[1000];
1936 register char ch;
1937 register char *cp;
1938 Property def_make_macro = NULL;
1939 Name def_make_name;
1940 Name default_makefile;
1941 String_rec dest;
1942 wchar_t destbuffer[STRING_BUFFER_LENGTH];
1943 register int i;
1944 register int j;
1945 Name keep_state_name;
1946 int length;
1947 Name Makefile;
1948 register Property macro;
1949 struct stat make_state_stat;
1950 Name makefile_name;
1951 register int makefile_next = 0;
1952 register Boolean makefile_read = false;
1953 String_rec makeflags_string;
1954 String_rec makeflags_string_posix;
1955 String_rec * makeflags_string_current;
1956 Name makeflags_value_saved;
1957 register Name name;
1958 Name new_make_value;
1959 Boolean save_do_not_exec_rule;
1960 Name sdotMakefile;
1961 Name sdotmakefile_name;
1962 static wchar_t state_file_str;
1963 static char state_file_str_mb[MAXPATHLEN];
1964 static struct _Name state_filename;
1965 Boolean temp;
1966 char tmp_char;
1967 wchar_t *tmp_wcs_buffer;
1968 register Name value;
1969 ASCII_Dyn_Array makeflags_and_macro;
1970 Boolean is_xpg4;

1972 /*
1973 * Remember current mode. It may be changed after reading makefile
1974 * and we will have to correct MAKEFLAGS variable.
1975 */
1976 is_xpg4 = posix;

1978 MBSTOWCS(wcs_buffer, NOCATGETS("KEEP_STATE"));
1979 keep_state_name = GETNAME(wcs_buffer, FIND_LENGTH);
1980 MBSTOWCS(wcs_buffer, NOCATGETS("Makefile"));
1981 Makefile = GETNAME(wcs_buffer, FIND_LENGTH);

new/usr/src/cmd/make/bin/main.cc 17

1982 MBSTOWCS(wcs_buffer, NOCATGETS("makefile"));
1983 makefile_name = GETNAME(wcs_buffer, FIND_LENGTH);
1984 MBSTOWCS(wcs_buffer, NOCATGETS("s.makefile"));
1985 sdotmakefile_name = GETNAME(wcs_buffer, FIND_LENGTH);
1986 MBSTOWCS(wcs_buffer, NOCATGETS("s.Makefile"));
1987 sdotMakefile = GETNAME(wcs_buffer, FIND_LENGTH);

1989 /*
1990 * Set flag if NSE is active
1991 */

1993 /*
1994 * initialize global dependency entry for .NOT_AUTO
1995 */
1996 not_auto_depen->next = NULL;
1997 not_auto_depen->name = not_auto;
1998 not_auto_depen->automatic = not_auto_depen->stale = false;

2000 /*
2001 * Read internal definitions and rules.
2002 */
2003 if (read_trace_level > 1) {
2004 trace_reader = true;
2005 }
2006 if (!ignore_default_mk) {
2007 if (svr4) {
2008 MBSTOWCS(wcs_buffer, NOCATGETS("svr4.make.rules"));
2009 default_makefile = GETNAME(wcs_buffer, FIND_LENGTH);
2010 } else {
2011 MBSTOWCS(wcs_buffer, NOCATGETS("make.rules"));
2012 default_makefile = GETNAME(wcs_buffer, FIND_LENGTH);
2013 }
2014 default_makefile->stat.is_file = true;

2016 (void) read_makefile(default_makefile,
2017 true,
2018 false,
2019 true);
2020 }

2022 /*
2023 * If the user did not redefine the MAKE macro in the
2024 * default makefile (make.rules), then we’d like to
2025 * change the macro value of MAKE to be some form
2026 * of argv[0] for recursive MAKE builds.
2027 */
2028 MBSTOWCS(wcs_buffer, NOCATGETS("MAKE"));
2029 def_make_name = GETNAME(wcs_buffer, wslen(wcs_buffer));
2030 def_make_macro = get_prop(def_make_name->prop, macro_prop);
2031 if ((def_make_macro != NULL) &&
2032 (IS_EQUAL(def_make_macro->body.macro.value->string_mb,
2033 NOCATGETS("make")))) {
2034 MBSTOWCS(wcs_buffer, argv_zero_string);
2035 new_make_value = GETNAME(wcs_buffer, wslen(wcs_buffer));
2036 (void) SETVAR(def_make_name,
2037 new_make_value,
2038 false);
2039 }

2041 default_target_to_build = NULL;
2042 trace_reader = false;

2044 /*
2045 * Read environment args. Let file args which follow override unless
2046 * -e option seen. If -e option is not mentioned.
2047 */

new/usr/src/cmd/make/bin/main.cc 18

2048 read_environment(env_wins);
2049 if (getvar(virtual_root)->hash.length == 0) {
2050 maybe_append_prop(virtual_root, macro_prop)
2051 ->body.macro.exported = true;
2052 MBSTOWCS(wcs_buffer, "/");
2053 (void) SETVAR(virtual_root,
2054 GETNAME(wcs_buffer, FIND_LENGTH),
2055 false);
2056 }

2058 /*
2059 * We now scan mf_argv and argv to see if we need to set
2060 * any of the DMake-added options/variables in MAKEFLAGS.
2061 */

2063 makeflags_and_macro.start = 0;
2064 makeflags_and_macro.size = 0;
2065 enter_argv_values(mf_argc, mf_argv, &makeflags_and_macro);
2066 enter_argv_values(argc, argv, &makeflags_and_macro);

2068 /*
2069 * Set MFLAGS and MAKEFLAGS
2070 *
2071 * Before reading makefile we do not know exactly which mode
2072 * (posix or not) is used. So prepare two MAKEFLAGS strings
2073 * for both posix and solaris modes because they are different.
2074 */
2075 INIT_STRING_FROM_STACK(makeflags_string, buffer);
2076 INIT_STRING_FROM_STACK(makeflags_string_posix, buffer_posix);
2077 append_char((int) hyphen_char, &makeflags_string);
2078 append_char((int) hyphen_char, &makeflags_string_posix);

2080 switch (read_trace_level) {
2081 case 2:
2082 append_char(’D’, &makeflags_string);
2083 append_char(’D’, &makeflags_string_posix);
2084 case 1:
2085 append_char(’D’, &makeflags_string);
2086 append_char(’D’, &makeflags_string_posix);
2087 }
2088 switch (debug_level) {
2089 case 2:
2090 append_char(’d’, &makeflags_string);
2091 append_char(’d’, &makeflags_string_posix);
2092 case 1:
2093 append_char(’d’, &makeflags_string);
2094 append_char(’d’, &makeflags_string_posix);
2095 }
2096 if (env_wins) {
2097 append_char(’e’, &makeflags_string);
2098 append_char(’e’, &makeflags_string_posix);
2099 }
2100 if (ignore_errors_all) {
2101 append_char(’i’, &makeflags_string);
2102 append_char(’i’, &makeflags_string_posix);
2103 }
2104 if (continue_after_error) {
2105 if (stop_after_error_ever_seen) {
2106 append_char(’S’, &makeflags_string_posix);
2107 append_char((int) space_char, &makeflags_string_posix);
2108 append_char((int) hyphen_char, &makeflags_string_posix);
2109 }
2110 append_char(’k’, &makeflags_string);
2111 append_char(’k’, &makeflags_string_posix);
2112 } else {
2113 if (stop_after_error_ever_seen

new/usr/src/cmd/make/bin/main.cc 19

2114 && continue_after_error_ever_seen) {
2115 append_char(’k’, &makeflags_string_posix);
2116 append_char((int) space_char, &makeflags_string_posix);
2117 append_char((int) hyphen_char, &makeflags_string_posix);
2118 append_char(’S’, &makeflags_string_posix);
2119 }
2120 }
2121 if (do_not_exec_rule) {
2122 append_char(’n’, &makeflags_string);
2123 append_char(’n’, &makeflags_string_posix);
2124 }
2125 switch (report_dependencies_level) {
2126 case 4:
2127 append_char(’P’, &makeflags_string);
2128 append_char(’P’, &makeflags_string_posix);
2129 case 3:
2130 append_char(’P’, &makeflags_string);
2131 append_char(’P’, &makeflags_string_posix);
2132 case 2:
2133 append_char(’P’, &makeflags_string);
2134 append_char(’P’, &makeflags_string_posix);
2135 case 1:
2136 append_char(’P’, &makeflags_string);
2137 append_char(’P’, &makeflags_string_posix);
2138 }
2139 if (trace_status) {
2140 append_char(’p’, &makeflags_string);
2141 append_char(’p’, &makeflags_string_posix);
2142 }
2143 if (quest) {
2144 append_char(’q’, &makeflags_string);
2145 append_char(’q’, &makeflags_string_posix);
2146 }
2147 if (silent_all) {
2148 append_char(’s’, &makeflags_string);
2149 append_char(’s’, &makeflags_string_posix);
2150 }
2151 if (touch) {
2152 append_char(’t’, &makeflags_string);
2153 append_char(’t’, &makeflags_string_posix);
2154 }
2155 if (build_unconditional) {
2156 append_char(’u’, &makeflags_string);
2157 append_char(’u’, &makeflags_string_posix);
2158 }
2159 if (report_cwd) {
2160 append_char(’w’, &makeflags_string);
2161 append_char(’w’, &makeflags_string_posix);
2162 }
2163 /* -c dmake_rcfile */
2164 if (dmake_rcfile_specified) {
2165 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_RCFILE"));
2166 dmake_rcfile = GETNAME(wcs_buffer, FIND_LENGTH);
2167 append_makeflags_string(dmake_rcfile, &makeflags_string);
2168 append_makeflags_string(dmake_rcfile, &makeflags_string_posix);
2169 }
2170 /* -g dmake_group */
2171 if (dmake_group_specified) {
2172 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_GROUP"));
2173 dmake_group = GETNAME(wcs_buffer, FIND_LENGTH);
2174 append_makeflags_string(dmake_group, &makeflags_string);
2175 append_makeflags_string(dmake_group, &makeflags_string_posix);
2176 }
2177 /* -j dmake_max_jobs */
2178 if (dmake_max_jobs_specified) {
2179 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MAX_JOBS"));

new/usr/src/cmd/make/bin/main.cc 20

2180 dmake_max_jobs = GETNAME(wcs_buffer, FIND_LENGTH);
2181 append_makeflags_string(dmake_max_jobs, &makeflags_string);
2182 append_makeflags_string(dmake_max_jobs, &makeflags_string_posix)
2183 }
2184 /* -m dmake_mode */
2185 if (dmake_mode_specified) {
2186 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MODE"));
2187 dmake_mode = GETNAME(wcs_buffer, FIND_LENGTH);
2188 append_makeflags_string(dmake_mode, &makeflags_string);
2189 append_makeflags_string(dmake_mode, &makeflags_string_posix);
2190 }
2191 /* -x dmake_compat_mode */
2192 // if (dmake_compat_mode_specified) {
2193 // MBSTOWCS(wcs_buffer, NOCATGETS("SUN_MAKE_COMPAT_MODE"));
2194 // dmake_compat_mode = GETNAME(wcs_buffer, FIND_LENGTH);
2195 // append_makeflags_string(dmake_compat_mode, &makeflags_string);
2196 // append_makeflags_string(dmake_compat_mode, &makeflags_string_pos
2197 // }
2198 /* -x dmake_output_mode */
2199 if (dmake_output_mode_specified) {
2200 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_OUTPUT_MODE"));
2201 dmake_output_mode = GETNAME(wcs_buffer, FIND_LENGTH);
2202 append_makeflags_string(dmake_output_mode, &makeflags_string);
2203 append_makeflags_string(dmake_output_mode, &makeflags_string_pos
2204 }
2205 /* -o dmake_odir */
2206 if (dmake_odir_specified) {
2207 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_ODIR"));
2208 dmake_odir = GETNAME(wcs_buffer, FIND_LENGTH);
2209 append_makeflags_string(dmake_odir, &makeflags_string);
2210 append_makeflags_string(dmake_odir, &makeflags_string_posix);
2211 }
2212 /* -M pmake_machinesfile */
2213 if (pmake_machinesfile_specified) {
2214 MBSTOWCS(wcs_buffer, NOCATGETS("PMAKE_MACHINESFILE"));
2215 pmake_machinesfile = GETNAME(wcs_buffer, FIND_LENGTH);
2216 append_makeflags_string(pmake_machinesfile, &makeflags_string);
2217 append_makeflags_string(pmake_machinesfile, &makeflags_string_po
2218 }
2219 /* -R */
2220 if (pmake_cap_r_specified) {
2221 append_char((int) space_char, &makeflags_string);
2222 append_char((int) hyphen_char, &makeflags_string);
2223 append_char(’R’, &makeflags_string);
2224 append_char((int) space_char, &makeflags_string_posix);
2225 append_char((int) hyphen_char, &makeflags_string_posix);
2226 append_char(’R’, &makeflags_string_posix);
2227 }

2229 /*
2230 * Make sure MAKEFLAGS is exported
2231 */
2232 maybe_append_prop(makeflags, macro_prop)->
2233 body.macro.exported = true;

2235 if (makeflags_string.buffer.start[1] != (int) nul_char) {
2236 if (makeflags_string.buffer.start[1] != (int) space_char) {
2237 MBSTOWCS(wcs_buffer, NOCATGETS("MFLAGS"));
2238 (void) SETVAR(GETNAME(wcs_buffer, FIND_LENGTH),
2239 GETNAME(makeflags_string.buffer.start,
2240 FIND_LENGTH),
2241 false);
2242 } else {
2243 MBSTOWCS(wcs_buffer, NOCATGETS("MFLAGS"));
2244 (void) SETVAR(GETNAME(wcs_buffer, FIND_LENGTH),
2245 GETNAME(makeflags_string.buffer.start + 2,

new/usr/src/cmd/make/bin/main.cc 21

2246 FIND_LENGTH),
2247 false);
2248 }
2249 }

2251 /*
2252 * Add command line macro to POSIX makeflags_string
2253 */
2254 if (makeflags_and_macro.start) {
2255 tmp_char = (char) space_char;
2256 cp = makeflags_and_macro.start;
2257 do {
2258 append_char(tmp_char, &makeflags_string_posix);
2259 } while (tmp_char = *cp++);
2260 retmem_mb(makeflags_and_macro.start);
2261 }

2263 /*
2264 * Now set the value of MAKEFLAGS macro in accordance
2265 * with current mode.
2266 */
2267 macro = maybe_append_prop(makeflags, macro_prop);
2268 temp = (Boolean) macro->body.macro.read_only;
2269 macro->body.macro.read_only = false;
2270 if(posix || gnu_style) {
2271 makeflags_string_current = &makeflags_string_posix;
2272 } else {
2273 makeflags_string_current = &makeflags_string;
2274 }
2275 if (makeflags_string_current->buffer.start[1] == (int) nul_char) {
2276 makeflags_value_saved =
2277 GETNAME(makeflags_string_current->buffer.start + 1
2278 , FIND_LENGTH
2279);
2280 } else {
2281 if (makeflags_string_current->buffer.start[1] != (int) space_cha
2282 makeflags_value_saved =
2283 GETNAME(makeflags_string_current->buffer.start
2284 , FIND_LENGTH
2285);
2286 } else {
2287 makeflags_value_saved =
2288 GETNAME(makeflags_string_current->buffer.start
2289 , FIND_LENGTH
2290);
2291 }
2292 }
2293 (void) SETVAR(makeflags
2294 , makeflags_value_saved
2295 , false
2296);
2297 macro->body.macro.read_only = temp;

2299 /*
2300 * Read command line "-f" arguments and ignore -c, g, j, K, M, m, O and o a
2301 */
2302 save_do_not_exec_rule = do_not_exec_rule;
2303 do_not_exec_rule = false;
2304 if (read_trace_level > 0) {
2305 trace_reader = true;
2306 }

2308 for (i = 1; i < argc; i++) {
2309 if (argv[i] &&
2310 (argv[i][0] == (int) hyphen_char) &&
2311 (argv[i][1] == ’f’) &&

new/usr/src/cmd/make/bin/main.cc 22

2312 (argv[i][2] == (int) nul_char)) {
2313 argv[i] = NULL; /* Remove -f */
2314 if (i >= argc - 1) {
2315 fatal(catgets(catd, 1, 190, "No filename argumen
2316 }
2317 MBSTOWCS(wcs_buffer, argv[++i]);
2318 primary_makefile = GETNAME(wcs_buffer, FIND_LENGTH);
2319 (void) read_makefile(primary_makefile, true, true, true)
2320 argv[i] = NULL; /* Remove filename */
2321 makefile_read = true;
2322 } else if (argv[i] &&
2323 (argv[i][0] == (int) hyphen_char) &&
2324 (argv[i][1] == ’c’ ||
2325 argv[i][1] == ’g’ ||
2326 argv[i][1] == ’j’ ||
2327 argv[i][1] == ’K’ ||
2328 argv[i][1] == ’M’ ||
2329 argv[i][1] == ’m’ ||
2330 argv[i][1] == ’O’ ||
2331 argv[i][1] == ’o’) &&
2332 (argv[i][2] == (int) nul_char)) {
2333 argv[i] = NULL;
2334 argv[++i] = NULL;
2335 }
2336 }

2338 /*
2339 * If no command line "-f" args then look for "makefile", and then for
2340 * "Makefile" if "makefile" isn’t found.
2341 */
2342 if (!makefile_read) {
2343 (void) read_dir(dot,
2344 (wchar_t *) NULL,
2345 (Property) NULL,
2346 (wchar_t *) NULL);
2347 if (!posix) {
2348 if (makefile_name->stat.is_file) {
2349 if (Makefile->stat.is_file) {
2350 warning(catgets(catd, 1, 310, "Both ‘makefile’ a
2351 }
2352 primary_makefile = makefile_name;
2353 makefile_read = read_makefile(makefile_name,
2354 false,
2355 false,
2356 true);
2357 }
2358 if (!makefile_read &&
2359 Makefile->stat.is_file) {
2360 primary_makefile = Makefile;
2361 makefile_read = read_makefile(Makefile,
2362 false,
2363 false,
2364 true);
2365 }
2366 } else {

2368 enum sccs_stat save_m_has_sccs = NO_SCCS;
2369 enum sccs_stat save_M_has_sccs = NO_SCCS;

2371 if (makefile_name->stat.is_file) {
2372 if (Makefile->stat.is_file) {
2373 warning(catgets(catd, 1, 191, "Both ‘makefile’ a
2374 }
2375 }
2376 if (makefile_name->stat.is_file) {
2377 if (makefile_name->stat.has_sccs == NO_SCCS) {

new/usr/src/cmd/make/bin/main.cc 23

2378 primary_makefile = makefile_name;
2379 makefile_read = read_makefile(makefile_name,
2380 false,
2381 false,
2382 true);
2383 } else {
2384 save_m_has_sccs = makefile_name->stat.has_sccs;
2385 makefile_name->stat.has_sccs = NO_SCCS;
2386 primary_makefile = makefile_name;
2387 makefile_read = read_makefile(makefile_name,
2388 false,
2389 false,
2390 true);
2391 }
2392 }
2393 if (!makefile_read &&
2394 Makefile->stat.is_file) {
2395 if (Makefile->stat.has_sccs == NO_SCCS) {
2396 primary_makefile = Makefile;
2397 makefile_read = read_makefile(Makefile,
2398 false,
2399 false,
2400 true);
2401 } else {
2402 save_M_has_sccs = Makefile->stat.has_sccs;
2403 Makefile->stat.has_sccs = NO_SCCS;
2404 primary_makefile = Makefile;
2405 makefile_read = read_makefile(Makefile,
2406 false,
2407 false,
2408 true);
2409 }
2410 }
2411 if (!makefile_read &&
2412 makefile_name->stat.is_file) {
2413 makefile_name->stat.has_sccs = save_m_has_sccs;
2414 primary_makefile = makefile_name;
2415 makefile_read = read_makefile(makefile_name,
2416 false,
2417 false,
2418 true);
2419 }
2420 if (!makefile_read &&
2421 Makefile->stat.is_file) {
2422 Makefile->stat.has_sccs = save_M_has_sccs;
2423 primary_makefile = Makefile;
2424 makefile_read = read_makefile(Makefile,
2425 false,
2426 false,
2427 true);
2428 }
2429 }
2430 }
2431 do_not_exec_rule = save_do_not_exec_rule;
2432 allrules_read = makefile_read;
2433 trace_reader = false;

2435 /*
2436 * Now get current value of MAKEFLAGS and compare it with
2437 * the saved value we set before reading makefile.
2438 * If they are different then MAKEFLAGS is subsequently set by
2439 * makefile, just leave it there. Otherwise, if make mode
2440 * is changed by using .POSIX target in makefile we need
2441 * to correct MAKEFLAGS value.
2442 */
2443 Name mf_val = getvar(makeflags);

new/usr/src/cmd/make/bin/main.cc 24

2444 if((posix != is_xpg4)
2445 && (!strcmp(mf_val->string_mb, makeflags_value_saved->string_mb)))
2446 {
2447 if (makeflags_string_posix.buffer.start[1] == (int) nul_char) {
2448 (void) SETVAR(makeflags,
2449 GETNAME(makeflags_string_posix.buffer.star
2450 FIND_LENGTH),
2451 false);
2452 } else {
2453 if (makeflags_string_posix.buffer.start[1] != (int) spac
2454 (void) SETVAR(makeflags,
2455 GETNAME(makeflags_string_posix.buf
2456 FIND_LENGTH),
2457 false);
2458 } else {
2459 (void) SETVAR(makeflags,
2460 GETNAME(makeflags_string_posix.buf
2461 FIND_LENGTH),
2462 false);
2463 }
2464 }
2465 }

2467 if (makeflags_string.free_after_use) {
2468 retmem(makeflags_string.buffer.start);
2469 }
2470 if (makeflags_string_posix.free_after_use) {
2471 retmem(makeflags_string_posix.buffer.start);
2472 }
2473 makeflags_string.buffer.start = NULL;
2474 makeflags_string_posix.buffer.start = NULL;

2476 if (posix) {
2477 /*
2478 * If the user did not redefine the ARFLAGS macro in the
2479 * default makefile (make.rules), then we’d like to
2480 * change the macro value of ARFLAGS to be in accordance
2481 * with "POSIX" requirements.
2482 */
2483 MBSTOWCS(wcs_buffer, NOCATGETS("ARFLAGS"));
2484 name = GETNAME(wcs_buffer, wslen(wcs_buffer));
2485 macro = get_prop(name->prop, macro_prop);
2486 if ((macro != NULL) && /* Maybe (macro == NULL) || ? */
2487 (IS_EQUAL(macro->body.macro.value->string_mb,
2488 NOCATGETS("rv")))) {
2489 MBSTOWCS(wcs_buffer, NOCATGETS("-rv"));
2490 value = GETNAME(wcs_buffer, wslen(wcs_buffer));
2491 (void) SETVAR(name,
2492 value,
2493 false);
2494 }
2495 }

2497 if (!posix && !svr4) {
2498 set_sgs_support();
2499 }

2502 /*
2503 * Make sure KEEP_STATE is in the environment if KEEP_STATE is on.
2504 */
2505 macro = get_prop(keep_state_name->prop, macro_prop);
2506 if ((macro != NULL) &&
2507 macro->body.macro.exported) {
2508 keep_state = true;
2509 }

new/usr/src/cmd/make/bin/main.cc 25

2510 if (keep_state) {
2511 if (macro == NULL) {
2512 macro = maybe_append_prop(keep_state_name,
2513 macro_prop);
2514 }
2515 macro->body.macro.exported = true;
2516 (void) SETVAR(keep_state_name,
2517 empty_name,
2518 false);

2520 /*
2521 * Read state file
2522 */

2524 /* Before we read state, let’s make sure we have
2525 ** right state file.
2526 */
2527 /* just in case macro references are used in make_state file
2528 ** name, we better expand them at this stage using expand_value.
2529 */
2530 INIT_STRING_FROM_STACK(dest, destbuffer);
2531 expand_value(make_state, &dest, false);

2533 make_state = GETNAME(dest.buffer.start, FIND_LENGTH);

2535 if(!stat(make_state->string_mb, &make_state_stat)) {
2536 if(!(make_state_stat.st_mode & S_IFREG)) {
2537 /* copy the make_state structure to the other
2538 ** and then let make_state point to the new
2539 ** one.
2540 */
2541 memcpy(&state_filename, make_state,sizeof(state_filename))
2542 state_filename.string_mb = state_file_str_mb;
2543 /* Just a kludge to avoid two slashes back to back */
2544 if((make_state->hash.length == 1)&&
2545 (make_state->string_mb[0] == ’/’)) {
2546 make_state->hash.length = 0;
2547 make_state->string_mb[0] = ’\0’;
2548 }
2549 sprintf(state_file_str_mb,NOCATGETS("%s%s"),
2550 make_state->string_mb,NOCATGETS("/.make.state"));
2551 make_state = &state_filename;
2552 /* adjust the length to reflect the appended string */
2553 make_state->hash.length += 12;
2554 }
2555 } else { /* the file doesn’t exist or no permission */
2556 char tmp_path[MAXPATHLEN];
2557 char *slashp;

2559 if (slashp = strrchr(make_state->string_mb, ’/’)) {
2560 strncpy(tmp_path, make_state->string_mb,
2561 (slashp - make_state->string_mb));
2562 tmp_path[slashp - make_state->string_mb]=0;
2563 if(strlen(tmp_path)) {
2564 if(stat(tmp_path, &make_state_stat)) {
2565 warning(catgets(catd, 1, 192, "directory %s for .KEEP_
2566 }
2567 if (access(tmp_path, F_OK) != 0) {
2568 warning(catgets(catd, 1, 193, "can’t access dir %s"),t
2569 }
2570 }
2571 }
2572 }
2573 if (report_dependencies_level != 1) {
2574 Makefile_type makefile_type_temp = makefile_type;
2575 makefile_type = reading_statefile;

new/usr/src/cmd/make/bin/main.cc 26

2576 if (read_trace_level > 1) {
2577 trace_reader = true;
2578 }
2579 (void) read_simple_file(make_state,
2580 false,
2581 false,
2582 false,
2583 false,
2584 false,
2585 true);
2586 trace_reader = false;
2587 makefile_type = makefile_type_temp;
2588 }
2589 }
2590 }

2592 /*
2593 * Scan the argv for options and "=" type args and make them readonly.
2594 */
2595 static void
2596 enter_argv_values(int argc, char *argv[], ASCII_Dyn_Array *makeflags_and_macro)
2597 {
2598 register char *cp;
2599 register int i;
2600 int length;
2601 register Name name;
2602 int opt_separator = argc;
2603 char tmp_char;
2604 wchar_t *tmp_wcs_buffer;
2605 register Name value;
2606 Boolean append = false;
2607 Property macro;
2608 struct stat statbuf;

2611 /* Read argv options and "=" type args and make them readonly. */
2612 makefile_type = reading_nothing;
2613 for (i = 1; i < argc; ++i) {
2614 append = false;
2615 if (argv[i] == NULL) {
2616 continue;
2617 } else if (((argv[i][0] == ’-’) && (argv[i][1] == ’-’)) ||
2618 ((argv[i][0] == (int) ’ ’) &&
2619 (argv[i][1] == (int) ’-’) &&
2620 (argv[i][2] == (int) ’ ’) &&
2621 (argv[i][3] == (int) ’-’))) {
2622 argv[i] = NULL;
2623 opt_separator = i;
2624 continue;
2625 } else if ((i < opt_separator) && (argv[i][0] == (int) hyphen_ch
2626 switch (parse_command_option(argv[i][1])) {
2627 case 1: /* -f seen */
2628 ++i;
2629 continue;
2630 case 2: /* -c seen */
2631 if (argv[i+1] == NULL) {
2632 fatal(catgets(catd, 1, 194, "No dmake rc
2633 }
2634 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_RCFILE"));
2635 name = GETNAME(wcs_buffer, FIND_LENGTH);
2636 break;
2637 case 4: /* -g seen */
2638 if (argv[i+1] == NULL) {
2639 fatal(catgets(catd, 1, 195, "No dmake gr
2640 }
2641 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_GROUP"));

new/usr/src/cmd/make/bin/main.cc 27

2642 name = GETNAME(wcs_buffer, FIND_LENGTH);
2643 break;
2644 case 8: /* -j seen */
2645 if (argv[i+1] == NULL) {
2646 fatal(catgets(catd, 1, 196, "No dmake ma
2647 }
2648 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MAX_JOBS")
2649 name = GETNAME(wcs_buffer, FIND_LENGTH);
2650 break;
2651 case 16: /* -M seen */
2652 if (argv[i+1] == NULL) {
2653 fatal(catgets(catd, 1, 323, "No pmake ma
2654 }
2655 MBSTOWCS(wcs_buffer, NOCATGETS("PMAKE_MACHINESFI
2656 name = GETNAME(wcs_buffer, FIND_LENGTH);
2657 break;
2658 case 32: /* -m seen */
2659 if (argv[i+1] == NULL) {
2660 fatal(catgets(catd, 1, 197, "No dmake mo
2661 }
2662 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MODE"));
2663 name = GETNAME(wcs_buffer, FIND_LENGTH);
2664 break;
2665 case 128: /* -O seen */
2666 if (argv[i+1] == NULL) {
2667 fatal(catgets(catd, 1, 287, "No file des
2668 }
2669 mtool_msgs_fd = atoi(argv[i+1]);
2670 /* find out if mtool_msgs_fd is a valid file des
2671 if (fstat(mtool_msgs_fd, &statbuf) < 0) {
2672 fatal(catgets(catd, 1, 355, "Invalid fil
2673 }
2674 argv[i] = NULL;
2675 argv[i+1] = NULL;
2676 continue;
2677 case 256: /* -K seen */
2678 if (argv[i+1] == NULL) {
2679 fatal(catgets(catd, 1, 288, "No makestat
2680 }
2681 MBSTOWCS(wcs_buffer, argv[i+1]);
2682 make_state = GETNAME(wcs_buffer, FIND_LENGTH);
2683 keep_state = true;
2684 argv[i] = NULL;
2685 argv[i+1] = NULL;
2686 continue;
2687 case 512: /* -o seen */
2688 if (argv[i+1] == NULL) {
2689 fatal(catgets(catd, 1, 312, "No dmake ou
2690 }
2691 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_ODIR"));
2692 name = GETNAME(wcs_buffer, FIND_LENGTH);
2693 break;
2694 case 1024: /* -x seen */
2695 if (argv[i+1] == NULL) {
2696 fatal(catgets(catd, 1, 351, "No argument
2697 }
2698 length = strlen(NOCATGETS("SUN_MAKE_COMPAT_MODE
2699 if (strncmp(argv[i+1], NOCATGETS("SUN_MAKE_COMPA
2700 argv[i+1] = &argv[i+1][length];
2701 MBSTOWCS(wcs_buffer, NOCATGETS("SUN_MAKE
2702 name = GETNAME(wcs_buffer, FIND_LENGTH);
2703 dmake_compat_mode_specified = dmake_add_
2704 break;
2705 }
2706 length = strlen(NOCATGETS("DMAKE_OUTPUT_MODE=")
2707 if (strncmp(argv[i+1], NOCATGETS("DMAKE_OUTPUT_M

new/usr/src/cmd/make/bin/main.cc 28

2708 argv[i+1] = &argv[i+1][length];
2709 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_OU
2710 name = GETNAME(wcs_buffer, FIND_LENGTH);
2711 dmake_output_mode_specified = dmake_add_
2712 } else {
2713 warning(catgets(catd, 1, 354, "Unknown a
2714 argv[i+1]);
2715 argv[i] = argv[i + 1] = NULL;
2716 continue;
2717 }
2718 break;
2719 default: /* Shouldn’t reach here */
2720 argv[i] = NULL;
2721 continue;
2722 }
2723 argv[i] = NULL;
2724 if (i == (argc - 1)) {
2725 break;
2726 }
2727 if ((length = strlen(argv[i+1])) >= MAXPATHLEN) {
2728 tmp_wcs_buffer = ALLOC_WC(length + 1);
2729 (void) mbstowcs(tmp_wcs_buffer, argv[i+1], lengt
2730 value = GETNAME(tmp_wcs_buffer, FIND_LENGTH);
2731 retmem(tmp_wcs_buffer);
2732 } else {
2733 MBSTOWCS(wcs_buffer, argv[i+1]);
2734 value = GETNAME(wcs_buffer, FIND_LENGTH);
2735 }
2736 argv[i+1] = NULL;
2737 } else if ((cp = strchr(argv[i], (int) equal_char)) != NULL) {
2738 /*
2739 * Combine all macro in dynamic array
2740 */
2741 if(*(cp-1) == (int) plus_char)
2742 {
2743 if(isspace(*(cp-2))) {
2744 append = true;
2745 cp--;
2746 }
2747 }
2748 if(!append)
2749 append_or_replace_macro_in_dyn_array(makeflags_a

2751 while (isspace(*(cp-1))) {
2752 cp--;
2753 }
2754 tmp_char = *cp;
2755 *cp = (int) nul_char;
2756 MBSTOWCS(wcs_buffer, argv[i]);
2757 *cp = tmp_char;
2758 name = GETNAME(wcs_buffer, wslen(wcs_buffer));
2759 while (*cp != (int) equal_char) {
2760 cp++;
2761 }
2762 cp++;
2763 while (isspace(*cp) && (*cp != (int) nul_char)) {
2764 cp++;
2765 }
2766 if ((length = strlen(cp)) >= MAXPATHLEN) {
2767 tmp_wcs_buffer = ALLOC_WC(length + 1);
2768 (void) mbstowcs(tmp_wcs_buffer, cp, length + 1);
2769 value = GETNAME(tmp_wcs_buffer, FIND_LENGTH);
2770 retmem(tmp_wcs_buffer);
2771 } else {
2772 MBSTOWCS(wcs_buffer, cp);
2773 value = GETNAME(wcs_buffer, FIND_LENGTH);

new/usr/src/cmd/make/bin/main.cc 29

2774 }
2775 argv[i] = NULL;
2776 } else {
2777 /* Illegal MAKEFLAGS argument */
2778 continue;
2779 }
2780 if(append) {
2781 setvar_append(name, value);
2782 append = false;
2783 } else {
2784 macro = maybe_append_prop(name, macro_prop);
2785 macro->body.macro.exported = true;
2786 SETVAR(name, value, false)->body.macro.read_only = true;
2787 }
2788 }
2789 }

2791 /*
2792 * Append the DMake option and value to the MAKEFLAGS string.
2793 */
2794 static void
2795 append_makeflags_string(Name name, register String makeflags_string)
2796 {
2797 const char *option;

2799 if (strcmp(name->string_mb, NOCATGETS("DMAKE_GROUP")) == 0) {
2800 option = NOCATGETS(" -g ");
2801 } else if (strcmp(name->string_mb, NOCATGETS("DMAKE_MAX_JOBS")) == 0) {
2802 option = NOCATGETS(" -j ");
2803 } else if (strcmp(name->string_mb, NOCATGETS("DMAKE_MODE")) == 0) {
2804 option = NOCATGETS(" -m ");
2805 } else if (strcmp(name->string_mb, NOCATGETS("DMAKE_ODIR")) == 0) {
2806 option = NOCATGETS(" -o ");
2807 } else if (strcmp(name->string_mb, NOCATGETS("DMAKE_RCFILE")) == 0) {
2808 option = NOCATGETS(" -c ");
2809 } else if (strcmp(name->string_mb, NOCATGETS("PMAKE_MACHINESFILE")) == 0
2810 option = NOCATGETS(" -M ");
2811 } else if (strcmp(name->string_mb, NOCATGETS("DMAKE_OUTPUT_MODE")) == 0)
2812 option = NOCATGETS(" -x DMAKE_OUTPUT_MODE=");
2813 } else if (strcmp(name->string_mb, NOCATGETS("SUN_MAKE_COMPAT_MODE")) ==
2814 option = NOCATGETS(" -x SUN_MAKE_COMPAT_MODE=");
2815 } else {
2816 fatal(catgets(catd, 1, 289, "Internal error: name not recognized
2817 }
2818 Property prop = maybe_append_prop(name, macro_prop);
2819 if(prop == 0 || prop->body.macro.value == 0 ||
2820 prop->body.macro.value->string_mb == 0) {
2821 return;
2822 }
2823 char mbs_value[MAXPATHLEN + 100];
2824 strcpy(mbs_value, option);
2825 strcat(mbs_value, prop->body.macro.value->string_mb);
2826 MBSTOWCS(wcs_buffer, mbs_value);
2827 append_string(wcs_buffer, makeflags_string, FIND_LENGTH);
2828 }

2830 /*
2831 * read_environment(read_only)
2832 *
2833 * This routine reads the process environment when make starts and enters
2834 * it as make macros. The environment variable SHELL is ignored.
2835 *
2836 * Parameters:
2837 * read_only Should we make env vars read only?
2838 *
2839 * Global variables used:

new/usr/src/cmd/make/bin/main.cc 30

2840 * report_pwd Set if this make was started by other make
2841 */
2842 static void
2843 read_environment(Boolean read_only)
2844 {
2845 register char **environment;
2846 int length;
2847 wchar_t *tmp_wcs_buffer;
2848 Boolean alloced_tmp_wcs_buffer = false;
2849 register wchar_t *name;
2850 register wchar_t *value;
2851 register Name macro;
2852 Property val;
2853 Boolean read_only_saved;

2855 reading_environment = true;
2856 environment = environ;
2857 for (; *environment; environment++) {
2858 read_only_saved = read_only;
2859 if ((length = strlen(*environment)) >= MAXPATHLEN) {
2860 tmp_wcs_buffer = ALLOC_WC(length + 1);
2861 alloced_tmp_wcs_buffer = true;
2862 (void) mbstowcs(tmp_wcs_buffer, *environment, length + 1
2863 name = tmp_wcs_buffer;
2864 } else {
2865 MBSTOWCS(wcs_buffer, *environment);
2866 name = wcs_buffer;
2867 }
2868 value = (wchar_t *) wschr(name, (int) equal_char);

2870 /*
2871 * Looks like there’s a bug in the system, but sometimes
2872 * you can get blank lines in *environment.
2873 */
2874 if (!value) {
2875 continue;
2876 }
2877 MBSTOWCS(wcs_buffer2, NOCATGETS("SHELL="));
2878 if (IS_WEQUALN(name, wcs_buffer2, wslen(wcs_buffer2))) {
2879 continue;
2880 }
2881 MBSTOWCS(wcs_buffer2, NOCATGETS("MAKEFLAGS="));
2882 if (IS_WEQUALN(name, wcs_buffer2, wslen(wcs_buffer2))) {
2883 report_pwd = true;
2884 /*
2885 * In POSIX mode we do not want MAKEFLAGS to be readonly
2886 * If the MAKEFLAGS macro is subsequently set by the mak
2887 * it replaces the MAKEFLAGS variable currently found in
2888 * environment.
2889 * See Assertion 50 in section 6.2.5.3 of standard P1003
2890 */
2891 if(posix) {
2892 read_only_saved = false;
2893 }
2894 }

2896 /*
2897 * We ignore SUNPRO_DEPENDENCIES. This environment variable is
2898 * set by make and read by cpp which then writes info to
2899 * .make.dependency.xxx. When make is invoked by another make
2900 * (recursive make), we don’t want to read this because then
2901 * the child make will end up writing to the parent
2902 * directory’s .make.state and clobbering them.
2903 */
2904 MBSTOWCS(wcs_buffer2, NOCATGETS("SUNPRO_DEPENDENCIES"));
2905 if (IS_WEQUALN(name, wcs_buffer2, wslen(wcs_buffer2))) {

new/usr/src/cmd/make/bin/main.cc 31

2906 continue;
2907 }

2909 macro = GETNAME(name, value - name);
2910 maybe_append_prop(macro, macro_prop)->body.macro.exported =
2911 true;
2912 if ((value == NULL) || ((value + 1)[0] == (int) nul_char)) {
2913 val = setvar_daemon(macro,
2914 (Name) NULL,
2915 false, no_daemon, false, debug_level
2916 } else {
2917 val = setvar_daemon(macro,
2918 GETNAME(value + 1, FIND_LENGTH),
2919 false, no_daemon, false, debug_level
2920 }
2921 val->body.macro.read_only = read_only_saved;
2922 if (alloced_tmp_wcs_buffer) {
2923 retmem(tmp_wcs_buffer);
2924 alloced_tmp_wcs_buffer = false;
2925 }
2926 }
2927 reading_environment = false;
2928 }

2930 /*
2931 * read_makefile(makefile, complain, must_exist, report_file)
2932 *
2933 * Read one makefile and check the result
2934 *
2935 * Return value:
2936 * false is the read failed
2937 *
2938 * Parameters:
2939 * makefile The file to read
2940 * complain Passed thru to read_simple_file()
2941 * must_exist Passed thru to read_simple_file()
2942 * report_file Passed thru to read_simple_file()
2943 *
2944 * Global variables used:
2945 * makefile_type Set to indicate we are reading main file
2946 * recursion_level Initialized
2947 */
2948 static Boolean
2949 read_makefile(register Name makefile, Boolean complain, Boolean must_exist, Bool
2950 {
2951 Boolean b;
2952
2953 makefile_type = reading_makefile;
2954 recursion_level = 0;
2955 reading_dependencies = true;
2956 b = read_simple_file(makefile, true, true, complain,
2957 must_exist, report_file, false);
2958 reading_dependencies = false;
2959 return b;
2960 }

2962 /*
2963 * make_targets(argc, argv, parallel_flag)
2964 *
2965 * Call doname on the specified targets
2966 *
2967 * Parameters:
2968 * argc You know what this is
2969 * argv You know what this is
2970 * parallel_flag True if building in parallel
2971 *

new/usr/src/cmd/make/bin/main.cc 32

2972 * Global variables used:
2973 * build_failed_seen Used to generated message after failed -k
2974 * commands_done Used to generate message "Up to date"
2975 * default_target_to_build First proper target in makefile
2976 * init The Name ".INIT", use to run command
2977 * parallel Global parallel building flag
2978 * quest make -q, suppresses messages
2979 * recursion_level Initialized, used for tracing
2980 * report_dependencies make -P, regroves whole process
2981 */
2982 static void
2983 make_targets(int argc, char **argv, Boolean parallel_flag)
2984 {
2985 int i;
2986 char *cp;
2987 Doname result;
2988 register Boolean target_to_make_found = false;

2990 (void) doname(init, true, true);
2991 recursion_level = 1;
2992 parallel = parallel_flag;
2993 /*
2994 * make remaining args
2995 */
2996 #ifdef TEAMWARE_MAKE_CMN
2997 /*
2998 if ((report_dependencies_level == 0) && parallel) {
2999 */
3000 if (parallel) {
3001 /*
3002 * If building targets in parallel, start all of the
3003 * remaining args to build in parallel.
3004 */
3005 for (i = 1; i < argc; i++) {
3006 if ((cp = argv[i]) != NULL) {
3007 commands_done = false;
3008 if ((cp[0] == (int) period_char) &&
3009 (cp[1] == (int) slash_char)) {
3010 cp += 2;
3011 }
3012 if((cp[0] == (int) ’ ’) &&
3013 (cp[1] == (int) ’-’) &&
3014 (cp[2] == (int) ’ ’) &&
3015 (cp[3] == (int) ’-’)) {
3016 argv[i] = NULL;
3017 continue;
3018 }
3019 MBSTOWCS(wcs_buffer, cp);
3020 //default_target_to_build = GETNAME(wcs_buffer,
3021 // FIND_LENGTH);
3022 default_target_to_build = normalize_name(wcs_buf
3023 wslen(wcs_buff
3024 if (default_target_to_build == wait_name) {
3025 if (parallel_process_cnt > 0) {
3026 finish_running();
3027 }
3028 continue;
3029 }
3030 top_level_target = get_wstring(default_target_to
3031 /*
3032 * If we can’t execute the current target in
3033 * parallel, hold off the target processing
3034 * to preserve the order of the targets as they
3035 * in command line.
3036 */
3037 if (!parallel_ok(default_target_to_build, false)

new/usr/src/cmd/make/bin/main.cc 33

3038 && parallel_process_cnt > 0) {
3039 finish_running();
3040 }
3041 result = doname_check(default_target_to_build,
3042 true,
3043 false,
3044 false);
3045 gather_recursive_deps();
3046 if (/* !commands_done && */
3047 (result == build_ok) &&
3048 !quest &&
3049 (report_dependencies_level == 0) /* &&
3050 (exists(default_target_to_build) > file_does
3051 if (posix) {
3052 if (!commands_done) {
3053 (void) printf(catgets(ca
3054 default_ta
3055 } else {
3056 if (no_action_was_taken)
3057 (void) printf(ca
3058 de
3059 }
3060 }
3061 } else {
3062 default_target_to_build->stat.ti
3063 if (!commands_done &&
3064 (exists(default_target_to_bu
3065 (void) printf(catgets(ca
3066 default_ta
3067 }
3068 }
3069 }
3070 }
3071 }
3072 /* Now wait for all of the targets to finish running */
3073 finish_running();
3074 // setjmp(jmpbuffer);
3075
3076 }
3077 #endif
3078 for (i = 1; i < argc; i++) {
3079 if ((cp = argv[i]) != NULL) {
3080 target_to_make_found = true;
3081 if ((cp[0] == (int) period_char) &&
3082 (cp[1] == (int) slash_char)) {
3083 cp += 2;
3084 }
3085 if((cp[0] == (int) ’ ’) &&
3086 (cp[1] == (int) ’-’) &&
3087 (cp[2] == (int) ’ ’) &&
3088 (cp[3] == (int) ’-’)) {
3089 argv[i] = NULL;
3090 continue;
3091 }
3092 MBSTOWCS(wcs_buffer, cp);
3093 default_target_to_build = normalize_name(wcs_buffer, wsl
3094 top_level_target = get_wstring(default_target_to_build->
3095 report_recursion(default_target_to_build);
3096 commands_done = false;
3097 if (parallel) {
3098 result = (Doname) default_target_to_build->state
3099 } else {
3100 result = doname_check(default_target_to_build,
3101 true,
3102 false,
3103 false);

new/usr/src/cmd/make/bin/main.cc 34

3104 }
3105 gather_recursive_deps();
3106 if (build_failed_seen) {
3107 build_failed_ever_seen = true;
3108 warning(catgets(catd, 1, 200, "Target ‘%s’ not r
3109 default_target_to_build->string_mb);
3110 }
3111 build_failed_seen = false;
3112 if (report_dependencies_level > 0) {
3113 print_dependencies(default_target_to_build,
3114 get_prop(default_target_to_bu
3115 line_prop));
3116 }
3117 default_target_to_build->stat.time =
3118 file_no_time;
3119 if (default_target_to_build->colon_splits > 0) {
3120 default_target_to_build->state =
3121 build_dont_know;
3122 }
3123 if (!parallel &&
3124 /* !commands_done && */
3125 (result == build_ok) &&
3126 !quest &&
3127 (report_dependencies_level == 0) /* &&
3128 (exists(default_target_to_build) > file_doesnt_exist
3129 if (posix) {
3130 if (!commands_done) {
3131 (void) printf(catgets(catd, 1, 2
3132 default_target_to_
3133 } else {
3134 if (no_action_was_taken) {
3135 (void) printf(catgets(ca
3136 default_ta
3137 }
3138 }
3139 } else {
3140 if (!commands_done &&
3141 (exists(default_target_to_build) > f
3142 (void) printf(catgets(catd, 1, 2
3143 default_target_to_
3144 }
3145 }
3146 }
3147 }
3148 }

3150 /*
3151 * If no file arguments have been encountered,
3152 * make the first name encountered that doesnt start with a dot
3153 */
3154 if (!target_to_make_found) {
3155 if (default_target_to_build == NULL) {
3156 fatal(catgets(catd, 1, 202, "No arguments to build"));
3157 }
3158 commands_done = false;
3159 top_level_target = get_wstring(default_target_to_build->string_m
3160 report_recursion(default_target_to_build);

3163 if (getenv(NOCATGETS("SPRO_EXPAND_ERRORS"))){
3164 (void) printf(NOCATGETS("::(%s)\n"),
3165 default_target_to_build->string_mb);
3166 }

3169 #ifdef TEAMWARE_MAKE_CMN

new/usr/src/cmd/make/bin/main.cc 35

3170 result = doname_parallel(default_target_to_build, true, false);
3171 #else
3172 result = doname_check(default_target_to_build, true,
3173 false, false);
3174 #endif
3175 gather_recursive_deps();
3176 if (build_failed_seen) {
3177 build_failed_ever_seen = true;
3178 warning(catgets(catd, 1, 203, "Target ‘%s’ not remade be
3179 default_target_to_build->string_mb);
3180 }
3181 build_failed_seen = false;
3182 if (report_dependencies_level > 0) {
3183 print_dependencies(default_target_to_build,
3184 get_prop(default_target_to_build->
3185 prop,
3186 line_prop));
3187 }
3188 default_target_to_build->stat.time = file_no_time;
3189 if (default_target_to_build->colon_splits > 0) {
3190 default_target_to_build->state = build_dont_know;
3191 }
3192 if (/* !commands_done && */
3193 (result == build_ok) &&
3194 !quest &&
3195 (report_dependencies_level == 0) /* &&
3196 (exists(default_target_to_build) > file_doesnt_exist) */) {
3197 if (posix) {
3198 if (!commands_done) {
3199 (void) printf(catgets(catd, 1, 299, "‘%s
3200 default_target_to_build->s
3201 } else {
3202 if (no_action_was_taken) {
3203 (void) printf(catgets(catd, 1, 3
3204 default_target_to_
3205 }
3206 }
3207 } else {
3208 if (!commands_done &&
3209 (exists(default_target_to_build) > file_does
3210 (void) printf(catgets(catd, 1, 301, "‘%s
3211 default_target_to_build->s
3212 }
3213 }
3214 }
3215 }
3216 }

3218 /*
3219 * report_recursion(target)
3220 *
3221 * If this is a recursive make and the parent make has KEEP_STATE on
3222 * this routine reports the dependency to the parent make
3223 *
3224 * Parameters:
3225 * target Target to report
3226 *
3227 * Global variables used:
3228 * makefiles_used List of makefiles read
3229 * recursive_name The Name ".RECURSIVE", printed
3230 * report_dependency dwight
3231 */
3232 static void
3233 report_recursion(register Name target)
3234 {
3235 register FILE *report_file = get_report_file();

new/usr/src/cmd/make/bin/main.cc 36

3237 if ((report_file == NULL) || (report_file == (FILE*)-1)) {
3238 return;
3239 }
3240 if (primary_makefile == NULL) {
3241 /*
3242 * This can happen when there is no makefile and
3243 * only implicit rules are being used.
3244 */
3245 return;
3246 }
3247 (void) fprintf(report_file,
3248 "%s: %s ",
3249 get_target_being_reported_for(),
3250 recursive_name->string_mb);
3251 report_dependency(get_current_path());
3252 report_dependency(target->string_mb);
3253 report_dependency(primary_makefile->string_mb);
3254 (void) fprintf(report_file, "\n");
3255 }

3257 /* Next function "append_or_replace_macro_in_dyn_array" must be in "misc.cc". */
3258 /* NIKMOL */
3259 extern void
3260 append_or_replace_macro_in_dyn_array(ASCII_Dyn_Array *Ar, char *macro)
3261 {
3262 register char *cp0; /* work pointer in macro */
3263 register char *cp1; /* work pointer in array */
3264 register char *cp2; /* work pointer in array */
3265 register char *cp3; /* work pointer in array */
3266 register char *name; /* macro name */
3267 register char *value; /* macro value */
3268 register int len_array;
3269 register int len_macro;

3271 char * esc_value = NULL;
3272 int esc_len;

3274 if (!(len_macro = strlen(macro))) return;
3275 name = macro;
3276 while (isspace(*(name))) {
3277 name++;
3278 }
3279 if (!(value = strchr(name, (int) equal_char))) {
3280 /* no ’=’ in macro */
3281 goto ERROR_MACRO;
3282 }
3283 cp0 = value;
3284 value++;
3285 while (isspace(*(value))) {
3286 value++;
3287 }
3288 while (isspace(*(cp0-1))) {
3289 cp0--;
3290 }
3291 if (cp0 <= name) goto ERROR_MACRO; /* no name */
3292 if (!(Ar->size)) goto ALLOC_ARRAY;
3293 cp1 = Ar->start;

3295 LOOK_FOR_NAME:
3296 if (!(cp1 = strchr(cp1, name[0]))) goto APPEND_MACRO;
3297 if (!(cp2 = strchr(cp1, (int) equal_char))) goto APPEND_MACRO;
3298 if (strncmp(cp1, name, (size_t)(cp0-name))) {
3299 /* another name */
3300 cp1++;
3301 goto LOOK_FOR_NAME;

new/usr/src/cmd/make/bin/main.cc 37

3302 }
3303 if (cp1 != Ar->start) {
3304 if (!isspace(*(cp1-1))) {
3305 /* another name */
3306 cp1++;
3307 goto LOOK_FOR_NAME;
3308 }
3309 }
3310 for (cp3 = cp1 + (cp0-name); cp3 < cp2; cp3++) {
3311 if (isspace(*cp3)) continue;
3312 /* else: another name */
3313 cp1++;
3314 goto LOOK_FOR_NAME;
3315 }
3316 /* Look for the next macro name in array */
3317 cp3 = cp2+1;
3318 if (*cp3 != (int) doublequote_char) {
3319 /* internal error */
3320 goto ERROR_MACRO;
3321 }
3322 if (!(cp3 = strchr(cp3+1, (int) doublequote_char))) {
3323 /* internal error */
3324 goto ERROR_MACRO;
3325 }
3326 cp3++;
3327 while (isspace(*cp3)) {
3328 cp3++;
3329 }
3330
3331 cp2 = cp1; /* remove old macro */
3332 if ((*cp3) && (cp3 < Ar->start + Ar->size)) {
3333 for (; cp3 < Ar->start + Ar->size; cp3++) {
3334 *cp2++ = *cp3;
3335 }
3336 }
3337 for (; cp2 < Ar->start + Ar->size; cp2++) {
3338 *cp2 = 0;
3339 }
3340 if (*cp1) {
3341 /* check next name */
3342 goto LOOK_FOR_NAME;
3343 }
3344 goto APPEND_MACRO;

3346 ALLOC_ARRAY:
3347 if (Ar->size) {
3348 cp1 = Ar->start;
3349 } else {
3350 cp1 = 0;
3351 }
3352 Ar->size += 128;
3353 Ar->start = getmem(Ar->size);
3354 for (len_array=0; len_array < Ar->size; len_array++) {
3355 Ar->start[len_array] = 0;
3356 }
3357 if (cp1) {
3358 strcpy(Ar->start, cp1);
3359 retmem((wchar_t *) cp1);
3360 }

3362 APPEND_MACRO:
3363 len_array = strlen(Ar->start);
3364 esc_value = (char*)malloc(strlen(value)*2 + 1);
3365 quote_str(value, esc_value);
3366 esc_len = strlen(esc_value) - strlen(value);
3367 if (len_array + len_macro + esc_len + 5 >= Ar->size) goto ALLOC_ARRAY;

new/usr/src/cmd/make/bin/main.cc 38

3368 strcat(Ar->start, " ");
3369 strncat(Ar->start, name, cp0-name);
3370 strcat(Ar->start, "=");
3371 strncat(Ar->start, esc_value, strlen(esc_value));
3372 free(esc_value);
3373 return;
3374 ERROR_MACRO:
3375 /* Macro without ’=’ or with invalid left/right part */
3376 return;
3377 }

3379 #ifdef TEAMWARE_MAKE_CMN
3380 /*
3381 * This function, if registered w/ avo_cli_get_license(), will be called
3382 * if the application is about to exit because:
3383 * 1) there has been certain unrecoverable error(s) that cause the
3384 * application to exit immediately.
3385 * 2) the user has lost a license while the application is running.
3386 */
3387 extern "C" void
3388 dmake_exit_callback(void)
3389 {
3390 fatal(catgets(catd, 1, 306, "can not get a license, exiting..."));
3391 exit(1);
3392 }

3394 /*
3395 * This function, if registered w/ avo_cli_get_license(), will be called
3396 * if the application can not get a license.
3397 */
3398 extern "C" void
3399 dmake_message_callback(char *err_msg)
3400 {
3401 static Boolean first = true;

3403 if (!first) {
3404 return;
3405 }
3406 first = false;
3407 if ((!list_all_targets) &&
3408 (report_dependencies_level == 0) &&
3409 (dmake_mode_type != serial_mode)) {
3410 warning(catgets(catd, 1, 313, "can not get a TeamWare license, d
3411 }
3412 }
3413 #endif

3415 #ifdef DISTRIBUTED
3416 /*
3417 * Returns whether -c is set or not.
3418 */
3419 Boolean
3420 get_dmake_rcfile_specified(void)
3421 {
3422 return(dmake_rcfile_specified);
3423 }

3425 /*
3426 * Returns whether -g is set or not.
3427 */
3428 Boolean
3429 get_dmake_group_specified(void)
3430 {
3431 return(dmake_group_specified);
3432 }

new/usr/src/cmd/make/bin/main.cc 39

3434 /*
3435 * Returns whether -j is set or not.
3436 */
3437 Boolean
3438 get_dmake_max_jobs_specified(void)
3439 {
3440 return(dmake_max_jobs_specified);
3441 }

3443 /*
3444 * Returns whether -m is set or not.
3445 */
3446 Boolean
3447 get_dmake_mode_specified(void)
3448 {
3449 return(dmake_mode_specified);
3450 }

3452 /*
3453 * Returns whether -o is set or not.
3454 */
3455 Boolean
3456 get_dmake_odir_specified(void)
3457 {
3458 return(dmake_odir_specified);
3459 }

3461 #endif

3463 static void
3464 report_dir_enter_leave(Boolean entering)
3465 {
3466 char rcwd[MAXPATHLEN];
3467 static char * mlev = NULL;
3468 char * make_level_str = NULL;
3469 int make_level_val = 0;

3471 make_level_str = getenv(NOCATGETS("MAKELEVEL"));
3472 if(make_level_str) {
3473 make_level_val = atoi(make_level_str);
3474 }
3475 if(mlev == NULL) {
3476 mlev = (char*) malloc(MAXPATHLEN);
3477 }
3478 if(entering) {
3479 sprintf(mlev, NOCATGETS("MAKELEVEL=%d"), make_level_val + 1);
3480 } else {
3481 make_level_val--;
3482 sprintf(mlev, NOCATGETS("MAKELEVEL=%d"), make_level_val);
3483 }
3484 putenv(mlev);

3486 if(report_cwd) {
3487 if(make_level_val <= 0) {
3488 if(entering) {
3489 #ifdef TEAMWARE_MAKE_CMN
3490 sprintf(rcwd
3491 , catgets(catd, 1, 329, "dmake: Entering
3492 , get_current_path());
3493 #else
3494 sprintf(rcwd
3495 , catgets(catd, 1, 330, "make: Entering d
3496 , get_current_path());
3497 #endif
3498 } else {
3499 #ifdef TEAMWARE_MAKE_CMN

new/usr/src/cmd/make/bin/main.cc 40

3500 sprintf(rcwd
3501 , catgets(catd, 1, 331, "dmake: Leaving d
3502 , get_current_path());
3503 #else
3504 sprintf(rcwd
3505 , catgets(catd, 1, 332, "make: Leaving di
3506 , get_current_path());
3507 #endif
3508 }
3509 } else {
3510 if(entering) {
3511 #ifdef TEAMWARE_MAKE_CMN
3512 sprintf(rcwd
3513 , catgets(catd, 1, 333, "dmake[%d]: Enter
3514 , make_level_val, get_current_path());
3515 #else
3516 sprintf(rcwd
3517 , catgets(catd, 1, 334, "make[%d]: Enteri
3518 , make_level_val, get_current_path());
3519 #endif
3520 } else {
3521 #ifdef TEAMWARE_MAKE_CMN
3522 sprintf(rcwd
3523 , catgets(catd, 1, 335, "dmake[%d]: Leavi
3524 , make_level_val, get_current_path());
3525 #else
3526 sprintf(rcwd
3527 , catgets(catd, 1, 336, "make[%d]: Leavin
3528 , make_level_val, get_current_path());
3529 #endif
3530 }
3531 }
3532 printf(NOCATGETS("%s"), rcwd);
3533 }
3534 }

new/usr/src/cmd/make/bin/misc.cc 1

**
 26174 Wed May 20 11:53:26 2015
new/usr/src/cmd/make/bin/misc.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**
______unchanged_portion_omitted_

109 /***
110 *
111 * String manipulation
112 */

114 /***
115 *
116 * Nameblock property handling
117 */

119 /***
120 *
121 * Error message handling
122 */

124 /*
125 * fatal(format, args...)
126 *
127 * Print a message and die
128 *
129 * Parameters:
130 * format printf type format string
131 * args Arguments to match the format
132 *
133 * Global variables used:
134 * fatal_in_progress Indicates if this is a recursive call
135 * parallel_process_cnt Do we need to wait for anything?
136 * report_pwd Should we report the current path?
137 */
138 /*VARARGS*/
139 void
140 fatal(const char *message, ...)
140 fatal(char * message, ...)
141 {
142 va_list args;

144 va_start(args, message);
145 (void) fflush(stdout);
146 #ifdef DISTRIBUTED
147 (void) fprintf(stderr, catgets(catd, 1, 262, "dmake: Fatal error: "));
148 #else
149 (void) fprintf(stderr, catgets(catd, 1, 263, "make: Fatal error: "));
150 #endif
151 (void) vfprintf(stderr, message, args);
152 (void) fprintf(stderr, "\n");
153 va_end(args);
154 if (report_pwd) {
155 (void) fprintf(stderr,
156 catgets(catd, 1, 156, "Current working directory
157 get_current_path());
158 }
159 (void) fflush(stderr);
160 if (fatal_in_progress) {
161 exit_status = 1;
162 exit(1);
163 }
164 fatal_in_progress = true;
165 #ifdef TEAMWARE_MAKE_CMN
166 /* Let all parallel children finish */

new/usr/src/cmd/make/bin/misc.cc 2

167 if ((dmake_mode_type == parallel_mode) &&
168 (parallel_process_cnt > 0)) {
169 (void) fprintf(stderr,
170 catgets(catd, 1, 157, "Waiting for %d %s to finis
171 parallel_process_cnt,
172 parallel_process_cnt == 1 ?
173 catgets(catd, 1, 158, "job") : catgets(catd, 1, 1
174 (void) fflush(stderr);
175 }

177 while (parallel_process_cnt > 0) {
178 #ifdef DISTRIBUTED
179 if (dmake_mode_type == distributed_mode) {
180 (void) await_dist(false);
181 } else {
182 await_parallel(true);
183 }
184 #else
185 await_parallel(true);
186 #endif
187 finish_children(false);
188 }
189 #endif

191 #if defined (TEAMWARE_MAKE_CMN) && defined (MAXJOBS_ADJUST_RFE4694000)
192 job_adjust_fini();
193 #endif

195 exit_status = 1;
196 exit(1);
197 }

______unchanged_portion_omitted_

new/usr/src/cmd/make/bin/parallel.cc 1

**
 52890 Wed May 20 11:53:27 2015
new/usr/src/cmd/make/bin/parallel.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifdef TEAMWARE_MAKE_CMN

28 /*
29 * parallel.cc
30 *
31 * Deal with the parallel processing
32 */

34 /*
35 * Included files
36 */
37 #ifdef DISTRIBUTED
38 #include <avo/strings.h> /* AVO_STRDUP() */
39 #include <dm/Avo_DoJobMsg.h>
40 #include <dm/Avo_MToolJobResultMsg.h>
41 #endif
42 #include <errno.h> /* errno */
43 #include <fcntl.h>
44 #include <avo/util.h> /* avo_get_user(), avo_hostname() */
44 #include <mk/defs.h>
45 #include <mksh/dosys.h> /* redirect_io() */
46 #include <mksh/macro.h> /* expand_value() */
47 #include <mksh/misc.h> /* getmem() */
48 #include <sys/signal.h>
49 #include <sys/stat.h>
50 #include <sys/types.h>
51 #include <sys/utsname.h>
52 #include <sys/wait.h>
53 #include <unistd.h>
54 #include <netdb.h>
55 #endif /* ! codereview */

59 /*
60 * Defined macros

new/usr/src/cmd/make/bin/parallel.cc 2

61 */
62 #define MAXRULES 100

64 /*
65 * This const should be in avo_dms/include/AvoDmakeCommand.h
66 */
67 const int local_host_mask = 0x20;

70 /*
71 * typedefs & structs
72 */

75 /*
76 * Static variables
77 */
78 #ifdef TEAMWARE_MAKE_CMN
79 static Boolean just_did_subtree = false;
80 static char local_host[MAXNAMELEN] = "";
81 static char user_name[MAXNAMELEN] = "";
82 #endif
83 static int pmake_max_jobs = 0;
84 static pid_t process_running = -1;
85 static Running *running_tail = &running_list;
86 static Name subtree_conflict;
87 static Name subtree_conflict2;

90 /*
91 * File table of contents
92 */
93 #ifdef DISTRIBUTED
94 static void append_dmake_cmd(Avo_DoJobMsg *dmake_job_msg, char *orig
95 static void append_job_result_msg(Avo_MToolJobResultMsg *msg, char *
96 static void send_job_result_msg(Running rp);
97 #endif
98 static void delete_running_struct(Running rp);
99 static Boolean dependency_conflict(Name target);
100 static Doname distribute_process(char **commands, Property line);
101 static void doname_subtree(Name target, Boolean do_get, Boolean impl
102 static void dump_out_file(char *filename, Boolean err);
103 static void finish_doname(Running rp);
104 static void maybe_reread_make_state(void);
105 static void process_next(void);
106 static void reset_conditionals(int cnt, Name *targets, Property *loc
107 static pid_t run_rule_commands(char *host, char **commands);
108 static Property *set_conditionals(int cnt, Name *targets);
109 static void store_conditionals(Running rp);

112 /*
113 * execute_parallel(line, waitflg)
114 *
115 * DMake 2.x:
116 * parallel mode: spawns a parallel process to execute the command group.
117 * distributed mode: sends the command group down the pipe to rxm.
118 *
119 * Return value:
120 * The result of the execution
121 *
122 * Parameters:
123 * line The command group to execute
124 */
125 Doname
126 execute_parallel(Property line, Boolean waitflg, Boolean local)

new/usr/src/cmd/make/bin/parallel.cc 3

127 {
128 int argcnt;
129 int cmd_options = 0;
130 char *commands[MAXRULES + 5];
131 char *cp;
132 #ifdef DISTRIBUTED
133 Avo_DoJobMsg *dmake_job_msg = NULL;
134 #endif
135 Name dmake_name;
136 Name dmake_value;
137 int ignore;
138 Name make_machines_name;
139 char **p;
140 Property prop;
141 Doname result = build_ok;
142 Cmd_line rule;
143 Boolean silent_flag;
144 Name target = line->body.line.target;
145 Boolean wrote_state_file = false;

147 if ((pmake_max_jobs == 0) &&
148 (dmake_mode_type == parallel_mode)) {
55 if (user_name[0] == ’\0’) {
56 avo_get_user(user_name, NULL);
57 }
149 if (local_host[0] == ’\0’) {
150 (void) gethostname(local_host, MAXNAMELEN);
59 strcpy(local_host, avo_hostname());
151 }
152 MBSTOWCS(wcs_buffer, NOCATGETS("DMAKE_MAX_JOBS"));
153 dmake_name = GETNAME(wcs_buffer, FIND_LENGTH);
154 if (((prop = get_prop(dmake_name->prop, macro_prop)) != NULL) &&
155 ((dmake_value = prop->body.macro.value) != NULL)) {
156 pmake_max_jobs = atoi(dmake_value->string_mb);
157 if (pmake_max_jobs <= 0) {
158 warning(catgets(catd, 1, 308, "DMAKE_MAX_JOBS ca
159 warning(catgets(catd, 1, 309, "setting DMAKE_MAX
160 pmake_max_jobs = PMAKE_DEF_MAX_JOBS;
161 }
162 } else {
163 /*
164 * For backwards compatibility w/ PMake 1.x, when
165 * DMake 2.x is being run in parallel mode, DMake
166 * should parse the PMake startup file
167 * $(HOME)/.make.machines to get the pmake_max_jobs.
168 */
169 MBSTOWCS(wcs_buffer, NOCATGETS("PMAKE_MACHINESFILE"));
170 dmake_name = GETNAME(wcs_buffer, FIND_LENGTH);
171 if (((prop = get_prop(dmake_name->prop, macro_prop)) !=
172 ((dmake_value = prop->body.macro.value) != NULL)) {
173 make_machines_name = dmake_value;
174 } else {
175 make_machines_name = NULL;
176 }
177 if ((pmake_max_jobs = read_make_machines(make_machines_n
178 pmake_max_jobs = PMAKE_DEF_MAX_JOBS;
179 }
180 }
181 #ifdef DISTRIBUTED
182 if (send_mtool_msgs) {
183 send_rsrc_info_msg(pmake_max_jobs, local_host, user_name
184 }
185 #endif
186 }

188 if ((dmake_mode_type == serial_mode) ||

new/usr/src/cmd/make/bin/parallel.cc 4

189 ((dmake_mode_type == parallel_mode) && (waitflg))) {
190 return (execute_serial(line));
191 }

193 #ifdef DISTRIBUTED
194 if (dmake_mode_type == distributed_mode) {
195 if(local) {
196 // return (execute_serial(line));
197 waitflg = true;
198 }
199 dmake_job_msg = new Avo_DoJobMsg();
200 dmake_job_msg->setJobId(++job_msg_id);
201 dmake_job_msg->setTarget(target->string_mb);
202 dmake_job_msg->setImmediateOutput(0);
203 called_make = false;
204 } else
205 #endif
206 {
207 p = commands;
208 }

210 argcnt = 0;
211 for (rule = line->body.line.command_used;
212 rule != NULL;
213 rule = rule->next) {
214 if (posix && (touch || quest) && !rule->always_exec) {
215 continue;
216 }
217 if (vpath_defined) {
218 rule->command_line =
219 vpath_translation(rule->command_line);
220 }
221 if (dmake_mode_type == distributed_mode) {
222 cmd_options = 0;
223 if(local) {
224 cmd_options |= local_host_mask;
225 }
226 } else {
227 silent_flag = false;
228 ignore = 0;
229 }
230 if (rule->command_line->hash.length > 0) {
231 if (++argcnt == MAXRULES) {
232 if (dmake_mode_type == distributed_mode) {
233 /* XXX - tell rxm to execute on local ho
234 /* I WAS HERE!!! */
235 } else {
236 /* Too many rules, run serially instead.
237 return build_serial;
238 }
239 }
240 #ifdef DISTRIBUTED
241 if (dmake_mode_type == distributed_mode) {
242 /*
243 * XXX - set assign_mask to tell rxm
244 * to do the following.
245 */
246 /* From execute_serial():
247 if (rule->assign) {
248 result = build_ok;
249 do_assign(rule->command_line, target);
250 */
251 if (0) {
252 } else if (report_dependencies_level == 0) {
253 if (rule->ignore_error) {
254 cmd_options |= ignore_mask;

new/usr/src/cmd/make/bin/parallel.cc 5

255 }
256 if (rule->silent) {
257 cmd_options |= silent_mask;
258 }
259 if (rule->command_line->meta) {
260 cmd_options |= meta_mask;
261 }
262 if (rule->make_refd) {
263 cmd_options |= make_refd_mask;
264 }
265 if (do_not_exec_rule) {
266 cmd_options |= do_not_exec_mask;
267 }
268 append_dmake_cmd(dmake_job_msg,
269 rule->command_line->str
270 cmd_options);
271 /* Copying dosys()... */
272 if (rule->make_refd) {
273 if (waitflg) {
274 dmake_job_msg->setImmedi
275 }
276 called_make = true;
277 if (command_changed &&
278 !wrote_state_file) {
279 write_state_file(0, fals
280 wrote_state_file = true;
281 }
282 }
283 }
284 } else
285 #endif
286 {
287 if (rule->silent && !silent) {
288 silent_flag = true;
289 }
290 if (rule->ignore_error) {
291 ignore++;
292 }
293 /* XXX - need to add support for + prefix */
294 if (silent_flag || ignore) {
295 *p = getmem((silent_flag ? 1 : 0) +
296 ignore +
297 (strlen(rule->
298 command_line->
299 string_mb)) +
300 1);
301 cp = *p++;
302 if (silent_flag) {
303 *cp++ = (int) at_char;
304 }
305 if (ignore) {
306 *cp++ = (int) hyphen_char;
307 }
308 (void) strcpy(cp, rule->command_line->st
309 } else {
310 *p++ = rule->command_line->string_mb;
311 }
312 }
313 }
314 }
315 if ((argcnt == 0) ||
316 (report_dependencies_level > 0)) {
317 #ifdef DISTRIBUTED
318 if (dmake_job_msg) {
319 delete dmake_job_msg;
320 }

new/usr/src/cmd/make/bin/parallel.cc 6

321 #endif
322 return build_ok;
323 }
324 #ifdef DISTRIBUTED
325 if (dmake_mode_type == distributed_mode) {
326 // Send a DoJob message to the rxm process.
327 distribute_rxm(dmake_job_msg);

329 // Wait for an acknowledgement.
330 Avo_AcknowledgeMsg *ackMsg = getAcknowledgeMsg();
331 if (ackMsg) {
332 delete ackMsg;
333 }

335 if (waitflg) {
336 // Wait for, and process a job result.
337 result = await_dist(waitflg);
338 if (called_make) {
339 maybe_reread_make_state();
340 }
341 check_state(temp_file_name);
342 if (result == build_failed) {
343 if (!continue_after_error) {

345 #ifdef PRINT_EXIT_STATUS
346 warning(NOCATGETS("I’m in execute_parall
347 #endif

349 fatal(catgets(catd, 1, 252, "Command fai
350 target->string_mb);
351 }
352 /*
353 * Make sure a failing command is not
354 * saved in .make.state.
355 */
356 line->body.line.command_used = NULL;
357 }
358 if (temp_file_name != NULL) {
359 free_name(temp_file_name);
360 }
361 temp_file_name = NULL;
362 Property spro = get_prop(sunpro_dependencies->prop, macr
363 if(spro != NULL) {
364 Name val = spro->body.macro.value;
365 if(val != NULL) {
366 free_name(val);
367 spro->body.macro.value = NULL;
368 }
369 }
370 spro = get_prop(sunpro_dependencies->prop, env_mem_prop)
371 if(spro) {
372 char *val = spro->body.env_mem.value;
373 if(val != NULL) {
374 retmem_mb(val);
375 spro->body.env_mem.value = NULL;
376 }
377 }
378 return result;
379 } else {
380 parallel_process_cnt++;
381 return build_running;
382 }
383 } else
384 #endif
385 {
386 *p = NULL;

new/usr/src/cmd/make/bin/parallel.cc 7

388 Doname res = distribute_process(commands, line);
389 if (res == build_running) {
390 parallel_process_cnt++;
391 }

393 /*
394 * Return only those memory that were specially allocated
395 * for part of commands.
396 */
397 for (int i = 0; commands[i] != NULL; i++) {
398 if ((commands[i][0] == (int) at_char) ||
399 (commands[i][0] == (int) hyphen_char)) {
400 retmem_mb(commands[i]);
401 }
402 }
403 return res;
404 }
405 }

______unchanged_portion_omitted_

645 /*
646 * void job_adjust_error()
647 *
648 * Description:
649 * Prints warning message, cleans up job adjust data, and disables job adju
650 *
651 * Environment:
652 * DMAKE_ADJUST_MAX_JOBS
653 *
654 * External functions:
655 * putenv()
656 *
657 * Static variables:
658 * job_adjust_mode Current job adjust mode
659 */
660 static void
661 job_adjust_error() {
662 if (job_adjust_mode != ADJUST_NONE) {
663 /* cleanup internals */
664 job_adjust_fini();

666 /* warning message for the user */
667 warning(catgets(catd, 1, 339, "Encountered max jobs auto adjustm

669 /* switch off job adjustment for the children */
670 putenv(strdup(NOCATGETS("DMAKE_ADJUST_MAX_JOBS=NO")));
579 putenv(NOCATGETS("DMAKE_ADJUST_MAX_JOBS=NO"));

672 /* and for this dmake */
673 job_adjust_mode = ADJUST_NONE;
674 }
675 }

______unchanged_portion_omitted_

1698 /*
1699 * add_running(target, true_target, command, recursion_level, auto_count,
1700 * automatics, do_get, implicit)
1701 *
1702 * Adds a record on the running list for this target, which
1703 * was just spawned and is running.
1704 *
1705 * Parameters:
1706 * target Target being built
1707 * true_target True target for target
1708 * command Running command.

new/usr/src/cmd/make/bin/parallel.cc 8

1709 * recursion_level Debug indentation level
1710 * auto_count Count of automatic dependencies
1711 * automatics List of automatic dependencies
1712 * do_get Sccs get flag
1713 * implicit Implicit flag
1714 *
1715 * Static variables used:
1716 * running_tail Tail of running list
1717 * process_running PID of process
1718 *
1719 * Global variables used:
1720 * current_line Current line for target
1721 * current_target Current target being built
1722 * stderr_file Temporary file for stdout
1723 * stdout_file Temporary file for stdout
1724 * temp_file_name Temporary file for auto dependencies
1725 */
1726 void
1727 add_running(Name target, Name true_target, Property command, int recursion_level
1728 {
1729 Running rp;
1730 Name *p;

1732 rp = new_running_struct();
1733 rp->state = build_running;
1734 rp->target = target;
1735 rp->true_target = true_target;
1736 rp->command = command;
1646 Property spro_val = get_prop(sunpro_dependencies->prop, macro_prop);
1647 if(spro_val) {
1648 rp->sprodep_value = spro_val->body.macro.value;
1649 spro_val->body.macro.value = NULL;
1650 spro_val = get_prop(sunpro_dependencies->prop, env_mem_prop);
1651 if(spro_val) {
1652 rp->sprodep_env = spro_val->body.env_mem.value;
1653 spro_val->body.env_mem.value = NULL;
1654 }
1655 }
1737 rp->recursion_level = recursion_level;
1738 rp->do_get = do_get;
1739 rp->implicit = implicit;
1740 rp->auto_count = auto_count;
1741 if (auto_count > 0) {
1742 rp->automatics = (Name *) getmem(auto_count * sizeof (Name));
1743 for (p = rp->automatics; auto_count > 0; auto_count--) {
1744 *p++ = *automatics++;
1745 }
1746 } else {
1747 rp->automatics = NULL;
1748 }
1749 #ifdef DISTRIBUTED
1750 if (dmake_mode_type == distributed_mode) {
1751 rp->make_refd = called_make;
1752 called_make = false;
1753 } else
1754 #endif
1755 {
1756 rp->pid = process_running;
1757 process_running = -1;
1758 childPid = -1;
1759 }
1760 rp->job_msg_id = job_msg_id;
1761 rp->stdout_file = stdout_file;
1762 rp->stderr_file = stderr_file;
1763 rp->temp_file = temp_file_name;
1764 rp->redo = false;

new/usr/src/cmd/make/bin/parallel.cc 9

1765 rp->next = NULL;
1766 store_conditionals(rp);
1767 stdout_file = NULL;
1768 stderr_file = NULL;
1769 temp_file_name = NULL;
1770 current_target = NULL;
1771 current_line = NULL;
1772 *running_tail = rp;
1773 running_tail = &rp->next;
1774 }
______unchanged_portion_omitted_

new/usr/src/cmd/make/include/mk/defs.h 1

**
 15381 Wed May 20 11:53:27 2015
new/usr/src/cmd/make/include/mk/defs.h
make: ship the Joyent patch to enable parallel make (originally from rm)
**
______unchanged_portion_omitted_

177 /*
178 * Typedefs for all structs
179 */
180 typedef struct _Cmd_line *Cmd_line, Cmd_line_rec;
181 typedef struct _Dependency *Dependency, Dependency_rec;
182 typedef struct _Macro *Macro, Macro_rec;
183 typedef struct _Name_vector *Name_vector, Name_vector_rec;
184 typedef struct _Percent *Percent, Percent_rec;
185 typedef struct _Dyntarget *Dyntarget;
186 typedef struct _Recursive_make *Recursive_make, Recursive_make_rec;
187 typedef struct _Running *Running, Running_rec;

190 /*
191 * extern declarations for all global variables.
192 * The actual declarations are in globals.cc
193 */
194 extern Boolean allrules_read;
195 extern Name posix_name;
196 extern Name svr4_name;
197 extern Boolean sdot_target;
198 extern Boolean all_parallel;
199 extern Boolean assign_done;
200 extern Boolean build_failed_seen;
201 #ifdef DISTRIBUTED
202 extern Boolean building_serial;
203 #endif
204 extern Name built_last_make_run;
205 extern Name c_at;
206 #ifdef DISTRIBUTED
207 extern Boolean called_make;
208 #endif
209 extern Boolean command_changed;
210 extern Boolean commands_done;
211 extern Chain conditional_targets;
212 extern Name conditionals;
213 extern Boolean continue_after_error;
214 extern Property current_line;
215 extern Name current_make_version;
216 extern Name current_target;
217 extern short debug_level;
218 extern Cmd_line default_rule;
219 extern Name default_rule_name;
220 extern Name default_target_to_build;
221 extern Boolean depinfo_already_read;
222 extern Name dmake_group;
223 extern Name dmake_max_jobs;
224 extern Name dmake_mode;
225 extern DMake_mode dmake_mode_type;
226 extern Name dmake_output_mode;
227 extern DMake_output_mode output_mode;
228 extern Name dmake_odir;
229 extern Name dmake_rcfile;
230 extern Name done;
231 extern Name dot;
232 extern Name dot_keep_state;
233 extern Name dot_keep_state_file;
234 extern Name empty_name;

new/usr/src/cmd/make/include/mk/defs.h 2

235 extern Boolean fatal_in_progress;
236 extern int file_number;
237 extern Name force;
238 extern Name ignore_name;
239 extern Boolean ignore_errors;
240 extern Boolean ignore_errors_all;
241 extern Name init;
242 extern int job_msg_id;
243 extern Boolean keep_state;
244 extern Name make_state;
245 #ifdef TEAMWARE_MAKE_CMN
246 extern timestruc_t make_state_before;
247 #endif
248 extern Boolean make_state_locked;
249 extern Dependency makefiles_used;
250 extern Name makeflags;
251 extern Name make_version;
252 extern char mbs_buffer2[];
253 extern char *mbs_ptr;
254 extern char *mbs_ptr2;
255 extern Boolean no_action_was_taken;
256 extern int mtool_msgs_fd;
257 extern Boolean no_parallel;
258 extern Name no_parallel_name;
259 extern Name not_auto;
260 extern Boolean only_parallel;
261 extern Boolean parallel;
262 extern Name parallel_name;
263 extern Name localhost_name;
264 extern int parallel_process_cnt;
265 extern Percent percent_list;
266 extern Dyntarget dyntarget_list;
267 extern Name plus;
268 extern Name pmake_machinesfile;
269 extern Name precious;
270 extern Name primary_makefile;
271 extern Boolean quest;
272 extern short read_trace_level;
273 extern Boolean reading_dependencies;
274 extern int recursion_level;
275 extern Name recursive_name;
276 extern short report_dependencies_level;
277 extern Boolean report_pwd;
278 extern Boolean rewrite_statefile;
279 extern Running running_list;
280 extern char *sccs_dir_path;
281 extern Name sccs_get_name;
282 extern Name sccs_get_posix_name;
283 extern Cmd_line sccs_get_rule;
284 extern Cmd_line sccs_get_org_rule;
285 extern Cmd_line sccs_get_posix_rule;
286 extern Name get_name;
287 extern Name get_posix_name;
288 extern Cmd_line get_rule;
289 extern Cmd_line get_posix_rule;
290 extern Boolean send_mtool_msgs;
291 extern Boolean all_precious;
292 extern Boolean report_cwd;
293 extern Boolean silent_all;
294 extern Boolean silent;
295 extern Name silent_name;
296 extern char *stderr_file;
297 extern char *stdout_file;
298 extern Boolean stdout_stderr_same;
299 extern Dependency suffixes;
300 extern Name suffixes_name;

new/usr/src/cmd/make/include/mk/defs.h 3

301 extern Name sunpro_dependencies;
302 extern Boolean target_variants;
303 extern const char *tmpdir;
304 extern const char *temp_file_directory;
305 extern Name temp_file_name;
306 extern short temp_file_number;
307 extern wchar_t *top_level_target;
308 extern Boolean touch;
309 extern Boolean trace_reader;
310 extern Boolean build_unconditional;
311 extern pathpt vroot_path;
312 extern Name wait_name;
313 extern wchar_t wcs_buffer2[];
314 extern wchar_t *wcs_ptr;
315 extern wchar_t *wcs_ptr2;
316 extern nl_catd catd;
317 extern long int hostid;

319 /*
320 * Declarations of system defined variables
321 */
322 /* On linux this variable is defined in ’signal.h’ */
323 extern char *sys_siglist[];

325 /*
326 * Declarations of system supplied functions
327 */
328 extern int file_lock(char *, char *, int *, int);

330 /*
331 * Declarations of functions declared and used by make
332 */
333 extern void add_pending(Name target, int recursion_level, Boolean do
334 extern void add_running(Name target, Name true_target, Property comm
335 extern void add_serial(Name target, int recursion_level, Boolean do_
336 extern void add_subtree(Name target, int recursion_level, Boolean do
337 extern void append_or_replace_macro_in_dyn_array(ASCII_Dyn_Array *Ar
338 #ifdef DISTRIBUTED
339 extern Doname await_dist(Boolean waitflg);
340 #endif
341 #ifdef TEAMWARE_MAKE_CMN
342 extern void await_parallel(Boolean waitflg);
343 #endif
344 extern void build_suffix_list(Name target_suffix);
345 extern Boolean check_auto_dependencies(Name target, int auto_count, Nam
346 extern void check_state(Name temp_file_name);
347 extern void cond_macros_into_string(Name np, String_rec *buffer);
348 extern void construct_target_string();
349 extern void create_xdrs_ptr(void);
350 extern void depvar_add_to_list (Name name, Boolean cmdline);
351 #ifdef DISTRIBUTED
352 extern void distribute_rxm(Avo_DoJobMsg *dmake_job_msg);
353 extern int getRxmMessage(void);
354 extern Avo_JobResultMsg* getJobResultMsg(void);
355 extern Avo_AcknowledgeMsg* getAcknowledgeMsg(void);
356 #endif
357 extern Doname doname(register Name target, register Boolean do_get, re
358 extern Doname doname_check(register Name target, register Boolean do_g
359 extern Doname doname_parallel(Name target, Boolean do_get, Boolean imp
360 extern Doname dosys(register Name command, register Boolean ignore_err
361 extern void dump_make_state(void);
362 extern void dump_target_list(void);
363 extern void enter_conditional(register Name target, Name name, Name
364 extern void enter_dependencies(register Name target, Chain target_gr
365 extern void enter_dependency(Property line, register Name depe, Bool
366 extern void enter_equal(Name name, Name value, register Boolean appe

new/usr/src/cmd/make/include/mk/defs.h 4

367 extern Percent enter_percent(register Name target, Chain target_group,
368 extern Dyntarget enter_dyntarget(register Name target);
369 extern Name_vector enter_name(String string, Boolean tail_present, register
370 extern Boolean exec_vp(register char *name, register char **argv, char
371 extern Doname execute_parallel(Property line, Boolean waitflg, Boolean
372 extern Doname execute_serial(Property line);
373 extern timestruc_t& exists(register Name target);
374 extern void fatal(const char *, ...);
374 extern void fatal(char *, ...);
375 extern void fatal_reader(char *, ...);
376 extern Doname find_ar_suffix_rule(register Name target, Name true_targ
377 extern Doname find_double_suffix_rule(register Name target, Property *
378 extern Doname find_percent_rule(register Name target, Property *comman
379 extern int find_run_directory (char *cmd, char *cwd, char *dir, cha
380 extern Doname find_suffix_rule(Name target, Name target_body, Name tar
381 extern Chain find_target_groups(register Name_vector target_list, reg
382 extern void finish_children(Boolean docheck);
383 extern void finish_running(void);
384 extern void free_chain(Name_vector ptr);
385 extern void gather_recursive_deps(void);
386 extern char *get_current_path(void);
387 extern int get_job_msg_id(void);
388 extern FILE *get_mtool_msgs_fp(void);
389 #ifdef DISTRIBUTED
390 extern Boolean get_dmake_group_specified(void);
391 extern Boolean get_dmake_max_jobs_specified(void);
392 extern Boolean get_dmake_mode_specified(void);
393 extern Boolean get_dmake_odir_specified(void);
394 extern Boolean get_dmake_rcfile_specified(void);
395 extern Boolean get_pmake_machinesfile_specified(void);
396 #endif
397 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
398 extern XDR *get_xdrs_ptr(void);
399 #endif
400 extern wchar_t *getmem_wc(register int size);
401 /* On linux getwd(char *) is defined in ’unistd.h’ */
402 #ifdef __cplusplus
403 extern "C" {
404 #endif
405 extern char *getwd(char *);
406 #ifdef __cplusplus
407 }

______unchanged_portion_omitted_

new/usr/src/cmd/make/lib/mksdmsi18n/libmksdmsi18n_init.cc 1

**
 1486 Wed May 20 11:53:28 2015
new/usr/src/cmd/make/lib/mksdmsi18n/libmksdmsi18n_init.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 1996 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <avo/intl.h>
27 #include <stdio.h>
28 #include <stdlib.h>

30 nl_catd libmksdmsi18n_catd;
31
32 /*
33 * Open the catalog file for libmksdmsi18n. Users of this library must set
34 * NSLPATH first. See avo_18n_init().
35 */
36 int
37 libmksdmsi18n_init()
38 {
39 char name[20];

41 if (getenv(NOCATGETS("NLSPATH")) == NULL) {
42 fprintf(stderr, NOCATGETS("Internal error: Set NLSPATH before op
42 return 1;
43 }
44 sprintf(name, NOCATGETS("libmksdmsi18n_%d"), I18N_VERSION);
45 libmksdmsi18n_catd = catopen(name, NL_CAT_LOCALE);
46 return 0;
47 }

______unchanged_portion_omitted_

new/usr/src/cmd/make/lib/mksh/dosys.cc 1

**
 20840 Wed May 20 11:53:29 2015
new/usr/src/cmd/make/lib/mksh/dosys.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 /*
28 * dosys.cc
29 *
30 * Execute one commandline
31 */

33 /*
34 * Included files
35 */
36 #include <sys/wait.h> /* WIFEXITED(status) */
37 #include <alloca.h> /* alloca() */

39 #if defined(TEAMWARE_MAKE_CMN) || defined(MAKETOOL) /* tolik */
40 # include <avo/strings.h> /* AVO_STRDUP() */
40 #if defined(DISTRIBUTED)
41 # include <dm/Avo_CmdOutput.h>
42 # include <rw/xdrstrea.h>
43 #endif
44 #endif

46 #include <stdio.h> /* errno */
47 #include <errno.h> /* errno */
48 #include <fcntl.h> /* open() */
49 #include <mksh/dosys.h>
50 #include <mksh/macro.h> /* getvar() */
51 #include <mksh/misc.h> /* getmem(), fatal_mksh(), errmsg() */
52 #include <mksdmsi18n/mksdmsi18n.h> /* libmksdmsi18n_init() */
53 #include <sys/signal.h> /* SIG_DFL */
54 #include <sys/stat.h> /* open() */
55 #include <sys/wait.h> /* wait() */
56 #include <ulimit.h> /* ulimit() */
57 #include <unistd.h> /* close(), dup2() */

new/usr/src/cmd/make/lib/mksh/dosys.cc 2

61 /*
62 * Defined macros
63 */
64 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
65 #define SEND_MTOOL_MSG(cmds) \
66 if (send_mtool_msgs) { \
67 cmds \
68 }
69 #else
70 #define SEND_MTOOL_MSG(cmds)
71 #endif

73 /*
74 * typedefs & structs
75 */

77 /*
78 * Static variables
79 */

81 /*
82 * File table of contents
83 */
84 static Boolean exec_vp(register char *name, register char **argv, char **envp,

86 /*
87 * Workaround for NFS bug. Sometimes, when running ’open’ on a remote
88 * dmake server, it fails with "Stale NFS file handle" error.
89 * The second attempt seems to work.
90 */
91 int
92 my_open(const char *path, int oflag, mode_t mode) {
93 int res = open(path, oflag, mode);
94 if (res < 0 && (errno == ESTALE || errno == EAGAIN)) {
95 /* Stale NFS file handle. Try again */
96 res = open(path, oflag, mode);
97 }
98 return res;
99 }

______unchanged_portion_omitted_

552 /*
553 * await(ignore_error, silent_error, target, command, running_pid)
554 *
555 * Wait for one child process and analyzes
556 * the returned status when the child process terminates.
557 *
558 * Return value:
559 * Returns true if commands ran OK
560 *
561 * Parameters:
562 * ignore_error Should we abort on error?
563 * silent_error Should error messages be suppressed for dmake?
564 * target The target we are building, for error msgs
565 * command The command we ran, for error msgs
566 * running_pid The pid of the process we are waiting for
567 *
568 * Static variables used:
569 * filter_file The fd for the filter file
570 * filter_file_name The name of the filter file
571 *
572 * Global variables used:
573 * filter_stderr Set if -X is on
574 */
575 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
576 Boolean

new/usr/src/cmd/make/lib/mksh/dosys.cc 3

577 await(register Boolean ignore_error, register Boolean silent_error, Name target,
578 #else
579 Boolean
580 await(register Boolean ignore_error, register Boolean silent_error, Name target,
581 #endif
582 {
583 int status;
584 char *buffer;
585 int core_dumped;
586 int exit_status;
587 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
588 Avo_CmdOutput *make_output_msg;
589 #endif
590 FILE *outfp;
591 register pid_t pid;
592 struct stat stat_buff;
593 int termination_signal;
594 char tmp_buf[MAXPATHLEN];
595 #if defined(DISTRIBUTED) || defined(MAKETOOL) /* tolik */
596 RWCollectable *xdr_msg;
597 #endif

599 while ((pid = wait(&status)) != running_pid) {
600 if (pid == -1) {
601 fatal_mksh(catgets(libmksdmsi18n_catd, 1, 98, "wait() fa
602 }
603 }
604 (void) fflush(stdout);
605 (void) fflush(stderr);

607 if (status == 0) {

609 #ifdef PRINT_EXIT_STATUS
610 warning_mksh(NOCATGETS("I’m in await(), and status is 0."));
611 #endif

613 return succeeded;
614 }

616 #ifdef PRINT_EXIT_STATUS
617 warning_mksh(NOCATGETS("I’m in await(), and status is *NOT* 0."));
618 #endif

621 exit_status = WEXITSTATUS(status);

623 #ifdef PRINT_EXIT_STATUS
624 warning_mksh(NOCATGETS("I’m in await(), and exit_status is %d."), exit_s
625 #endif

627 termination_signal = WTERMSIG(status);
628 core_dumped = WCOREDUMP(status);

630 /*
631 * If the child returned an error, we now try to print a
632 * nice message about it.
633 */
634 SEND_MTOOL_MSG(
635 make_output_msg = new Avo_CmdOutput();
636 (void) sprintf(tmp_buf, "%d", job_msg_id);
637 make_output_msg->appendOutput(strdup(tmp_buf));
638 make_output_msg->appendOutput(AVO_STRDUP(tmp_buf));
638);

640 tmp_buf[0] = (int) nul_char;
641 if (!silent_error) {

new/usr/src/cmd/make/lib/mksh/dosys.cc 4

642 if (exit_status != 0) {
643 (void) fprintf(stdout,
644 catgets(libmksdmsi18n_catd, 1, 103, "***
645 exit_status);
646 SEND_MTOOL_MSG(
647 (void) sprintf(&tmp_buf[strlen(tmp_buf)],
648 catgets(libmksdmsi18n_catd, 1, 10
649 exit_status);
650);
651 } else {
652 (void) fprintf(stdout,
653 catgets(libmksdmsi18n_catd, 1, 10
654 termination_signal);
655 SEND_MTOOL_MSG(
656 (void) sprintf(&tmp_buf[strlen(tmp_buf)]
657 catgets(libmksdmsi18n_cat
658 termination_signal);
659);
660 if (core_dumped) {
661 (void) fprintf(stdout,
662 catgets(libmksdmsi18n_catd, 1, 10
663 SEND_MTOOL_MSG(
664 (void) sprintf(&tmp_buf[strlen(tmp_buf)]
665 catgets(libmksdmsi18n_cat
666);
667 }
668 }
669 if (ignore_error) {
670 (void) fprintf(stdout,
671 catgets(libmksdmsi18n_catd, 1, 109, " (ig
672 SEND_MTOOL_MSG(
673 (void) sprintf(&tmp_buf[strlen(tmp_buf)],
674 catgets(libmksdmsi18n_catd, 1, 11
675);
676 }
677 (void) fprintf(stdout, "\n");
678 (void) fflush(stdout);
679 SEND_MTOOL_MSG(
680 make_output_msg->appendOutput(strdup(tmp_buf));
681 make_output_msg->appendOutput(AVO_STRDUP(tmp_buf));
681);
682 }
683 SEND_MTOOL_MSG(
684 xdr_msg = (RWCollectable*) make_output_msg;
685 xdr(xdrs_p, xdr_msg);
686 delete make_output_msg;
687);

689 #ifdef PRINT_EXIT_STATUS
690 warning_mksh(NOCATGETS("I’m in await(), returning failed."));
691 #endif

693 return failed;
694 }

______unchanged_portion_omitted_

new/usr/src/cmd/make/lib/mksh/mksh.cc 1

**
 7428 Wed May 20 11:53:29 2015
new/usr/src/cmd/make/lib/mksh/mksh.cc
make: ship the Joyent patch to enable parallel make (originally from rm)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 /*
28 * mksh.cc
29 *
30 * Execute the command(s) of one Make or DMake rule
31 */

33 /*
34 * Included files
35 */
36 #if defined(TEAMWARE_MAKE_CMN) || defined(MAKETOOL) /* tolik */
37 # include <avo/util.h>
38 #endif

36 #include <mksh/dosys.h> /* redirect_io() */
37 #include <mksh/misc.h> /* retmem() */
38 #include <mksh/mksh.h>
39 #include <mksdmsi18n/mksdmsi18n.h>
40 #include <errno.h>
41 #include <signal.h>

44 /*
45 * Workaround for NFS bug. Sometimes, when running ’chdir’ on a remote
46 * dmake server, it fails with "Stale NFS file handle" error.
47 * The second attempt seems to work.
48 */
49 int
50 my_chdir(char * dir) {
51 int res = chdir(dir);
52 if (res != 0 && (errno == ESTALE || errno == EAGAIN)) {
53 /* Stale NFS file handle. Try again */
54 res = chdir(dir);
55 }
56 return res;
57 }

______unchanged_portion_omitted_

