1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Copyright (c) 2014 by Delphix. All rights reserved. 31 */ 32 33 /* 34 * Utility routines for run-time linker. some are duplicated here from libc 35 * (with different names) to avoid name space collisions. 36 */ 37 #include <sys/systeminfo.h> 38 #include <stdio.h> 39 #include <sys/time.h> 40 #include <sys/types.h> 41 #include <sys/mman.h> 42 #include <sys/lwp.h> 43 #include <sys/debug.h> 44 #include <stdarg.h> 45 #include <fcntl.h> 46 #include <string.h> 47 #include <dlfcn.h> 48 #include <unistd.h> 49 #include <stdlib.h> 50 #include <sys/auxv.h> 51 #include <limits.h> 52 #include <debug.h> 53 #include <conv.h> 54 #include "_rtld.h" 55 #include "_audit.h" 56 #include "_elf.h" 57 #include "msg.h" 58 59 /* 60 * Null function used as place where a debugger can set a breakpoint. 61 */ 62 void 63 rtld_db_dlactivity(Lm_list *lml) 64 { 65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 66 r_debug.rtd_rdebug.r_state)); 67 } 68 69 /* 70 * Null function used as place where debugger can set a pre .init 71 * processing breakpoint. 72 */ 73 void 74 rtld_db_preinit(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a post .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_postinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Debugger Event Notification 93 * 94 * This function centralizes all debugger event notification (ala rtld_db). 95 * 96 * There's a simple intent, focused on insuring the primary link-map control 97 * list (or each link-map list) is consistent, and the indication that objects 98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 99 * event are posted for each of these, most debuggers don't care, as their 100 * view is that these events simply convey an "inconsistent" state. 101 * 102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 103 * enter ld.so.1. 104 * 105 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 106 * required later (RT_FL_DBNOTIF): 107 * 108 * i. the first time we add or delete an object to the primary link-map 109 * control list. 110 * ii. the first time we move a secondary link-map control list to the primary 111 * link-map control list (effectively, this is like adding a group of 112 * objects to the primary link-map control list). 113 * 114 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set): 115 * 116 * i. each time we leave the runtime linker. 117 */ 118 void 119 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 120 { 121 void (*fptr)(Lm_list *); 122 123 switch (event) { 124 case RD_PREINIT: 125 fptr = rtld_db_preinit; 126 break; 127 case RD_POSTINIT: 128 fptr = rtld_db_postinit; 129 break; 130 case RD_DLACTIVITY: 131 switch (state) { 132 case RT_CONSISTENT: 133 /* 134 * Do we need to send a notification? 135 */ 136 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 137 return; 138 rtld_flags &= ~RT_FL_DBNOTIF; 139 break; 140 case RT_ADD: 141 case RT_DELETE: 142 /* 143 * If we are already in an inconsistent state, no 144 * notification is required. 145 */ 146 if (rtld_flags & RT_FL_DBNOTIF) 147 return; 148 rtld_flags |= RT_FL_DBNOTIF; 149 break; 150 }; 151 fptr = rtld_db_dlactivity; 152 break; 153 default: 154 /* 155 * RD_NONE - do nothing 156 */ 157 break; 158 }; 159 160 /* 161 * Set event state and call 'notification' function. 162 * 163 * The debugging clients have previously been told about these 164 * notification functions and have set breakpoints on them if they 165 * are interested in the notification. 166 */ 167 r_debug.rtd_rdebug.r_state = state; 168 r_debug.rtd_rdebug.r_rdevent = event; 169 fptr(lml); 170 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 171 } 172 173 #if defined(__sparc) || defined(__x86) 174 /* 175 * Stack Cleanup. 176 * 177 * This function is invoked to 'remove' arguments that were passed in on the 178 * stack. This is most likely if ld.so.1 was invoked directly. In that case 179 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 180 * Which means we then need to slide everything above it on the stack down 181 * accordingly. 182 * 183 * While the stack layout is platform specific - it just so happens that __x86, 184 * and __sparc platforms share the following initial stack layout. 185 * 186 * !_______________________! high addresses 187 * ! ! 188 * ! Information ! 189 * ! Block ! 190 * ! (size varies) ! 191 * !_______________________! 192 * ! 0 word ! 193 * !_______________________! 194 * ! Auxiliary ! 195 * ! vector ! 196 * ! 2 word entries ! 197 * ! ! 198 * !_______________________! 199 * ! 0 word ! 200 * !_______________________! 201 * ! Environment ! 202 * ! pointers ! 203 * ! ... ! 204 * ! (one word each) ! 205 * !_______________________! 206 * ! 0 word ! 207 * !_______________________! 208 * ! Argument ! low addresses 209 * ! pointers ! 210 * ! Argc words ! 211 * !_______________________! 212 * ! ! 213 * ! Argc ! 214 * !_______________________! 215 * ! ... ! 216 * 217 */ 218 static void 219 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 220 { 221 int ndx; 222 long *argc; 223 char **oargv, **nargv; 224 char **oenvp, **nenvp; 225 auxv_t *oauxv, *nauxv; 226 227 /* 228 * Slide ARGV[] and update argc. The argv pointer remains the same, 229 * however slide the applications arguments over the arguments to 230 * ld.so.1. 231 */ 232 nargv = &argv[0]; 233 oargv = &argv[rmcnt]; 234 235 for (ndx = 0; oargv[ndx]; ndx++) 236 nargv[ndx] = oargv[ndx]; 237 nargv[ndx] = oargv[ndx]; 238 239 argc = (long *)((uintptr_t)argv - sizeof (long *)); 240 *argc -= rmcnt; 241 242 /* 243 * Slide ENVP[], and update the environment array pointer. 244 */ 245 ndx++; 246 nenvp = &nargv[ndx]; 247 oenvp = &oargv[ndx]; 248 *envp = nenvp; 249 250 for (ndx = 0; oenvp[ndx]; ndx++) 251 nenvp[ndx] = oenvp[ndx]; 252 nenvp[ndx] = oenvp[ndx]; 253 254 /* 255 * Slide AUXV[], and update the aux vector pointer. 256 */ 257 ndx++; 258 nauxv = (auxv_t *)&nenvp[ndx]; 259 oauxv = (auxv_t *)&oenvp[ndx]; 260 *auxv = nauxv; 261 262 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 263 nauxv[ndx] = oauxv[ndx]; 264 nauxv[ndx] = oauxv[ndx]; 265 } 266 #else 267 /* 268 * Verify that the above routine is appropriate for any new platforms. 269 */ 270 #error unsupported architecture! 271 #endif 272 273 /* 274 * Compare function for PathNode AVL tree. 275 */ 276 static int 277 pnavl_compare(const void *n1, const void *n2) 278 { 279 uint_t hash1, hash2; 280 const char *st1, *st2; 281 int rc; 282 283 hash1 = ((PathNode *)n1)->pn_hash; 284 hash2 = ((PathNode *)n2)->pn_hash; 285 286 if (hash1 > hash2) 287 return (1); 288 if (hash1 < hash2) 289 return (-1); 290 291 st1 = ((PathNode *)n1)->pn_name; 292 st2 = ((PathNode *)n2)->pn_name; 293 294 rc = strcmp(st1, st2); 295 if (rc > 0) 296 return (1); 297 if (rc < 0) 298 return (-1); 299 return (0); 300 } 301 302 /* 303 * Create an AVL tree. 304 */ 305 static avl_tree_t * 306 pnavl_create(size_t size) 307 { 308 avl_tree_t *avlt; 309 310 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 311 return (NULL); 312 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 313 return (avlt); 314 } 315 316 /* 317 * Determine whether a PathNode is recorded. 318 */ 319 int 320 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 321 avl_index_t *where) 322 { 323 PathNode pn; 324 325 /* 326 * Create the avl tree if required. 327 */ 328 if ((*pnavl == NULL) && 329 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 330 return (0); 331 332 pn.pn_name = name; 333 if ((pn.pn_hash = hash) == 0) 334 pn.pn_hash = sgs_str_hash(name); 335 336 if (avl_find(*pnavl, &pn, where) == NULL) 337 return (0); 338 339 return (1); 340 } 341 342 /* 343 * Determine if a pathname has already been recorded on the full path name 344 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 345 * successfully loaded. If the path name does not exist in this AVL tree, then 346 * the next insertion point is deposited in "where". This value can be used by 347 * fpavl_insert() to expedite the insertion. 348 */ 349 Rt_map * 350 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 351 { 352 FullPathNode fpn, *fpnp; 353 354 /* 355 * Create the avl tree if required. 356 */ 357 if ((lml->lm_fpavl == NULL) && 358 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 359 return (NULL); 360 361 fpn.fpn_node.pn_name = name; 362 if ((fpn.fpn_node.pn_hash = hash) == 0) 363 fpn.fpn_node.pn_hash = sgs_str_hash(name); 364 365 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 366 return (NULL); 367 368 return (fpnp->fpn_lmp); 369 } 370 371 /* 372 * Insert a name into the FullPathNode AVL tree for the link-map list. The 373 * objects NAME() is the path that would have originally been searched for, and 374 * is therefore the name to associate with any "where" value. If the object has 375 * a different PATHNAME(), perhaps because it has resolved to a different file 376 * (see fullpath()), then this name will be recorded as a separate FullPathNode 377 * (see load_file()). 378 */ 379 int 380 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 381 { 382 FullPathNode *fpnp; 383 uint_t hash = sgs_str_hash(name); 384 385 if (where == 0) { 386 /* LINTED */ 387 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 388 389 /* 390 * We better not get a hit now, we do not want duplicates in 391 * the tree. 392 */ 393 ASSERT(_lmp == NULL); 394 } 395 396 /* 397 * Insert new node in tree. 398 */ 399 if ((fpnp = calloc(1, sizeof (FullPathNode))) == NULL) 400 return (0); 401 402 fpnp->fpn_node.pn_name = name; 403 fpnp->fpn_node.pn_hash = hash; 404 fpnp->fpn_lmp = lmp; 405 406 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 407 free(fpnp); 408 return (0); 409 } 410 411 ASSERT(lml->lm_fpavl != NULL); 412 avl_insert(lml->lm_fpavl, fpnp, where); 413 return (1); 414 } 415 416 /* 417 * Remove an object from the FullPathNode AVL tree. 418 */ 419 void 420 fpavl_remove(Rt_map *lmp) 421 { 422 FullPathNode *fpnp; 423 Aliste idx; 424 425 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 426 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 427 free(fpnp); 428 } 429 free(FPNODE(lmp)); 430 FPNODE(lmp) = NULL; 431 } 432 433 /* 434 * Insert a path name into the not-found AVL tree. 435 * 436 * This tree maintains a node for each path name that ld.so.1 has explicitly 437 * inspected, but has failed to load during a single ld.so.1 operation. If the 438 * path name does not exist in this AVL tree, then the next insertion point is 439 * deposited in "where". This value can be used by nfavl_insert() to expedite 440 * the insertion. 441 */ 442 void 443 nfavl_insert(const char *name, avl_index_t where) 444 { 445 PathNode *pnp; 446 uint_t hash = sgs_str_hash(name); 447 448 if (where == 0) { 449 /* LINTED */ 450 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 451 452 /* 453 * We better not get a hit now, we do not want duplicates in 454 * the tree. 455 */ 456 ASSERT(in_nfavl == 0); 457 } 458 459 /* 460 * Insert new node in tree. 461 */ 462 if ((pnp = calloc(1, sizeof (PathNode))) != NULL) { 463 pnp->pn_name = name; 464 pnp->pn_hash = hash; 465 avl_insert(nfavl, pnp, where); 466 } 467 } 468 469 /* 470 * Insert the directory name, of a full path name, into the secure path AVL 471 * tree. 472 * 473 * This tree is used to maintain a list of directories in which the dependencies 474 * of a secure process have been found. This list provides a fall-back in the 475 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 476 * in a path name that has already provided dependencies. 477 */ 478 void 479 spavl_insert(const char *name) 480 { 481 char buffer[PATH_MAX], *str; 482 size_t size; 483 avl_index_t where; 484 PathNode *pnp; 485 uint_t hash; 486 487 /* 488 * Separate the directory name from the path name. 489 */ 490 if ((str = strrchr(name, '/')) == name) 491 size = 1; 492 else 493 size = str - name; 494 495 (void) strncpy(buffer, name, size); 496 buffer[size] = '\0'; 497 hash = sgs_str_hash(buffer); 498 499 /* 500 * Determine whether this directory name is already recorded, or if 501 * not, 'where" will provide the insertion point for the new string. 502 */ 503 if (pnavl_recorded(&spavl, buffer, hash, &where)) 504 return; 505 506 /* 507 * Insert new node in tree. 508 */ 509 if ((pnp = calloc(1, sizeof (PathNode))) != NULL) { 510 pnp->pn_name = strdup(buffer); 511 pnp->pn_hash = hash; 512 avl_insert(spavl, pnp, where); 513 } 514 } 515 516 /* 517 * Inspect the generic string AVL tree for the given string. If the string is 518 * not present, duplicate it, and insert the string in the AVL tree. Return the 519 * duplicated string to the caller. 520 * 521 * These strings are maintained for the life of ld.so.1 and represent path 522 * names, file names, and search paths. All other AVL trees that maintain 523 * FullPathNode and not-found path names use the same string pointer 524 * established for this string. 525 */ 526 static avl_tree_t *stravl = NULL; 527 static char *strbuf = NULL; 528 static PathNode *pnbuf = NULL; 529 static size_t strsize = 0, pnsize = 0; 530 531 const char * 532 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 533 { 534 char str[PATH_MAX]; 535 PathNode *pnp; 536 avl_index_t where; 537 538 /* 539 * Create the avl tree if required. 540 */ 541 if ((stravl == NULL) && 542 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 543 return (NULL); 544 545 /* 546 * Determine the string size if not provided by the caller. 547 */ 548 if (nsize == 0) 549 nsize = strlen(name) + 1; 550 else if (substr) { 551 /* 552 * The string passed to us may be a multiple path string for 553 * which we only need the first component. Using the provided 554 * size, strip out the required string. 555 */ 556 (void) strncpy(str, name, nsize); 557 str[nsize - 1] = '\0'; 558 name = str; 559 } 560 561 /* 562 * Allocate a PathNode buffer if one doesn't exist, or any existing 563 * buffer has been used up. 564 */ 565 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 566 pnsize = syspagsz; 567 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 568 MAP_PRIVATE)) == MAP_FAILED) 569 return (NULL); 570 } 571 /* 572 * Determine whether this string already exists. 573 */ 574 pnbuf->pn_name = name; 575 if ((pnbuf->pn_hash = hash) == 0) 576 pnbuf->pn_hash = sgs_str_hash(name); 577 578 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 579 return (pnp->pn_name); 580 581 /* 582 * Allocate a string buffer if one does not exist, or if there is 583 * insufficient space for the new string in any existing buffer. 584 */ 585 if ((strbuf == NULL) || (nsize > strsize)) { 586 strsize = S_ROUND(nsize, syspagsz); 587 588 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 589 MAP_PRIVATE)) == MAP_FAILED) 590 return (NULL); 591 } 592 593 (void) memcpy(strbuf, name, nsize); 594 pnp = pnbuf; 595 pnp->pn_name = strbuf; 596 avl_insert(stravl, pnp, where); 597 598 strbuf += nsize; 599 strsize -= nsize; 600 pnbuf++; 601 pnsize -= sizeof (PathNode); 602 return (pnp->pn_name); 603 } 604 605 /* 606 * Prior to calling an object, either via a .plt or through dlsym(), make sure 607 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 608 * init's in the correct order, however, this order is typically based on needed 609 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 610 * still occur and result in bindings that were not captured during topological 611 * sorting. This routine compensates for this lack of binding information, and 612 * provides for dynamic .init firing. 613 */ 614 void 615 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 616 { 617 Rt_map **tobj; 618 619 /* 620 * If the caller is an auditor, and the destination isn't, then don't 621 * run any .inits (see comments in load_completion()). 622 */ 623 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) && 624 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0)) 625 return; 626 627 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 628 return; 629 630 (void) rt_mutex_lock(&dlmp->rt_lock); 631 while (dlmp->rt_init_thread != rt_thr_self() && (FLAGS(dlmp) & 632 (FLG_RT_RELOCED | FLG_RT_INITCALL | FLG_RT_INITDONE)) == 633 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 634 leave(LIST(dlmp), 0); 635 (void) _lwp_cond_wait(&dlmp->rt_cv, (mutex_t *)&dlmp->rt_lock); 636 (void) rt_mutex_unlock(&dlmp->rt_lock); 637 (void) enter(0); 638 (void) rt_mutex_lock(&dlmp->rt_lock); 639 } 640 (void) rt_mutex_unlock(&dlmp->rt_lock); 641 642 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 643 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 644 return; 645 646 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 647 tobj[0] = dlmp; 648 call_init(tobj, DBG_INIT_DYN); 649 } 650 } 651 652 /* 653 * Execute .{preinit|init|fini}array sections 654 */ 655 void 656 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 657 { 658 int start, stop, incr, ndx; 659 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 660 661 if (array == NULL) 662 return; 663 664 /* 665 * initarray & preinitarray are walked from beginning to end - while 666 * finiarray is walked from end to beginning. 667 */ 668 if (shtype == SHT_FINI_ARRAY) { 669 start = arraycnt - 1; 670 stop = incr = -1; 671 } else { 672 start = 0; 673 stop = arraycnt; 674 incr = 1; 675 } 676 677 /* 678 * Call the .*array[] entries 679 */ 680 for (ndx = start; ndx != stop; ndx += incr) { 681 uint_t rtldflags; 682 void (*fptr)(void) = (void(*)())array[ndx]; 683 684 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 685 686 APPLICATION_ENTER(rtldflags); 687 leave(LIST(lmp), 0); 688 (*fptr)(); 689 (void) enter(0); 690 APPLICATION_RETURN(rtldflags); 691 } 692 } 693 694 /* 695 * Execute any .init sections. These are passed to us in an lmp array which 696 * (by default) will have been sorted. 697 */ 698 void 699 call_init(Rt_map **tobj, int flag) 700 { 701 Rt_map **_tobj, **_nobj; 702 static APlist *pending = NULL; 703 704 /* 705 * If we're in the middle of an INITFIRST, this must complete before 706 * any new init's are fired. In this case add the object list to the 707 * pending queue and return. We'll pick up the queue after any 708 * INITFIRST objects have their init's fired. 709 */ 710 if (rtld_flags & RT_FL_INITFIRST) { 711 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 712 return; 713 } 714 715 /* 716 * Traverse the tobj array firing each objects init. 717 */ 718 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 719 Rt_map *lmp = *_tobj; 720 void (*iptr)() = INIT(lmp); 721 722 if (FLAGS(lmp) & FLG_RT_INITCALL) 723 continue; 724 725 FLAGS(lmp) |= FLG_RT_INITCALL; 726 lmp->rt_init_thread = rt_thr_self(); 727 728 /* 729 * Establish an initfirst state if necessary - no other inits 730 * will be fired (because of additional relocation bindings) 731 * when in this state. 732 */ 733 if (FLAGS(lmp) & FLG_RT_INITFRST) 734 rtld_flags |= RT_FL_INITFIRST; 735 736 if (INITARRAY(lmp) || iptr) 737 DBG_CALL(Dbg_util_call_init(lmp, flag)); 738 739 if (iptr) { 740 uint_t rtldflags; 741 742 APPLICATION_ENTER(rtldflags); 743 leave(LIST(lmp), 0); 744 (*iptr)(); 745 (void) enter(0); 746 APPLICATION_RETURN(rtldflags); 747 } 748 749 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 750 SHT_INIT_ARRAY); 751 752 if (INITARRAY(lmp) || iptr) 753 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 754 755 /* 756 * Set the initdone flag regardless of whether this object 757 * actually contains an .init section. This flag prevents us 758 * from processing this section again for an .init and also 759 * signifies that a .fini must be called should it exist. 760 * Clear the sort field for use in later .fini processing. 761 */ 762 (void) rt_mutex_lock(&lmp->rt_lock); 763 FLAGS(lmp) |= FLG_RT_INITDONE; 764 lmp->rt_init_thread = (thread_t)0; 765 (void) _lwp_cond_broadcast(&lmp->rt_cv); 766 (void) rt_mutex_unlock(&lmp->rt_lock); 767 SORTVAL(lmp) = -1; 768 769 /* 770 * If we're firing an INITFIRST object, and other objects must 771 * be fired which are not INITFIRST, make sure we grab any 772 * pending objects that might have been delayed as this 773 * INITFIRST was processed. 774 */ 775 if ((rtld_flags & RT_FL_INITFIRST) && 776 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 777 Aliste idx; 778 Rt_map **pobj; 779 780 rtld_flags &= ~RT_FL_INITFIRST; 781 782 for (APLIST_TRAVERSE(pending, idx, pobj)) { 783 aplist_delete(pending, &idx); 784 call_init(pobj, DBG_INIT_PEND); 785 } 786 } 787 } 788 free(tobj); 789 } 790 791 /* 792 * Call .fini sections for the topologically sorted list of objects. This 793 * routine is called from remove_hdl() for any objects being torn down as part 794 * of a dlclose() operation, and from atexit() processing for all the remaining 795 * objects within the process. 796 */ 797 void 798 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp) 799 { 800 Rt_map **_tobj; 801 802 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 803 Rt_map *lmp = *_tobj; 804 805 /* 806 * Only fire a .fini if the objects corresponding .init has 807 * completed. We collect all .fini sections of objects that 808 * had their .init collected, but that doesn't mean that at 809 * the time of collection, that the .init had completed. 810 */ 811 if (FLAGS(lmp) & FLG_RT_INITDONE) { 812 void (*fptr)(void) = FINI(lmp); 813 814 if (FINIARRAY(lmp) || fptr) 815 DBG_CALL(Dbg_util_call_fini(lmp)); 816 817 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 818 SHT_FINI_ARRAY); 819 820 if (fptr) { 821 uint_t rtldflags; 822 823 APPLICATION_ENTER(rtldflags); 824 leave(lml, 0); 825 (*fptr)(); 826 (void) enter(0); 827 APPLICATION_RETURN(rtldflags); 828 } 829 } 830 831 /* 832 * Skip main, this is explicitly called last in atexit_fini(). 833 */ 834 if (FLAGS(lmp) & FLG_RT_ISMAIN) 835 continue; 836 837 /* 838 * This object has exercised its last instructions (regardless 839 * of whether it will be unmapped or not). Audit this closure. 840 */ 841 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0) 842 audit_objclose(lmp, clmp); 843 } 844 845 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 846 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 847 848 free(tobj); 849 } 850 851 /* 852 * Function called by atexit(3C). Calls all .fini sections within the objects 853 * that make up the process. As .fini processing is the last opportunity for 854 * any new bindings to be established, this is also a convenient location to 855 * check for unused objects. 856 */ 857 void 858 atexit_fini() 859 { 860 Rt_map **tobj, *lmp; 861 Lm_list *lml; 862 Aliste idx; 863 864 (void) enter(0); 865 866 rtld_flags |= RT_FL_ATEXIT; 867 868 lml = &lml_main; 869 lml->lm_flags |= LML_FLG_ATEXIT; 870 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 871 lmp = (Rt_map *)lml->lm_head; 872 873 /* 874 * Reverse topologically sort the main link-map for .fini execution. 875 */ 876 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 877 (tobj != (Rt_map **)S_ERROR)) 878 call_fini(lml, tobj, NULL); 879 880 /* 881 * Now that all .fini code has been run, see what unreferenced objects 882 * remain. 883 */ 884 unused(lml); 885 886 /* 887 * Traverse any alternative link-map lists, looking for non-auditors. 888 */ 889 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 890 /* 891 * Ignore the base-link-map list, which has already been 892 * processed, the runtime linkers link-map list, which is 893 * processed last, and any auditors. 894 */ 895 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 896 (lml->lm_tflags & LML_TFLG_AUD_MASK) || 897 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 898 continue; 899 900 lml->lm_flags |= LML_FLG_ATEXIT; 901 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 902 903 /* 904 * Reverse topologically sort the link-map for .fini execution. 905 */ 906 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 907 (tobj != (Rt_map **)S_ERROR)) 908 call_fini(lml, tobj, NULL); 909 910 unused(lml); 911 } 912 913 /* 914 * Add an explicit close to main and ld.so.1. Although main's .fini is 915 * collected in call_fini() to provide for FINITARRAY processing, its 916 * audit_objclose is explicitly skipped. This provides for it to be 917 * called last, here. This is the reverse of the explicit calls to 918 * audit_objopen() made in setup(). 919 */ 920 lml = &lml_main; 921 lmp = (Rt_map *)lml->lm_head; 922 923 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 924 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp); 925 audit_objclose(lmp, lmp); 926 } 927 928 /* 929 * Traverse any alternative link-map lists, looking for non-auditors. 930 */ 931 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 932 /* 933 * Ignore the base-link-map list, which has already been 934 * processed, the runtime linkers link-map list, which is 935 * processed last, and any non-auditors. 936 */ 937 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 938 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) || 939 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 940 continue; 941 942 lml->lm_flags |= LML_FLG_ATEXIT; 943 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 944 945 /* 946 * Reverse topologically sort the link-map for .fini execution. 947 */ 948 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 949 (tobj != (Rt_map **)S_ERROR)) 950 call_fini(lml, tobj, NULL); 951 952 unused(lml); 953 } 954 955 /* 956 * Finally reverse topologically sort the runtime linkers link-map for 957 * .fini execution. 958 */ 959 lml = &lml_rtld; 960 lml->lm_flags |= LML_FLG_ATEXIT; 961 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 962 lmp = (Rt_map *)lml->lm_head; 963 964 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 965 (tobj != (Rt_map **)S_ERROR)) 966 call_fini(lml, tobj, NULL); 967 968 leave(&lml_main, 0); 969 } 970 971 /* 972 * This routine is called to complete any runtime linker activity which may have 973 * resulted in objects being loaded. This is called from all user entry points 974 * and from any internal dl*() requests. 975 */ 976 void 977 load_completion(Rt_map *nlmp) 978 { 979 Rt_map **tobj = NULL; 980 Lm_list *nlml; 981 982 /* 983 * Establish any .init processing. Note, in a world of lazy loading, 984 * objects may have been loaded regardless of whether the users request 985 * was fulfilled (i.e., a dlsym() request may have failed to find a 986 * symbol but objects might have been loaded during its search). Thus, 987 * any tsorting starts from the nlmp (new link-maps) pointer and not 988 * necessarily from the link-map that may have satisfied the request. 989 * 990 * Note, the primary link-map has an initialization phase where dynamic 991 * .init firing is suppressed. This provides for a simple and clean 992 * handshake with the primary link-maps libc, which is important for 993 * establishing uberdata. In addition, auditors often obtain handles 994 * to primary link-map objects as the objects are loaded, so as to 995 * inspect the link-map for symbols. This inspection is allowed without 996 * running any code on the primary link-map, as running this code may 997 * reenter the auditor, who may not yet have finished its own 998 * initialization. 999 */ 1000 if (nlmp) 1001 nlml = LIST(nlmp); 1002 1003 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1004 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1005 if ((tobj = tsort(nlmp, nlml->lm_init, 1006 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1007 tobj = NULL; 1008 } 1009 1010 /* 1011 * Make sure any alternative link-map retrieves any external interfaces 1012 * and initializes threads. 1013 */ 1014 if (nlmp && (nlml != &lml_main)) { 1015 (void) rt_get_extern(nlml, nlmp); 1016 rt_thr_init(nlml); 1017 } 1018 1019 /* 1020 * Traverse the list of new link-maps and register any dynamic TLS. 1021 * This storage is established for any objects not on the primary 1022 * link-map, and for any objects added to the primary link-map after 1023 * static TLS has been registered. 1024 */ 1025 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1026 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1027 Rt_map *lmp; 1028 1029 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1030 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1031 tls_modaddrem(lmp, TM_FLG_MODADD); 1032 } 1033 nlml->lm_tls = 0; 1034 } 1035 1036 /* 1037 * Fire any .init's. 1038 */ 1039 if (tobj) 1040 call_init(tobj, DBG_INIT_SORT); 1041 } 1042 1043 /* 1044 * Append an item to the specified link map control list. 1045 */ 1046 void 1047 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1048 { 1049 Lm_cntl *lmc; 1050 int add = 1; 1051 1052 /* 1053 * Indicate that this link-map list has a new object. 1054 */ 1055 (lml->lm_obj)++; 1056 1057 /* 1058 * If we're about to add a new object to the main link-map control 1059 * list, alert the debuggers. Additions of individual objects to the 1060 * main link-map control list occur during initial setup as the 1061 * applications immediate dependencies are loaded. Additional objects 1062 * are loaded on the main link-map control list after they have been 1063 * fully initialized on an alternative link-map control list. See 1064 * lm_move(). 1065 */ 1066 if (lmco == ALIST_OFF_DATA) 1067 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1068 1069 /* LINTED */ 1070 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1071 1072 /* 1073 * A link-map list header points to one of more link-map control lists 1074 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1075 * the list of relocated objects. Other lists maintain objects that 1076 * are still being analyzed or relocated. This list provides the core 1077 * link-map list information used by all ld.so.1 routines. 1078 */ 1079 if (lmc->lc_head == NULL) { 1080 /* 1081 * If this is the first link-map for the given control list, 1082 * initialize the list. 1083 */ 1084 lmc->lc_head = lmc->lc_tail = lmp; 1085 add = 0; 1086 1087 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1088 Rt_map *tlmp; 1089 1090 /* 1091 * If this is an interposer then append the link-map following 1092 * any other interposers (these are objects that have been 1093 * previously preloaded, or were identified with -z interpose). 1094 * Interposers can only be inserted on the first link-map 1095 * control list, as once relocation has started, interposition 1096 * from new interposers can't be guaranteed. 1097 * 1098 * NOTE: We do not interpose on the head of a list. This model 1099 * evolved because dynamic executables have already been fully 1100 * relocated within themselves and thus can't be interposed on. 1101 * Nowadays it's possible to have shared objects at the head of 1102 * a list, which conceptually means they could be interposed on. 1103 * But, shared objects can be created via dldump() and may only 1104 * be partially relocated (just relatives), in which case they 1105 * are interposable, but are marked as fixed (ET_EXEC). 1106 * 1107 * Thus we really don't have a clear method of deciding when the 1108 * head of a link-map is interposable. So, to be consistent, 1109 * for now only add interposers after the link-map lists head 1110 * object. 1111 */ 1112 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1113 tlmp = NEXT_RT_MAP(tlmp)) { 1114 1115 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1116 continue; 1117 1118 /* 1119 * Insert the new link-map before this non-interposer, 1120 * and indicate an interposer is found. 1121 */ 1122 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1123 PREV(lmp) = PREV(tlmp); 1124 1125 NEXT(lmp) = (Link_map *)tlmp; 1126 PREV(tlmp) = (Link_map *)lmp; 1127 1128 lmc->lc_flags |= LMC_FLG_REANALYZE; 1129 add = 0; 1130 break; 1131 } 1132 } 1133 1134 /* 1135 * Fall through to appending the new link map to the tail of the list. 1136 * If we're processing the initial objects of this link-map list, add 1137 * them to the backward compatibility list. 1138 */ 1139 if (add) { 1140 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1141 PREV(lmp) = (Link_map *)lmc->lc_tail; 1142 lmc->lc_tail = lmp; 1143 } 1144 1145 /* 1146 * Having added this link-map to a control list, indicate which control 1147 * list the link-map belongs to. Note, control list information is 1148 * always maintained as an offset, as the Alist can be reallocated. 1149 */ 1150 CNTL(lmp) = lmco; 1151 1152 /* 1153 * Indicate if an interposer is found. Note that the first object on a 1154 * link-map can be explicitly defined as an interposer so that it can 1155 * provide interposition over direct binding requests. 1156 */ 1157 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1158 lml->lm_flags |= LML_FLG_INTRPOSE; 1159 1160 /* 1161 * For backward compatibility with debuggers, the link-map list contains 1162 * pointers to the main control list. 1163 */ 1164 if (lmco == ALIST_OFF_DATA) { 1165 lml->lm_head = lmc->lc_head; 1166 lml->lm_tail = lmc->lc_tail; 1167 } 1168 } 1169 1170 /* 1171 * Delete an item from the specified link map control list. 1172 */ 1173 void 1174 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp) 1175 { 1176 Lm_cntl *lmc; 1177 1178 /* 1179 * If the control list pointer hasn't been initialized, this object 1180 * never got added to a link-map list. 1181 */ 1182 if (CNTL(lmp) == 0) 1183 return; 1184 1185 /* 1186 * If we're about to delete an object from the main link-map control 1187 * list, alert the debuggers. 1188 */ 1189 if (CNTL(lmp) == ALIST_OFF_DATA) 1190 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1191 1192 /* 1193 * If we're being audited tell the audit library that we're 1194 * about to go deleting dependencies. 1195 */ 1196 if (clmp && (aud_activity || 1197 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY))) 1198 audit_activity(clmp, LA_ACT_DELETE); 1199 1200 /* LINTED */ 1201 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1202 1203 if (lmc->lc_head == lmp) 1204 lmc->lc_head = NEXT_RT_MAP(lmp); 1205 else 1206 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1207 1208 if (lmc->lc_tail == lmp) 1209 lmc->lc_tail = PREV_RT_MAP(lmp); 1210 else 1211 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1212 1213 /* 1214 * For backward compatibility with debuggers, the link-map list contains 1215 * pointers to the main control list. 1216 */ 1217 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1218 lml->lm_head = lmc->lc_head; 1219 lml->lm_tail = lmc->lc_tail; 1220 } 1221 1222 /* 1223 * Indicate we have one less object on this control list. 1224 */ 1225 (lml->lm_obj)--; 1226 } 1227 1228 /* 1229 * Move a link-map control list to another. Objects that are being relocated 1230 * are maintained on secondary control lists. Once their relocation is 1231 * complete, the entire list is appended to the previous control list, as this 1232 * list must have been the trigger for generating the new control list. 1233 */ 1234 void 1235 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1236 { 1237 Rt_map *lmp; 1238 1239 /* 1240 * If we're about to add a new family of objects to the main link-map 1241 * control list, alert the debuggers. Additions of object families to 1242 * the main link-map control list occur during lazy loading, filtering 1243 * and dlopen(). 1244 */ 1245 if (plmco == ALIST_OFF_DATA) 1246 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1247 1248 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1249 1250 /* 1251 * Indicate each new link-map has been moved to the previous link-map 1252 * control list. 1253 */ 1254 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1255 CNTL(lmp) = plmco; 1256 1257 /* 1258 * If these objects are being added to the main link-map 1259 * control list, indicate that there are init's available 1260 * for harvesting. 1261 */ 1262 if (plmco == ALIST_OFF_DATA) { 1263 lml->lm_init++; 1264 lml->lm_flags |= LML_FLG_OBJADDED; 1265 } 1266 } 1267 1268 /* 1269 * Move the new link-map control list, to the callers link-map control 1270 * list. 1271 */ 1272 if (plmc->lc_head == NULL) { 1273 plmc->lc_head = nlmc->lc_head; 1274 PREV(nlmc->lc_head) = NULL; 1275 } else { 1276 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1277 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1278 } 1279 1280 plmc->lc_tail = nlmc->lc_tail; 1281 nlmc->lc_head = nlmc->lc_tail = NULL; 1282 1283 /* 1284 * For backward compatibility with debuggers, the link-map list contains 1285 * pointers to the main control list. 1286 */ 1287 if (plmco == ALIST_OFF_DATA) { 1288 lml->lm_head = plmc->lc_head; 1289 lml->lm_tail = plmc->lc_tail; 1290 } 1291 } 1292 1293 /* 1294 * Create, or assign a link-map control list. Each link-map list contains a 1295 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1296 * description in include/rtld.h). During the initial construction of a 1297 * process, objects are added to this main control list. This control list is 1298 * never deleted, unless an alternate link-map list has been requested (say for 1299 * auditors), and the associated objects could not be loaded or relocated. 1300 * 1301 * Once relocation has started, any lazy loadable objects, or filtees, are 1302 * processed on a new, temporary control list. Only when these objects have 1303 * been fully relocated, are they moved to the main link-map control list. 1304 * Once the objects are moved, this temporary control list is deleted (see 1305 * remove_cntl()). 1306 * 1307 * A dlopen() always requires a new temporary link-map control list. 1308 * Typically, a dlopen() occurs on a link-map list that had already started 1309 * relocation, however, auditors can dlopen() objects on the main link-map 1310 * list while under initial construction, before any relocation has begun. 1311 * Hence, dlopen() requests are explicitly flagged. 1312 */ 1313 Aliste 1314 create_cntl(Lm_list *lml, int dlopen) 1315 { 1316 /* 1317 * If the head link-map object has already been relocated, create a 1318 * new, temporary, control list. 1319 */ 1320 if (dlopen || (lml->lm_head == NULL) || 1321 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1322 Lm_cntl *lmc; 1323 1324 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1325 AL_CNT_LMLISTS)) == NULL) 1326 return (NULL); 1327 1328 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1329 } 1330 1331 return (ALIST_OFF_DATA); 1332 } 1333 1334 /* 1335 * Environment variables can have a variety of defined permutations, and thus 1336 * the following infrastructure exists to allow this variety and to select the 1337 * required definition. 1338 * 1339 * Environment variables can be defined as 32- or 64-bit specific, and if so 1340 * they will take precedence over any instruction set neutral form. Typically 1341 * this is only useful when the environment value is an informational string. 1342 * 1343 * Environment variables may be obtained from the standard user environment or 1344 * from a configuration file. The latter provides a fallback if no user 1345 * environment setting is found, and can take two forms: 1346 * 1347 * - a replaceable definition - this will be used if no user environment 1348 * setting has been seen, or 1349 * 1350 * - an permanent definition - this will be used no matter what user 1351 * environment setting is seen. In the case of list variables it will be 1352 * appended to any process environment setting seen. 1353 * 1354 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1355 * override any replaceable environment variables from a configuration file. 1356 */ 1357 static u_longlong_t rplgen = 0; /* replaceable generic */ 1358 /* variables */ 1359 static u_longlong_t rplisa = 0; /* replaceable ISA specific */ 1360 /* variables */ 1361 static u_longlong_t prmgen = 0; /* permanent generic */ 1362 /* variables */ 1363 static u_longlong_t prmisa = 0; /* permanent ISA specific */ 1364 /* variables */ 1365 static u_longlong_t cmdgen = 0; /* command line (-e) generic */ 1366 /* variables */ 1367 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */ 1368 /* specific variables */ 1369 1370 /* 1371 * Classify an environment variables type. 1372 */ 1373 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */ 1374 /* the wrong ISA */ 1375 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */ 1376 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */ 1377 /* config file */ 1378 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */ 1379 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */ 1380 #define ENV_TYP_NULL 0x20 /* variable is null */ 1381 1382 /* 1383 * Identify all environment variables. 1384 */ 1385 #define ENV_FLG_AUDIT 0x0000000000001ULL 1386 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1387 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1388 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1389 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1390 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1391 #define ENV_FLG_CONFIG 0x0000000000040ULL 1392 #define ENV_FLG_DEBUG 0x0000000000080ULL 1393 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1394 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1395 #define ENV_FLG_FLAGS 0x0000000000400ULL 1396 #define ENV_FLG_INIT 0x0000000000800ULL 1397 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1398 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1399 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1400 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1401 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1402 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1403 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1404 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1405 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1406 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1407 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1408 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1409 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1410 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1411 #define ENV_FLG_PROFILE 0x0000004000000ULL 1412 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1413 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1414 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1415 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1416 #define ENV_FLG_UNREF 0x0000080000000ULL 1417 #define ENV_FLG_UNUSED 0x0000100000000ULL 1418 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1419 #define ENV_FLG_WARN 0x0000400000000ULL 1420 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1421 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1422 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1423 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1424 #define ENV_FLG_HWCAP 0x0008000000000ULL 1425 #define ENV_FLG_SFCAP 0x0010000000000ULL 1426 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1427 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1428 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1429 #define ENV_FLG_DEFERRED 0x0100000000000ULL 1430 #define ENV_FLG_NOENVIRON 0x0200000000000ULL 1431 1432 #define SEL_REPLACE 0x0001 1433 #define SEL_PERMANT 0x0002 1434 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1435 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1436 #define SEL_ACT_STR 0x0400 /* setting string value */ 1437 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1438 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1439 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1440 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1441 1442 /* 1443 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1444 * and len specifies its length (comparing a strings length before the string 1445 * itself speed things up). s2 points to the token itself which has already 1446 * had any leading white-space removed. 1447 */ 1448 static void 1449 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1450 Word *lmtflags, uint_t env_flags, int aout) 1451 { 1452 u_longlong_t variable = 0; 1453 ushort_t select = 0; 1454 const char **str; 1455 Word val = 0; 1456 1457 /* 1458 * Determine whether we're dealing with a replaceable or permanent 1459 * string. 1460 */ 1461 if (env_flags & ENV_TYP_PERMANT) { 1462 /* 1463 * If the string is from a configuration file and defined as 1464 * permanent, assign it as permanent. 1465 */ 1466 select |= SEL_PERMANT; 1467 } else 1468 select |= SEL_REPLACE; 1469 1470 /* 1471 * Parse the variable given. 1472 * 1473 * The LD_AUDIT family. 1474 */ 1475 if (*s1 == 'A') { 1476 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1477 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1478 /* 1479 * Replaceable and permanent audit objects can exist. 1480 */ 1481 select |= SEL_ACT_STR; 1482 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1483 variable = ENV_FLG_AUDIT; 1484 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1485 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1486 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1487 /* 1488 * A specialized variable for plt_exit() use, not 1489 * documented for general use. 1490 */ 1491 select |= SEL_ACT_SPEC_2; 1492 variable = ENV_FLG_AUDIT_ARGS; 1493 } 1494 } 1495 /* 1496 * The LD_BIND family. 1497 */ 1498 else if (*s1 == 'B') { 1499 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1500 MSG_ORIG(MSG_LD_BIND_LAZY), 1501 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1502 select |= SEL_ACT_RT2; 1503 val = RT_FL2_BINDLAZY; 1504 variable = ENV_FLG_BIND_LAZY; 1505 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1506 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1507 select |= SEL_ACT_RT2; 1508 val = RT_FL2_BINDNOW; 1509 variable = ENV_FLG_BIND_NOW; 1510 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1511 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1512 /* 1513 * Another trick, enabled to help debug AOUT 1514 * applications under BCP, but not documented for 1515 * general use. 1516 */ 1517 select |= SEL_ACT_RT; 1518 val = RT_FL_NOBIND; 1519 variable = ENV_FLG_BIND_NOT; 1520 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1521 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1522 /* 1523 * This variable is simply for backward compatibility. 1524 * If this and LD_DEBUG are both specified, only one of 1525 * the strings is going to get processed. 1526 */ 1527 select |= SEL_ACT_SPEC_2; 1528 variable = ENV_FLG_BINDINGS; 1529 } 1530 } 1531 /* 1532 * LD_CAP_FILES and LD_CONFIG family. 1533 */ 1534 else if (*s1 == 'C') { 1535 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1536 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1537 select |= SEL_ACT_STR; 1538 str = (select & SEL_REPLACE) ? 1539 &rpl_cap_files : &prm_cap_files; 1540 variable = ENV_FLG_CAP_FILES; 1541 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1542 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1543 /* 1544 * This variable is not documented for general use. 1545 * Although originaly designed for internal use with 1546 * crle(1), this variable is in use by the Studio 1547 * auditing tools. Hence, it can't be removed. 1548 */ 1549 select |= SEL_ACT_SPEC_2; 1550 variable = ENV_FLG_CONFGEN; 1551 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1552 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1553 /* 1554 * Secure applications must use a default configuration 1555 * file. A setting from a configuration file doesn't 1556 * make sense (given we must be reading a configuration 1557 * file to have gotten this). 1558 */ 1559 if ((rtld_flags & RT_FL_SECURE) || 1560 (env_flags & ENV_TYP_CONFIG)) 1561 return; 1562 select |= SEL_ACT_STR; 1563 str = &config->c_name; 1564 variable = ENV_FLG_CONFIG; 1565 } 1566 } 1567 /* 1568 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and 1569 * LD_DEMANGLE. 1570 */ 1571 else if (*s1 == 'D') { 1572 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1573 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1574 select |= SEL_ACT_STR; 1575 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1576 variable = ENV_FLG_DEBUG; 1577 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1578 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1579 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1580 select |= SEL_ACT_STR; 1581 str = &dbg_file; 1582 variable = ENV_FLG_DEBUG_OUTPUT; 1583 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, 1584 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { 1585 select |= SEL_ACT_RT; 1586 val = RT_FL_DEFERRED; 1587 variable = ENV_FLG_DEFERRED; 1588 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1589 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1590 select |= SEL_ACT_RT; 1591 val = RT_FL_DEMANGLE; 1592 variable = ENV_FLG_DEMANGLE; 1593 } 1594 } 1595 /* 1596 * LD_FLAGS - collect the best variable definition. On completion of 1597 * environment variable processing pass the result to ld_flags_env() 1598 * where they'll be decomposed and passed back to this routine. 1599 */ 1600 else if (*s1 == 'F') { 1601 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1602 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1603 select |= SEL_ACT_SPEC_1; 1604 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1605 &prm_ldflags; 1606 variable = ENV_FLG_FLAGS; 1607 } 1608 } 1609 /* 1610 * LD_HWCAP. 1611 */ 1612 else if (*s1 == 'H') { 1613 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1614 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1615 select |= SEL_ACT_STR; 1616 str = (select & SEL_REPLACE) ? 1617 &rpl_hwcap : &prm_hwcap; 1618 variable = ENV_FLG_HWCAP; 1619 } 1620 } 1621 /* 1622 * LD_INIT (internal, used by ldd(1)). 1623 */ 1624 else if (*s1 == 'I') { 1625 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1627 select |= SEL_ACT_LML; 1628 val = LML_FLG_TRC_INIT; 1629 variable = ENV_FLG_INIT; 1630 } 1631 } 1632 /* 1633 * The LD_LIBRARY_PATH and LD_LOAD families. 1634 */ 1635 else if (*s1 == 'L') { 1636 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1637 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1638 select |= SEL_ACT_SPEC_1; 1639 str = (select & SEL_REPLACE) ? &rpl_libpath : 1640 &prm_libpath; 1641 variable = ENV_FLG_LIBPATH; 1642 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1643 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1644 /* 1645 * This variable is not documented for general use. 1646 * Although originaly designed for internal use with 1647 * crle(1), this variable is in use by the Studio 1648 * auditing tools. Hence, it can't be removed. 1649 */ 1650 select |= SEL_ACT_LML; 1651 val = LML_FLG_LOADAVAIL; 1652 variable = ENV_FLG_LOADAVAIL; 1653 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1654 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1655 select |= SEL_ACT_SPEC_2; 1656 variable = ENV_FLG_LOADFLTR; 1657 } 1658 } 1659 /* 1660 * LD_MACHCAP. 1661 */ 1662 else if (*s1 == 'M') { 1663 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1664 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1665 select |= SEL_ACT_STR; 1666 str = (select & SEL_REPLACE) ? 1667 &rpl_machcap : &prm_machcap; 1668 variable = ENV_FLG_MACHCAP; 1669 } 1670 } 1671 /* 1672 * The LD_NO family. 1673 */ 1674 else if (*s1 == 'N') { 1675 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1677 select |= SEL_ACT_RT; 1678 val = RT_FL_NOAUDIT; 1679 variable = ENV_FLG_NOAUDIT; 1680 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1681 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1682 select |= SEL_ACT_RT; 1683 val = RT_FL_NOAUXFLTR; 1684 variable = ENV_FLG_NOAUXFLTR; 1685 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1686 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1687 select |= SEL_ACT_RT; 1688 val = RT_FL_NOBAPLT; 1689 variable = ENV_FLG_NOBAPLT; 1690 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1691 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1692 select |= SEL_ACT_RT; 1693 val = RT_FL_NOCFG; 1694 variable = ENV_FLG_NOCONFIG; 1695 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NODIRCONFIG), 1697 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1698 select |= SEL_ACT_RT; 1699 val = RT_FL_NODIRCFG; 1700 variable = ENV_FLG_NODIRCONFIG; 1701 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1703 select |= SEL_ACT_LMLT; 1704 val = LML_TFLG_NODIRECT; 1705 variable = ENV_FLG_NODIRECT; 1706 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1707 MSG_ORIG(MSG_LD_NOENVCONFIG), 1708 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1709 select |= SEL_ACT_RT; 1710 val = RT_FL_NOENVCFG; 1711 variable = ENV_FLG_NOENVCONFIG; 1712 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1713 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1714 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1715 select |= SEL_ACT_RT2; 1716 val = RT_FL2_NOFLTCFG; 1717 variable = ENV_FLG_NOFLTCONFIG; 1718 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1719 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1720 select |= SEL_ACT_LMLT; 1721 val = LML_TFLG_NOLAZYLD; 1722 variable = ENV_FLG_NOLAZY; 1723 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1724 MSG_ORIG(MSG_LD_NOOBJALTER), 1725 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1726 select |= SEL_ACT_RT; 1727 val = RT_FL_NOOBJALT; 1728 variable = ENV_FLG_NOOBJALTER; 1729 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1730 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1731 select |= SEL_ACT_RT; 1732 val = RT_FL_NOVERSION; 1733 variable = ENV_FLG_NOVERSION; 1734 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1735 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1736 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1737 /* 1738 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1739 */ 1740 select |= SEL_ACT_LML; 1741 val = LML_FLG_TRC_NOUNRESWEAK; 1742 variable = ENV_FLG_NOUNRESWEAK; 1743 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1744 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1745 select |= SEL_ACT_LML; 1746 val = LML_FLG_TRC_NOPAREXT; 1747 variable = ENV_FLG_NOPAREXT; 1748 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1, 1749 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) { 1750 /* 1751 * LD_NOENVIRON can only be set with ld.so.1 -e. 1752 */ 1753 select |= SEL_ACT_RT; 1754 val = RT_FL_NOENVIRON; 1755 variable = ENV_FLG_NOENVIRON; 1756 } 1757 } 1758 /* 1759 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1760 */ 1761 else if (*s1 == 'P') { 1762 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1763 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1764 select |= SEL_ACT_STR; 1765 str = (select & SEL_REPLACE) ? 1766 &rpl_platcap : &prm_platcap; 1767 variable = ENV_FLG_PLATCAP; 1768 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1769 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1770 select |= SEL_ACT_STR; 1771 str = (select & SEL_REPLACE) ? &rpl_preload : 1772 &prm_preload; 1773 variable = ENV_FLG_PRELOAD; 1774 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1775 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1776 /* 1777 * Only one user library can be profiled at a time. 1778 */ 1779 select |= SEL_ACT_SPEC_2; 1780 variable = ENV_FLG_PROFILE; 1781 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1782 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1783 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1784 /* 1785 * Only one user library can be profiled at a time. 1786 */ 1787 select |= SEL_ACT_STR; 1788 str = &profile_out; 1789 variable = ENV_FLG_PROFILE_OUTPUT; 1790 } 1791 } 1792 /* 1793 * LD_SFCAP and LD_SIGNAL. 1794 */ 1795 else if (*s1 == 'S') { 1796 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1797 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1798 select |= SEL_ACT_STR; 1799 str = (select & SEL_REPLACE) ? 1800 &rpl_sfcap : &prm_sfcap; 1801 variable = ENV_FLG_SFCAP; 1802 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1803 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1804 MSG_LD_SIGNAL_SIZE) == 0) && 1805 ((rtld_flags & RT_FL_SECURE) == 0)) { 1806 select |= SEL_ACT_SPEC_2; 1807 variable = ENV_FLG_SIGNAL; 1808 } 1809 } 1810 /* 1811 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1812 * the key to enabling all other ldd(1) specific environment variables. 1813 * In case an auditor is called, which in turn might exec(2) a 1814 * subprocess, this variable is disabled, so that any subprocess 1815 * escapes ldd(1) processing. 1816 */ 1817 else if (*s1 == 'T') { 1818 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1819 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1820 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1821 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1822 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1823 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1824 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1825 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1826 char *s0 = (char *)s1; 1827 1828 select |= SEL_ACT_SPEC_2; 1829 variable = ENV_FLG_TRACE_OBJS; 1830 1831 #if defined(__sparc) || defined(__x86) 1832 /* 1833 * The simplest way to "disable" this variable is to 1834 * truncate this string to "LD_'\0'". This string is 1835 * ignored by any ld.so.1 environment processing. 1836 * Use of such interfaces as unsetenv(3c) are overkill, 1837 * and would drag too much libc implementation detail 1838 * into ld.so.1. 1839 */ 1840 *s0 = '\0'; 1841 #else 1842 /* 1843 * Verify that the above write is appropriate for any new platforms. 1844 */ 1845 #error unsupported architecture! 1846 #endif 1847 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1848 MSG_ORIG(MSG_LD_TRACE_PTHS), 1849 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1850 select |= SEL_ACT_LML; 1851 val = LML_FLG_TRC_SEARCH; 1852 variable = ENV_FLG_TRACE_PTHS; 1853 } 1854 } 1855 /* 1856 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1857 */ 1858 else if (*s1 == 'U') { 1859 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1860 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1861 select |= SEL_ACT_LML; 1862 val = LML_FLG_TRC_UNREF; 1863 variable = ENV_FLG_UNREF; 1864 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1865 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1866 select |= SEL_ACT_LML; 1867 val = LML_FLG_TRC_UNUSED; 1868 variable = ENV_FLG_UNUSED; 1869 } 1870 } 1871 /* 1872 * LD_VERBOSE (internal, used by ldd(1)). 1873 */ 1874 else if (*s1 == 'V') { 1875 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1876 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1877 select |= SEL_ACT_LML; 1878 val = LML_FLG_TRC_VERBOSE; 1879 variable = ENV_FLG_VERBOSE; 1880 } 1881 } 1882 /* 1883 * LD_WARN (internal, used by ldd(1)). 1884 */ 1885 else if (*s1 == 'W') { 1886 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1887 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1888 select |= SEL_ACT_LML; 1889 val = LML_FLG_TRC_WARN; 1890 variable = ENV_FLG_WARN; 1891 } 1892 } 1893 1894 if (variable == 0) 1895 return; 1896 1897 /* 1898 * If the variable is already processed with and ISA specific variable, 1899 * no further processing is needed. 1900 */ 1901 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1902 ((select & SEL_PERMANT) && (prmisa & variable))) 1903 return; 1904 1905 /* 1906 * If this variable has already been set via the command line, then 1907 * ignore this variable. The command line, -e, takes precedence. 1908 */ 1909 if (env_flags & ENV_TYP_ISA) { 1910 if (cmdisa & variable) 1911 return; 1912 if (env_flags & ENV_TYP_CMDLINE) 1913 cmdisa |= variable; 1914 } else { 1915 if (cmdgen & variable) 1916 return; 1917 if (env_flags & ENV_TYP_CMDLINE) 1918 cmdgen |= variable; 1919 } 1920 1921 /* 1922 * Mark the appropriate variables. 1923 */ 1924 if (env_flags & ENV_TYP_ISA) { 1925 /* 1926 * This is an ISA setting. 1927 */ 1928 if (select & SEL_REPLACE) { 1929 if (rplisa & variable) 1930 return; 1931 rplisa |= variable; 1932 } else { 1933 prmisa |= variable; 1934 } 1935 } else { 1936 /* 1937 * This is a non-ISA setting. 1938 */ 1939 if (select & SEL_REPLACE) { 1940 if (rplgen & variable) 1941 return; 1942 rplgen |= variable; 1943 } else 1944 prmgen |= variable; 1945 } 1946 1947 /* 1948 * Now perform the setting. 1949 */ 1950 if (select & SEL_ACT_RT) { 1951 if (s2) 1952 rtld_flags |= val; 1953 else 1954 rtld_flags &= ~val; 1955 } else if (select & SEL_ACT_RT2) { 1956 if (s2) 1957 rtld_flags2 |= val; 1958 else 1959 rtld_flags2 &= ~val; 1960 } else if (select & SEL_ACT_STR) { 1961 if (env_flags & ENV_TYP_NULL) 1962 *str = NULL; 1963 else 1964 *str = s2; 1965 } else if (select & SEL_ACT_LML) { 1966 if (s2) 1967 *lmflags |= val; 1968 else 1969 *lmflags &= ~val; 1970 } else if (select & SEL_ACT_LMLT) { 1971 if (s2) 1972 *lmtflags |= val; 1973 else 1974 *lmtflags &= ~val; 1975 } else if (select & SEL_ACT_SPEC_1) { 1976 /* 1977 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1978 */ 1979 if (env_flags & ENV_TYP_NULL) 1980 *str = NULL; 1981 else 1982 *str = s2; 1983 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1984 if (s2) { 1985 if (variable == ENV_FLG_FLAGS) 1986 env_info |= ENV_INF_FLAGCFG; 1987 else 1988 env_info |= ENV_INF_PATHCFG; 1989 } else { 1990 if (variable == ENV_FLG_FLAGS) 1991 env_info &= ~ENV_INF_FLAGCFG; 1992 else 1993 env_info &= ~ENV_INF_PATHCFG; 1994 } 1995 } 1996 } else if (select & SEL_ACT_SPEC_2) { 1997 /* 1998 * variables can be: ENV_FLG_ 1999 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 2000 * SIGNAL, TRACE_OBJS 2001 */ 2002 switch (variable) { 2003 case ENV_FLG_AUDIT_ARGS: 2004 if (s2) { 2005 audit_argcnt = atoi(s2); 2006 audit_argcnt += audit_argcnt % 2; 2007 } else 2008 audit_argcnt = 0; 2009 break; 2010 case ENV_FLG_BINDINGS: 2011 if (s2) 2012 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2013 else 2014 rpl_debug = NULL; 2015 break; 2016 case ENV_FLG_CONFGEN: 2017 if (s2) { 2018 rtld_flags |= RT_FL_CONFGEN; 2019 *lmflags |= LML_FLG_IGNRELERR; 2020 } else { 2021 rtld_flags &= ~RT_FL_CONFGEN; 2022 *lmflags &= ~LML_FLG_IGNRELERR; 2023 } 2024 break; 2025 case ENV_FLG_LOADFLTR: 2026 if (s2) { 2027 *lmtflags |= LML_TFLG_LOADFLTR; 2028 if (*s2 == '2') 2029 rtld_flags |= RT_FL_WARNFLTR; 2030 } else { 2031 *lmtflags &= ~LML_TFLG_LOADFLTR; 2032 rtld_flags &= ~RT_FL_WARNFLTR; 2033 } 2034 break; 2035 case ENV_FLG_PROFILE: 2036 profile_name = s2; 2037 if (s2) { 2038 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2039 return; 2040 } 2041 /* BEGIN CSTYLED */ 2042 if (rtld_flags & RT_FL_SECURE) { 2043 profile_lib = 2044 #if defined(_ELF64) 2045 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2046 #else 2047 MSG_ORIG(MSG_PTH_LDPROFSE); 2048 #endif 2049 } else { 2050 profile_lib = 2051 #if defined(_ELF64) 2052 MSG_ORIG(MSG_PTH_LDPROF_64); 2053 #else 2054 MSG_ORIG(MSG_PTH_LDPROF); 2055 #endif 2056 } 2057 /* END CSTYLED */ 2058 } else 2059 profile_lib = NULL; 2060 break; 2061 case ENV_FLG_SIGNAL: 2062 killsig = s2 ? atoi(s2) : SIGKILL; 2063 break; 2064 case ENV_FLG_TRACE_OBJS: 2065 if (s2) { 2066 *lmflags |= LML_FLG_TRC_ENABLE; 2067 if (*s2 == '2') 2068 *lmflags |= LML_FLG_TRC_LDDSTUB; 2069 } else 2070 *lmflags &= 2071 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2072 break; 2073 } 2074 } 2075 } 2076 2077 /* 2078 * Determine whether we have an architecture specific environment variable. 2079 * If we do, and we're the wrong architecture, it'll just get ignored. 2080 * Otherwise the variable is processed in it's architecture neutral form. 2081 */ 2082 static int 2083 ld_arch_env(const char *s1, size_t *len) 2084 { 2085 size_t _len = *len - 3; 2086 2087 if (s1[_len++] == '_') { 2088 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2089 #if defined(_ELF64) 2090 return (ENV_TYP_IGNORE); 2091 #else 2092 *len = *len - 3; 2093 return (ENV_TYP_ISA); 2094 #endif 2095 } 2096 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2097 #if defined(_ELF64) 2098 *len = *len - 3; 2099 return (ENV_TYP_ISA); 2100 #else 2101 return (ENV_TYP_IGNORE); 2102 #endif 2103 } 2104 } 2105 return (0); 2106 } 2107 2108 /* 2109 * Process an LD_FLAGS environment variable. The value can be a comma 2110 * separated set of tokens, which are sent (in upper case) into the generic 2111 * LD_XXXX environment variable engine. For example: 2112 * 2113 * LD_FLAGS=bind_now= -> LD_BIND_NOW= 2114 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2115 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH= 2116 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2117 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2118 * or 2119 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2120 */ 2121 static int 2122 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2123 uint_t env_flags, int aout) 2124 { 2125 char *nstr, *sstr, *estr = NULL; 2126 size_t nlen, len; 2127 2128 if (str == NULL) 2129 return (0); 2130 2131 /* 2132 * Create a new string as we're going to transform the token(s) into 2133 * uppercase and separate tokens with nulls. 2134 */ 2135 len = strlen(str); 2136 if ((nstr = malloc(len + 1)) == NULL) 2137 return (1); 2138 (void) strcpy(nstr, str); 2139 2140 for (sstr = nstr; sstr; sstr++, len--) { 2141 int flags = 0; 2142 2143 if ((*sstr != '\0') && (*sstr != ',')) { 2144 if (estr == NULL) { 2145 if (*sstr == '=') 2146 estr = sstr; 2147 else { 2148 /* 2149 * Translate token to uppercase. Don't 2150 * use toupper(3C) as including this 2151 * code doubles the size of ld.so.1. 2152 */ 2153 if ((*sstr >= 'a') && (*sstr <= 'z')) 2154 *sstr = *sstr - ('a' - 'A'); 2155 } 2156 } 2157 continue; 2158 } 2159 2160 *sstr = '\0'; 2161 2162 /* 2163 * Have we discovered an "=" string. 2164 */ 2165 if (estr) { 2166 nlen = estr - nstr; 2167 2168 /* 2169 * If this is an unqualified "=", then this variable 2170 * is intended to ensure a feature is disabled. 2171 */ 2172 if ((*++estr == '\0') || (*estr == ',')) 2173 estr = NULL; 2174 } else { 2175 nlen = sstr - nstr; 2176 2177 /* 2178 * If there is no "=" found, fabricate a boolean 2179 * definition for any unqualified variable. Thus, 2180 * LD_FLAGS=bind_now is represented as BIND_NOW=1. 2181 * The value "1" is sufficient to assert any boolean 2182 * variables. Setting of ENV_TYP_NULL ensures any 2183 * string usage is reset to a NULL string, thus 2184 * LD_FLAGS=library_path is equivalent to 2185 * LIBRARY_PATH='\0'. 2186 */ 2187 flags |= ENV_TYP_NULL; 2188 estr = (char *)MSG_ORIG(MSG_STR_ONE); 2189 } 2190 2191 /* 2192 * Determine whether the environment variable is 32- or 64-bit 2193 * specific. The length, len, will reflect the architecture 2194 * neutral portion of the string. 2195 */ 2196 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2197 ld_generic_env(nstr, nlen, estr, lmflags, 2198 lmtflags, (env_flags | flags), aout); 2199 } 2200 if (len == 0) 2201 break; 2202 2203 nstr = sstr + 1; 2204 estr = NULL; 2205 } 2206 2207 return (0); 2208 } 2209 2210 /* 2211 * Variant of getopt(), intended for use when ld.so.1 is invoked directly 2212 * from the command line. The only command line option allowed is -e followed 2213 * by a runtime linker environment variable. 2214 */ 2215 int 2216 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 2217 Word *lmtflags, int aout) 2218 { 2219 int ndx; 2220 2221 for (ndx = 1; argv[ndx]; ndx++) { 2222 char *str; 2223 2224 if (argv[ndx][0] != '-') 2225 break; 2226 2227 if (argv[ndx][1] == '\0') { 2228 ndx++; 2229 break; 2230 } 2231 2232 if (argv[ndx][1] != 'e') 2233 return (1); 2234 2235 if (argv[ndx][2] == '\0') { 2236 ndx++; 2237 if (argv[ndx] == NULL) 2238 return (1); 2239 str = argv[ndx]; 2240 } else 2241 str = &argv[ndx][2]; 2242 2243 /* 2244 * If the environment variable starts with LD_, strip the LD_. 2245 * Otherwise, take things as is. Indicate that this variable 2246 * originates from the command line, as these variables take 2247 * precedence over any environment variables, or configuration 2248 * file variables. 2249 */ 2250 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 2251 (str[3] != '\0')) 2252 str += 3; 2253 if (ld_flags_env(str, lmflags, lmtflags, 2254 ENV_TYP_CMDLINE, aout) == 1) 2255 return (1); 2256 } 2257 2258 /* 2259 * Make sure an object file has been specified. 2260 */ 2261 if (argv[ndx] == NULL) 2262 return (1); 2263 2264 /* 2265 * Having gotten the arguments, clean ourselves off of the stack. 2266 * This results in a process that looks as if it was executed directly 2267 * from the application. 2268 */ 2269 stack_cleanup(argv, envp, auxv, ndx); 2270 return (0); 2271 } 2272 2273 /* 2274 * Process a single LD_XXXX string. 2275 */ 2276 static void 2277 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2278 int aout) 2279 { 2280 const char *s2; 2281 size_t len; 2282 int flags; 2283 2284 /* 2285 * In a branded process we must ignore all LD_XXXX variables because 2286 * they are intended for the brand's linker. To affect the native 2287 * linker, use LD_BRAND_XXXX instead. 2288 */ 2289 if (rtld_flags2 & RT_FL2_BRANDED) { 2290 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2291 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2292 return; 2293 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2294 } 2295 2296 /* 2297 * Variables with no value (ie. LD_XXXX=) turn a capability off. 2298 */ 2299 if ((s2 = strchr(s1, '=')) == NULL) { 2300 len = strlen(s1); 2301 s2 = NULL; 2302 } else if (*++s2 == '\0') { 2303 len = strlen(s1) - 1; 2304 s2 = NULL; 2305 } else { 2306 len = s2 - s1 - 1; 2307 while (conv_strproc_isspace(*s2)) 2308 s2++; 2309 } 2310 2311 /* 2312 * Determine whether the environment variable is 32-bit or 64-bit 2313 * specific. The length, len, will reflect the architecture neutral 2314 * portion of the string. 2315 */ 2316 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2317 return; 2318 env_flags |= flags; 2319 2320 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2321 } 2322 2323 /* 2324 * Internal getenv routine. Called immediately after ld.so.1 initializes 2325 * itself to process any locale specific environment variables, and collect 2326 * any LD_XXXX variables for later processing. 2327 */ 2328 #define LOC_LANG 1 2329 #define LOC_MESG 2 2330 #define LOC_ALL 3 2331 2332 int 2333 readenv_user(const char **envp, APlist **ealpp) 2334 { 2335 char *locale; 2336 const char *s1; 2337 int loc = 0; 2338 2339 for (s1 = *envp; s1; envp++, s1 = *envp) { 2340 const char *s2; 2341 2342 if (*s1++ != 'L') 2343 continue; 2344 2345 /* 2346 * See if we have any locale environment settings. These 2347 * environment variables have a precedence, LC_ALL is higher 2348 * than LC_MESSAGES which is higher than LANG. 2349 */ 2350 s2 = s1; 2351 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2352 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), 2353 MSG_LC_ALL_SIZE) == 0) { 2354 s2 += MSG_LC_ALL_SIZE; 2355 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2356 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2357 (char *)s2; 2358 loc = LOC_ALL; 2359 } 2360 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2361 MSG_LC_MESSAGES_SIZE) == 0) { 2362 s2 += MSG_LC_MESSAGES_SIZE; 2363 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2364 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2365 (char *)s2; 2366 loc = LOC_MESG; 2367 } 2368 } 2369 continue; 2370 } 2371 2372 s2 = s1; 2373 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2374 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2375 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2376 loc = LOC_LANG; 2377 continue; 2378 } 2379 2380 /* 2381 * Pick off any LD_XXXX environment variables. 2382 */ 2383 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2384 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL) 2385 return (1); 2386 } 2387 } 2388 2389 /* 2390 * If we have a locale setting make sure it's worth processing further. 2391 * C and POSIX locales don't need any processing. In addition, to 2392 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2393 * the locale to contain a segment that leads upward in the file system 2394 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2395 * the /usr/lib/locale hierarchy, there is no need to extensively 2396 * validate the mode or ownership of any message file (as libc's 2397 * generic handling of message files does), or be concerned with 2398 * symbolic links that might otherwise send us elsewhere. Duplicate 2399 * the string so that new locale setting can generically cleanup any 2400 * previous locales. 2401 */ 2402 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2403 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2404 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2405 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2406 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2407 else 2408 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2409 } 2410 return (0); 2411 } 2412 2413 /* 2414 * Process any LD_XXXX environment variables collected by readenv_user(). 2415 */ 2416 int 2417 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout) 2418 { 2419 Aliste idx; 2420 const char *s1; 2421 2422 for (APLIST_TRAVERSE(ealp, idx, s1)) 2423 ld_str_env(s1, lmflags, lmtflags, 0, aout); 2424 2425 /* 2426 * Having collected the best representation of any LD_FLAGS, process 2427 * these strings. 2428 */ 2429 if (rpl_ldflags) { 2430 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2431 return (1); 2432 rpl_ldflags = NULL; 2433 } 2434 2435 /* 2436 * Don't allow environment controlled auditing when tracing or if 2437 * explicitly disabled. Trigger all tracing modes from 2438 * LML_FLG_TRC_ENABLE. 2439 */ 2440 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2441 rpl_audit = profile_lib = profile_name = NULL; 2442 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2443 *lmflags &= ~LML_MSK_TRC; 2444 2445 /* 2446 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2447 */ 2448 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2449 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2450 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2451 2452 /* 2453 * When using ldd(1) -r or -d against an executable, assert -p. 2454 */ 2455 if ((*lmflags & 2456 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2457 *lmflags |= LML_FLG_TRC_NOPAREXT; 2458 2459 return (0); 2460 } 2461 2462 /* 2463 * Configuration environment processing. Called after the a.out has been 2464 * processed (as the a.out can specify its own configuration file). 2465 */ 2466 int 2467 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2468 { 2469 Word *lmflags = &(lml_main.lm_flags); 2470 Word *lmtflags = &(lml_main.lm_tflags); 2471 2472 if (envtbl == NULL) 2473 return (0); 2474 2475 while (envtbl->env_str) { 2476 uint_t env_flags = ENV_TYP_CONFIG; 2477 const char *s1 = (const char *)(envtbl->env_str + addr); 2478 2479 if (envtbl->env_flags & RTC_ENV_PERMANT) 2480 env_flags |= ENV_TYP_PERMANT; 2481 2482 if ((*s1++ == 'L') && (*s1++ == 'D') && 2483 (*s1++ == '_') && (*s1 != '\0')) 2484 ld_str_env(s1, lmflags, lmtflags, env_flags, 0); 2485 2486 envtbl++; 2487 } 2488 2489 /* 2490 * Having collected the best representation of any LD_FLAGS, process 2491 * these strings. 2492 */ 2493 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2494 return (1); 2495 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2496 aout) == 1) 2497 return (1); 2498 2499 /* 2500 * Don't allow environment controlled auditing when tracing or if 2501 * explicitly disabled. Trigger all tracing modes from 2502 * LML_FLG_TRC_ENABLE. 2503 */ 2504 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2505 prm_audit = profile_lib = profile_name = NULL; 2506 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2507 *lmflags &= ~LML_MSK_TRC; 2508 2509 return (0); 2510 } 2511 2512 int 2513 dowrite(Prfbuf * prf) 2514 { 2515 /* 2516 * We do not have a valid file descriptor, so we are unable 2517 * to flush the buffer. 2518 */ 2519 if (prf->pr_fd == -1) 2520 return (0); 2521 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2522 prf->pr_cur = prf->pr_buf; 2523 return (1); 2524 } 2525 2526 /* 2527 * Simplified printing. The following conversion specifications are supported: 2528 * 2529 * % [#] [-] [min field width] [. precision] s|d|x|c 2530 * 2531 * 2532 * dorprf takes the output buffer in the form of Prfbuf which permits 2533 * the verification of the output buffer size and the concatenation 2534 * of data to an already existing output buffer. The Prfbuf 2535 * structure contains the following: 2536 * 2537 * pr_buf pointer to the beginning of the output buffer. 2538 * pr_cur pointer to the next available byte in the output buffer. By 2539 * setting pr_cur ahead of pr_buf you can append to an already 2540 * existing buffer. 2541 * pr_len the size of the output buffer. By setting pr_len to '0' you 2542 * disable protection from overflows in the output buffer. 2543 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2544 * output to. If pr_fd is set to '-1' then it's assumed there is 2545 * no output buffer, and doprf() will return with an error to 2546 * indicate an output buffer overflow. If pr_fd is > -1 then when 2547 * the output buffer is filled it will be flushed to pr_fd and will 2548 * then be available for additional data. 2549 */ 2550 #define FLG_UT_MINUS 0x0001 /* - */ 2551 #define FLG_UT_SHARP 0x0002 /* # */ 2552 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2553 2554 /* 2555 * This macro is for use from within doprf only. It is to be used for checking 2556 * the output buffer size and placing characters into the buffer. 2557 */ 2558 #define PUTC(c) \ 2559 { \ 2560 char tmpc; \ 2561 \ 2562 tmpc = (c); \ 2563 if (bufsiz && (bp >= bufend)) { \ 2564 prf->pr_cur = bp; \ 2565 if (dowrite(prf) == 0) \ 2566 return (0); \ 2567 bp = prf->pr_cur; \ 2568 } \ 2569 *bp++ = tmpc; \ 2570 } 2571 2572 /* 2573 * Define a local buffer size for building a numeric value - large enough to 2574 * hold a 64-bit value. 2575 */ 2576 #define NUM_SIZE 22 2577 2578 size_t 2579 doprf(const char *format, va_list args, Prfbuf *prf) 2580 { 2581 char c; 2582 char *bp = prf->pr_cur; 2583 char *bufend = prf->pr_buf + prf->pr_len; 2584 size_t bufsiz = prf->pr_len; 2585 2586 while ((c = *format++) != '\0') { 2587 if (c != '%') { 2588 PUTC(c); 2589 } else { 2590 int base = 0, flag = 0, width = 0, prec = 0; 2591 size_t _i; 2592 int _c, _n; 2593 char *_s; 2594 int ls = 0; 2595 again: 2596 c = *format++; 2597 switch (c) { 2598 case '-': 2599 flag |= FLG_UT_MINUS; 2600 goto again; 2601 case '#': 2602 flag |= FLG_UT_SHARP; 2603 goto again; 2604 case '.': 2605 flag |= FLG_UT_DOTSEEN; 2606 goto again; 2607 case '0': 2608 case '1': 2609 case '2': 2610 case '3': 2611 case '4': 2612 case '5': 2613 case '6': 2614 case '7': 2615 case '8': 2616 case '9': 2617 if (flag & FLG_UT_DOTSEEN) 2618 prec = (prec * 10) + c - '0'; 2619 else 2620 width = (width * 10) + c - '0'; 2621 goto again; 2622 case 'x': 2623 case 'X': 2624 base = 16; 2625 break; 2626 case 'd': 2627 case 'D': 2628 case 'u': 2629 base = 10; 2630 flag &= ~FLG_UT_SHARP; 2631 break; 2632 case 'l': 2633 base = 10; 2634 ls++; /* number of l's (long or long long) */ 2635 if ((*format == 'l') || 2636 (*format == 'd') || (*format == 'D') || 2637 (*format == 'x') || (*format == 'X') || 2638 (*format == 'o') || (*format == 'O') || 2639 (*format == 'u') || (*format == 'U')) 2640 goto again; 2641 break; 2642 case 'o': 2643 case 'O': 2644 base = 8; 2645 break; 2646 case 'c': 2647 _c = va_arg(args, int); 2648 2649 for (_i = 24; _i > 0; _i -= 8) { 2650 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2651 PUTC(c); 2652 } 2653 } 2654 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2655 PUTC(c); 2656 } 2657 break; 2658 case 's': 2659 _s = va_arg(args, char *); 2660 _i = strlen(_s); 2661 /* LINTED */ 2662 _n = (int)(width - _i); 2663 if (!prec) 2664 /* LINTED */ 2665 prec = (int)_i; 2666 2667 if (width && !(flag & FLG_UT_MINUS)) { 2668 while (_n-- > 0) 2669 PUTC(' '); 2670 } 2671 while (((c = *_s++) != 0) && prec--) { 2672 PUTC(c); 2673 } 2674 if (width && (flag & FLG_UT_MINUS)) { 2675 while (_n-- > 0) 2676 PUTC(' '); 2677 } 2678 break; 2679 case '%': 2680 PUTC('%'); 2681 break; 2682 default: 2683 break; 2684 } 2685 2686 /* 2687 * Numeric processing 2688 */ 2689 if (base) { 2690 char local[NUM_SIZE]; 2691 size_t ssize = 0, psize = 0; 2692 const char *string = 2693 MSG_ORIG(MSG_STR_HEXNUM); 2694 const char *prefix = 2695 MSG_ORIG(MSG_STR_EMPTY); 2696 u_longlong_t num; 2697 2698 switch (ls) { 2699 case 0: /* int */ 2700 num = (u_longlong_t) 2701 va_arg(args, uint_t); 2702 break; 2703 case 1: /* long */ 2704 num = (u_longlong_t) 2705 va_arg(args, ulong_t); 2706 break; 2707 case 2: /* long long */ 2708 num = va_arg(args, u_longlong_t); 2709 break; 2710 } 2711 2712 if (flag & FLG_UT_SHARP) { 2713 if (base == 16) { 2714 prefix = MSG_ORIG(MSG_STR_HEX); 2715 psize = 2; 2716 } else { 2717 prefix = MSG_ORIG(MSG_STR_ZERO); 2718 psize = 1; 2719 } 2720 } 2721 if ((base == 10) && (long)num < 0) { 2722 prefix = MSG_ORIG(MSG_STR_NEGATE); 2723 psize = MSG_STR_NEGATE_SIZE; 2724 num = (u_longlong_t)(-(longlong_t)num); 2725 } 2726 2727 /* 2728 * Convert the numeric value into a local 2729 * string (stored in reverse order). 2730 */ 2731 _s = local; 2732 do { 2733 *_s++ = string[num % base]; 2734 num /= base; 2735 ssize++; 2736 } while (num); 2737 2738 ASSERT(ssize < sizeof (local)); 2739 2740 /* 2741 * Provide any precision or width padding. 2742 */ 2743 if (prec) { 2744 /* LINTED */ 2745 _n = (int)(prec - ssize); 2746 while ((_n-- > 0) && 2747 (ssize < sizeof (local))) { 2748 *_s++ = '0'; 2749 ssize++; 2750 } 2751 } 2752 if (width && !(flag & FLG_UT_MINUS)) { 2753 /* LINTED */ 2754 _n = (int)(width - ssize - psize); 2755 while (_n-- > 0) { 2756 PUTC(' '); 2757 } 2758 } 2759 2760 /* 2761 * Print any prefix and the numeric string 2762 */ 2763 while (*prefix) 2764 PUTC(*prefix++); 2765 do { 2766 PUTC(*--_s); 2767 } while (_s > local); 2768 2769 /* 2770 * Provide any width padding. 2771 */ 2772 if (width && (flag & FLG_UT_MINUS)) { 2773 /* LINTED */ 2774 _n = (int)(width - ssize - psize); 2775 while (_n-- > 0) 2776 PUTC(' '); 2777 } 2778 } 2779 } 2780 } 2781 2782 PUTC('\0'); 2783 prf->pr_cur = bp; 2784 return (1); 2785 } 2786 2787 static int 2788 doprintf(const char *format, va_list args, Prfbuf *prf) 2789 { 2790 char *ocur = prf->pr_cur; 2791 2792 if (doprf(format, args, prf) == 0) 2793 return (0); 2794 /* LINTED */ 2795 return ((int)(prf->pr_cur - ocur)); 2796 } 2797 2798 /* VARARGS2 */ 2799 int 2800 sprintf(char *buf, const char *format, ...) 2801 { 2802 va_list args; 2803 int len; 2804 Prfbuf prf; 2805 2806 va_start(args, format); 2807 prf.pr_buf = prf.pr_cur = buf; 2808 prf.pr_len = 0; 2809 prf.pr_fd = -1; 2810 len = doprintf(format, args, &prf); 2811 va_end(args); 2812 2813 /* 2814 * sprintf() return value excludes the terminating null byte. 2815 */ 2816 return (len - 1); 2817 } 2818 2819 /* VARARGS3 */ 2820 int 2821 snprintf(char *buf, size_t n, const char *format, ...) 2822 { 2823 va_list args; 2824 int len; 2825 Prfbuf prf; 2826 2827 va_start(args, format); 2828 prf.pr_buf = prf.pr_cur = buf; 2829 prf.pr_len = n; 2830 prf.pr_fd = -1; 2831 len = doprintf(format, args, &prf); 2832 va_end(args); 2833 2834 return (len); 2835 } 2836 2837 /* VARARGS2 */ 2838 int 2839 bufprint(Prfbuf *prf, const char *format, ...) 2840 { 2841 va_list args; 2842 int len; 2843 2844 va_start(args, format); 2845 len = doprintf(format, args, prf); 2846 va_end(args); 2847 2848 return (len); 2849 } 2850 2851 /*PRINTFLIKE1*/ 2852 int 2853 printf(const char *format, ...) 2854 { 2855 va_list args; 2856 char buffer[ERRSIZE]; 2857 Prfbuf prf; 2858 2859 va_start(args, format); 2860 prf.pr_buf = prf.pr_cur = buffer; 2861 prf.pr_len = ERRSIZE; 2862 prf.pr_fd = 1; 2863 (void) doprf(format, args, &prf); 2864 va_end(args); 2865 /* 2866 * Trim trailing '\0' form buffer 2867 */ 2868 prf.pr_cur--; 2869 return (dowrite(&prf)); 2870 } 2871 2872 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2873 2874 /* 2875 * All error messages go through eprintf(). During process initialization, 2876 * these messages are directed to the standard error, however once control has 2877 * been passed to the applications code these messages are stored in an internal 2878 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2879 * while running the application will still cause a standard error message, see 2880 * rtldexit() in this file for details. 2881 * The RT_FL_APPLIC flag serves to indicate the transition between process 2882 * initialization and when the applications code is running. 2883 */ 2884 void 2885 veprintf(Lm_list *lml, Error error, const char *format, va_list args) 2886 { 2887 int overflow = 0; 2888 static int lock = 0; 2889 Prfbuf prf; 2890 2891 if (lock || (nextptr > (errbuf + (ERRSIZE - 1)))) 2892 return; 2893 2894 /* 2895 * Note: this lock is here to prevent the same thread from recursively 2896 * entering itself during a eprintf. ie: during eprintf malloc() fails 2897 * and we try and call eprintf ... and then malloc() fails .... 2898 */ 2899 lock = 1; 2900 2901 /* 2902 * If we have completed startup initialization, all error messages 2903 * must be saved. These are reported through dlerror(). If we're 2904 * still in the initialization stage, output the error directly and 2905 * add a newline. 2906 */ 2907 prf.pr_buf = prf.pr_cur = nextptr; 2908 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2909 2910 if ((rtld_flags & RT_FL_APPLIC) == 0) 2911 prf.pr_fd = 2; 2912 else 2913 prf.pr_fd = -1; 2914 2915 if (error > ERR_NONE) { 2916 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2917 error = ERR_WARNING; 2918 switch (error) { 2919 case ERR_WARNING_NF: 2920 if (err_strs[ERR_WARNING_NF] == NULL) 2921 err_strs[ERR_WARNING_NF] = 2922 MSG_INTL(MSG_ERR_WARNING); 2923 break; 2924 case ERR_WARNING: 2925 if (err_strs[ERR_WARNING] == NULL) 2926 err_strs[ERR_WARNING] = 2927 MSG_INTL(MSG_ERR_WARNING); 2928 break; 2929 case ERR_GUIDANCE: 2930 if (err_strs[ERR_GUIDANCE] == NULL) 2931 err_strs[ERR_GUIDANCE] = 2932 MSG_INTL(MSG_ERR_GUIDANCE); 2933 break; 2934 case ERR_FATAL: 2935 if (err_strs[ERR_FATAL] == NULL) 2936 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2937 break; 2938 case ERR_ELF: 2939 if (err_strs[ERR_ELF] == NULL) 2940 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2941 break; 2942 } 2943 if (procname) { 2944 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2945 rtldname, procname, err_strs[error]) == 0) 2946 overflow = 1; 2947 } else { 2948 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2949 rtldname, err_strs[error]) == 0) 2950 overflow = 1; 2951 } 2952 if (overflow == 0) { 2953 /* 2954 * Remove the terminating '\0'. 2955 */ 2956 prf.pr_cur--; 2957 } 2958 } 2959 2960 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2961 overflow = 1; 2962 2963 /* 2964 * If this is an ELF error, it will have been generated by a support 2965 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2966 * ELF error messages as it doesn't interact with libelf. Determine the 2967 * ELF error string. 2968 */ 2969 if ((overflow == 0) && (error == ERR_ELF)) { 2970 static int (*elfeno)() = 0; 2971 static const char *(*elfemg)(); 2972 const char *emsg; 2973 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2974 2975 if (NEXT(lmp) && (elfeno == 0)) { 2976 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2977 MSG_ORIG(MSG_SYM_ELFERRMSG), 2978 lmp, &dlmp)) == NULL) || 2979 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2980 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2981 elfeno = 0; 2982 } 2983 2984 /* 2985 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2986 */ 2987 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2988 prf.pr_cur--; 2989 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2990 emsg) == 0) 2991 overflow = 1; 2992 } 2993 } 2994 2995 /* 2996 * Push out any message that's been built. Note, in the case of an 2997 * overflow condition, this message may be incomplete, in which case 2998 * make sure any partial string is null terminated. 2999 */ 3000 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 3001 *(prf.pr_cur - 1) = '\n'; 3002 (void) dowrite(&prf); 3003 } 3004 if (overflow) 3005 *(prf.pr_cur - 1) = '\0'; 3006 3007 DBG_CALL(Dbg_util_str(lml, nextptr)); 3008 3009 /* 3010 * Determine if there was insufficient space left in the buffer to 3011 * complete the message. If so, we'll have printed out as much as had 3012 * been processed if we're not yet executing the application. 3013 * Otherwise, there will be some debugging diagnostic indicating 3014 * as much of the error message as possible. Write out a final buffer 3015 * overflow diagnostic - unlocalized, so we don't chance more errors. 3016 */ 3017 if (overflow) { 3018 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 3019 3020 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3021 lasterr = str; 3022 3023 if ((rtld_flags & RT_FL_APPLIC) == 0) { 3024 (void) write(2, str, strlen(str)); 3025 (void) write(2, MSG_ORIG(MSG_STR_NL), 3026 MSG_STR_NL_SIZE); 3027 } 3028 } 3029 DBG_CALL(Dbg_util_str(lml, str)); 3030 3031 lock = 0; 3032 nextptr = errbuf + ERRSIZE; 3033 return; 3034 } 3035 3036 /* 3037 * If the application has started, then error messages are being saved 3038 * for retrieval by dlerror(), or possible flushing from rtldexit() in 3039 * the case of a fatal error. In this case, establish the next error 3040 * pointer. If we haven't started the application, the whole message 3041 * buffer can be reused. 3042 */ 3043 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3044 lasterr = nextptr; 3045 3046 /* 3047 * Note, should we encounter an error such as ENOMEM, there may 3048 * be a number of the same error messages (ie. an operation 3049 * fails with ENOMEM, and then the attempts to construct the 3050 * error message itself, which incurs additional ENOMEM errors). 3051 * Compare any previous error message with the one we've just 3052 * created to prevent any duplication clutter. 3053 */ 3054 if ((rtld_flags & RT_FL_APPLIC) && 3055 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 3056 prevptr = nextptr; 3057 nextptr = prf.pr_cur; 3058 *nextptr = '\0'; 3059 } 3060 } 3061 lock = 0; 3062 } 3063 3064 /*PRINTFLIKE3*/ 3065 void 3066 eprintf(Lm_list *lml, Error error, const char *format, ...) 3067 { 3068 va_list args; 3069 3070 va_start(args, format); 3071 veprintf(lml, error, format, args); 3072 va_end(args); 3073 } 3074 3075 /* 3076 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 3077 * details. 3078 */ 3079 int 3080 assfail(const char *a, const char *f, int l) 3081 { 3082 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3083 (void) _lwp_kill(_lwp_self(), SIGABRT); 3084 return (0); 3085 } 3086 3087 void 3088 assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b, 3089 const char *f, int l) 3090 { 3091 (void) printf("assertion failed: %s (0x%llx %s 0x%llx), " 3092 "file: %s, line: %d\n", msg, (unsigned long long)a, op, 3093 (unsigned long long)b, f, l); 3094 (void) _lwp_kill(_lwp_self(), SIGABRT); 3095 } 3096 3097 /* 3098 * Exit. If we arrive here with a non zero status it's because of a fatal 3099 * error condition (most commonly a relocation error). If the application has 3100 * already had control, then the actual fatal error message will have been 3101 * recorded in the dlerror() message buffer. Print the message before really 3102 * exiting. 3103 */ 3104 void 3105 rtldexit(Lm_list * lml, int status) 3106 { 3107 if (status) { 3108 if (rtld_flags & RT_FL_APPLIC) { 3109 /* 3110 * If the error buffer has been used, write out all 3111 * pending messages - lasterr is simply a pointer to 3112 * the last message in this buffer. However, if the 3113 * buffer couldn't be created at all, lasterr points 3114 * to a constant error message string. 3115 */ 3116 if (*errbuf) { 3117 char *errptr = errbuf; 3118 char *errend = errbuf + ERRSIZE; 3119 3120 while ((errptr < errend) && *errptr) { 3121 size_t size = strlen(errptr); 3122 (void) write(2, errptr, size); 3123 (void) write(2, MSG_ORIG(MSG_STR_NL), 3124 MSG_STR_NL_SIZE); 3125 errptr += (size + 1); 3126 } 3127 } 3128 if (lasterr && ((lasterr < errbuf) || 3129 (lasterr > (errbuf + (ERRSIZE - 1))))) { 3130 (void) write(2, lasterr, strlen(lasterr)); 3131 (void) write(2, MSG_ORIG(MSG_STR_NL), 3132 MSG_STR_NL_SIZE); 3133 } 3134 } 3135 leave(lml, 0); 3136 (void) _lwp_kill(_lwp_self(), killsig); 3137 } 3138 _exit(status); 3139 } 3140 3141 /* 3142 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3143 */ 3144 void * 3145 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3146 { 3147 caddr_t va; 3148 3149 if ((va = (caddr_t)mmap(addr, len, prot, 3150 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3151 int err = errno; 3152 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3153 strerror(err)); 3154 return (MAP_FAILED); 3155 } 3156 return (va); 3157 } 3158 3159 static int nu_fd = FD_UNAVAIL; 3160 3161 void * 3162 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3163 { 3164 caddr_t va; 3165 int err; 3166 3167 if (nu_fd == FD_UNAVAIL) { 3168 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3169 O_RDONLY)) == FD_UNAVAIL) { 3170 err = errno; 3171 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3172 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3173 return (MAP_FAILED); 3174 } 3175 } 3176 3177 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3178 MAP_FAILED) { 3179 err = errno; 3180 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3181 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3182 } 3183 return (va); 3184 } 3185 3186 /* 3187 * Generic entry point from user code - simply grabs a lock, and bumps the 3188 * entrance count. 3189 */ 3190 int 3191 enter(int flags) 3192 { 3193 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3194 if (!thr_flg_nolock) 3195 (void) rt_mutex_lock(&rtldlock); 3196 if (rtld_flags & RT_FL_OPERATION) { 3197 ld_entry_cnt++; 3198 3199 /* 3200 * Reset the diagnostic time information for each new 3201 * "operation". Thus timing diagnostics are relative 3202 * to entering ld.so.1. 3203 */ 3204 if (DBG_ISTIME() && 3205 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3206 DBG_DELTATIME = DBG_TOTALTIME; 3207 DBG_ONRESET(); 3208 } 3209 } 3210 return (1); 3211 } 3212 return (0); 3213 } 3214 3215 /* 3216 * Determine whether a search path has been used. 3217 */ 3218 static void 3219 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3220 { 3221 Pdesc *pdp; 3222 Aliste idx; 3223 3224 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3225 const char *fmt, *name; 3226 3227 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3228 continue; 3229 3230 /* 3231 * If this pathname originated from an expanded token, use the 3232 * original for any diagnostic output. 3233 */ 3234 if ((name = pdp->pd_oname) == NULL) 3235 name = pdp->pd_pname; 3236 3237 if (unref == 0) { 3238 if ((*nl)++ == 0) 3239 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3240 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3241 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3242 continue; 3243 } 3244 3245 if (pdp->pd_flags & LA_SER_LIBPATH) { 3246 if (pdp->pd_flags & LA_SER_CONFIG) { 3247 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3248 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3249 else 3250 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3251 } else { 3252 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3253 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3254 else 3255 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3256 } 3257 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3258 fmt = MSG_INTL(MSG_USD_RUNPATH); 3259 } else 3260 continue; 3261 3262 if ((*nl)++ == 0) 3263 (void) printf(MSG_ORIG(MSG_STR_NL)); 3264 (void) printf(fmt, name, obj); 3265 } 3266 } 3267 3268 /* 3269 * Generate diagnostics as to whether an object has been used. A symbolic 3270 * reference that gets bound to an object marks it as used. Dependencies that 3271 * are unused when RTLD_NOW is in effect should be removed from future builds 3272 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3273 * candidates for lazy-loading. 3274 * 3275 * Unreferenced objects identify objects that are defined as dependencies but 3276 * are unreferenced by the caller. These unreferenced objects may however be 3277 * referenced by other objects within the process, and therefore don't qualify 3278 * as completely unused. They are still an unnecessary overhead. 3279 * 3280 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3281 * debugging. 3282 */ 3283 void 3284 unused(Lm_list *lml) 3285 { 3286 Rt_map *lmp; 3287 int nl = 0; 3288 Word unref, unuse; 3289 3290 /* 3291 * If we're not tracing unused references or dependencies, or debugging 3292 * there's nothing to do. 3293 */ 3294 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3295 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3296 3297 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3298 return; 3299 3300 /* 3301 * Detect unused global search paths. 3302 */ 3303 if (rpl_libdirs) 3304 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3305 if (prm_libdirs) 3306 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3307 3308 nl = 0; 3309 lmp = lml->lm_head; 3310 if (RLIST(lmp)) 3311 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3312 3313 /* 3314 * Traverse the link-maps looking for unreferenced or unused 3315 * dependencies. Ignore the first object on a link-map list, as this 3316 * is always used. 3317 */ 3318 nl = 0; 3319 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3320 /* 3321 * Determine if this object contains any runpaths that have 3322 * not been used. 3323 */ 3324 if (RLIST(lmp)) 3325 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3326 3327 /* 3328 * If tracing unreferenced objects, or under debugging, 3329 * determine whether any of this objects callers haven't 3330 * referenced it. 3331 */ 3332 if (unref || DBG_ENABLED) { 3333 Bnd_desc *bdp; 3334 Aliste idx; 3335 3336 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3337 Rt_map *clmp; 3338 3339 if (bdp->b_flags & BND_REFER) 3340 continue; 3341 3342 clmp = bdp->b_caller; 3343 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3344 continue; 3345 3346 /* BEGIN CSTYLED */ 3347 if (nl++ == 0) { 3348 if (unref) 3349 (void) printf(MSG_ORIG(MSG_STR_NL)); 3350 else 3351 DBG_CALL(Dbg_util_nl(lml, 3352 DBG_NL_STD)); 3353 } 3354 3355 if (unref) 3356 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3357 NAME(lmp), NAME(clmp)); 3358 else 3359 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3360 /* END CSTYLED */ 3361 } 3362 } 3363 3364 /* 3365 * If tracing unused objects simply display those objects that 3366 * haven't been referenced by anyone. 3367 */ 3368 if (FLAGS1(lmp) & FL1_RT_USED) 3369 continue; 3370 3371 if (nl++ == 0) { 3372 if (unref || unuse) 3373 (void) printf(MSG_ORIG(MSG_STR_NL)); 3374 else 3375 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3376 } 3377 if (CYCGROUP(lmp)) { 3378 if (unref || unuse) 3379 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3380 NAME(lmp), CYCGROUP(lmp)); 3381 else 3382 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3383 CYCGROUP(lmp))); 3384 } else { 3385 if (unref || unuse) 3386 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3387 NAME(lmp)); 3388 else 3389 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3390 } 3391 } 3392 3393 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3394 } 3395 3396 /* 3397 * Generic cleanup routine called prior to returning control to the user. 3398 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are 3399 * released, and any locks dropped. 3400 */ 3401 void 3402 leave(Lm_list *lml, int flags) 3403 { 3404 /* 3405 * Alert the debuggers that the link-maps are consistent. 3406 */ 3407 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3408 3409 /* 3410 * Alert any auditors that the link-maps are consistent. 3411 */ 3412 if (lml->lm_flags & LML_FLG_ACTAUDIT) { 3413 audit_activity(lml->lm_head, LA_ACT_CONSISTENT); 3414 lml->lm_flags &= ~LML_FLG_ACTAUDIT; 3415 } 3416 3417 if (nu_fd != FD_UNAVAIL) { 3418 (void) close(nu_fd); 3419 nu_fd = FD_UNAVAIL; 3420 } 3421 3422 /* 3423 * Reinitialize error message pointer, and any overflow indication. 3424 */ 3425 nextptr = errbuf; 3426 prevptr = NULL; 3427 3428 /* 3429 * Defragment any freed memory. 3430 */ 3431 if (aplist_nitems(free_alp)) 3432 defrag(); 3433 3434 /* 3435 * Don't drop our lock if we are running on our link-map list as 3436 * there's little point in doing so since we are single-threaded. 3437 * 3438 * LML_FLG_HOLDLOCK is set for: 3439 * - The ld.so.1's link-map list. 3440 * - The auditor's link-map if the environment is pre-UPM. 3441 */ 3442 if (lml->lm_flags & LML_FLG_HOLDLOCK) 3443 return; 3444 3445 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3446 if (!thr_flg_nolock) 3447 (void) rt_mutex_unlock(&rtldlock); 3448 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3449 } 3450 } 3451 3452 int 3453 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3454 { 3455 APlist *calp, *dalp; 3456 Aliste idx1, idx2; 3457 Grp_hdl *ghp1, *ghp2; 3458 3459 /* 3460 * An object can always find symbols within itself. 3461 */ 3462 if (clmp == dlmp) 3463 return (1); 3464 3465 /* 3466 * The search for a singleton must look in every loaded object. 3467 */ 3468 if (slflags & LKUP_SINGLETON) 3469 return (1); 3470 3471 /* 3472 * Don't allow an object to bind to an object that is being deleted 3473 * unless the binder is also being deleted. 3474 */ 3475 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3476 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3477 return (0); 3478 3479 /* 3480 * An object with world access can always bind to an object with global 3481 * visibility. 3482 */ 3483 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3484 (MODE(dlmp) & RTLD_GLOBAL)) 3485 return (1); 3486 3487 /* 3488 * An object with local access can only bind to an object that is a 3489 * member of the same group. 3490 */ 3491 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3492 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3493 return (0); 3494 3495 /* 3496 * Traverse the list of groups the caller is a part of. 3497 */ 3498 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3499 /* 3500 * If we're testing for the ability of two objects to bind to 3501 * each other regardless of a specific group, ignore that group. 3502 */ 3503 if (ghp && (ghp1 == ghp)) 3504 continue; 3505 3506 /* 3507 * Traverse the list of groups the destination is a part of. 3508 */ 3509 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3510 Grp_desc *gdp; 3511 Aliste idx3; 3512 3513 if (ghp1 != ghp2) 3514 continue; 3515 3516 /* 3517 * Make sure the relationship between the destination 3518 * and the caller provide symbols for relocation. 3519 * Parents are maintained as callers, but unless the 3520 * destination object was opened with RTLD_PARENT, the 3521 * parent doesn't provide symbols for the destination 3522 * to relocate against. 3523 */ 3524 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3525 if (dlmp != gdp->gd_depend) 3526 continue; 3527 3528 if (gdp->gd_flags & GPD_RELOC) 3529 return (1); 3530 } 3531 } 3532 } 3533 return (0); 3534 } 3535 3536 /* 3537 * Initialize the environ symbol. Traditionally this is carried out by the crt 3538 * code prior to jumping to main. However, init sections get fired before this 3539 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3540 * information. In addition, a process may have multiple link-maps (ld.so.1's 3541 * debugging and preloading objects), and link auditing, and each may need an 3542 * environ variable set. 3543 * 3544 * This routine is called after a relocation() pass, and thus provides for: 3545 * 3546 * - setting environ on the main link-map after the initial application and 3547 * its dependencies have been established. Typically environ lives in the 3548 * application (provided by its crt), but in older applications it might 3549 * be in libc. Who knows what's expected of applications not built on 3550 * Solaris. 3551 * 3552 * - after loading a new shared object. We can add shared objects to various 3553 * link-maps, and any link-map dependencies requiring getopt() require 3554 * their own environ. In addition, lazy loading might bring in the 3555 * supplier of environ (libc used to be a lazy loading candidate) after 3556 * the link-map has been established and other objects are present. 3557 * 3558 * This routine handles all these scenarios, without adding unnecessary overhead 3559 * to ld.so.1. 3560 */ 3561 void 3562 set_environ(Lm_list *lml) 3563 { 3564 Slookup sl; 3565 Sresult sr; 3566 uint_t binfo; 3567 3568 /* 3569 * Initialize the symbol lookup, and symbol result, data structures. 3570 */ 3571 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3572 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3573 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3574 3575 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3576 Rt_map *dlmp = sr.sr_dmap; 3577 3578 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3579 3580 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3581 lml->lm_environ = 3582 (char ***)((uintptr_t)lml->lm_environ + 3583 (uintptr_t)ADDR(dlmp)); 3584 *(lml->lm_environ) = (char **)environ; 3585 lml->lm_flags |= LML_FLG_ENVIRON; 3586 } 3587 } 3588 3589 /* 3590 * Determine whether we have a secure executable. Uid and gid information 3591 * can be passed to us via the aux vector, however if these values are -1 3592 * then use the appropriate system call to obtain them. 3593 * 3594 * - If the user is the root they can do anything 3595 * 3596 * - If the real and effective uid's don't match, or the real and 3597 * effective gid's don't match then this is determined to be a `secure' 3598 * application. 3599 * 3600 * This function is called prior to any dependency processing (see _setup.c). 3601 * Any secure setting will remain in effect for the life of the process. 3602 */ 3603 void 3604 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3605 { 3606 if (auxflags != -1) { 3607 if ((auxflags & AF_SUN_SETUGID) != 0) 3608 rtld_flags |= RT_FL_SECURE; 3609 return; 3610 } 3611 3612 if (uid == (uid_t)-1) 3613 uid = getuid(); 3614 if (uid) { 3615 if (euid == (uid_t)-1) 3616 euid = geteuid(); 3617 if (uid != euid) 3618 rtld_flags |= RT_FL_SECURE; 3619 else { 3620 if (gid == (gid_t)-1) 3621 gid = getgid(); 3622 if (egid == (gid_t)-1) 3623 egid = getegid(); 3624 if (gid != egid) 3625 rtld_flags |= RT_FL_SECURE; 3626 } 3627 } 3628 } 3629 3630 /* 3631 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3632 */ 3633 int 3634 is_rtld_setuid() 3635 { 3636 rtld_stat_t status; 3637 const char *name; 3638 3639 if (rtld_flags2 & RT_FL2_SETUID) 3640 return (1); 3641 3642 if (interp && interp->i_name) 3643 name = interp->i_name; 3644 else 3645 name = NAME(lml_rtld.lm_head); 3646 3647 if (((rtld_stat(name, &status) == 0) && 3648 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3649 rtld_flags2 |= RT_FL2_SETUID; 3650 return (1); 3651 } 3652 return (0); 3653 } 3654 3655 /* 3656 * Determine that systems platform name. Normally, this name is provided from 3657 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3658 * fall back. 3659 */ 3660 void 3661 platform_name(Syscapset *scapset) 3662 { 3663 char info[SYS_NMLN]; 3664 size_t size; 3665 3666 if ((scapset->sc_platsz = size = 3667 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3668 return; 3669 3670 if ((scapset->sc_plat = malloc(size)) == NULL) { 3671 scapset->sc_platsz = (size_t)-1; 3672 return; 3673 } 3674 (void) strcpy(scapset->sc_plat, info); 3675 } 3676 3677 /* 3678 * Determine that systems machine name. Normally, this name is provided from 3679 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3680 * fall back. 3681 */ 3682 void 3683 machine_name(Syscapset *scapset) 3684 { 3685 char info[SYS_NMLN]; 3686 size_t size; 3687 3688 if ((scapset->sc_machsz = size = 3689 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3690 return; 3691 3692 if ((scapset->sc_mach = malloc(size)) == NULL) { 3693 scapset->sc_machsz = (size_t)-1; 3694 return; 3695 } 3696 (void) strcpy(scapset->sc_mach, info); 3697 } 3698 3699 /* 3700 * _REENTRANT code gets errno redefined to a function so provide for return 3701 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3702 * is basically singled threaded. Provide the interface for our dependencies. 3703 */ 3704 #undef errno 3705 int * 3706 ___errno() 3707 { 3708 extern int errno; 3709 3710 return (&errno); 3711 } 3712 3713 /* 3714 * Determine whether a symbol name should be demangled. 3715 */ 3716 const char * 3717 demangle(const char *name) 3718 { 3719 if (rtld_flags & RT_FL_DEMANGLE) 3720 return (conv_demangle_name(name)); 3721 else 3722 return (name); 3723 } 3724 3725 #ifndef _LP64 3726 /* 3727 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3728 * underneath while preserving the object size limits of a non-largefile 3729 * enabled 32-bit process. The purpose of this is to prevent large inode 3730 * values from causing stat() to fail. 3731 */ 3732 inline static int 3733 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3734 { 3735 extern int errno; 3736 3737 /* 3738 * Although we used a 64-bit capable stat(), the 32-bit rtld 3739 * can only handle objects < 2GB in size. If this object is 3740 * too big, turn the success into an overflow error. 3741 */ 3742 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3743 errno = EOVERFLOW; 3744 return (-1); 3745 } 3746 3747 /* 3748 * Transfer the information needed by rtld into a rtld_stat_t 3749 * structure that preserves the non-largile types for everything 3750 * except inode. 3751 */ 3752 buf->st_dev = lbuf->st_dev; 3753 buf->st_ino = lbuf->st_ino; 3754 buf->st_mode = lbuf->st_mode; 3755 buf->st_uid = lbuf->st_uid; 3756 buf->st_size = (off_t)lbuf->st_size; 3757 buf->st_mtim = lbuf->st_mtim; 3758 #ifdef sparc 3759 buf->st_blksize = lbuf->st_blksize; 3760 #endif 3761 3762 return (r); 3763 } 3764 3765 int 3766 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3767 { 3768 struct stat64 lbuf; 3769 int r; 3770 3771 r = stat64(path, &lbuf); 3772 if (r != -1) 3773 r = rtld_stat_process(r, &lbuf, buf); 3774 return (r); 3775 } 3776 3777 int 3778 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3779 { 3780 struct stat64 lbuf; 3781 int r; 3782 3783 r = fstat64(fildes, &lbuf); 3784 if (r != -1) 3785 r = rtld_stat_process(r, &lbuf, buf); 3786 return (r); 3787 } 3788 #endif