1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <mtmalloc.h> 28 #include "mtmalloc_impl.h" 29 #include <unistd.h> 30 #include <synch.h> 31 #include <thread.h> 32 #include <pthread.h> 33 #include <stdio.h> 34 #include <limits.h> 35 #include <errno.h> 36 #include <string.h> 37 #include <strings.h> 38 #include <sys/param.h> 39 #include <sys/sysmacros.h> 40 41 /* 42 * To turn on the asserts just compile -DDEBUG 43 */ 44 45 #ifndef DEBUG 46 #define NDEBUG 47 #endif 48 49 #include <assert.h> 50 51 /* 52 * The MT hot malloc implementation contained herein is designed to be 53 * plug-compatible with the libc version of malloc. It is not intended 54 * to replace that implementation until we decide that it is ok to break 55 * customer apps (Solaris 3.0). 56 * 57 * For requests up to 2^^16, the allocator initializes itself into NCPUS 58 * worth of chains of caches. When a memory request is made, the calling thread 59 * is vectored into one of NCPUS worth of caches. The LWP id gives us a cheap, 60 * contention-reducing index to use, eventually, this should be replaced with 61 * the actual CPU sequence number, when an interface to get it is available. 62 * 63 * Once the thread is vectored into one of the list of caches the real 64 * allocation of the memory begins. The size is determined to figure out which 65 * bucket the allocation should be satisfied from. The management of free 66 * buckets is done via a bitmask. A free bucket is represented by a 1. The 67 * first free bit represents the first free bucket. The position of the bit, 68 * represents the position of the bucket in the arena. 69 * 70 * When the memory from the arena is handed out, the address of the cache 71 * control structure is written in the word preceeding the returned memory. 72 * This cache control address is used during free() to mark the buffer free 73 * in the cache control structure. 74 * 75 * When all available memory in a cache has been depleted, a new chunk of memory 76 * is allocated via sbrk(). The new cache is allocated from this chunk of memory 77 * and initialized in the function create_cache(). New caches are installed at 78 * the front of a singly linked list of the same size memory pools. This helps 79 * to ensure that there will tend to be available memory in the beginning of the 80 * list. 81 * 82 * Long linked lists hurt performance. To decrease this effect, there is a 83 * tunable, requestsize, that bumps up the sbrk allocation size and thus 84 * increases the number of available blocks within an arena. We also keep 85 * a "hint" for each cache list, which is the last cache in the list allocated 86 * from. This lowers the cost of searching if there are a lot of fully 87 * allocated blocks at the front of the list. 88 * 89 * For requests greater than 2^^16 (oversize allocations), there are two pieces 90 * of overhead. There is the OVERHEAD used to hold the cache addr 91 * (&oversize_list), plus an oversize_t structure to further describe the block. 92 * 93 * The oversize list is kept as defragmented as possible by coalescing 94 * freed oversized allocations with adjacent neighbors. 95 * 96 * Addresses handed out are stored in a hash table, and are aligned on 97 * MTMALLOC_MIN_ALIGN-byte boundaries at both ends. Request sizes are rounded-up 98 * where necessary in order to achieve this. This eases the implementation of 99 * MTDEBUGPATTERN and MTINITPATTERN, particularly where coalescing occurs. 100 * 101 * A memalign allocation takes memalign header overhead. There's two 102 * types of memalign headers distinguished by MTMALLOC_MEMALIGN_MAGIC 103 * and MTMALLOC_MEMALIGN_MIN_MAGIC. When the size of memory taken to 104 * get to the aligned address from malloc'ed address is the minimum size 105 * OVERHEAD, we create a header taking only one OVERHEAD space with magic 106 * number MTMALLOC_MEMALIGN_MIN_MAGIC, and we know by subtracting OVERHEAD 107 * from memaligned address, we can get to the malloc'ed address. Otherwise, 108 * we create a memalign header taking two OVERHEAD space, one stores 109 * MTMALLOC_MEMALIGN_MAGIC magic number, the other one points back to the 110 * malloc'ed address. 111 */ 112 113 #if defined(__i386) || defined(__amd64) 114 #include <arpa/inet.h> /* for htonl() */ 115 #endif 116 117 static void * morecore(size_t); 118 static void create_cache(cache_t *, size_t bufsize, uint_t hunks); 119 static void * malloc_internal(size_t, percpu_t *); 120 static void * oversize(size_t); 121 static oversize_t *find_oversize(size_t); 122 static void add_oversize(oversize_t *); 123 static void copy_pattern(uint32_t, void *, size_t); 124 static void * verify_pattern(uint32_t, void *, size_t); 125 static void reinit_cpu_list(void); 126 static void reinit_cache(cache_t *); 127 static void free_oversize(oversize_t *); 128 static oversize_t *oversize_header_alloc(uintptr_t, size_t); 129 130 /* 131 * oversize hash table stuff 132 */ 133 #define NUM_BUCKETS 67 /* must be prime */ 134 #define HASH_OVERSIZE(caddr) ((uintptr_t)(caddr) % NUM_BUCKETS) 135 oversize_t *ovsz_hashtab[NUM_BUCKETS]; 136 137 #define ALIGN(x, a) ((((uintptr_t)(x) + ((uintptr_t)(a) - 1)) \ 138 & ~((uintptr_t)(a) - 1))) 139 140 /* need this to deal with little endianess of x86 */ 141 #if defined(__i386) || defined(__amd64) 142 #define FLIP_EM(x) htonl((x)) 143 #else 144 #define FLIP_EM(x) (x) 145 #endif 146 147 #define INSERT_ONLY 0 148 #define COALESCE_LEFT 0x00000001 149 #define COALESCE_RIGHT 0x00000002 150 #define COALESCE_WITH_BOTH_SIDES (COALESCE_LEFT | COALESCE_RIGHT) 151 152 #define OVERHEAD 8 /* size needed to write cache addr */ 153 #define HUNKSIZE 8192 /* just a multiplier */ 154 155 #define MAX_CACHED_SHIFT 16 /* 64K is the max cached size */ 156 #define MAX_CACHED (1 << MAX_CACHED_SHIFT) 157 #define MIN_CACHED_SHIFT 4 /* smaller requests rounded up */ 158 #define MTMALLOC_MIN_ALIGN 8 /* min guaranteed alignment */ 159 160 /* maximum size before overflow */ 161 #define MAX_MTMALLOC (SIZE_MAX - (SIZE_MAX % MTMALLOC_MIN_ALIGN) \ 162 - OVSZ_HEADER_SIZE) 163 164 #define NUM_CACHES (MAX_CACHED_SHIFT - MIN_CACHED_SHIFT + 1) 165 #define CACHELIST_SIZE ALIGN(NUM_CACHES * sizeof (cache_head_t), \ 166 CACHE_COHERENCY_UNIT) 167 168 #define MINSIZE 9 /* for requestsize, tunable */ 169 #define MAXSIZE 256 /* arbitrary, big enough, for requestsize */ 170 171 #define FREEPATTERN 0xdeadbeef /* debug fill pattern for free buf */ 172 #define INITPATTERN 0xbaddcafe /* debug fill pattern for new buf */ 173 174 #define misaligned(p) ((unsigned)(p) & (sizeof (int) - 1)) 175 #define IS_OVERSIZE(x, y) (((x) < (y)) && (((x) > MAX_CACHED)? 1 : 0)) 176 177 static long requestsize = MINSIZE; /* 9 pages per cache; tunable; 9 is min */ 178 179 static uint_t cpu_mask; 180 static curcpu_func curcpu; 181 182 static int32_t debugopt; 183 static int32_t reinit; 184 185 static percpu_t *cpu_list; 186 static oversize_t oversize_list; 187 static mutex_t oversize_lock = DEFAULTMUTEX; 188 189 static int ncpus = 0; 190 191 #define MTMALLOC_OVERSIZE_MAGIC ((uintptr_t)&oversize_list) 192 #define MTMALLOC_MEMALIGN_MAGIC ((uintptr_t)&oversize_list + 1) 193 #define MTMALLOC_MEMALIGN_MIN_MAGIC ((uintptr_t)&oversize_list + 2) 194 195 /* 196 * We require allocations handed out to be aligned on MTMALLOC_MIN_ALIGN-byte 197 * boundaries. We round up sizeof (oversize_t) (when necessary) to ensure that 198 * this is achieved. 199 */ 200 #define OVSZ_SIZE (ALIGN(sizeof (oversize_t), MTMALLOC_MIN_ALIGN)) 201 #define OVSZ_HEADER_SIZE (OVSZ_SIZE + OVERHEAD) 202 203 /* 204 * memalign header takes 2 OVERHEAD space. One for memalign magic, and the 205 * other one points back to the start address of originally allocated space. 206 */ 207 #define MEMALIGN_HEADER_SIZE 2 * OVERHEAD 208 #define MEMALIGN_HEADER_ALLOC(x, shift, malloc_addr)\ 209 if (shift == OVERHEAD)\ 210 *((uintptr_t *)((caddr_t)x - OVERHEAD)) = \ 211 MTMALLOC_MEMALIGN_MIN_MAGIC; \ 212 else {\ 213 *((uintptr_t *)((caddr_t)x - OVERHEAD)) = \ 214 MTMALLOC_MEMALIGN_MAGIC; \ 215 *((uintptr_t *)((caddr_t)x - 2 * OVERHEAD)) = \ 216 (uintptr_t)malloc_addr; \ 217 } 218 219 /* 220 * Add big to the oversize hash table at the head of the relevant bucket. 221 */ 222 static void 223 insert_hash(oversize_t *big) 224 { 225 caddr_t ret = big->addr; 226 int bucket = HASH_OVERSIZE(ret); 227 228 assert(MUTEX_HELD(&oversize_lock)); 229 big->hash_next = ovsz_hashtab[bucket]; 230 ovsz_hashtab[bucket] = big; 231 } 232 233 void * 234 malloc(size_t bytes) 235 { 236 percpu_t *list_rotor; 237 uint_t list_index; 238 239 if (bytes > MAX_CACHED) 240 return (oversize(bytes)); 241 242 list_index = (curcpu() & cpu_mask); 243 244 list_rotor = &cpu_list[list_index]; 245 246 return (malloc_internal(bytes, list_rotor)); 247 } 248 249 void * 250 realloc(void * ptr, size_t bytes) 251 { 252 void *new, *data_ptr; 253 cache_t *cacheptr; 254 caddr_t mem; 255 size_t shift = 0; 256 257 if (ptr == NULL) 258 return (malloc(bytes)); 259 260 if (bytes == 0) { 261 free(ptr); 262 return (NULL); 263 } 264 265 data_ptr = ptr; 266 mem = (caddr_t)ptr - OVERHEAD; 267 268 /* 269 * Optimization possibility : 270 * p = malloc(64); 271 * q = realloc(p, 64); 272 * q can be same as p. 273 * Apply this optimization for the normal 274 * sized caches for now. 275 */ 276 if (*(uintptr_t *)mem < MTMALLOC_OVERSIZE_MAGIC || 277 *(uintptr_t *)mem > MTMALLOC_MEMALIGN_MIN_MAGIC) { 278 cacheptr = (cache_t *)*(uintptr_t *)mem; 279 if (bytes <= (cacheptr->mt_size - OVERHEAD)) 280 return (ptr); 281 } 282 283 new = malloc(bytes); 284 285 if (new == NULL) 286 return (NULL); 287 288 /* 289 * If new == ptr, ptr has previously been freed. Passing a freed pointer 290 * to realloc() is not allowed - unless the caller specifically states 291 * otherwise, in which case we must avoid freeing ptr (ie new) before we 292 * return new. There is (obviously) no requirement to memcpy() ptr to 293 * new before we return. 294 */ 295 if (new == ptr) { 296 if (!(debugopt & MTDOUBLEFREE)) 297 abort(); 298 return (new); 299 } 300 301 if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MAGIC) { 302 mem -= OVERHEAD; 303 ptr = (void *)*(uintptr_t *)mem; 304 mem = (caddr_t)ptr - OVERHEAD; 305 shift = (size_t)((uintptr_t)data_ptr - (uintptr_t)ptr); 306 } else if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MIN_MAGIC) { 307 ptr = (void *) mem; 308 mem -= OVERHEAD; 309 shift = OVERHEAD; 310 } 311 312 if (*(uintptr_t *)mem == MTMALLOC_OVERSIZE_MAGIC) { 313 oversize_t *old; 314 315 old = (oversize_t *)(mem - OVSZ_SIZE); 316 (void) memcpy(new, data_ptr, MIN(bytes, old->size - shift)); 317 free(ptr); 318 return (new); 319 } 320 321 cacheptr = (cache_t *)*(uintptr_t *)mem; 322 323 (void) memcpy(new, data_ptr, 324 MIN(cacheptr->mt_size - OVERHEAD - shift, bytes)); 325 free(ptr); 326 327 return (new); 328 } 329 330 void * 331 calloc(size_t nelem, size_t bytes) 332 { 333 void * ptr; 334 size_t size = nelem * bytes; 335 336 ptr = malloc(size); 337 if (ptr == NULL) 338 return (NULL); 339 (void) memset(ptr, 0, size); 340 341 return (ptr); 342 } 343 344 void 345 free(void * ptr) 346 { 347 cache_t *cacheptr; 348 caddr_t mem; 349 int32_t i; 350 caddr_t freeblocks; 351 uintptr_t offset; 352 uchar_t mask; 353 int32_t which_bit, num_bytes; 354 355 if (ptr == NULL) 356 return; 357 358 mem = (caddr_t)ptr - OVERHEAD; 359 360 if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MAGIC) { 361 mem -= OVERHEAD; 362 ptr = (void *)*(uintptr_t *)mem; 363 mem = (caddr_t)ptr - OVERHEAD; 364 } else if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MIN_MAGIC) { 365 ptr = (void *) mem; 366 mem -= OVERHEAD; 367 } 368 369 if (*(uintptr_t *)mem == MTMALLOC_OVERSIZE_MAGIC) { 370 oversize_t *big, **opp; 371 int bucket; 372 373 big = (oversize_t *)(mem - OVSZ_SIZE); 374 (void) mutex_lock(&oversize_lock); 375 376 bucket = HASH_OVERSIZE(big->addr); 377 for (opp = &ovsz_hashtab[bucket]; *opp != NULL; 378 opp = &(*opp)->hash_next) 379 if (*opp == big) 380 break; 381 382 if (*opp == NULL) { 383 if (!(debugopt & MTDOUBLEFREE)) 384 abort(); 385 (void) mutex_unlock(&oversize_lock); 386 return; 387 } 388 389 *opp = big->hash_next; /* remove big from the hash table */ 390 big->hash_next = NULL; 391 392 if (debugopt & MTDEBUGPATTERN) 393 copy_pattern(FREEPATTERN, ptr, big->size); 394 add_oversize(big); 395 (void) mutex_unlock(&oversize_lock); 396 return; 397 } 398 399 cacheptr = (cache_t *)*(uintptr_t *)mem; 400 freeblocks = cacheptr->mt_freelist; 401 402 /* 403 * This is the distance measured in bits into the arena. 404 * The value of offset is in bytes but there is a 1-1 correlation 405 * between distance into the arena and distance into the 406 * freelist bitmask. 407 */ 408 offset = mem - cacheptr->mt_arena; 409 410 /* 411 * i is total number of bits to offset into freelist bitmask. 412 */ 413 414 i = offset / cacheptr->mt_size; 415 416 num_bytes = i >> 3; 417 418 /* 419 * which_bit is the bit offset into the byte in the freelist. 420 * if our freelist bitmask looks like 0xf3 and we are freeing 421 * block 5 (ie: the 6th block) our mask will be 0xf7 after 422 * the free. Things go left to right that's why the mask is 0x80 423 * and not 0x01. 424 */ 425 which_bit = i - (num_bytes << 3); 426 427 mask = 0x80 >> which_bit; 428 429 freeblocks += num_bytes; 430 431 if (debugopt & MTDEBUGPATTERN) 432 copy_pattern(FREEPATTERN, ptr, cacheptr->mt_size - OVERHEAD); 433 434 (void) mutex_lock(&cacheptr->mt_cache_lock); 435 436 if (*freeblocks & mask) { 437 if (!(debugopt & MTDOUBLEFREE)) 438 abort(); 439 } else { 440 *freeblocks |= mask; 441 cacheptr->mt_nfree++; 442 } 443 444 (void) mutex_unlock(&cacheptr->mt_cache_lock); 445 } 446 447 void * 448 memalign(size_t alignment, size_t size) 449 { 450 size_t alloc_size; 451 uintptr_t offset; 452 void *alloc_buf; 453 void *ret_buf; 454 455 if (size == 0 || alignment == 0 || misaligned(alignment) || 456 (alignment & (alignment - 1)) != 0) { 457 errno = EINVAL; 458 return (NULL); 459 } 460 461 /* <= MTMALLOC_MIN_ALIGN, malloc can provide directly */ 462 if (alignment <= MTMALLOC_MIN_ALIGN) 463 return (malloc(size)); 464 465 alloc_size = size + alignment - MTMALLOC_MIN_ALIGN; 466 467 if (alloc_size < size) { /* overflow */ 468 errno = ENOMEM; 469 return (NULL); 470 } 471 472 alloc_buf = malloc(alloc_size); 473 474 if (alloc_buf == NULL) 475 /* malloc sets errno */ 476 return (NULL); 477 478 /* 479 * If alloc_size > MAX_CACHED, malloc() will have returned a multiple of 480 * MTMALLOC_MIN_ALIGN, having rounded-up alloc_size if necessary. Since 481 * we will use alloc_size to return the excess fragments to the free 482 * list, we also round-up alloc_size if necessary. 483 */ 484 if ((alloc_size > MAX_CACHED) && 485 (alloc_size & (MTMALLOC_MIN_ALIGN - 1))) 486 alloc_size = ALIGN(alloc_size, MTMALLOC_MIN_ALIGN); 487 488 if ((offset = (uintptr_t)alloc_buf & (alignment - 1)) == 0) { 489 /* aligned correctly */ 490 491 size_t frag_size = alloc_size - 492 (size + MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE); 493 494 /* 495 * If the leftover piece of the memory > MAX_CACHED, 496 * split off the piece and return it back to the freelist. 497 */ 498 if (IS_OVERSIZE(frag_size, alloc_size)) { 499 oversize_t *orig, *tail; 500 uintptr_t taddr; 501 size_t data_size; 502 taddr = ALIGN((uintptr_t)alloc_buf + size, 503 MTMALLOC_MIN_ALIGN); 504 data_size = taddr - (uintptr_t)alloc_buf; 505 orig = (oversize_t *)((uintptr_t)alloc_buf - 506 OVSZ_HEADER_SIZE); 507 frag_size = orig->size - data_size - 508 OVSZ_HEADER_SIZE; 509 orig->size = data_size; 510 tail = oversize_header_alloc(taddr, frag_size); 511 free_oversize(tail); 512 } 513 ret_buf = alloc_buf; 514 } else { 515 uchar_t oversize_bits = 0; 516 size_t head_sz, data_sz, tail_sz; 517 uintptr_t ret_addr, taddr, shift, tshift; 518 oversize_t *orig, *tail, *big; 519 size_t tsize; 520 521 /* needs to be aligned */ 522 shift = alignment - offset; 523 524 assert(shift >= MTMALLOC_MIN_ALIGN); 525 526 ret_addr = ((uintptr_t)alloc_buf + shift); 527 ret_buf = (void *)ret_addr; 528 529 if (alloc_size <= MAX_CACHED) { 530 MEMALIGN_HEADER_ALLOC(ret_addr, shift, alloc_buf); 531 return (ret_buf); 532 } 533 534 /* 535 * Only check for the fragments when the memory is allocted 536 * from oversize_list. Split off a fragment and return it 537 * to the oversize freelist when it's > MAX_CACHED. 538 */ 539 540 head_sz = shift - MAX(MEMALIGN_HEADER_SIZE, OVSZ_HEADER_SIZE); 541 542 tail_sz = alloc_size - 543 (shift + size + MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE); 544 545 oversize_bits |= IS_OVERSIZE(head_sz, alloc_size) | 546 IS_OVERSIZE(size, alloc_size) << DATA_SHIFT | 547 IS_OVERSIZE(tail_sz, alloc_size) << TAIL_SHIFT; 548 549 switch (oversize_bits) { 550 case NONE_OVERSIZE: 551 case DATA_OVERSIZE: 552 MEMALIGN_HEADER_ALLOC(ret_addr, shift, 553 alloc_buf); 554 break; 555 case HEAD_OVERSIZE: 556 /* 557 * If we can extend data > MAX_CACHED and have 558 * head still > MAX_CACHED, we split head-end 559 * as the case of head-end and data oversized, 560 * otherwise just create memalign header. 561 */ 562 tsize = (shift + size) - (MAX_CACHED + 8 + 563 MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE); 564 565 if (!IS_OVERSIZE(tsize, alloc_size)) { 566 MEMALIGN_HEADER_ALLOC(ret_addr, shift, 567 alloc_buf); 568 break; 569 } else { 570 tsize += OVSZ_HEADER_SIZE; 571 taddr = ALIGN((uintptr_t)alloc_buf + 572 tsize, MTMALLOC_MIN_ALIGN); 573 tshift = ret_addr - taddr; 574 MEMALIGN_HEADER_ALLOC(ret_addr, tshift, 575 taddr); 576 ret_addr = taddr; 577 shift = ret_addr - (uintptr_t)alloc_buf; 578 } 579 /* FALLTHROUGH */ 580 case HEAD_AND_DATA_OVERSIZE: 581 /* 582 * Split off the head fragment and 583 * return it back to oversize freelist. 584 * Create oversize header for the piece 585 * of (data + tail fragment). 586 */ 587 orig = (oversize_t *)((uintptr_t)alloc_buf - 588 OVSZ_HEADER_SIZE); 589 big = oversize_header_alloc(ret_addr - 590 OVSZ_HEADER_SIZE, (orig->size - shift)); 591 (void) mutex_lock(&oversize_lock); 592 insert_hash(big); 593 (void) mutex_unlock(&oversize_lock); 594 orig->size = shift - OVSZ_HEADER_SIZE; 595 596 /* free up the head fragment */ 597 free_oversize(orig); 598 break; 599 case TAIL_OVERSIZE: 600 /* 601 * If we can extend data > MAX_CACHED and have 602 * tail-end still > MAX_CACHED, we split tail 603 * end, otherwise just create memalign header. 604 */ 605 orig = (oversize_t *)((uintptr_t)alloc_buf - 606 OVSZ_HEADER_SIZE); 607 tsize = orig->size - (MAX_CACHED + 8 + 608 shift + OVSZ_HEADER_SIZE + 609 MTMALLOC_MIN_ALIGN); 610 if (!IS_OVERSIZE(tsize, alloc_size)) { 611 MEMALIGN_HEADER_ALLOC(ret_addr, shift, 612 alloc_buf); 613 break; 614 } else { 615 size = MAX_CACHED + 8; 616 } 617 /* FALLTHROUGH */ 618 case DATA_AND_TAIL_OVERSIZE: 619 /* 620 * Split off the tail fragment and 621 * return it back to oversize freelist. 622 * Create memalign header and adjust 623 * the size for the piece of 624 * (head fragment + data). 625 */ 626 taddr = ALIGN(ret_addr + size, 627 MTMALLOC_MIN_ALIGN); 628 data_sz = (size_t)(taddr - 629 (uintptr_t)alloc_buf); 630 orig = (oversize_t *)((uintptr_t)alloc_buf - 631 OVSZ_HEADER_SIZE); 632 tsize = orig->size - data_sz; 633 orig->size = data_sz; 634 MEMALIGN_HEADER_ALLOC(ret_buf, shift, 635 alloc_buf); 636 tsize -= OVSZ_HEADER_SIZE; 637 tail = oversize_header_alloc(taddr, tsize); 638 free_oversize(tail); 639 break; 640 case HEAD_AND_TAIL_OVERSIZE: 641 /* 642 * Split off the head fragment. 643 * We try to free up tail-end when we can 644 * extend data size to (MAX_CACHED + 8) 645 * and remain tail-end oversized. 646 * The bottom line is all split pieces 647 * should be oversize in size. 648 */ 649 orig = (oversize_t *)((uintptr_t)alloc_buf - 650 OVSZ_HEADER_SIZE); 651 tsize = orig->size - (MAX_CACHED + 8 + 652 OVSZ_HEADER_SIZE + shift + 653 MTMALLOC_MIN_ALIGN); 654 655 if (!IS_OVERSIZE(tsize, alloc_size)) { 656 /* 657 * If the chunk is not big enough 658 * to make both data and tail oversize 659 * we just keep them as one piece. 660 */ 661 big = oversize_header_alloc(ret_addr - 662 OVSZ_HEADER_SIZE, 663 orig->size - shift); 664 (void) mutex_lock(&oversize_lock); 665 insert_hash(big); 666 (void) mutex_unlock(&oversize_lock); 667 orig->size = shift - OVSZ_HEADER_SIZE; 668 free_oversize(orig); 669 break; 670 } else { 671 /* 672 * extend data size > MAX_CACHED 673 * and handle it as head, data, tail 674 * are all oversized. 675 */ 676 size = MAX_CACHED + 8; 677 } 678 /* FALLTHROUGH */ 679 case ALL_OVERSIZE: 680 /* 681 * split off the head and tail fragments, 682 * return them back to the oversize freelist. 683 * Alloc oversize header for data seg. 684 */ 685 orig = (oversize_t *)((uintptr_t)alloc_buf - 686 OVSZ_HEADER_SIZE); 687 tsize = orig->size; 688 orig->size = shift - OVSZ_HEADER_SIZE; 689 free_oversize(orig); 690 691 taddr = ALIGN(ret_addr + size, 692 MTMALLOC_MIN_ALIGN); 693 data_sz = taddr - ret_addr; 694 assert(tsize > (shift + data_sz + 695 OVSZ_HEADER_SIZE)); 696 tail_sz = tsize - 697 (shift + data_sz + OVSZ_HEADER_SIZE); 698 699 /* create oversize header for data seg */ 700 big = oversize_header_alloc(ret_addr - 701 OVSZ_HEADER_SIZE, data_sz); 702 (void) mutex_lock(&oversize_lock); 703 insert_hash(big); 704 (void) mutex_unlock(&oversize_lock); 705 706 /* create oversize header for tail fragment */ 707 tail = oversize_header_alloc(taddr, tail_sz); 708 free_oversize(tail); 709 break; 710 default: 711 /* should not reach here */ 712 assert(0); 713 } 714 } 715 return (ret_buf); 716 } 717 718 719 void * 720 valloc(size_t size) 721 { 722 static unsigned pagesize; 723 724 if (size == 0) 725 return (NULL); 726 727 if (!pagesize) 728 pagesize = sysconf(_SC_PAGESIZE); 729 730 return (memalign(pagesize, size)); 731 } 732 733 void 734 mallocctl(int cmd, long value) 735 { 736 switch (cmd) { 737 738 case MTDEBUGPATTERN: 739 /* 740 * Reinitialize free blocks in case malloc() is called prior 741 * to mallocctl(). 742 */ 743 if (value && !(debugopt & cmd)) { 744 reinit++; 745 debugopt |= cmd; 746 reinit_cpu_list(); 747 } 748 /*FALLTHRU*/ 749 case MTDOUBLEFREE: 750 case MTINITBUFFER: 751 if (value) 752 debugopt |= cmd; 753 else 754 debugopt &= ~cmd; 755 break; 756 case MTCHUNKSIZE: 757 if (value >= MINSIZE && value <= MAXSIZE) 758 requestsize = value; 759 break; 760 default: 761 break; 762 } 763 } 764 765 /* 766 * Initialization function, called from the init section of the library. 767 * No locking is required here because we are single-threaded during 768 * library initialization. 769 */ 770 static void 771 setup_caches(void) 772 { 773 uintptr_t oldbrk; 774 uintptr_t newbrk; 775 776 size_t cache_space_needed; 777 size_t padding; 778 779 curcpu_func new_curcpu; 780 uint_t new_cpu_mask; 781 percpu_t *new_cpu_list; 782 783 uint_t i, j; 784 uintptr_t list_addr; 785 786 /* 787 * Get a decent "current cpu identifier", to be used to reduce 788 * contention. Eventually, this should be replaced by an interface 789 * to get the actual CPU sequence number in libthread/liblwp. 790 */ 791 new_curcpu = (curcpu_func)thr_self; 792 if ((ncpus = 2 * sysconf(_SC_NPROCESSORS_CONF)) <= 0) 793 ncpus = 4; /* decent default value */ 794 795 /* round ncpus up to a power of 2 */ 796 while (ncpus & (ncpus - 1)) 797 ncpus++; 798 799 new_cpu_mask = ncpus - 1; /* create the cpu mask */ 800 801 /* 802 * We now do some magic with the brk. What we want to get in the 803 * end is a bunch of well-aligned stuff in a big initial allocation. 804 * Along the way, we do sanity checks to make sure no one else has 805 * touched the brk (which shouldn't happen, but it's always good to 806 * check) 807 * 808 * First, make sure sbrk is sane, and store the current brk in oldbrk. 809 */ 810 oldbrk = (uintptr_t)sbrk(0); 811 if ((void *)oldbrk == (void *)-1) 812 abort(); /* sbrk is broken -- we're doomed. */ 813 814 /* 815 * Now, align the brk to a multiple of CACHE_COHERENCY_UNIT, so that 816 * the percpu structures and cache lists will be properly aligned. 817 * 818 * 2. All hunks will be page-aligned, assuming HUNKSIZE >= PAGESIZE, 819 * so they can be paged out individually. 820 */ 821 newbrk = ALIGN(oldbrk, CACHE_COHERENCY_UNIT); 822 if (newbrk != oldbrk && (uintptr_t)sbrk(newbrk - oldbrk) != oldbrk) 823 abort(); /* sbrk is broken -- we're doomed. */ 824 825 /* 826 * For each cpu, there is one percpu_t and a list of caches 827 */ 828 cache_space_needed = ncpus * (sizeof (percpu_t) + CACHELIST_SIZE); 829 830 new_cpu_list = (percpu_t *)sbrk(cache_space_needed); 831 832 if (new_cpu_list == (percpu_t *)-1 || 833 (uintptr_t)new_cpu_list != newbrk) 834 abort(); /* sbrk is broken -- we're doomed. */ 835 836 /* 837 * Finally, align the brk to HUNKSIZE so that all hunks are 838 * page-aligned, to avoid edge-effects. 839 */ 840 841 newbrk = (uintptr_t)new_cpu_list + cache_space_needed; 842 843 padding = ALIGN(newbrk, HUNKSIZE) - newbrk; 844 845 if (padding > 0 && (uintptr_t)sbrk(padding) != newbrk) 846 abort(); /* sbrk is broken -- we're doomed. */ 847 848 list_addr = ((uintptr_t)new_cpu_list + (sizeof (percpu_t) * ncpus)); 849 850 /* initialize the percpu list */ 851 for (i = 0; i < ncpus; i++) { 852 new_cpu_list[i].mt_caches = (cache_head_t *)list_addr; 853 for (j = 0; j < NUM_CACHES; j++) { 854 new_cpu_list[i].mt_caches[j].mt_cache = NULL; 855 new_cpu_list[i].mt_caches[j].mt_hint = NULL; 856 } 857 858 (void) mutex_init(&new_cpu_list[i].mt_parent_lock, 859 USYNC_THREAD, NULL); 860 861 /* get the correct cache list alignment */ 862 list_addr += CACHELIST_SIZE; 863 } 864 865 /* 866 * Initialize oversize listhead 867 */ 868 oversize_list.next_bysize = &oversize_list; 869 oversize_list.prev_bysize = &oversize_list; 870 oversize_list.next_byaddr = &oversize_list; 871 oversize_list.prev_byaddr = &oversize_list; 872 oversize_list.addr = NULL; 873 oversize_list.size = 0; /* sentinal */ 874 875 /* 876 * Now install the global variables. 877 */ 878 curcpu = new_curcpu; 879 cpu_mask = new_cpu_mask; 880 cpu_list = new_cpu_list; 881 } 882 883 static void 884 create_cache(cache_t *cp, size_t size, uint_t chunksize) 885 { 886 long nblocks; 887 888 (void) mutex_init(&cp->mt_cache_lock, USYNC_THREAD, NULL); 889 cp->mt_size = size; 890 cp->mt_freelist = ((caddr_t)cp + sizeof (cache_t)); 891 cp->mt_span = chunksize * HUNKSIZE - sizeof (cache_t); 892 cp->mt_hunks = chunksize; 893 /* 894 * rough calculation. We will need to adjust later. 895 */ 896 nblocks = cp->mt_span / cp->mt_size; 897 nblocks >>= 3; 898 if (nblocks == 0) { /* less than 8 free blocks in this pool */ 899 int32_t numblocks = 0; 900 long i = cp->mt_span; 901 size_t sub = cp->mt_size; 902 uchar_t mask = 0; 903 904 while (i > sub) { 905 numblocks++; 906 i -= sub; 907 } 908 nblocks = numblocks; 909 cp->mt_arena = (caddr_t)ALIGN(cp->mt_freelist + 8, 8); 910 cp->mt_nfree = numblocks; 911 while (numblocks--) { 912 mask |= 0x80 >> numblocks; 913 } 914 *(cp->mt_freelist) = mask; 915 } else { 916 cp->mt_arena = (caddr_t)ALIGN((caddr_t)cp->mt_freelist + 917 nblocks, 32); 918 /* recompute nblocks */ 919 nblocks = (uintptr_t)((caddr_t)cp->mt_freelist + 920 cp->mt_span - cp->mt_arena) / cp->mt_size; 921 cp->mt_nfree = ((nblocks >> 3) << 3); 922 /* Set everything to free */ 923 (void) memset(cp->mt_freelist, 0xff, nblocks >> 3); 924 } 925 926 if (debugopt & MTDEBUGPATTERN) 927 copy_pattern(FREEPATTERN, cp->mt_arena, cp->mt_size * nblocks); 928 929 cp->mt_next = NULL; 930 } 931 932 static void 933 reinit_cpu_list(void) 934 { 935 oversize_t *wp = oversize_list.next_bysize; 936 percpu_t *cpuptr; 937 cache_t *thiscache; 938 cache_head_t *cachehead; 939 940 /* Reinitialize free oversize blocks. */ 941 (void) mutex_lock(&oversize_lock); 942 if (debugopt & MTDEBUGPATTERN) 943 for (; wp != &oversize_list; wp = wp->next_bysize) 944 copy_pattern(FREEPATTERN, wp->addr, wp->size); 945 (void) mutex_unlock(&oversize_lock); 946 947 /* Reinitialize free blocks. */ 948 for (cpuptr = &cpu_list[0]; cpuptr < &cpu_list[ncpus]; cpuptr++) { 949 (void) mutex_lock(&cpuptr->mt_parent_lock); 950 for (cachehead = &cpuptr->mt_caches[0]; cachehead < 951 &cpuptr->mt_caches[NUM_CACHES]; cachehead++) { 952 for (thiscache = cachehead->mt_cache; thiscache != NULL; 953 thiscache = thiscache->mt_next) { 954 (void) mutex_lock(&thiscache->mt_cache_lock); 955 if (thiscache->mt_nfree == 0) { 956 (void) mutex_unlock( 957 &thiscache->mt_cache_lock); 958 continue; 959 } 960 if (thiscache != NULL) 961 reinit_cache(thiscache); 962 (void) mutex_unlock(&thiscache->mt_cache_lock); 963 } 964 } 965 (void) mutex_unlock(&cpuptr->mt_parent_lock); 966 } 967 reinit = 0; 968 } 969 970 static void 971 reinit_cache(cache_t *thiscache) 972 { 973 uint32_t *freeblocks; /* not a uintptr_t on purpose */ 974 int32_t i, n; 975 caddr_t ret; 976 977 freeblocks = (uint32_t *)thiscache->mt_freelist; 978 while (freeblocks < (uint32_t *)thiscache->mt_arena) { 979 if (*freeblocks & 0xffffffff) { 980 for (i = 0; i < 32; i++) { 981 if (FLIP_EM(*freeblocks) & (0x80000000 >> i)) { 982 n = (uintptr_t)(((freeblocks - 983 (uint32_t *)thiscache->mt_freelist) 984 << 5) + i) * thiscache->mt_size; 985 ret = thiscache->mt_arena + n; 986 ret += OVERHEAD; 987 copy_pattern(FREEPATTERN, ret, 988 thiscache->mt_size); 989 } 990 } 991 } 992 freeblocks++; 993 } 994 } 995 996 static void * 997 malloc_internal(size_t size, percpu_t *cpuptr) 998 { 999 cache_head_t *cachehead; 1000 cache_t *thiscache, *hintcache; 1001 int32_t i, n, logsz, bucket; 1002 uint32_t index; 1003 uint32_t *freeblocks; /* not a uintptr_t on purpose */ 1004 caddr_t ret; 1005 1006 logsz = MIN_CACHED_SHIFT; 1007 1008 while (size > (1 << logsz)) 1009 logsz++; 1010 1011 bucket = logsz - MIN_CACHED_SHIFT; 1012 1013 (void) mutex_lock(&cpuptr->mt_parent_lock); 1014 1015 /* 1016 * Find a cache of the appropriate size with free buffers. 1017 * 1018 * We don't need to lock each cache as we check their mt_nfree count, 1019 * since: 1020 * 1. We are only looking for caches with mt_nfree > 0. If a 1021 * free happens during our search, it will increment mt_nfree, 1022 * which will not effect the test. 1023 * 2. Allocations can decrement mt_nfree, but they can't happen 1024 * as long as we hold mt_parent_lock. 1025 */ 1026 1027 cachehead = &cpuptr->mt_caches[bucket]; 1028 1029 /* Search through the list, starting at the mt_hint */ 1030 thiscache = cachehead->mt_hint; 1031 1032 while (thiscache != NULL && thiscache->mt_nfree == 0) 1033 thiscache = thiscache->mt_next; 1034 1035 if (thiscache == NULL) { 1036 /* wrap around -- search up to the hint */ 1037 thiscache = cachehead->mt_cache; 1038 hintcache = cachehead->mt_hint; 1039 1040 while (thiscache != NULL && thiscache != hintcache && 1041 thiscache->mt_nfree == 0) 1042 thiscache = thiscache->mt_next; 1043 1044 if (thiscache == hintcache) 1045 thiscache = NULL; 1046 } 1047 1048 1049 if (thiscache == NULL) { /* there are no free caches */ 1050 int32_t thisrequest = requestsize; 1051 int32_t buffer_size = (1 << logsz) + OVERHEAD; 1052 1053 thiscache = (cache_t *)morecore(thisrequest * HUNKSIZE); 1054 1055 if (thiscache == (cache_t *)-1) { 1056 (void) mutex_unlock(&cpuptr->mt_parent_lock); 1057 errno = EAGAIN; 1058 return (NULL); 1059 } 1060 create_cache(thiscache, buffer_size, thisrequest); 1061 1062 /* link in the new block at the beginning of the list */ 1063 thiscache->mt_next = cachehead->mt_cache; 1064 cachehead->mt_cache = thiscache; 1065 } 1066 1067 /* update the hint to the cache we found or created */ 1068 cachehead->mt_hint = thiscache; 1069 1070 /* thiscache now points to a cache with available space */ 1071 (void) mutex_lock(&thiscache->mt_cache_lock); 1072 1073 freeblocks = (uint32_t *)thiscache->mt_freelist; 1074 while (freeblocks < (uint32_t *)thiscache->mt_arena) { 1075 if (*freeblocks & 0xffffffff) 1076 break; 1077 freeblocks++; 1078 if (freeblocks < (uint32_t *)thiscache->mt_arena && 1079 *freeblocks & 0xffffffff) 1080 break; 1081 freeblocks++; 1082 if (freeblocks < (uint32_t *)thiscache->mt_arena && 1083 *freeblocks & 0xffffffff) 1084 break; 1085 freeblocks++; 1086 if (freeblocks < (uint32_t *)thiscache->mt_arena && 1087 *freeblocks & 0xffffffff) 1088 break; 1089 freeblocks++; 1090 } 1091 1092 /* 1093 * the offset from mt_freelist to freeblocks is the offset into 1094 * the arena. Be sure to include the offset into freeblocks 1095 * of the bitmask. n is the offset. 1096 */ 1097 for (i = 0; i < 32; ) { 1098 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++)) 1099 break; 1100 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++)) 1101 break; 1102 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++)) 1103 break; 1104 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++)) 1105 break; 1106 } 1107 index = 0x80000000 >> --i; 1108 1109 1110 *freeblocks &= FLIP_EM(~index); 1111 1112 thiscache->mt_nfree--; 1113 1114 (void) mutex_unlock(&thiscache->mt_cache_lock); 1115 (void) mutex_unlock(&cpuptr->mt_parent_lock); 1116 1117 n = (uintptr_t)(((freeblocks - (uint32_t *)thiscache->mt_freelist) << 5) 1118 + i) * thiscache->mt_size; 1119 /* 1120 * Now you have the offset in n, you've changed the free mask 1121 * in the freelist. Nothing left to do but find the block 1122 * in the arena and put the value of thiscache in the word 1123 * ahead of the handed out address and return the memory 1124 * back to the user. 1125 */ 1126 ret = thiscache->mt_arena + n; 1127 1128 /* Store the cache addr for this buf. Makes free go fast. */ 1129 *(uintptr_t *)ret = (uintptr_t)thiscache; 1130 1131 /* 1132 * This assert makes sure we don't hand out memory that is not 1133 * owned by this cache. 1134 */ 1135 assert(ret + thiscache->mt_size <= thiscache->mt_freelist + 1136 thiscache->mt_span); 1137 1138 ret += OVERHEAD; 1139 1140 assert(((uintptr_t)ret & 7) == 0); /* are we 8 byte aligned */ 1141 1142 if (reinit == 0 && (debugopt & MTDEBUGPATTERN)) 1143 if (verify_pattern(FREEPATTERN, ret, size)) 1144 abort(); /* reference after free */ 1145 1146 if (debugopt & MTINITBUFFER) 1147 copy_pattern(INITPATTERN, ret, size); 1148 return ((void *)ret); 1149 } 1150 1151 static void * 1152 morecore(size_t bytes) 1153 { 1154 void * ret; 1155 1156 if (bytes > LONG_MAX) { 1157 intptr_t wad; 1158 /* 1159 * The request size is too big. We need to do this in 1160 * chunks. Sbrk only takes an int for an arg. 1161 */ 1162 if (bytes == ULONG_MAX) 1163 return ((void *)-1); 1164 1165 ret = sbrk(0); 1166 wad = LONG_MAX; 1167 while (wad > 0) { 1168 if (sbrk(wad) == (void *)-1) { 1169 if (ret != sbrk(0)) 1170 (void) sbrk(-LONG_MAX); 1171 return ((void *)-1); 1172 } 1173 bytes -= LONG_MAX; 1174 wad = bytes; 1175 } 1176 } else 1177 ret = sbrk(bytes); 1178 1179 return (ret); 1180 } 1181 1182 1183 static void * 1184 oversize(size_t size) 1185 { 1186 caddr_t ret; 1187 oversize_t *big; 1188 1189 /* make sure we will not overflow */ 1190 if (size > MAX_MTMALLOC) { 1191 errno = ENOMEM; 1192 return (NULL); 1193 } 1194 1195 /* 1196 * Since we ensure every address we hand back is 1197 * MTMALLOC_MIN_ALIGN-byte aligned, ALIGNing size ensures that the 1198 * memory handed out is MTMALLOC_MIN_ALIGN-byte aligned at both ends. 1199 * This eases the implementation of MTDEBUGPATTERN and MTINITPATTERN, 1200 * particularly where coalescing occurs. 1201 */ 1202 size = ALIGN(size, MTMALLOC_MIN_ALIGN); 1203 1204 /* 1205 * The idea with the global lock is that we are sure to 1206 * block in the kernel anyway since given an oversize alloc 1207 * we are sure to have to call morecore(); 1208 */ 1209 (void) mutex_lock(&oversize_lock); 1210 1211 if ((big = find_oversize(size)) != NULL) { 1212 if (reinit == 0 && (debugopt & MTDEBUGPATTERN)) 1213 if (verify_pattern(FREEPATTERN, big->addr, size)) 1214 abort(); /* reference after free */ 1215 } else { 1216 /* Get more 8-byte aligned memory from heap */ 1217 ret = morecore(size + OVSZ_HEADER_SIZE); 1218 if (ret == (caddr_t)-1) { 1219 (void) mutex_unlock(&oversize_lock); 1220 errno = ENOMEM; 1221 return (NULL); 1222 } 1223 big = oversize_header_alloc((uintptr_t)ret, size); 1224 } 1225 ret = big->addr; 1226 1227 insert_hash(big); 1228 1229 if (debugopt & MTINITBUFFER) 1230 copy_pattern(INITPATTERN, ret, size); 1231 1232 (void) mutex_unlock(&oversize_lock); 1233 assert(((uintptr_t)ret & 7) == 0); /* are we 8 byte aligned */ 1234 return ((void *)ret); 1235 } 1236 1237 static void 1238 insert_oversize(oversize_t *op, oversize_t *nx) 1239 { 1240 oversize_t *sp; 1241 1242 /* locate correct insertion point in size-ordered list */ 1243 for (sp = oversize_list.next_bysize; 1244 sp != &oversize_list && (op->size > sp->size); 1245 sp = sp->next_bysize) 1246 ; 1247 1248 /* link into size-ordered list */ 1249 op->next_bysize = sp; 1250 op->prev_bysize = sp->prev_bysize; 1251 op->prev_bysize->next_bysize = op; 1252 op->next_bysize->prev_bysize = op; 1253 1254 /* 1255 * link item into address-ordered list 1256 * (caller provides insertion point as an optimization) 1257 */ 1258 op->next_byaddr = nx; 1259 op->prev_byaddr = nx->prev_byaddr; 1260 op->prev_byaddr->next_byaddr = op; 1261 op->next_byaddr->prev_byaddr = op; 1262 1263 } 1264 1265 static void 1266 unlink_oversize(oversize_t *lp) 1267 { 1268 /* unlink from address list */ 1269 lp->prev_byaddr->next_byaddr = lp->next_byaddr; 1270 lp->next_byaddr->prev_byaddr = lp->prev_byaddr; 1271 1272 /* unlink from size list */ 1273 lp->prev_bysize->next_bysize = lp->next_bysize; 1274 lp->next_bysize->prev_bysize = lp->prev_bysize; 1275 } 1276 1277 static void 1278 position_oversize_by_size(oversize_t *op) 1279 { 1280 oversize_t *sp; 1281 1282 if (op->size > op->next_bysize->size || 1283 op->size < op->prev_bysize->size) { 1284 1285 /* unlink from size list */ 1286 op->prev_bysize->next_bysize = op->next_bysize; 1287 op->next_bysize->prev_bysize = op->prev_bysize; 1288 1289 /* locate correct insertion point in size-ordered list */ 1290 for (sp = oversize_list.next_bysize; 1291 sp != &oversize_list && (op->size > sp->size); 1292 sp = sp->next_bysize) 1293 ; 1294 1295 /* link into size-ordered list */ 1296 op->next_bysize = sp; 1297 op->prev_bysize = sp->prev_bysize; 1298 op->prev_bysize->next_bysize = op; 1299 op->next_bysize->prev_bysize = op; 1300 } 1301 } 1302 1303 static void 1304 add_oversize(oversize_t *lp) 1305 { 1306 int merge_flags = INSERT_ONLY; 1307 oversize_t *nx; /* ptr to item right of insertion point */ 1308 oversize_t *pv; /* ptr to item left of insertion point */ 1309 uint_t size_lp, size_pv, size_nx; 1310 uintptr_t endp_lp, endp_pv, endp_nx; 1311 1312 /* 1313 * Locate insertion point in address-ordered list 1314 */ 1315 1316 for (nx = oversize_list.next_byaddr; 1317 nx != &oversize_list && (lp->addr > nx->addr); 1318 nx = nx->next_byaddr) 1319 ; 1320 1321 /* 1322 * Determine how to add chunk to oversize freelist 1323 */ 1324 1325 size_lp = OVSZ_HEADER_SIZE + lp->size; 1326 endp_lp = ALIGN((uintptr_t)lp + size_lp, MTMALLOC_MIN_ALIGN); 1327 size_lp = endp_lp - (uintptr_t)lp; 1328 1329 pv = nx->prev_byaddr; 1330 1331 if (pv->size) { 1332 1333 size_pv = OVSZ_HEADER_SIZE + pv->size; 1334 endp_pv = ALIGN((uintptr_t)pv + size_pv, 1335 MTMALLOC_MIN_ALIGN); 1336 size_pv = endp_pv - (uintptr_t)pv; 1337 1338 /* Check for adjacency with left chunk */ 1339 if ((uintptr_t)lp == endp_pv) 1340 merge_flags |= COALESCE_LEFT; 1341 } 1342 1343 if (nx->size) { 1344 1345 /* Check for adjacency with right chunk */ 1346 if ((uintptr_t)nx == endp_lp) { 1347 size_nx = OVSZ_HEADER_SIZE + nx->size; 1348 endp_nx = ALIGN((uintptr_t)nx + size_nx, 1349 MTMALLOC_MIN_ALIGN); 1350 size_nx = endp_nx - (uintptr_t)nx; 1351 merge_flags |= COALESCE_RIGHT; 1352 } 1353 } 1354 1355 /* 1356 * If MTDEBUGPATTERN==1, lp->addr will have been overwritten with 1357 * FREEPATTERN for lp->size bytes. If we can merge, the oversize 1358 * header(s) that will also become part of the memory available for 1359 * reallocation (ie lp and/or nx) must also be overwritten with 1360 * FREEPATTERN or we will SIGABRT when this memory is next reallocated. 1361 */ 1362 switch (merge_flags) { 1363 1364 case INSERT_ONLY: /* Coalescing not possible */ 1365 insert_oversize(lp, nx); 1366 break; 1367 case COALESCE_LEFT: 1368 pv->size += size_lp; 1369 position_oversize_by_size(pv); 1370 if (debugopt & MTDEBUGPATTERN) 1371 copy_pattern(FREEPATTERN, lp, OVSZ_HEADER_SIZE); 1372 break; 1373 case COALESCE_RIGHT: 1374 unlink_oversize(nx); 1375 lp->size += size_nx; 1376 insert_oversize(lp, pv->next_byaddr); 1377 if (debugopt & MTDEBUGPATTERN) 1378 copy_pattern(FREEPATTERN, nx, OVSZ_HEADER_SIZE); 1379 break; 1380 case COALESCE_WITH_BOTH_SIDES: /* Merge (with right) to the left */ 1381 pv->size += size_lp + size_nx; 1382 unlink_oversize(nx); 1383 position_oversize_by_size(pv); 1384 if (debugopt & MTDEBUGPATTERN) { 1385 copy_pattern(FREEPATTERN, lp, OVSZ_HEADER_SIZE); 1386 copy_pattern(FREEPATTERN, nx, OVSZ_HEADER_SIZE); 1387 } 1388 break; 1389 } 1390 } 1391 1392 /* 1393 * Find memory on our list that is at least size big. If we find a block that is 1394 * big enough, we break it up and return the associated oversize_t struct back 1395 * to the calling client. Any leftover piece of that block is returned to the 1396 * freelist. 1397 */ 1398 static oversize_t * 1399 find_oversize(size_t size) 1400 { 1401 oversize_t *wp = oversize_list.next_bysize; 1402 while (wp != &oversize_list && size > wp->size) 1403 wp = wp->next_bysize; 1404 1405 if (wp == &oversize_list) /* empty list or nothing big enough */ 1406 return (NULL); 1407 /* breaking up a chunk of memory */ 1408 if ((long)((wp->size - (size + OVSZ_HEADER_SIZE + MTMALLOC_MIN_ALIGN))) 1409 > MAX_CACHED) { 1410 caddr_t off; 1411 oversize_t *np; 1412 size_t osize; 1413 off = (caddr_t)ALIGN(wp->addr + size, 1414 MTMALLOC_MIN_ALIGN); 1415 osize = wp->size; 1416 wp->size = (size_t)(off - wp->addr); 1417 np = oversize_header_alloc((uintptr_t)off, 1418 osize - (wp->size + OVSZ_HEADER_SIZE)); 1419 if ((long)np->size < 0) 1420 abort(); 1421 unlink_oversize(wp); 1422 add_oversize(np); 1423 } else { 1424 unlink_oversize(wp); 1425 } 1426 return (wp); 1427 } 1428 1429 static void 1430 copy_pattern(uint32_t pattern, void *buf_arg, size_t size) 1431 { 1432 uint32_t *bufend = (uint32_t *)((char *)buf_arg + size); 1433 uint32_t *buf = buf_arg; 1434 1435 while (buf < bufend - 3) { 1436 buf[3] = buf[2] = buf[1] = buf[0] = pattern; 1437 buf += 4; 1438 } 1439 while (buf < bufend) 1440 *buf++ = pattern; 1441 } 1442 1443 static void * 1444 verify_pattern(uint32_t pattern, void *buf_arg, size_t size) 1445 { 1446 uint32_t *bufend = (uint32_t *)((char *)buf_arg + size); 1447 uint32_t *buf; 1448 1449 for (buf = buf_arg; buf < bufend; buf++) 1450 if (*buf != pattern) 1451 return (buf); 1452 return (NULL); 1453 } 1454 1455 static void 1456 free_oversize(oversize_t *ovp) 1457 { 1458 assert(((uintptr_t)ovp->addr & 7) == 0); /* are we 8 byte aligned */ 1459 assert(ovp->size > MAX_CACHED); 1460 1461 ovp->next_bysize = ovp->prev_bysize = NULL; 1462 ovp->next_byaddr = ovp->prev_byaddr = NULL; 1463 (void) mutex_lock(&oversize_lock); 1464 add_oversize(ovp); 1465 (void) mutex_unlock(&oversize_lock); 1466 } 1467 1468 static oversize_t * 1469 oversize_header_alloc(uintptr_t mem, size_t size) 1470 { 1471 oversize_t *ovsz_hdr; 1472 1473 assert(size > MAX_CACHED); 1474 1475 ovsz_hdr = (oversize_t *)mem; 1476 ovsz_hdr->prev_bysize = NULL; 1477 ovsz_hdr->next_bysize = NULL; 1478 ovsz_hdr->prev_byaddr = NULL; 1479 ovsz_hdr->next_byaddr = NULL; 1480 ovsz_hdr->hash_next = NULL; 1481 ovsz_hdr->size = size; 1482 mem += OVSZ_SIZE; 1483 *(uintptr_t *)mem = MTMALLOC_OVERSIZE_MAGIC; 1484 mem += OVERHEAD; 1485 assert(((uintptr_t)mem & 7) == 0); /* are we 8 byte aligned */ 1486 ovsz_hdr->addr = (caddr_t)mem; 1487 return (ovsz_hdr); 1488 } 1489 1490 static void 1491 malloc_prepare() 1492 { 1493 percpu_t *cpuptr; 1494 cache_head_t *cachehead; 1495 cache_t *thiscache; 1496 1497 (void) mutex_lock(&oversize_lock); 1498 for (cpuptr = &cpu_list[0]; cpuptr < &cpu_list[ncpus]; cpuptr++) { 1499 (void) mutex_lock(&cpuptr->mt_parent_lock); 1500 for (cachehead = &cpuptr->mt_caches[0]; 1501 cachehead < &cpuptr->mt_caches[NUM_CACHES]; 1502 cachehead++) { 1503 for (thiscache = cachehead->mt_cache; 1504 thiscache != NULL; 1505 thiscache = thiscache->mt_next) { 1506 (void) mutex_lock( 1507 &thiscache->mt_cache_lock); 1508 } 1509 } 1510 } 1511 } 1512 1513 static void 1514 malloc_release() 1515 { 1516 percpu_t *cpuptr; 1517 cache_head_t *cachehead; 1518 cache_t *thiscache; 1519 1520 for (cpuptr = &cpu_list[ncpus - 1]; cpuptr >= &cpu_list[0]; cpuptr--) { 1521 for (cachehead = &cpuptr->mt_caches[NUM_CACHES - 1]; 1522 cachehead >= &cpuptr->mt_caches[0]; 1523 cachehead--) { 1524 for (thiscache = cachehead->mt_cache; 1525 thiscache != NULL; 1526 thiscache = thiscache->mt_next) { 1527 (void) mutex_unlock( 1528 &thiscache->mt_cache_lock); 1529 } 1530 } 1531 (void) mutex_unlock(&cpuptr->mt_parent_lock); 1532 } 1533 (void) mutex_unlock(&oversize_lock); 1534 } 1535 1536 #pragma init(malloc_init) 1537 static void 1538 malloc_init(void) 1539 { 1540 /* 1541 * This works in the init section for this library 1542 * because setup_caches() doesn't call anything in libc 1543 * that calls malloc(). If it did, disaster would ensue. 1544 * 1545 * For this to work properly, this library must be the first 1546 * one to have its init section called (after libc) by the 1547 * dynamic linker. If some other library's init section 1548 * ran first and called malloc(), disaster would ensue. 1549 * Because this is an interposer library for malloc(), the 1550 * dynamic linker arranges for its init section to run first. 1551 */ 1552 (void) setup_caches(); 1553 1554 (void) pthread_atfork(malloc_prepare, malloc_release, malloc_release); 1555 }