```   1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
24  */
25 /*
27  * Use is subject to license terms.
28  */
29
30 #include "libm_inlines.h"
31
32 #ifdef __RESTRICT
33 #define restrict _Restrict
34 #else
35 #define restrict
36 #endif
37
38 /* float rsqrtf(float x)
39  *
40  * Method :
41  *      1. Special cases:
42  *              for x = NaN                             => QNaN;
43  *              for x = +Inf                            => 0;
44  *              for x is negative, -Inf                 => QNaN + invalid;
45  *              for x = +0                              => +Inf + divide-by-zero;
46  *              for x = -0                              => -Inf + divide-by-zero.
47  *      2. Computes reciprocal square root from:
48  *              x = m * 2**n
49  *      Where:
50  *              m = [0.5, 2),
51  *              n = ((exponent + 1) & ~1).
52  *      Then:
53  *              rsqrtf(x) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m))
54  *      2. Computes 1/sqrt(m) from:
55  *              1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm))
56  *      Where:
57  *              m = m0 + dm,
58  *              m0 = 0.5 * (1 + k/64) for m = [0.5,         0.5+127/256), k = [0, 63];
59  *              m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127];
60  *      Then:
61  *              1/sqrt(m0), 1/m0 are looked up in a table,
62  *              1/sqrt(1 + (1/m0)*dm) is computed using approximation:
63  *                      1/sqrt(1 + z) = ((a3 * z + a2) * z + a1) * z + a0
64  *                      where z = [-1/64, 1/64].
65  *
66  * Accuracy:
67  *      The maximum relative error for the approximating
68  *      polynomial is 2**(-27.87).
69  *      Maximum error observed: less than 0.534 ulp for the
70  *      whole float type range.
71  */
72
73 extern float sqrtf(float);
74
75 static const double __TBL_rsqrtf[] = {
76 /*
77 i = [0,63]
78  TBL[2*i  ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-24;
79  TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46)));
80 i = [64,127]
81  TBL[2*i  ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-23;
82  TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46)));
83 */
84  1.1920928955078125000e-07, 1.4142135623730951455e+00,
85  1.1737530048076923728e-07, 1.4032928308912466786e+00,
86  1.1559688683712121533e-07, 1.3926212476455828160e+00,
87  1.1387156016791044559e-07, 1.3821894809301762397e+00,
88  1.1219697840073529256e-07, 1.3719886811400707760e+00,
89  1.1057093523550724772e-07, 1.3620104492139977204e+00,
90  1.0899135044642856803e-07, 1.3522468075656264297e+00,
91  1.0745626100352112918e-07, 1.3426901732747025253e+00,
92  1.0596381293402777190e-07, 1.3333333333333332593e+00,
93  1.0451225385273972023e-07, 1.3241694217637887121e+00,
94  1.0309992609797297870e-07, 1.3151918984428583315e+00,
95  1.0172526041666667320e-07, 1.3063945294843617440e+00,
96  1.0038677014802631022e-07, 1.2977713690461003537e+00,
97  9.9083045860389616921e-08, 1.2893167424406084542e+00,
98  9.7812750400641022247e-08, 1.2810252304406970492e+00,
99  9.6574614319620251657e-08, 1.2728916546811681609e+00,
100  9.5367431640625005294e-08, 1.2649110640673517647e+00,
101  9.4190055941358019463e-08, 1.2570787221094177344e+00,
102  9.3041396722560978838e-08, 1.2493900951088485751e+00,
103  9.1920416039156631290e-08, 1.2418408411301324890e+00,
104  9.0826125372023804482e-08, 1.2344267996967352996e+00,
105  8.9757582720588234048e-08, 1.2271439821557927896e+00,
106  8.8713889898255812722e-08, 1.2199885626608373279e+00,
107  8.7694190014367814875e-08, 1.2129568697262453902e+00,
108  8.6697665127840911497e-08, 1.2060453783110545167e+00,
109  8.5723534058988761666e-08, 1.1992507023933782762e+00,
110  8.4771050347222225457e-08, 1.1925695879998878812e+00,
111  8.3839500343406599951e-08, 1.1859989066577618644e+00,
112  8.2928201426630432481e-08, 1.1795356492391770864e+00,
113  8.2036500336021511923e-08, 1.1731769201708264205e+00,
114  8.1163771609042551220e-08, 1.1669199319831564665e+00,
115  8.0309416118421050820e-08, 1.1607620001760186046e+00,
116  7.9472859700520828922e-08, 1.1547005383792514621e+00,
117  7.8653551868556699530e-08, 1.1487330537883810866e+00,
118  7.7850964604591830522e-08, 1.1428571428571427937e+00,
119  7.7064591224747481298e-08, 1.1370704872299222110e+00,
120  7.6293945312500001588e-08, 1.1313708498984760276e+00,
121  7.5538559715346535571e-08, 1.1257560715684669095e+00,
122  7.4797985600490195040e-08, 1.1202240672224077489e+00,
123  7.4071791565533974158e-08, 1.1147728228665882977e+00,
124  7.3359562800480773303e-08, 1.1094003924504582947e+00,
125  7.2660900297619054173e-08, 1.1041048949477667573e+00,
126  7.1975420106132072725e-08, 1.0988845115895122806e+00,
127  7.1302752628504667579e-08, 1.0937374832394612945e+00,
128  7.0642541956018514597e-08, 1.0886621079036347126e+00,
129  6.9994445240825691959e-08, 1.0836567383657542685e+00,
130  6.9358132102272723904e-08, 1.0787197799411873955e+00,
131  6.8733284065315314719e-08, 1.0738496883424388795e+00,
132  6.8119594029017853361e-08, 1.0690449676496975862e+00,
133  6.7516765763274335346e-08, 1.0643041683803828867e+00,
134  6.6924513432017540145e-08, 1.0596258856520350822e+00,
135  6.6342561141304348632e-08, 1.0550087574332591700e+00,
136  6.5770642510775861156e-08, 1.0504514628777803509e+00,
137  6.5208500267094023655e-08, 1.0459527207369814228e+00,
138  6.4655885858050847233e-08, 1.0415112878465908608e+00,
139  6.4112559086134451001e-08, 1.0371259576834630511e+00,
140  6.3578287760416665784e-08, 1.0327955589886446131e+00,
141  6.3052847365702481089e-08, 1.0285189544531601058e+00,
142  6.2536020747950822927e-08, 1.0242950394631678002e+00,
143  6.2027597815040656970e-08, 1.0201227409013413627e+00,
144  6.1527375252016127325e-08, 1.0160010160015240377e+00,
145  6.1035156250000001271e-08, 1.0119288512538813229e+00,
146  6.0550750248015869655e-08, 1.0079052613579393416e+00,
147  6.0073972687007873182e-08, 1.0039292882210537616e+00,
148  1.1920928955078125000e-07, 1.0000000000000000000e+00,
149  1.1737530048076923728e-07, 9.9227787671366762812e-01,
150  1.1559688683712121533e-07, 9.8473192783466190203e-01,
151  1.1387156016791044559e-07, 9.7735555485044178781e-01,
152  1.1219697840073529256e-07, 9.7014250014533187638e-01,
153  1.1057093523550724772e-07, 9.6308682468615358641e-01,
154  1.0899135044642856803e-07, 9.5618288746751489704e-01,
155  1.0745626100352112918e-07, 9.4942532655508271588e-01,
156  1.0596381293402777190e-07, 9.4280904158206335630e-01,
157  1.0451225385273972023e-07, 9.3632917756904454620e-01,
158  1.0309992609797297870e-07, 9.2998110995055427441e-01,
159  1.0172526041666667320e-07, 9.2376043070340119190e-01,
160  1.0038677014802631022e-07, 9.1766293548224708854e-01,
161  9.9083045860389616921e-08, 9.1168461167710357351e-01,
162  9.7812750400641022247e-08, 9.0582162731567661407e-01,
163  9.6574614319620251657e-08, 9.0007032074081916306e-01,
164  9.5367431640625005294e-08, 8.9442719099991585541e-01,
165  9.4190055941358019463e-08, 8.8888888888888883955e-01,
166  9.3041396722560978838e-08, 8.8345220859877238162e-01,
167  9.1920416039156631290e-08, 8.7811407991752277180e-01,
168  9.0826125372023804482e-08, 8.7287156094396955996e-01,
169  8.9757582720588234048e-08, 8.6772183127462465535e-01,
170  8.8713889898255812722e-08, 8.6266218562750729415e-01,
171  8.7694190014367814875e-08, 8.5769002787023584933e-01,
172  8.6697665127840911497e-08, 8.5280286542244176928e-01,
173  8.5723534058988761666e-08, 8.4799830400508802164e-01,
174  8.4771050347222225457e-08, 8.4327404271156780613e-01,
175  8.3839500343406599951e-08, 8.3862786937753464045e-01,
176  8.2928201426630432481e-08, 8.3405765622829908246e-01,
177  8.2036500336021511923e-08, 8.2956135578434020417e-01,
178  8.1163771609042551220e-08, 8.2513699700703468931e-01,
179  8.0309416118421050820e-08, 8.2078268166812329287e-01,
180  7.9472859700520828922e-08, 8.1649658092772603446e-01,
181  7.8653551868556699530e-08, 8.1227693210689522196e-01,
182  7.7850964604591830522e-08, 8.0812203564176865456e-01,
183  7.7064591224747481298e-08, 8.0403025220736967782e-01,
184  7.6293945312500001588e-08, 8.0000000000000004441e-01,
185  7.5538559715346535571e-08, 7.9602975216799132241e-01,
186  7.4797985600490195040e-08, 7.9211803438133943089e-01,
187  7.4071791565533974158e-08, 7.8826342253143455441e-01,
188  7.3359562800480773303e-08, 7.8446454055273617811e-01,
189  7.2660900297619054173e-08, 7.8072005835882651859e-01,
190  7.1975420106132072725e-08, 7.7702868988581130782e-01,
191  7.1302752628504667579e-08, 7.7338919123653082632e-01,
192  7.0642541956018514597e-08, 7.6980035891950104876e-01,
193  6.9994445240825691959e-08, 7.6626102817692109959e-01,
194  6.9358132102272723904e-08, 7.6277007139647390321e-01,
195  6.8733284065315314719e-08, 7.5932639660199918730e-01,
196  6.8119594029017853361e-08, 7.5592894601845450619e-01,
197  6.7516765763274335346e-08, 7.5257669470687782454e-01,
198  6.6924513432017540145e-08, 7.4926864926535519107e-01,
199  6.6342561141304348632e-08, 7.4600384659225105199e-01,
200  6.5770642510775861156e-08, 7.4278135270820744296e-01,
201  6.5208500267094023655e-08, 7.3960026163363878915e-01,
202  6.4655885858050847233e-08, 7.3645969431865865307e-01,
203  6.4112559086134451001e-08, 7.3335879762256905856e-01,
204  6.3578287760416665784e-08, 7.3029674334022143256e-01,
205  6.3052847365702481089e-08, 7.2727272727272729291e-01,
206  6.2536020747950822927e-08, 7.2428596834014824513e-01,
207  6.2027597815040656970e-08, 7.2133570773394584119e-01,
208  6.1527375252016127325e-08, 7.1842120810709964029e-01,
209  6.1035156250000001271e-08, 7.1554175279993270653e-01,
210  6.0550750248015869655e-08, 7.1269664509979835376e-01,
211  6.0073972687007873182e-08, 7.0988520753289097165e-01,
212 };
213
214 static const unsigned long long LCONST[] = {
215 0x3feffffffee7f18fULL,  /* A0 = 9.99999997962321453275e-01      */
216 0xbfdffffffe07e52fULL,  /* A1 =-4.99999998166077580600e-01      */
217 0x3fd801180ca296d9ULL,  /* A2 = 3.75066768969515586277e-01      */
218 0xbfd400fc0bbb8e78ULL,  /* A3 =-3.12560092408808548438e-01      */
219 };
220
221 static void
222 __vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey);
223
224 #pragma no_inline(__vrsqrtf_n)
225
226 #define RETURN(ret)                                             \
227 {                                                               \
228         *py = (ret);                                            \
229         py += stridey;                                          \
230         if (n_n == 0)                                           \
231         {                                                       \
232                 spx = px; spy = py;                             \
233                 ax0 = *(int*)px;                                \
234                 continue;                                       \
235         }                                                       \
236         n--;                                                    \
237         break;                                                  \
238 }
239
240 void
241 __vrsqrtf(int n, float * restrict px, int stridex, float * restrict py, int stridey)
242 {
243         float           *spx, *spy;
244         int             ax0, n_n;
245         float           res;
246         float           FONE = 1.0f, FTWO = 2.0f;
247
248         while (n > 1)
249         {
250                 n_n = 0;
251                 spx = px;
252                 spy = py;
253                 ax0 = *(int*)px;
254                 for (; n > 1 ; n--)
255                 {
256                         px += stridex;
257                         if (ax0 >= 0x7f800000)       /* X = NaN or Inf       */
258                         {
259                                 res = *(px - stridex);
260                                 RETURN (FONE / res)
261                         }
262
263                         py += stridey;
264
265                         if (ax0 < 0x00800000)                /* X = denormal, zero or negative       */
266                         {
267                                 py -= stridey;
268                                 res = *(px - stridex);
269
270                                 if ((ax0 & 0x7fffffff) == 0)        /* |X| = zero   */
271                                 {
272                                         RETURN (FONE / res)
273                                 }
274                                 else if (ax0 >= 0)   /* X = denormal */
275                                 {
276                                         double          A0 = ((double*)LCONST)[0];      /*  9.99999997962321453275e-01  */
277                                         double          A1 = ((double*)LCONST)[1];      /* -4.99999998166077580600e-01  */
278                                         double          A2 = ((double*)LCONST)[2];      /*  3.75066768969515586277e-01  */
279                                         double          A3 = ((double*)LCONST)[3];      /* -3.12560092408808548438e-01  */
280
281                                         double          res0, xx0, tbl_div0, tbl_sqrt0;
282                                         float           fres0;
283                                         int             iax0, si0, iexp0;
284
285                                         res = *(int*)&res;
286                                         res *= FTWO;
287                                         ax0 = *(int*)&res;
288                                         iexp0 = ax0 >> 24;
289                                         iexp0 = 0x3f + 0x4b - iexp0;
290                                         iexp0 = iexp0 << 23;
291
292                                         si0 = (ax0 >> 13) & 0x7f0;
293
294                                         tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
295                                         tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
296                                         iax0 = ax0 & 0x7ffe0000;
297                                         iax0 = ax0 - iax0;
298                                         xx0 = iax0 * tbl_div0;
299                                         res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
300
301                                         fres0 = res0;
302                                         iexp0 += *(int*)&fres0;
303                                         RETURN(*(float*)&iexp0)
304                                 }
305                                 else    /* X = negative */
306                                 {
307                                         RETURN (sqrtf(res))
308                                 }
309                         }
310                         n_n++;
311                         ax0 = *(int*)px;
312                 }
313                 if (n_n > 0)
314                         __vrsqrtf_n(n_n, spx, stridex, spy, stridey);
315         }
316
317         if (n > 0)
318         {
319                 ax0 = *(int*)px;
320
321                 if (ax0 >= 0x7f800000)       /* X = NaN or Inf       */
322                 {
323                         res = *px;
324                         *py = FONE / res;
325                 }
326                 else if (ax0 < 0x00800000)   /* X = denormal, zero or negative       */
327                 {
328                         res = *px;
329
330                         if ((ax0 & 0x7fffffff) == 0)        /* |X| = zero   */
331                         {
332                                 *py = FONE / res;
333                         }
334                         else if (ax0 >= 0)   /* X = denormal */
335                         {
336                                 double          A0 = ((double*)LCONST)[0];      /*  9.99999997962321453275e-01  */
337                                 double          A1 = ((double*)LCONST)[1];      /* -4.99999998166077580600e-01  */
338                                 double          A2 = ((double*)LCONST)[2];      /*  3.75066768969515586277e-01  */
339                                 double          A3 = ((double*)LCONST)[3];      /* -3.12560092408808548438e-01  */
340                                 double          res0, xx0, tbl_div0, tbl_sqrt0;
341                                 float           fres0;
342                                 int             iax0, si0, iexp0;
343
344                                 res = *(int*)&res;
345                                 res *= FTWO;
346                                 ax0 = *(int*)&res;
347                                 iexp0 = ax0 >> 24;
348                                 iexp0 = 0x3f + 0x4b - iexp0;
349                                 iexp0 = iexp0 << 23;
350
351                                 si0 = (ax0 >> 13) & 0x7f0;
352
353                                 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
354                                 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
355                                 iax0 = ax0 & 0x7ffe0000;
356                                 iax0 = ax0 - iax0;
357                                 xx0 = iax0 * tbl_div0;
358                                 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
359
360                                 fres0 = res0;
361                                 iexp0 += *(int*)&fres0;
362
363                                 *(int*)py = iexp0;
364                         }
365                         else    /* X = negative */
366                         {
367                                 *py = sqrtf(res);
368                         }
369                 }
370                 else
371                 {
372                         double          A0 = ((double*)LCONST)[0];      /*  9.99999997962321453275e-01  */
373                         double          A1 = ((double*)LCONST)[1];      /* -4.99999998166077580600e-01  */
374                         double          A2 = ((double*)LCONST)[2];      /*  3.75066768969515586277e-01  */
375                         double          A3 = ((double*)LCONST)[3];      /* -3.12560092408808548438e-01  */
376                         double          res0, xx0, tbl_div0, tbl_sqrt0;
377                         float           fres0;
378                         int             iax0, si0, iexp0;
379
380                         iexp0 = ax0 >> 24;
381                         iexp0 = 0x3f - iexp0;
382                         iexp0 = iexp0 << 23;
383
384                         si0 = (ax0 >> 13) & 0x7f0;
385
386                         tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
387                         tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
388                         iax0 = ax0 & 0x7ffe0000;
389                         iax0 = ax0 - iax0;
390                         xx0 = iax0 * tbl_div0;
391                         res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
392
393                         fres0 = res0;
394                         iexp0 += *(int*)&fres0;
395
396                         *(int*)py = iexp0;
397                 }
398         }
399 }
400
401 void
402 __vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey)
403 {
404         double          A0 = ((double*)LCONST)[0];      /*  9.99999997962321453275e-01  */
405         double          A1 = ((double*)LCONST)[1];      /* -4.99999998166077580600e-01  */
406         double          A2 = ((double*)LCONST)[2];      /*  3.75066768969515586277e-01  */
407         double          A3 = ((double*)LCONST)[3];      /* -3.12560092408808548438e-01  */
408         double          res0, xx0, tbl_div0, tbl_sqrt0;
409         float           fres0;
410         int             iax0, ax0, si0, iexp0;
411
412 #if defined(ARCH_v7) || defined(ARCH_v8)
413         double          res1, xx1, tbl_div1, tbl_sqrt1;
414         double          res2, xx2, tbl_div2, tbl_sqrt2;
415         float           fres1, fres2;
416         int             iax1, ax1, si1, iexp1;
417         int             iax2, ax2, si2, iexp2;
418
419         for(; n > 2 ; n -= 3)
420         {
421                 ax0 = *(int*)px;
422                 px += stridex;
423
424                 ax1 = *(int*)px;
425                 px += stridex;
426
427                 ax2 = *(int*)px;
428                 px += stridex;
429
430                 iexp0 = ax0 >> 24;
431                 iexp1 = ax1 >> 24;
432                 iexp2 = ax2 >> 24;
433                 iexp0 = 0x3f - iexp0;
434                 iexp1 = 0x3f - iexp1;
435                 iexp2 = 0x3f - iexp2;
436
437                 iexp0 = iexp0 << 23;
438                 iexp1 = iexp1 << 23;
439                 iexp2 = iexp2 << 23;
440
441                 si0 = (ax0 >> 13) & 0x7f0;
442                 si1 = (ax1 >> 13) & 0x7f0;
443                 si2 = (ax2 >> 13) & 0x7f0;
444
445                 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
446                 tbl_div1 = ((double*)((char*)__TBL_rsqrtf + si1))[0];
447                 tbl_div2 = ((double*)((char*)__TBL_rsqrtf + si2))[0];
448                 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
449                 tbl_sqrt1 = ((double*)((char*)__TBL_rsqrtf + si1))[1];
450                 tbl_sqrt2 = ((double*)((char*)__TBL_rsqrtf + si2))[1];
451                 iax0 = ax0 & 0x7ffe0000;
452                 iax1 = ax1 & 0x7ffe0000;
453                 iax2 = ax2 & 0x7ffe0000;
454                 iax0 = ax0 - iax0;
455                 iax1 = ax1 - iax1;
456                 iax2 = ax2 - iax2;
457                 xx0 = iax0 * tbl_div0;
458                 xx1 = iax1 * tbl_div1;
459                 xx2 = iax2 * tbl_div2;
460                 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
461                 res1 = tbl_sqrt1 * (((A3 * xx1 + A2) * xx1 + A1) * xx1 + A0);
462                 res2 = tbl_sqrt2 * (((A3 * xx2 + A2) * xx2 + A1) * xx2 + A0);
463
464                 fres0 = res0;
465                 fres1 = res1;
466                 fres2 = res2;
467
468                 iexp0 += *(int*)&fres0;
469                 iexp1 += *(int*)&fres1;
470                 iexp2 += *(int*)&fres2;
471                 *(int*)py = iexp0;
472                 py += stridey;
473                 *(int*)py = iexp1;
474                 py += stridey;
475                 *(int*)py = iexp2;
476                 py += stridey;
477         }
478 #endif
479         for(; n > 0 ; n--)
480         {
481                 ax0 = *(int*)px;
482                 px += stridex;
483
484                 iexp0 = ax0 >> 24;
485                 iexp0 = 0x3f - iexp0;
486                 iexp0 = iexp0 << 23;
487
488                 si0 = (ax0 >> 13) & 0x7f0;
489
490                 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
491                 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
492                 iax0 = ax0 & 0x7ffe0000;
493                 iax0 = ax0 - iax0;
494                 xx0 = iax0 * tbl_div0;
495                 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
496
497                 fres0 = res0;
498                 iexp0 += *(int*)&fres0;
499                 *(int*)py = iexp0;
500                 py += stridey;
501         }
502 }
```