1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #if defined(ELFOBJ)
31 #pragma weak nearbyint = __nearbyint
32 #endif
33
34 /*
35 * nearbyint(x) returns the nearest fp integer to x in the direction
36 * corresponding to the current rounding direction without raising
37 * the inexact exception.
38 *
39 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN,
40 * nearbyint(x) is also NaN.
41 */
42
43 #include "libm.h"
44 #include "fenv_synonyms.h"
45 #include <fenv.h>
46
47 double
48 __nearbyint(double x) {
49 union {
50 unsigned i[2];
51 double d;
52 } xx;
53 unsigned hx, sx, i, frac;
54 int rm, j;
55
56 xx.d = x;
57 sx = xx.i[HIWORD] & 0x80000000;
58 hx = xx.i[HIWORD] & ~0x80000000;
59
60 /* handle trivial cases */
61 if (hx >= 0x43300000) { /* x is nan, inf, or already integral */
62 if (hx >= 0x7ff00000) /* x is inf or nan */
63 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
64 return (hx >= 0x7ff80000 ? x : x + x);
65 /* assumes sparc-like QNaN */
66 #else
67 return (x + x);
68 #endif
69 return (x);
70 } else if ((hx | xx.i[LOWORD]) == 0) /* x is zero */
71 return (x);
72
73 /* get the rounding mode */
74 rm = fegetround();
75
76 /* flip the sense of directed roundings if x is negative */
77 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
78 rm = (FE_UPWARD + FE_DOWNWARD) - rm;
79
80 /* handle |x| < 1 */
81 if (hx < 0x3ff00000) {
82 if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
83 (hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
84 xx.i[HIWORD] = sx | 0x3ff00000;
85 else
86 xx.i[HIWORD] = sx;
87 xx.i[LOWORD] = 0;
88 return (xx.d);
89 }
90
91 /* round x at the integer bit */
92 j = 0x433 - (hx >> 20);
93 if (j >= 32) {
94 i = 1 << (j - 32);
95 frac = ((xx.i[HIWORD] << 1) << (63 - j)) |
96 (xx.i[LOWORD] >> (j - 32));
97 if (xx.i[LOWORD] & (i - 1))
98 frac |= 1;
99 if (!frac)
100 return (x);
101 xx.i[LOWORD] = 0;
102 xx.i[HIWORD] &= ~(i - 1);
103 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
104 ((frac > 0x80000000u) || ((frac == 0x80000000) &&
105 (xx.i[HIWORD] & i)))))
106 xx.i[HIWORD] += i;
107 } else {
108 i = 1 << j;
109 frac = (xx.i[LOWORD] << 1) << (31 - j);
110 if (!frac)
111 return (x);
112 xx.i[LOWORD] &= ~(i - 1);
113 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
114 (frac > 0x80000000u || ((frac == 0x80000000) &&
115 (xx.i[LOWORD] & i))))) {
116 xx.i[LOWORD] += i;
117 if (xx.i[LOWORD] == 0)
118 xx.i[HIWORD]++;
119 }
120 }
121 return (xx.d);
122 }