10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak cexp = __cexp
31
32 /* INDENT OFF */
33 /*
34 * dcomplex cexp(dcomplex z);
35 *
36 * x+iy x
37 * e = e (cos(y)+i*sin(y))
38 *
39 * Over/underflow issue
40 * --------------------
41 * exp(x) may be huge but cos(y) or sin(y) may be tiny. So we use
42 * function __k_cexp(x,&n) to return exp(x) = __k_cexp(x,&n)*2**n.
43 * Thus if exp(x+iy) = A + Bi and t = __k_cexp(x,&n), then
44 * A = t*cos(y)*2**n, B = t*sin(y)*2**n
45 *
46 * Purge off all exceptional arguments:
47 * (x,0) --> (exp(x),0) for all x, include inf and NaN
48 * (+inf, y) --> (+inf, NaN) for inf, nan
49 * (-inf, y) --> (+-0, +-0) for y = inf, nan
50 * (x,+-inf/NaN) --> (NaN,NaN) for finite x
|
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak __cexp = cexp
31
32 /* INDENT OFF */
33 /*
34 * dcomplex cexp(dcomplex z);
35 *
36 * x+iy x
37 * e = e (cos(y)+i*sin(y))
38 *
39 * Over/underflow issue
40 * --------------------
41 * exp(x) may be huge but cos(y) or sin(y) may be tiny. So we use
42 * function __k_cexp(x,&n) to return exp(x) = __k_cexp(x,&n)*2**n.
43 * Thus if exp(x+iy) = A + Bi and t = __k_cexp(x,&n), then
44 * A = t*cos(y)*2**n, B = t*sin(y)*2**n
45 *
46 * Purge off all exceptional arguments:
47 * (x,0) --> (exp(x),0) for all x, include inf and NaN
48 * (+inf, y) --> (+inf, NaN) for inf, nan
49 * (-inf, y) --> (+-0, +-0) for y = inf, nan
50 * (x,+-inf/NaN) --> (NaN,NaN) for finite x
|