```5261 libm should stop using synonyms.h
5298 fabs is 0-sized, confuses dis(1) and others
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Approved by: Gordon Ross <gwr@nexenta.com>```
 ``` `````` 41 * [-pi/2 , +pi/2], and let n = k mod 4. 42 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have 43 * 44 * n sin(x) cos(x) tan(x) 45 * ---------------------------------------------------------- 46 * 0 S C S/C 47 * 1 C -S -C/S 48 * 2 -S -C S/C 49 * 3 -C S -C/S 50 * ---------------------------------------------------------- 51 * 52 * Special cases: 53 * Let trig be any of sin, cos, or tan. 54 * trig(+-INF) is NaN, with signals; 55 * trig(NaN) is that NaN; 56 * 57 * Accuracy: 58 * computer TRIG(x) returns trig(x) nearly rounded. 59 */ 60 61 #pragma weak tanl = __tanl 62 63 #include "libm.h" 64 #include "longdouble.h" 65 66 long double 67 tanl(long double x) { 68 long double y[2], z = 0.0L; 69 int n, ix; 70 71 ix = *(int *) &x; /* High word of x */ 72 ix &= 0x7fffffff; 73 if (ix <= 0x3ffe9220) /* |x| ~< pi/4 */ 74 return (__k_tanl(x, z, 0)); 75 else if (ix >= 0x7fff0000) /* trig(Inf or NaN) is NaN */ 76 return (x - x); 77 else { /* argument reduction needed */ 78 n = __rem_pio2l(x, y); 79 return (__k_tanl(y[0], y[1], (n & 1))); 80 } 81 } ``` ``` `````` 41 * [-pi/2 , +pi/2], and let n = k mod 4. 42 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have 43 * 44 * n sin(x) cos(x) tan(x) 45 * ---------------------------------------------------------- 46 * 0 S C S/C 47 * 1 C -S -C/S 48 * 2 -S -C S/C 49 * 3 -C S -C/S 50 * ---------------------------------------------------------- 51 * 52 * Special cases: 53 * Let trig be any of sin, cos, or tan. 54 * trig(+-INF) is NaN, with signals; 55 * trig(NaN) is that NaN; 56 * 57 * Accuracy: 58 * computer TRIG(x) returns trig(x) nearly rounded. 59 */ 60 61 #pragma weak __tanl = tanl 62 63 #include "libm.h" 64 #include "longdouble.h" 65 66 long double 67 tanl(long double x) { 68 long double y[2], z = 0.0L; 69 int n, ix; 70 71 ix = *(int *) &x; /* High word of x */ 72 ix &= 0x7fffffff; 73 if (ix <= 0x3ffe9220) /* |x| ~< pi/4 */ 74 return (__k_tanl(x, z, 0)); 75 else if (ix >= 0x7fff0000) /* trig(Inf or NaN) is NaN */ 76 return (x - x); 77 else { /* argument reduction needed */ 78 n = __rem_pio2l(x, y); 79 return (__k_tanl(y[0], y[1], (n & 1))); 80 } 81 } ```