1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 /*
  26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 #if defined(ELFOBJ)
  31 #pragma weak jnl = __jnl
  32 #pragma weak ynl = __ynl
  33 #endif
  34 
  35 /*
  36  * floating point Bessel's function of the 1st and 2nd kind
  37  * of order n: jn(n,x),yn(n,x);
  38  *
  39  * Special cases:
  40  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
  41  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
  42  * Note 2. About jn(n,x), yn(n,x)
  43  *      For n=0, j0(x) is called,
  44  *      for n=1, j1(x) is called,
  45  *      for n<x, forward recursion us used starting
  46  *      from values of j0(x) and j1(x).
  47  *      for n>x, a continued fraction approximation to
  48  *      j(n,x)/j(n-1,x) is evaluated and then backward
  49  *      recursion is used starting from a supposed value
  50  *      for j(n,x). The resulting value of j(0,x) is
  51  *      compared with the actual value to correct the
  52  *      supposed value of j(n,x).
  53  *
  54  *      yn(n,x) is similar in all respects, except
  55  *      that forward recursion is used for all
  56  *      values of n>1.
  57  *
  58  */
  59 
  60 #include "libm.h"
  61 #include "longdouble.h"
  62 #include <float.h>        /* LDBL_MAX */
  63 
  64 #define GENERIC long double
  65 
  66 static const GENERIC
  67 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
  68 two  = 2.0L,
  69 zero = 0.0L,
  70 one  = 1.0L;
  71 
  72 GENERIC
  73 jnl(n, x) int n; GENERIC x; {
  74         int i, sgn;
  75         GENERIC a, b, temp, z, w;
  76 
  77         /*
  78          * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
  79          * Thus, J(-n,x) = J(n,-x)
  80          */
  81         if (n < 0) {
  82                 n = -n;
  83                 x = -x;
  84         }
  85         if (n == 0)
  86                 return (j0l(x));
  87         if (n == 1)
  88                 return (j1l(x));
  89         if (x != x)
  90                 return (x+x);
  91         if ((n&1) == 0)
  92                 sgn = 0;                        /* even n */
  93         else
  94                 sgn = signbitl(x);      /* old n  */
  95         x = fabsl(x);
  96         if (x == zero || !finitel(x)) b = zero;
  97         else if ((GENERIC)n <= x) {
  98                                         /*
  99                                          * Safe to use
 100                                          * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
 101                                          */
 102             if (x > 1.0e91L) {
 103                                 /*
 104                                  * x >> n**2
 105                                  *  Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 106                                  *   Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 107                                  *   Let s=sin(x), c=cos(x),
 108                                  *      xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 109                                  *
 110                                  *         n    sin(xn)*sqt2    cos(xn)*sqt2
 111                                  *      ----------------------------------
 112                                  *         0     s-c             c+s
 113                                  *         1    -s-c            -c+s
 114                                  *         2    -s+c            -c-s
 115                                  *         3     s+c             c-s
 116                                  */
 117                 switch (n&3) {
 118                     case 0: temp =  cosl(x)+sinl(x); break;
 119                     case 1: temp = -cosl(x)+sinl(x); break;
 120                     case 2: temp = -cosl(x)-sinl(x); break;
 121                     case 3: temp =  cosl(x)-sinl(x); break;
 122                 }
 123                 b = invsqrtpi*temp/sqrtl(x);
 124             } else {
 125                         a = j0l(x);
 126                         b = j1l(x);
 127                         for (i = 1; i < n; i++) {
 128                     temp = b;
 129                     b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
 130                     a = temp;
 131                         }
 132             }
 133         } else {
 134             if (x < 1e-17L) {        /* use J(n,x) = 1/n!*(x/2)^n */
 135                 b = powl(0.5L*x, (GENERIC)n);
 136                 if (b != zero) {
 137                     for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
 138                     b = b/a;
 139                 }
 140             } else {
 141                 /* use backward recurrence */
 142                 /*
 143                  *                      x      x^2      x^2
 144                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 145                  *                      2n  - 2(n+1) - 2(n+2)
 146                  *
 147                  *                      1      1        1
 148                  *  (for large x)   =  ----  ------   ------   .....
 149                  *                      2n   2(n+1)   2(n+2)
 150                  *                      -- - ------ - ------ -
 151                  *                       x     x         x
 152                  *
 153                  * Let w = 2n/x and h=2/x, then the above quotient
 154                  * is equal to the continued fraction:
 155                  *                  1
 156                  *      = -----------------------
 157                  *                     1
 158                  *         w - -----------------
 159                  *                        1
 160                  *              w+h - ---------
 161                  *                     w+2h - ...
 162                  *
 163                  * To determine how many terms needed, let
 164                  * Q(0) = w, Q(1) = w(w+h) - 1,
 165                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 166                  * When Q(k) > 1e4   good for single
 167                  * When Q(k) > 1e9   good for double
 168                  * When Q(k) > 1e17  good for quaduple
 169                  */
 170             /* determin k */
 171                 GENERIC t, v;
 172                 double q0, q1, h, tmp; int k, m;
 173                 w  = (n+n)/(double)x; h = 2.0/(double)x;
 174                 q0 = w;  z = w+h; q1 = w*z - 1.0; k = 1;
 175                 while (q1 < 1.0e17) {
 176                         k += 1; z += h;
 177                         tmp = z*q1 - q0;
 178                         q0 = q1;
 179                         q1 = tmp;
 180                 }
 181                 m = n+n;
 182                 for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
 183                 a = t;
 184                 b = one;
 185                 /*
 186                  * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 187                  * hence, if n*(log(2n/x)) > ...
 188                  *  single 8.8722839355e+01
 189                  *  double 7.09782712893383973096e+02
 190                  *  long double 1.1356523406294143949491931077970765006170e+04
 191                  *  then recurrent value may overflow and the result is
 192                  *  likely underflow to zero
 193                  */
 194                 tmp = n;
 195                 v = two/x;
 196                 tmp = tmp*logl(fabsl(v*tmp));
 197                 if (tmp < 1.1356523406294143949491931077970765e+04L) {
 198                                 for (i = n-1; i > 0; i--) {
 199                         temp = b;
 200                         b = ((i+i)/x)*b - a;
 201                         a = temp;
 202                     }
 203                 } else {
 204                                 for (i = n-1; i > 0; i--) {
 205                         temp = b;
 206                         b = ((i+i)/x)*b - a;
 207                         a = temp;
 208                         if (b > 1e1000L) {
 209                             a /= b;
 210                             t /= b;
 211                             b  = 1.0;
 212                         }
 213                     }
 214                 }
 215                 b = (t*j0l(x)/b);
 216             }
 217         }
 218         if (sgn == 1)
 219                 return (-b);
 220         else
 221                 return (b);
 222 }
 223 
 224 GENERIC ynl(n, x)
 225 int n; GENERIC x; {
 226         int i;
 227         int sign;
 228         GENERIC a, b, temp;
 229 
 230         if (x != x)
 231                 return (x+x);
 232         if (x <= zero) {
 233                 if (x == zero)
 234                         return (-one/zero);
 235                 else
 236                         return (zero/zero);
 237         }
 238         sign = 1;
 239         if (n < 0) {
 240                 n = -n;
 241                 if ((n&1) == 1) sign = -1;
 242         }
 243         if (n == 0)
 244                 return (y0l(x));
 245         if (n == 1)
 246                 return (sign*y1l(x));
 247         if (!finitel(x))
 248                 return (zero);
 249 
 250         if (x > 1.0e91L) {   /* x >> n**2
 251                                     Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 252                                     Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 253                                     Let s = sin(x), c = cos(x),
 254                                         xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
 255 
 256                                            n    sin(xn)*sqt2    cos(xn)*sqt2
 257                                         ----------------------------------
 258                                            0     s-c             c+s
 259                                            1    -s-c            -c+s
 260                                            2    -s+c            -c-s
 261                                            3     s+c             c-s
 262                                  */
 263                 switch (n&3) {
 264                     case 0: temp =  sinl(x)-cosl(x); break;
 265                     case 1: temp = -sinl(x)-cosl(x); break;
 266                     case 2: temp = -sinl(x)+cosl(x); break;
 267                     case 3: temp =  sinl(x)+cosl(x); break;
 268                 }
 269                 b = invsqrtpi*temp/sqrtl(x);
 270         } else {
 271                 a = y0l(x);
 272                 b = y1l(x);
 273                 /*
 274                  * fix 1262058 and take care of non-default rounding
 275                  */
 276                 for (i = 1; i < n; i++) {
 277                         temp = b;
 278                         b *= (GENERIC) (i + i) / x;
 279                         if (b <= -LDBL_MAX)
 280                                 break;
 281                         b -= a;
 282                         a = temp;
 283                 }
 284         }
 285         if (sign > 0)
 286                 return (b);
 287         else
 288                 return (-b);
 289 }