Print this page
8527 tty buffer/queue sizes should be larger
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/io/pts.c
+++ new/usr/src/uts/common/io/pts.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 24 */
25 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
26 26 /* All Rights Reserved */
27 27
28 28
29 29
30 30 /*
31 31 * Pseudo Terminal Slave Driver.
32 32 *
33 33 * The pseudo-tty subsystem simulates a terminal connection, where the master
34 34 * side represents the terminal and the slave represents the user process's
35 35 * special device end point. The master device is set up as a cloned device
36 36 * where its major device number is the major for the clone device and its minor
37 37 * device number is the major for the ptm driver. There are no nodes in the file
38 38 * system for master devices. The master pseudo driver is opened using the
39 39 * open(2) system call with /dev/ptmx as the device parameter. The clone open
40 40 * finds the next available minor device for the ptm major device.
41 41 *
42 42 * A master device is available only if it and its corresponding slave device
43 43 * are not already open. When the master device is opened, the corresponding
44 44 * slave device is automatically locked out. Only one open is allowed on a
45 45 * master device. Multiple opens are allowed on the slave device. After both
46 46 * the master and slave have been opened, the user has two file descriptors
47 47 * which are the end points of a full duplex connection composed of two streams
48 48 * which are automatically connected at the master and slave drivers. The user
49 49 * may then push modules onto either side of the stream pair.
50 50 *
51 51 * The master and slave drivers pass all messages to their adjacent queues.
52 52 * Only the M_FLUSH needs some processing. Because the read queue of one side
53 53 * is connected to the write queue of the other, the FLUSHR flag is changed to
54 54 * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
55 55 * message is sent to the slave device which will render the device
56 56 * unusable. The process on the slave side gets the EIO when attempting to write
57 57 * on that stream but it will be able to read any data remaining on the stream
58 58 * head read queue. When all the data has been read, read() returns 0
59 59 * indicating that the stream can no longer be used. On the last close of the
60 60 * slave device, a 0-length message is sent to the master device. When the
61 61 * application on the master side issues a read() or getmsg() and 0 is returned,
62 62 * the user of the master device decides whether to issue a close() that
63 63 * dismantles the pseudo-terminal subsystem. If the master device is not closed,
64 64 * the pseudo-tty subsystem will be available to another user to open the slave
65 65 * device.
66 66 *
67 67 * Synchronization:
68 68 *
69 69 * All global data synchronization between ptm/pts is done via global
70 70 * ptms_lock mutex which is initialized at system boot time from
71 71 * ptms_initspace (called from space.c).
72 72 *
73 73 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
74 74 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
75 75 *
76 76 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
77 77 * which allow reader locks to be reacquired by the same thread (usual
78 78 * reader/writer locks can't be used for that purpose since it is illegal for
79 79 * a thread to acquire a lock it already holds, even as a reader). The sole
80 80 * purpose of these macros is to guarantee that the peer queue will not
81 81 * disappear (due to closing peer) while it is used. It is safe to use
82 82 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
83 83 * they are not real locks but reference counts).
84 84 *
85 85 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
86 86 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
87 87 * be set to appropriate queues *after* qprocson() is called during open (to
88 88 * prevent peer from accessing the queue with incomplete plumbing) and set to
89 89 * NULL before qprocsoff() is called during close.
90 90 *
91 91 * The pt_nullmsg field is only used in open/close routines and it is also
92 92 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
93 93 * holds.
94 94 *
95 95 * Lock Ordering:
96 96 *
97 97 * If both ptms_lock and per-pty lock should be held, ptms_lock should always
98 98 * be entered first, followed by per-pty lock.
99 99 *
100 100 * See ptms.h, ptm.c and ptms_conf.c fore more information.
101 101 *
102 102 */
103 103
104 104 #include <sys/types.h>
105 105 #include <sys/param.h>
106 106 #include <sys/sysmacros.h>
107 107 #include <sys/stream.h>
108 108 #include <sys/stropts.h>
109 109 #include <sys/stat.h>
110 110 #include <sys/errno.h>
111 111 #include <sys/debug.h>
112 112 #include <sys/cmn_err.h>
113 113 #include <sys/ptms.h>
114 114 #include <sys/systm.h>
115 115 #include <sys/modctl.h>
116 116 #include <sys/conf.h>
117 117 #include <sys/ddi.h>
118 118 #include <sys/sunddi.h>
119 119 #include <sys/cred.h>
120 120 #include <sys/zone.h>
121 121
122 122 #ifdef DEBUG
123 123 int pts_debug = 0;
124 124 #define DBG(a) if (pts_debug) cmn_err(CE_NOTE, a)
125 125 #else
126 126 #define DBG(a)
127 127 #endif
128 128
129 129 static int ptsopen(queue_t *, dev_t *, int, int, cred_t *);
130 130 static int ptsclose(queue_t *, int, cred_t *);
131 131 static void ptswput(queue_t *, mblk_t *);
↓ open down ↓ |
131 lines elided |
↑ open up ↑ |
132 132 static void ptsrsrv(queue_t *);
133 133 static void ptswsrv(queue_t *);
134 134
135 135 /*
136 136 * Slave Stream Pseudo Terminal Module: stream data structure definitions
137 137 */
138 138 static struct module_info pts_info = {
139 139 0xface,
140 140 "pts",
141 141 0,
142 - 512,
143 - 512,
142 + _TTY_BUFSIZ,
143 + _TTY_BUFSIZ,
144 144 128
145 145 };
146 146
147 147 static struct qinit ptsrint = {
148 148 NULL,
149 149 (int (*)()) ptsrsrv,
150 150 ptsopen,
151 151 ptsclose,
152 152 NULL,
153 153 &pts_info,
154 154 NULL
155 155 };
156 156
157 157 static struct qinit ptswint = {
158 158 (int (*)()) ptswput,
159 159 (int (*)()) ptswsrv,
160 160 NULL,
161 161 NULL,
162 162 NULL,
163 163 &pts_info,
164 164 NULL
165 165 };
166 166
167 167 static struct streamtab ptsinfo = {
168 168 &ptsrint,
169 169 &ptswint,
170 170 NULL,
171 171 NULL
172 172 };
173 173
↓ open down ↓ |
20 lines elided |
↑ open up ↑ |
174 174 static int pts_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
175 175 static int pts_attach(dev_info_t *, ddi_attach_cmd_t);
176 176 static int pts_detach(dev_info_t *, ddi_detach_cmd_t);
177 177
178 178 #define PTS_CONF_FLAG (D_NEW | D_MP)
179 179
180 180 /*
181 181 * this will define (struct cb_ops cb_pts_ops) and (struct dev_ops pts_ops)
182 182 */
183 183 DDI_DEFINE_STREAM_OPS(pts_ops, nulldev, nulldev, \
184 - pts_attach, pts_detach, nodev, \
185 - pts_devinfo, PTS_CONF_FLAG, &ptsinfo, ddi_quiesce_not_supported);
184 + pts_attach, pts_detach, nodev, \
185 + pts_devinfo, PTS_CONF_FLAG, &ptsinfo, ddi_quiesce_not_supported);
186 186
187 187 /*
188 188 * Module linkage information for the kernel.
189 189 */
190 190
191 191 static struct modldrv modldrv = {
192 192 &mod_driverops, /* Type of module. This one is a pseudo driver */
193 193 "Slave Stream Pseudo Terminal driver 'pts'",
194 194 &pts_ops, /* driver ops */
195 195 };
196 196
197 197 static struct modlinkage modlinkage = {
198 198 MODREV_1,
199 199 &modldrv,
200 200 NULL
201 201 };
202 202
203 203 int
204 204 _init(void)
205 205 {
206 206 int rc;
207 207
208 208 if ((rc = mod_install(&modlinkage)) == 0)
209 209 ptms_init();
210 210 return (rc);
211 211 }
212 212
213 213
214 214 int
215 215 _fini(void)
216 216 {
217 217 return (mod_remove(&modlinkage));
218 218 }
219 219
220 220 int
221 221 _info(struct modinfo *modinfop)
222 222 {
223 223 return (mod_info(&modlinkage, modinfop));
224 224 }
225 225
226 226 static int
227 227 pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
228 228 {
229 229 if (cmd != DDI_ATTACH)
230 230 return (DDI_FAILURE);
231 231
232 232 mutex_enter(&ptms_lock);
233 233 pts_dip = devi;
234 234 mutex_exit(&ptms_lock);
235 235
236 236 return (DDI_SUCCESS);
237 237 }
238 238
239 239 /*ARGSUSED*/
240 240 static int
241 241 pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
242 242 {
243 243 if (cmd != DDI_DETACH)
244 244 return (DDI_FAILURE);
245 245
246 246 /*
247 247 * For now, pts cannot be detached.
248 248 */
249 249 return (DDI_FAILURE);
250 250 }
251 251
252 252 /*ARGSUSED*/
253 253 static int
254 254 pts_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
255 255 void **result)
256 256 {
257 257 int error;
258 258
259 259 switch (infocmd) {
260 260 case DDI_INFO_DEVT2DEVINFO:
261 261 if (pts_dip == NULL) {
262 262 error = DDI_FAILURE;
263 263 } else {
264 264 *result = (void *)pts_dip;
265 265 error = DDI_SUCCESS;
266 266 }
267 267 break;
268 268 case DDI_INFO_DEVT2INSTANCE:
269 269 *result = (void *)0;
270 270 error = DDI_SUCCESS;
271 271 break;
272 272 default:
273 273 error = DDI_FAILURE;
274 274 }
275 275 return (error);
276 276 }
277 277
278 278 /* ARGSUSED */
279 279 /*
280 280 * Open the slave device. Reject a clone open and do not allow the
281 281 * driver to be pushed. If the slave/master pair is locked or if
282 282 * the master is not open, return EACCESS.
283 283 * Upon success, store the write queue pointer in private data and
284 284 * set the PTSOPEN bit in the pt_state field.
285 285 */
286 286 static int
287 287 ptsopen(
288 288 queue_t *rqp, /* pointer to the read side queue */
289 289 dev_t *devp, /* pointer to stream tail's dev */
290 290 int oflag, /* the user open(2) supplied flags */
291 291 int sflag, /* open state flag */
292 292 cred_t *credp) /* credentials */
293 293 {
294 294 struct pt_ttys *ptsp;
295 295 mblk_t *mp;
296 296 mblk_t *mop; /* ptr to a setopts message block */
297 297 minor_t dminor = getminor(*devp);
298 298 struct stroptions *sop;
299 299
300 300 DDBG("entering ptsopen(%d)", dminor);
301 301
302 302 if (sflag != 0) {
303 303 return (EINVAL);
304 304 }
305 305
306 306 mutex_enter(&ptms_lock);
307 307 ptsp = ptms_minor2ptty(dminor);
308 308
309 309 if (ptsp == NULL) {
310 310 mutex_exit(&ptms_lock);
311 311 return (ENXIO);
312 312 }
313 313 mutex_enter(&ptsp->pt_lock);
314 314
315 315 /*
316 316 * Prevent opens from zones other than the one blessed by ptm. We
317 317 * can't even allow the global zone to open all pts's, as it would
318 318 * otherwise inproperly be able to claim pts's already opened by zones.
319 319 */
320 320 if (ptsp->pt_zoneid != getzoneid()) {
321 321 mutex_exit(&ptsp->pt_lock);
322 322 mutex_exit(&ptms_lock);
323 323 return (EPERM);
324 324 }
325 325
326 326 /*
327 327 * Allow reopen of this device.
328 328 */
329 329 if (rqp->q_ptr != NULL) {
330 330 ASSERT(rqp->q_ptr == ptsp);
331 331 ASSERT(ptsp->pts_rdq == rqp);
332 332 mutex_exit(&ptsp->pt_lock);
333 333 mutex_exit(&ptms_lock);
334 334 return (0);
335 335 }
336 336
337 337 DDBGP("ptsopen: p = %p\n", (uintptr_t)ptsp);
338 338 DDBG("ptsopen: state = %x\n", ptsp->pt_state);
339 339
340 340
341 341 ASSERT(ptsp->pt_minor == dminor);
342 342
343 343 if ((ptsp->pt_state & PTLOCK) || !(ptsp->pt_state & PTMOPEN)) {
344 344 mutex_exit(&ptsp->pt_lock);
345 345 mutex_exit(&ptms_lock);
346 346 return (EAGAIN);
347 347 }
348 348
349 349 /*
350 350 * if already, open simply return...
351 351 */
352 352 if (ptsp->pt_state & PTSOPEN) {
353 353 ASSERT(rqp->q_ptr == ptsp);
354 354 ASSERT(ptsp->pts_rdq == rqp);
355 355 mutex_exit(&ptsp->pt_lock);
356 356 mutex_exit(&ptms_lock);
357 357 return (0);
358 358 }
359 359
360 360 /*
361 361 * Allocate message block for setting stream head options.
362 362 */
363 363 if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
364 364 mutex_exit(&ptsp->pt_lock);
365 365 mutex_exit(&ptms_lock);
366 366 return (ENOMEM);
367 367 }
368 368
369 369 /*
370 370 * Slave should send zero-length message to a master when it is
371 371 * closing. If memory is low at that time, master will not detect slave
372 372 * closes, this pty will not be deallocated. So, preallocate this
373 373 * zero-length message block early.
374 374 */
375 375 if ((mp = allocb(0, BPRI_MED)) == NULL) {
376 376 mutex_exit(&ptsp->pt_lock);
377 377 mutex_exit(&ptms_lock);
378 378 freemsg(mop);
379 379 return (ENOMEM);
380 380 }
381 381
382 382 ptsp->pt_state |= PTSOPEN;
383 383
384 384 WR(rqp)->q_ptr = rqp->q_ptr = ptsp;
385 385
386 386 mutex_exit(&ptsp->pt_lock);
387 387 mutex_exit(&ptms_lock);
388 388
389 389 qprocson(rqp);
390 390
391 391 /*
392 392 * After qprocson pts driver is fully plumbed into the stream and can
393 393 * send/receive messages. Setting pts_rdq will allow master side to send
394 394 * messages to the slave. This setting can't occur before qprocson() is
395 395 * finished because slave is not ready to process them.
396 396 */
397 397 PT_ENTER_WRITE(ptsp);
398 398 ptsp->pts_rdq = rqp;
399 399 ASSERT(ptsp->pt_nullmsg == NULL);
400 400 ptsp->pt_nullmsg = mp;
401 401 PT_EXIT_WRITE(ptsp);
↓ open down ↓ |
206 lines elided |
↑ open up ↑ |
402 402
403 403 /*
404 404 * set up hi/lo water marks on stream head read queue
405 405 * and add controlling tty if not set
406 406 */
407 407
408 408 mop->b_datap->db_type = M_SETOPTS;
409 409 mop->b_wptr += sizeof (struct stroptions);
410 410 sop = (struct stroptions *)mop->b_rptr;
411 411 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
412 - sop->so_hiwat = 512;
412 + sop->so_hiwat = _TTY_BUFSIZ;
413 413 sop->so_lowat = 256;
414 414 putnext(rqp, mop);
415 415
416 416 return (0);
417 417 }
418 418
419 419
420 420
421 421 /*
422 422 * Find the address to private data identifying the slave's write
423 423 * queue. Send a 0-length msg up the slave's read queue to designate
424 424 * the master is closing. Uattach the master from the slave by nulling
425 425 * out master's write queue field in private data.
426 426 */
427 427 /*ARGSUSED1*/
428 428 static int
429 429 ptsclose(queue_t *rqp, int flag, cred_t *credp)
430 430 {
431 431 struct pt_ttys *ptsp;
432 432 queue_t *wqp;
433 433 mblk_t *mp;
434 434 mblk_t *bp;
435 435
436 436 /*
437 437 * q_ptr should never be NULL in the close routine and it is checked in
438 438 * DEBUG kernel by ASSERT. For non-DEBUG kernel the attempt is made to
439 439 * behave gracefully.
440 440 */
441 441 ASSERT(rqp->q_ptr != NULL);
442 442 if (rqp->q_ptr == NULL) {
443 443 qprocsoff(rqp);
444 444 return (0);
445 445 }
446 446
447 447 ptsp = (struct pt_ttys *)rqp->q_ptr;
448 448
449 449 /*
450 450 * Slave is going to close and doesn't want any new messages coming
451 451 * from the master side, so set pts_rdq to NULL. This should be done
452 452 * before call to qprocsoff() since slave can't process additional
453 453 * messages from the master after qprocsoff is called.
454 454 */
455 455 PT_ENTER_WRITE(ptsp);
456 456 mp = ptsp->pt_nullmsg;
457 457 ptsp->pt_nullmsg = NULL;
458 458 ptsp->pts_rdq = NULL;
459 459 PT_EXIT_WRITE(ptsp);
460 460
461 461 /*
462 462 * Drain the ouput
463 463 */
464 464 wqp = WR(rqp);
465 465 PT_ENTER_READ(ptsp);
466 466 while ((bp = getq(wqp)) != NULL) {
467 467 if (ptsp->ptm_rdq) {
468 468 putnext(ptsp->ptm_rdq, bp);
469 469 } else if (bp->b_datap->db_type == M_IOCTL) {
470 470 bp->b_datap->db_type = M_IOCNAK;
471 471 freemsg(bp->b_cont);
472 472 bp->b_cont = NULL;
473 473 qreply(wqp, bp);
474 474 } else {
475 475 freemsg(bp);
476 476 }
477 477 }
478 478 /*
479 479 * qenable master side write queue so that it can flush
480 480 * its messages as slaves's read queue is going away
481 481 */
482 482 if (ptsp->ptm_rdq) {
483 483 if (mp)
484 484 putnext(ptsp->ptm_rdq, mp);
485 485 else
486 486 qenable(WR(ptsp->ptm_rdq));
487 487 } else
488 488 freemsg(mp);
489 489 PT_EXIT_READ(ptsp);
490 490
491 491 qprocsoff(rqp);
492 492
493 493 rqp->q_ptr = NULL;
494 494 WR(rqp)->q_ptr = NULL;
495 495
496 496 ptms_close(ptsp, PTSOPEN | PTSTTY);
497 497
498 498 return (0);
499 499 }
500 500
501 501
502 502 /*
503 503 * The wput procedure will only handle flush messages.
504 504 * All other messages are queued and the write side
505 505 * service procedure sends them off to the master side.
506 506 */
507 507 static void
508 508 ptswput(queue_t *qp, mblk_t *mp)
509 509 {
510 510 struct pt_ttys *ptsp;
511 511 struct iocblk *iocp;
512 512 unsigned char type = mp->b_datap->db_type;
513 513
514 514 DBG(("entering ptswput\n"));
515 515 ASSERT(qp->q_ptr);
516 516
517 517 ptsp = (struct pt_ttys *)qp->q_ptr;
518 518 PT_ENTER_READ(ptsp);
519 519 if (ptsp->ptm_rdq == NULL) {
520 520 DBG(("in write put proc but no master\n"));
521 521 /*
522 522 * NAK ioctl as slave side read queue is gone.
523 523 * Or else free the message.
524 524 */
525 525 if (mp->b_datap->db_type == M_IOCTL) {
526 526 mp->b_datap->db_type = M_IOCNAK;
527 527 freemsg(mp->b_cont);
528 528 mp->b_cont = NULL;
529 529 qreply(qp, mp);
530 530 } else
531 531 freemsg(mp);
532 532 PT_EXIT_READ(ptsp);
533 533 return;
534 534 }
535 535
536 536 if (type >= QPCTL) {
537 537 switch (type) {
538 538
539 539 /*
540 540 * if write queue request, flush slave's write
541 541 * queue and send FLUSHR to ptm. If read queue
542 542 * request, send FLUSHR to ptm.
543 543 */
544 544 case M_FLUSH:
545 545 DBG(("pts got flush request\n"));
546 546 if (*mp->b_rptr & FLUSHW) {
547 547
548 548 DBG(("got FLUSHW, flush pts write Q\n"));
549 549 if (*mp->b_rptr & FLUSHBAND)
550 550 /*
551 551 * if it is a FLUSHBAND, do flushband.
552 552 */
553 553 flushband(qp, *(mp->b_rptr + 1), FLUSHDATA);
554 554 else
555 555 flushq(qp, FLUSHDATA);
556 556
557 557 *mp->b_rptr &= ~FLUSHW;
558 558 if ((*mp->b_rptr & FLUSHR) == 0) {
559 559 /*
560 560 * FLUSHW only. Change to FLUSHR and putnext
561 561 * to ptm, then we are done.
562 562 */
563 563 *mp->b_rptr |= FLUSHR;
564 564 if (ptsp->ptm_rdq)
565 565 putnext(ptsp->ptm_rdq, mp);
566 566 break;
567 567 } else {
568 568 mblk_t *nmp;
569 569
570 570 /* It is a FLUSHRW. Duplicate the mblk */
571 571 nmp = copyb(mp);
572 572 if (nmp) {
573 573 /*
574 574 * Change FLUSHW to FLUSHR before
575 575 * putnext to ptm.
576 576 */
577 577 DBG(("putnext nmp(FLUSHR) to ptm\n"));
578 578 *nmp->b_rptr |= FLUSHR;
579 579 if (ptsp->ptm_rdq)
580 580 putnext(ptsp->ptm_rdq, nmp);
581 581 }
582 582 }
583 583 }
584 584 /*
585 585 * Since the packet module will toss any
586 586 * M_FLUSHES sent to the master's stream head
587 587 * read queue, we simply turn it around here.
588 588 */
589 589 if (*mp->b_rptr & FLUSHR) {
590 590 ASSERT(RD(qp)->q_first == NULL);
591 591 DBG(("qreply(qp) turning FLUSHR around\n"));
592 592 qreply(qp, mp);
593 593 } else {
594 594 freemsg(mp);
595 595 }
596 596 break;
597 597
598 598 case M_READ:
599 599 /* Caused by ldterm - can not pass to master */
600 600 freemsg(mp);
601 601 break;
602 602
603 603 default:
604 604 if (ptsp->ptm_rdq)
605 605 putnext(ptsp->ptm_rdq, mp);
606 606 break;
607 607 }
608 608 PT_EXIT_READ(ptsp);
609 609 return;
610 610 }
611 611
612 612 switch (type) {
613 613
614 614 case M_IOCTL:
615 615 /*
616 616 * For case PTSSTTY set the flag PTSTTY and ACK
617 617 * the ioctl so that the user program can push
618 618 * the associated modules to get tty semantics.
619 619 * See bugid 4025044
620 620 */
621 621 iocp = (struct iocblk *)mp->b_rptr;
622 622 switch (iocp->ioc_cmd) {
623 623 default:
624 624 break;
625 625
626 626 case PTSSTTY:
627 627 if (ptsp->pt_state & PTSTTY) {
628 628 mp->b_datap->db_type = M_IOCNAK;
629 629 iocp->ioc_error = EEXIST;
630 630 } else {
631 631 mp->b_datap->db_type = M_IOCACK;
632 632 mutex_enter(&ptsp->pt_lock);
633 633 ptsp->pt_state |= PTSTTY;
634 634 mutex_exit(&ptsp->pt_lock);
635 635 iocp->ioc_error = 0;
636 636 }
637 637 iocp->ioc_count = 0;
638 638 qreply(qp, mp);
639 639 PT_EXIT_READ(ptsp);
640 640 return;
641 641 }
642 642
643 643 default:
644 644 /*
645 645 * send other messages to the master
646 646 */
647 647 DBG(("put msg on slave's write queue\n"));
648 648 (void) putq(qp, mp);
649 649 break;
650 650 }
651 651
652 652 PT_EXIT_READ(ptsp);
653 653 DBG(("return from ptswput()\n"));
654 654 }
655 655
656 656
657 657 /*
658 658 * enable the write side of the master. This triggers the
659 659 * master to send any messages queued on its write side to
660 660 * the read side of this slave.
661 661 */
662 662 static void
663 663 ptsrsrv(queue_t *qp)
664 664 {
665 665 struct pt_ttys *ptsp;
666 666
667 667 DBG(("entering ptsrsrv\n"));
668 668 ASSERT(qp->q_ptr);
669 669
670 670 ptsp = (struct pt_ttys *)qp->q_ptr;
671 671 PT_ENTER_READ(ptsp);
672 672 if (ptsp->ptm_rdq == NULL) {
673 673 DBG(("in read srv proc but no master\n"));
674 674 PT_EXIT_READ(ptsp);
675 675 return;
676 676 }
677 677 qenable(WR(ptsp->ptm_rdq));
678 678 PT_EXIT_READ(ptsp);
679 679 DBG(("leaving ptsrsrv\n"));
680 680 }
681 681
682 682 /*
683 683 * If there are messages on this queue that can be sent to
684 684 * master, send them via putnext(). Else, if queued messages
685 685 * cannot be sent, leave them on this queue. If priority
686 686 * messages on this queue, send them to master no matter what.
687 687 */
688 688 static void
689 689 ptswsrv(queue_t *qp)
690 690 {
691 691 struct pt_ttys *ptsp;
692 692 queue_t *ptm_rdq;
693 693 mblk_t *mp;
694 694
695 695 DBG(("entering ptswsrv\n"));
696 696 ASSERT(qp->q_ptr);
697 697
698 698 ptsp = (struct pt_ttys *)qp->q_ptr;
699 699 PT_ENTER_READ(ptsp);
700 700 if (ptsp->ptm_rdq == NULL) {
701 701 DBG(("in write srv proc but no master\n"));
702 702 /*
703 703 * Free messages on the write queue and send
704 704 * NAK for any M_IOCTL type messages to wakeup
705 705 * the user process waiting for ACK/NAK from
706 706 * the ioctl invocation
707 707 */
708 708 while ((mp = getq(qp)) != NULL) {
709 709 if (mp->b_datap->db_type == M_IOCTL) {
710 710 mp->b_datap->db_type = M_IOCNAK;
711 711 freemsg(mp->b_cont);
712 712 mp->b_cont = NULL;
713 713 qreply(qp, mp);
714 714 } else
715 715 freemsg(mp);
716 716 }
717 717 PT_EXIT_READ(ptsp);
718 718 return;
719 719 } else {
720 720 ptm_rdq = ptsp->ptm_rdq;
721 721 }
722 722
723 723 /*
724 724 * while there are messages on this write queue...
725 725 */
726 726 while ((mp = getq(qp)) != NULL) {
727 727 /*
728 728 * if don't have control message and cannot put
729 729 * msg. on master's read queue, put it back on
730 730 * this queue.
731 731 */
732 732 if (mp->b_datap->db_type <= QPCTL &&
733 733 !bcanputnext(ptm_rdq, mp->b_band)) {
734 734 DBG(("put msg. back on Q\n"));
735 735 (void) putbq(qp, mp);
736 736 break;
737 737 }
738 738 /*
739 739 * else send the message up master's stream
740 740 */
741 741 DBG(("send message to master\n"));
742 742 putnext(ptm_rdq, mp);
743 743 }
744 744 DBG(("leaving ptswsrv\n"));
745 745 PT_EXIT_READ(ptsp);
746 746 }
↓ open down ↓ |
324 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX