1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 382 const char * const zone_default_initname = "/sbin/init"; 383 static char * const zone_prefix = "/zone/"; 384 static int zone_shutdown(zoneid_t zoneid); 385 static int zone_add_datalink(zoneid_t, datalink_id_t); 386 static int zone_remove_datalink(zoneid_t, datalink_id_t); 387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 388 static int zone_set_network(zoneid_t, zone_net_data_t *); 389 static int zone_get_network(zoneid_t, zone_net_data_t *); 390 391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 392 393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 397 zone_key_t); 398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 400 kmutex_t *); 401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 404 /* 405 * Bump this number when you alter the zone syscall interfaces; this is 406 * because we need to have support for previous API versions in libc 407 * to support patching; libc calls into the kernel to determine this number. 408 * 409 * Version 1 of the API is the version originally shipped with Solaris 10 410 * Version 2 alters the zone_create system call in order to support more 411 * arguments by moving the args into a structure; and to do better 412 * error reporting when zone_create() fails. 413 * Version 3 alters the zone_create system call in order to support the 414 * import of ZFS datasets to zones. 415 * Version 4 alters the zone_create system call in order to support 416 * Trusted Extensions. 417 * Version 5 alters the zone_boot system call, and converts its old 418 * bootargs parameter to be set by the zone_setattr API instead. 419 * Version 6 adds the flag argument to zone_create. 420 */ 421 static const int ZONE_SYSCALL_API_VERSION = 6; 422 423 /* 424 * Certain filesystems (such as NFS and autofs) need to know which zone 425 * the mount is being placed in. Because of this, we need to be able to 426 * ensure that a zone isn't in the process of being created/destroyed such 427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 428 * it gets added the list of mounted zones, it ends up on the wrong zone's 429 * mount list. Since a zone can't reside on an NFS file system, we don't 430 * have to worry about the zonepath itself. 431 * 432 * The following functions: block_mounts()/resume_mounts() and 433 * mount_in_progress()/mount_completed() are used by zones and the VFS 434 * layer (respectively) to synchronize zone state transitions and new 435 * mounts within a zone. This syncronization is on a per-zone basis, so 436 * activity for one zone will not interfere with activity for another zone. 437 * 438 * The semantics are like a reader-reader lock such that there may 439 * either be multiple mounts (or zone state transitions, if that weren't 440 * serialized by zonehash_lock) in progress at the same time, but not 441 * both. 442 * 443 * We use cv's so the user can ctrl-C out of the operation if it's 444 * taking too long. 445 * 446 * The semantics are such that there is unfair bias towards the 447 * "current" operation. This means that zone halt may starve if 448 * there is a rapid succession of new mounts coming in to the zone. 449 */ 450 /* 451 * Prevent new mounts from progressing to the point of calling 452 * VFS_MOUNT(). If there are already mounts in this "region", wait for 453 * them to complete. 454 */ 455 static int 456 block_mounts(zone_t *zp) 457 { 458 int retval = 0; 459 460 /* 461 * Since it may block for a long time, block_mounts() shouldn't be 462 * called with zonehash_lock held. 463 */ 464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 465 mutex_enter(&zp->zone_mount_lock); 466 while (zp->zone_mounts_in_progress > 0) { 467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 468 goto signaled; 469 } 470 /* 471 * A negative value of mounts_in_progress indicates that mounts 472 * have been blocked by (-mounts_in_progress) different callers 473 * (remotely possible if two threads enter zone_shutdown at the same 474 * time). 475 */ 476 zp->zone_mounts_in_progress--; 477 retval = 1; 478 signaled: 479 mutex_exit(&zp->zone_mount_lock); 480 return (retval); 481 } 482 483 /* 484 * The VFS layer may progress with new mounts as far as we're concerned. 485 * Allow them to progress if we were the last obstacle. 486 */ 487 static void 488 resume_mounts(zone_t *zp) 489 { 490 mutex_enter(&zp->zone_mount_lock); 491 if (++zp->zone_mounts_in_progress == 0) 492 cv_broadcast(&zp->zone_mount_cv); 493 mutex_exit(&zp->zone_mount_lock); 494 } 495 496 /* 497 * The VFS layer is busy with a mount; this zone should wait until all 498 * of its mounts are completed to progress. 499 */ 500 void 501 mount_in_progress(zone_t *zp) 502 { 503 mutex_enter(&zp->zone_mount_lock); 504 while (zp->zone_mounts_in_progress < 0) 505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 506 zp->zone_mounts_in_progress++; 507 mutex_exit(&zp->zone_mount_lock); 508 } 509 510 /* 511 * VFS is done with one mount; wake up any waiting block_mounts() 512 * callers if this is the last mount. 513 */ 514 void 515 mount_completed(zone_t *zp) 516 { 517 mutex_enter(&zp->zone_mount_lock); 518 if (--zp->zone_mounts_in_progress == 0) 519 cv_broadcast(&zp->zone_mount_cv); 520 mutex_exit(&zp->zone_mount_lock); 521 } 522 523 /* 524 * ZSD routines. 525 * 526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 527 * defined by the pthread_key_create() and related interfaces. 528 * 529 * Kernel subsystems may register one or more data items and/or 530 * callbacks to be executed when a zone is created, shutdown, or 531 * destroyed. 532 * 533 * Unlike the thread counterpart, destructor callbacks will be executed 534 * even if the data pointer is NULL and/or there are no constructor 535 * callbacks, so it is the responsibility of such callbacks to check for 536 * NULL data values if necessary. 537 * 538 * The locking strategy and overall picture is as follows: 539 * 540 * When someone calls zone_key_create(), a template ZSD entry is added to the 541 * global list "zsd_registered_keys", protected by zsd_key_lock. While 542 * holding that lock all the existing zones are marked as 543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 544 * zone_zsd list (protected by zone_lock). The global list is updated first 545 * (under zone_key_lock) to make sure that newly created zones use the 546 * most recent list of keys. Then under zonehash_lock we walk the zones 547 * and mark them. Similar locking is used in zone_key_delete(). 548 * 549 * The actual create, shutdown, and destroy callbacks are done without 550 * holding any lock. And zsd_flags are used to ensure that the operations 551 * completed so that when zone_key_create (and zone_create) is done, as well as 552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 553 * are completed. 554 * 555 * When new zones are created constructor callbacks for all registered ZSD 556 * entries will be called. That also uses the above two phases of marking 557 * what needs to be done, and then running the callbacks without holding 558 * any locks. 559 * 560 * The framework does not provide any locking around zone_getspecific() and 561 * zone_setspecific() apart from that needed for internal consistency, so 562 * callers interested in atomic "test-and-set" semantics will need to provide 563 * their own locking. 564 */ 565 566 /* 567 * Helper function to find the zsd_entry associated with the key in the 568 * given list. 569 */ 570 static struct zsd_entry * 571 zsd_find(list_t *l, zone_key_t key) 572 { 573 struct zsd_entry *zsd; 574 575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 576 if (zsd->zsd_key == key) { 577 return (zsd); 578 } 579 } 580 return (NULL); 581 } 582 583 /* 584 * Helper function to find the zsd_entry associated with the key in the 585 * given list. Move it to the front of the list. 586 */ 587 static struct zsd_entry * 588 zsd_find_mru(list_t *l, zone_key_t key) 589 { 590 struct zsd_entry *zsd; 591 592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 593 if (zsd->zsd_key == key) { 594 /* 595 * Move to head of list to keep list in MRU order. 596 */ 597 if (zsd != list_head(l)) { 598 list_remove(l, zsd); 599 list_insert_head(l, zsd); 600 } 601 return (zsd); 602 } 603 } 604 return (NULL); 605 } 606 607 void 608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 610 { 611 struct zsd_entry *zsdp; 612 struct zsd_entry *t; 613 struct zone *zone; 614 zone_key_t key; 615 616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 617 zsdp->zsd_data = NULL; 618 zsdp->zsd_create = create; 619 zsdp->zsd_shutdown = shutdown; 620 zsdp->zsd_destroy = destroy; 621 622 /* 623 * Insert in global list of callbacks. Makes future zone creations 624 * see it. 625 */ 626 mutex_enter(&zsd_key_lock); 627 key = zsdp->zsd_key = ++zsd_keyval; 628 ASSERT(zsd_keyval != 0); 629 list_insert_tail(&zsd_registered_keys, zsdp); 630 mutex_exit(&zsd_key_lock); 631 632 /* 633 * Insert for all existing zones and mark them as needing 634 * a create callback. 635 */ 636 mutex_enter(&zonehash_lock); /* stop the world */ 637 for (zone = list_head(&zone_active); zone != NULL; 638 zone = list_next(&zone_active, zone)) { 639 zone_status_t status; 640 641 mutex_enter(&zone->zone_lock); 642 643 /* Skip zones that are on the way down or not yet up */ 644 status = zone_status_get(zone); 645 if (status >= ZONE_IS_DOWN || 646 status == ZONE_IS_UNINITIALIZED) { 647 mutex_exit(&zone->zone_lock); 648 continue; 649 } 650 651 t = zsd_find_mru(&zone->zone_zsd, key); 652 if (t != NULL) { 653 /* 654 * A zsd_configure already inserted it after 655 * we dropped zsd_key_lock above. 656 */ 657 mutex_exit(&zone->zone_lock); 658 continue; 659 } 660 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 661 t->zsd_key = key; 662 t->zsd_create = create; 663 t->zsd_shutdown = shutdown; 664 t->zsd_destroy = destroy; 665 if (create != NULL) { 666 t->zsd_flags = ZSD_CREATE_NEEDED; 667 DTRACE_PROBE2(zsd__create__needed, 668 zone_t *, zone, zone_key_t, key); 669 } 670 list_insert_tail(&zone->zone_zsd, t); 671 mutex_exit(&zone->zone_lock); 672 } 673 mutex_exit(&zonehash_lock); 674 675 if (create != NULL) { 676 /* Now call the create callback for this key */ 677 zsd_apply_all_zones(zsd_apply_create, key); 678 } 679 /* 680 * It is safe for consumers to use the key now, make it 681 * globally visible. Specifically zone_getspecific() will 682 * always successfully return the zone specific data associated 683 * with the key. 684 */ 685 *keyp = key; 686 687 } 688 689 /* 690 * Function called when a module is being unloaded, or otherwise wishes 691 * to unregister its ZSD key and callbacks. 692 * 693 * Remove from the global list and determine the functions that need to 694 * be called under a global lock. Then call the functions without 695 * holding any locks. Finally free up the zone_zsd entries. (The apply 696 * functions need to access the zone_zsd entries to find zsd_data etc.) 697 */ 698 int 699 zone_key_delete(zone_key_t key) 700 { 701 struct zsd_entry *zsdp = NULL; 702 zone_t *zone; 703 704 mutex_enter(&zsd_key_lock); 705 zsdp = zsd_find_mru(&zsd_registered_keys, key); 706 if (zsdp == NULL) { 707 mutex_exit(&zsd_key_lock); 708 return (-1); 709 } 710 list_remove(&zsd_registered_keys, zsdp); 711 mutex_exit(&zsd_key_lock); 712 713 mutex_enter(&zonehash_lock); 714 for (zone = list_head(&zone_active); zone != NULL; 715 zone = list_next(&zone_active, zone)) { 716 struct zsd_entry *del; 717 718 mutex_enter(&zone->zone_lock); 719 del = zsd_find_mru(&zone->zone_zsd, key); 720 if (del == NULL) { 721 /* 722 * Somebody else got here first e.g the zone going 723 * away. 724 */ 725 mutex_exit(&zone->zone_lock); 726 continue; 727 } 728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 730 if (del->zsd_shutdown != NULL && 731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 733 DTRACE_PROBE2(zsd__shutdown__needed, 734 zone_t *, zone, zone_key_t, key); 735 } 736 if (del->zsd_destroy != NULL && 737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 738 del->zsd_flags |= ZSD_DESTROY_NEEDED; 739 DTRACE_PROBE2(zsd__destroy__needed, 740 zone_t *, zone, zone_key_t, key); 741 } 742 mutex_exit(&zone->zone_lock); 743 } 744 mutex_exit(&zonehash_lock); 745 kmem_free(zsdp, sizeof (*zsdp)); 746 747 /* Now call the shutdown and destroy callback for this key */ 748 zsd_apply_all_zones(zsd_apply_shutdown, key); 749 zsd_apply_all_zones(zsd_apply_destroy, key); 750 751 /* Now we can free up the zsdp structures in each zone */ 752 mutex_enter(&zonehash_lock); 753 for (zone = list_head(&zone_active); zone != NULL; 754 zone = list_next(&zone_active, zone)) { 755 struct zsd_entry *del; 756 757 mutex_enter(&zone->zone_lock); 758 del = zsd_find(&zone->zone_zsd, key); 759 if (del != NULL) { 760 list_remove(&zone->zone_zsd, del); 761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 762 kmem_free(del, sizeof (*del)); 763 } 764 mutex_exit(&zone->zone_lock); 765 } 766 mutex_exit(&zonehash_lock); 767 768 return (0); 769 } 770 771 /* 772 * ZSD counterpart of pthread_setspecific(). 773 * 774 * Since all zsd callbacks, including those with no create function, 775 * have an entry in zone_zsd, if the key is registered it is part of 776 * the zone_zsd list. 777 * Return an error if the key wasn't registerd. 778 */ 779 int 780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 781 { 782 struct zsd_entry *t; 783 784 mutex_enter(&zone->zone_lock); 785 t = zsd_find_mru(&zone->zone_zsd, key); 786 if (t != NULL) { 787 /* 788 * Replace old value with new 789 */ 790 t->zsd_data = (void *)data; 791 mutex_exit(&zone->zone_lock); 792 return (0); 793 } 794 mutex_exit(&zone->zone_lock); 795 return (-1); 796 } 797 798 /* 799 * ZSD counterpart of pthread_getspecific(). 800 */ 801 void * 802 zone_getspecific(zone_key_t key, zone_t *zone) 803 { 804 struct zsd_entry *t; 805 void *data; 806 807 mutex_enter(&zone->zone_lock); 808 t = zsd_find_mru(&zone->zone_zsd, key); 809 data = (t == NULL ? NULL : t->zsd_data); 810 mutex_exit(&zone->zone_lock); 811 return (data); 812 } 813 814 /* 815 * Function used to initialize a zone's list of ZSD callbacks and data 816 * when the zone is being created. The callbacks are initialized from 817 * the template list (zsd_registered_keys). The constructor callback is 818 * executed later (once the zone exists and with locks dropped). 819 */ 820 static void 821 zone_zsd_configure(zone_t *zone) 822 { 823 struct zsd_entry *zsdp; 824 struct zsd_entry *t; 825 826 ASSERT(MUTEX_HELD(&zonehash_lock)); 827 ASSERT(list_head(&zone->zone_zsd) == NULL); 828 mutex_enter(&zone->zone_lock); 829 mutex_enter(&zsd_key_lock); 830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 831 zsdp = list_next(&zsd_registered_keys, zsdp)) { 832 /* 833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 834 * should not have added anything to it. 835 */ 836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 837 838 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 839 t->zsd_key = zsdp->zsd_key; 840 t->zsd_create = zsdp->zsd_create; 841 t->zsd_shutdown = zsdp->zsd_shutdown; 842 t->zsd_destroy = zsdp->zsd_destroy; 843 if (zsdp->zsd_create != NULL) { 844 t->zsd_flags = ZSD_CREATE_NEEDED; 845 DTRACE_PROBE2(zsd__create__needed, 846 zone_t *, zone, zone_key_t, zsdp->zsd_key); 847 } 848 list_insert_tail(&zone->zone_zsd, t); 849 } 850 mutex_exit(&zsd_key_lock); 851 mutex_exit(&zone->zone_lock); 852 } 853 854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 855 856 /* 857 * Helper function to execute shutdown or destructor callbacks. 858 */ 859 static void 860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 861 { 862 struct zsd_entry *t; 863 864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 867 868 /* 869 * Run the callback solely based on what is registered for the zone 870 * in zone_zsd. The global list can change independently of this 871 * as keys are registered and unregistered and we don't register new 872 * callbacks for a zone that is in the process of going away. 873 */ 874 mutex_enter(&zone->zone_lock); 875 for (t = list_head(&zone->zone_zsd); t != NULL; 876 t = list_next(&zone->zone_zsd, t)) { 877 zone_key_t key = t->zsd_key; 878 879 /* Skip if no callbacks registered */ 880 881 if (ct == ZSD_SHUTDOWN) { 882 if (t->zsd_shutdown != NULL && 883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 885 DTRACE_PROBE2(zsd__shutdown__needed, 886 zone_t *, zone, zone_key_t, key); 887 } 888 } else { 889 if (t->zsd_destroy != NULL && 890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 891 t->zsd_flags |= ZSD_DESTROY_NEEDED; 892 DTRACE_PROBE2(zsd__destroy__needed, 893 zone_t *, zone, zone_key_t, key); 894 } 895 } 896 } 897 mutex_exit(&zone->zone_lock); 898 899 /* Now call the shutdown and destroy callback for this key */ 900 zsd_apply_all_keys(zsd_apply_shutdown, zone); 901 zsd_apply_all_keys(zsd_apply_destroy, zone); 902 903 } 904 905 /* 906 * Called when the zone is going away; free ZSD-related memory, and 907 * destroy the zone_zsd list. 908 */ 909 static void 910 zone_free_zsd(zone_t *zone) 911 { 912 struct zsd_entry *t, *next; 913 914 /* 915 * Free all the zsd_entry's we had on this zone. 916 */ 917 mutex_enter(&zone->zone_lock); 918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 919 next = list_next(&zone->zone_zsd, t); 920 list_remove(&zone->zone_zsd, t); 921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 922 kmem_free(t, sizeof (*t)); 923 } 924 list_destroy(&zone->zone_zsd); 925 mutex_exit(&zone->zone_lock); 926 927 } 928 929 /* 930 * Apply a function to all zones for particular key value. 931 * 932 * The applyfn has to drop zonehash_lock if it does some work, and 933 * then reacquire it before it returns. 934 * When the lock is dropped we don't follow list_next even 935 * if it is possible to do so without any hazards. This is 936 * because we want the design to allow for the list of zones 937 * to change in any arbitrary way during the time the 938 * lock was dropped. 939 * 940 * It is safe to restart the loop at list_head since the applyfn 941 * changes the zsd_flags as it does work, so a subsequent 942 * pass through will have no effect in applyfn, hence the loop will terminate 943 * in at worst O(N^2). 944 */ 945 static void 946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 947 { 948 zone_t *zone; 949 950 mutex_enter(&zonehash_lock); 951 zone = list_head(&zone_active); 952 while (zone != NULL) { 953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 954 /* Lock dropped - restart at head */ 955 zone = list_head(&zone_active); 956 } else { 957 zone = list_next(&zone_active, zone); 958 } 959 } 960 mutex_exit(&zonehash_lock); 961 } 962 963 /* 964 * Apply a function to all keys for a particular zone. 965 * 966 * The applyfn has to drop zonehash_lock if it does some work, and 967 * then reacquire it before it returns. 968 * When the lock is dropped we don't follow list_next even 969 * if it is possible to do so without any hazards. This is 970 * because we want the design to allow for the list of zsd callbacks 971 * to change in any arbitrary way during the time the 972 * lock was dropped. 973 * 974 * It is safe to restart the loop at list_head since the applyfn 975 * changes the zsd_flags as it does work, so a subsequent 976 * pass through will have no effect in applyfn, hence the loop will terminate 977 * in at worst O(N^2). 978 */ 979 static void 980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 981 { 982 struct zsd_entry *t; 983 984 mutex_enter(&zone->zone_lock); 985 t = list_head(&zone->zone_zsd); 986 while (t != NULL) { 987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 988 /* Lock dropped - restart at head */ 989 t = list_head(&zone->zone_zsd); 990 } else { 991 t = list_next(&zone->zone_zsd, t); 992 } 993 } 994 mutex_exit(&zone->zone_lock); 995 } 996 997 /* 998 * Call the create function for the zone and key if CREATE_NEEDED 999 * is set. 1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1001 * we wait for that thread to complete so that we can ensure that 1002 * all the callbacks are done when we've looped over all zones/keys. 1003 * 1004 * When we call the create function, we drop the global held by the 1005 * caller, and return true to tell the caller it needs to re-evalute the 1006 * state. 1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1008 * remains held on exit. 1009 */ 1010 static boolean_t 1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1012 zone_t *zone, zone_key_t key) 1013 { 1014 void *result; 1015 struct zsd_entry *t; 1016 boolean_t dropped; 1017 1018 if (lockp != NULL) { 1019 ASSERT(MUTEX_HELD(lockp)); 1020 } 1021 if (zone_lock_held) { 1022 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1023 } else { 1024 mutex_enter(&zone->zone_lock); 1025 } 1026 1027 t = zsd_find(&zone->zone_zsd, key); 1028 if (t == NULL) { 1029 /* 1030 * Somebody else got here first e.g the zone going 1031 * away. 1032 */ 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (B_FALSE); 1036 } 1037 dropped = B_FALSE; 1038 if (zsd_wait_for_inprogress(zone, t, lockp)) 1039 dropped = B_TRUE; 1040 1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1044 DTRACE_PROBE2(zsd__create__inprogress, 1045 zone_t *, zone, zone_key_t, key); 1046 mutex_exit(&zone->zone_lock); 1047 if (lockp != NULL) 1048 mutex_exit(lockp); 1049 1050 dropped = B_TRUE; 1051 ASSERT(t->zsd_create != NULL); 1052 DTRACE_PROBE2(zsd__create__start, 1053 zone_t *, zone, zone_key_t, key); 1054 1055 result = (*t->zsd_create)(zone->zone_id); 1056 1057 DTRACE_PROBE2(zsd__create__end, 1058 zone_t *, zone, voidn *, result); 1059 1060 ASSERT(result != NULL); 1061 if (lockp != NULL) 1062 mutex_enter(lockp); 1063 mutex_enter(&zone->zone_lock); 1064 t->zsd_data = result; 1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1066 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1067 cv_broadcast(&t->zsd_cv); 1068 DTRACE_PROBE2(zsd__create__completed, 1069 zone_t *, zone, zone_key_t, key); 1070 } 1071 if (!zone_lock_held) 1072 mutex_exit(&zone->zone_lock); 1073 return (dropped); 1074 } 1075 1076 /* 1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1078 * is set. 1079 * If some other thread gets here first and sets *_INPROGRESS, then 1080 * we wait for that thread to complete so that we can ensure that 1081 * all the callbacks are done when we've looped over all zones/keys. 1082 * 1083 * When we call the shutdown function, we drop the global held by the 1084 * caller, and return true to tell the caller it needs to re-evalute the 1085 * state. 1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1087 * remains held on exit. 1088 */ 1089 static boolean_t 1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1091 zone_t *zone, zone_key_t key) 1092 { 1093 struct zsd_entry *t; 1094 void *data; 1095 boolean_t dropped; 1096 1097 if (lockp != NULL) { 1098 ASSERT(MUTEX_HELD(lockp)); 1099 } 1100 if (zone_lock_held) { 1101 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1102 } else { 1103 mutex_enter(&zone->zone_lock); 1104 } 1105 1106 t = zsd_find(&zone->zone_zsd, key); 1107 if (t == NULL) { 1108 /* 1109 * Somebody else got here first e.g the zone going 1110 * away. 1111 */ 1112 if (!zone_lock_held) 1113 mutex_exit(&zone->zone_lock); 1114 return (B_FALSE); 1115 } 1116 dropped = B_FALSE; 1117 if (zsd_wait_for_creator(zone, t, lockp)) 1118 dropped = B_TRUE; 1119 1120 if (zsd_wait_for_inprogress(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1126 DTRACE_PROBE2(zsd__shutdown__inprogress, 1127 zone_t *, zone, zone_key_t, key); 1128 mutex_exit(&zone->zone_lock); 1129 if (lockp != NULL) 1130 mutex_exit(lockp); 1131 dropped = B_TRUE; 1132 1133 ASSERT(t->zsd_shutdown != NULL); 1134 data = t->zsd_data; 1135 1136 DTRACE_PROBE2(zsd__shutdown__start, 1137 zone_t *, zone, zone_key_t, key); 1138 1139 (t->zsd_shutdown)(zone->zone_id, data); 1140 DTRACE_PROBE2(zsd__shutdown__end, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 if (lockp != NULL) 1144 mutex_enter(lockp); 1145 mutex_enter(&zone->zone_lock); 1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1148 cv_broadcast(&t->zsd_cv); 1149 DTRACE_PROBE2(zsd__shutdown__completed, 1150 zone_t *, zone, zone_key_t, key); 1151 } 1152 if (!zone_lock_held) 1153 mutex_exit(&zone->zone_lock); 1154 return (dropped); 1155 } 1156 1157 /* 1158 * Call the destroy function for the zone and key if DESTROY_NEEDED 1159 * is set. 1160 * If some other thread gets here first and sets *_INPROGRESS, then 1161 * we wait for that thread to complete so that we can ensure that 1162 * all the callbacks are done when we've looped over all zones/keys. 1163 * 1164 * When we call the destroy function, we drop the global held by the 1165 * caller, and return true to tell the caller it needs to re-evalute the 1166 * state. 1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1168 * remains held on exit. 1169 */ 1170 static boolean_t 1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1172 zone_t *zone, zone_key_t key) 1173 { 1174 struct zsd_entry *t; 1175 void *data; 1176 boolean_t dropped; 1177 1178 if (lockp != NULL) { 1179 ASSERT(MUTEX_HELD(lockp)); 1180 } 1181 if (zone_lock_held) { 1182 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1183 } else { 1184 mutex_enter(&zone->zone_lock); 1185 } 1186 1187 t = zsd_find(&zone->zone_zsd, key); 1188 if (t == NULL) { 1189 /* 1190 * Somebody else got here first e.g the zone going 1191 * away. 1192 */ 1193 if (!zone_lock_held) 1194 mutex_exit(&zone->zone_lock); 1195 return (B_FALSE); 1196 } 1197 dropped = B_FALSE; 1198 if (zsd_wait_for_creator(zone, t, lockp)) 1199 dropped = B_TRUE; 1200 1201 if (zsd_wait_for_inprogress(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1207 DTRACE_PROBE2(zsd__destroy__inprogress, 1208 zone_t *, zone, zone_key_t, key); 1209 mutex_exit(&zone->zone_lock); 1210 if (lockp != NULL) 1211 mutex_exit(lockp); 1212 dropped = B_TRUE; 1213 1214 ASSERT(t->zsd_destroy != NULL); 1215 data = t->zsd_data; 1216 DTRACE_PROBE2(zsd__destroy__start, 1217 zone_t *, zone, zone_key_t, key); 1218 1219 (t->zsd_destroy)(zone->zone_id, data); 1220 DTRACE_PROBE2(zsd__destroy__end, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 if (lockp != NULL) 1224 mutex_enter(lockp); 1225 mutex_enter(&zone->zone_lock); 1226 t->zsd_data = NULL; 1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1229 cv_broadcast(&t->zsd_cv); 1230 DTRACE_PROBE2(zsd__destroy__completed, 1231 zone_t *, zone, zone_key_t, key); 1232 } 1233 if (!zone_lock_held) 1234 mutex_exit(&zone->zone_lock); 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any CREATE_NEEDED flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1248 DTRACE_PROBE2(zsd__wait__for__creator, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Wait for any INPROGRESS flag to be cleared. 1267 * Returns true if lockp was temporarily dropped while waiting. 1268 */ 1269 static boolean_t 1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1271 { 1272 boolean_t dropped = B_FALSE; 1273 1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1275 DTRACE_PROBE2(zsd__wait__for__inprogress, 1276 zone_t *, zone, struct zsd_entry *, t); 1277 if (lockp != NULL) { 1278 dropped = B_TRUE; 1279 mutex_exit(lockp); 1280 } 1281 cv_wait(&t->zsd_cv, &zone->zone_lock); 1282 if (lockp != NULL) { 1283 /* First drop zone_lock to preserve order */ 1284 mutex_exit(&zone->zone_lock); 1285 mutex_enter(lockp); 1286 mutex_enter(&zone->zone_lock); 1287 } 1288 } 1289 return (dropped); 1290 } 1291 1292 /* 1293 * Frees memory associated with the zone dataset list. 1294 */ 1295 static void 1296 zone_free_datasets(zone_t *zone) 1297 { 1298 zone_dataset_t *t, *next; 1299 1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1301 next = list_next(&zone->zone_datasets, t); 1302 list_remove(&zone->zone_datasets, t); 1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1304 kmem_free(t, sizeof (*t)); 1305 } 1306 list_destroy(&zone->zone_datasets); 1307 } 1308 1309 /* 1310 * zone.cpu-shares resource control support. 1311 */ 1312 /*ARGSUSED*/ 1313 static rctl_qty_t 1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1315 { 1316 ASSERT(MUTEX_HELD(&p->p_lock)); 1317 return (p->p_zone->zone_shares); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static int 1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1323 rctl_qty_t nv) 1324 { 1325 ASSERT(MUTEX_HELD(&p->p_lock)); 1326 ASSERT(e->rcep_t == RCENTITY_ZONE); 1327 if (e->rcep_p.zone == NULL) 1328 return (0); 1329 1330 e->rcep_p.zone->zone_shares = nv; 1331 return (0); 1332 } 1333 1334 static rctl_ops_t zone_cpu_shares_ops = { 1335 rcop_no_action, 1336 zone_cpu_shares_usage, 1337 zone_cpu_shares_set, 1338 rcop_no_test 1339 }; 1340 1341 /* 1342 * zone.cpu-cap resource control support. 1343 */ 1344 /*ARGSUSED*/ 1345 static rctl_qty_t 1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1347 { 1348 ASSERT(MUTEX_HELD(&p->p_lock)); 1349 return (cpucaps_zone_get(p->p_zone)); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1355 rctl_qty_t nv) 1356 { 1357 zone_t *zone = e->rcep_p.zone; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 1362 if (zone == NULL) 1363 return (0); 1364 1365 /* 1366 * set cap to the new value. 1367 */ 1368 return (cpucaps_zone_set(zone, nv)); 1369 } 1370 1371 static rctl_ops_t zone_cpu_cap_ops = { 1372 rcop_no_action, 1373 zone_cpu_cap_get, 1374 zone_cpu_cap_set, 1375 rcop_no_test 1376 }; 1377 1378 /*ARGSUSED*/ 1379 static rctl_qty_t 1380 zone_lwps_usage(rctl_t *r, proc_t *p) 1381 { 1382 rctl_qty_t nlwps; 1383 zone_t *zone = p->p_zone; 1384 1385 ASSERT(MUTEX_HELD(&p->p_lock)); 1386 1387 mutex_enter(&zone->zone_nlwps_lock); 1388 nlwps = zone->zone_nlwps; 1389 mutex_exit(&zone->zone_nlwps_lock); 1390 1391 return (nlwps); 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1397 rctl_qty_t incr, uint_t flags) 1398 { 1399 rctl_qty_t nlwps; 1400 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 if (e->rcep_p.zone == NULL) 1404 return (0); 1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1406 nlwps = e->rcep_p.zone->zone_nlwps; 1407 1408 if (nlwps + incr > rcntl->rcv_value) 1409 return (1); 1410 1411 return (0); 1412 } 1413 1414 /*ARGSUSED*/ 1415 static int 1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1417 { 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 if (e->rcep_p.zone == NULL) 1421 return (0); 1422 e->rcep_p.zone->zone_nlwps_ctl = nv; 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_lwps_ops = { 1427 rcop_no_action, 1428 zone_lwps_usage, 1429 zone_lwps_set, 1430 zone_lwps_test, 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static rctl_qty_t 1435 zone_procs_usage(rctl_t *r, proc_t *p) 1436 { 1437 rctl_qty_t nprocs; 1438 zone_t *zone = p->p_zone; 1439 1440 ASSERT(MUTEX_HELD(&p->p_lock)); 1441 1442 mutex_enter(&zone->zone_nlwps_lock); 1443 nprocs = zone->zone_nprocs; 1444 mutex_exit(&zone->zone_nlwps_lock); 1445 1446 return (nprocs); 1447 } 1448 1449 /*ARGSUSED*/ 1450 static int 1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1452 rctl_qty_t incr, uint_t flags) 1453 { 1454 rctl_qty_t nprocs; 1455 1456 ASSERT(MUTEX_HELD(&p->p_lock)); 1457 ASSERT(e->rcep_t == RCENTITY_ZONE); 1458 if (e->rcep_p.zone == NULL) 1459 return (0); 1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1461 nprocs = e->rcep_p.zone->zone_nprocs; 1462 1463 if (nprocs + incr > rcntl->rcv_value) 1464 return (1); 1465 1466 return (0); 1467 } 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1472 { 1473 ASSERT(MUTEX_HELD(&p->p_lock)); 1474 ASSERT(e->rcep_t == RCENTITY_ZONE); 1475 if (e->rcep_p.zone == NULL) 1476 return (0); 1477 e->rcep_p.zone->zone_nprocs_ctl = nv; 1478 return (0); 1479 } 1480 1481 static rctl_ops_t zone_procs_ops = { 1482 rcop_no_action, 1483 zone_procs_usage, 1484 zone_procs_set, 1485 zone_procs_test, 1486 }; 1487 1488 /*ARGSUSED*/ 1489 static int 1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1491 rctl_qty_t incr, uint_t flags) 1492 { 1493 rctl_qty_t v; 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 ASSERT(e->rcep_t == RCENTITY_ZONE); 1496 v = e->rcep_p.zone->zone_shmmax + incr; 1497 if (v > rval->rcv_value) 1498 return (1); 1499 return (0); 1500 } 1501 1502 static rctl_ops_t zone_shmmax_ops = { 1503 rcop_no_action, 1504 rcop_no_usage, 1505 rcop_no_set, 1506 zone_shmmax_test 1507 }; 1508 1509 /*ARGSUSED*/ 1510 static int 1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1512 rctl_qty_t incr, uint_t flags) 1513 { 1514 rctl_qty_t v; 1515 ASSERT(MUTEX_HELD(&p->p_lock)); 1516 ASSERT(e->rcep_t == RCENTITY_ZONE); 1517 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1518 if (v > rval->rcv_value) 1519 return (1); 1520 return (0); 1521 } 1522 1523 static rctl_ops_t zone_shmmni_ops = { 1524 rcop_no_action, 1525 rcop_no_usage, 1526 rcop_no_set, 1527 zone_shmmni_test 1528 }; 1529 1530 /*ARGSUSED*/ 1531 static int 1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1533 rctl_qty_t incr, uint_t flags) 1534 { 1535 rctl_qty_t v; 1536 ASSERT(MUTEX_HELD(&p->p_lock)); 1537 ASSERT(e->rcep_t == RCENTITY_ZONE); 1538 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1539 if (v > rval->rcv_value) 1540 return (1); 1541 return (0); 1542 } 1543 1544 static rctl_ops_t zone_semmni_ops = { 1545 rcop_no_action, 1546 rcop_no_usage, 1547 rcop_no_set, 1548 zone_semmni_test 1549 }; 1550 1551 /*ARGSUSED*/ 1552 static int 1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1554 rctl_qty_t incr, uint_t flags) 1555 { 1556 rctl_qty_t v; 1557 ASSERT(MUTEX_HELD(&p->p_lock)); 1558 ASSERT(e->rcep_t == RCENTITY_ZONE); 1559 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1560 if (v > rval->rcv_value) 1561 return (1); 1562 return (0); 1563 } 1564 1565 static rctl_ops_t zone_msgmni_ops = { 1566 rcop_no_action, 1567 rcop_no_usage, 1568 rcop_no_set, 1569 zone_msgmni_test 1570 }; 1571 1572 /*ARGSUSED*/ 1573 static rctl_qty_t 1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1575 { 1576 rctl_qty_t q; 1577 ASSERT(MUTEX_HELD(&p->p_lock)); 1578 mutex_enter(&p->p_zone->zone_mem_lock); 1579 q = p->p_zone->zone_locked_mem; 1580 mutex_exit(&p->p_zone->zone_mem_lock); 1581 return (q); 1582 } 1583 1584 /*ARGSUSED*/ 1585 static int 1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1587 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1588 { 1589 rctl_qty_t q; 1590 zone_t *z; 1591 1592 z = e->rcep_p.zone; 1593 ASSERT(MUTEX_HELD(&p->p_lock)); 1594 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1595 q = z->zone_locked_mem; 1596 if (q + incr > rcntl->rcv_value) 1597 return (1); 1598 return (0); 1599 } 1600 1601 /*ARGSUSED*/ 1602 static int 1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1604 rctl_qty_t nv) 1605 { 1606 ASSERT(MUTEX_HELD(&p->p_lock)); 1607 ASSERT(e->rcep_t == RCENTITY_ZONE); 1608 if (e->rcep_p.zone == NULL) 1609 return (0); 1610 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1611 return (0); 1612 } 1613 1614 static rctl_ops_t zone_locked_mem_ops = { 1615 rcop_no_action, 1616 zone_locked_mem_usage, 1617 zone_locked_mem_set, 1618 zone_locked_mem_test 1619 }; 1620 1621 /*ARGSUSED*/ 1622 static rctl_qty_t 1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1624 { 1625 rctl_qty_t q; 1626 zone_t *z = p->p_zone; 1627 1628 ASSERT(MUTEX_HELD(&p->p_lock)); 1629 mutex_enter(&z->zone_mem_lock); 1630 q = z->zone_max_swap; 1631 mutex_exit(&z->zone_mem_lock); 1632 return (q); 1633 } 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1638 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1639 { 1640 rctl_qty_t q; 1641 zone_t *z; 1642 1643 z = e->rcep_p.zone; 1644 ASSERT(MUTEX_HELD(&p->p_lock)); 1645 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1646 q = z->zone_max_swap; 1647 if (q + incr > rcntl->rcv_value) 1648 return (1); 1649 return (0); 1650 } 1651 1652 /*ARGSUSED*/ 1653 static int 1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1655 rctl_qty_t nv) 1656 { 1657 ASSERT(MUTEX_HELD(&p->p_lock)); 1658 ASSERT(e->rcep_t == RCENTITY_ZONE); 1659 if (e->rcep_p.zone == NULL) 1660 return (0); 1661 e->rcep_p.zone->zone_max_swap_ctl = nv; 1662 return (0); 1663 } 1664 1665 static rctl_ops_t zone_max_swap_ops = { 1666 rcop_no_action, 1667 zone_max_swap_usage, 1668 zone_max_swap_set, 1669 zone_max_swap_test 1670 }; 1671 1672 /*ARGSUSED*/ 1673 static rctl_qty_t 1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1675 { 1676 rctl_qty_t q; 1677 zone_t *z = p->p_zone; 1678 1679 ASSERT(MUTEX_HELD(&p->p_lock)); 1680 mutex_enter(&z->zone_rctl_lock); 1681 q = z->zone_max_lofi; 1682 mutex_exit(&z->zone_rctl_lock); 1683 return (q); 1684 } 1685 1686 /*ARGSUSED*/ 1687 static int 1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1689 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1690 { 1691 rctl_qty_t q; 1692 zone_t *z; 1693 1694 z = e->rcep_p.zone; 1695 ASSERT(MUTEX_HELD(&p->p_lock)); 1696 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1697 q = z->zone_max_lofi; 1698 if (q + incr > rcntl->rcv_value) 1699 return (1); 1700 return (0); 1701 } 1702 1703 /*ARGSUSED*/ 1704 static int 1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1706 rctl_qty_t nv) 1707 { 1708 ASSERT(MUTEX_HELD(&p->p_lock)); 1709 ASSERT(e->rcep_t == RCENTITY_ZONE); 1710 if (e->rcep_p.zone == NULL) 1711 return (0); 1712 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1713 return (0); 1714 } 1715 1716 static rctl_ops_t zone_max_lofi_ops = { 1717 rcop_no_action, 1718 zone_max_lofi_usage, 1719 zone_max_lofi_set, 1720 zone_max_lofi_test 1721 }; 1722 1723 /* 1724 * Helper function to brand the zone with a unique ID. 1725 */ 1726 static void 1727 zone_uniqid(zone_t *zone) 1728 { 1729 static uint64_t uniqid = 0; 1730 1731 ASSERT(MUTEX_HELD(&zonehash_lock)); 1732 zone->zone_uniqid = uniqid++; 1733 } 1734 1735 /* 1736 * Returns a held pointer to the "kcred" for the specified zone. 1737 */ 1738 struct cred * 1739 zone_get_kcred(zoneid_t zoneid) 1740 { 1741 zone_t *zone; 1742 cred_t *cr; 1743 1744 if ((zone = zone_find_by_id(zoneid)) == NULL) 1745 return (NULL); 1746 cr = zone->zone_kcred; 1747 crhold(cr); 1748 zone_rele(zone); 1749 return (cr); 1750 } 1751 1752 static int 1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1754 { 1755 zone_t *zone = ksp->ks_private; 1756 zone_kstat_t *zk = ksp->ks_data; 1757 1758 if (rw == KSTAT_WRITE) 1759 return (EACCES); 1760 1761 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1762 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1763 return (0); 1764 } 1765 1766 static int 1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1768 { 1769 zone_t *zone = ksp->ks_private; 1770 zone_kstat_t *zk = ksp->ks_data; 1771 1772 if (rw == KSTAT_WRITE) 1773 return (EACCES); 1774 1775 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1776 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1777 return (0); 1778 } 1779 1780 static int 1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1782 { 1783 zone_t *zone = ksp->ks_private; 1784 zone_kstat_t *zk = ksp->ks_data; 1785 1786 if (rw == KSTAT_WRITE) 1787 return (EACCES); 1788 1789 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1790 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1791 return (0); 1792 } 1793 1794 static kstat_t * 1795 zone_kstat_create_common(zone_t *zone, char *name, 1796 int (*updatefunc) (kstat_t *, int)) 1797 { 1798 kstat_t *ksp; 1799 zone_kstat_t *zk; 1800 1801 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1802 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1803 KSTAT_FLAG_VIRTUAL); 1804 1805 if (ksp == NULL) 1806 return (NULL); 1807 1808 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1809 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1810 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1811 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1812 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1813 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1814 ksp->ks_update = updatefunc; 1815 ksp->ks_private = zone; 1816 kstat_install(ksp); 1817 return (ksp); 1818 } 1819 1820 1821 static int 1822 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1823 { 1824 zone_t *zone = ksp->ks_private; 1825 zone_mcap_kstat_t *zmp = ksp->ks_data; 1826 1827 if (rw == KSTAT_WRITE) 1828 return (EACCES); 1829 1830 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1831 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1832 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1833 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1834 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1835 1836 return (0); 1837 } 1838 1839 static kstat_t * 1840 zone_mcap_kstat_create(zone_t *zone) 1841 { 1842 kstat_t *ksp; 1843 zone_mcap_kstat_t *zmp; 1844 1845 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1846 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1847 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1848 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1849 return (NULL); 1850 1851 if (zone->zone_id != GLOBAL_ZONEID) 1852 kstat_zone_add(ksp, GLOBAL_ZONEID); 1853 1854 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1855 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1856 ksp->ks_lock = &zone->zone_mcap_lock; 1857 zone->zone_mcap_stats = zmp; 1858 1859 /* The kstat "name" field is not large enough for a full zonename */ 1860 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1861 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1862 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1863 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1864 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1865 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1866 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1867 KSTAT_DATA_UINT64); 1868 1869 ksp->ks_update = zone_mcap_kstat_update; 1870 ksp->ks_private = zone; 1871 1872 kstat_install(ksp); 1873 return (ksp); 1874 } 1875 1876 static int 1877 zone_misc_kstat_update(kstat_t *ksp, int rw) 1878 { 1879 zone_t *zone = ksp->ks_private; 1880 zone_misc_kstat_t *zmp = ksp->ks_data; 1881 hrtime_t tmp; 1882 1883 if (rw == KSTAT_WRITE) 1884 return (EACCES); 1885 1886 tmp = zone->zone_utime; 1887 scalehrtime(&tmp); 1888 zmp->zm_utime.value.ui64 = tmp; 1889 tmp = zone->zone_stime; 1890 scalehrtime(&tmp); 1891 zmp->zm_stime.value.ui64 = tmp; 1892 tmp = zone->zone_wtime; 1893 scalehrtime(&tmp); 1894 zmp->zm_wtime.value.ui64 = tmp; 1895 1896 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1897 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1898 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1899 1900 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1901 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1902 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1903 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1904 1905 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1906 1907 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1908 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1909 1910 return (0); 1911 } 1912 1913 static kstat_t * 1914 zone_misc_kstat_create(zone_t *zone) 1915 { 1916 kstat_t *ksp; 1917 zone_misc_kstat_t *zmp; 1918 1919 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1920 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1921 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1922 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1923 return (NULL); 1924 1925 if (zone->zone_id != GLOBAL_ZONEID) 1926 kstat_zone_add(ksp, GLOBAL_ZONEID); 1927 1928 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1929 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1930 ksp->ks_lock = &zone->zone_misc_lock; 1931 zone->zone_misc_stats = zmp; 1932 1933 /* The kstat "name" field is not large enough for a full zonename */ 1934 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1935 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1936 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1937 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1938 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1939 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1940 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1941 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1942 KSTAT_DATA_UINT32); 1943 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1944 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1945 KSTAT_DATA_UINT32); 1946 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1947 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1948 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1949 KSTAT_DATA_UINT32); 1950 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1951 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1952 1953 ksp->ks_update = zone_misc_kstat_update; 1954 ksp->ks_private = zone; 1955 1956 kstat_install(ksp); 1957 return (ksp); 1958 } 1959 1960 static void 1961 zone_kstat_create(zone_t *zone) 1962 { 1963 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1964 "lockedmem", zone_lockedmem_kstat_update); 1965 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1966 "swapresv", zone_swapresv_kstat_update); 1967 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1968 "nprocs", zone_nprocs_kstat_update); 1969 1970 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 1971 zone->zone_mcap_stats = kmem_zalloc( 1972 sizeof (zone_mcap_kstat_t), KM_SLEEP); 1973 } 1974 1975 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1976 zone->zone_misc_stats = kmem_zalloc( 1977 sizeof (zone_misc_kstat_t), KM_SLEEP); 1978 } 1979 } 1980 1981 static void 1982 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1983 { 1984 void *data; 1985 1986 if (*pkstat != NULL) { 1987 data = (*pkstat)->ks_data; 1988 kstat_delete(*pkstat); 1989 kmem_free(data, datasz); 1990 *pkstat = NULL; 1991 } 1992 } 1993 1994 static void 1995 zone_kstat_delete(zone_t *zone) 1996 { 1997 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1998 sizeof (zone_kstat_t)); 1999 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2000 sizeof (zone_kstat_t)); 2001 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2002 sizeof (zone_kstat_t)); 2003 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2004 sizeof (zone_mcap_kstat_t)); 2005 zone_kstat_delete_common(&zone->zone_misc_ksp, 2006 sizeof (zone_misc_kstat_t)); 2007 } 2008 2009 /* 2010 * Called very early on in boot to initialize the ZSD list so that 2011 * zone_key_create() can be called before zone_init(). It also initializes 2012 * portions of zone0 which may be used before zone_init() is called. The 2013 * variable "global_zone" will be set when zone0 is fully initialized by 2014 * zone_init(). 2015 */ 2016 void 2017 zone_zsd_init(void) 2018 { 2019 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2020 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2021 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2022 offsetof(struct zsd_entry, zsd_linkage)); 2023 list_create(&zone_active, sizeof (zone_t), 2024 offsetof(zone_t, zone_linkage)); 2025 list_create(&zone_deathrow, sizeof (zone_t), 2026 offsetof(zone_t, zone_linkage)); 2027 2028 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2029 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2030 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2031 zone0.zone_shares = 1; 2032 zone0.zone_nlwps = 0; 2033 zone0.zone_nlwps_ctl = INT_MAX; 2034 zone0.zone_nprocs = 0; 2035 zone0.zone_nprocs_ctl = INT_MAX; 2036 zone0.zone_locked_mem = 0; 2037 zone0.zone_locked_mem_ctl = UINT64_MAX; 2038 ASSERT(zone0.zone_max_swap == 0); 2039 zone0.zone_max_swap_ctl = UINT64_MAX; 2040 zone0.zone_max_lofi = 0; 2041 zone0.zone_max_lofi_ctl = UINT64_MAX; 2042 zone0.zone_shmmax = 0; 2043 zone0.zone_ipc.ipcq_shmmni = 0; 2044 zone0.zone_ipc.ipcq_semmni = 0; 2045 zone0.zone_ipc.ipcq_msgmni = 0; 2046 zone0.zone_name = GLOBAL_ZONENAME; 2047 zone0.zone_nodename = utsname.nodename; 2048 zone0.zone_domain = srpc_domain; 2049 zone0.zone_hostid = HW_INVALID_HOSTID; 2050 zone0.zone_fs_allowed = NULL; 2051 psecflags_default(&zone0.zone_secflags); 2052 zone0.zone_ref = 1; 2053 zone0.zone_id = GLOBAL_ZONEID; 2054 zone0.zone_status = ZONE_IS_RUNNING; 2055 zone0.zone_rootpath = "/"; 2056 zone0.zone_rootpathlen = 2; 2057 zone0.zone_psetid = ZONE_PS_INVAL; 2058 zone0.zone_ncpus = 0; 2059 zone0.zone_ncpus_online = 0; 2060 zone0.zone_proc_initpid = 1; 2061 zone0.zone_initname = initname; 2062 zone0.zone_lockedmem_kstat = NULL; 2063 zone0.zone_swapresv_kstat = NULL; 2064 zone0.zone_nprocs_kstat = NULL; 2065 2066 zone0.zone_stime = 0; 2067 zone0.zone_utime = 0; 2068 zone0.zone_wtime = 0; 2069 2070 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2071 offsetof(zone_ref_t, zref_linkage)); 2072 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2073 offsetof(struct zsd_entry, zsd_linkage)); 2074 list_insert_head(&zone_active, &zone0); 2075 2076 /* 2077 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2078 * to anything meaningful. It is assigned to be 'rootdir' in 2079 * vfs_mountroot(). 2080 */ 2081 zone0.zone_rootvp = NULL; 2082 zone0.zone_vfslist = NULL; 2083 zone0.zone_bootargs = initargs; 2084 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2085 /* 2086 * The global zone has all privileges 2087 */ 2088 priv_fillset(zone0.zone_privset); 2089 /* 2090 * Add p0 to the global zone 2091 */ 2092 zone0.zone_zsched = &p0; 2093 p0.p_zone = &zone0; 2094 } 2095 2096 /* 2097 * Compute a hash value based on the contents of the label and the DOI. The 2098 * hash algorithm is somewhat arbitrary, but is based on the observation that 2099 * humans will likely pick labels that differ by amounts that work out to be 2100 * multiples of the number of hash chains, and thus stirring in some primes 2101 * should help. 2102 */ 2103 static uint_t 2104 hash_bylabel(void *hdata, mod_hash_key_t key) 2105 { 2106 const ts_label_t *lab = (ts_label_t *)key; 2107 const uint32_t *up, *ue; 2108 uint_t hash; 2109 int i; 2110 2111 _NOTE(ARGUNUSED(hdata)); 2112 2113 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2114 /* we depend on alignment of label, but not representation */ 2115 up = (const uint32_t *)&lab->tsl_label; 2116 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2117 i = 1; 2118 while (up < ue) { 2119 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2120 hash += *up + (*up << ((i % 16) + 1)); 2121 up++; 2122 i++; 2123 } 2124 return (hash); 2125 } 2126 2127 /* 2128 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2129 * equal). This may need to be changed if less than / greater than is ever 2130 * needed. 2131 */ 2132 static int 2133 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2134 { 2135 ts_label_t *lab1 = (ts_label_t *)key1; 2136 ts_label_t *lab2 = (ts_label_t *)key2; 2137 2138 return (label_equal(lab1, lab2) ? 0 : 1); 2139 } 2140 2141 /* 2142 * Called by main() to initialize the zones framework. 2143 */ 2144 void 2145 zone_init(void) 2146 { 2147 rctl_dict_entry_t *rde; 2148 rctl_val_t *dval; 2149 rctl_set_t *set; 2150 rctl_alloc_gp_t *gp; 2151 rctl_entity_p_t e; 2152 int res; 2153 2154 ASSERT(curproc == &p0); 2155 2156 /* 2157 * Create ID space for zone IDs. ID 0 is reserved for the 2158 * global zone. 2159 */ 2160 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2161 2162 /* 2163 * Initialize generic zone resource controls, if any. 2164 */ 2165 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2166 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2167 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2168 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2169 2170 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2171 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2172 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2173 RCTL_GLOBAL_INFINITE, 2174 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2175 2176 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2177 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2178 INT_MAX, INT_MAX, &zone_lwps_ops); 2179 2180 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2181 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2182 INT_MAX, INT_MAX, &zone_procs_ops); 2183 2184 /* 2185 * System V IPC resource controls 2186 */ 2187 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2188 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2189 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2190 2191 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2192 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2193 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2194 2195 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2196 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2197 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2198 2199 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2200 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2201 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2202 2203 /* 2204 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2205 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2206 */ 2207 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2208 bzero(dval, sizeof (rctl_val_t)); 2209 dval->rcv_value = 1; 2210 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2211 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2212 dval->rcv_action_recip_pid = -1; 2213 2214 rde = rctl_dict_lookup("zone.cpu-shares"); 2215 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2216 2217 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2218 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2219 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2220 &zone_locked_mem_ops); 2221 2222 rc_zone_max_swap = rctl_register("zone.max-swap", 2223 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2224 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2225 &zone_max_swap_ops); 2226 2227 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2228 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2229 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2230 &zone_max_lofi_ops); 2231 2232 /* 2233 * Initialize the ``global zone''. 2234 */ 2235 set = rctl_set_create(); 2236 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2237 mutex_enter(&p0.p_lock); 2238 e.rcep_p.zone = &zone0; 2239 e.rcep_t = RCENTITY_ZONE; 2240 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2241 gp); 2242 2243 zone0.zone_nlwps = p0.p_lwpcnt; 2244 zone0.zone_nprocs = 1; 2245 zone0.zone_ntasks = 1; 2246 mutex_exit(&p0.p_lock); 2247 zone0.zone_restart_init = B_TRUE; 2248 zone0.zone_brand = &native_brand; 2249 rctl_prealloc_destroy(gp); 2250 /* 2251 * pool_default hasn't been initialized yet, so we let pool_init() 2252 * take care of making sure the global zone is in the default pool. 2253 */ 2254 2255 /* 2256 * Initialize global zone kstats 2257 */ 2258 zone_kstat_create(&zone0); 2259 2260 /* 2261 * Initialize zone label. 2262 * mlp are initialized when tnzonecfg is loaded. 2263 */ 2264 zone0.zone_slabel = l_admin_low; 2265 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2266 label_hold(l_admin_low); 2267 2268 /* 2269 * Initialise the lock for the database structure used by mntfs. 2270 */ 2271 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2272 2273 mutex_enter(&zonehash_lock); 2274 zone_uniqid(&zone0); 2275 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2276 2277 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2278 mod_hash_null_valdtor); 2279 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2280 zone_hash_size, mod_hash_null_valdtor); 2281 /* 2282 * maintain zonehashbylabel only for labeled systems 2283 */ 2284 if (is_system_labeled()) 2285 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2286 zone_hash_size, mod_hash_null_keydtor, 2287 mod_hash_null_valdtor, hash_bylabel, NULL, 2288 hash_labelkey_cmp, KM_SLEEP); 2289 zonecount = 1; 2290 2291 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2292 (mod_hash_val_t)&zone0); 2293 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2294 (mod_hash_val_t)&zone0); 2295 if (is_system_labeled()) { 2296 zone0.zone_flags |= ZF_HASHED_LABEL; 2297 (void) mod_hash_insert(zonehashbylabel, 2298 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2299 } 2300 mutex_exit(&zonehash_lock); 2301 2302 /* 2303 * We avoid setting zone_kcred until now, since kcred is initialized 2304 * sometime after zone_zsd_init() and before zone_init(). 2305 */ 2306 zone0.zone_kcred = kcred; 2307 /* 2308 * The global zone is fully initialized (except for zone_rootvp which 2309 * will be set when the root filesystem is mounted). 2310 */ 2311 global_zone = &zone0; 2312 2313 /* 2314 * Setup an event channel to send zone status change notifications on 2315 */ 2316 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2317 EVCH_CREAT); 2318 2319 if (res) 2320 panic("Sysevent_evc_bind failed during zone setup.\n"); 2321 2322 } 2323 2324 static void 2325 zone_free(zone_t *zone) 2326 { 2327 ASSERT(zone != global_zone); 2328 ASSERT(zone->zone_ntasks == 0); 2329 ASSERT(zone->zone_nlwps == 0); 2330 ASSERT(zone->zone_nprocs == 0); 2331 ASSERT(zone->zone_cred_ref == 0); 2332 ASSERT(zone->zone_kcred == NULL); 2333 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2334 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2335 ASSERT(list_is_empty(&zone->zone_ref_list)); 2336 2337 /* 2338 * Remove any zone caps. 2339 */ 2340 cpucaps_zone_remove(zone); 2341 2342 ASSERT(zone->zone_cpucap == NULL); 2343 2344 /* remove from deathrow list */ 2345 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2346 ASSERT(zone->zone_ref == 0); 2347 mutex_enter(&zone_deathrow_lock); 2348 list_remove(&zone_deathrow, zone); 2349 mutex_exit(&zone_deathrow_lock); 2350 } 2351 2352 list_destroy(&zone->zone_ref_list); 2353 zone_free_zsd(zone); 2354 zone_free_datasets(zone); 2355 list_destroy(&zone->zone_dl_list); 2356 2357 if (zone->zone_rootvp != NULL) 2358 VN_RELE(zone->zone_rootvp); 2359 if (zone->zone_rootpath) 2360 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2361 if (zone->zone_name != NULL) 2362 kmem_free(zone->zone_name, ZONENAME_MAX); 2363 if (zone->zone_slabel != NULL) 2364 label_rele(zone->zone_slabel); 2365 if (zone->zone_nodename != NULL) 2366 kmem_free(zone->zone_nodename, _SYS_NMLN); 2367 if (zone->zone_domain != NULL) 2368 kmem_free(zone->zone_domain, _SYS_NMLN); 2369 if (zone->zone_privset != NULL) 2370 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2371 if (zone->zone_rctls != NULL) 2372 rctl_set_free(zone->zone_rctls); 2373 if (zone->zone_bootargs != NULL) 2374 strfree(zone->zone_bootargs); 2375 if (zone->zone_initname != NULL) 2376 strfree(zone->zone_initname); 2377 if (zone->zone_fs_allowed != NULL) 2378 strfree(zone->zone_fs_allowed); 2379 if (zone->zone_pfexecd != NULL) 2380 klpd_freelist(&zone->zone_pfexecd); 2381 id_free(zoneid_space, zone->zone_id); 2382 mutex_destroy(&zone->zone_lock); 2383 cv_destroy(&zone->zone_cv); 2384 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2385 rw_destroy(&zone->zone_mntfs_db_lock); 2386 kmem_free(zone, sizeof (zone_t)); 2387 } 2388 2389 /* 2390 * See block comment at the top of this file for information about zone 2391 * status values. 2392 */ 2393 /* 2394 * Convenience function for setting zone status. 2395 */ 2396 static void 2397 zone_status_set(zone_t *zone, zone_status_t status) 2398 { 2399 2400 nvlist_t *nvl = NULL; 2401 ASSERT(MUTEX_HELD(&zone_status_lock)); 2402 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2403 status >= zone_status_get(zone)); 2404 2405 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2406 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2407 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2408 zone_status_table[status]) || 2409 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2410 zone_status_table[zone->zone_status]) || 2411 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2412 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2413 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2414 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2415 #ifdef DEBUG 2416 (void) printf( 2417 "Failed to allocate and send zone state change event.\n"); 2418 #endif 2419 } 2420 nvlist_free(nvl); 2421 2422 zone->zone_status = status; 2423 2424 cv_broadcast(&zone->zone_cv); 2425 } 2426 2427 /* 2428 * Public function to retrieve the zone status. The zone status may 2429 * change after it is retrieved. 2430 */ 2431 zone_status_t 2432 zone_status_get(zone_t *zone) 2433 { 2434 return (zone->zone_status); 2435 } 2436 2437 static int 2438 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2439 { 2440 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2441 int err = 0; 2442 2443 ASSERT(zone != global_zone); 2444 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2445 goto done; /* EFAULT or ENAMETOOLONG */ 2446 2447 if (zone->zone_bootargs != NULL) 2448 strfree(zone->zone_bootargs); 2449 2450 zone->zone_bootargs = strdup(buf); 2451 2452 done: 2453 kmem_free(buf, BOOTARGS_MAX); 2454 return (err); 2455 } 2456 2457 static int 2458 zone_set_brand(zone_t *zone, const char *brand) 2459 { 2460 struct brand_attr *attrp; 2461 brand_t *bp; 2462 2463 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2464 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2465 kmem_free(attrp, sizeof (struct brand_attr)); 2466 return (EFAULT); 2467 } 2468 2469 bp = brand_register_zone(attrp); 2470 kmem_free(attrp, sizeof (struct brand_attr)); 2471 if (bp == NULL) 2472 return (EINVAL); 2473 2474 /* 2475 * This is the only place where a zone can change it's brand. 2476 * We already need to hold zone_status_lock to check the zone 2477 * status, so we'll just use that lock to serialize zone 2478 * branding requests as well. 2479 */ 2480 mutex_enter(&zone_status_lock); 2481 2482 /* Re-Branding is not allowed and the zone can't be booted yet */ 2483 if ((ZONE_IS_BRANDED(zone)) || 2484 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2485 mutex_exit(&zone_status_lock); 2486 brand_unregister_zone(bp); 2487 return (EINVAL); 2488 } 2489 2490 /* set up the brand specific data */ 2491 zone->zone_brand = bp; 2492 ZBROP(zone)->b_init_brand_data(zone); 2493 2494 mutex_exit(&zone_status_lock); 2495 return (0); 2496 } 2497 2498 static int 2499 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2500 { 2501 int err = 0; 2502 psecflags_t psf; 2503 2504 ASSERT(zone != global_zone); 2505 2506 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2507 return (err); 2508 2509 if (zone_status_get(zone) > ZONE_IS_READY) 2510 return (EINVAL); 2511 2512 if (!psecflags_validate(&psf)) 2513 return (EINVAL); 2514 2515 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2516 2517 /* Set security flags on the zone's zsched */ 2518 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2519 sizeof (zone->zone_zsched->p_secflags)); 2520 2521 return (0); 2522 } 2523 2524 static int 2525 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2526 { 2527 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2528 int err = 0; 2529 2530 ASSERT(zone != global_zone); 2531 if ((err = copyinstr(zone_fs_allowed, buf, 2532 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2533 goto done; 2534 2535 if (zone->zone_fs_allowed != NULL) 2536 strfree(zone->zone_fs_allowed); 2537 2538 zone->zone_fs_allowed = strdup(buf); 2539 2540 done: 2541 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2542 return (err); 2543 } 2544 2545 static int 2546 zone_set_initname(zone_t *zone, const char *zone_initname) 2547 { 2548 char initname[INITNAME_SZ]; 2549 size_t len; 2550 int err = 0; 2551 2552 ASSERT(zone != global_zone); 2553 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2554 return (err); /* EFAULT or ENAMETOOLONG */ 2555 2556 if (zone->zone_initname != NULL) 2557 strfree(zone->zone_initname); 2558 2559 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2560 (void) strcpy(zone->zone_initname, initname); 2561 return (0); 2562 } 2563 2564 static int 2565 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2566 { 2567 uint64_t mcap; 2568 int err = 0; 2569 2570 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2571 zone->zone_phys_mcap = mcap; 2572 2573 return (err); 2574 } 2575 2576 static int 2577 zone_set_sched_class(zone_t *zone, const char *new_class) 2578 { 2579 char sched_class[PC_CLNMSZ]; 2580 id_t classid; 2581 int err; 2582 2583 ASSERT(zone != global_zone); 2584 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2585 return (err); /* EFAULT or ENAMETOOLONG */ 2586 2587 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2588 return (set_errno(EINVAL)); 2589 zone->zone_defaultcid = classid; 2590 ASSERT(zone->zone_defaultcid > 0 && 2591 zone->zone_defaultcid < loaded_classes); 2592 2593 return (0); 2594 } 2595 2596 /* 2597 * Block indefinitely waiting for (zone_status >= status) 2598 */ 2599 void 2600 zone_status_wait(zone_t *zone, zone_status_t status) 2601 { 2602 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2603 2604 mutex_enter(&zone_status_lock); 2605 while (zone->zone_status < status) { 2606 cv_wait(&zone->zone_cv, &zone_status_lock); 2607 } 2608 mutex_exit(&zone_status_lock); 2609 } 2610 2611 /* 2612 * Private CPR-safe version of zone_status_wait(). 2613 */ 2614 static void 2615 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2616 { 2617 callb_cpr_t cprinfo; 2618 2619 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2620 2621 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2622 str); 2623 mutex_enter(&zone_status_lock); 2624 while (zone->zone_status < status) { 2625 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2626 cv_wait(&zone->zone_cv, &zone_status_lock); 2627 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2628 } 2629 /* 2630 * zone_status_lock is implicitly released by the following. 2631 */ 2632 CALLB_CPR_EXIT(&cprinfo); 2633 } 2634 2635 /* 2636 * Block until zone enters requested state or signal is received. Return (0) 2637 * if signaled, non-zero otherwise. 2638 */ 2639 int 2640 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2641 { 2642 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2643 2644 mutex_enter(&zone_status_lock); 2645 while (zone->zone_status < status) { 2646 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2647 mutex_exit(&zone_status_lock); 2648 return (0); 2649 } 2650 } 2651 mutex_exit(&zone_status_lock); 2652 return (1); 2653 } 2654 2655 /* 2656 * Block until the zone enters the requested state or the timeout expires, 2657 * whichever happens first. Return (-1) if operation timed out, time remaining 2658 * otherwise. 2659 */ 2660 clock_t 2661 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2662 { 2663 clock_t timeleft = 0; 2664 2665 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2666 2667 mutex_enter(&zone_status_lock); 2668 while (zone->zone_status < status && timeleft != -1) { 2669 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2670 } 2671 mutex_exit(&zone_status_lock); 2672 return (timeleft); 2673 } 2674 2675 /* 2676 * Block until the zone enters the requested state, the current process is 2677 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2678 * operation timed out, 0 if signaled, time remaining otherwise. 2679 */ 2680 clock_t 2681 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2682 { 2683 clock_t timeleft = tim - ddi_get_lbolt(); 2684 2685 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2686 2687 mutex_enter(&zone_status_lock); 2688 while (zone->zone_status < status) { 2689 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2690 tim); 2691 if (timeleft <= 0) 2692 break; 2693 } 2694 mutex_exit(&zone_status_lock); 2695 return (timeleft); 2696 } 2697 2698 /* 2699 * Zones have two reference counts: one for references from credential 2700 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2701 * This is so we can allow a zone to be rebooted while there are still 2702 * outstanding cred references, since certain drivers cache dblks (which 2703 * implicitly results in cached creds). We wait for zone_ref to drop to 2704 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2705 * later freed when the zone_cred_ref drops to 0, though nothing other 2706 * than the zone id and privilege set should be accessed once the zone 2707 * is "dead". 2708 * 2709 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2710 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2711 * to 0. This can be useful to flush out other sources of cached creds 2712 * that may be less innocuous than the driver case. 2713 * 2714 * Zones also provide a tracked reference counting mechanism in which zone 2715 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2716 * debuggers determine the sources of leaked zone references. See 2717 * zone_hold_ref() and zone_rele_ref() below for more information. 2718 */ 2719 2720 int zone_wait_for_cred = 0; 2721 2722 static void 2723 zone_hold_locked(zone_t *z) 2724 { 2725 ASSERT(MUTEX_HELD(&z->zone_lock)); 2726 z->zone_ref++; 2727 ASSERT(z->zone_ref != 0); 2728 } 2729 2730 /* 2731 * Increment the specified zone's reference count. The zone's zone_t structure 2732 * will not be freed as long as the zone's reference count is nonzero. 2733 * Decrement the zone's reference count via zone_rele(). 2734 * 2735 * NOTE: This function should only be used to hold zones for short periods of 2736 * time. Use zone_hold_ref() if the zone must be held for a long time. 2737 */ 2738 void 2739 zone_hold(zone_t *z) 2740 { 2741 mutex_enter(&z->zone_lock); 2742 zone_hold_locked(z); 2743 mutex_exit(&z->zone_lock); 2744 } 2745 2746 /* 2747 * If the non-cred ref count drops to 1 and either the cred ref count 2748 * is 0 or we aren't waiting for cred references, the zone is ready to 2749 * be destroyed. 2750 */ 2751 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2752 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2753 2754 /* 2755 * Common zone reference release function invoked by zone_rele() and 2756 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2757 * zone's subsystem-specific reference counters are not affected by the 2758 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2759 * removed from the specified zone's reference list. ref must be non-NULL iff 2760 * subsys is not ZONE_REF_NUM_SUBSYS. 2761 */ 2762 static void 2763 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2764 { 2765 boolean_t wakeup; 2766 2767 mutex_enter(&z->zone_lock); 2768 ASSERT(z->zone_ref != 0); 2769 z->zone_ref--; 2770 if (subsys != ZONE_REF_NUM_SUBSYS) { 2771 ASSERT(z->zone_subsys_ref[subsys] != 0); 2772 z->zone_subsys_ref[subsys]--; 2773 list_remove(&z->zone_ref_list, ref); 2774 } 2775 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2776 /* no more refs, free the structure */ 2777 mutex_exit(&z->zone_lock); 2778 zone_free(z); 2779 return; 2780 } 2781 /* signal zone_destroy so the zone can finish halting */ 2782 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2783 mutex_exit(&z->zone_lock); 2784 2785 if (wakeup) { 2786 /* 2787 * Grabbing zonehash_lock here effectively synchronizes with 2788 * zone_destroy() to avoid missed signals. 2789 */ 2790 mutex_enter(&zonehash_lock); 2791 cv_broadcast(&zone_destroy_cv); 2792 mutex_exit(&zonehash_lock); 2793 } 2794 } 2795 2796 /* 2797 * Decrement the specified zone's reference count. The specified zone will 2798 * cease to exist after this function returns if the reference count drops to 2799 * zero. This function should be paired with zone_hold(). 2800 */ 2801 void 2802 zone_rele(zone_t *z) 2803 { 2804 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2805 } 2806 2807 /* 2808 * Initialize a zone reference structure. This function must be invoked for 2809 * a reference structure before the structure is passed to zone_hold_ref(). 2810 */ 2811 void 2812 zone_init_ref(zone_ref_t *ref) 2813 { 2814 ref->zref_zone = NULL; 2815 list_link_init(&ref->zref_linkage); 2816 } 2817 2818 /* 2819 * Acquire a reference to zone z. The caller must specify the 2820 * zone_ref_subsys_t constant associated with its subsystem. The specified 2821 * zone_ref_t structure will represent a reference to the specified zone. Use 2822 * zone_rele_ref() to release the reference. 2823 * 2824 * The referenced zone_t structure will not be freed as long as the zone_t's 2825 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2826 * references. 2827 * 2828 * NOTE: The zone_ref_t structure must be initialized before it is used. 2829 * See zone_init_ref() above. 2830 */ 2831 void 2832 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2833 { 2834 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2835 2836 /* 2837 * Prevent consumers from reusing a reference structure before 2838 * releasing it. 2839 */ 2840 VERIFY(ref->zref_zone == NULL); 2841 2842 ref->zref_zone = z; 2843 mutex_enter(&z->zone_lock); 2844 zone_hold_locked(z); 2845 z->zone_subsys_ref[subsys]++; 2846 ASSERT(z->zone_subsys_ref[subsys] != 0); 2847 list_insert_head(&z->zone_ref_list, ref); 2848 mutex_exit(&z->zone_lock); 2849 } 2850 2851 /* 2852 * Release the zone reference represented by the specified zone_ref_t. 2853 * The reference is invalid after it's released; however, the zone_ref_t 2854 * structure can be reused without having to invoke zone_init_ref(). 2855 * subsys should be the same value that was passed to zone_hold_ref() 2856 * when the reference was acquired. 2857 */ 2858 void 2859 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2860 { 2861 zone_rele_common(ref->zref_zone, ref, subsys); 2862 2863 /* 2864 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2865 * when consumers dereference the reference. This helps us catch 2866 * consumers who use released references. Furthermore, this lets 2867 * consumers reuse the zone_ref_t structure without having to 2868 * invoke zone_init_ref(). 2869 */ 2870 ref->zref_zone = NULL; 2871 } 2872 2873 void 2874 zone_cred_hold(zone_t *z) 2875 { 2876 mutex_enter(&z->zone_lock); 2877 z->zone_cred_ref++; 2878 ASSERT(z->zone_cred_ref != 0); 2879 mutex_exit(&z->zone_lock); 2880 } 2881 2882 void 2883 zone_cred_rele(zone_t *z) 2884 { 2885 boolean_t wakeup; 2886 2887 mutex_enter(&z->zone_lock); 2888 ASSERT(z->zone_cred_ref != 0); 2889 z->zone_cred_ref--; 2890 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2891 /* no more refs, free the structure */ 2892 mutex_exit(&z->zone_lock); 2893 zone_free(z); 2894 return; 2895 } 2896 /* 2897 * If zone_destroy is waiting for the cred references to drain 2898 * out, and they have, signal it. 2899 */ 2900 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2901 zone_status_get(z) >= ZONE_IS_DEAD); 2902 mutex_exit(&z->zone_lock); 2903 2904 if (wakeup) { 2905 /* 2906 * Grabbing zonehash_lock here effectively synchronizes with 2907 * zone_destroy() to avoid missed signals. 2908 */ 2909 mutex_enter(&zonehash_lock); 2910 cv_broadcast(&zone_destroy_cv); 2911 mutex_exit(&zonehash_lock); 2912 } 2913 } 2914 2915 void 2916 zone_task_hold(zone_t *z) 2917 { 2918 mutex_enter(&z->zone_lock); 2919 z->zone_ntasks++; 2920 ASSERT(z->zone_ntasks != 0); 2921 mutex_exit(&z->zone_lock); 2922 } 2923 2924 void 2925 zone_task_rele(zone_t *zone) 2926 { 2927 uint_t refcnt; 2928 2929 mutex_enter(&zone->zone_lock); 2930 ASSERT(zone->zone_ntasks != 0); 2931 refcnt = --zone->zone_ntasks; 2932 if (refcnt > 1) { /* Common case */ 2933 mutex_exit(&zone->zone_lock); 2934 return; 2935 } 2936 zone_hold_locked(zone); /* so we can use the zone_t later */ 2937 mutex_exit(&zone->zone_lock); 2938 if (refcnt == 1) { 2939 /* 2940 * See if the zone is shutting down. 2941 */ 2942 mutex_enter(&zone_status_lock); 2943 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2944 goto out; 2945 } 2946 2947 /* 2948 * Make sure the ntasks didn't change since we 2949 * dropped zone_lock. 2950 */ 2951 mutex_enter(&zone->zone_lock); 2952 if (refcnt != zone->zone_ntasks) { 2953 mutex_exit(&zone->zone_lock); 2954 goto out; 2955 } 2956 mutex_exit(&zone->zone_lock); 2957 2958 /* 2959 * No more user processes in the zone. The zone is empty. 2960 */ 2961 zone_status_set(zone, ZONE_IS_EMPTY); 2962 goto out; 2963 } 2964 2965 ASSERT(refcnt == 0); 2966 /* 2967 * zsched has exited; the zone is dead. 2968 */ 2969 zone->zone_zsched = NULL; /* paranoia */ 2970 mutex_enter(&zone_status_lock); 2971 zone_status_set(zone, ZONE_IS_DEAD); 2972 out: 2973 mutex_exit(&zone_status_lock); 2974 zone_rele(zone); 2975 } 2976 2977 zoneid_t 2978 getzoneid(void) 2979 { 2980 return (curproc->p_zone->zone_id); 2981 } 2982 2983 /* 2984 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2985 * check the validity of a zone's state. 2986 */ 2987 static zone_t * 2988 zone_find_all_by_id(zoneid_t zoneid) 2989 { 2990 mod_hash_val_t hv; 2991 zone_t *zone = NULL; 2992 2993 ASSERT(MUTEX_HELD(&zonehash_lock)); 2994 2995 if (mod_hash_find(zonehashbyid, 2996 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2997 zone = (zone_t *)hv; 2998 return (zone); 2999 } 3000 3001 static zone_t * 3002 zone_find_all_by_label(const ts_label_t *label) 3003 { 3004 mod_hash_val_t hv; 3005 zone_t *zone = NULL; 3006 3007 ASSERT(MUTEX_HELD(&zonehash_lock)); 3008 3009 /* 3010 * zonehashbylabel is not maintained for unlabeled systems 3011 */ 3012 if (!is_system_labeled()) 3013 return (NULL); 3014 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3015 zone = (zone_t *)hv; 3016 return (zone); 3017 } 3018 3019 static zone_t * 3020 zone_find_all_by_name(char *name) 3021 { 3022 mod_hash_val_t hv; 3023 zone_t *zone = NULL; 3024 3025 ASSERT(MUTEX_HELD(&zonehash_lock)); 3026 3027 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3028 zone = (zone_t *)hv; 3029 return (zone); 3030 } 3031 3032 /* 3033 * Public interface for looking up a zone by zoneid. Only returns the zone if 3034 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3035 * Caller must call zone_rele() once it is done with the zone. 3036 * 3037 * The zone may begin the zone_destroy() sequence immediately after this 3038 * function returns, but may be safely used until zone_rele() is called. 3039 */ 3040 zone_t * 3041 zone_find_by_id(zoneid_t zoneid) 3042 { 3043 zone_t *zone; 3044 zone_status_t status; 3045 3046 mutex_enter(&zonehash_lock); 3047 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3048 mutex_exit(&zonehash_lock); 3049 return (NULL); 3050 } 3051 status = zone_status_get(zone); 3052 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3053 /* 3054 * For all practical purposes the zone doesn't exist. 3055 */ 3056 mutex_exit(&zonehash_lock); 3057 return (NULL); 3058 } 3059 zone_hold(zone); 3060 mutex_exit(&zonehash_lock); 3061 return (zone); 3062 } 3063 3064 /* 3065 * Similar to zone_find_by_id, but using zone label as the key. 3066 */ 3067 zone_t * 3068 zone_find_by_label(const ts_label_t *label) 3069 { 3070 zone_t *zone; 3071 zone_status_t status; 3072 3073 mutex_enter(&zonehash_lock); 3074 if ((zone = zone_find_all_by_label(label)) == NULL) { 3075 mutex_exit(&zonehash_lock); 3076 return (NULL); 3077 } 3078 3079 status = zone_status_get(zone); 3080 if (status > ZONE_IS_DOWN) { 3081 /* 3082 * For all practical purposes the zone doesn't exist. 3083 */ 3084 mutex_exit(&zonehash_lock); 3085 return (NULL); 3086 } 3087 zone_hold(zone); 3088 mutex_exit(&zonehash_lock); 3089 return (zone); 3090 } 3091 3092 /* 3093 * Similar to zone_find_by_id, but using zone name as the key. 3094 */ 3095 zone_t * 3096 zone_find_by_name(char *name) 3097 { 3098 zone_t *zone; 3099 zone_status_t status; 3100 3101 mutex_enter(&zonehash_lock); 3102 if ((zone = zone_find_all_by_name(name)) == NULL) { 3103 mutex_exit(&zonehash_lock); 3104 return (NULL); 3105 } 3106 status = zone_status_get(zone); 3107 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3108 /* 3109 * For all practical purposes the zone doesn't exist. 3110 */ 3111 mutex_exit(&zonehash_lock); 3112 return (NULL); 3113 } 3114 zone_hold(zone); 3115 mutex_exit(&zonehash_lock); 3116 return (zone); 3117 } 3118 3119 /* 3120 * Similar to zone_find_by_id(), using the path as a key. For instance, 3121 * if there is a zone "foo" rooted at /foo/root, and the path argument 3122 * is "/foo/root/proc", it will return the held zone_t corresponding to 3123 * zone "foo". 3124 * 3125 * zone_find_by_path() always returns a non-NULL value, since at the 3126 * very least every path will be contained in the global zone. 3127 * 3128 * As with the other zone_find_by_*() functions, the caller is 3129 * responsible for zone_rele()ing the return value of this function. 3130 */ 3131 zone_t * 3132 zone_find_by_path(const char *path) 3133 { 3134 zone_t *zone; 3135 zone_t *zret = NULL; 3136 zone_status_t status; 3137 3138 if (path == NULL) { 3139 /* 3140 * Call from rootconf(). 3141 */ 3142 zone_hold(global_zone); 3143 return (global_zone); 3144 } 3145 ASSERT(*path == '/'); 3146 mutex_enter(&zonehash_lock); 3147 for (zone = list_head(&zone_active); zone != NULL; 3148 zone = list_next(&zone_active, zone)) { 3149 if (ZONE_PATH_VISIBLE(path, zone)) 3150 zret = zone; 3151 } 3152 ASSERT(zret != NULL); 3153 status = zone_status_get(zret); 3154 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3155 /* 3156 * Zone practically doesn't exist. 3157 */ 3158 zret = global_zone; 3159 } 3160 zone_hold(zret); 3161 mutex_exit(&zonehash_lock); 3162 return (zret); 3163 } 3164 3165 /* 3166 * Public interface for updating per-zone load averages. Called once per 3167 * second. 3168 * 3169 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3170 */ 3171 void 3172 zone_loadavg_update() 3173 { 3174 zone_t *zp; 3175 zone_status_t status; 3176 struct loadavg_s *lavg; 3177 hrtime_t zone_total; 3178 int i; 3179 hrtime_t hr_avg; 3180 int nrun; 3181 static int64_t f[3] = { 135, 27, 9 }; 3182 int64_t q, r; 3183 3184 mutex_enter(&zonehash_lock); 3185 for (zp = list_head(&zone_active); zp != NULL; 3186 zp = list_next(&zone_active, zp)) { 3187 mutex_enter(&zp->zone_lock); 3188 3189 /* Skip zones that are on the way down or not yet up */ 3190 status = zone_status_get(zp); 3191 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3192 /* For all practical purposes the zone doesn't exist. */ 3193 mutex_exit(&zp->zone_lock); 3194 continue; 3195 } 3196 3197 /* 3198 * Update the 10 second moving average data in zone_loadavg. 3199 */ 3200 lavg = &zp->zone_loadavg; 3201 3202 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3203 scalehrtime(&zone_total); 3204 3205 /* The zone_total should always be increasing. */ 3206 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3207 zone_total - lavg->lg_total : 0; 3208 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3209 /* lg_total holds the prev. 1 sec. total */ 3210 lavg->lg_total = zone_total; 3211 3212 /* 3213 * To simplify the calculation, we don't calculate the load avg. 3214 * until the zone has been up for at least 10 seconds and our 3215 * moving average is thus full. 3216 */ 3217 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3218 lavg->lg_len++; 3219 mutex_exit(&zp->zone_lock); 3220 continue; 3221 } 3222 3223 /* Now calculate the 1min, 5min, 15 min load avg. */ 3224 hr_avg = 0; 3225 for (i = 0; i < S_LOADAVG_SZ; i++) 3226 hr_avg += lavg->lg_loads[i]; 3227 hr_avg = hr_avg / S_LOADAVG_SZ; 3228 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3229 3230 /* Compute load avg. See comment in calcloadavg() */ 3231 for (i = 0; i < 3; i++) { 3232 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3233 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3234 zp->zone_hp_avenrun[i] += 3235 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3236 3237 /* avenrun[] can only hold 31 bits of load avg. */ 3238 if (zp->zone_hp_avenrun[i] < 3239 ((uint64_t)1<<(31+16-FSHIFT))) 3240 zp->zone_avenrun[i] = (int32_t) 3241 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3242 else 3243 zp->zone_avenrun[i] = 0x7fffffff; 3244 } 3245 3246 mutex_exit(&zp->zone_lock); 3247 } 3248 mutex_exit(&zonehash_lock); 3249 } 3250 3251 /* 3252 * Get the number of cpus visible to this zone. The system-wide global 3253 * 'ncpus' is returned if pools are disabled, the caller is in the 3254 * global zone, or a NULL zone argument is passed in. 3255 */ 3256 int 3257 zone_ncpus_get(zone_t *zone) 3258 { 3259 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3260 3261 return (myncpus != 0 ? myncpus : ncpus); 3262 } 3263 3264 /* 3265 * Get the number of online cpus visible to this zone. The system-wide 3266 * global 'ncpus_online' is returned if pools are disabled, the caller 3267 * is in the global zone, or a NULL zone argument is passed in. 3268 */ 3269 int 3270 zone_ncpus_online_get(zone_t *zone) 3271 { 3272 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3273 3274 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3275 } 3276 3277 /* 3278 * Return the pool to which the zone is currently bound. 3279 */ 3280 pool_t * 3281 zone_pool_get(zone_t *zone) 3282 { 3283 ASSERT(pool_lock_held()); 3284 3285 return (zone->zone_pool); 3286 } 3287 3288 /* 3289 * Set the zone's pool pointer and update the zone's visibility to match 3290 * the resources in the new pool. 3291 */ 3292 void 3293 zone_pool_set(zone_t *zone, pool_t *pool) 3294 { 3295 ASSERT(pool_lock_held()); 3296 ASSERT(MUTEX_HELD(&cpu_lock)); 3297 3298 zone->zone_pool = pool; 3299 zone_pset_set(zone, pool->pool_pset->pset_id); 3300 } 3301 3302 /* 3303 * Return the cached value of the id of the processor set to which the 3304 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3305 * facility is disabled. 3306 */ 3307 psetid_t 3308 zone_pset_get(zone_t *zone) 3309 { 3310 ASSERT(MUTEX_HELD(&cpu_lock)); 3311 3312 return (zone->zone_psetid); 3313 } 3314 3315 /* 3316 * Set the cached value of the id of the processor set to which the zone 3317 * is currently bound. Also update the zone's visibility to match the 3318 * resources in the new processor set. 3319 */ 3320 void 3321 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3322 { 3323 psetid_t oldpsetid; 3324 3325 ASSERT(MUTEX_HELD(&cpu_lock)); 3326 oldpsetid = zone_pset_get(zone); 3327 3328 if (oldpsetid == newpsetid) 3329 return; 3330 /* 3331 * Global zone sees all. 3332 */ 3333 if (zone != global_zone) { 3334 zone->zone_psetid = newpsetid; 3335 if (newpsetid != ZONE_PS_INVAL) 3336 pool_pset_visibility_add(newpsetid, zone); 3337 if (oldpsetid != ZONE_PS_INVAL) 3338 pool_pset_visibility_remove(oldpsetid, zone); 3339 } 3340 /* 3341 * Disabling pools, so we should start using the global values 3342 * for ncpus and ncpus_online. 3343 */ 3344 if (newpsetid == ZONE_PS_INVAL) { 3345 zone->zone_ncpus = 0; 3346 zone->zone_ncpus_online = 0; 3347 } 3348 } 3349 3350 /* 3351 * Walk the list of active zones and issue the provided callback for 3352 * each of them. 3353 * 3354 * Caller must not be holding any locks that may be acquired under 3355 * zonehash_lock. See comment at the beginning of the file for a list of 3356 * common locks and their interactions with zones. 3357 */ 3358 int 3359 zone_walk(int (*cb)(zone_t *, void *), void *data) 3360 { 3361 zone_t *zone; 3362 int ret = 0; 3363 zone_status_t status; 3364 3365 mutex_enter(&zonehash_lock); 3366 for (zone = list_head(&zone_active); zone != NULL; 3367 zone = list_next(&zone_active, zone)) { 3368 /* 3369 * Skip zones that shouldn't be externally visible. 3370 */ 3371 status = zone_status_get(zone); 3372 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3373 continue; 3374 /* 3375 * Bail immediately if any callback invocation returns a 3376 * non-zero value. 3377 */ 3378 ret = (*cb)(zone, data); 3379 if (ret != 0) 3380 break; 3381 } 3382 mutex_exit(&zonehash_lock); 3383 return (ret); 3384 } 3385 3386 static int 3387 zone_set_root(zone_t *zone, const char *upath) 3388 { 3389 vnode_t *vp; 3390 int trycount; 3391 int error = 0; 3392 char *path; 3393 struct pathname upn, pn; 3394 size_t pathlen; 3395 3396 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3397 return (error); 3398 3399 pn_alloc(&pn); 3400 3401 /* prevent infinite loop */ 3402 trycount = 10; 3403 for (;;) { 3404 if (--trycount <= 0) { 3405 error = ESTALE; 3406 goto out; 3407 } 3408 3409 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3410 /* 3411 * VOP_ACCESS() may cover 'vp' with a new 3412 * filesystem, if 'vp' is an autoFS vnode. 3413 * Get the new 'vp' if so. 3414 */ 3415 if ((error = 3416 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3417 (!vn_ismntpt(vp) || 3418 (error = traverse(&vp)) == 0)) { 3419 pathlen = pn.pn_pathlen + 2; 3420 path = kmem_alloc(pathlen, KM_SLEEP); 3421 (void) strncpy(path, pn.pn_path, 3422 pn.pn_pathlen + 1); 3423 path[pathlen - 2] = '/'; 3424 path[pathlen - 1] = '\0'; 3425 pn_free(&pn); 3426 pn_free(&upn); 3427 3428 /* Success! */ 3429 break; 3430 } 3431 VN_RELE(vp); 3432 } 3433 if (error != ESTALE) 3434 goto out; 3435 } 3436 3437 ASSERT(error == 0); 3438 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3439 zone->zone_rootpath = path; 3440 zone->zone_rootpathlen = pathlen; 3441 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3442 zone->zone_flags |= ZF_IS_SCRATCH; 3443 return (0); 3444 3445 out: 3446 pn_free(&pn); 3447 pn_free(&upn); 3448 return (error); 3449 } 3450 3451 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3452 ((c) >= 'a' && (c) <= 'z') || \ 3453 ((c) >= 'A' && (c) <= 'Z')) 3454 3455 static int 3456 zone_set_name(zone_t *zone, const char *uname) 3457 { 3458 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3459 size_t len; 3460 int i, err; 3461 3462 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3463 kmem_free(kname, ZONENAME_MAX); 3464 return (err); /* EFAULT or ENAMETOOLONG */ 3465 } 3466 3467 /* must be less than ZONENAME_MAX */ 3468 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3469 kmem_free(kname, ZONENAME_MAX); 3470 return (EINVAL); 3471 } 3472 3473 /* 3474 * Name must start with an alphanumeric and must contain only 3475 * alphanumerics, '-', '_' and '.'. 3476 */ 3477 if (!isalnum(kname[0])) { 3478 kmem_free(kname, ZONENAME_MAX); 3479 return (EINVAL); 3480 } 3481 for (i = 1; i < len - 1; i++) { 3482 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3483 kname[i] != '.') { 3484 kmem_free(kname, ZONENAME_MAX); 3485 return (EINVAL); 3486 } 3487 } 3488 3489 zone->zone_name = kname; 3490 return (0); 3491 } 3492 3493 /* 3494 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3495 * is NULL or it points to a zone with no hostid emulation, then the machine's 3496 * hostid (i.e., the global zone's hostid) is returned. This function returns 3497 * zero if neither the zone nor the host machine (global zone) have hostids. It 3498 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3499 * hostid and the machine's hostid is invalid. 3500 */ 3501 uint32_t 3502 zone_get_hostid(zone_t *zonep) 3503 { 3504 unsigned long machine_hostid; 3505 3506 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3507 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3508 return (HW_INVALID_HOSTID); 3509 return ((uint32_t)machine_hostid); 3510 } 3511 return (zonep->zone_hostid); 3512 } 3513 3514 /* 3515 * Similar to thread_create(), but makes sure the thread is in the appropriate 3516 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3517 */ 3518 /*ARGSUSED*/ 3519 kthread_t * 3520 zthread_create( 3521 caddr_t stk, 3522 size_t stksize, 3523 void (*proc)(), 3524 void *arg, 3525 size_t len, 3526 pri_t pri) 3527 { 3528 kthread_t *t; 3529 zone_t *zone = curproc->p_zone; 3530 proc_t *pp = zone->zone_zsched; 3531 3532 zone_hold(zone); /* Reference to be dropped when thread exits */ 3533 3534 /* 3535 * No-one should be trying to create threads if the zone is shutting 3536 * down and there aren't any kernel threads around. See comment 3537 * in zthread_exit(). 3538 */ 3539 ASSERT(!(zone->zone_kthreads == NULL && 3540 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3541 /* 3542 * Create a thread, but don't let it run until we've finished setting 3543 * things up. 3544 */ 3545 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3546 ASSERT(t->t_forw == NULL); 3547 mutex_enter(&zone_status_lock); 3548 if (zone->zone_kthreads == NULL) { 3549 t->t_forw = t->t_back = t; 3550 } else { 3551 kthread_t *tx = zone->zone_kthreads; 3552 3553 t->t_forw = tx; 3554 t->t_back = tx->t_back; 3555 tx->t_back->t_forw = t; 3556 tx->t_back = t; 3557 } 3558 zone->zone_kthreads = t; 3559 mutex_exit(&zone_status_lock); 3560 3561 mutex_enter(&pp->p_lock); 3562 t->t_proc_flag |= TP_ZTHREAD; 3563 project_rele(t->t_proj); 3564 t->t_proj = project_hold(pp->p_task->tk_proj); 3565 3566 /* 3567 * Setup complete, let it run. 3568 */ 3569 thread_lock(t); 3570 t->t_schedflag |= TS_ALLSTART; 3571 setrun_locked(t); 3572 thread_unlock(t); 3573 3574 mutex_exit(&pp->p_lock); 3575 3576 return (t); 3577 } 3578 3579 /* 3580 * Similar to thread_exit(). Must be called by threads created via 3581 * zthread_exit(). 3582 */ 3583 void 3584 zthread_exit(void) 3585 { 3586 kthread_t *t = curthread; 3587 proc_t *pp = curproc; 3588 zone_t *zone = pp->p_zone; 3589 3590 mutex_enter(&zone_status_lock); 3591 3592 /* 3593 * Reparent to p0 3594 */ 3595 kpreempt_disable(); 3596 mutex_enter(&pp->p_lock); 3597 t->t_proc_flag &= ~TP_ZTHREAD; 3598 t->t_procp = &p0; 3599 hat_thread_exit(t); 3600 mutex_exit(&pp->p_lock); 3601 kpreempt_enable(); 3602 3603 if (t->t_back == t) { 3604 ASSERT(t->t_forw == t); 3605 /* 3606 * If the zone is empty, once the thread count 3607 * goes to zero no further kernel threads can be 3608 * created. This is because if the creator is a process 3609 * in the zone, then it must have exited before the zone 3610 * state could be set to ZONE_IS_EMPTY. 3611 * Otherwise, if the creator is a kernel thread in the 3612 * zone, the thread count is non-zero. 3613 * 3614 * This really means that non-zone kernel threads should 3615 * not create zone kernel threads. 3616 */ 3617 zone->zone_kthreads = NULL; 3618 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3619 zone_status_set(zone, ZONE_IS_DOWN); 3620 /* 3621 * Remove any CPU caps on this zone. 3622 */ 3623 cpucaps_zone_remove(zone); 3624 } 3625 } else { 3626 t->t_forw->t_back = t->t_back; 3627 t->t_back->t_forw = t->t_forw; 3628 if (zone->zone_kthreads == t) 3629 zone->zone_kthreads = t->t_forw; 3630 } 3631 mutex_exit(&zone_status_lock); 3632 zone_rele(zone); 3633 thread_exit(); 3634 /* NOTREACHED */ 3635 } 3636 3637 static void 3638 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3639 { 3640 vnode_t *oldvp; 3641 3642 /* we're going to hold a reference here to the directory */ 3643 VN_HOLD(vp); 3644 3645 /* update abs cwd/root path see c2/audit.c */ 3646 if (AU_AUDITING()) 3647 audit_chdirec(vp, vpp); 3648 3649 mutex_enter(&pp->p_lock); 3650 oldvp = *vpp; 3651 *vpp = vp; 3652 mutex_exit(&pp->p_lock); 3653 if (oldvp != NULL) 3654 VN_RELE(oldvp); 3655 } 3656 3657 /* 3658 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3659 */ 3660 static int 3661 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3662 { 3663 nvpair_t *nvp = NULL; 3664 boolean_t priv_set = B_FALSE; 3665 boolean_t limit_set = B_FALSE; 3666 boolean_t action_set = B_FALSE; 3667 3668 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3669 const char *name; 3670 uint64_t ui64; 3671 3672 name = nvpair_name(nvp); 3673 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3674 return (EINVAL); 3675 (void) nvpair_value_uint64(nvp, &ui64); 3676 if (strcmp(name, "privilege") == 0) { 3677 /* 3678 * Currently only privileged values are allowed, but 3679 * this may change in the future. 3680 */ 3681 if (ui64 != RCPRIV_PRIVILEGED) 3682 return (EINVAL); 3683 rv->rcv_privilege = ui64; 3684 priv_set = B_TRUE; 3685 } else if (strcmp(name, "limit") == 0) { 3686 rv->rcv_value = ui64; 3687 limit_set = B_TRUE; 3688 } else if (strcmp(name, "action") == 0) { 3689 if (ui64 != RCTL_LOCAL_NOACTION && 3690 ui64 != RCTL_LOCAL_DENY) 3691 return (EINVAL); 3692 rv->rcv_flagaction = ui64; 3693 action_set = B_TRUE; 3694 } else { 3695 return (EINVAL); 3696 } 3697 } 3698 3699 if (!(priv_set && limit_set && action_set)) 3700 return (EINVAL); 3701 rv->rcv_action_signal = 0; 3702 rv->rcv_action_recipient = NULL; 3703 rv->rcv_action_recip_pid = -1; 3704 rv->rcv_firing_time = 0; 3705 3706 return (0); 3707 } 3708 3709 /* 3710 * Non-global zone version of start_init. 3711 */ 3712 void 3713 zone_start_init(void) 3714 { 3715 proc_t *p = ttoproc(curthread); 3716 zone_t *z = p->p_zone; 3717 3718 ASSERT(!INGLOBALZONE(curproc)); 3719 3720 /* 3721 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3722 * storing just the pid of init is sufficient. 3723 */ 3724 z->zone_proc_initpid = p->p_pid; 3725 3726 /* 3727 * We maintain zone_boot_err so that we can return the cause of the 3728 * failure back to the caller of the zone_boot syscall. 3729 */ 3730 p->p_zone->zone_boot_err = start_init_common(); 3731 3732 /* 3733 * We will prevent booting zones from becoming running zones if the 3734 * global zone is shutting down. 3735 */ 3736 mutex_enter(&zone_status_lock); 3737 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3738 ZONE_IS_SHUTTING_DOWN) { 3739 /* 3740 * Make sure we are still in the booting state-- we could have 3741 * raced and already be shutting down, or even further along. 3742 */ 3743 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3744 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3745 } 3746 mutex_exit(&zone_status_lock); 3747 /* It's gone bad, dispose of the process */ 3748 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3749 mutex_enter(&p->p_lock); 3750 ASSERT(p->p_flag & SEXITLWPS); 3751 lwp_exit(); 3752 } 3753 } else { 3754 if (zone_status_get(z) == ZONE_IS_BOOTING) 3755 zone_status_set(z, ZONE_IS_RUNNING); 3756 mutex_exit(&zone_status_lock); 3757 /* cause the process to return to userland. */ 3758 lwp_rtt(); 3759 } 3760 } 3761 3762 struct zsched_arg { 3763 zone_t *zone; 3764 nvlist_t *nvlist; 3765 }; 3766 3767 /* 3768 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3769 * anything to do with scheduling, but rather with the fact that 3770 * per-zone kernel threads are parented to zsched, just like regular 3771 * kernel threads are parented to sched (p0). 3772 * 3773 * zsched is also responsible for launching init for the zone. 3774 */ 3775 static void 3776 zsched(void *arg) 3777 { 3778 struct zsched_arg *za = arg; 3779 proc_t *pp = curproc; 3780 proc_t *initp = proc_init; 3781 zone_t *zone = za->zone; 3782 cred_t *cr, *oldcred; 3783 rctl_set_t *set; 3784 rctl_alloc_gp_t *gp; 3785 contract_t *ct = NULL; 3786 task_t *tk, *oldtk; 3787 rctl_entity_p_t e; 3788 kproject_t *pj; 3789 3790 nvlist_t *nvl = za->nvlist; 3791 nvpair_t *nvp = NULL; 3792 3793 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3794 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3795 PTOU(pp)->u_argc = 0; 3796 PTOU(pp)->u_argv = NULL; 3797 PTOU(pp)->u_envp = NULL; 3798 closeall(P_FINFO(pp)); 3799 3800 /* 3801 * We are this zone's "zsched" process. As the zone isn't generally 3802 * visible yet we don't need to grab any locks before initializing its 3803 * zone_proc pointer. 3804 */ 3805 zone_hold(zone); /* this hold is released by zone_destroy() */ 3806 zone->zone_zsched = pp; 3807 mutex_enter(&pp->p_lock); 3808 pp->p_zone = zone; 3809 mutex_exit(&pp->p_lock); 3810 3811 /* 3812 * Disassociate process from its 'parent'; parent ourselves to init 3813 * (pid 1) and change other values as needed. 3814 */ 3815 sess_create(); 3816 3817 mutex_enter(&pidlock); 3818 proc_detach(pp); 3819 pp->p_ppid = 1; 3820 pp->p_flag |= SZONETOP; 3821 pp->p_ancpid = 1; 3822 pp->p_parent = initp; 3823 pp->p_psibling = NULL; 3824 if (initp->p_child) 3825 initp->p_child->p_psibling = pp; 3826 pp->p_sibling = initp->p_child; 3827 initp->p_child = pp; 3828 3829 /* Decrement what newproc() incremented. */ 3830 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3831 /* 3832 * Our credentials are about to become kcred-like, so we don't care 3833 * about the caller's ruid. 3834 */ 3835 upcount_inc(crgetruid(kcred), zone->zone_id); 3836 mutex_exit(&pidlock); 3837 3838 /* 3839 * getting out of global zone, so decrement lwp and process counts 3840 */ 3841 pj = pp->p_task->tk_proj; 3842 mutex_enter(&global_zone->zone_nlwps_lock); 3843 pj->kpj_nlwps -= pp->p_lwpcnt; 3844 global_zone->zone_nlwps -= pp->p_lwpcnt; 3845 pj->kpj_nprocs--; 3846 global_zone->zone_nprocs--; 3847 mutex_exit(&global_zone->zone_nlwps_lock); 3848 3849 /* 3850 * Decrement locked memory counts on old zone and project. 3851 */ 3852 mutex_enter(&global_zone->zone_mem_lock); 3853 global_zone->zone_locked_mem -= pp->p_locked_mem; 3854 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3855 mutex_exit(&global_zone->zone_mem_lock); 3856 3857 /* 3858 * Create and join a new task in project '0' of this zone. 3859 * 3860 * We don't need to call holdlwps() since we know we're the only lwp in 3861 * this process. 3862 * 3863 * task_join() returns with p_lock held. 3864 */ 3865 tk = task_create(0, zone); 3866 mutex_enter(&cpu_lock); 3867 oldtk = task_join(tk, 0); 3868 3869 pj = pp->p_task->tk_proj; 3870 3871 mutex_enter(&zone->zone_mem_lock); 3872 zone->zone_locked_mem += pp->p_locked_mem; 3873 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3874 mutex_exit(&zone->zone_mem_lock); 3875 3876 /* 3877 * add lwp and process counts to zsched's zone, and increment 3878 * project's task and process count due to the task created in 3879 * the above task_create. 3880 */ 3881 mutex_enter(&zone->zone_nlwps_lock); 3882 pj->kpj_nlwps += pp->p_lwpcnt; 3883 pj->kpj_ntasks += 1; 3884 zone->zone_nlwps += pp->p_lwpcnt; 3885 pj->kpj_nprocs++; 3886 zone->zone_nprocs++; 3887 mutex_exit(&zone->zone_nlwps_lock); 3888 3889 mutex_exit(&curproc->p_lock); 3890 mutex_exit(&cpu_lock); 3891 task_rele(oldtk); 3892 3893 /* 3894 * The process was created by a process in the global zone, hence the 3895 * credentials are wrong. We might as well have kcred-ish credentials. 3896 */ 3897 cr = zone->zone_kcred; 3898 crhold(cr); 3899 mutex_enter(&pp->p_crlock); 3900 oldcred = pp->p_cred; 3901 pp->p_cred = cr; 3902 mutex_exit(&pp->p_crlock); 3903 crfree(oldcred); 3904 3905 /* 3906 * Hold credentials again (for thread) 3907 */ 3908 crhold(cr); 3909 3910 /* 3911 * p_lwpcnt can't change since this is a kernel process. 3912 */ 3913 crset(pp, cr); 3914 3915 /* 3916 * Chroot 3917 */ 3918 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3919 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3920 3921 /* 3922 * Initialize zone's rctl set. 3923 */ 3924 set = rctl_set_create(); 3925 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3926 mutex_enter(&pp->p_lock); 3927 e.rcep_p.zone = zone; 3928 e.rcep_t = RCENTITY_ZONE; 3929 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3930 mutex_exit(&pp->p_lock); 3931 rctl_prealloc_destroy(gp); 3932 3933 /* 3934 * Apply the rctls passed in to zone_create(). This is basically a list 3935 * assignment: all of the old values are removed and the new ones 3936 * inserted. That is, if an empty list is passed in, all values are 3937 * removed. 3938 */ 3939 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3940 rctl_dict_entry_t *rde; 3941 rctl_hndl_t hndl; 3942 char *name; 3943 nvlist_t **nvlarray; 3944 uint_t i, nelem; 3945 int error; /* For ASSERT()s */ 3946 3947 name = nvpair_name(nvp); 3948 hndl = rctl_hndl_lookup(name); 3949 ASSERT(hndl != -1); 3950 rde = rctl_dict_lookup_hndl(hndl); 3951 ASSERT(rde != NULL); 3952 3953 for (; /* ever */; ) { 3954 rctl_val_t oval; 3955 3956 mutex_enter(&pp->p_lock); 3957 error = rctl_local_get(hndl, NULL, &oval, pp); 3958 mutex_exit(&pp->p_lock); 3959 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3960 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3961 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3962 break; 3963 mutex_enter(&pp->p_lock); 3964 error = rctl_local_delete(hndl, &oval, pp); 3965 mutex_exit(&pp->p_lock); 3966 ASSERT(error == 0); 3967 } 3968 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3969 ASSERT(error == 0); 3970 for (i = 0; i < nelem; i++) { 3971 rctl_val_t *nvalp; 3972 3973 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3974 error = nvlist2rctlval(nvlarray[i], nvalp); 3975 ASSERT(error == 0); 3976 /* 3977 * rctl_local_insert can fail if the value being 3978 * inserted is a duplicate; this is OK. 3979 */ 3980 mutex_enter(&pp->p_lock); 3981 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3982 kmem_cache_free(rctl_val_cache, nvalp); 3983 mutex_exit(&pp->p_lock); 3984 } 3985 } 3986 3987 /* 3988 * Tell the world that we're done setting up. 3989 * 3990 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3991 * and atomically set the zone's processor set visibility. Once 3992 * we drop pool_lock() this zone will automatically get updated 3993 * to reflect any future changes to the pools configuration. 3994 * 3995 * Note that after we drop the locks below (zonehash_lock in 3996 * particular) other operations such as a zone_getattr call can 3997 * now proceed and observe the zone. That is the reason for doing a 3998 * state transition to the INITIALIZED state. 3999 */ 4000 pool_lock(); 4001 mutex_enter(&cpu_lock); 4002 mutex_enter(&zonehash_lock); 4003 zone_uniqid(zone); 4004 zone_zsd_configure(zone); 4005 if (pool_state == POOL_ENABLED) 4006 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4007 mutex_enter(&zone_status_lock); 4008 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4009 zone_status_set(zone, ZONE_IS_INITIALIZED); 4010 mutex_exit(&zone_status_lock); 4011 mutex_exit(&zonehash_lock); 4012 mutex_exit(&cpu_lock); 4013 pool_unlock(); 4014 4015 /* Now call the create callback for this key */ 4016 zsd_apply_all_keys(zsd_apply_create, zone); 4017 4018 /* The callbacks are complete. Mark ZONE_IS_READY */ 4019 mutex_enter(&zone_status_lock); 4020 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4021 zone_status_set(zone, ZONE_IS_READY); 4022 mutex_exit(&zone_status_lock); 4023 4024 /* 4025 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4026 * we launch init, and set the state to running. 4027 */ 4028 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4029 4030 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4031 id_t cid; 4032 4033 /* 4034 * Ok, this is a little complicated. We need to grab the 4035 * zone's pool's scheduling class ID; note that by now, we 4036 * are already bound to a pool if we need to be (zoneadmd 4037 * will have done that to us while we're in the READY 4038 * state). *But* the scheduling class for the zone's 'init' 4039 * must be explicitly passed to newproc, which doesn't 4040 * respect pool bindings. 4041 * 4042 * We hold the pool_lock across the call to newproc() to 4043 * close the obvious race: the pool's scheduling class 4044 * could change before we manage to create the LWP with 4045 * classid 'cid'. 4046 */ 4047 pool_lock(); 4048 if (zone->zone_defaultcid > 0) 4049 cid = zone->zone_defaultcid; 4050 else 4051 cid = pool_get_class(zone->zone_pool); 4052 if (cid == -1) 4053 cid = defaultcid; 4054 4055 /* 4056 * If this fails, zone_boot will ultimately fail. The 4057 * state of the zone will be set to SHUTTING_DOWN-- userland 4058 * will have to tear down the zone, and fail, or try again. 4059 */ 4060 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4061 minclsyspri - 1, &ct, 0)) != 0) { 4062 mutex_enter(&zone_status_lock); 4063 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4064 mutex_exit(&zone_status_lock); 4065 } else { 4066 zone->zone_boot_time = gethrestime_sec(); 4067 } 4068 4069 pool_unlock(); 4070 } 4071 4072 /* 4073 * Wait for zone_destroy() to be called. This is what we spend 4074 * most of our life doing. 4075 */ 4076 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4077 4078 if (ct) 4079 /* 4080 * At this point the process contract should be empty. 4081 * (Though if it isn't, it's not the end of the world.) 4082 */ 4083 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4084 4085 /* 4086 * Allow kcred to be freed when all referring processes 4087 * (including this one) go away. We can't just do this in 4088 * zone_free because we need to wait for the zone_cred_ref to 4089 * drop to 0 before calling zone_free, and the existence of 4090 * zone_kcred will prevent that. Thus, we call crfree here to 4091 * balance the crdup in zone_create. The crhold calls earlier 4092 * in zsched will be dropped when the thread and process exit. 4093 */ 4094 crfree(zone->zone_kcred); 4095 zone->zone_kcred = NULL; 4096 4097 exit(CLD_EXITED, 0); 4098 } 4099 4100 /* 4101 * Helper function to determine if there are any submounts of the 4102 * provided path. Used to make sure the zone doesn't "inherit" any 4103 * mounts from before it is created. 4104 */ 4105 static uint_t 4106 zone_mount_count(const char *rootpath) 4107 { 4108 vfs_t *vfsp; 4109 uint_t count = 0; 4110 size_t rootpathlen = strlen(rootpath); 4111 4112 /* 4113 * Holding zonehash_lock prevents race conditions with 4114 * vfs_list_add()/vfs_list_remove() since we serialize with 4115 * zone_find_by_path(). 4116 */ 4117 ASSERT(MUTEX_HELD(&zonehash_lock)); 4118 /* 4119 * The rootpath must end with a '/' 4120 */ 4121 ASSERT(rootpath[rootpathlen - 1] == '/'); 4122 4123 /* 4124 * This intentionally does not count the rootpath itself if that 4125 * happens to be a mount point. 4126 */ 4127 vfs_list_read_lock(); 4128 vfsp = rootvfs; 4129 do { 4130 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4131 rootpathlen) == 0) 4132 count++; 4133 vfsp = vfsp->vfs_next; 4134 } while (vfsp != rootvfs); 4135 vfs_list_unlock(); 4136 return (count); 4137 } 4138 4139 /* 4140 * Helper function to make sure that a zone created on 'rootpath' 4141 * wouldn't end up containing other zones' rootpaths. 4142 */ 4143 static boolean_t 4144 zone_is_nested(const char *rootpath) 4145 { 4146 zone_t *zone; 4147 size_t rootpathlen = strlen(rootpath); 4148 size_t len; 4149 4150 ASSERT(MUTEX_HELD(&zonehash_lock)); 4151 4152 /* 4153 * zone_set_root() appended '/' and '\0' at the end of rootpath 4154 */ 4155 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4156 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4157 return (B_TRUE); 4158 4159 for (zone = list_head(&zone_active); zone != NULL; 4160 zone = list_next(&zone_active, zone)) { 4161 if (zone == global_zone) 4162 continue; 4163 len = strlen(zone->zone_rootpath); 4164 if (strncmp(rootpath, zone->zone_rootpath, 4165 MIN(rootpathlen, len)) == 0) 4166 return (B_TRUE); 4167 } 4168 return (B_FALSE); 4169 } 4170 4171 static int 4172 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4173 size_t zone_privssz) 4174 { 4175 priv_set_t *privs; 4176 4177 if (zone_privssz < sizeof (priv_set_t)) 4178 return (ENOMEM); 4179 4180 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4181 4182 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4183 kmem_free(privs, sizeof (priv_set_t)); 4184 return (EFAULT); 4185 } 4186 4187 zone->zone_privset = privs; 4188 return (0); 4189 } 4190 4191 /* 4192 * We make creative use of nvlists to pass in rctls from userland. The list is 4193 * a list of the following structures: 4194 * 4195 * (name = rctl_name, value = nvpair_list_array) 4196 * 4197 * Where each element of the nvpair_list_array is of the form: 4198 * 4199 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4200 * (name = "limit", value = uint64_t), 4201 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4202 */ 4203 static int 4204 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4205 { 4206 nvpair_t *nvp = NULL; 4207 nvlist_t *nvl = NULL; 4208 char *kbuf; 4209 int error; 4210 rctl_val_t rv; 4211 4212 *nvlp = NULL; 4213 4214 if (buflen == 0) 4215 return (0); 4216 4217 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4218 return (ENOMEM); 4219 if (copyin(ubuf, kbuf, buflen)) { 4220 error = EFAULT; 4221 goto out; 4222 } 4223 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4224 /* 4225 * nvl may have been allocated/free'd, but the value set to 4226 * non-NULL, so we reset it here. 4227 */ 4228 nvl = NULL; 4229 error = EINVAL; 4230 goto out; 4231 } 4232 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4233 rctl_dict_entry_t *rde; 4234 rctl_hndl_t hndl; 4235 nvlist_t **nvlarray; 4236 uint_t i, nelem; 4237 char *name; 4238 4239 error = EINVAL; 4240 name = nvpair_name(nvp); 4241 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4242 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4243 goto out; 4244 } 4245 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4246 goto out; 4247 } 4248 rde = rctl_dict_lookup_hndl(hndl); 4249 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4250 ASSERT(error == 0); 4251 for (i = 0; i < nelem; i++) { 4252 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4253 goto out; 4254 } 4255 if (rctl_invalid_value(rde, &rv)) { 4256 error = EINVAL; 4257 goto out; 4258 } 4259 } 4260 error = 0; 4261 *nvlp = nvl; 4262 out: 4263 kmem_free(kbuf, buflen); 4264 if (error && nvl != NULL) 4265 nvlist_free(nvl); 4266 return (error); 4267 } 4268 4269 int 4270 zone_create_error(int er_error, int er_ext, int *er_out) 4271 { 4272 if (er_out != NULL) { 4273 if (copyout(&er_ext, er_out, sizeof (int))) { 4274 return (set_errno(EFAULT)); 4275 } 4276 } 4277 return (set_errno(er_error)); 4278 } 4279 4280 static int 4281 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4282 { 4283 ts_label_t *tsl; 4284 bslabel_t blab; 4285 4286 /* Get label from user */ 4287 if (copyin(lab, &blab, sizeof (blab)) != 0) 4288 return (EFAULT); 4289 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4290 if (tsl == NULL) 4291 return (ENOMEM); 4292 4293 zone->zone_slabel = tsl; 4294 return (0); 4295 } 4296 4297 /* 4298 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4299 */ 4300 static int 4301 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4302 { 4303 char *kbuf; 4304 char *dataset, *next; 4305 zone_dataset_t *zd; 4306 size_t len; 4307 4308 if (ubuf == NULL || buflen == 0) 4309 return (0); 4310 4311 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4312 return (ENOMEM); 4313 4314 if (copyin(ubuf, kbuf, buflen) != 0) { 4315 kmem_free(kbuf, buflen); 4316 return (EFAULT); 4317 } 4318 4319 dataset = next = kbuf; 4320 for (;;) { 4321 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4322 4323 next = strchr(dataset, ','); 4324 4325 if (next == NULL) 4326 len = strlen(dataset); 4327 else 4328 len = next - dataset; 4329 4330 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4331 bcopy(dataset, zd->zd_dataset, len); 4332 zd->zd_dataset[len] = '\0'; 4333 4334 list_insert_head(&zone->zone_datasets, zd); 4335 4336 if (next == NULL) 4337 break; 4338 4339 dataset = next + 1; 4340 } 4341 4342 kmem_free(kbuf, buflen); 4343 return (0); 4344 } 4345 4346 /* 4347 * System call to create/initialize a new zone named 'zone_name', rooted 4348 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4349 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4350 * with labeling set by 'match', 'doi', and 'label'. 4351 * 4352 * If extended error is non-null, we may use it to return more detailed 4353 * error information. 4354 */ 4355 static zoneid_t 4356 zone_create(const char *zone_name, const char *zone_root, 4357 const priv_set_t *zone_privs, size_t zone_privssz, 4358 caddr_t rctlbuf, size_t rctlbufsz, 4359 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4360 int match, uint32_t doi, const bslabel_t *label, 4361 int flags) 4362 { 4363 struct zsched_arg zarg; 4364 nvlist_t *rctls = NULL; 4365 proc_t *pp = curproc; 4366 zone_t *zone, *ztmp; 4367 zoneid_t zoneid; 4368 int error; 4369 int error2 = 0; 4370 char *str; 4371 cred_t *zkcr; 4372 boolean_t insert_label_hash; 4373 4374 if (secpolicy_zone_config(CRED()) != 0) 4375 return (set_errno(EPERM)); 4376 4377 /* can't boot zone from within chroot environment */ 4378 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4379 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4380 extended_error)); 4381 4382 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4383 zoneid = zone->zone_id = id_alloc(zoneid_space); 4384 zone->zone_status = ZONE_IS_UNINITIALIZED; 4385 zone->zone_pool = pool_default; 4386 zone->zone_pool_mod = gethrtime(); 4387 zone->zone_psetid = ZONE_PS_INVAL; 4388 zone->zone_ncpus = 0; 4389 zone->zone_ncpus_online = 0; 4390 zone->zone_restart_init = B_TRUE; 4391 zone->zone_brand = &native_brand; 4392 zone->zone_initname = NULL; 4393 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4394 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4395 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4396 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4397 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4398 offsetof(zone_ref_t, zref_linkage)); 4399 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4400 offsetof(struct zsd_entry, zsd_linkage)); 4401 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4402 offsetof(zone_dataset_t, zd_linkage)); 4403 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4404 offsetof(zone_dl_t, zdl_linkage)); 4405 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4406 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4407 4408 if (flags & ZCF_NET_EXCL) { 4409 zone->zone_flags |= ZF_NET_EXCL; 4410 } 4411 4412 if ((error = zone_set_name(zone, zone_name)) != 0) { 4413 zone_free(zone); 4414 return (zone_create_error(error, 0, extended_error)); 4415 } 4416 4417 if ((error = zone_set_root(zone, zone_root)) != 0) { 4418 zone_free(zone); 4419 return (zone_create_error(error, 0, extended_error)); 4420 } 4421 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4422 zone_free(zone); 4423 return (zone_create_error(error, 0, extended_error)); 4424 } 4425 4426 /* initialize node name to be the same as zone name */ 4427 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4428 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4429 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4430 4431 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4432 zone->zone_domain[0] = '\0'; 4433 zone->zone_hostid = HW_INVALID_HOSTID; 4434 zone->zone_shares = 1; 4435 zone->zone_shmmax = 0; 4436 zone->zone_ipc.ipcq_shmmni = 0; 4437 zone->zone_ipc.ipcq_semmni = 0; 4438 zone->zone_ipc.ipcq_msgmni = 0; 4439 zone->zone_bootargs = NULL; 4440 zone->zone_fs_allowed = NULL; 4441 4442 secflags_zero(&zone0.zone_secflags.psf_lower); 4443 secflags_zero(&zone0.zone_secflags.psf_effective); 4444 secflags_zero(&zone0.zone_secflags.psf_inherit); 4445 secflags_fullset(&zone0.zone_secflags.psf_upper); 4446 4447 zone->zone_initname = 4448 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4449 (void) strcpy(zone->zone_initname, zone_default_initname); 4450 zone->zone_nlwps = 0; 4451 zone->zone_nlwps_ctl = INT_MAX; 4452 zone->zone_nprocs = 0; 4453 zone->zone_nprocs_ctl = INT_MAX; 4454 zone->zone_locked_mem = 0; 4455 zone->zone_locked_mem_ctl = UINT64_MAX; 4456 zone->zone_max_swap = 0; 4457 zone->zone_max_swap_ctl = UINT64_MAX; 4458 zone->zone_max_lofi = 0; 4459 zone->zone_max_lofi_ctl = UINT64_MAX; 4460 zone0.zone_lockedmem_kstat = NULL; 4461 zone0.zone_swapresv_kstat = NULL; 4462 4463 /* 4464 * Zsched initializes the rctls. 4465 */ 4466 zone->zone_rctls = NULL; 4467 4468 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4469 zone_free(zone); 4470 return (zone_create_error(error, 0, extended_error)); 4471 } 4472 4473 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4474 zone_free(zone); 4475 return (set_errno(error)); 4476 } 4477 4478 /* 4479 * Read in the trusted system parameters: 4480 * match flag and sensitivity label. 4481 */ 4482 zone->zone_match = match; 4483 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4484 /* Fail if requested to set doi to anything but system's doi */ 4485 if (doi != 0 && doi != default_doi) { 4486 zone_free(zone); 4487 return (set_errno(EINVAL)); 4488 } 4489 /* Always apply system's doi to the zone */ 4490 error = zone_set_label(zone, label, default_doi); 4491 if (error != 0) { 4492 zone_free(zone); 4493 return (set_errno(error)); 4494 } 4495 insert_label_hash = B_TRUE; 4496 } else { 4497 /* all zones get an admin_low label if system is not labeled */ 4498 zone->zone_slabel = l_admin_low; 4499 label_hold(l_admin_low); 4500 insert_label_hash = B_FALSE; 4501 } 4502 4503 /* 4504 * Stop all lwps since that's what normally happens as part of fork(). 4505 * This needs to happen before we grab any locks to avoid deadlock 4506 * (another lwp in the process could be waiting for the held lock). 4507 */ 4508 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4509 zone_free(zone); 4510 nvlist_free(rctls); 4511 return (zone_create_error(error, 0, extended_error)); 4512 } 4513 4514 if (block_mounts(zone) == 0) { 4515 mutex_enter(&pp->p_lock); 4516 if (curthread != pp->p_agenttp) 4517 continuelwps(pp); 4518 mutex_exit(&pp->p_lock); 4519 zone_free(zone); 4520 nvlist_free(rctls); 4521 return (zone_create_error(error, 0, extended_error)); 4522 } 4523 4524 /* 4525 * Set up credential for kernel access. After this, any errors 4526 * should go through the dance in errout rather than calling 4527 * zone_free directly. 4528 */ 4529 zone->zone_kcred = crdup(kcred); 4530 crsetzone(zone->zone_kcred, zone); 4531 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4532 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4533 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4534 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4535 4536 mutex_enter(&zonehash_lock); 4537 /* 4538 * Make sure zone doesn't already exist. 4539 * 4540 * If the system and zone are labeled, 4541 * make sure no other zone exists that has the same label. 4542 */ 4543 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4544 (insert_label_hash && 4545 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4546 zone_status_t status; 4547 4548 status = zone_status_get(ztmp); 4549 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4550 error = EEXIST; 4551 else 4552 error = EBUSY; 4553 4554 if (insert_label_hash) 4555 error2 = ZE_LABELINUSE; 4556 4557 goto errout; 4558 } 4559 4560 /* 4561 * Don't allow zone creations which would cause one zone's rootpath to 4562 * be accessible from that of another (non-global) zone. 4563 */ 4564 if (zone_is_nested(zone->zone_rootpath)) { 4565 error = EBUSY; 4566 goto errout; 4567 } 4568 4569 ASSERT(zonecount != 0); /* check for leaks */ 4570 if (zonecount + 1 > maxzones) { 4571 error = ENOMEM; 4572 goto errout; 4573 } 4574 4575 if (zone_mount_count(zone->zone_rootpath) != 0) { 4576 error = EBUSY; 4577 error2 = ZE_AREMOUNTS; 4578 goto errout; 4579 } 4580 4581 /* 4582 * Zone is still incomplete, but we need to drop all locks while 4583 * zsched() initializes this zone's kernel process. We 4584 * optimistically add the zone to the hashtable and associated 4585 * lists so a parallel zone_create() doesn't try to create the 4586 * same zone. 4587 */ 4588 zonecount++; 4589 (void) mod_hash_insert(zonehashbyid, 4590 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4591 (mod_hash_val_t)(uintptr_t)zone); 4592 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4593 (void) strcpy(str, zone->zone_name); 4594 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4595 (mod_hash_val_t)(uintptr_t)zone); 4596 if (insert_label_hash) { 4597 (void) mod_hash_insert(zonehashbylabel, 4598 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4599 zone->zone_flags |= ZF_HASHED_LABEL; 4600 } 4601 4602 /* 4603 * Insert into active list. At this point there are no 'hold's 4604 * on the zone, but everyone else knows not to use it, so we can 4605 * continue to use it. zsched() will do a zone_hold() if the 4606 * newproc() is successful. 4607 */ 4608 list_insert_tail(&zone_active, zone); 4609 mutex_exit(&zonehash_lock); 4610 4611 zarg.zone = zone; 4612 zarg.nvlist = rctls; 4613 /* 4614 * The process, task, and project rctls are probably wrong; 4615 * we need an interface to get the default values of all rctls, 4616 * and initialize zsched appropriately. I'm not sure that that 4617 * makes much of a difference, though. 4618 */ 4619 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4620 if (error != 0) { 4621 /* 4622 * We need to undo all globally visible state. 4623 */ 4624 mutex_enter(&zonehash_lock); 4625 list_remove(&zone_active, zone); 4626 if (zone->zone_flags & ZF_HASHED_LABEL) { 4627 ASSERT(zone->zone_slabel != NULL); 4628 (void) mod_hash_destroy(zonehashbylabel, 4629 (mod_hash_key_t)zone->zone_slabel); 4630 } 4631 (void) mod_hash_destroy(zonehashbyname, 4632 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4633 (void) mod_hash_destroy(zonehashbyid, 4634 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4635 ASSERT(zonecount > 1); 4636 zonecount--; 4637 goto errout; 4638 } 4639 4640 /* 4641 * Zone creation can't fail from now on. 4642 */ 4643 4644 /* 4645 * Create zone kstats 4646 */ 4647 zone_kstat_create(zone); 4648 4649 /* 4650 * Let the other lwps continue. 4651 */ 4652 mutex_enter(&pp->p_lock); 4653 if (curthread != pp->p_agenttp) 4654 continuelwps(pp); 4655 mutex_exit(&pp->p_lock); 4656 4657 /* 4658 * Wait for zsched to finish initializing the zone. 4659 */ 4660 zone_status_wait(zone, ZONE_IS_READY); 4661 /* 4662 * The zone is fully visible, so we can let mounts progress. 4663 */ 4664 resume_mounts(zone); 4665 nvlist_free(rctls); 4666 4667 return (zoneid); 4668 4669 errout: 4670 mutex_exit(&zonehash_lock); 4671 /* 4672 * Let the other lwps continue. 4673 */ 4674 mutex_enter(&pp->p_lock); 4675 if (curthread != pp->p_agenttp) 4676 continuelwps(pp); 4677 mutex_exit(&pp->p_lock); 4678 4679 resume_mounts(zone); 4680 nvlist_free(rctls); 4681 /* 4682 * There is currently one reference to the zone, a cred_ref from 4683 * zone_kcred. To free the zone, we call crfree, which will call 4684 * zone_cred_rele, which will call zone_free. 4685 */ 4686 ASSERT(zone->zone_cred_ref == 1); 4687 ASSERT(zone->zone_kcred->cr_ref == 1); 4688 ASSERT(zone->zone_ref == 0); 4689 zkcr = zone->zone_kcred; 4690 zone->zone_kcred = NULL; 4691 crfree(zkcr); /* triggers call to zone_free */ 4692 return (zone_create_error(error, error2, extended_error)); 4693 } 4694 4695 /* 4696 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4697 * the heavy lifting. initname is the path to the program to launch 4698 * at the "top" of the zone; if this is NULL, we use the system default, 4699 * which is stored at zone_default_initname. 4700 */ 4701 static int 4702 zone_boot(zoneid_t zoneid) 4703 { 4704 int err; 4705 zone_t *zone; 4706 4707 if (secpolicy_zone_config(CRED()) != 0) 4708 return (set_errno(EPERM)); 4709 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4710 return (set_errno(EINVAL)); 4711 4712 mutex_enter(&zonehash_lock); 4713 /* 4714 * Look for zone under hash lock to prevent races with calls to 4715 * zone_shutdown, zone_destroy, etc. 4716 */ 4717 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4718 mutex_exit(&zonehash_lock); 4719 return (set_errno(EINVAL)); 4720 } 4721 4722 mutex_enter(&zone_status_lock); 4723 if (zone_status_get(zone) != ZONE_IS_READY) { 4724 mutex_exit(&zone_status_lock); 4725 mutex_exit(&zonehash_lock); 4726 return (set_errno(EINVAL)); 4727 } 4728 zone_status_set(zone, ZONE_IS_BOOTING); 4729 mutex_exit(&zone_status_lock); 4730 4731 zone_hold(zone); /* so we can use the zone_t later */ 4732 mutex_exit(&zonehash_lock); 4733 4734 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4735 zone_rele(zone); 4736 return (set_errno(EINTR)); 4737 } 4738 4739 /* 4740 * Boot (starting init) might have failed, in which case the zone 4741 * will go to the SHUTTING_DOWN state; an appropriate errno will 4742 * be placed in zone->zone_boot_err, and so we return that. 4743 */ 4744 err = zone->zone_boot_err; 4745 zone_rele(zone); 4746 return (err ? set_errno(err) : 0); 4747 } 4748 4749 /* 4750 * Kills all user processes in the zone, waiting for them all to exit 4751 * before returning. 4752 */ 4753 static int 4754 zone_empty(zone_t *zone) 4755 { 4756 int waitstatus; 4757 4758 /* 4759 * We need to drop zonehash_lock before killing all 4760 * processes, otherwise we'll deadlock with zone_find_* 4761 * which can be called from the exit path. 4762 */ 4763 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4764 while ((waitstatus = zone_status_timedwait_sig(zone, 4765 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4766 killall(zone->zone_id); 4767 } 4768 /* 4769 * return EINTR if we were signaled 4770 */ 4771 if (waitstatus == 0) 4772 return (EINTR); 4773 return (0); 4774 } 4775 4776 /* 4777 * This function implements the policy for zone visibility. 4778 * 4779 * In standard Solaris, a non-global zone can only see itself. 4780 * 4781 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4782 * it dominates. For this test, the label of the global zone is treated as 4783 * admin_high so it is special-cased instead of being checked for dominance. 4784 * 4785 * Returns true if zone attributes are viewable, false otherwise. 4786 */ 4787 static boolean_t 4788 zone_list_access(zone_t *zone) 4789 { 4790 4791 if (curproc->p_zone == global_zone || 4792 curproc->p_zone == zone) { 4793 return (B_TRUE); 4794 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4795 bslabel_t *curproc_label; 4796 bslabel_t *zone_label; 4797 4798 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4799 zone_label = label2bslabel(zone->zone_slabel); 4800 4801 if (zone->zone_id != GLOBAL_ZONEID && 4802 bldominates(curproc_label, zone_label)) { 4803 return (B_TRUE); 4804 } else { 4805 return (B_FALSE); 4806 } 4807 } else { 4808 return (B_FALSE); 4809 } 4810 } 4811 4812 /* 4813 * Systemcall to start the zone's halt sequence. By the time this 4814 * function successfully returns, all user processes and kernel threads 4815 * executing in it will have exited, ZSD shutdown callbacks executed, 4816 * and the zone status set to ZONE_IS_DOWN. 4817 * 4818 * It is possible that the call will interrupt itself if the caller is the 4819 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4820 */ 4821 static int 4822 zone_shutdown(zoneid_t zoneid) 4823 { 4824 int error; 4825 zone_t *zone; 4826 zone_status_t status; 4827 4828 if (secpolicy_zone_config(CRED()) != 0) 4829 return (set_errno(EPERM)); 4830 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4831 return (set_errno(EINVAL)); 4832 4833 mutex_enter(&zonehash_lock); 4834 /* 4835 * Look for zone under hash lock to prevent races with other 4836 * calls to zone_shutdown and zone_destroy. 4837 */ 4838 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4839 mutex_exit(&zonehash_lock); 4840 return (set_errno(EINVAL)); 4841 } 4842 4843 /* 4844 * We have to drop zonehash_lock before calling block_mounts. 4845 * Hold the zone so we can continue to use the zone_t. 4846 */ 4847 zone_hold(zone); 4848 mutex_exit(&zonehash_lock); 4849 4850 /* 4851 * Block mounts so that VFS_MOUNT() can get an accurate view of 4852 * the zone's status with regards to ZONE_IS_SHUTTING down. 4853 * 4854 * e.g. NFS can fail the mount if it determines that the zone 4855 * has already begun the shutdown sequence. 4856 * 4857 */ 4858 if (block_mounts(zone) == 0) { 4859 zone_rele(zone); 4860 return (set_errno(EINTR)); 4861 } 4862 4863 mutex_enter(&zonehash_lock); 4864 mutex_enter(&zone_status_lock); 4865 status = zone_status_get(zone); 4866 /* 4867 * Fail if the zone isn't fully initialized yet. 4868 */ 4869 if (status < ZONE_IS_READY) { 4870 mutex_exit(&zone_status_lock); 4871 mutex_exit(&zonehash_lock); 4872 resume_mounts(zone); 4873 zone_rele(zone); 4874 return (set_errno(EINVAL)); 4875 } 4876 /* 4877 * If conditions required for zone_shutdown() to return have been met, 4878 * return success. 4879 */ 4880 if (status >= ZONE_IS_DOWN) { 4881 mutex_exit(&zone_status_lock); 4882 mutex_exit(&zonehash_lock); 4883 resume_mounts(zone); 4884 zone_rele(zone); 4885 return (0); 4886 } 4887 /* 4888 * If zone_shutdown() hasn't been called before, go through the motions. 4889 * If it has, there's nothing to do but wait for the kernel threads to 4890 * drain. 4891 */ 4892 if (status < ZONE_IS_EMPTY) { 4893 uint_t ntasks; 4894 4895 mutex_enter(&zone->zone_lock); 4896 if ((ntasks = zone->zone_ntasks) != 1) { 4897 /* 4898 * There's still stuff running. 4899 */ 4900 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4901 } 4902 mutex_exit(&zone->zone_lock); 4903 if (ntasks == 1) { 4904 /* 4905 * The only way to create another task is through 4906 * zone_enter(), which will block until we drop 4907 * zonehash_lock. The zone is empty. 4908 */ 4909 if (zone->zone_kthreads == NULL) { 4910 /* 4911 * Skip ahead to ZONE_IS_DOWN 4912 */ 4913 zone_status_set(zone, ZONE_IS_DOWN); 4914 } else { 4915 zone_status_set(zone, ZONE_IS_EMPTY); 4916 } 4917 } 4918 } 4919 mutex_exit(&zone_status_lock); 4920 mutex_exit(&zonehash_lock); 4921 resume_mounts(zone); 4922 4923 if (error = zone_empty(zone)) { 4924 zone_rele(zone); 4925 return (set_errno(error)); 4926 } 4927 /* 4928 * After the zone status goes to ZONE_IS_DOWN this zone will no 4929 * longer be notified of changes to the pools configuration, so 4930 * in order to not end up with a stale pool pointer, we point 4931 * ourselves at the default pool and remove all resource 4932 * visibility. This is especially important as the zone_t may 4933 * languish on the deathrow for a very long time waiting for 4934 * cred's to drain out. 4935 * 4936 * This rebinding of the zone can happen multiple times 4937 * (presumably due to interrupted or parallel systemcalls) 4938 * without any adverse effects. 4939 */ 4940 if (pool_lock_intr() != 0) { 4941 zone_rele(zone); 4942 return (set_errno(EINTR)); 4943 } 4944 if (pool_state == POOL_ENABLED) { 4945 mutex_enter(&cpu_lock); 4946 zone_pool_set(zone, pool_default); 4947 /* 4948 * The zone no longer needs to be able to see any cpus. 4949 */ 4950 zone_pset_set(zone, ZONE_PS_INVAL); 4951 mutex_exit(&cpu_lock); 4952 } 4953 pool_unlock(); 4954 4955 /* 4956 * ZSD shutdown callbacks can be executed multiple times, hence 4957 * it is safe to not be holding any locks across this call. 4958 */ 4959 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4960 4961 mutex_enter(&zone_status_lock); 4962 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4963 zone_status_set(zone, ZONE_IS_DOWN); 4964 mutex_exit(&zone_status_lock); 4965 4966 /* 4967 * Wait for kernel threads to drain. 4968 */ 4969 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4970 zone_rele(zone); 4971 return (set_errno(EINTR)); 4972 } 4973 4974 /* 4975 * Zone can be become down/destroyable even if the above wait 4976 * returns EINTR, so any code added here may never execute. 4977 * (i.e. don't add code here) 4978 */ 4979 4980 zone_rele(zone); 4981 return (0); 4982 } 4983 4984 /* 4985 * Log the specified zone's reference counts. The caller should not be 4986 * holding the zone's zone_lock. 4987 */ 4988 static void 4989 zone_log_refcounts(zone_t *zone) 4990 { 4991 char *buffer; 4992 char *buffer_position; 4993 uint32_t buffer_size; 4994 uint32_t index; 4995 uint_t ref; 4996 uint_t cred_ref; 4997 4998 /* 4999 * Construct a string representing the subsystem-specific reference 5000 * counts. The counts are printed in ascending order by index into the 5001 * zone_t::zone_subsys_ref array. The list will be surrounded by 5002 * square brackets [] and will only contain nonzero reference counts. 5003 * 5004 * The buffer will hold two square bracket characters plus ten digits, 5005 * one colon, one space, one comma, and some characters for a 5006 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5007 * bit integers have at most ten decimal digits.) The last 5008 * reference count's comma is replaced by the closing square 5009 * bracket and a NULL character to terminate the string. 5010 * 5011 * NOTE: We have to grab the zone's zone_lock to create a consistent 5012 * snapshot of the zone's reference counters. 5013 * 5014 * First, figure out how much space the string buffer will need. 5015 * The buffer's size is stored in buffer_size. 5016 */ 5017 buffer_size = 2; /* for the square brackets */ 5018 mutex_enter(&zone->zone_lock); 5019 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5020 ref = zone->zone_ref; 5021 cred_ref = zone->zone_cred_ref; 5022 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5023 if (zone->zone_subsys_ref[index] != 0) 5024 buffer_size += strlen(zone_ref_subsys_names[index]) + 5025 13; 5026 if (buffer_size == 2) { 5027 /* 5028 * No subsystems had nonzero reference counts. Don't bother 5029 * with allocating a buffer; just log the general-purpose and 5030 * credential reference counts. 5031 */ 5032 mutex_exit(&zone->zone_lock); 5033 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5034 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5035 "references and %u credential references are still extant", 5036 zone->zone_name, zone->zone_id, ref, cred_ref); 5037 return; 5038 } 5039 5040 /* 5041 * buffer_size contains the exact number of characters that the 5042 * buffer will need. Allocate the buffer and fill it with nonzero 5043 * subsystem-specific reference counts. Surround the results with 5044 * square brackets afterwards. 5045 */ 5046 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5047 buffer_position = &buffer[1]; 5048 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5049 /* 5050 * NOTE: The DDI's version of sprintf() returns a pointer to 5051 * the modified buffer rather than the number of bytes written 5052 * (as in snprintf(3C)). This is unfortunate and annoying. 5053 * Therefore, we'll use snprintf() with INT_MAX to get the 5054 * number of bytes written. Using INT_MAX is safe because 5055 * the buffer is perfectly sized for the data: we'll never 5056 * overrun the buffer. 5057 */ 5058 if (zone->zone_subsys_ref[index] != 0) 5059 buffer_position += snprintf(buffer_position, INT_MAX, 5060 "%s: %u,", zone_ref_subsys_names[index], 5061 zone->zone_subsys_ref[index]); 5062 } 5063 mutex_exit(&zone->zone_lock); 5064 buffer[0] = '['; 5065 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5066 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5067 buffer_position[-1] = ']'; 5068 5069 /* 5070 * Log the reference counts and free the message buffer. 5071 */ 5072 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5073 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5074 "%u credential references are still extant %s", zone->zone_name, 5075 zone->zone_id, ref, cred_ref, buffer); 5076 kmem_free(buffer, buffer_size); 5077 } 5078 5079 /* 5080 * Systemcall entry point to finalize the zone halt process. The caller 5081 * must have already successfully called zone_shutdown(). 5082 * 5083 * Upon successful completion, the zone will have been fully destroyed: 5084 * zsched will have exited, destructor callbacks executed, and the zone 5085 * removed from the list of active zones. 5086 */ 5087 static int 5088 zone_destroy(zoneid_t zoneid) 5089 { 5090 uint64_t uniqid; 5091 zone_t *zone; 5092 zone_status_t status; 5093 clock_t wait_time; 5094 boolean_t log_refcounts; 5095 5096 if (secpolicy_zone_config(CRED()) != 0) 5097 return (set_errno(EPERM)); 5098 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5099 return (set_errno(EINVAL)); 5100 5101 mutex_enter(&zonehash_lock); 5102 /* 5103 * Look for zone under hash lock to prevent races with other 5104 * calls to zone_destroy. 5105 */ 5106 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5107 mutex_exit(&zonehash_lock); 5108 return (set_errno(EINVAL)); 5109 } 5110 5111 if (zone_mount_count(zone->zone_rootpath) != 0) { 5112 mutex_exit(&zonehash_lock); 5113 return (set_errno(EBUSY)); 5114 } 5115 mutex_enter(&zone_status_lock); 5116 status = zone_status_get(zone); 5117 if (status < ZONE_IS_DOWN) { 5118 mutex_exit(&zone_status_lock); 5119 mutex_exit(&zonehash_lock); 5120 return (set_errno(EBUSY)); 5121 } else if (status == ZONE_IS_DOWN) { 5122 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5123 } 5124 mutex_exit(&zone_status_lock); 5125 zone_hold(zone); 5126 mutex_exit(&zonehash_lock); 5127 5128 /* 5129 * wait for zsched to exit 5130 */ 5131 zone_status_wait(zone, ZONE_IS_DEAD); 5132 zone_zsd_callbacks(zone, ZSD_DESTROY); 5133 zone->zone_netstack = NULL; 5134 uniqid = zone->zone_uniqid; 5135 zone_rele(zone); 5136 zone = NULL; /* potentially free'd */ 5137 5138 log_refcounts = B_FALSE; 5139 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5140 mutex_enter(&zonehash_lock); 5141 for (; /* ever */; ) { 5142 boolean_t unref; 5143 boolean_t refs_have_been_logged; 5144 5145 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5146 zone->zone_uniqid != uniqid) { 5147 /* 5148 * The zone has gone away. Necessary conditions 5149 * are met, so we return success. 5150 */ 5151 mutex_exit(&zonehash_lock); 5152 return (0); 5153 } 5154 mutex_enter(&zone->zone_lock); 5155 unref = ZONE_IS_UNREF(zone); 5156 refs_have_been_logged = (zone->zone_flags & 5157 ZF_REFCOUNTS_LOGGED); 5158 mutex_exit(&zone->zone_lock); 5159 if (unref) { 5160 /* 5161 * There is only one reference to the zone -- that 5162 * added when the zone was added to the hashtables -- 5163 * and things will remain this way until we drop 5164 * zonehash_lock... we can go ahead and cleanup the 5165 * zone. 5166 */ 5167 break; 5168 } 5169 5170 /* 5171 * Wait for zone_rele_common() or zone_cred_rele() to signal 5172 * zone_destroy_cv. zone_destroy_cv is signaled only when 5173 * some zone's general-purpose reference count reaches one. 5174 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5175 * on zone_destroy_cv, then log the zone's reference counts and 5176 * continue to wait for zone_rele() and zone_cred_rele(). 5177 */ 5178 if (!refs_have_been_logged) { 5179 if (!log_refcounts) { 5180 /* 5181 * This thread hasn't timed out waiting on 5182 * zone_destroy_cv yet. Wait wait_time clock 5183 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5184 * seconds) for the zone's references to clear. 5185 */ 5186 ASSERT(wait_time > 0); 5187 wait_time = cv_reltimedwait_sig( 5188 &zone_destroy_cv, &zonehash_lock, wait_time, 5189 TR_SEC); 5190 if (wait_time > 0) { 5191 /* 5192 * A thread in zone_rele() or 5193 * zone_cred_rele() signaled 5194 * zone_destroy_cv before this thread's 5195 * wait timed out. The zone might have 5196 * only one reference left; find out! 5197 */ 5198 continue; 5199 } else if (wait_time == 0) { 5200 /* The thread's process was signaled. */ 5201 mutex_exit(&zonehash_lock); 5202 return (set_errno(EINTR)); 5203 } 5204 5205 /* 5206 * The thread timed out while waiting on 5207 * zone_destroy_cv. Even though the thread 5208 * timed out, it has to check whether another 5209 * thread woke up from zone_destroy_cv and 5210 * destroyed the zone. 5211 * 5212 * If the zone still exists and has more than 5213 * one unreleased general-purpose reference, 5214 * then log the zone's reference counts. 5215 */ 5216 log_refcounts = B_TRUE; 5217 continue; 5218 } 5219 5220 /* 5221 * The thread already timed out on zone_destroy_cv while 5222 * waiting for subsystems to release the zone's last 5223 * general-purpose references. Log the zone's reference 5224 * counts and wait indefinitely on zone_destroy_cv. 5225 */ 5226 zone_log_refcounts(zone); 5227 } 5228 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5229 /* The thread's process was signaled. */ 5230 mutex_exit(&zonehash_lock); 5231 return (set_errno(EINTR)); 5232 } 5233 } 5234 5235 /* 5236 * Remove CPU cap for this zone now since we're not going to 5237 * fail below this point. 5238 */ 5239 cpucaps_zone_remove(zone); 5240 5241 /* Get rid of the zone's kstats */ 5242 zone_kstat_delete(zone); 5243 5244 /* remove the pfexecd doors */ 5245 if (zone->zone_pfexecd != NULL) { 5246 klpd_freelist(&zone->zone_pfexecd); 5247 zone->zone_pfexecd = NULL; 5248 } 5249 5250 /* free brand specific data */ 5251 if (ZONE_IS_BRANDED(zone)) 5252 ZBROP(zone)->b_free_brand_data(zone); 5253 5254 /* Say goodbye to brand framework. */ 5255 brand_unregister_zone(zone->zone_brand); 5256 5257 /* 5258 * It is now safe to let the zone be recreated; remove it from the 5259 * lists. The memory will not be freed until the last cred 5260 * reference goes away. 5261 */ 5262 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5263 zonecount--; 5264 /* remove from active list and hash tables */ 5265 list_remove(&zone_active, zone); 5266 (void) mod_hash_destroy(zonehashbyname, 5267 (mod_hash_key_t)zone->zone_name); 5268 (void) mod_hash_destroy(zonehashbyid, 5269 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5270 if (zone->zone_flags & ZF_HASHED_LABEL) 5271 (void) mod_hash_destroy(zonehashbylabel, 5272 (mod_hash_key_t)zone->zone_slabel); 5273 mutex_exit(&zonehash_lock); 5274 5275 /* 5276 * Release the root vnode; we're not using it anymore. Nor should any 5277 * other thread that might access it exist. 5278 */ 5279 if (zone->zone_rootvp != NULL) { 5280 VN_RELE(zone->zone_rootvp); 5281 zone->zone_rootvp = NULL; 5282 } 5283 5284 /* add to deathrow list */ 5285 mutex_enter(&zone_deathrow_lock); 5286 list_insert_tail(&zone_deathrow, zone); 5287 mutex_exit(&zone_deathrow_lock); 5288 5289 /* 5290 * Drop last reference (which was added by zsched()), this will 5291 * free the zone unless there are outstanding cred references. 5292 */ 5293 zone_rele(zone); 5294 return (0); 5295 } 5296 5297 /* 5298 * Systemcall entry point for zone_getattr(2). 5299 */ 5300 static ssize_t 5301 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5302 { 5303 size_t size; 5304 int error = 0, err; 5305 zone_t *zone; 5306 char *zonepath; 5307 char *outstr; 5308 zone_status_t zone_status; 5309 pid_t initpid; 5310 boolean_t global = (curzone == global_zone); 5311 boolean_t inzone = (curzone->zone_id == zoneid); 5312 ushort_t flags; 5313 zone_net_data_t *zbuf; 5314 5315 mutex_enter(&zonehash_lock); 5316 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5317 mutex_exit(&zonehash_lock); 5318 return (set_errno(EINVAL)); 5319 } 5320 zone_status = zone_status_get(zone); 5321 if (zone_status < ZONE_IS_INITIALIZED) { 5322 mutex_exit(&zonehash_lock); 5323 return (set_errno(EINVAL)); 5324 } 5325 zone_hold(zone); 5326 mutex_exit(&zonehash_lock); 5327 5328 /* 5329 * If not in the global zone, don't show information about other zones, 5330 * unless the system is labeled and the local zone's label dominates 5331 * the other zone. 5332 */ 5333 if (!zone_list_access(zone)) { 5334 zone_rele(zone); 5335 return (set_errno(EINVAL)); 5336 } 5337 5338 switch (attr) { 5339 case ZONE_ATTR_ROOT: 5340 if (global) { 5341 /* 5342 * Copy the path to trim the trailing "/" (except for 5343 * the global zone). 5344 */ 5345 if (zone != global_zone) 5346 size = zone->zone_rootpathlen - 1; 5347 else 5348 size = zone->zone_rootpathlen; 5349 zonepath = kmem_alloc(size, KM_SLEEP); 5350 bcopy(zone->zone_rootpath, zonepath, size); 5351 zonepath[size - 1] = '\0'; 5352 } else { 5353 if (inzone || !is_system_labeled()) { 5354 /* 5355 * Caller is not in the global zone. 5356 * if the query is on the current zone 5357 * or the system is not labeled, 5358 * just return faked-up path for current zone. 5359 */ 5360 zonepath = "/"; 5361 size = 2; 5362 } else { 5363 /* 5364 * Return related path for current zone. 5365 */ 5366 int prefix_len = strlen(zone_prefix); 5367 int zname_len = strlen(zone->zone_name); 5368 5369 size = prefix_len + zname_len + 1; 5370 zonepath = kmem_alloc(size, KM_SLEEP); 5371 bcopy(zone_prefix, zonepath, prefix_len); 5372 bcopy(zone->zone_name, zonepath + 5373 prefix_len, zname_len); 5374 zonepath[size - 1] = '\0'; 5375 } 5376 } 5377 if (bufsize > size) 5378 bufsize = size; 5379 if (buf != NULL) { 5380 err = copyoutstr(zonepath, buf, bufsize, NULL); 5381 if (err != 0 && err != ENAMETOOLONG) 5382 error = EFAULT; 5383 } 5384 if (global || (is_system_labeled() && !inzone)) 5385 kmem_free(zonepath, size); 5386 break; 5387 5388 case ZONE_ATTR_NAME: 5389 size = strlen(zone->zone_name) + 1; 5390 if (bufsize > size) 5391 bufsize = size; 5392 if (buf != NULL) { 5393 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5394 if (err != 0 && err != ENAMETOOLONG) 5395 error = EFAULT; 5396 } 5397 break; 5398 5399 case ZONE_ATTR_STATUS: 5400 /* 5401 * Since we're not holding zonehash_lock, the zone status 5402 * may be anything; leave it up to userland to sort it out. 5403 */ 5404 size = sizeof (zone_status); 5405 if (bufsize > size) 5406 bufsize = size; 5407 zone_status = zone_status_get(zone); 5408 if (buf != NULL && 5409 copyout(&zone_status, buf, bufsize) != 0) 5410 error = EFAULT; 5411 break; 5412 case ZONE_ATTR_FLAGS: 5413 size = sizeof (zone->zone_flags); 5414 if (bufsize > size) 5415 bufsize = size; 5416 flags = zone->zone_flags; 5417 if (buf != NULL && 5418 copyout(&flags, buf, bufsize) != 0) 5419 error = EFAULT; 5420 break; 5421 case ZONE_ATTR_PRIVSET: 5422 size = sizeof (priv_set_t); 5423 if (bufsize > size) 5424 bufsize = size; 5425 if (buf != NULL && 5426 copyout(zone->zone_privset, buf, bufsize) != 0) 5427 error = EFAULT; 5428 break; 5429 case ZONE_ATTR_UNIQID: 5430 size = sizeof (zone->zone_uniqid); 5431 if (bufsize > size) 5432 bufsize = size; 5433 if (buf != NULL && 5434 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5435 error = EFAULT; 5436 break; 5437 case ZONE_ATTR_POOLID: 5438 { 5439 pool_t *pool; 5440 poolid_t poolid; 5441 5442 if (pool_lock_intr() != 0) { 5443 error = EINTR; 5444 break; 5445 } 5446 pool = zone_pool_get(zone); 5447 poolid = pool->pool_id; 5448 pool_unlock(); 5449 size = sizeof (poolid); 5450 if (bufsize > size) 5451 bufsize = size; 5452 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5453 error = EFAULT; 5454 } 5455 break; 5456 case ZONE_ATTR_SLBL: 5457 size = sizeof (bslabel_t); 5458 if (bufsize > size) 5459 bufsize = size; 5460 if (zone->zone_slabel == NULL) 5461 error = EINVAL; 5462 else if (buf != NULL && 5463 copyout(label2bslabel(zone->zone_slabel), buf, 5464 bufsize) != 0) 5465 error = EFAULT; 5466 break; 5467 case ZONE_ATTR_INITPID: 5468 size = sizeof (initpid); 5469 if (bufsize > size) 5470 bufsize = size; 5471 initpid = zone->zone_proc_initpid; 5472 if (initpid == -1) { 5473 error = ESRCH; 5474 break; 5475 } 5476 if (buf != NULL && 5477 copyout(&initpid, buf, bufsize) != 0) 5478 error = EFAULT; 5479 break; 5480 case ZONE_ATTR_BRAND: 5481 size = strlen(zone->zone_brand->b_name) + 1; 5482 5483 if (bufsize > size) 5484 bufsize = size; 5485 if (buf != NULL) { 5486 err = copyoutstr(zone->zone_brand->b_name, buf, 5487 bufsize, NULL); 5488 if (err != 0 && err != ENAMETOOLONG) 5489 error = EFAULT; 5490 } 5491 break; 5492 case ZONE_ATTR_INITNAME: 5493 size = strlen(zone->zone_initname) + 1; 5494 if (bufsize > size) 5495 bufsize = size; 5496 if (buf != NULL) { 5497 err = copyoutstr(zone->zone_initname, buf, bufsize, 5498 NULL); 5499 if (err != 0 && err != ENAMETOOLONG) 5500 error = EFAULT; 5501 } 5502 break; 5503 case ZONE_ATTR_BOOTARGS: 5504 if (zone->zone_bootargs == NULL) 5505 outstr = ""; 5506 else 5507 outstr = zone->zone_bootargs; 5508 size = strlen(outstr) + 1; 5509 if (bufsize > size) 5510 bufsize = size; 5511 if (buf != NULL) { 5512 err = copyoutstr(outstr, buf, bufsize, NULL); 5513 if (err != 0 && err != ENAMETOOLONG) 5514 error = EFAULT; 5515 } 5516 break; 5517 case ZONE_ATTR_PHYS_MCAP: 5518 size = sizeof (zone->zone_phys_mcap); 5519 if (bufsize > size) 5520 bufsize = size; 5521 if (buf != NULL && 5522 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5523 error = EFAULT; 5524 break; 5525 case ZONE_ATTR_SCHED_CLASS: 5526 mutex_enter(&class_lock); 5527 5528 if (zone->zone_defaultcid >= loaded_classes) 5529 outstr = ""; 5530 else 5531 outstr = sclass[zone->zone_defaultcid].cl_name; 5532 size = strlen(outstr) + 1; 5533 if (bufsize > size) 5534 bufsize = size; 5535 if (buf != NULL) { 5536 err = copyoutstr(outstr, buf, bufsize, NULL); 5537 if (err != 0 && err != ENAMETOOLONG) 5538 error = EFAULT; 5539 } 5540 5541 mutex_exit(&class_lock); 5542 break; 5543 case ZONE_ATTR_HOSTID: 5544 if (zone->zone_hostid != HW_INVALID_HOSTID && 5545 bufsize == sizeof (zone->zone_hostid)) { 5546 size = sizeof (zone->zone_hostid); 5547 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5548 bufsize) != 0) 5549 error = EFAULT; 5550 } else { 5551 error = EINVAL; 5552 } 5553 break; 5554 case ZONE_ATTR_FS_ALLOWED: 5555 if (zone->zone_fs_allowed == NULL) 5556 outstr = ""; 5557 else 5558 outstr = zone->zone_fs_allowed; 5559 size = strlen(outstr) + 1; 5560 if (bufsize > size) 5561 bufsize = size; 5562 if (buf != NULL) { 5563 err = copyoutstr(outstr, buf, bufsize, NULL); 5564 if (err != 0 && err != ENAMETOOLONG) 5565 error = EFAULT; 5566 } 5567 break; 5568 case ZONE_ATTR_SECFLAGS: 5569 size = sizeof (zone->zone_secflags); 5570 if (bufsize > size) 5571 bufsize = size; 5572 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0) 5573 error = EFAULT; 5574 break; 5575 case ZONE_ATTR_NETWORK: 5576 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5577 if (copyin(buf, zbuf, bufsize) != 0) { 5578 error = EFAULT; 5579 } else { 5580 error = zone_get_network(zoneid, zbuf); 5581 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5582 error = EFAULT; 5583 } 5584 kmem_free(zbuf, bufsize); 5585 break; 5586 default: 5587 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5588 size = bufsize; 5589 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5590 } else { 5591 error = EINVAL; 5592 } 5593 } 5594 zone_rele(zone); 5595 5596 if (error) 5597 return (set_errno(error)); 5598 return ((ssize_t)size); 5599 } 5600 5601 /* 5602 * Systemcall entry point for zone_setattr(2). 5603 */ 5604 /*ARGSUSED*/ 5605 static int 5606 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5607 { 5608 zone_t *zone; 5609 zone_status_t zone_status; 5610 int err = -1; 5611 zone_net_data_t *zbuf; 5612 5613 if (secpolicy_zone_config(CRED()) != 0) 5614 return (set_errno(EPERM)); 5615 5616 /* 5617 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5618 * global zone. 5619 */ 5620 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5621 return (set_errno(EINVAL)); 5622 } 5623 5624 mutex_enter(&zonehash_lock); 5625 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5626 mutex_exit(&zonehash_lock); 5627 return (set_errno(EINVAL)); 5628 } 5629 zone_hold(zone); 5630 mutex_exit(&zonehash_lock); 5631 5632 /* 5633 * At present most attributes can only be set on non-running, 5634 * non-global zones. 5635 */ 5636 zone_status = zone_status_get(zone); 5637 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5638 err = EINVAL; 5639 goto done; 5640 } 5641 5642 switch (attr) { 5643 case ZONE_ATTR_INITNAME: 5644 err = zone_set_initname(zone, (const char *)buf); 5645 break; 5646 case ZONE_ATTR_INITNORESTART: 5647 zone->zone_restart_init = B_FALSE; 5648 err = 0; 5649 break; 5650 case ZONE_ATTR_BOOTARGS: 5651 err = zone_set_bootargs(zone, (const char *)buf); 5652 break; 5653 case ZONE_ATTR_BRAND: 5654 err = zone_set_brand(zone, (const char *)buf); 5655 break; 5656 case ZONE_ATTR_FS_ALLOWED: 5657 err = zone_set_fs_allowed(zone, (const char *)buf); 5658 break; 5659 case ZONE_ATTR_SECFLAGS: 5660 err = zone_set_secflags(zone, (psecflags_t *)buf); 5661 break; 5662 case ZONE_ATTR_PHYS_MCAP: 5663 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5664 break; 5665 case ZONE_ATTR_SCHED_CLASS: 5666 err = zone_set_sched_class(zone, (const char *)buf); 5667 break; 5668 case ZONE_ATTR_HOSTID: 5669 if (bufsize == sizeof (zone->zone_hostid)) { 5670 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5671 err = 0; 5672 else 5673 err = EFAULT; 5674 } else { 5675 err = EINVAL; 5676 } 5677 break; 5678 case ZONE_ATTR_NETWORK: 5679 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5680 err = EINVAL; 5681 break; 5682 } 5683 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5684 if (copyin(buf, zbuf, bufsize) != 0) { 5685 kmem_free(zbuf, bufsize); 5686 err = EFAULT; 5687 break; 5688 } 5689 err = zone_set_network(zoneid, zbuf); 5690 kmem_free(zbuf, bufsize); 5691 break; 5692 default: 5693 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5694 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5695 else 5696 err = EINVAL; 5697 } 5698 5699 done: 5700 zone_rele(zone); 5701 ASSERT(err != -1); 5702 return (err != 0 ? set_errno(err) : 0); 5703 } 5704 5705 /* 5706 * Return zero if the process has at least one vnode mapped in to its 5707 * address space which shouldn't be allowed to change zones. 5708 * 5709 * Also return zero if the process has any shared mappings which reserve 5710 * swap. This is because the counting for zone.max-swap does not allow swap 5711 * reservation to be shared between zones. zone swap reservation is counted 5712 * on zone->zone_max_swap. 5713 */ 5714 static int 5715 as_can_change_zones(void) 5716 { 5717 proc_t *pp = curproc; 5718 struct seg *seg; 5719 struct as *as = pp->p_as; 5720 vnode_t *vp; 5721 int allow = 1; 5722 5723 ASSERT(pp->p_as != &kas); 5724 AS_LOCK_ENTER(as, RW_READER); 5725 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5726 5727 /* 5728 * Cannot enter zone with shared anon memory which 5729 * reserves swap. See comment above. 5730 */ 5731 if (seg_can_change_zones(seg) == B_FALSE) { 5732 allow = 0; 5733 break; 5734 } 5735 /* 5736 * if we can't get a backing vnode for this segment then skip 5737 * it. 5738 */ 5739 vp = NULL; 5740 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5741 continue; 5742 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5743 allow = 0; 5744 break; 5745 } 5746 } 5747 AS_LOCK_EXIT(as); 5748 return (allow); 5749 } 5750 5751 /* 5752 * Count swap reserved by curproc's address space 5753 */ 5754 static size_t 5755 as_swresv(void) 5756 { 5757 proc_t *pp = curproc; 5758 struct seg *seg; 5759 struct as *as = pp->p_as; 5760 size_t swap = 0; 5761 5762 ASSERT(pp->p_as != &kas); 5763 ASSERT(AS_WRITE_HELD(as)); 5764 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5765 swap += seg_swresv(seg); 5766 5767 return (swap); 5768 } 5769 5770 /* 5771 * Systemcall entry point for zone_enter(). 5772 * 5773 * The current process is injected into said zone. In the process 5774 * it will change its project membership, privileges, rootdir/cwd, 5775 * zone-wide rctls, and pool association to match those of the zone. 5776 * 5777 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5778 * state will transition it to ZONE_IS_RUNNING. Processes may only 5779 * enter a zone that is "ready" or "running". 5780 */ 5781 static int 5782 zone_enter(zoneid_t zoneid) 5783 { 5784 zone_t *zone; 5785 vnode_t *vp; 5786 proc_t *pp = curproc; 5787 contract_t *ct; 5788 cont_process_t *ctp; 5789 task_t *tk, *oldtk; 5790 kproject_t *zone_proj0; 5791 cred_t *cr, *newcr; 5792 pool_t *oldpool, *newpool; 5793 sess_t *sp; 5794 uid_t uid; 5795 zone_status_t status; 5796 int err = 0; 5797 rctl_entity_p_t e; 5798 size_t swap; 5799 kthread_id_t t; 5800 5801 if (secpolicy_zone_config(CRED()) != 0) 5802 return (set_errno(EPERM)); 5803 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5804 return (set_errno(EINVAL)); 5805 5806 /* 5807 * Stop all lwps so we don't need to hold a lock to look at 5808 * curproc->p_zone. This needs to happen before we grab any 5809 * locks to avoid deadlock (another lwp in the process could 5810 * be waiting for the held lock). 5811 */ 5812 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5813 return (set_errno(EINTR)); 5814 5815 /* 5816 * Make sure we're not changing zones with files open or mapped in 5817 * to our address space which shouldn't be changing zones. 5818 */ 5819 if (!files_can_change_zones()) { 5820 err = EBADF; 5821 goto out; 5822 } 5823 if (!as_can_change_zones()) { 5824 err = EFAULT; 5825 goto out; 5826 } 5827 5828 mutex_enter(&zonehash_lock); 5829 if (pp->p_zone != global_zone) { 5830 mutex_exit(&zonehash_lock); 5831 err = EINVAL; 5832 goto out; 5833 } 5834 5835 zone = zone_find_all_by_id(zoneid); 5836 if (zone == NULL) { 5837 mutex_exit(&zonehash_lock); 5838 err = EINVAL; 5839 goto out; 5840 } 5841 5842 /* 5843 * To prevent processes in a zone from holding contracts on 5844 * extrazonal resources, and to avoid process contract 5845 * memberships which span zones, contract holders and processes 5846 * which aren't the sole members of their encapsulating process 5847 * contracts are not allowed to zone_enter. 5848 */ 5849 ctp = pp->p_ct_process; 5850 ct = &ctp->conp_contract; 5851 mutex_enter(&ct->ct_lock); 5852 mutex_enter(&pp->p_lock); 5853 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5854 mutex_exit(&pp->p_lock); 5855 mutex_exit(&ct->ct_lock); 5856 mutex_exit(&zonehash_lock); 5857 err = EINVAL; 5858 goto out; 5859 } 5860 5861 /* 5862 * Moreover, we don't allow processes whose encapsulating 5863 * process contracts have inherited extrazonal contracts. 5864 * While it would be easier to eliminate all process contracts 5865 * with inherited contracts, we need to be able to give a 5866 * restarted init (or other zone-penetrating process) its 5867 * predecessor's contracts. 5868 */ 5869 if (ctp->conp_ninherited != 0) { 5870 contract_t *next; 5871 for (next = list_head(&ctp->conp_inherited); next; 5872 next = list_next(&ctp->conp_inherited, next)) { 5873 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5874 mutex_exit(&pp->p_lock); 5875 mutex_exit(&ct->ct_lock); 5876 mutex_exit(&zonehash_lock); 5877 err = EINVAL; 5878 goto out; 5879 } 5880 } 5881 } 5882 5883 mutex_exit(&pp->p_lock); 5884 mutex_exit(&ct->ct_lock); 5885 5886 status = zone_status_get(zone); 5887 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5888 /* 5889 * Can't join 5890 */ 5891 mutex_exit(&zonehash_lock); 5892 err = EINVAL; 5893 goto out; 5894 } 5895 5896 /* 5897 * Make sure new priv set is within the permitted set for caller 5898 */ 5899 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5900 mutex_exit(&zonehash_lock); 5901 err = EPERM; 5902 goto out; 5903 } 5904 /* 5905 * We want to momentarily drop zonehash_lock while we optimistically 5906 * bind curproc to the pool it should be running in. This is safe 5907 * since the zone can't disappear (we have a hold on it). 5908 */ 5909 zone_hold(zone); 5910 mutex_exit(&zonehash_lock); 5911 5912 /* 5913 * Grab pool_lock to keep the pools configuration from changing 5914 * and to stop ourselves from getting rebound to another pool 5915 * until we join the zone. 5916 */ 5917 if (pool_lock_intr() != 0) { 5918 zone_rele(zone); 5919 err = EINTR; 5920 goto out; 5921 } 5922 ASSERT(secpolicy_pool(CRED()) == 0); 5923 /* 5924 * Bind ourselves to the pool currently associated with the zone. 5925 */ 5926 oldpool = curproc->p_pool; 5927 newpool = zone_pool_get(zone); 5928 if (pool_state == POOL_ENABLED && newpool != oldpool && 5929 (err = pool_do_bind(newpool, P_PID, P_MYID, 5930 POOL_BIND_ALL)) != 0) { 5931 pool_unlock(); 5932 zone_rele(zone); 5933 goto out; 5934 } 5935 5936 /* 5937 * Grab cpu_lock now; we'll need it later when we call 5938 * task_join(). 5939 */ 5940 mutex_enter(&cpu_lock); 5941 mutex_enter(&zonehash_lock); 5942 /* 5943 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5944 */ 5945 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5946 /* 5947 * Can't join anymore. 5948 */ 5949 mutex_exit(&zonehash_lock); 5950 mutex_exit(&cpu_lock); 5951 if (pool_state == POOL_ENABLED && 5952 newpool != oldpool) 5953 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5954 POOL_BIND_ALL); 5955 pool_unlock(); 5956 zone_rele(zone); 5957 err = EINVAL; 5958 goto out; 5959 } 5960 5961 /* 5962 * a_lock must be held while transfering locked memory and swap 5963 * reservation from the global zone to the non global zone because 5964 * asynchronous faults on the processes' address space can lock 5965 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5966 * segments respectively. 5967 */ 5968 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 5969 swap = as_swresv(); 5970 mutex_enter(&pp->p_lock); 5971 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5972 /* verify that we do not exceed and task or lwp limits */ 5973 mutex_enter(&zone->zone_nlwps_lock); 5974 /* add new lwps to zone and zone's proj0 */ 5975 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5976 zone->zone_nlwps += pp->p_lwpcnt; 5977 /* add 1 task to zone's proj0 */ 5978 zone_proj0->kpj_ntasks += 1; 5979 5980 zone_proj0->kpj_nprocs++; 5981 zone->zone_nprocs++; 5982 mutex_exit(&zone->zone_nlwps_lock); 5983 5984 mutex_enter(&zone->zone_mem_lock); 5985 zone->zone_locked_mem += pp->p_locked_mem; 5986 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5987 zone->zone_max_swap += swap; 5988 mutex_exit(&zone->zone_mem_lock); 5989 5990 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5991 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5992 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5993 5994 /* remove lwps and process from proc's old zone and old project */ 5995 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5996 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5997 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5998 pp->p_task->tk_proj->kpj_nprocs--; 5999 pp->p_zone->zone_nprocs--; 6000 mutex_exit(&pp->p_zone->zone_nlwps_lock); 6001 6002 mutex_enter(&pp->p_zone->zone_mem_lock); 6003 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 6004 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 6005 pp->p_zone->zone_max_swap -= swap; 6006 mutex_exit(&pp->p_zone->zone_mem_lock); 6007 6008 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6009 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 6010 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6011 6012 pp->p_flag |= SZONETOP; 6013 pp->p_zone = zone; 6014 mutex_exit(&pp->p_lock); 6015 AS_LOCK_EXIT(pp->p_as); 6016 6017 /* 6018 * Joining the zone cannot fail from now on. 6019 * 6020 * This means that a lot of the following code can be commonized and 6021 * shared with zsched(). 6022 */ 6023 6024 /* 6025 * If the process contract fmri was inherited, we need to 6026 * flag this so that any contract status will not leak 6027 * extra zone information, svc_fmri in this case 6028 */ 6029 if (ctp->conp_svc_ctid != ct->ct_id) { 6030 mutex_enter(&ct->ct_lock); 6031 ctp->conp_svc_zone_enter = ct->ct_id; 6032 mutex_exit(&ct->ct_lock); 6033 } 6034 6035 /* 6036 * Reset the encapsulating process contract's zone. 6037 */ 6038 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6039 contract_setzuniqid(ct, zone->zone_uniqid); 6040 6041 /* 6042 * Create a new task and associate the process with the project keyed 6043 * by (projid,zoneid). 6044 * 6045 * We might as well be in project 0; the global zone's projid doesn't 6046 * make much sense in a zone anyhow. 6047 * 6048 * This also increments zone_ntasks, and returns with p_lock held. 6049 */ 6050 tk = task_create(0, zone); 6051 oldtk = task_join(tk, 0); 6052 mutex_exit(&cpu_lock); 6053 6054 /* 6055 * call RCTLOP_SET functions on this proc 6056 */ 6057 e.rcep_p.zone = zone; 6058 e.rcep_t = RCENTITY_ZONE; 6059 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6060 RCD_CALLBACK); 6061 mutex_exit(&pp->p_lock); 6062 6063 /* 6064 * We don't need to hold any of zsched's locks here; not only do we know 6065 * the process and zone aren't going away, we know its session isn't 6066 * changing either. 6067 * 6068 * By joining zsched's session here, we mimic the behavior in the 6069 * global zone of init's sid being the pid of sched. We extend this 6070 * to all zlogin-like zone_enter()'ing processes as well. 6071 */ 6072 mutex_enter(&pidlock); 6073 sp = zone->zone_zsched->p_sessp; 6074 sess_hold(zone->zone_zsched); 6075 mutex_enter(&pp->p_lock); 6076 pgexit(pp); 6077 sess_rele(pp->p_sessp, B_TRUE); 6078 pp->p_sessp = sp; 6079 pgjoin(pp, zone->zone_zsched->p_pidp); 6080 6081 /* 6082 * If any threads are scheduled to be placed on zone wait queue they 6083 * should abandon the idea since the wait queue is changing. 6084 * We need to be holding pidlock & p_lock to do this. 6085 */ 6086 if ((t = pp->p_tlist) != NULL) { 6087 do { 6088 thread_lock(t); 6089 /* 6090 * Kick this thread so that he doesn't sit 6091 * on a wrong wait queue. 6092 */ 6093 if (ISWAITING(t)) 6094 setrun_locked(t); 6095 6096 if (t->t_schedflag & TS_ANYWAITQ) 6097 t->t_schedflag &= ~ TS_ANYWAITQ; 6098 6099 thread_unlock(t); 6100 } while ((t = t->t_forw) != pp->p_tlist); 6101 } 6102 6103 /* 6104 * If there is a default scheduling class for the zone and it is not 6105 * the class we are currently in, change all of the threads in the 6106 * process to the new class. We need to be holding pidlock & p_lock 6107 * when we call parmsset so this is a good place to do it. 6108 */ 6109 if (zone->zone_defaultcid > 0 && 6110 zone->zone_defaultcid != curthread->t_cid) { 6111 pcparms_t pcparms; 6112 6113 pcparms.pc_cid = zone->zone_defaultcid; 6114 pcparms.pc_clparms[0] = 0; 6115 6116 /* 6117 * If setting the class fails, we still want to enter the zone. 6118 */ 6119 if ((t = pp->p_tlist) != NULL) { 6120 do { 6121 (void) parmsset(&pcparms, t); 6122 } while ((t = t->t_forw) != pp->p_tlist); 6123 } 6124 } 6125 6126 mutex_exit(&pp->p_lock); 6127 mutex_exit(&pidlock); 6128 6129 mutex_exit(&zonehash_lock); 6130 /* 6131 * We're firmly in the zone; let pools progress. 6132 */ 6133 pool_unlock(); 6134 task_rele(oldtk); 6135 /* 6136 * We don't need to retain a hold on the zone since we already 6137 * incremented zone_ntasks, so the zone isn't going anywhere. 6138 */ 6139 zone_rele(zone); 6140 6141 /* 6142 * Chroot 6143 */ 6144 vp = zone->zone_rootvp; 6145 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6146 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6147 6148 /* 6149 * Change process credentials 6150 */ 6151 newcr = cralloc(); 6152 mutex_enter(&pp->p_crlock); 6153 cr = pp->p_cred; 6154 crcopy_to(cr, newcr); 6155 crsetzone(newcr, zone); 6156 pp->p_cred = newcr; 6157 6158 /* 6159 * Restrict all process privilege sets to zone limit 6160 */ 6161 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6162 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6163 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6164 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6165 mutex_exit(&pp->p_crlock); 6166 crset(pp, newcr); 6167 6168 /* 6169 * Adjust upcount to reflect zone entry. 6170 */ 6171 uid = crgetruid(newcr); 6172 mutex_enter(&pidlock); 6173 upcount_dec(uid, GLOBAL_ZONEID); 6174 upcount_inc(uid, zoneid); 6175 mutex_exit(&pidlock); 6176 6177 /* 6178 * Set up core file path and content. 6179 */ 6180 set_core_defaults(); 6181 6182 out: 6183 /* 6184 * Let the other lwps continue. 6185 */ 6186 mutex_enter(&pp->p_lock); 6187 if (curthread != pp->p_agenttp) 6188 continuelwps(pp); 6189 mutex_exit(&pp->p_lock); 6190 6191 return (err != 0 ? set_errno(err) : 0); 6192 } 6193 6194 /* 6195 * Systemcall entry point for zone_list(2). 6196 * 6197 * Processes running in a (non-global) zone only see themselves. 6198 * On labeled systems, they see all zones whose label they dominate. 6199 */ 6200 static int 6201 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6202 { 6203 zoneid_t *zoneids; 6204 zone_t *zone, *myzone; 6205 uint_t user_nzones, real_nzones; 6206 uint_t domi_nzones; 6207 int error; 6208 6209 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6210 return (set_errno(EFAULT)); 6211 6212 myzone = curproc->p_zone; 6213 if (myzone != global_zone) { 6214 bslabel_t *mybslab; 6215 6216 if (!is_system_labeled()) { 6217 /* just return current zone */ 6218 real_nzones = domi_nzones = 1; 6219 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6220 zoneids[0] = myzone->zone_id; 6221 } else { 6222 /* return all zones that are dominated */ 6223 mutex_enter(&zonehash_lock); 6224 real_nzones = zonecount; 6225 domi_nzones = 0; 6226 if (real_nzones > 0) { 6227 zoneids = kmem_alloc(real_nzones * 6228 sizeof (zoneid_t), KM_SLEEP); 6229 mybslab = label2bslabel(myzone->zone_slabel); 6230 for (zone = list_head(&zone_active); 6231 zone != NULL; 6232 zone = list_next(&zone_active, zone)) { 6233 if (zone->zone_id == GLOBAL_ZONEID) 6234 continue; 6235 if (zone != myzone && 6236 (zone->zone_flags & ZF_IS_SCRATCH)) 6237 continue; 6238 /* 6239 * Note that a label always dominates 6240 * itself, so myzone is always included 6241 * in the list. 6242 */ 6243 if (bldominates(mybslab, 6244 label2bslabel(zone->zone_slabel))) { 6245 zoneids[domi_nzones++] = 6246 zone->zone_id; 6247 } 6248 } 6249 } 6250 mutex_exit(&zonehash_lock); 6251 } 6252 } else { 6253 mutex_enter(&zonehash_lock); 6254 real_nzones = zonecount; 6255 domi_nzones = 0; 6256 if (real_nzones > 0) { 6257 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6258 KM_SLEEP); 6259 for (zone = list_head(&zone_active); zone != NULL; 6260 zone = list_next(&zone_active, zone)) 6261 zoneids[domi_nzones++] = zone->zone_id; 6262 ASSERT(domi_nzones == real_nzones); 6263 } 6264 mutex_exit(&zonehash_lock); 6265 } 6266 6267 /* 6268 * If user has allocated space for fewer entries than we found, then 6269 * return only up to his limit. Either way, tell him exactly how many 6270 * we found. 6271 */ 6272 if (domi_nzones < user_nzones) 6273 user_nzones = domi_nzones; 6274 error = 0; 6275 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6276 error = EFAULT; 6277 } else if (zoneidlist != NULL && user_nzones != 0) { 6278 if (copyout(zoneids, zoneidlist, 6279 user_nzones * sizeof (zoneid_t)) != 0) 6280 error = EFAULT; 6281 } 6282 6283 if (real_nzones > 0) 6284 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6285 6286 if (error != 0) 6287 return (set_errno(error)); 6288 else 6289 return (0); 6290 } 6291 6292 /* 6293 * Systemcall entry point for zone_lookup(2). 6294 * 6295 * Non-global zones are only able to see themselves and (on labeled systems) 6296 * the zones they dominate. 6297 */ 6298 static zoneid_t 6299 zone_lookup(const char *zone_name) 6300 { 6301 char *kname; 6302 zone_t *zone; 6303 zoneid_t zoneid; 6304 int err; 6305 6306 if (zone_name == NULL) { 6307 /* return caller's zone id */ 6308 return (getzoneid()); 6309 } 6310 6311 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6312 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6313 kmem_free(kname, ZONENAME_MAX); 6314 return (set_errno(err)); 6315 } 6316 6317 mutex_enter(&zonehash_lock); 6318 zone = zone_find_all_by_name(kname); 6319 kmem_free(kname, ZONENAME_MAX); 6320 /* 6321 * In a non-global zone, can only lookup global and own name. 6322 * In Trusted Extensions zone label dominance rules apply. 6323 */ 6324 if (zone == NULL || 6325 zone_status_get(zone) < ZONE_IS_READY || 6326 !zone_list_access(zone)) { 6327 mutex_exit(&zonehash_lock); 6328 return (set_errno(EINVAL)); 6329 } else { 6330 zoneid = zone->zone_id; 6331 mutex_exit(&zonehash_lock); 6332 return (zoneid); 6333 } 6334 } 6335 6336 static int 6337 zone_version(int *version_arg) 6338 { 6339 int version = ZONE_SYSCALL_API_VERSION; 6340 6341 if (copyout(&version, version_arg, sizeof (int)) != 0) 6342 return (set_errno(EFAULT)); 6343 return (0); 6344 } 6345 6346 /* ARGSUSED */ 6347 long 6348 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6349 { 6350 zone_def zs; 6351 int err; 6352 6353 switch (cmd) { 6354 case ZONE_CREATE: 6355 if (get_udatamodel() == DATAMODEL_NATIVE) { 6356 if (copyin(arg1, &zs, sizeof (zone_def))) { 6357 return (set_errno(EFAULT)); 6358 } 6359 } else { 6360 #ifdef _SYSCALL32_IMPL 6361 zone_def32 zs32; 6362 6363 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6364 return (set_errno(EFAULT)); 6365 } 6366 zs.zone_name = 6367 (const char *)(unsigned long)zs32.zone_name; 6368 zs.zone_root = 6369 (const char *)(unsigned long)zs32.zone_root; 6370 zs.zone_privs = 6371 (const struct priv_set *) 6372 (unsigned long)zs32.zone_privs; 6373 zs.zone_privssz = zs32.zone_privssz; 6374 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6375 zs.rctlbufsz = zs32.rctlbufsz; 6376 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6377 zs.zfsbufsz = zs32.zfsbufsz; 6378 zs.extended_error = 6379 (int *)(unsigned long)zs32.extended_error; 6380 zs.match = zs32.match; 6381 zs.doi = zs32.doi; 6382 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6383 zs.flags = zs32.flags; 6384 #else 6385 panic("get_udatamodel() returned bogus result\n"); 6386 #endif 6387 } 6388 6389 return (zone_create(zs.zone_name, zs.zone_root, 6390 zs.zone_privs, zs.zone_privssz, 6391 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6392 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6393 zs.extended_error, zs.match, zs.doi, 6394 zs.label, zs.flags)); 6395 case ZONE_BOOT: 6396 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6397 case ZONE_DESTROY: 6398 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6399 case ZONE_GETATTR: 6400 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6401 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6402 case ZONE_SETATTR: 6403 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6404 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6405 case ZONE_ENTER: 6406 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6407 case ZONE_LIST: 6408 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6409 case ZONE_SHUTDOWN: 6410 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6411 case ZONE_LOOKUP: 6412 return (zone_lookup((const char *)arg1)); 6413 case ZONE_VERSION: 6414 return (zone_version((int *)arg1)); 6415 case ZONE_ADD_DATALINK: 6416 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6417 (datalink_id_t)(uintptr_t)arg2)); 6418 case ZONE_DEL_DATALINK: 6419 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6420 (datalink_id_t)(uintptr_t)arg2)); 6421 case ZONE_CHECK_DATALINK: { 6422 zoneid_t zoneid; 6423 boolean_t need_copyout; 6424 6425 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6426 return (EFAULT); 6427 need_copyout = (zoneid == ALL_ZONES); 6428 err = zone_check_datalink(&zoneid, 6429 (datalink_id_t)(uintptr_t)arg2); 6430 if (err == 0 && need_copyout) { 6431 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6432 err = EFAULT; 6433 } 6434 return (err == 0 ? 0 : set_errno(err)); 6435 } 6436 case ZONE_LIST_DATALINK: 6437 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6438 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6439 default: 6440 return (set_errno(EINVAL)); 6441 } 6442 } 6443 6444 struct zarg { 6445 zone_t *zone; 6446 zone_cmd_arg_t arg; 6447 }; 6448 6449 static int 6450 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6451 { 6452 char *buf; 6453 size_t buflen; 6454 int error; 6455 6456 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6457 buf = kmem_alloc(buflen, KM_SLEEP); 6458 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6459 error = door_ki_open(buf, doorp); 6460 kmem_free(buf, buflen); 6461 return (error); 6462 } 6463 6464 static void 6465 zone_release_door(door_handle_t *doorp) 6466 { 6467 door_ki_rele(*doorp); 6468 *doorp = NULL; 6469 } 6470 6471 static void 6472 zone_ki_call_zoneadmd(struct zarg *zargp) 6473 { 6474 door_handle_t door = NULL; 6475 door_arg_t darg, save_arg; 6476 char *zone_name; 6477 size_t zone_namelen; 6478 zoneid_t zoneid; 6479 zone_t *zone; 6480 zone_cmd_arg_t arg; 6481 uint64_t uniqid; 6482 size_t size; 6483 int error; 6484 int retry; 6485 6486 zone = zargp->zone; 6487 arg = zargp->arg; 6488 kmem_free(zargp, sizeof (*zargp)); 6489 6490 zone_namelen = strlen(zone->zone_name) + 1; 6491 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6492 bcopy(zone->zone_name, zone_name, zone_namelen); 6493 zoneid = zone->zone_id; 6494 uniqid = zone->zone_uniqid; 6495 /* 6496 * zoneadmd may be down, but at least we can empty out the zone. 6497 * We can ignore the return value of zone_empty() since we're called 6498 * from a kernel thread and know we won't be delivered any signals. 6499 */ 6500 ASSERT(curproc == &p0); 6501 (void) zone_empty(zone); 6502 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6503 zone_rele(zone); 6504 6505 size = sizeof (arg); 6506 darg.rbuf = (char *)&arg; 6507 darg.data_ptr = (char *)&arg; 6508 darg.rsize = size; 6509 darg.data_size = size; 6510 darg.desc_ptr = NULL; 6511 darg.desc_num = 0; 6512 6513 save_arg = darg; 6514 /* 6515 * Since we're not holding a reference to the zone, any number of 6516 * things can go wrong, including the zone disappearing before we get a 6517 * chance to talk to zoneadmd. 6518 */ 6519 for (retry = 0; /* forever */; retry++) { 6520 if (door == NULL && 6521 (error = zone_lookup_door(zone_name, &door)) != 0) { 6522 goto next; 6523 } 6524 ASSERT(door != NULL); 6525 6526 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6527 SIZE_MAX, 0)) == 0) { 6528 break; 6529 } 6530 switch (error) { 6531 case EINTR: 6532 /* FALLTHROUGH */ 6533 case EAGAIN: /* process may be forking */ 6534 /* 6535 * Back off for a bit 6536 */ 6537 break; 6538 case EBADF: 6539 zone_release_door(&door); 6540 if (zone_lookup_door(zone_name, &door) != 0) { 6541 /* 6542 * zoneadmd may be dead, but it may come back to 6543 * life later. 6544 */ 6545 break; 6546 } 6547 break; 6548 default: 6549 cmn_err(CE_WARN, 6550 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6551 error); 6552 goto out; 6553 } 6554 next: 6555 /* 6556 * If this isn't the same zone_t that we originally had in mind, 6557 * then this is the same as if two kadmin requests come in at 6558 * the same time: the first one wins. This means we lose, so we 6559 * bail. 6560 */ 6561 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6562 /* 6563 * Problem is solved. 6564 */ 6565 break; 6566 } 6567 if (zone->zone_uniqid != uniqid) { 6568 /* 6569 * zoneid recycled 6570 */ 6571 zone_rele(zone); 6572 break; 6573 } 6574 /* 6575 * We could zone_status_timedwait(), but there doesn't seem to 6576 * be much point in doing that (plus, it would mean that 6577 * zone_free() isn't called until this thread exits). 6578 */ 6579 zone_rele(zone); 6580 delay(hz); 6581 darg = save_arg; 6582 } 6583 out: 6584 if (door != NULL) { 6585 zone_release_door(&door); 6586 } 6587 kmem_free(zone_name, zone_namelen); 6588 thread_exit(); 6589 } 6590 6591 /* 6592 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6593 * kadmin(). The caller is a process in the zone. 6594 * 6595 * In order to shutdown the zone, we will hand off control to zoneadmd 6596 * (running in the global zone) via a door. We do a half-hearted job at 6597 * killing all processes in the zone, create a kernel thread to contact 6598 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6599 * a form of generation number used to let zoneadmd (as well as 6600 * zone_destroy()) know exactly which zone they're re talking about. 6601 */ 6602 int 6603 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6604 { 6605 struct zarg *zargp; 6606 zone_cmd_t zcmd; 6607 zone_t *zone; 6608 6609 zone = curproc->p_zone; 6610 ASSERT(getzoneid() != GLOBAL_ZONEID); 6611 6612 switch (cmd) { 6613 case A_SHUTDOWN: 6614 switch (fcn) { 6615 case AD_HALT: 6616 case AD_POWEROFF: 6617 zcmd = Z_HALT; 6618 break; 6619 case AD_BOOT: 6620 zcmd = Z_REBOOT; 6621 break; 6622 case AD_IBOOT: 6623 case AD_SBOOT: 6624 case AD_SIBOOT: 6625 case AD_NOSYNC: 6626 return (ENOTSUP); 6627 default: 6628 return (EINVAL); 6629 } 6630 break; 6631 case A_REBOOT: 6632 zcmd = Z_REBOOT; 6633 break; 6634 case A_FTRACE: 6635 case A_REMOUNT: 6636 case A_FREEZE: 6637 case A_DUMP: 6638 case A_CONFIG: 6639 return (ENOTSUP); 6640 default: 6641 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6642 return (EINVAL); 6643 } 6644 6645 if (secpolicy_zone_admin(credp, B_FALSE)) 6646 return (EPERM); 6647 mutex_enter(&zone_status_lock); 6648 6649 /* 6650 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6651 * is in the zone. 6652 */ 6653 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6654 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6655 /* 6656 * This zone is already on its way down. 6657 */ 6658 mutex_exit(&zone_status_lock); 6659 return (0); 6660 } 6661 /* 6662 * Prevent future zone_enter()s 6663 */ 6664 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6665 mutex_exit(&zone_status_lock); 6666 6667 /* 6668 * Kill everyone now and call zoneadmd later. 6669 * zone_ki_call_zoneadmd() will do a more thorough job of this 6670 * later. 6671 */ 6672 killall(zone->zone_id); 6673 /* 6674 * Now, create the thread to contact zoneadmd and do the rest of the 6675 * work. This thread can't be created in our zone otherwise 6676 * zone_destroy() would deadlock. 6677 */ 6678 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6679 zargp->arg.cmd = zcmd; 6680 zargp->arg.uniqid = zone->zone_uniqid; 6681 zargp->zone = zone; 6682 (void) strcpy(zargp->arg.locale, "C"); 6683 /* mdep was already copied in for us by uadmin */ 6684 if (mdep != NULL) 6685 (void) strlcpy(zargp->arg.bootbuf, mdep, 6686 sizeof (zargp->arg.bootbuf)); 6687 zone_hold(zone); 6688 6689 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6690 TS_RUN, minclsyspri); 6691 exit(CLD_EXITED, 0); 6692 6693 return (EINVAL); 6694 } 6695 6696 /* 6697 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6698 * status to ZONE_IS_SHUTTING_DOWN. 6699 * 6700 * This function also shuts down all running zones to ensure that they won't 6701 * fork new processes. 6702 */ 6703 void 6704 zone_shutdown_global(void) 6705 { 6706 zone_t *current_zonep; 6707 6708 ASSERT(INGLOBALZONE(curproc)); 6709 mutex_enter(&zonehash_lock); 6710 mutex_enter(&zone_status_lock); 6711 6712 /* Modify the global zone's status first. */ 6713 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6714 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6715 6716 /* 6717 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6718 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6719 * could cause assertions to fail (e.g., assertions about a zone's 6720 * state during initialization, readying, or booting) or produce races. 6721 * We'll let threads continue to initialize and ready new zones: they'll 6722 * fail to boot the new zones when they see that the global zone is 6723 * shutting down. 6724 */ 6725 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6726 current_zonep = list_next(&zone_active, current_zonep)) { 6727 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6728 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6729 } 6730 mutex_exit(&zone_status_lock); 6731 mutex_exit(&zonehash_lock); 6732 } 6733 6734 /* 6735 * Returns true if the named dataset is visible in the current zone. 6736 * The 'write' parameter is set to 1 if the dataset is also writable. 6737 */ 6738 int 6739 zone_dataset_visible(const char *dataset, int *write) 6740 { 6741 static int zfstype = -1; 6742 zone_dataset_t *zd; 6743 size_t len; 6744 zone_t *zone = curproc->p_zone; 6745 const char *name = NULL; 6746 vfs_t *vfsp = NULL; 6747 6748 if (dataset[0] == '\0') 6749 return (0); 6750 6751 /* 6752 * Walk the list once, looking for datasets which match exactly, or 6753 * specify a dataset underneath an exported dataset. If found, return 6754 * true and note that it is writable. 6755 */ 6756 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6757 zd = list_next(&zone->zone_datasets, zd)) { 6758 6759 len = strlen(zd->zd_dataset); 6760 if (strlen(dataset) >= len && 6761 bcmp(dataset, zd->zd_dataset, len) == 0 && 6762 (dataset[len] == '\0' || dataset[len] == '/' || 6763 dataset[len] == '@')) { 6764 if (write) 6765 *write = 1; 6766 return (1); 6767 } 6768 } 6769 6770 /* 6771 * Walk the list a second time, searching for datasets which are parents 6772 * of exported datasets. These should be visible, but read-only. 6773 * 6774 * Note that we also have to support forms such as 'pool/dataset/', with 6775 * a trailing slash. 6776 */ 6777 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6778 zd = list_next(&zone->zone_datasets, zd)) { 6779 6780 len = strlen(dataset); 6781 if (dataset[len - 1] == '/') 6782 len--; /* Ignore trailing slash */ 6783 if (len < strlen(zd->zd_dataset) && 6784 bcmp(dataset, zd->zd_dataset, len) == 0 && 6785 zd->zd_dataset[len] == '/') { 6786 if (write) 6787 *write = 0; 6788 return (1); 6789 } 6790 } 6791 6792 /* 6793 * We reach here if the given dataset is not found in the zone_dataset 6794 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6795 * instead of delegation. For this we search for the dataset in the 6796 * zone_vfslist of this zone. If found, return true and note that it is 6797 * not writable. 6798 */ 6799 6800 /* 6801 * Initialize zfstype if it is not initialized yet. 6802 */ 6803 if (zfstype == -1) { 6804 struct vfssw *vswp = vfs_getvfssw("zfs"); 6805 zfstype = vswp - vfssw; 6806 vfs_unrefvfssw(vswp); 6807 } 6808 6809 vfs_list_read_lock(); 6810 vfsp = zone->zone_vfslist; 6811 do { 6812 ASSERT(vfsp); 6813 if (vfsp->vfs_fstype == zfstype) { 6814 name = refstr_value(vfsp->vfs_resource); 6815 6816 /* 6817 * Check if we have an exact match. 6818 */ 6819 if (strcmp(dataset, name) == 0) { 6820 vfs_list_unlock(); 6821 if (write) 6822 *write = 0; 6823 return (1); 6824 } 6825 /* 6826 * We need to check if we are looking for parents of 6827 * a dataset. These should be visible, but read-only. 6828 */ 6829 len = strlen(dataset); 6830 if (dataset[len - 1] == '/') 6831 len--; 6832 6833 if (len < strlen(name) && 6834 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6835 vfs_list_unlock(); 6836 if (write) 6837 *write = 0; 6838 return (1); 6839 } 6840 } 6841 vfsp = vfsp->vfs_zone_next; 6842 } while (vfsp != zone->zone_vfslist); 6843 6844 vfs_list_unlock(); 6845 return (0); 6846 } 6847 6848 /* 6849 * zone_find_by_any_path() - 6850 * 6851 * kernel-private routine similar to zone_find_by_path(), but which 6852 * effectively compares against zone paths rather than zonerootpath 6853 * (i.e., the last component of zonerootpaths, which should be "root/", 6854 * are not compared.) This is done in order to accurately identify all 6855 * paths, whether zone-visible or not, including those which are parallel 6856 * to /root/, such as /dev/, /home/, etc... 6857 * 6858 * If the specified path does not fall under any zone path then global 6859 * zone is returned. 6860 * 6861 * The treat_abs parameter indicates whether the path should be treated as 6862 * an absolute path although it does not begin with "/". (This supports 6863 * nfs mount syntax such as host:any/path.) 6864 * 6865 * The caller is responsible for zone_rele of the returned zone. 6866 */ 6867 zone_t * 6868 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6869 { 6870 zone_t *zone; 6871 int path_offset = 0; 6872 6873 if (path == NULL) { 6874 zone_hold(global_zone); 6875 return (global_zone); 6876 } 6877 6878 if (*path != '/') { 6879 ASSERT(treat_abs); 6880 path_offset = 1; 6881 } 6882 6883 mutex_enter(&zonehash_lock); 6884 for (zone = list_head(&zone_active); zone != NULL; 6885 zone = list_next(&zone_active, zone)) { 6886 char *c; 6887 size_t pathlen; 6888 char *rootpath_start; 6889 6890 if (zone == global_zone) /* skip global zone */ 6891 continue; 6892 6893 /* scan backwards to find start of last component */ 6894 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6895 do { 6896 c--; 6897 } while (*c != '/'); 6898 6899 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6900 rootpath_start = (zone->zone_rootpath + path_offset); 6901 if (strncmp(path, rootpath_start, pathlen) == 0) 6902 break; 6903 } 6904 if (zone == NULL) 6905 zone = global_zone; 6906 zone_hold(zone); 6907 mutex_exit(&zonehash_lock); 6908 return (zone); 6909 } 6910 6911 /* 6912 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6913 * zone_dl_t pointer if found, and NULL otherwise. 6914 */ 6915 static zone_dl_t * 6916 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6917 { 6918 zone_dl_t *zdl; 6919 6920 ASSERT(mutex_owned(&zone->zone_lock)); 6921 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6922 zdl = list_next(&zone->zone_dl_list, zdl)) { 6923 if (zdl->zdl_id == linkid) 6924 break; 6925 } 6926 return (zdl); 6927 } 6928 6929 static boolean_t 6930 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6931 { 6932 boolean_t exists; 6933 6934 mutex_enter(&zone->zone_lock); 6935 exists = (zone_find_dl(zone, linkid) != NULL); 6936 mutex_exit(&zone->zone_lock); 6937 return (exists); 6938 } 6939 6940 /* 6941 * Add an data link name for the zone. 6942 */ 6943 static int 6944 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6945 { 6946 zone_dl_t *zdl; 6947 zone_t *zone; 6948 zone_t *thiszone; 6949 6950 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6951 return (set_errno(ENXIO)); 6952 6953 /* Verify that the datalink ID doesn't already belong to a zone. */ 6954 mutex_enter(&zonehash_lock); 6955 for (zone = list_head(&zone_active); zone != NULL; 6956 zone = list_next(&zone_active, zone)) { 6957 if (zone_dl_exists(zone, linkid)) { 6958 mutex_exit(&zonehash_lock); 6959 zone_rele(thiszone); 6960 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6961 } 6962 } 6963 6964 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6965 zdl->zdl_id = linkid; 6966 zdl->zdl_net = NULL; 6967 mutex_enter(&thiszone->zone_lock); 6968 list_insert_head(&thiszone->zone_dl_list, zdl); 6969 mutex_exit(&thiszone->zone_lock); 6970 mutex_exit(&zonehash_lock); 6971 zone_rele(thiszone); 6972 return (0); 6973 } 6974 6975 static int 6976 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6977 { 6978 zone_dl_t *zdl; 6979 zone_t *zone; 6980 int err = 0; 6981 6982 if ((zone = zone_find_by_id(zoneid)) == NULL) 6983 return (set_errno(EINVAL)); 6984 6985 mutex_enter(&zone->zone_lock); 6986 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6987 err = ENXIO; 6988 } else { 6989 list_remove(&zone->zone_dl_list, zdl); 6990 nvlist_free(zdl->zdl_net); 6991 kmem_free(zdl, sizeof (zone_dl_t)); 6992 } 6993 mutex_exit(&zone->zone_lock); 6994 zone_rele(zone); 6995 return (err == 0 ? 0 : set_errno(err)); 6996 } 6997 6998 /* 6999 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 7000 * the linkid. Otherwise we just check if the specified zoneidp has been 7001 * assigned the supplied linkid. 7002 */ 7003 int 7004 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 7005 { 7006 zone_t *zone; 7007 int err = ENXIO; 7008 7009 if (*zoneidp != ALL_ZONES) { 7010 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 7011 if (zone_dl_exists(zone, linkid)) 7012 err = 0; 7013 zone_rele(zone); 7014 } 7015 return (err); 7016 } 7017 7018 mutex_enter(&zonehash_lock); 7019 for (zone = list_head(&zone_active); zone != NULL; 7020 zone = list_next(&zone_active, zone)) { 7021 if (zone_dl_exists(zone, linkid)) { 7022 *zoneidp = zone->zone_id; 7023 err = 0; 7024 break; 7025 } 7026 } 7027 mutex_exit(&zonehash_lock); 7028 return (err); 7029 } 7030 7031 /* 7032 * Get the list of datalink IDs assigned to a zone. 7033 * 7034 * On input, *nump is the number of datalink IDs that can fit in the supplied 7035 * idarray. Upon return, *nump is either set to the number of datalink IDs 7036 * that were placed in the array if the array was large enough, or to the 7037 * number of datalink IDs that the function needs to place in the array if the 7038 * array is too small. 7039 */ 7040 static int 7041 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7042 { 7043 uint_t num, dlcount; 7044 zone_t *zone; 7045 zone_dl_t *zdl; 7046 datalink_id_t *idptr = idarray; 7047 7048 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7049 return (set_errno(EFAULT)); 7050 if ((zone = zone_find_by_id(zoneid)) == NULL) 7051 return (set_errno(ENXIO)); 7052 7053 num = 0; 7054 mutex_enter(&zone->zone_lock); 7055 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7056 zdl = list_next(&zone->zone_dl_list, zdl)) { 7057 /* 7058 * If the list is bigger than what the caller supplied, just 7059 * count, don't do copyout. 7060 */ 7061 if (++num > dlcount) 7062 continue; 7063 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7064 mutex_exit(&zone->zone_lock); 7065 zone_rele(zone); 7066 return (set_errno(EFAULT)); 7067 } 7068 idptr++; 7069 } 7070 mutex_exit(&zone->zone_lock); 7071 zone_rele(zone); 7072 7073 /* Increased or decreased, caller should be notified. */ 7074 if (num != dlcount) { 7075 if (copyout(&num, nump, sizeof (num)) != 0) 7076 return (set_errno(EFAULT)); 7077 } 7078 return (0); 7079 } 7080 7081 /* 7082 * Public interface for looking up a zone by zoneid. It's a customized version 7083 * for netstack_zone_create(). It can only be called from the zsd create 7084 * callbacks, since it doesn't have reference on the zone structure hence if 7085 * it is called elsewhere the zone could disappear after the zonehash_lock 7086 * is dropped. 7087 * 7088 * Furthermore it 7089 * 1. Doesn't check the status of the zone. 7090 * 2. It will be called even before zone_init is called, in that case the 7091 * address of zone0 is returned directly, and netstack_zone_create() 7092 * will only assign a value to zone0.zone_netstack, won't break anything. 7093 * 3. Returns without the zone being held. 7094 */ 7095 zone_t * 7096 zone_find_by_id_nolock(zoneid_t zoneid) 7097 { 7098 zone_t *zone; 7099 7100 mutex_enter(&zonehash_lock); 7101 if (zonehashbyid == NULL) 7102 zone = &zone0; 7103 else 7104 zone = zone_find_all_by_id(zoneid); 7105 mutex_exit(&zonehash_lock); 7106 return (zone); 7107 } 7108 7109 /* 7110 * Walk the datalinks for a given zone 7111 */ 7112 int 7113 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7114 void *data) 7115 { 7116 zone_t *zone; 7117 zone_dl_t *zdl; 7118 datalink_id_t *idarray; 7119 uint_t idcount = 0; 7120 int i, ret = 0; 7121 7122 if ((zone = zone_find_by_id(zoneid)) == NULL) 7123 return (ENOENT); 7124 7125 /* 7126 * We first build an array of linkid's so that we can walk these and 7127 * execute the callback with the zone_lock dropped. 7128 */ 7129 mutex_enter(&zone->zone_lock); 7130 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7131 zdl = list_next(&zone->zone_dl_list, zdl)) { 7132 idcount++; 7133 } 7134 7135 if (idcount == 0) { 7136 mutex_exit(&zone->zone_lock); 7137 zone_rele(zone); 7138 return (0); 7139 } 7140 7141 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7142 if (idarray == NULL) { 7143 mutex_exit(&zone->zone_lock); 7144 zone_rele(zone); 7145 return (ENOMEM); 7146 } 7147 7148 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7149 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7150 idarray[i] = zdl->zdl_id; 7151 } 7152 7153 mutex_exit(&zone->zone_lock); 7154 7155 for (i = 0; i < idcount && ret == 0; i++) { 7156 if ((ret = (*cb)(idarray[i], data)) != 0) 7157 break; 7158 } 7159 7160 zone_rele(zone); 7161 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7162 return (ret); 7163 } 7164 7165 static char * 7166 zone_net_type2name(int type) 7167 { 7168 switch (type) { 7169 case ZONE_NETWORK_ADDRESS: 7170 return (ZONE_NET_ADDRNAME); 7171 case ZONE_NETWORK_DEFROUTER: 7172 return (ZONE_NET_RTRNAME); 7173 default: 7174 return (NULL); 7175 } 7176 } 7177 7178 static int 7179 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7180 { 7181 zone_t *zone; 7182 zone_dl_t *zdl; 7183 nvlist_t *nvl; 7184 int err = 0; 7185 uint8_t *new = NULL; 7186 char *nvname; 7187 int bufsize; 7188 datalink_id_t linkid = znbuf->zn_linkid; 7189 7190 if (secpolicy_zone_config(CRED()) != 0) 7191 return (set_errno(EPERM)); 7192 7193 if (zoneid == GLOBAL_ZONEID) 7194 return (set_errno(EINVAL)); 7195 7196 nvname = zone_net_type2name(znbuf->zn_type); 7197 bufsize = znbuf->zn_len; 7198 new = znbuf->zn_val; 7199 if (nvname == NULL) 7200 return (set_errno(EINVAL)); 7201 7202 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7203 return (set_errno(EINVAL)); 7204 } 7205 7206 mutex_enter(&zone->zone_lock); 7207 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7208 err = ENXIO; 7209 goto done; 7210 } 7211 if ((nvl = zdl->zdl_net) == NULL) { 7212 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7213 err = ENOMEM; 7214 goto done; 7215 } else { 7216 zdl->zdl_net = nvl; 7217 } 7218 } 7219 if (nvlist_exists(nvl, nvname)) { 7220 err = EINVAL; 7221 goto done; 7222 } 7223 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7224 ASSERT(err == 0); 7225 done: 7226 mutex_exit(&zone->zone_lock); 7227 zone_rele(zone); 7228 if (err != 0) 7229 return (set_errno(err)); 7230 else 7231 return (0); 7232 } 7233 7234 static int 7235 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7236 { 7237 zone_t *zone; 7238 zone_dl_t *zdl; 7239 nvlist_t *nvl; 7240 uint8_t *ptr; 7241 uint_t psize; 7242 int err = 0; 7243 char *nvname; 7244 int bufsize; 7245 void *buf; 7246 datalink_id_t linkid = znbuf->zn_linkid; 7247 7248 if (zoneid == GLOBAL_ZONEID) 7249 return (set_errno(EINVAL)); 7250 7251 nvname = zone_net_type2name(znbuf->zn_type); 7252 bufsize = znbuf->zn_len; 7253 buf = znbuf->zn_val; 7254 7255 if (nvname == NULL) 7256 return (set_errno(EINVAL)); 7257 if ((zone = zone_find_by_id(zoneid)) == NULL) 7258 return (set_errno(EINVAL)); 7259 7260 mutex_enter(&zone->zone_lock); 7261 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7262 err = ENXIO; 7263 goto done; 7264 } 7265 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7266 err = ENOENT; 7267 goto done; 7268 } 7269 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7270 ASSERT(err == 0); 7271 7272 if (psize > bufsize) { 7273 err = ENOBUFS; 7274 goto done; 7275 } 7276 znbuf->zn_len = psize; 7277 bcopy(ptr, buf, psize); 7278 done: 7279 mutex_exit(&zone->zone_lock); 7280 zone_rele(zone); 7281 if (err != 0) 7282 return (set_errno(err)); 7283 else 7284 return (0); 7285 }