1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* Copyright 2013 OmniTI Computer Consulting, Inc. All rights reserved. */ 23 24 /* 25 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 26 * Use is subject to license terms. 27 */ 28 29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 30 /* All Rights Reserved */ 31 32 #include <sys/types.h> 33 #include <sys/inttypes.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/systm.h> 37 #include <sys/signal.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/var.h> 41 #include <sys/proc.h> 42 #include <sys/tuneable.h> 43 #include <sys/debug.h> 44 #include <sys/cmn_err.h> 45 #include <sys/cred.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/vm.h> 49 #include <sys/file.h> 50 #include <sys/mman.h> 51 #include <sys/vmparam.h> 52 #include <sys/fcntl.h> 53 #include <sys/lwpchan_impl.h> 54 #include <sys/nbmlock.h> 55 56 #include <vm/hat.h> 57 #include <vm/as.h> 58 #include <vm/seg.h> 59 #include <vm/seg_dev.h> 60 #include <vm/seg_vn.h> 61 62 int use_brk_lpg = 1; 63 int use_stk_lpg = 1; 64 65 static int brk_lpg(caddr_t nva); 66 static int grow_lpg(caddr_t sp); 67 68 int 69 brk(caddr_t nva) 70 { 71 int error; 72 proc_t *p = curproc; 73 74 /* 75 * Serialize brk operations on an address space. 76 * This also serves as the lock protecting p_brksize 77 * and p_brkpageszc. 78 */ 79 as_rangelock(p->p_as); 80 if (use_brk_lpg && (p->p_flag & SAUTOLPG) != 0) { 81 error = brk_lpg(nva); 82 } else { 83 error = brk_internal(nva, p->p_brkpageszc); 84 } 85 as_rangeunlock(p->p_as); 86 return ((error != 0 ? set_errno(error) : 0)); 87 } 88 89 /* 90 * Algorithm: call arch-specific map_pgsz to get best page size to use, 91 * then call brk_internal(). 92 * Returns 0 on success. 93 */ 94 static int 95 brk_lpg(caddr_t nva) 96 { 97 struct proc *p = curproc; 98 size_t pgsz, len; 99 caddr_t addr, brkend; 100 caddr_t bssbase = p->p_bssbase; 101 caddr_t brkbase = p->p_brkbase; 102 int oszc, szc; 103 int err; 104 105 oszc = p->p_brkpageszc; 106 107 /* 108 * If p_brkbase has not yet been set, the first call 109 * to brk_internal() will initialize it. 110 */ 111 if (brkbase == 0) { 112 return (brk_internal(nva, oszc)); 113 } 114 115 len = nva - bssbase; 116 117 pgsz = map_pgsz(MAPPGSZ_HEAP, p, bssbase, len, 0); 118 szc = page_szc(pgsz); 119 120 /* 121 * Covers two cases: 122 * 1. page_szc() returns -1 for invalid page size, so we want to 123 * ignore it in that case. 124 * 2. By design we never decrease page size, as it is more stable. 125 */ 126 if (szc <= oszc) { 127 err = brk_internal(nva, oszc); 128 /* If failed, back off to base page size. */ 129 if (err != 0 && oszc != 0) { 130 err = brk_internal(nva, 0); 131 } 132 return (err); 133 } 134 135 err = brk_internal(nva, szc); 136 /* If using szc failed, map with base page size and return. */ 137 if (err != 0) { 138 if (szc != 0) { 139 err = brk_internal(nva, 0); 140 } 141 return (err); 142 } 143 144 /* 145 * Round up brk base to a large page boundary and remap 146 * anything in the segment already faulted in beyond that 147 * point. 148 */ 149 addr = (caddr_t)P2ROUNDUP((uintptr_t)p->p_bssbase, pgsz); 150 brkend = brkbase + p->p_brksize; 151 len = brkend - addr; 152 /* Check that len is not negative. Update page size code for heap. */ 153 if (addr >= p->p_bssbase && brkend > addr && IS_P2ALIGNED(len, pgsz)) { 154 (void) as_setpagesize(p->p_as, addr, len, szc, B_FALSE); 155 p->p_brkpageszc = szc; 156 } 157 158 ASSERT(err == 0); 159 return (err); /* should always be 0 */ 160 } 161 162 /* 163 * Returns 0 on success. 164 */ 165 int 166 brk_internal(caddr_t nva, uint_t brkszc) 167 { 168 caddr_t ova; /* current break address */ 169 size_t size; 170 int error; 171 struct proc *p = curproc; 172 struct as *as = p->p_as; 173 size_t pgsz; 174 uint_t szc; 175 rctl_qty_t as_rctl; 176 177 /* 178 * extend heap to brkszc alignment but use current p->p_brkpageszc 179 * for the newly created segment. This allows the new extension 180 * segment to be concatenated successfully with the existing brk 181 * segment. 182 */ 183 if ((szc = brkszc) != 0) { 184 pgsz = page_get_pagesize(szc); 185 ASSERT(pgsz > PAGESIZE); 186 } else { 187 pgsz = PAGESIZE; 188 } 189 190 mutex_enter(&p->p_lock); 191 as_rctl = rctl_enforced_value(rctlproc_legacy[RLIMIT_DATA], 192 p->p_rctls, p); 193 mutex_exit(&p->p_lock); 194 195 /* 196 * If p_brkbase has not yet been set, the first call 197 * to brk() will initialize it. 198 */ 199 if (p->p_brkbase == 0) 200 p->p_brkbase = nva; 201 202 /* 203 * Before multiple page size support existed p_brksize was the value 204 * not rounded to the pagesize (i.e. it stored the exact user request 205 * for heap size). If pgsz is greater than PAGESIZE calculate the 206 * heap size as the real new heap size by rounding it up to pgsz. 207 * This is useful since we may want to know where the heap ends 208 * without knowing heap pagesize (e.g. some old code) and also if 209 * heap pagesize changes we can update p_brkpageszc but delay adding 210 * new mapping yet still know from p_brksize where the heap really 211 * ends. The user requested heap end is stored in libc variable. 212 */ 213 if (pgsz > PAGESIZE) { 214 caddr_t tnva = (caddr_t)P2ROUNDUP((uintptr_t)nva, pgsz); 215 size = tnva - p->p_brkbase; 216 if (tnva < p->p_brkbase || (size > p->p_brksize && 217 size > (size_t)as_rctl)) { 218 szc = 0; 219 pgsz = PAGESIZE; 220 size = nva - p->p_brkbase; 221 } 222 } else { 223 size = nva - p->p_brkbase; 224 } 225 226 /* 227 * use PAGESIZE to roundup ova because we want to know the real value 228 * of the current heap end in case p_brkpageszc changes since the last 229 * p_brksize was computed. 230 */ 231 nva = (caddr_t)P2ROUNDUP((uintptr_t)nva, pgsz); 232 ova = (caddr_t)P2ROUNDUP((uintptr_t)(p->p_brkbase + p->p_brksize), 233 PAGESIZE); 234 235 if ((nva < p->p_brkbase) || (size > p->p_brksize && 236 size > as_rctl)) { 237 mutex_enter(&p->p_lock); 238 (void) rctl_action(rctlproc_legacy[RLIMIT_DATA], p->p_rctls, p, 239 RCA_SAFE); 240 mutex_exit(&p->p_lock); 241 return (ENOMEM); 242 } 243 244 if (nva > ova) { 245 struct segvn_crargs crargs = 246 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 247 248 if (!(p->p_datprot & PROT_EXEC)) { 249 crargs.prot &= ~PROT_EXEC; 250 } 251 252 /* 253 * Add new zfod mapping to extend UNIX data segment 254 * AS_MAP_NO_LPOOB means use 0, and don't reapply OOB policies 255 * via map_pgszcvec(). Use AS_MAP_HEAP to get intermediate 256 * page sizes if ova is not aligned to szc's pgsz. 257 */ 258 if (szc > 0) { 259 caddr_t rbss; 260 261 rbss = (caddr_t)P2ROUNDUP((uintptr_t)p->p_bssbase, 262 pgsz); 263 if (IS_P2ALIGNED(p->p_bssbase, pgsz) || ova > rbss) { 264 crargs.szc = p->p_brkpageszc ? p->p_brkpageszc : 265 AS_MAP_NO_LPOOB; 266 } else if (ova == rbss) { 267 crargs.szc = szc; 268 } else { 269 crargs.szc = AS_MAP_HEAP; 270 } 271 } else { 272 crargs.szc = AS_MAP_NO_LPOOB; 273 } 274 crargs.lgrp_mem_policy_flags = LGRP_MP_FLAG_EXTEND_UP; 275 error = as_map(as, ova, (size_t)(nva - ova), segvn_create, 276 &crargs); 277 if (error) { 278 return (error); 279 } 280 281 } else if (nva < ova) { 282 /* 283 * Release mapping to shrink UNIX data segment. 284 */ 285 (void) as_unmap(as, nva, (size_t)(ova - nva)); 286 } 287 p->p_brksize = size; 288 return (0); 289 } 290 291 /* 292 * Grow the stack to include sp. Return 1 if successful, 0 otherwise. 293 * This routine assumes that the stack grows downward. 294 */ 295 int 296 grow(caddr_t sp) 297 { 298 struct proc *p = curproc; 299 struct as *as = p->p_as; 300 size_t oldsize = p->p_stksize; 301 size_t newsize; 302 int err; 303 304 /* 305 * Serialize grow operations on an address space. 306 * This also serves as the lock protecting p_stksize 307 * and p_stkpageszc. 308 */ 309 as_rangelock(as); 310 if (use_stk_lpg && (p->p_flag & SAUTOLPG) != 0) { 311 err = grow_lpg(sp); 312 } else { 313 err = grow_internal(sp, p->p_stkpageszc); 314 } 315 as_rangeunlock(as); 316 317 if (err == 0 && (newsize = p->p_stksize) > oldsize) { 318 ASSERT(IS_P2ALIGNED(oldsize, PAGESIZE)); 319 ASSERT(IS_P2ALIGNED(newsize, PAGESIZE)); 320 /* 321 * Set up translations so the process doesn't have to fault in 322 * the stack pages we just gave it. 323 */ 324 (void) as_fault(as->a_hat, as, p->p_usrstack - newsize, 325 newsize - oldsize, F_INVAL, S_WRITE); 326 } 327 return ((err == 0 ? 1 : 0)); 328 } 329 330 /* 331 * Algorithm: call arch-specific map_pgsz to get best page size to use, 332 * then call grow_internal(). 333 * Returns 0 on success. 334 */ 335 static int 336 grow_lpg(caddr_t sp) 337 { 338 struct proc *p = curproc; 339 size_t pgsz; 340 size_t len, newsize; 341 caddr_t addr, saddr; 342 caddr_t growend; 343 int oszc, szc; 344 int err; 345 346 newsize = p->p_usrstack - sp; 347 348 oszc = p->p_stkpageszc; 349 pgsz = map_pgsz(MAPPGSZ_STK, p, sp, newsize, 0); 350 szc = page_szc(pgsz); 351 352 /* 353 * Covers two cases: 354 * 1. page_szc() returns -1 for invalid page size, so we want to 355 * ignore it in that case. 356 * 2. By design we never decrease page size, as it is more stable. 357 * This shouldn't happen as the stack never shrinks. 358 */ 359 if (szc <= oszc) { 360 err = grow_internal(sp, oszc); 361 /* failed, fall back to base page size */ 362 if (err != 0 && oszc != 0) { 363 err = grow_internal(sp, 0); 364 } 365 return (err); 366 } 367 368 /* 369 * We've grown sufficiently to switch to a new page size. 370 * So we are going to remap the whole segment with the new page size. 371 */ 372 err = grow_internal(sp, szc); 373 /* The grow with szc failed, so fall back to base page size. */ 374 if (err != 0) { 375 if (szc != 0) { 376 err = grow_internal(sp, 0); 377 } 378 return (err); 379 } 380 381 /* 382 * Round up stack pointer to a large page boundary and remap 383 * any pgsz pages in the segment already faulted in beyond that 384 * point. 385 */ 386 saddr = p->p_usrstack - p->p_stksize; 387 addr = (caddr_t)P2ROUNDUP((uintptr_t)saddr, pgsz); 388 growend = (caddr_t)P2ALIGN((uintptr_t)p->p_usrstack, pgsz); 389 len = growend - addr; 390 /* Check that len is not negative. Update page size code for stack. */ 391 if (addr >= saddr && growend > addr && IS_P2ALIGNED(len, pgsz)) { 392 (void) as_setpagesize(p->p_as, addr, len, szc, B_FALSE); 393 p->p_stkpageszc = szc; 394 } 395 396 ASSERT(err == 0); 397 return (err); /* should always be 0 */ 398 } 399 400 /* 401 * This routine assumes that the stack grows downward. 402 * Returns 0 on success, errno on failure. 403 */ 404 int 405 grow_internal(caddr_t sp, uint_t growszc) 406 { 407 struct proc *p = curproc; 408 size_t newsize; 409 size_t oldsize; 410 int error; 411 size_t pgsz; 412 uint_t szc; 413 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 414 415 ASSERT(sp < p->p_usrstack); 416 sp = (caddr_t)P2ALIGN((uintptr_t)sp, PAGESIZE); 417 418 /* 419 * grow to growszc alignment but use current p->p_stkpageszc for 420 * the segvn_crargs szc passed to segvn_create. For memcntl to 421 * increase the szc, this allows the new extension segment to be 422 * concatenated successfully with the existing stack segment. 423 */ 424 if ((szc = growszc) != 0) { 425 pgsz = page_get_pagesize(szc); 426 ASSERT(pgsz > PAGESIZE); 427 newsize = p->p_usrstack - (caddr_t)P2ALIGN((uintptr_t)sp, pgsz); 428 if (newsize > (size_t)p->p_stk_ctl) { 429 szc = 0; 430 pgsz = PAGESIZE; 431 newsize = p->p_usrstack - sp; 432 } 433 } else { 434 pgsz = PAGESIZE; 435 newsize = p->p_usrstack - sp; 436 } 437 438 if (newsize > (size_t)p->p_stk_ctl) { 439 (void) rctl_action(rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p, 440 RCA_UNSAFE_ALL); 441 442 return (ENOMEM); 443 } 444 445 oldsize = p->p_stksize; 446 ASSERT(P2PHASE(oldsize, PAGESIZE) == 0); 447 448 if (newsize <= oldsize) { /* prevent the stack from shrinking */ 449 return (0); 450 } 451 452 if (!(p->p_stkprot & PROT_EXEC)) { 453 crargs.prot &= ~PROT_EXEC; 454 } 455 /* 456 * extend stack with the proposed new growszc, which is different 457 * than p_stkpageszc only on a memcntl to increase the stack pagesize. 458 * AS_MAP_NO_LPOOB means use 0, and don't reapply OOB policies via 459 * map_pgszcvec(). Use AS_MAP_STACK to get intermediate page sizes 460 * if not aligned to szc's pgsz. 461 */ 462 if (szc > 0) { 463 caddr_t oldsp = p->p_usrstack - oldsize; 464 caddr_t austk = (caddr_t)P2ALIGN((uintptr_t)p->p_usrstack, 465 pgsz); 466 467 if (IS_P2ALIGNED(p->p_usrstack, pgsz) || oldsp < austk) { 468 crargs.szc = p->p_stkpageszc ? p->p_stkpageszc : 469 AS_MAP_NO_LPOOB; 470 } else if (oldsp == austk) { 471 crargs.szc = szc; 472 } else { 473 crargs.szc = AS_MAP_STACK; 474 } 475 } else { 476 crargs.szc = AS_MAP_NO_LPOOB; 477 } 478 crargs.lgrp_mem_policy_flags = LGRP_MP_FLAG_EXTEND_DOWN; 479 480 if ((error = as_map(p->p_as, p->p_usrstack - newsize, newsize - oldsize, 481 segvn_create, &crargs)) != 0) { 482 if (error == EAGAIN) { 483 cmn_err(CE_WARN, "Sorry, no swap space to grow stack " 484 "for pid %d (%s)", p->p_pid, PTOU(p)->u_comm); 485 } 486 return (error); 487 } 488 p->p_stksize = newsize; 489 return (0); 490 } 491 492 /* 493 * Find address for user to map. 494 * If MAP_FIXED is not specified, we can pick any address we want, but we will 495 * first try the value in *addrp if it is non-NULL. Thus this is implementing 496 * a way to try and get a preferred address. 497 */ 498 int 499 choose_addr(struct as *as, caddr_t *addrp, size_t len, offset_t off, 500 int vacalign, uint_t flags) 501 { 502 caddr_t basep = (caddr_t)(uintptr_t)((uintptr_t)*addrp & PAGEMASK); 503 size_t lenp = len; 504 505 ASSERT(AS_ISCLAIMGAP(as)); /* searches should be serialized */ 506 if (flags & MAP_FIXED) { 507 (void) as_unmap(as, *addrp, len); 508 return (0); 509 } else if (basep != NULL && ((flags & MAP_ALIGN) == 0) && 510 !as_gap(as, len, &basep, &lenp, 0, *addrp)) { 511 /* User supplied address was available */ 512 *addrp = basep; 513 } else { 514 /* 515 * No user supplied address or the address supplied was not 516 * available. 517 */ 518 map_addr(addrp, len, off, vacalign, flags); 519 } 520 if (*addrp == NULL) 521 return (ENOMEM); 522 return (0); 523 } 524 525 526 /* 527 * Used for MAP_ANON - fast way to get anonymous pages 528 */ 529 static int 530 zmap(struct as *as, caddr_t *addrp, size_t len, uint_t uprot, int flags, 531 offset_t pos) 532 { 533 struct segvn_crargs vn_a; 534 int error; 535 536 if (((PROT_ALL & uprot) != uprot)) 537 return (EACCES); 538 539 if ((flags & MAP_FIXED) != 0) { 540 caddr_t userlimit; 541 542 /* 543 * Use the user address. First verify that 544 * the address to be used is page aligned. 545 * Then make some simple bounds checks. 546 */ 547 if (((uintptr_t)*addrp & PAGEOFFSET) != 0) 548 return (EINVAL); 549 550 userlimit = flags & _MAP_LOW32 ? 551 (caddr_t)USERLIMIT32 : as->a_userlimit; 552 switch (valid_usr_range(*addrp, len, uprot, as, userlimit)) { 553 case RANGE_OKAY: 554 break; 555 case RANGE_BADPROT: 556 return (ENOTSUP); 557 case RANGE_BADADDR: 558 default: 559 return (ENOMEM); 560 } 561 } 562 /* 563 * No need to worry about vac alignment for anonymous 564 * pages since this is a "clone" object that doesn't 565 * yet exist. 566 */ 567 error = choose_addr(as, addrp, len, pos, ADDR_NOVACALIGN, flags); 568 if (error != 0) { 569 return (error); 570 } 571 572 /* 573 * Use the seg_vn segment driver; passing in the NULL amp 574 * gives the desired "cloning" effect. 575 */ 576 vn_a.vp = NULL; 577 vn_a.offset = 0; 578 vn_a.type = flags & MAP_TYPE; 579 vn_a.prot = uprot; 580 vn_a.maxprot = PROT_ALL; 581 vn_a.flags = flags & ~MAP_TYPE; 582 vn_a.cred = CRED(); 583 vn_a.amp = NULL; 584 vn_a.szc = 0; 585 vn_a.lgrp_mem_policy_flags = 0; 586 587 return (as_map(as, *addrp, len, segvn_create, &vn_a)); 588 } 589 590 static int 591 smmap_common(caddr_t *addrp, size_t len, 592 int prot, int flags, struct file *fp, offset_t pos) 593 { 594 struct vnode *vp; 595 struct as *as = curproc->p_as; 596 uint_t uprot, maxprot, type; 597 int error; 598 int in_crit = 0; 599 600 if ((flags & ~(MAP_SHARED | MAP_PRIVATE | MAP_FIXED | _MAP_NEW | 601 _MAP_LOW32 | MAP_NORESERVE | MAP_ANON | MAP_ALIGN | 602 MAP_TEXT | MAP_INITDATA)) != 0) { 603 /* | MAP_RENAME */ /* not implemented, let user know */ 604 return (EINVAL); 605 } 606 607 if ((flags & MAP_TEXT) && !(prot & PROT_EXEC)) { 608 return (EINVAL); 609 } 610 611 if ((flags & (MAP_TEXT | MAP_INITDATA)) == (MAP_TEXT | MAP_INITDATA)) { 612 return (EINVAL); 613 } 614 615 #if defined(__sparc) 616 /* 617 * See if this is an "old mmap call". If so, remember this 618 * fact and convert the flags value given to mmap to indicate 619 * the specified address in the system call must be used. 620 * _MAP_NEW is turned set by all new uses of mmap. 621 */ 622 if ((flags & _MAP_NEW) == 0) 623 flags |= MAP_FIXED; 624 #endif 625 flags &= ~_MAP_NEW; 626 627 type = flags & MAP_TYPE; 628 if (type != MAP_PRIVATE && type != MAP_SHARED) 629 return (EINVAL); 630 631 632 if (flags & MAP_ALIGN) { 633 634 if (flags & MAP_FIXED) 635 return (EINVAL); 636 637 /* alignment needs to be a power of 2 >= page size */ 638 if (((uintptr_t)*addrp < PAGESIZE && (uintptr_t)*addrp != 0) || 639 !ISP2((uintptr_t)*addrp)) 640 return (EINVAL); 641 } 642 /* 643 * Check for bad lengths and file position. 644 * We let the VOP_MAP routine check for negative lengths 645 * since on some vnode types this might be appropriate. 646 */ 647 if (len == 0 || (pos & (u_offset_t)PAGEOFFSET) != 0) 648 return (EINVAL); 649 650 maxprot = PROT_ALL; /* start out allowing all accesses */ 651 uprot = prot | PROT_USER; 652 653 if (fp == NULL) { 654 ASSERT(flags & MAP_ANON); 655 /* discard lwpchan mappings, like munmap() */ 656 if ((flags & MAP_FIXED) && curproc->p_lcp != NULL) 657 lwpchan_delete_mapping(curproc, *addrp, *addrp + len); 658 as_rangelock(as); 659 error = zmap(as, addrp, len, uprot, flags, pos); 660 as_rangeunlock(as); 661 /* 662 * Tell machine specific code that lwp has mapped shared memory 663 */ 664 if (error == 0 && (flags & MAP_SHARED)) { 665 /* EMPTY */ 666 LWP_MMODEL_SHARED_AS(*addrp, len); 667 } 668 return (error); 669 } else if ((flags & MAP_ANON) != 0) 670 return (EINVAL); 671 672 vp = fp->f_vnode; 673 674 /* Can't execute code from "noexec" mounted filesystem. */ 675 if ((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) 676 maxprot &= ~PROT_EXEC; 677 678 /* 679 * These checks were added as part of large files. 680 * 681 * Return ENXIO if the initial position is negative; return EOVERFLOW 682 * if (offset + len) would overflow the maximum allowed offset for the 683 * type of file descriptor being used. 684 */ 685 if (vp->v_type == VREG) { 686 if (pos < 0) 687 return (ENXIO); 688 if ((offset_t)len > (OFFSET_MAX(fp) - pos)) 689 return (EOVERFLOW); 690 } 691 692 if (type == MAP_SHARED && (fp->f_flag & FWRITE) == 0) { 693 /* no write access allowed */ 694 maxprot &= ~PROT_WRITE; 695 } 696 697 /* 698 * XXX - Do we also adjust maxprot based on protections 699 * of the vnode? E.g. if no execute permission is given 700 * on the vnode for the current user, maxprot probably 701 * should disallow PROT_EXEC also? This is different 702 * from the write access as this would be a per vnode 703 * test as opposed to a per fd test for writability. 704 */ 705 706 /* 707 * Verify that the specified protections are not greater than 708 * the maximum allowable protections. Also test to make sure 709 * that the file descriptor does allows for read access since 710 * "write only" mappings are hard to do since normally we do 711 * the read from the file before the page can be written. 712 */ 713 if (((maxprot & uprot) != uprot) || (fp->f_flag & FREAD) == 0) 714 return (EACCES); 715 716 /* 717 * If the user specified an address, do some simple checks here 718 */ 719 if ((flags & MAP_FIXED) != 0) { 720 caddr_t userlimit; 721 722 /* 723 * Use the user address. First verify that 724 * the address to be used is page aligned. 725 * Then make some simple bounds checks. 726 */ 727 if (((uintptr_t)*addrp & PAGEOFFSET) != 0) 728 return (EINVAL); 729 730 userlimit = flags & _MAP_LOW32 ? 731 (caddr_t)USERLIMIT32 : as->a_userlimit; 732 switch (valid_usr_range(*addrp, len, uprot, as, userlimit)) { 733 case RANGE_OKAY: 734 break; 735 case RANGE_BADPROT: 736 return (ENOTSUP); 737 case RANGE_BADADDR: 738 default: 739 return (ENOMEM); 740 } 741 } 742 743 if ((prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) && 744 nbl_need_check(vp)) { 745 int svmand; 746 nbl_op_t nop; 747 748 nbl_start_crit(vp, RW_READER); 749 in_crit = 1; 750 error = nbl_svmand(vp, fp->f_cred, &svmand); 751 if (error != 0) 752 goto done; 753 if ((prot & PROT_WRITE) && (type == MAP_SHARED)) { 754 if (prot & (PROT_READ | PROT_EXEC)) { 755 nop = NBL_READWRITE; 756 } else { 757 nop = NBL_WRITE; 758 } 759 } else { 760 nop = NBL_READ; 761 } 762 if (nbl_conflict(vp, nop, 0, LONG_MAX, svmand, NULL)) { 763 error = EACCES; 764 goto done; 765 } 766 } 767 768 /* discard lwpchan mappings, like munmap() */ 769 if ((flags & MAP_FIXED) && curproc->p_lcp != NULL) 770 lwpchan_delete_mapping(curproc, *addrp, *addrp + len); 771 772 /* 773 * Ok, now let the vnode map routine do its thing to set things up. 774 */ 775 error = VOP_MAP(vp, pos, as, 776 addrp, len, uprot, maxprot, flags, fp->f_cred, NULL); 777 778 if (error == 0) { 779 /* 780 * Tell machine specific code that lwp has mapped shared memory 781 */ 782 if (flags & MAP_SHARED) { 783 /* EMPTY */ 784 LWP_MMODEL_SHARED_AS(*addrp, len); 785 } 786 if (vp->v_type == VREG && 787 (flags & (MAP_TEXT | MAP_INITDATA)) != 0) { 788 /* 789 * Mark this as an executable vnode 790 */ 791 mutex_enter(&vp->v_lock); 792 vp->v_flag |= VVMEXEC; 793 mutex_exit(&vp->v_lock); 794 } 795 } 796 797 done: 798 if (in_crit) 799 nbl_end_crit(vp); 800 return (error); 801 } 802 803 #ifdef _LP64 804 /* 805 * LP64 mmap(2) system call: 64-bit offset, 64-bit address. 806 * 807 * The "large file" mmap routine mmap64(2) is also mapped to this routine 808 * by the 64-bit version of libc. 809 * 810 * Eventually, this should be the only version, and have smmap_common() 811 * folded back into it again. Some day. 812 */ 813 caddr_t 814 smmap64(caddr_t addr, size_t len, int prot, int flags, int fd, off_t pos) 815 { 816 struct file *fp; 817 int error; 818 819 if (fd == -1 && (flags & MAP_ANON) != 0) 820 error = smmap_common(&addr, len, prot, flags, 821 NULL, (offset_t)pos); 822 else if ((fp = getf(fd)) != NULL) { 823 error = smmap_common(&addr, len, prot, flags, 824 fp, (offset_t)pos); 825 releasef(fd); 826 } else 827 error = EBADF; 828 829 return (error ? (caddr_t)(uintptr_t)set_errno(error) : addr); 830 } 831 #endif /* _LP64 */ 832 833 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 834 835 /* 836 * ILP32 mmap(2) system call: 32-bit offset, 32-bit address. 837 */ 838 caddr_t 839 smmap32(caddr32_t addr, size32_t len, int prot, int flags, int fd, off32_t pos) 840 { 841 struct file *fp; 842 int error; 843 caddr_t a = (caddr_t)(uintptr_t)addr; 844 845 if (flags & _MAP_LOW32) 846 error = EINVAL; 847 else if (fd == -1 && (flags & MAP_ANON) != 0) 848 error = smmap_common(&a, (size_t)len, prot, 849 flags | _MAP_LOW32, NULL, (offset_t)pos); 850 else if ((fp = getf(fd)) != NULL) { 851 error = smmap_common(&a, (size_t)len, prot, 852 flags | _MAP_LOW32, fp, (offset_t)pos); 853 releasef(fd); 854 } else 855 error = EBADF; 856 857 ASSERT(error != 0 || (uintptr_t)(a + len) < (uintptr_t)UINT32_MAX); 858 859 return (error ? (caddr_t)(uintptr_t)set_errno(error) : a); 860 } 861 862 /* 863 * ILP32 mmap64(2) system call: 64-bit offset, 32-bit address. 864 * 865 * Now things really get ugly because we can't use the C-style 866 * calling convention for more than 6 args, and 64-bit parameter 867 * passing on 32-bit systems is less than clean. 868 */ 869 870 struct mmaplf32a { 871 caddr_t addr; 872 size_t len; 873 #ifdef _LP64 874 /* 875 * 32-bit contents, 64-bit cells 876 */ 877 uint64_t prot; 878 uint64_t flags; 879 uint64_t fd; 880 uint64_t offhi; 881 uint64_t offlo; 882 #else 883 /* 884 * 32-bit contents, 32-bit cells 885 */ 886 uint32_t prot; 887 uint32_t flags; 888 uint32_t fd; 889 uint32_t offhi; 890 uint32_t offlo; 891 #endif 892 }; 893 894 int 895 smmaplf32(struct mmaplf32a *uap, rval_t *rvp) 896 { 897 struct file *fp; 898 int error; 899 caddr_t a = uap->addr; 900 int flags = (int)uap->flags; 901 int fd = (int)uap->fd; 902 #ifdef _BIG_ENDIAN 903 offset_t off = ((u_offset_t)uap->offhi << 32) | (u_offset_t)uap->offlo; 904 #else 905 offset_t off = ((u_offset_t)uap->offlo << 32) | (u_offset_t)uap->offhi; 906 #endif 907 908 if (flags & _MAP_LOW32) 909 error = EINVAL; 910 else if (fd == -1 && (flags & MAP_ANON) != 0) 911 error = smmap_common(&a, uap->len, (int)uap->prot, 912 flags | _MAP_LOW32, NULL, off); 913 else if ((fp = getf(fd)) != NULL) { 914 error = smmap_common(&a, uap->len, (int)uap->prot, 915 flags | _MAP_LOW32, fp, off); 916 releasef(fd); 917 } else 918 error = EBADF; 919 920 if (error == 0) 921 rvp->r_val1 = (uintptr_t)a; 922 return (error); 923 } 924 925 #endif /* _SYSCALL32_IMPL || _ILP32 */ 926 927 int 928 munmap(caddr_t addr, size_t len) 929 { 930 struct proc *p = curproc; 931 struct as *as = p->p_as; 932 933 if (((uintptr_t)addr & PAGEOFFSET) != 0 || len == 0) 934 return (set_errno(EINVAL)); 935 936 if (valid_usr_range(addr, len, 0, as, as->a_userlimit) != RANGE_OKAY) 937 return (set_errno(EINVAL)); 938 939 /* 940 * Discard lwpchan mappings. 941 */ 942 if (p->p_lcp != NULL) 943 lwpchan_delete_mapping(p, addr, addr + len); 944 if (as_unmap(as, addr, len) != 0) 945 return (set_errno(EINVAL)); 946 947 return (0); 948 } 949 950 int 951 mprotect(caddr_t addr, size_t len, int prot) 952 { 953 struct as *as = curproc->p_as; 954 uint_t uprot = prot | PROT_USER; 955 int error; 956 957 if (((uintptr_t)addr & PAGEOFFSET) != 0 || len == 0) 958 return (set_errno(EINVAL)); 959 960 switch (valid_usr_range(addr, len, prot, as, as->a_userlimit)) { 961 case RANGE_OKAY: 962 break; 963 case RANGE_BADPROT: 964 return (set_errno(ENOTSUP)); 965 case RANGE_BADADDR: 966 default: 967 return (set_errno(ENOMEM)); 968 } 969 970 error = as_setprot(as, addr, len, uprot); 971 if (error) 972 return (set_errno(error)); 973 return (0); 974 } 975 976 #define MC_CACHE 128 /* internal result buffer */ 977 #define MC_QUANTUM (MC_CACHE * PAGESIZE) /* addresses covered in loop */ 978 979 int 980 mincore(caddr_t addr, size_t len, char *vecp) 981 { 982 struct as *as = curproc->p_as; 983 caddr_t ea; /* end address of loop */ 984 size_t rl; /* inner result length */ 985 char vec[MC_CACHE]; /* local vector cache */ 986 int error; 987 model_t model; 988 long llen; 989 990 model = get_udatamodel(); 991 /* 992 * Validate form of address parameters. 993 */ 994 if (model == DATAMODEL_NATIVE) { 995 llen = (long)len; 996 } else { 997 llen = (int32_t)(size32_t)len; 998 } 999 if (((uintptr_t)addr & PAGEOFFSET) != 0 || llen <= 0) 1000 return (set_errno(EINVAL)); 1001 1002 if (valid_usr_range(addr, len, 0, as, as->a_userlimit) != RANGE_OKAY) 1003 return (set_errno(ENOMEM)); 1004 1005 /* 1006 * Loop over subranges of interval [addr : addr + len), recovering 1007 * results internally and then copying them out to caller. Subrange 1008 * is based on the size of MC_CACHE, defined above. 1009 */ 1010 for (ea = addr + len; addr < ea; addr += MC_QUANTUM) { 1011 error = as_incore(as, addr, 1012 (size_t)MIN(MC_QUANTUM, ea - addr), vec, &rl); 1013 if (rl != 0) { 1014 rl = (rl + PAGESIZE - 1) / PAGESIZE; 1015 if (copyout(vec, vecp, rl) != 0) 1016 return (set_errno(EFAULT)); 1017 vecp += rl; 1018 } 1019 if (error != 0) 1020 return (set_errno(ENOMEM)); 1021 } 1022 return (0); 1023 }