1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 382 const char * const zone_default_initname = "/sbin/init"; 383 static char * const zone_prefix = "/zone/"; 384 static int zone_shutdown(zoneid_t zoneid); 385 static int zone_add_datalink(zoneid_t, datalink_id_t); 386 static int zone_remove_datalink(zoneid_t, datalink_id_t); 387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 388 static int zone_set_network(zoneid_t, zone_net_data_t *); 389 static int zone_get_network(zoneid_t, zone_net_data_t *); 390 391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 392 393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 397 zone_key_t); 398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 400 kmutex_t *); 401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 404 /* 405 * Bump this number when you alter the zone syscall interfaces; this is 406 * because we need to have support for previous API versions in libc 407 * to support patching; libc calls into the kernel to determine this number. 408 * 409 * Version 1 of the API is the version originally shipped with Solaris 10 410 * Version 2 alters the zone_create system call in order to support more 411 * arguments by moving the args into a structure; and to do better 412 * error reporting when zone_create() fails. 413 * Version 3 alters the zone_create system call in order to support the 414 * import of ZFS datasets to zones. 415 * Version 4 alters the zone_create system call in order to support 416 * Trusted Extensions. 417 * Version 5 alters the zone_boot system call, and converts its old 418 * bootargs parameter to be set by the zone_setattr API instead. 419 * Version 6 adds the flag argument to zone_create. 420 */ 421 static const int ZONE_SYSCALL_API_VERSION = 6; 422 423 /* 424 * Certain filesystems (such as NFS and autofs) need to know which zone 425 * the mount is being placed in. Because of this, we need to be able to 426 * ensure that a zone isn't in the process of being created/destroyed such 427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 428 * it gets added the list of mounted zones, it ends up on the wrong zone's 429 * mount list. Since a zone can't reside on an NFS file system, we don't 430 * have to worry about the zonepath itself. 431 * 432 * The following functions: block_mounts()/resume_mounts() and 433 * mount_in_progress()/mount_completed() are used by zones and the VFS 434 * layer (respectively) to synchronize zone state transitions and new 435 * mounts within a zone. This syncronization is on a per-zone basis, so 436 * activity for one zone will not interfere with activity for another zone. 437 * 438 * The semantics are like a reader-reader lock such that there may 439 * either be multiple mounts (or zone state transitions, if that weren't 440 * serialized by zonehash_lock) in progress at the same time, but not 441 * both. 442 * 443 * We use cv's so the user can ctrl-C out of the operation if it's 444 * taking too long. 445 * 446 * The semantics are such that there is unfair bias towards the 447 * "current" operation. This means that zone halt may starve if 448 * there is a rapid succession of new mounts coming in to the zone. 449 */ 450 /* 451 * Prevent new mounts from progressing to the point of calling 452 * VFS_MOUNT(). If there are already mounts in this "region", wait for 453 * them to complete. 454 */ 455 static int 456 block_mounts(zone_t *zp) 457 { 458 int retval = 0; 459 460 /* 461 * Since it may block for a long time, block_mounts() shouldn't be 462 * called with zonehash_lock held. 463 */ 464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 465 mutex_enter(&zp->zone_mount_lock); 466 while (zp->zone_mounts_in_progress > 0) { 467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 468 goto signaled; 469 } 470 /* 471 * A negative value of mounts_in_progress indicates that mounts 472 * have been blocked by (-mounts_in_progress) different callers 473 * (remotely possible if two threads enter zone_shutdown at the same 474 * time). 475 */ 476 zp->zone_mounts_in_progress--; 477 retval = 1; 478 signaled: 479 mutex_exit(&zp->zone_mount_lock); 480 return (retval); 481 } 482 483 /* 484 * The VFS layer may progress with new mounts as far as we're concerned. 485 * Allow them to progress if we were the last obstacle. 486 */ 487 static void 488 resume_mounts(zone_t *zp) 489 { 490 mutex_enter(&zp->zone_mount_lock); 491 if (++zp->zone_mounts_in_progress == 0) 492 cv_broadcast(&zp->zone_mount_cv); 493 mutex_exit(&zp->zone_mount_lock); 494 } 495 496 /* 497 * The VFS layer is busy with a mount; this zone should wait until all 498 * of its mounts are completed to progress. 499 */ 500 void 501 mount_in_progress(zone_t *zp) 502 { 503 mutex_enter(&zp->zone_mount_lock); 504 while (zp->zone_mounts_in_progress < 0) 505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 506 zp->zone_mounts_in_progress++; 507 mutex_exit(&zp->zone_mount_lock); 508 } 509 510 /* 511 * VFS is done with one mount; wake up any waiting block_mounts() 512 * callers if this is the last mount. 513 */ 514 void 515 mount_completed(zone_t *zp) 516 { 517 mutex_enter(&zp->zone_mount_lock); 518 if (--zp->zone_mounts_in_progress == 0) 519 cv_broadcast(&zp->zone_mount_cv); 520 mutex_exit(&zp->zone_mount_lock); 521 } 522 523 /* 524 * ZSD routines. 525 * 526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 527 * defined by the pthread_key_create() and related interfaces. 528 * 529 * Kernel subsystems may register one or more data items and/or 530 * callbacks to be executed when a zone is created, shutdown, or 531 * destroyed. 532 * 533 * Unlike the thread counterpart, destructor callbacks will be executed 534 * even if the data pointer is NULL and/or there are no constructor 535 * callbacks, so it is the responsibility of such callbacks to check for 536 * NULL data values if necessary. 537 * 538 * The locking strategy and overall picture is as follows: 539 * 540 * When someone calls zone_key_create(), a template ZSD entry is added to the 541 * global list "zsd_registered_keys", protected by zsd_key_lock. While 542 * holding that lock all the existing zones are marked as 543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 544 * zone_zsd list (protected by zone_lock). The global list is updated first 545 * (under zone_key_lock) to make sure that newly created zones use the 546 * most recent list of keys. Then under zonehash_lock we walk the zones 547 * and mark them. Similar locking is used in zone_key_delete(). 548 * 549 * The actual create, shutdown, and destroy callbacks are done without 550 * holding any lock. And zsd_flags are used to ensure that the operations 551 * completed so that when zone_key_create (and zone_create) is done, as well as 552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 553 * are completed. 554 * 555 * When new zones are created constructor callbacks for all registered ZSD 556 * entries will be called. That also uses the above two phases of marking 557 * what needs to be done, and then running the callbacks without holding 558 * any locks. 559 * 560 * The framework does not provide any locking around zone_getspecific() and 561 * zone_setspecific() apart from that needed for internal consistency, so 562 * callers interested in atomic "test-and-set" semantics will need to provide 563 * their own locking. 564 */ 565 566 /* 567 * Helper function to find the zsd_entry associated with the key in the 568 * given list. 569 */ 570 static struct zsd_entry * 571 zsd_find(list_t *l, zone_key_t key) 572 { 573 struct zsd_entry *zsd; 574 575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 576 if (zsd->zsd_key == key) { 577 return (zsd); 578 } 579 } 580 return (NULL); 581 } 582 583 /* 584 * Helper function to find the zsd_entry associated with the key in the 585 * given list. Move it to the front of the list. 586 */ 587 static struct zsd_entry * 588 zsd_find_mru(list_t *l, zone_key_t key) 589 { 590 struct zsd_entry *zsd; 591 592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 593 if (zsd->zsd_key == key) { 594 /* 595 * Move to head of list to keep list in MRU order. 596 */ 597 if (zsd != list_head(l)) { 598 list_remove(l, zsd); 599 list_insert_head(l, zsd); 600 } 601 return (zsd); 602 } 603 } 604 return (NULL); 605 } 606 607 void 608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 610 { 611 struct zsd_entry *zsdp; 612 struct zsd_entry *t; 613 struct zone *zone; 614 zone_key_t key; 615 616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 617 zsdp->zsd_data = NULL; 618 zsdp->zsd_create = create; 619 zsdp->zsd_shutdown = shutdown; 620 zsdp->zsd_destroy = destroy; 621 622 /* 623 * Insert in global list of callbacks. Makes future zone creations 624 * see it. 625 */ 626 mutex_enter(&zsd_key_lock); 627 key = zsdp->zsd_key = ++zsd_keyval; 628 ASSERT(zsd_keyval != 0); 629 list_insert_tail(&zsd_registered_keys, zsdp); 630 mutex_exit(&zsd_key_lock); 631 632 /* 633 * Insert for all existing zones and mark them as needing 634 * a create callback. 635 */ 636 mutex_enter(&zonehash_lock); /* stop the world */ 637 for (zone = list_head(&zone_active); zone != NULL; 638 zone = list_next(&zone_active, zone)) { 639 zone_status_t status; 640 641 mutex_enter(&zone->zone_lock); 642 643 /* Skip zones that are on the way down or not yet up */ 644 status = zone_status_get(zone); 645 if (status >= ZONE_IS_DOWN || 646 status == ZONE_IS_UNINITIALIZED) { 647 mutex_exit(&zone->zone_lock); 648 continue; 649 } 650 651 t = zsd_find_mru(&zone->zone_zsd, key); 652 if (t != NULL) { 653 /* 654 * A zsd_configure already inserted it after 655 * we dropped zsd_key_lock above. 656 */ 657 mutex_exit(&zone->zone_lock); 658 continue; 659 } 660 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 661 t->zsd_key = key; 662 t->zsd_create = create; 663 t->zsd_shutdown = shutdown; 664 t->zsd_destroy = destroy; 665 if (create != NULL) { 666 t->zsd_flags = ZSD_CREATE_NEEDED; 667 DTRACE_PROBE2(zsd__create__needed, 668 zone_t *, zone, zone_key_t, key); 669 } 670 list_insert_tail(&zone->zone_zsd, t); 671 mutex_exit(&zone->zone_lock); 672 } 673 mutex_exit(&zonehash_lock); 674 675 if (create != NULL) { 676 /* Now call the create callback for this key */ 677 zsd_apply_all_zones(zsd_apply_create, key); 678 } 679 /* 680 * It is safe for consumers to use the key now, make it 681 * globally visible. Specifically zone_getspecific() will 682 * always successfully return the zone specific data associated 683 * with the key. 684 */ 685 *keyp = key; 686 687 } 688 689 /* 690 * Function called when a module is being unloaded, or otherwise wishes 691 * to unregister its ZSD key and callbacks. 692 * 693 * Remove from the global list and determine the functions that need to 694 * be called under a global lock. Then call the functions without 695 * holding any locks. Finally free up the zone_zsd entries. (The apply 696 * functions need to access the zone_zsd entries to find zsd_data etc.) 697 */ 698 int 699 zone_key_delete(zone_key_t key) 700 { 701 struct zsd_entry *zsdp = NULL; 702 zone_t *zone; 703 704 mutex_enter(&zsd_key_lock); 705 zsdp = zsd_find_mru(&zsd_registered_keys, key); 706 if (zsdp == NULL) { 707 mutex_exit(&zsd_key_lock); 708 return (-1); 709 } 710 list_remove(&zsd_registered_keys, zsdp); 711 mutex_exit(&zsd_key_lock); 712 713 mutex_enter(&zonehash_lock); 714 for (zone = list_head(&zone_active); zone != NULL; 715 zone = list_next(&zone_active, zone)) { 716 struct zsd_entry *del; 717 718 mutex_enter(&zone->zone_lock); 719 del = zsd_find_mru(&zone->zone_zsd, key); 720 if (del == NULL) { 721 /* 722 * Somebody else got here first e.g the zone going 723 * away. 724 */ 725 mutex_exit(&zone->zone_lock); 726 continue; 727 } 728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 730 if (del->zsd_shutdown != NULL && 731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 733 DTRACE_PROBE2(zsd__shutdown__needed, 734 zone_t *, zone, zone_key_t, key); 735 } 736 if (del->zsd_destroy != NULL && 737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 738 del->zsd_flags |= ZSD_DESTROY_NEEDED; 739 DTRACE_PROBE2(zsd__destroy__needed, 740 zone_t *, zone, zone_key_t, key); 741 } 742 mutex_exit(&zone->zone_lock); 743 } 744 mutex_exit(&zonehash_lock); 745 kmem_free(zsdp, sizeof (*zsdp)); 746 747 /* Now call the shutdown and destroy callback for this key */ 748 zsd_apply_all_zones(zsd_apply_shutdown, key); 749 zsd_apply_all_zones(zsd_apply_destroy, key); 750 751 /* Now we can free up the zsdp structures in each zone */ 752 mutex_enter(&zonehash_lock); 753 for (zone = list_head(&zone_active); zone != NULL; 754 zone = list_next(&zone_active, zone)) { 755 struct zsd_entry *del; 756 757 mutex_enter(&zone->zone_lock); 758 del = zsd_find(&zone->zone_zsd, key); 759 if (del != NULL) { 760 list_remove(&zone->zone_zsd, del); 761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 762 kmem_free(del, sizeof (*del)); 763 } 764 mutex_exit(&zone->zone_lock); 765 } 766 mutex_exit(&zonehash_lock); 767 768 return (0); 769 } 770 771 /* 772 * ZSD counterpart of pthread_setspecific(). 773 * 774 * Since all zsd callbacks, including those with no create function, 775 * have an entry in zone_zsd, if the key is registered it is part of 776 * the zone_zsd list. 777 * Return an error if the key wasn't registerd. 778 */ 779 int 780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 781 { 782 struct zsd_entry *t; 783 784 mutex_enter(&zone->zone_lock); 785 t = zsd_find_mru(&zone->zone_zsd, key); 786 if (t != NULL) { 787 /* 788 * Replace old value with new 789 */ 790 t->zsd_data = (void *)data; 791 mutex_exit(&zone->zone_lock); 792 return (0); 793 } 794 mutex_exit(&zone->zone_lock); 795 return (-1); 796 } 797 798 /* 799 * ZSD counterpart of pthread_getspecific(). 800 */ 801 void * 802 zone_getspecific(zone_key_t key, zone_t *zone) 803 { 804 struct zsd_entry *t; 805 void *data; 806 807 mutex_enter(&zone->zone_lock); 808 t = zsd_find_mru(&zone->zone_zsd, key); 809 data = (t == NULL ? NULL : t->zsd_data); 810 mutex_exit(&zone->zone_lock); 811 return (data); 812 } 813 814 /* 815 * Function used to initialize a zone's list of ZSD callbacks and data 816 * when the zone is being created. The callbacks are initialized from 817 * the template list (zsd_registered_keys). The constructor callback is 818 * executed later (once the zone exists and with locks dropped). 819 */ 820 static void 821 zone_zsd_configure(zone_t *zone) 822 { 823 struct zsd_entry *zsdp; 824 struct zsd_entry *t; 825 826 ASSERT(MUTEX_HELD(&zonehash_lock)); 827 ASSERT(list_head(&zone->zone_zsd) == NULL); 828 mutex_enter(&zone->zone_lock); 829 mutex_enter(&zsd_key_lock); 830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 831 zsdp = list_next(&zsd_registered_keys, zsdp)) { 832 /* 833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 834 * should not have added anything to it. 835 */ 836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 837 838 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 839 t->zsd_key = zsdp->zsd_key; 840 t->zsd_create = zsdp->zsd_create; 841 t->zsd_shutdown = zsdp->zsd_shutdown; 842 t->zsd_destroy = zsdp->zsd_destroy; 843 if (zsdp->zsd_create != NULL) { 844 t->zsd_flags = ZSD_CREATE_NEEDED; 845 DTRACE_PROBE2(zsd__create__needed, 846 zone_t *, zone, zone_key_t, zsdp->zsd_key); 847 } 848 list_insert_tail(&zone->zone_zsd, t); 849 } 850 mutex_exit(&zsd_key_lock); 851 mutex_exit(&zone->zone_lock); 852 } 853 854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 855 856 /* 857 * Helper function to execute shutdown or destructor callbacks. 858 */ 859 static void 860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 861 { 862 struct zsd_entry *t; 863 864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 867 868 /* 869 * Run the callback solely based on what is registered for the zone 870 * in zone_zsd. The global list can change independently of this 871 * as keys are registered and unregistered and we don't register new 872 * callbacks for a zone that is in the process of going away. 873 */ 874 mutex_enter(&zone->zone_lock); 875 for (t = list_head(&zone->zone_zsd); t != NULL; 876 t = list_next(&zone->zone_zsd, t)) { 877 zone_key_t key = t->zsd_key; 878 879 /* Skip if no callbacks registered */ 880 881 if (ct == ZSD_SHUTDOWN) { 882 if (t->zsd_shutdown != NULL && 883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 885 DTRACE_PROBE2(zsd__shutdown__needed, 886 zone_t *, zone, zone_key_t, key); 887 } 888 } else { 889 if (t->zsd_destroy != NULL && 890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 891 t->zsd_flags |= ZSD_DESTROY_NEEDED; 892 DTRACE_PROBE2(zsd__destroy__needed, 893 zone_t *, zone, zone_key_t, key); 894 } 895 } 896 } 897 mutex_exit(&zone->zone_lock); 898 899 /* Now call the shutdown and destroy callback for this key */ 900 zsd_apply_all_keys(zsd_apply_shutdown, zone); 901 zsd_apply_all_keys(zsd_apply_destroy, zone); 902 903 } 904 905 /* 906 * Called when the zone is going away; free ZSD-related memory, and 907 * destroy the zone_zsd list. 908 */ 909 static void 910 zone_free_zsd(zone_t *zone) 911 { 912 struct zsd_entry *t, *next; 913 914 /* 915 * Free all the zsd_entry's we had on this zone. 916 */ 917 mutex_enter(&zone->zone_lock); 918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 919 next = list_next(&zone->zone_zsd, t); 920 list_remove(&zone->zone_zsd, t); 921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 922 kmem_free(t, sizeof (*t)); 923 } 924 list_destroy(&zone->zone_zsd); 925 mutex_exit(&zone->zone_lock); 926 927 } 928 929 /* 930 * Apply a function to all zones for particular key value. 931 * 932 * The applyfn has to drop zonehash_lock if it does some work, and 933 * then reacquire it before it returns. 934 * When the lock is dropped we don't follow list_next even 935 * if it is possible to do so without any hazards. This is 936 * because we want the design to allow for the list of zones 937 * to change in any arbitrary way during the time the 938 * lock was dropped. 939 * 940 * It is safe to restart the loop at list_head since the applyfn 941 * changes the zsd_flags as it does work, so a subsequent 942 * pass through will have no effect in applyfn, hence the loop will terminate 943 * in at worst O(N^2). 944 */ 945 static void 946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 947 { 948 zone_t *zone; 949 950 mutex_enter(&zonehash_lock); 951 zone = list_head(&zone_active); 952 while (zone != NULL) { 953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 954 /* Lock dropped - restart at head */ 955 zone = list_head(&zone_active); 956 } else { 957 zone = list_next(&zone_active, zone); 958 } 959 } 960 mutex_exit(&zonehash_lock); 961 } 962 963 /* 964 * Apply a function to all keys for a particular zone. 965 * 966 * The applyfn has to drop zonehash_lock if it does some work, and 967 * then reacquire it before it returns. 968 * When the lock is dropped we don't follow list_next even 969 * if it is possible to do so without any hazards. This is 970 * because we want the design to allow for the list of zsd callbacks 971 * to change in any arbitrary way during the time the 972 * lock was dropped. 973 * 974 * It is safe to restart the loop at list_head since the applyfn 975 * changes the zsd_flags as it does work, so a subsequent 976 * pass through will have no effect in applyfn, hence the loop will terminate 977 * in at worst O(N^2). 978 */ 979 static void 980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 981 { 982 struct zsd_entry *t; 983 984 mutex_enter(&zone->zone_lock); 985 t = list_head(&zone->zone_zsd); 986 while (t != NULL) { 987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 988 /* Lock dropped - restart at head */ 989 t = list_head(&zone->zone_zsd); 990 } else { 991 t = list_next(&zone->zone_zsd, t); 992 } 993 } 994 mutex_exit(&zone->zone_lock); 995 } 996 997 /* 998 * Call the create function for the zone and key if CREATE_NEEDED 999 * is set. 1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1001 * we wait for that thread to complete so that we can ensure that 1002 * all the callbacks are done when we've looped over all zones/keys. 1003 * 1004 * When we call the create function, we drop the global held by the 1005 * caller, and return true to tell the caller it needs to re-evalute the 1006 * state. 1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1008 * remains held on exit. 1009 */ 1010 static boolean_t 1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1012 zone_t *zone, zone_key_t key) 1013 { 1014 void *result; 1015 struct zsd_entry *t; 1016 boolean_t dropped; 1017 1018 if (lockp != NULL) { 1019 ASSERT(MUTEX_HELD(lockp)); 1020 } 1021 if (zone_lock_held) { 1022 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1023 } else { 1024 mutex_enter(&zone->zone_lock); 1025 } 1026 1027 t = zsd_find(&zone->zone_zsd, key); 1028 if (t == NULL) { 1029 /* 1030 * Somebody else got here first e.g the zone going 1031 * away. 1032 */ 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (B_FALSE); 1036 } 1037 dropped = B_FALSE; 1038 if (zsd_wait_for_inprogress(zone, t, lockp)) 1039 dropped = B_TRUE; 1040 1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1044 DTRACE_PROBE2(zsd__create__inprogress, 1045 zone_t *, zone, zone_key_t, key); 1046 mutex_exit(&zone->zone_lock); 1047 if (lockp != NULL) 1048 mutex_exit(lockp); 1049 1050 dropped = B_TRUE; 1051 ASSERT(t->zsd_create != NULL); 1052 DTRACE_PROBE2(zsd__create__start, 1053 zone_t *, zone, zone_key_t, key); 1054 1055 result = (*t->zsd_create)(zone->zone_id); 1056 1057 DTRACE_PROBE2(zsd__create__end, 1058 zone_t *, zone, voidn *, result); 1059 1060 ASSERT(result != NULL); 1061 if (lockp != NULL) 1062 mutex_enter(lockp); 1063 mutex_enter(&zone->zone_lock); 1064 t->zsd_data = result; 1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1066 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1067 cv_broadcast(&t->zsd_cv); 1068 DTRACE_PROBE2(zsd__create__completed, 1069 zone_t *, zone, zone_key_t, key); 1070 } 1071 if (!zone_lock_held) 1072 mutex_exit(&zone->zone_lock); 1073 return (dropped); 1074 } 1075 1076 /* 1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1078 * is set. 1079 * If some other thread gets here first and sets *_INPROGRESS, then 1080 * we wait for that thread to complete so that we can ensure that 1081 * all the callbacks are done when we've looped over all zones/keys. 1082 * 1083 * When we call the shutdown function, we drop the global held by the 1084 * caller, and return true to tell the caller it needs to re-evalute the 1085 * state. 1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1087 * remains held on exit. 1088 */ 1089 static boolean_t 1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1091 zone_t *zone, zone_key_t key) 1092 { 1093 struct zsd_entry *t; 1094 void *data; 1095 boolean_t dropped; 1096 1097 if (lockp != NULL) { 1098 ASSERT(MUTEX_HELD(lockp)); 1099 } 1100 if (zone_lock_held) { 1101 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1102 } else { 1103 mutex_enter(&zone->zone_lock); 1104 } 1105 1106 t = zsd_find(&zone->zone_zsd, key); 1107 if (t == NULL) { 1108 /* 1109 * Somebody else got here first e.g the zone going 1110 * away. 1111 */ 1112 if (!zone_lock_held) 1113 mutex_exit(&zone->zone_lock); 1114 return (B_FALSE); 1115 } 1116 dropped = B_FALSE; 1117 if (zsd_wait_for_creator(zone, t, lockp)) 1118 dropped = B_TRUE; 1119 1120 if (zsd_wait_for_inprogress(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1126 DTRACE_PROBE2(zsd__shutdown__inprogress, 1127 zone_t *, zone, zone_key_t, key); 1128 mutex_exit(&zone->zone_lock); 1129 if (lockp != NULL) 1130 mutex_exit(lockp); 1131 dropped = B_TRUE; 1132 1133 ASSERT(t->zsd_shutdown != NULL); 1134 data = t->zsd_data; 1135 1136 DTRACE_PROBE2(zsd__shutdown__start, 1137 zone_t *, zone, zone_key_t, key); 1138 1139 (t->zsd_shutdown)(zone->zone_id, data); 1140 DTRACE_PROBE2(zsd__shutdown__end, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 if (lockp != NULL) 1144 mutex_enter(lockp); 1145 mutex_enter(&zone->zone_lock); 1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1148 cv_broadcast(&t->zsd_cv); 1149 DTRACE_PROBE2(zsd__shutdown__completed, 1150 zone_t *, zone, zone_key_t, key); 1151 } 1152 if (!zone_lock_held) 1153 mutex_exit(&zone->zone_lock); 1154 return (dropped); 1155 } 1156 1157 /* 1158 * Call the destroy function for the zone and key if DESTROY_NEEDED 1159 * is set. 1160 * If some other thread gets here first and sets *_INPROGRESS, then 1161 * we wait for that thread to complete so that we can ensure that 1162 * all the callbacks are done when we've looped over all zones/keys. 1163 * 1164 * When we call the destroy function, we drop the global held by the 1165 * caller, and return true to tell the caller it needs to re-evalute the 1166 * state. 1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1168 * remains held on exit. 1169 */ 1170 static boolean_t 1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1172 zone_t *zone, zone_key_t key) 1173 { 1174 struct zsd_entry *t; 1175 void *data; 1176 boolean_t dropped; 1177 1178 if (lockp != NULL) { 1179 ASSERT(MUTEX_HELD(lockp)); 1180 } 1181 if (zone_lock_held) { 1182 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1183 } else { 1184 mutex_enter(&zone->zone_lock); 1185 } 1186 1187 t = zsd_find(&zone->zone_zsd, key); 1188 if (t == NULL) { 1189 /* 1190 * Somebody else got here first e.g the zone going 1191 * away. 1192 */ 1193 if (!zone_lock_held) 1194 mutex_exit(&zone->zone_lock); 1195 return (B_FALSE); 1196 } 1197 dropped = B_FALSE; 1198 if (zsd_wait_for_creator(zone, t, lockp)) 1199 dropped = B_TRUE; 1200 1201 if (zsd_wait_for_inprogress(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1207 DTRACE_PROBE2(zsd__destroy__inprogress, 1208 zone_t *, zone, zone_key_t, key); 1209 mutex_exit(&zone->zone_lock); 1210 if (lockp != NULL) 1211 mutex_exit(lockp); 1212 dropped = B_TRUE; 1213 1214 ASSERT(t->zsd_destroy != NULL); 1215 data = t->zsd_data; 1216 DTRACE_PROBE2(zsd__destroy__start, 1217 zone_t *, zone, zone_key_t, key); 1218 1219 (t->zsd_destroy)(zone->zone_id, data); 1220 DTRACE_PROBE2(zsd__destroy__end, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 if (lockp != NULL) 1224 mutex_enter(lockp); 1225 mutex_enter(&zone->zone_lock); 1226 t->zsd_data = NULL; 1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1229 cv_broadcast(&t->zsd_cv); 1230 DTRACE_PROBE2(zsd__destroy__completed, 1231 zone_t *, zone, zone_key_t, key); 1232 } 1233 if (!zone_lock_held) 1234 mutex_exit(&zone->zone_lock); 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any CREATE_NEEDED flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1248 DTRACE_PROBE2(zsd__wait__for__creator, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Wait for any INPROGRESS flag to be cleared. 1267 * Returns true if lockp was temporarily dropped while waiting. 1268 */ 1269 static boolean_t 1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1271 { 1272 boolean_t dropped = B_FALSE; 1273 1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1275 DTRACE_PROBE2(zsd__wait__for__inprogress, 1276 zone_t *, zone, struct zsd_entry *, t); 1277 if (lockp != NULL) { 1278 dropped = B_TRUE; 1279 mutex_exit(lockp); 1280 } 1281 cv_wait(&t->zsd_cv, &zone->zone_lock); 1282 if (lockp != NULL) { 1283 /* First drop zone_lock to preserve order */ 1284 mutex_exit(&zone->zone_lock); 1285 mutex_enter(lockp); 1286 mutex_enter(&zone->zone_lock); 1287 } 1288 } 1289 return (dropped); 1290 } 1291 1292 /* 1293 * Frees memory associated with the zone dataset list. 1294 */ 1295 static void 1296 zone_free_datasets(zone_t *zone) 1297 { 1298 zone_dataset_t *t, *next; 1299 1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1301 next = list_next(&zone->zone_datasets, t); 1302 list_remove(&zone->zone_datasets, t); 1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1304 kmem_free(t, sizeof (*t)); 1305 } 1306 list_destroy(&zone->zone_datasets); 1307 } 1308 1309 /* 1310 * zone.cpu-shares resource control support. 1311 */ 1312 /*ARGSUSED*/ 1313 static rctl_qty_t 1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1315 { 1316 ASSERT(MUTEX_HELD(&p->p_lock)); 1317 return (p->p_zone->zone_shares); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static int 1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1323 rctl_qty_t nv) 1324 { 1325 ASSERT(MUTEX_HELD(&p->p_lock)); 1326 ASSERT(e->rcep_t == RCENTITY_ZONE); 1327 if (e->rcep_p.zone == NULL) 1328 return (0); 1329 1330 e->rcep_p.zone->zone_shares = nv; 1331 return (0); 1332 } 1333 1334 static rctl_ops_t zone_cpu_shares_ops = { 1335 rcop_no_action, 1336 zone_cpu_shares_usage, 1337 zone_cpu_shares_set, 1338 rcop_no_test 1339 }; 1340 1341 /* 1342 * zone.cpu-cap resource control support. 1343 */ 1344 /*ARGSUSED*/ 1345 static rctl_qty_t 1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1347 { 1348 ASSERT(MUTEX_HELD(&p->p_lock)); 1349 return (cpucaps_zone_get(p->p_zone)); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1355 rctl_qty_t nv) 1356 { 1357 zone_t *zone = e->rcep_p.zone; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 1362 if (zone == NULL) 1363 return (0); 1364 1365 /* 1366 * set cap to the new value. 1367 */ 1368 return (cpucaps_zone_set(zone, nv)); 1369 } 1370 1371 static rctl_ops_t zone_cpu_cap_ops = { 1372 rcop_no_action, 1373 zone_cpu_cap_get, 1374 zone_cpu_cap_set, 1375 rcop_no_test 1376 }; 1377 1378 /*ARGSUSED*/ 1379 static rctl_qty_t 1380 zone_lwps_usage(rctl_t *r, proc_t *p) 1381 { 1382 rctl_qty_t nlwps; 1383 zone_t *zone = p->p_zone; 1384 1385 ASSERT(MUTEX_HELD(&p->p_lock)); 1386 1387 mutex_enter(&zone->zone_nlwps_lock); 1388 nlwps = zone->zone_nlwps; 1389 mutex_exit(&zone->zone_nlwps_lock); 1390 1391 return (nlwps); 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1397 rctl_qty_t incr, uint_t flags) 1398 { 1399 rctl_qty_t nlwps; 1400 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 if (e->rcep_p.zone == NULL) 1404 return (0); 1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1406 nlwps = e->rcep_p.zone->zone_nlwps; 1407 1408 if (nlwps + incr > rcntl->rcv_value) 1409 return (1); 1410 1411 return (0); 1412 } 1413 1414 /*ARGSUSED*/ 1415 static int 1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1417 { 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 if (e->rcep_p.zone == NULL) 1421 return (0); 1422 e->rcep_p.zone->zone_nlwps_ctl = nv; 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_lwps_ops = { 1427 rcop_no_action, 1428 zone_lwps_usage, 1429 zone_lwps_set, 1430 zone_lwps_test, 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static rctl_qty_t 1435 zone_procs_usage(rctl_t *r, proc_t *p) 1436 { 1437 rctl_qty_t nprocs; 1438 zone_t *zone = p->p_zone; 1439 1440 ASSERT(MUTEX_HELD(&p->p_lock)); 1441 1442 mutex_enter(&zone->zone_nlwps_lock); 1443 nprocs = zone->zone_nprocs; 1444 mutex_exit(&zone->zone_nlwps_lock); 1445 1446 return (nprocs); 1447 } 1448 1449 /*ARGSUSED*/ 1450 static int 1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1452 rctl_qty_t incr, uint_t flags) 1453 { 1454 rctl_qty_t nprocs; 1455 1456 ASSERT(MUTEX_HELD(&p->p_lock)); 1457 ASSERT(e->rcep_t == RCENTITY_ZONE); 1458 if (e->rcep_p.zone == NULL) 1459 return (0); 1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1461 nprocs = e->rcep_p.zone->zone_nprocs; 1462 1463 if (nprocs + incr > rcntl->rcv_value) 1464 return (1); 1465 1466 return (0); 1467 } 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1472 { 1473 ASSERT(MUTEX_HELD(&p->p_lock)); 1474 ASSERT(e->rcep_t == RCENTITY_ZONE); 1475 if (e->rcep_p.zone == NULL) 1476 return (0); 1477 e->rcep_p.zone->zone_nprocs_ctl = nv; 1478 return (0); 1479 } 1480 1481 static rctl_ops_t zone_procs_ops = { 1482 rcop_no_action, 1483 zone_procs_usage, 1484 zone_procs_set, 1485 zone_procs_test, 1486 }; 1487 1488 /*ARGSUSED*/ 1489 static rctl_qty_t 1490 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1491 { 1492 ASSERT(MUTEX_HELD(&p->p_lock)); 1493 return (p->p_zone->zone_shmmax); 1494 } 1495 1496 /*ARGSUSED*/ 1497 static int 1498 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1499 rctl_qty_t incr, uint_t flags) 1500 { 1501 rctl_qty_t v; 1502 ASSERT(MUTEX_HELD(&p->p_lock)); 1503 ASSERT(e->rcep_t == RCENTITY_ZONE); 1504 v = e->rcep_p.zone->zone_shmmax + incr; 1505 if (v > rval->rcv_value) 1506 return (1); 1507 return (0); 1508 } 1509 1510 static rctl_ops_t zone_shmmax_ops = { 1511 rcop_no_action, 1512 zone_shmmax_usage, 1513 rcop_no_set, 1514 zone_shmmax_test 1515 }; 1516 1517 /*ARGSUSED*/ 1518 static rctl_qty_t 1519 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1520 { 1521 ASSERT(MUTEX_HELD(&p->p_lock)); 1522 return (p->p_zone->zone_ipc.ipcq_shmmni); 1523 } 1524 1525 /*ARGSUSED*/ 1526 static int 1527 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1528 rctl_qty_t incr, uint_t flags) 1529 { 1530 rctl_qty_t v; 1531 ASSERT(MUTEX_HELD(&p->p_lock)); 1532 ASSERT(e->rcep_t == RCENTITY_ZONE); 1533 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1534 if (v > rval->rcv_value) 1535 return (1); 1536 return (0); 1537 } 1538 1539 static rctl_ops_t zone_shmmni_ops = { 1540 rcop_no_action, 1541 zone_shmmni_usage, 1542 rcop_no_set, 1543 zone_shmmni_test 1544 }; 1545 1546 /*ARGSUSED*/ 1547 static rctl_qty_t 1548 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1549 { 1550 ASSERT(MUTEX_HELD(&p->p_lock)); 1551 return (p->p_zone->zone_ipc.ipcq_semmni); 1552 } 1553 1554 /*ARGSUSED*/ 1555 static int 1556 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1557 rctl_qty_t incr, uint_t flags) 1558 { 1559 rctl_qty_t v; 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 ASSERT(e->rcep_t == RCENTITY_ZONE); 1562 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1563 if (v > rval->rcv_value) 1564 return (1); 1565 return (0); 1566 } 1567 1568 static rctl_ops_t zone_semmni_ops = { 1569 rcop_no_action, 1570 zone_semmni_usage, 1571 rcop_no_set, 1572 zone_semmni_test 1573 }; 1574 1575 /*ARGSUSED*/ 1576 static rctl_qty_t 1577 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1578 { 1579 ASSERT(MUTEX_HELD(&p->p_lock)); 1580 return (p->p_zone->zone_ipc.ipcq_msgmni); 1581 } 1582 1583 /*ARGSUSED*/ 1584 static int 1585 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1586 rctl_qty_t incr, uint_t flags) 1587 { 1588 rctl_qty_t v; 1589 ASSERT(MUTEX_HELD(&p->p_lock)); 1590 ASSERT(e->rcep_t == RCENTITY_ZONE); 1591 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1592 if (v > rval->rcv_value) 1593 return (1); 1594 return (0); 1595 } 1596 1597 static rctl_ops_t zone_msgmni_ops = { 1598 rcop_no_action, 1599 zone_msgmni_usage, 1600 rcop_no_set, 1601 zone_msgmni_test 1602 }; 1603 1604 /*ARGSUSED*/ 1605 static rctl_qty_t 1606 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1607 { 1608 rctl_qty_t q; 1609 ASSERT(MUTEX_HELD(&p->p_lock)); 1610 mutex_enter(&p->p_zone->zone_mem_lock); 1611 q = p->p_zone->zone_locked_mem; 1612 mutex_exit(&p->p_zone->zone_mem_lock); 1613 return (q); 1614 } 1615 1616 /*ARGSUSED*/ 1617 static int 1618 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1619 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1620 { 1621 rctl_qty_t q; 1622 zone_t *z; 1623 1624 z = e->rcep_p.zone; 1625 ASSERT(MUTEX_HELD(&p->p_lock)); 1626 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1627 q = z->zone_locked_mem; 1628 if (q + incr > rcntl->rcv_value) 1629 return (1); 1630 return (0); 1631 } 1632 1633 /*ARGSUSED*/ 1634 static int 1635 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1636 rctl_qty_t nv) 1637 { 1638 ASSERT(MUTEX_HELD(&p->p_lock)); 1639 ASSERT(e->rcep_t == RCENTITY_ZONE); 1640 if (e->rcep_p.zone == NULL) 1641 return (0); 1642 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1643 return (0); 1644 } 1645 1646 static rctl_ops_t zone_locked_mem_ops = { 1647 rcop_no_action, 1648 zone_locked_mem_usage, 1649 zone_locked_mem_set, 1650 zone_locked_mem_test 1651 }; 1652 1653 /*ARGSUSED*/ 1654 static rctl_qty_t 1655 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1656 { 1657 rctl_qty_t q; 1658 zone_t *z = p->p_zone; 1659 1660 ASSERT(MUTEX_HELD(&p->p_lock)); 1661 mutex_enter(&z->zone_mem_lock); 1662 q = z->zone_max_swap; 1663 mutex_exit(&z->zone_mem_lock); 1664 return (q); 1665 } 1666 1667 /*ARGSUSED*/ 1668 static int 1669 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1670 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1671 { 1672 rctl_qty_t q; 1673 zone_t *z; 1674 1675 z = e->rcep_p.zone; 1676 ASSERT(MUTEX_HELD(&p->p_lock)); 1677 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1678 q = z->zone_max_swap; 1679 if (q + incr > rcntl->rcv_value) 1680 return (1); 1681 return (0); 1682 } 1683 1684 /*ARGSUSED*/ 1685 static int 1686 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1687 rctl_qty_t nv) 1688 { 1689 ASSERT(MUTEX_HELD(&p->p_lock)); 1690 ASSERT(e->rcep_t == RCENTITY_ZONE); 1691 if (e->rcep_p.zone == NULL) 1692 return (0); 1693 e->rcep_p.zone->zone_max_swap_ctl = nv; 1694 return (0); 1695 } 1696 1697 static rctl_ops_t zone_max_swap_ops = { 1698 rcop_no_action, 1699 zone_max_swap_usage, 1700 zone_max_swap_set, 1701 zone_max_swap_test 1702 }; 1703 1704 /*ARGSUSED*/ 1705 static rctl_qty_t 1706 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1707 { 1708 rctl_qty_t q; 1709 zone_t *z = p->p_zone; 1710 1711 ASSERT(MUTEX_HELD(&p->p_lock)); 1712 mutex_enter(&z->zone_rctl_lock); 1713 q = z->zone_max_lofi; 1714 mutex_exit(&z->zone_rctl_lock); 1715 return (q); 1716 } 1717 1718 /*ARGSUSED*/ 1719 static int 1720 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1721 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1722 { 1723 rctl_qty_t q; 1724 zone_t *z; 1725 1726 z = e->rcep_p.zone; 1727 ASSERT(MUTEX_HELD(&p->p_lock)); 1728 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1729 q = z->zone_max_lofi; 1730 if (q + incr > rcntl->rcv_value) 1731 return (1); 1732 return (0); 1733 } 1734 1735 /*ARGSUSED*/ 1736 static int 1737 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1738 rctl_qty_t nv) 1739 { 1740 ASSERT(MUTEX_HELD(&p->p_lock)); 1741 ASSERT(e->rcep_t == RCENTITY_ZONE); 1742 if (e->rcep_p.zone == NULL) 1743 return (0); 1744 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1745 return (0); 1746 } 1747 1748 static rctl_ops_t zone_max_lofi_ops = { 1749 rcop_no_action, 1750 zone_max_lofi_usage, 1751 zone_max_lofi_set, 1752 zone_max_lofi_test 1753 }; 1754 1755 /* 1756 * Helper function to brand the zone with a unique ID. 1757 */ 1758 static void 1759 zone_uniqid(zone_t *zone) 1760 { 1761 static uint64_t uniqid = 0; 1762 1763 ASSERT(MUTEX_HELD(&zonehash_lock)); 1764 zone->zone_uniqid = uniqid++; 1765 } 1766 1767 /* 1768 * Returns a held pointer to the "kcred" for the specified zone. 1769 */ 1770 struct cred * 1771 zone_get_kcred(zoneid_t zoneid) 1772 { 1773 zone_t *zone; 1774 cred_t *cr; 1775 1776 if ((zone = zone_find_by_id(zoneid)) == NULL) 1777 return (NULL); 1778 cr = zone->zone_kcred; 1779 crhold(cr); 1780 zone_rele(zone); 1781 return (cr); 1782 } 1783 1784 static int 1785 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1786 { 1787 zone_t *zone = ksp->ks_private; 1788 zone_kstat_t *zk = ksp->ks_data; 1789 1790 if (rw == KSTAT_WRITE) 1791 return (EACCES); 1792 1793 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1794 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1795 return (0); 1796 } 1797 1798 static int 1799 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1800 { 1801 zone_t *zone = ksp->ks_private; 1802 zone_kstat_t *zk = ksp->ks_data; 1803 1804 if (rw == KSTAT_WRITE) 1805 return (EACCES); 1806 1807 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1808 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1809 return (0); 1810 } 1811 1812 static int 1813 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1814 { 1815 zone_t *zone = ksp->ks_private; 1816 zone_kstat_t *zk = ksp->ks_data; 1817 1818 if (rw == KSTAT_WRITE) 1819 return (EACCES); 1820 1821 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1822 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1823 return (0); 1824 } 1825 1826 static kstat_t * 1827 zone_kstat_create_common(zone_t *zone, char *name, 1828 int (*updatefunc) (kstat_t *, int)) 1829 { 1830 kstat_t *ksp; 1831 zone_kstat_t *zk; 1832 1833 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1834 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1835 KSTAT_FLAG_VIRTUAL); 1836 1837 if (ksp == NULL) 1838 return (NULL); 1839 1840 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1841 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1842 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1843 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1844 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1845 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1846 ksp->ks_update = updatefunc; 1847 ksp->ks_private = zone; 1848 kstat_install(ksp); 1849 return (ksp); 1850 } 1851 1852 1853 static int 1854 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1855 { 1856 zone_t *zone = ksp->ks_private; 1857 zone_mcap_kstat_t *zmp = ksp->ks_data; 1858 1859 if (rw == KSTAT_WRITE) 1860 return (EACCES); 1861 1862 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1863 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1864 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1865 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1866 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1867 1868 return (0); 1869 } 1870 1871 static kstat_t * 1872 zone_mcap_kstat_create(zone_t *zone) 1873 { 1874 kstat_t *ksp; 1875 zone_mcap_kstat_t *zmp; 1876 1877 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1878 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1879 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1880 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1881 return (NULL); 1882 1883 if (zone->zone_id != GLOBAL_ZONEID) 1884 kstat_zone_add(ksp, GLOBAL_ZONEID); 1885 1886 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1887 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1888 ksp->ks_lock = &zone->zone_mcap_lock; 1889 zone->zone_mcap_stats = zmp; 1890 1891 /* The kstat "name" field is not large enough for a full zonename */ 1892 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1893 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1894 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1895 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1896 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1897 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1899 KSTAT_DATA_UINT64); 1900 1901 ksp->ks_update = zone_mcap_kstat_update; 1902 ksp->ks_private = zone; 1903 1904 kstat_install(ksp); 1905 return (ksp); 1906 } 1907 1908 static int 1909 zone_misc_kstat_update(kstat_t *ksp, int rw) 1910 { 1911 zone_t *zone = ksp->ks_private; 1912 zone_misc_kstat_t *zmp = ksp->ks_data; 1913 hrtime_t tmp; 1914 1915 if (rw == KSTAT_WRITE) 1916 return (EACCES); 1917 1918 tmp = zone->zone_utime; 1919 scalehrtime(&tmp); 1920 zmp->zm_utime.value.ui64 = tmp; 1921 tmp = zone->zone_stime; 1922 scalehrtime(&tmp); 1923 zmp->zm_stime.value.ui64 = tmp; 1924 tmp = zone->zone_wtime; 1925 scalehrtime(&tmp); 1926 zmp->zm_wtime.value.ui64 = tmp; 1927 1928 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1929 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1930 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1931 1932 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1933 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1934 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1935 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1936 1937 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1938 1939 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1940 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1941 1942 return (0); 1943 } 1944 1945 static kstat_t * 1946 zone_misc_kstat_create(zone_t *zone) 1947 { 1948 kstat_t *ksp; 1949 zone_misc_kstat_t *zmp; 1950 1951 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1952 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1953 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1954 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1955 return (NULL); 1956 1957 if (zone->zone_id != GLOBAL_ZONEID) 1958 kstat_zone_add(ksp, GLOBAL_ZONEID); 1959 1960 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1961 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1962 ksp->ks_lock = &zone->zone_misc_lock; 1963 zone->zone_misc_stats = zmp; 1964 1965 /* The kstat "name" field is not large enough for a full zonename */ 1966 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1967 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1968 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1969 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1970 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1971 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1972 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1973 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1974 KSTAT_DATA_UINT32); 1975 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1976 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1977 KSTAT_DATA_UINT32); 1978 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1979 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1980 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1981 KSTAT_DATA_UINT32); 1982 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1983 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1984 1985 ksp->ks_update = zone_misc_kstat_update; 1986 ksp->ks_private = zone; 1987 1988 kstat_install(ksp); 1989 return (ksp); 1990 } 1991 1992 static void 1993 zone_kstat_create(zone_t *zone) 1994 { 1995 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1996 "lockedmem", zone_lockedmem_kstat_update); 1997 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1998 "swapresv", zone_swapresv_kstat_update); 1999 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2000 "nprocs", zone_nprocs_kstat_update); 2001 2002 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2003 zone->zone_mcap_stats = kmem_zalloc( 2004 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2005 } 2006 2007 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2008 zone->zone_misc_stats = kmem_zalloc( 2009 sizeof (zone_misc_kstat_t), KM_SLEEP); 2010 } 2011 } 2012 2013 static void 2014 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2015 { 2016 void *data; 2017 2018 if (*pkstat != NULL) { 2019 data = (*pkstat)->ks_data; 2020 kstat_delete(*pkstat); 2021 kmem_free(data, datasz); 2022 *pkstat = NULL; 2023 } 2024 } 2025 2026 static void 2027 zone_kstat_delete(zone_t *zone) 2028 { 2029 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2030 sizeof (zone_kstat_t)); 2031 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2032 sizeof (zone_kstat_t)); 2033 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2034 sizeof (zone_kstat_t)); 2035 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2036 sizeof (zone_mcap_kstat_t)); 2037 zone_kstat_delete_common(&zone->zone_misc_ksp, 2038 sizeof (zone_misc_kstat_t)); 2039 } 2040 2041 /* 2042 * Called very early on in boot to initialize the ZSD list so that 2043 * zone_key_create() can be called before zone_init(). It also initializes 2044 * portions of zone0 which may be used before zone_init() is called. The 2045 * variable "global_zone" will be set when zone0 is fully initialized by 2046 * zone_init(). 2047 */ 2048 void 2049 zone_zsd_init(void) 2050 { 2051 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2052 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2053 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2054 offsetof(struct zsd_entry, zsd_linkage)); 2055 list_create(&zone_active, sizeof (zone_t), 2056 offsetof(zone_t, zone_linkage)); 2057 list_create(&zone_deathrow, sizeof (zone_t), 2058 offsetof(zone_t, zone_linkage)); 2059 2060 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2061 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2062 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2063 zone0.zone_shares = 1; 2064 zone0.zone_nlwps = 0; 2065 zone0.zone_nlwps_ctl = INT_MAX; 2066 zone0.zone_nprocs = 0; 2067 zone0.zone_nprocs_ctl = INT_MAX; 2068 zone0.zone_locked_mem = 0; 2069 zone0.zone_locked_mem_ctl = UINT64_MAX; 2070 ASSERT(zone0.zone_max_swap == 0); 2071 zone0.zone_max_swap_ctl = UINT64_MAX; 2072 zone0.zone_max_lofi = 0; 2073 zone0.zone_max_lofi_ctl = UINT64_MAX; 2074 zone0.zone_shmmax = 0; 2075 zone0.zone_ipc.ipcq_shmmni = 0; 2076 zone0.zone_ipc.ipcq_semmni = 0; 2077 zone0.zone_ipc.ipcq_msgmni = 0; 2078 zone0.zone_name = GLOBAL_ZONENAME; 2079 zone0.zone_nodename = utsname.nodename; 2080 zone0.zone_domain = srpc_domain; 2081 zone0.zone_hostid = HW_INVALID_HOSTID; 2082 zone0.zone_fs_allowed = NULL; 2083 psecflags_default(&zone0.zone_secflags); 2084 zone0.zone_ref = 1; 2085 zone0.zone_id = GLOBAL_ZONEID; 2086 zone0.zone_status = ZONE_IS_RUNNING; 2087 zone0.zone_rootpath = "/"; 2088 zone0.zone_rootpathlen = 2; 2089 zone0.zone_psetid = ZONE_PS_INVAL; 2090 zone0.zone_ncpus = 0; 2091 zone0.zone_ncpus_online = 0; 2092 zone0.zone_proc_initpid = 1; 2093 zone0.zone_initname = initname; 2094 zone0.zone_lockedmem_kstat = NULL; 2095 zone0.zone_swapresv_kstat = NULL; 2096 zone0.zone_nprocs_kstat = NULL; 2097 2098 zone0.zone_stime = 0; 2099 zone0.zone_utime = 0; 2100 zone0.zone_wtime = 0; 2101 2102 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2103 offsetof(zone_ref_t, zref_linkage)); 2104 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2105 offsetof(struct zsd_entry, zsd_linkage)); 2106 list_insert_head(&zone_active, &zone0); 2107 2108 /* 2109 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2110 * to anything meaningful. It is assigned to be 'rootdir' in 2111 * vfs_mountroot(). 2112 */ 2113 zone0.zone_rootvp = NULL; 2114 zone0.zone_vfslist = NULL; 2115 zone0.zone_bootargs = initargs; 2116 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2117 /* 2118 * The global zone has all privileges 2119 */ 2120 priv_fillset(zone0.zone_privset); 2121 /* 2122 * Add p0 to the global zone 2123 */ 2124 zone0.zone_zsched = &p0; 2125 p0.p_zone = &zone0; 2126 } 2127 2128 /* 2129 * Compute a hash value based on the contents of the label and the DOI. The 2130 * hash algorithm is somewhat arbitrary, but is based on the observation that 2131 * humans will likely pick labels that differ by amounts that work out to be 2132 * multiples of the number of hash chains, and thus stirring in some primes 2133 * should help. 2134 */ 2135 static uint_t 2136 hash_bylabel(void *hdata, mod_hash_key_t key) 2137 { 2138 const ts_label_t *lab = (ts_label_t *)key; 2139 const uint32_t *up, *ue; 2140 uint_t hash; 2141 int i; 2142 2143 _NOTE(ARGUNUSED(hdata)); 2144 2145 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2146 /* we depend on alignment of label, but not representation */ 2147 up = (const uint32_t *)&lab->tsl_label; 2148 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2149 i = 1; 2150 while (up < ue) { 2151 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2152 hash += *up + (*up << ((i % 16) + 1)); 2153 up++; 2154 i++; 2155 } 2156 return (hash); 2157 } 2158 2159 /* 2160 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2161 * equal). This may need to be changed if less than / greater than is ever 2162 * needed. 2163 */ 2164 static int 2165 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2166 { 2167 ts_label_t *lab1 = (ts_label_t *)key1; 2168 ts_label_t *lab2 = (ts_label_t *)key2; 2169 2170 return (label_equal(lab1, lab2) ? 0 : 1); 2171 } 2172 2173 /* 2174 * Called by main() to initialize the zones framework. 2175 */ 2176 void 2177 zone_init(void) 2178 { 2179 rctl_dict_entry_t *rde; 2180 rctl_val_t *dval; 2181 rctl_set_t *set; 2182 rctl_alloc_gp_t *gp; 2183 rctl_entity_p_t e; 2184 int res; 2185 2186 ASSERT(curproc == &p0); 2187 2188 /* 2189 * Create ID space for zone IDs. ID 0 is reserved for the 2190 * global zone. 2191 */ 2192 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2193 2194 /* 2195 * Initialize generic zone resource controls, if any. 2196 */ 2197 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2198 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2199 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2200 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2201 2202 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2203 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2204 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2205 RCTL_GLOBAL_INFINITE, 2206 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2207 2208 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2209 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2210 INT_MAX, INT_MAX, &zone_lwps_ops); 2211 2212 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2213 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2214 INT_MAX, INT_MAX, &zone_procs_ops); 2215 2216 /* 2217 * System V IPC resource controls 2218 */ 2219 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2220 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2221 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2222 2223 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2224 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2225 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2226 2227 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2228 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2229 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2230 2231 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2232 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2233 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2234 2235 /* 2236 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2237 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2238 */ 2239 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2240 bzero(dval, sizeof (rctl_val_t)); 2241 dval->rcv_value = 1; 2242 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2243 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2244 dval->rcv_action_recip_pid = -1; 2245 2246 rde = rctl_dict_lookup("zone.cpu-shares"); 2247 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2248 2249 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2250 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2251 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2252 &zone_locked_mem_ops); 2253 2254 rc_zone_max_swap = rctl_register("zone.max-swap", 2255 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2256 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2257 &zone_max_swap_ops); 2258 2259 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2260 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2261 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2262 &zone_max_lofi_ops); 2263 2264 /* 2265 * Initialize the ``global zone''. 2266 */ 2267 set = rctl_set_create(); 2268 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2269 mutex_enter(&p0.p_lock); 2270 e.rcep_p.zone = &zone0; 2271 e.rcep_t = RCENTITY_ZONE; 2272 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2273 gp); 2274 2275 zone0.zone_nlwps = p0.p_lwpcnt; 2276 zone0.zone_nprocs = 1; 2277 zone0.zone_ntasks = 1; 2278 mutex_exit(&p0.p_lock); 2279 zone0.zone_restart_init = B_TRUE; 2280 zone0.zone_brand = &native_brand; 2281 rctl_prealloc_destroy(gp); 2282 /* 2283 * pool_default hasn't been initialized yet, so we let pool_init() 2284 * take care of making sure the global zone is in the default pool. 2285 */ 2286 2287 /* 2288 * Initialize global zone kstats 2289 */ 2290 zone_kstat_create(&zone0); 2291 2292 /* 2293 * Initialize zone label. 2294 * mlp are initialized when tnzonecfg is loaded. 2295 */ 2296 zone0.zone_slabel = l_admin_low; 2297 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2298 label_hold(l_admin_low); 2299 2300 /* 2301 * Initialise the lock for the database structure used by mntfs. 2302 */ 2303 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2304 2305 mutex_enter(&zonehash_lock); 2306 zone_uniqid(&zone0); 2307 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2308 2309 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2310 mod_hash_null_valdtor); 2311 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2312 zone_hash_size, mod_hash_null_valdtor); 2313 /* 2314 * maintain zonehashbylabel only for labeled systems 2315 */ 2316 if (is_system_labeled()) 2317 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2318 zone_hash_size, mod_hash_null_keydtor, 2319 mod_hash_null_valdtor, hash_bylabel, NULL, 2320 hash_labelkey_cmp, KM_SLEEP); 2321 zonecount = 1; 2322 2323 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2324 (mod_hash_val_t)&zone0); 2325 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2326 (mod_hash_val_t)&zone0); 2327 if (is_system_labeled()) { 2328 zone0.zone_flags |= ZF_HASHED_LABEL; 2329 (void) mod_hash_insert(zonehashbylabel, 2330 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2331 } 2332 mutex_exit(&zonehash_lock); 2333 2334 /* 2335 * We avoid setting zone_kcred until now, since kcred is initialized 2336 * sometime after zone_zsd_init() and before zone_init(). 2337 */ 2338 zone0.zone_kcred = kcred; 2339 /* 2340 * The global zone is fully initialized (except for zone_rootvp which 2341 * will be set when the root filesystem is mounted). 2342 */ 2343 global_zone = &zone0; 2344 2345 /* 2346 * Setup an event channel to send zone status change notifications on 2347 */ 2348 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2349 EVCH_CREAT); 2350 2351 if (res) 2352 panic("Sysevent_evc_bind failed during zone setup.\n"); 2353 2354 } 2355 2356 static void 2357 zone_free(zone_t *zone) 2358 { 2359 ASSERT(zone != global_zone); 2360 ASSERT(zone->zone_ntasks == 0); 2361 ASSERT(zone->zone_nlwps == 0); 2362 ASSERT(zone->zone_nprocs == 0); 2363 ASSERT(zone->zone_cred_ref == 0); 2364 ASSERT(zone->zone_kcred == NULL); 2365 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2366 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2367 ASSERT(list_is_empty(&zone->zone_ref_list)); 2368 2369 /* 2370 * Remove any zone caps. 2371 */ 2372 cpucaps_zone_remove(zone); 2373 2374 ASSERT(zone->zone_cpucap == NULL); 2375 2376 /* remove from deathrow list */ 2377 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2378 ASSERT(zone->zone_ref == 0); 2379 mutex_enter(&zone_deathrow_lock); 2380 list_remove(&zone_deathrow, zone); 2381 mutex_exit(&zone_deathrow_lock); 2382 } 2383 2384 list_destroy(&zone->zone_ref_list); 2385 zone_free_zsd(zone); 2386 zone_free_datasets(zone); 2387 list_destroy(&zone->zone_dl_list); 2388 2389 if (zone->zone_rootvp != NULL) 2390 VN_RELE(zone->zone_rootvp); 2391 if (zone->zone_rootpath) 2392 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2393 if (zone->zone_name != NULL) 2394 kmem_free(zone->zone_name, ZONENAME_MAX); 2395 if (zone->zone_slabel != NULL) 2396 label_rele(zone->zone_slabel); 2397 if (zone->zone_nodename != NULL) 2398 kmem_free(zone->zone_nodename, _SYS_NMLN); 2399 if (zone->zone_domain != NULL) 2400 kmem_free(zone->zone_domain, _SYS_NMLN); 2401 if (zone->zone_privset != NULL) 2402 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2403 if (zone->zone_rctls != NULL) 2404 rctl_set_free(zone->zone_rctls); 2405 if (zone->zone_bootargs != NULL) 2406 strfree(zone->zone_bootargs); 2407 if (zone->zone_initname != NULL) 2408 strfree(zone->zone_initname); 2409 if (zone->zone_fs_allowed != NULL) 2410 strfree(zone->zone_fs_allowed); 2411 if (zone->zone_pfexecd != NULL) 2412 klpd_freelist(&zone->zone_pfexecd); 2413 id_free(zoneid_space, zone->zone_id); 2414 mutex_destroy(&zone->zone_lock); 2415 cv_destroy(&zone->zone_cv); 2416 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2417 rw_destroy(&zone->zone_mntfs_db_lock); 2418 kmem_free(zone, sizeof (zone_t)); 2419 } 2420 2421 /* 2422 * See block comment at the top of this file for information about zone 2423 * status values. 2424 */ 2425 /* 2426 * Convenience function for setting zone status. 2427 */ 2428 static void 2429 zone_status_set(zone_t *zone, zone_status_t status) 2430 { 2431 2432 nvlist_t *nvl = NULL; 2433 ASSERT(MUTEX_HELD(&zone_status_lock)); 2434 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2435 status >= zone_status_get(zone)); 2436 2437 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2438 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2439 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2440 zone_status_table[status]) || 2441 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2442 zone_status_table[zone->zone_status]) || 2443 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2444 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2445 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2446 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2447 #ifdef DEBUG 2448 (void) printf( 2449 "Failed to allocate and send zone state change event.\n"); 2450 #endif 2451 } 2452 nvlist_free(nvl); 2453 2454 zone->zone_status = status; 2455 2456 cv_broadcast(&zone->zone_cv); 2457 } 2458 2459 /* 2460 * Public function to retrieve the zone status. The zone status may 2461 * change after it is retrieved. 2462 */ 2463 zone_status_t 2464 zone_status_get(zone_t *zone) 2465 { 2466 return (zone->zone_status); 2467 } 2468 2469 static int 2470 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2471 { 2472 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2473 int err = 0; 2474 2475 ASSERT(zone != global_zone); 2476 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2477 goto done; /* EFAULT or ENAMETOOLONG */ 2478 2479 if (zone->zone_bootargs != NULL) 2480 strfree(zone->zone_bootargs); 2481 2482 zone->zone_bootargs = strdup(buf); 2483 2484 done: 2485 kmem_free(buf, BOOTARGS_MAX); 2486 return (err); 2487 } 2488 2489 static int 2490 zone_set_brand(zone_t *zone, const char *brand) 2491 { 2492 struct brand_attr *attrp; 2493 brand_t *bp; 2494 2495 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2496 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2497 kmem_free(attrp, sizeof (struct brand_attr)); 2498 return (EFAULT); 2499 } 2500 2501 bp = brand_register_zone(attrp); 2502 kmem_free(attrp, sizeof (struct brand_attr)); 2503 if (bp == NULL) 2504 return (EINVAL); 2505 2506 /* 2507 * This is the only place where a zone can change it's brand. 2508 * We already need to hold zone_status_lock to check the zone 2509 * status, so we'll just use that lock to serialize zone 2510 * branding requests as well. 2511 */ 2512 mutex_enter(&zone_status_lock); 2513 2514 /* Re-Branding is not allowed and the zone can't be booted yet */ 2515 if ((ZONE_IS_BRANDED(zone)) || 2516 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2517 mutex_exit(&zone_status_lock); 2518 brand_unregister_zone(bp); 2519 return (EINVAL); 2520 } 2521 2522 /* set up the brand specific data */ 2523 zone->zone_brand = bp; 2524 ZBROP(zone)->b_init_brand_data(zone); 2525 2526 mutex_exit(&zone_status_lock); 2527 return (0); 2528 } 2529 2530 static int 2531 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2532 { 2533 int err = 0; 2534 psecflags_t psf; 2535 2536 ASSERT(zone != global_zone); 2537 2538 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2539 return (err); 2540 2541 if (zone_status_get(zone) > ZONE_IS_READY) 2542 return (EINVAL); 2543 2544 if (!psecflags_validate(&psf)) 2545 return (EINVAL); 2546 2547 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2548 2549 /* Set security flags on the zone's zsched */ 2550 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2551 sizeof (zone->zone_zsched->p_secflags)); 2552 2553 return (0); 2554 } 2555 2556 static int 2557 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2558 { 2559 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2560 int err = 0; 2561 2562 ASSERT(zone != global_zone); 2563 if ((err = copyinstr(zone_fs_allowed, buf, 2564 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2565 goto done; 2566 2567 if (zone->zone_fs_allowed != NULL) 2568 strfree(zone->zone_fs_allowed); 2569 2570 zone->zone_fs_allowed = strdup(buf); 2571 2572 done: 2573 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2574 return (err); 2575 } 2576 2577 static int 2578 zone_set_initname(zone_t *zone, const char *zone_initname) 2579 { 2580 char initname[INITNAME_SZ]; 2581 size_t len; 2582 int err = 0; 2583 2584 ASSERT(zone != global_zone); 2585 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2586 return (err); /* EFAULT or ENAMETOOLONG */ 2587 2588 if (zone->zone_initname != NULL) 2589 strfree(zone->zone_initname); 2590 2591 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2592 (void) strcpy(zone->zone_initname, initname); 2593 return (0); 2594 } 2595 2596 static int 2597 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2598 { 2599 uint64_t mcap; 2600 int err = 0; 2601 2602 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2603 zone->zone_phys_mcap = mcap; 2604 2605 return (err); 2606 } 2607 2608 static int 2609 zone_set_sched_class(zone_t *zone, const char *new_class) 2610 { 2611 char sched_class[PC_CLNMSZ]; 2612 id_t classid; 2613 int err; 2614 2615 ASSERT(zone != global_zone); 2616 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2617 return (err); /* EFAULT or ENAMETOOLONG */ 2618 2619 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2620 return (set_errno(EINVAL)); 2621 zone->zone_defaultcid = classid; 2622 ASSERT(zone->zone_defaultcid > 0 && 2623 zone->zone_defaultcid < loaded_classes); 2624 2625 return (0); 2626 } 2627 2628 /* 2629 * Block indefinitely waiting for (zone_status >= status) 2630 */ 2631 void 2632 zone_status_wait(zone_t *zone, zone_status_t status) 2633 { 2634 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2635 2636 mutex_enter(&zone_status_lock); 2637 while (zone->zone_status < status) { 2638 cv_wait(&zone->zone_cv, &zone_status_lock); 2639 } 2640 mutex_exit(&zone_status_lock); 2641 } 2642 2643 /* 2644 * Private CPR-safe version of zone_status_wait(). 2645 */ 2646 static void 2647 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2648 { 2649 callb_cpr_t cprinfo; 2650 2651 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2652 2653 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2654 str); 2655 mutex_enter(&zone_status_lock); 2656 while (zone->zone_status < status) { 2657 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2658 cv_wait(&zone->zone_cv, &zone_status_lock); 2659 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2660 } 2661 /* 2662 * zone_status_lock is implicitly released by the following. 2663 */ 2664 CALLB_CPR_EXIT(&cprinfo); 2665 } 2666 2667 /* 2668 * Block until zone enters requested state or signal is received. Return (0) 2669 * if signaled, non-zero otherwise. 2670 */ 2671 int 2672 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2673 { 2674 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2675 2676 mutex_enter(&zone_status_lock); 2677 while (zone->zone_status < status) { 2678 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2679 mutex_exit(&zone_status_lock); 2680 return (0); 2681 } 2682 } 2683 mutex_exit(&zone_status_lock); 2684 return (1); 2685 } 2686 2687 /* 2688 * Block until the zone enters the requested state or the timeout expires, 2689 * whichever happens first. Return (-1) if operation timed out, time remaining 2690 * otherwise. 2691 */ 2692 clock_t 2693 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2694 { 2695 clock_t timeleft = 0; 2696 2697 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2698 2699 mutex_enter(&zone_status_lock); 2700 while (zone->zone_status < status && timeleft != -1) { 2701 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2702 } 2703 mutex_exit(&zone_status_lock); 2704 return (timeleft); 2705 } 2706 2707 /* 2708 * Block until the zone enters the requested state, the current process is 2709 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2710 * operation timed out, 0 if signaled, time remaining otherwise. 2711 */ 2712 clock_t 2713 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2714 { 2715 clock_t timeleft = tim - ddi_get_lbolt(); 2716 2717 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2718 2719 mutex_enter(&zone_status_lock); 2720 while (zone->zone_status < status) { 2721 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2722 tim); 2723 if (timeleft <= 0) 2724 break; 2725 } 2726 mutex_exit(&zone_status_lock); 2727 return (timeleft); 2728 } 2729 2730 /* 2731 * Zones have two reference counts: one for references from credential 2732 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2733 * This is so we can allow a zone to be rebooted while there are still 2734 * outstanding cred references, since certain drivers cache dblks (which 2735 * implicitly results in cached creds). We wait for zone_ref to drop to 2736 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2737 * later freed when the zone_cred_ref drops to 0, though nothing other 2738 * than the zone id and privilege set should be accessed once the zone 2739 * is "dead". 2740 * 2741 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2742 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2743 * to 0. This can be useful to flush out other sources of cached creds 2744 * that may be less innocuous than the driver case. 2745 * 2746 * Zones also provide a tracked reference counting mechanism in which zone 2747 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2748 * debuggers determine the sources of leaked zone references. See 2749 * zone_hold_ref() and zone_rele_ref() below for more information. 2750 */ 2751 2752 int zone_wait_for_cred = 0; 2753 2754 static void 2755 zone_hold_locked(zone_t *z) 2756 { 2757 ASSERT(MUTEX_HELD(&z->zone_lock)); 2758 z->zone_ref++; 2759 ASSERT(z->zone_ref != 0); 2760 } 2761 2762 /* 2763 * Increment the specified zone's reference count. The zone's zone_t structure 2764 * will not be freed as long as the zone's reference count is nonzero. 2765 * Decrement the zone's reference count via zone_rele(). 2766 * 2767 * NOTE: This function should only be used to hold zones for short periods of 2768 * time. Use zone_hold_ref() if the zone must be held for a long time. 2769 */ 2770 void 2771 zone_hold(zone_t *z) 2772 { 2773 mutex_enter(&z->zone_lock); 2774 zone_hold_locked(z); 2775 mutex_exit(&z->zone_lock); 2776 } 2777 2778 /* 2779 * If the non-cred ref count drops to 1 and either the cred ref count 2780 * is 0 or we aren't waiting for cred references, the zone is ready to 2781 * be destroyed. 2782 */ 2783 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2784 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2785 2786 /* 2787 * Common zone reference release function invoked by zone_rele() and 2788 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2789 * zone's subsystem-specific reference counters are not affected by the 2790 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2791 * removed from the specified zone's reference list. ref must be non-NULL iff 2792 * subsys is not ZONE_REF_NUM_SUBSYS. 2793 */ 2794 static void 2795 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2796 { 2797 boolean_t wakeup; 2798 2799 mutex_enter(&z->zone_lock); 2800 ASSERT(z->zone_ref != 0); 2801 z->zone_ref--; 2802 if (subsys != ZONE_REF_NUM_SUBSYS) { 2803 ASSERT(z->zone_subsys_ref[subsys] != 0); 2804 z->zone_subsys_ref[subsys]--; 2805 list_remove(&z->zone_ref_list, ref); 2806 } 2807 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2808 /* no more refs, free the structure */ 2809 mutex_exit(&z->zone_lock); 2810 zone_free(z); 2811 return; 2812 } 2813 /* signal zone_destroy so the zone can finish halting */ 2814 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2815 mutex_exit(&z->zone_lock); 2816 2817 if (wakeup) { 2818 /* 2819 * Grabbing zonehash_lock here effectively synchronizes with 2820 * zone_destroy() to avoid missed signals. 2821 */ 2822 mutex_enter(&zonehash_lock); 2823 cv_broadcast(&zone_destroy_cv); 2824 mutex_exit(&zonehash_lock); 2825 } 2826 } 2827 2828 /* 2829 * Decrement the specified zone's reference count. The specified zone will 2830 * cease to exist after this function returns if the reference count drops to 2831 * zero. This function should be paired with zone_hold(). 2832 */ 2833 void 2834 zone_rele(zone_t *z) 2835 { 2836 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2837 } 2838 2839 /* 2840 * Initialize a zone reference structure. This function must be invoked for 2841 * a reference structure before the structure is passed to zone_hold_ref(). 2842 */ 2843 void 2844 zone_init_ref(zone_ref_t *ref) 2845 { 2846 ref->zref_zone = NULL; 2847 list_link_init(&ref->zref_linkage); 2848 } 2849 2850 /* 2851 * Acquire a reference to zone z. The caller must specify the 2852 * zone_ref_subsys_t constant associated with its subsystem. The specified 2853 * zone_ref_t structure will represent a reference to the specified zone. Use 2854 * zone_rele_ref() to release the reference. 2855 * 2856 * The referenced zone_t structure will not be freed as long as the zone_t's 2857 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2858 * references. 2859 * 2860 * NOTE: The zone_ref_t structure must be initialized before it is used. 2861 * See zone_init_ref() above. 2862 */ 2863 void 2864 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2865 { 2866 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2867 2868 /* 2869 * Prevent consumers from reusing a reference structure before 2870 * releasing it. 2871 */ 2872 VERIFY(ref->zref_zone == NULL); 2873 2874 ref->zref_zone = z; 2875 mutex_enter(&z->zone_lock); 2876 zone_hold_locked(z); 2877 z->zone_subsys_ref[subsys]++; 2878 ASSERT(z->zone_subsys_ref[subsys] != 0); 2879 list_insert_head(&z->zone_ref_list, ref); 2880 mutex_exit(&z->zone_lock); 2881 } 2882 2883 /* 2884 * Release the zone reference represented by the specified zone_ref_t. 2885 * The reference is invalid after it's released; however, the zone_ref_t 2886 * structure can be reused without having to invoke zone_init_ref(). 2887 * subsys should be the same value that was passed to zone_hold_ref() 2888 * when the reference was acquired. 2889 */ 2890 void 2891 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2892 { 2893 zone_rele_common(ref->zref_zone, ref, subsys); 2894 2895 /* 2896 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2897 * when consumers dereference the reference. This helps us catch 2898 * consumers who use released references. Furthermore, this lets 2899 * consumers reuse the zone_ref_t structure without having to 2900 * invoke zone_init_ref(). 2901 */ 2902 ref->zref_zone = NULL; 2903 } 2904 2905 void 2906 zone_cred_hold(zone_t *z) 2907 { 2908 mutex_enter(&z->zone_lock); 2909 z->zone_cred_ref++; 2910 ASSERT(z->zone_cred_ref != 0); 2911 mutex_exit(&z->zone_lock); 2912 } 2913 2914 void 2915 zone_cred_rele(zone_t *z) 2916 { 2917 boolean_t wakeup; 2918 2919 mutex_enter(&z->zone_lock); 2920 ASSERT(z->zone_cred_ref != 0); 2921 z->zone_cred_ref--; 2922 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2923 /* no more refs, free the structure */ 2924 mutex_exit(&z->zone_lock); 2925 zone_free(z); 2926 return; 2927 } 2928 /* 2929 * If zone_destroy is waiting for the cred references to drain 2930 * out, and they have, signal it. 2931 */ 2932 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2933 zone_status_get(z) >= ZONE_IS_DEAD); 2934 mutex_exit(&z->zone_lock); 2935 2936 if (wakeup) { 2937 /* 2938 * Grabbing zonehash_lock here effectively synchronizes with 2939 * zone_destroy() to avoid missed signals. 2940 */ 2941 mutex_enter(&zonehash_lock); 2942 cv_broadcast(&zone_destroy_cv); 2943 mutex_exit(&zonehash_lock); 2944 } 2945 } 2946 2947 void 2948 zone_task_hold(zone_t *z) 2949 { 2950 mutex_enter(&z->zone_lock); 2951 z->zone_ntasks++; 2952 ASSERT(z->zone_ntasks != 0); 2953 mutex_exit(&z->zone_lock); 2954 } 2955 2956 void 2957 zone_task_rele(zone_t *zone) 2958 { 2959 uint_t refcnt; 2960 2961 mutex_enter(&zone->zone_lock); 2962 ASSERT(zone->zone_ntasks != 0); 2963 refcnt = --zone->zone_ntasks; 2964 if (refcnt > 1) { /* Common case */ 2965 mutex_exit(&zone->zone_lock); 2966 return; 2967 } 2968 zone_hold_locked(zone); /* so we can use the zone_t later */ 2969 mutex_exit(&zone->zone_lock); 2970 if (refcnt == 1) { 2971 /* 2972 * See if the zone is shutting down. 2973 */ 2974 mutex_enter(&zone_status_lock); 2975 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2976 goto out; 2977 } 2978 2979 /* 2980 * Make sure the ntasks didn't change since we 2981 * dropped zone_lock. 2982 */ 2983 mutex_enter(&zone->zone_lock); 2984 if (refcnt != zone->zone_ntasks) { 2985 mutex_exit(&zone->zone_lock); 2986 goto out; 2987 } 2988 mutex_exit(&zone->zone_lock); 2989 2990 /* 2991 * No more user processes in the zone. The zone is empty. 2992 */ 2993 zone_status_set(zone, ZONE_IS_EMPTY); 2994 goto out; 2995 } 2996 2997 ASSERT(refcnt == 0); 2998 /* 2999 * zsched has exited; the zone is dead. 3000 */ 3001 zone->zone_zsched = NULL; /* paranoia */ 3002 mutex_enter(&zone_status_lock); 3003 zone_status_set(zone, ZONE_IS_DEAD); 3004 out: 3005 mutex_exit(&zone_status_lock); 3006 zone_rele(zone); 3007 } 3008 3009 zoneid_t 3010 getzoneid(void) 3011 { 3012 return (curproc->p_zone->zone_id); 3013 } 3014 3015 /* 3016 * Internal versions of zone_find_by_*(). These don't zone_hold() or 3017 * check the validity of a zone's state. 3018 */ 3019 static zone_t * 3020 zone_find_all_by_id(zoneid_t zoneid) 3021 { 3022 mod_hash_val_t hv; 3023 zone_t *zone = NULL; 3024 3025 ASSERT(MUTEX_HELD(&zonehash_lock)); 3026 3027 if (mod_hash_find(zonehashbyid, 3028 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3029 zone = (zone_t *)hv; 3030 return (zone); 3031 } 3032 3033 static zone_t * 3034 zone_find_all_by_label(const ts_label_t *label) 3035 { 3036 mod_hash_val_t hv; 3037 zone_t *zone = NULL; 3038 3039 ASSERT(MUTEX_HELD(&zonehash_lock)); 3040 3041 /* 3042 * zonehashbylabel is not maintained for unlabeled systems 3043 */ 3044 if (!is_system_labeled()) 3045 return (NULL); 3046 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3047 zone = (zone_t *)hv; 3048 return (zone); 3049 } 3050 3051 static zone_t * 3052 zone_find_all_by_name(char *name) 3053 { 3054 mod_hash_val_t hv; 3055 zone_t *zone = NULL; 3056 3057 ASSERT(MUTEX_HELD(&zonehash_lock)); 3058 3059 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3060 zone = (zone_t *)hv; 3061 return (zone); 3062 } 3063 3064 /* 3065 * Public interface for looking up a zone by zoneid. Only returns the zone if 3066 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3067 * Caller must call zone_rele() once it is done with the zone. 3068 * 3069 * The zone may begin the zone_destroy() sequence immediately after this 3070 * function returns, but may be safely used until zone_rele() is called. 3071 */ 3072 zone_t * 3073 zone_find_by_id(zoneid_t zoneid) 3074 { 3075 zone_t *zone; 3076 zone_status_t status; 3077 3078 mutex_enter(&zonehash_lock); 3079 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3080 mutex_exit(&zonehash_lock); 3081 return (NULL); 3082 } 3083 status = zone_status_get(zone); 3084 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3085 /* 3086 * For all practical purposes the zone doesn't exist. 3087 */ 3088 mutex_exit(&zonehash_lock); 3089 return (NULL); 3090 } 3091 zone_hold(zone); 3092 mutex_exit(&zonehash_lock); 3093 return (zone); 3094 } 3095 3096 /* 3097 * Similar to zone_find_by_id, but using zone label as the key. 3098 */ 3099 zone_t * 3100 zone_find_by_label(const ts_label_t *label) 3101 { 3102 zone_t *zone; 3103 zone_status_t status; 3104 3105 mutex_enter(&zonehash_lock); 3106 if ((zone = zone_find_all_by_label(label)) == NULL) { 3107 mutex_exit(&zonehash_lock); 3108 return (NULL); 3109 } 3110 3111 status = zone_status_get(zone); 3112 if (status > ZONE_IS_DOWN) { 3113 /* 3114 * For all practical purposes the zone doesn't exist. 3115 */ 3116 mutex_exit(&zonehash_lock); 3117 return (NULL); 3118 } 3119 zone_hold(zone); 3120 mutex_exit(&zonehash_lock); 3121 return (zone); 3122 } 3123 3124 /* 3125 * Similar to zone_find_by_id, but using zone name as the key. 3126 */ 3127 zone_t * 3128 zone_find_by_name(char *name) 3129 { 3130 zone_t *zone; 3131 zone_status_t status; 3132 3133 mutex_enter(&zonehash_lock); 3134 if ((zone = zone_find_all_by_name(name)) == NULL) { 3135 mutex_exit(&zonehash_lock); 3136 return (NULL); 3137 } 3138 status = zone_status_get(zone); 3139 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3140 /* 3141 * For all practical purposes the zone doesn't exist. 3142 */ 3143 mutex_exit(&zonehash_lock); 3144 return (NULL); 3145 } 3146 zone_hold(zone); 3147 mutex_exit(&zonehash_lock); 3148 return (zone); 3149 } 3150 3151 /* 3152 * Similar to zone_find_by_id(), using the path as a key. For instance, 3153 * if there is a zone "foo" rooted at /foo/root, and the path argument 3154 * is "/foo/root/proc", it will return the held zone_t corresponding to 3155 * zone "foo". 3156 * 3157 * zone_find_by_path() always returns a non-NULL value, since at the 3158 * very least every path will be contained in the global zone. 3159 * 3160 * As with the other zone_find_by_*() functions, the caller is 3161 * responsible for zone_rele()ing the return value of this function. 3162 */ 3163 zone_t * 3164 zone_find_by_path(const char *path) 3165 { 3166 zone_t *zone; 3167 zone_t *zret = NULL; 3168 zone_status_t status; 3169 3170 if (path == NULL) { 3171 /* 3172 * Call from rootconf(). 3173 */ 3174 zone_hold(global_zone); 3175 return (global_zone); 3176 } 3177 ASSERT(*path == '/'); 3178 mutex_enter(&zonehash_lock); 3179 for (zone = list_head(&zone_active); zone != NULL; 3180 zone = list_next(&zone_active, zone)) { 3181 if (ZONE_PATH_VISIBLE(path, zone)) 3182 zret = zone; 3183 } 3184 ASSERT(zret != NULL); 3185 status = zone_status_get(zret); 3186 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3187 /* 3188 * Zone practically doesn't exist. 3189 */ 3190 zret = global_zone; 3191 } 3192 zone_hold(zret); 3193 mutex_exit(&zonehash_lock); 3194 return (zret); 3195 } 3196 3197 /* 3198 * Public interface for updating per-zone load averages. Called once per 3199 * second. 3200 * 3201 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3202 */ 3203 void 3204 zone_loadavg_update() 3205 { 3206 zone_t *zp; 3207 zone_status_t status; 3208 struct loadavg_s *lavg; 3209 hrtime_t zone_total; 3210 int i; 3211 hrtime_t hr_avg; 3212 int nrun; 3213 static int64_t f[3] = { 135, 27, 9 }; 3214 int64_t q, r; 3215 3216 mutex_enter(&zonehash_lock); 3217 for (zp = list_head(&zone_active); zp != NULL; 3218 zp = list_next(&zone_active, zp)) { 3219 mutex_enter(&zp->zone_lock); 3220 3221 /* Skip zones that are on the way down or not yet up */ 3222 status = zone_status_get(zp); 3223 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3224 /* For all practical purposes the zone doesn't exist. */ 3225 mutex_exit(&zp->zone_lock); 3226 continue; 3227 } 3228 3229 /* 3230 * Update the 10 second moving average data in zone_loadavg. 3231 */ 3232 lavg = &zp->zone_loadavg; 3233 3234 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3235 scalehrtime(&zone_total); 3236 3237 /* The zone_total should always be increasing. */ 3238 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3239 zone_total - lavg->lg_total : 0; 3240 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3241 /* lg_total holds the prev. 1 sec. total */ 3242 lavg->lg_total = zone_total; 3243 3244 /* 3245 * To simplify the calculation, we don't calculate the load avg. 3246 * until the zone has been up for at least 10 seconds and our 3247 * moving average is thus full. 3248 */ 3249 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3250 lavg->lg_len++; 3251 mutex_exit(&zp->zone_lock); 3252 continue; 3253 } 3254 3255 /* Now calculate the 1min, 5min, 15 min load avg. */ 3256 hr_avg = 0; 3257 for (i = 0; i < S_LOADAVG_SZ; i++) 3258 hr_avg += lavg->lg_loads[i]; 3259 hr_avg = hr_avg / S_LOADAVG_SZ; 3260 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3261 3262 /* Compute load avg. See comment in calcloadavg() */ 3263 for (i = 0; i < 3; i++) { 3264 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3265 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3266 zp->zone_hp_avenrun[i] += 3267 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3268 3269 /* avenrun[] can only hold 31 bits of load avg. */ 3270 if (zp->zone_hp_avenrun[i] < 3271 ((uint64_t)1<<(31+16-FSHIFT))) 3272 zp->zone_avenrun[i] = (int32_t) 3273 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3274 else 3275 zp->zone_avenrun[i] = 0x7fffffff; 3276 } 3277 3278 mutex_exit(&zp->zone_lock); 3279 } 3280 mutex_exit(&zonehash_lock); 3281 } 3282 3283 /* 3284 * Get the number of cpus visible to this zone. The system-wide global 3285 * 'ncpus' is returned if pools are disabled, the caller is in the 3286 * global zone, or a NULL zone argument is passed in. 3287 */ 3288 int 3289 zone_ncpus_get(zone_t *zone) 3290 { 3291 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3292 3293 return (myncpus != 0 ? myncpus : ncpus); 3294 } 3295 3296 /* 3297 * Get the number of online cpus visible to this zone. The system-wide 3298 * global 'ncpus_online' is returned if pools are disabled, the caller 3299 * is in the global zone, or a NULL zone argument is passed in. 3300 */ 3301 int 3302 zone_ncpus_online_get(zone_t *zone) 3303 { 3304 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3305 3306 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3307 } 3308 3309 /* 3310 * Return the pool to which the zone is currently bound. 3311 */ 3312 pool_t * 3313 zone_pool_get(zone_t *zone) 3314 { 3315 ASSERT(pool_lock_held()); 3316 3317 return (zone->zone_pool); 3318 } 3319 3320 /* 3321 * Set the zone's pool pointer and update the zone's visibility to match 3322 * the resources in the new pool. 3323 */ 3324 void 3325 zone_pool_set(zone_t *zone, pool_t *pool) 3326 { 3327 ASSERT(pool_lock_held()); 3328 ASSERT(MUTEX_HELD(&cpu_lock)); 3329 3330 zone->zone_pool = pool; 3331 zone_pset_set(zone, pool->pool_pset->pset_id); 3332 } 3333 3334 /* 3335 * Return the cached value of the id of the processor set to which the 3336 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3337 * facility is disabled. 3338 */ 3339 psetid_t 3340 zone_pset_get(zone_t *zone) 3341 { 3342 ASSERT(MUTEX_HELD(&cpu_lock)); 3343 3344 return (zone->zone_psetid); 3345 } 3346 3347 /* 3348 * Set the cached value of the id of the processor set to which the zone 3349 * is currently bound. Also update the zone's visibility to match the 3350 * resources in the new processor set. 3351 */ 3352 void 3353 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3354 { 3355 psetid_t oldpsetid; 3356 3357 ASSERT(MUTEX_HELD(&cpu_lock)); 3358 oldpsetid = zone_pset_get(zone); 3359 3360 if (oldpsetid == newpsetid) 3361 return; 3362 /* 3363 * Global zone sees all. 3364 */ 3365 if (zone != global_zone) { 3366 zone->zone_psetid = newpsetid; 3367 if (newpsetid != ZONE_PS_INVAL) 3368 pool_pset_visibility_add(newpsetid, zone); 3369 if (oldpsetid != ZONE_PS_INVAL) 3370 pool_pset_visibility_remove(oldpsetid, zone); 3371 } 3372 /* 3373 * Disabling pools, so we should start using the global values 3374 * for ncpus and ncpus_online. 3375 */ 3376 if (newpsetid == ZONE_PS_INVAL) { 3377 zone->zone_ncpus = 0; 3378 zone->zone_ncpus_online = 0; 3379 } 3380 } 3381 3382 /* 3383 * Walk the list of active zones and issue the provided callback for 3384 * each of them. 3385 * 3386 * Caller must not be holding any locks that may be acquired under 3387 * zonehash_lock. See comment at the beginning of the file for a list of 3388 * common locks and their interactions with zones. 3389 */ 3390 int 3391 zone_walk(int (*cb)(zone_t *, void *), void *data) 3392 { 3393 zone_t *zone; 3394 int ret = 0; 3395 zone_status_t status; 3396 3397 mutex_enter(&zonehash_lock); 3398 for (zone = list_head(&zone_active); zone != NULL; 3399 zone = list_next(&zone_active, zone)) { 3400 /* 3401 * Skip zones that shouldn't be externally visible. 3402 */ 3403 status = zone_status_get(zone); 3404 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3405 continue; 3406 /* 3407 * Bail immediately if any callback invocation returns a 3408 * non-zero value. 3409 */ 3410 ret = (*cb)(zone, data); 3411 if (ret != 0) 3412 break; 3413 } 3414 mutex_exit(&zonehash_lock); 3415 return (ret); 3416 } 3417 3418 static int 3419 zone_set_root(zone_t *zone, const char *upath) 3420 { 3421 vnode_t *vp; 3422 int trycount; 3423 int error = 0; 3424 char *path; 3425 struct pathname upn, pn; 3426 size_t pathlen; 3427 3428 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3429 return (error); 3430 3431 pn_alloc(&pn); 3432 3433 /* prevent infinite loop */ 3434 trycount = 10; 3435 for (;;) { 3436 if (--trycount <= 0) { 3437 error = ESTALE; 3438 goto out; 3439 } 3440 3441 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3442 /* 3443 * VOP_ACCESS() may cover 'vp' with a new 3444 * filesystem, if 'vp' is an autoFS vnode. 3445 * Get the new 'vp' if so. 3446 */ 3447 if ((error = 3448 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3449 (!vn_ismntpt(vp) || 3450 (error = traverse(&vp)) == 0)) { 3451 pathlen = pn.pn_pathlen + 2; 3452 path = kmem_alloc(pathlen, KM_SLEEP); 3453 (void) strncpy(path, pn.pn_path, 3454 pn.pn_pathlen + 1); 3455 path[pathlen - 2] = '/'; 3456 path[pathlen - 1] = '\0'; 3457 pn_free(&pn); 3458 pn_free(&upn); 3459 3460 /* Success! */ 3461 break; 3462 } 3463 VN_RELE(vp); 3464 } 3465 if (error != ESTALE) 3466 goto out; 3467 } 3468 3469 ASSERT(error == 0); 3470 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3471 zone->zone_rootpath = path; 3472 zone->zone_rootpathlen = pathlen; 3473 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3474 zone->zone_flags |= ZF_IS_SCRATCH; 3475 return (0); 3476 3477 out: 3478 pn_free(&pn); 3479 pn_free(&upn); 3480 return (error); 3481 } 3482 3483 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3484 ((c) >= 'a' && (c) <= 'z') || \ 3485 ((c) >= 'A' && (c) <= 'Z')) 3486 3487 static int 3488 zone_set_name(zone_t *zone, const char *uname) 3489 { 3490 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3491 size_t len; 3492 int i, err; 3493 3494 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3495 kmem_free(kname, ZONENAME_MAX); 3496 return (err); /* EFAULT or ENAMETOOLONG */ 3497 } 3498 3499 /* must be less than ZONENAME_MAX */ 3500 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3501 kmem_free(kname, ZONENAME_MAX); 3502 return (EINVAL); 3503 } 3504 3505 /* 3506 * Name must start with an alphanumeric and must contain only 3507 * alphanumerics, '-', '_' and '.'. 3508 */ 3509 if (!isalnum(kname[0])) { 3510 kmem_free(kname, ZONENAME_MAX); 3511 return (EINVAL); 3512 } 3513 for (i = 1; i < len - 1; i++) { 3514 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3515 kname[i] != '.') { 3516 kmem_free(kname, ZONENAME_MAX); 3517 return (EINVAL); 3518 } 3519 } 3520 3521 zone->zone_name = kname; 3522 return (0); 3523 } 3524 3525 /* 3526 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3527 * is NULL or it points to a zone with no hostid emulation, then the machine's 3528 * hostid (i.e., the global zone's hostid) is returned. This function returns 3529 * zero if neither the zone nor the host machine (global zone) have hostids. It 3530 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3531 * hostid and the machine's hostid is invalid. 3532 */ 3533 uint32_t 3534 zone_get_hostid(zone_t *zonep) 3535 { 3536 unsigned long machine_hostid; 3537 3538 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3539 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3540 return (HW_INVALID_HOSTID); 3541 return ((uint32_t)machine_hostid); 3542 } 3543 return (zonep->zone_hostid); 3544 } 3545 3546 /* 3547 * Similar to thread_create(), but makes sure the thread is in the appropriate 3548 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3549 */ 3550 /*ARGSUSED*/ 3551 kthread_t * 3552 zthread_create( 3553 caddr_t stk, 3554 size_t stksize, 3555 void (*proc)(), 3556 void *arg, 3557 size_t len, 3558 pri_t pri) 3559 { 3560 kthread_t *t; 3561 zone_t *zone = curproc->p_zone; 3562 proc_t *pp = zone->zone_zsched; 3563 3564 zone_hold(zone); /* Reference to be dropped when thread exits */ 3565 3566 /* 3567 * No-one should be trying to create threads if the zone is shutting 3568 * down and there aren't any kernel threads around. See comment 3569 * in zthread_exit(). 3570 */ 3571 ASSERT(!(zone->zone_kthreads == NULL && 3572 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3573 /* 3574 * Create a thread, but don't let it run until we've finished setting 3575 * things up. 3576 */ 3577 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3578 ASSERT(t->t_forw == NULL); 3579 mutex_enter(&zone_status_lock); 3580 if (zone->zone_kthreads == NULL) { 3581 t->t_forw = t->t_back = t; 3582 } else { 3583 kthread_t *tx = zone->zone_kthreads; 3584 3585 t->t_forw = tx; 3586 t->t_back = tx->t_back; 3587 tx->t_back->t_forw = t; 3588 tx->t_back = t; 3589 } 3590 zone->zone_kthreads = t; 3591 mutex_exit(&zone_status_lock); 3592 3593 mutex_enter(&pp->p_lock); 3594 t->t_proc_flag |= TP_ZTHREAD; 3595 project_rele(t->t_proj); 3596 t->t_proj = project_hold(pp->p_task->tk_proj); 3597 3598 /* 3599 * Setup complete, let it run. 3600 */ 3601 thread_lock(t); 3602 t->t_schedflag |= TS_ALLSTART; 3603 setrun_locked(t); 3604 thread_unlock(t); 3605 3606 mutex_exit(&pp->p_lock); 3607 3608 return (t); 3609 } 3610 3611 /* 3612 * Similar to thread_exit(). Must be called by threads created via 3613 * zthread_exit(). 3614 */ 3615 void 3616 zthread_exit(void) 3617 { 3618 kthread_t *t = curthread; 3619 proc_t *pp = curproc; 3620 zone_t *zone = pp->p_zone; 3621 3622 mutex_enter(&zone_status_lock); 3623 3624 /* 3625 * Reparent to p0 3626 */ 3627 kpreempt_disable(); 3628 mutex_enter(&pp->p_lock); 3629 t->t_proc_flag &= ~TP_ZTHREAD; 3630 t->t_procp = &p0; 3631 hat_thread_exit(t); 3632 mutex_exit(&pp->p_lock); 3633 kpreempt_enable(); 3634 3635 if (t->t_back == t) { 3636 ASSERT(t->t_forw == t); 3637 /* 3638 * If the zone is empty, once the thread count 3639 * goes to zero no further kernel threads can be 3640 * created. This is because if the creator is a process 3641 * in the zone, then it must have exited before the zone 3642 * state could be set to ZONE_IS_EMPTY. 3643 * Otherwise, if the creator is a kernel thread in the 3644 * zone, the thread count is non-zero. 3645 * 3646 * This really means that non-zone kernel threads should 3647 * not create zone kernel threads. 3648 */ 3649 zone->zone_kthreads = NULL; 3650 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3651 zone_status_set(zone, ZONE_IS_DOWN); 3652 /* 3653 * Remove any CPU caps on this zone. 3654 */ 3655 cpucaps_zone_remove(zone); 3656 } 3657 } else { 3658 t->t_forw->t_back = t->t_back; 3659 t->t_back->t_forw = t->t_forw; 3660 if (zone->zone_kthreads == t) 3661 zone->zone_kthreads = t->t_forw; 3662 } 3663 mutex_exit(&zone_status_lock); 3664 zone_rele(zone); 3665 thread_exit(); 3666 /* NOTREACHED */ 3667 } 3668 3669 static void 3670 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3671 { 3672 vnode_t *oldvp; 3673 3674 /* we're going to hold a reference here to the directory */ 3675 VN_HOLD(vp); 3676 3677 /* update abs cwd/root path see c2/audit.c */ 3678 if (AU_AUDITING()) 3679 audit_chdirec(vp, vpp); 3680 3681 mutex_enter(&pp->p_lock); 3682 oldvp = *vpp; 3683 *vpp = vp; 3684 mutex_exit(&pp->p_lock); 3685 if (oldvp != NULL) 3686 VN_RELE(oldvp); 3687 } 3688 3689 /* 3690 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3691 */ 3692 static int 3693 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3694 { 3695 nvpair_t *nvp = NULL; 3696 boolean_t priv_set = B_FALSE; 3697 boolean_t limit_set = B_FALSE; 3698 boolean_t action_set = B_FALSE; 3699 3700 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3701 const char *name; 3702 uint64_t ui64; 3703 3704 name = nvpair_name(nvp); 3705 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3706 return (EINVAL); 3707 (void) nvpair_value_uint64(nvp, &ui64); 3708 if (strcmp(name, "privilege") == 0) { 3709 /* 3710 * Currently only privileged values are allowed, but 3711 * this may change in the future. 3712 */ 3713 if (ui64 != RCPRIV_PRIVILEGED) 3714 return (EINVAL); 3715 rv->rcv_privilege = ui64; 3716 priv_set = B_TRUE; 3717 } else if (strcmp(name, "limit") == 0) { 3718 rv->rcv_value = ui64; 3719 limit_set = B_TRUE; 3720 } else if (strcmp(name, "action") == 0) { 3721 if (ui64 != RCTL_LOCAL_NOACTION && 3722 ui64 != RCTL_LOCAL_DENY) 3723 return (EINVAL); 3724 rv->rcv_flagaction = ui64; 3725 action_set = B_TRUE; 3726 } else { 3727 return (EINVAL); 3728 } 3729 } 3730 3731 if (!(priv_set && limit_set && action_set)) 3732 return (EINVAL); 3733 rv->rcv_action_signal = 0; 3734 rv->rcv_action_recipient = NULL; 3735 rv->rcv_action_recip_pid = -1; 3736 rv->rcv_firing_time = 0; 3737 3738 return (0); 3739 } 3740 3741 /* 3742 * Non-global zone version of start_init. 3743 */ 3744 void 3745 zone_start_init(void) 3746 { 3747 proc_t *p = ttoproc(curthread); 3748 zone_t *z = p->p_zone; 3749 3750 ASSERT(!INGLOBALZONE(curproc)); 3751 3752 /* 3753 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3754 * storing just the pid of init is sufficient. 3755 */ 3756 z->zone_proc_initpid = p->p_pid; 3757 3758 /* 3759 * We maintain zone_boot_err so that we can return the cause of the 3760 * failure back to the caller of the zone_boot syscall. 3761 */ 3762 p->p_zone->zone_boot_err = start_init_common(); 3763 3764 /* 3765 * We will prevent booting zones from becoming running zones if the 3766 * global zone is shutting down. 3767 */ 3768 mutex_enter(&zone_status_lock); 3769 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3770 ZONE_IS_SHUTTING_DOWN) { 3771 /* 3772 * Make sure we are still in the booting state-- we could have 3773 * raced and already be shutting down, or even further along. 3774 */ 3775 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3776 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3777 } 3778 mutex_exit(&zone_status_lock); 3779 /* It's gone bad, dispose of the process */ 3780 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3781 mutex_enter(&p->p_lock); 3782 ASSERT(p->p_flag & SEXITLWPS); 3783 lwp_exit(); 3784 } 3785 } else { 3786 if (zone_status_get(z) == ZONE_IS_BOOTING) 3787 zone_status_set(z, ZONE_IS_RUNNING); 3788 mutex_exit(&zone_status_lock); 3789 /* cause the process to return to userland. */ 3790 lwp_rtt(); 3791 } 3792 } 3793 3794 struct zsched_arg { 3795 zone_t *zone; 3796 nvlist_t *nvlist; 3797 }; 3798 3799 /* 3800 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3801 * anything to do with scheduling, but rather with the fact that 3802 * per-zone kernel threads are parented to zsched, just like regular 3803 * kernel threads are parented to sched (p0). 3804 * 3805 * zsched is also responsible for launching init for the zone. 3806 */ 3807 static void 3808 zsched(void *arg) 3809 { 3810 struct zsched_arg *za = arg; 3811 proc_t *pp = curproc; 3812 proc_t *initp = proc_init; 3813 zone_t *zone = za->zone; 3814 cred_t *cr, *oldcred; 3815 rctl_set_t *set; 3816 rctl_alloc_gp_t *gp; 3817 contract_t *ct = NULL; 3818 task_t *tk, *oldtk; 3819 rctl_entity_p_t e; 3820 kproject_t *pj; 3821 3822 nvlist_t *nvl = za->nvlist; 3823 nvpair_t *nvp = NULL; 3824 3825 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3826 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3827 PTOU(pp)->u_argc = 0; 3828 PTOU(pp)->u_argv = NULL; 3829 PTOU(pp)->u_envp = NULL; 3830 closeall(P_FINFO(pp)); 3831 3832 /* 3833 * We are this zone's "zsched" process. As the zone isn't generally 3834 * visible yet we don't need to grab any locks before initializing its 3835 * zone_proc pointer. 3836 */ 3837 zone_hold(zone); /* this hold is released by zone_destroy() */ 3838 zone->zone_zsched = pp; 3839 mutex_enter(&pp->p_lock); 3840 pp->p_zone = zone; 3841 mutex_exit(&pp->p_lock); 3842 3843 /* 3844 * Disassociate process from its 'parent'; parent ourselves to init 3845 * (pid 1) and change other values as needed. 3846 */ 3847 sess_create(); 3848 3849 mutex_enter(&pidlock); 3850 proc_detach(pp); 3851 pp->p_ppid = 1; 3852 pp->p_flag |= SZONETOP; 3853 pp->p_ancpid = 1; 3854 pp->p_parent = initp; 3855 pp->p_psibling = NULL; 3856 if (initp->p_child) 3857 initp->p_child->p_psibling = pp; 3858 pp->p_sibling = initp->p_child; 3859 initp->p_child = pp; 3860 3861 /* Decrement what newproc() incremented. */ 3862 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3863 /* 3864 * Our credentials are about to become kcred-like, so we don't care 3865 * about the caller's ruid. 3866 */ 3867 upcount_inc(crgetruid(kcred), zone->zone_id); 3868 mutex_exit(&pidlock); 3869 3870 /* 3871 * getting out of global zone, so decrement lwp and process counts 3872 */ 3873 pj = pp->p_task->tk_proj; 3874 mutex_enter(&global_zone->zone_nlwps_lock); 3875 pj->kpj_nlwps -= pp->p_lwpcnt; 3876 global_zone->zone_nlwps -= pp->p_lwpcnt; 3877 pj->kpj_nprocs--; 3878 global_zone->zone_nprocs--; 3879 mutex_exit(&global_zone->zone_nlwps_lock); 3880 3881 /* 3882 * Decrement locked memory counts on old zone and project. 3883 */ 3884 mutex_enter(&global_zone->zone_mem_lock); 3885 global_zone->zone_locked_mem -= pp->p_locked_mem; 3886 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3887 mutex_exit(&global_zone->zone_mem_lock); 3888 3889 /* 3890 * Create and join a new task in project '0' of this zone. 3891 * 3892 * We don't need to call holdlwps() since we know we're the only lwp in 3893 * this process. 3894 * 3895 * task_join() returns with p_lock held. 3896 */ 3897 tk = task_create(0, zone); 3898 mutex_enter(&cpu_lock); 3899 oldtk = task_join(tk, 0); 3900 3901 pj = pp->p_task->tk_proj; 3902 3903 mutex_enter(&zone->zone_mem_lock); 3904 zone->zone_locked_mem += pp->p_locked_mem; 3905 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3906 mutex_exit(&zone->zone_mem_lock); 3907 3908 /* 3909 * add lwp and process counts to zsched's zone, and increment 3910 * project's task and process count due to the task created in 3911 * the above task_create. 3912 */ 3913 mutex_enter(&zone->zone_nlwps_lock); 3914 pj->kpj_nlwps += pp->p_lwpcnt; 3915 pj->kpj_ntasks += 1; 3916 zone->zone_nlwps += pp->p_lwpcnt; 3917 pj->kpj_nprocs++; 3918 zone->zone_nprocs++; 3919 mutex_exit(&zone->zone_nlwps_lock); 3920 3921 mutex_exit(&curproc->p_lock); 3922 mutex_exit(&cpu_lock); 3923 task_rele(oldtk); 3924 3925 /* 3926 * The process was created by a process in the global zone, hence the 3927 * credentials are wrong. We might as well have kcred-ish credentials. 3928 */ 3929 cr = zone->zone_kcred; 3930 crhold(cr); 3931 mutex_enter(&pp->p_crlock); 3932 oldcred = pp->p_cred; 3933 pp->p_cred = cr; 3934 mutex_exit(&pp->p_crlock); 3935 crfree(oldcred); 3936 3937 /* 3938 * Hold credentials again (for thread) 3939 */ 3940 crhold(cr); 3941 3942 /* 3943 * p_lwpcnt can't change since this is a kernel process. 3944 */ 3945 crset(pp, cr); 3946 3947 /* 3948 * Chroot 3949 */ 3950 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3951 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3952 3953 /* 3954 * Initialize zone's rctl set. 3955 */ 3956 set = rctl_set_create(); 3957 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3958 mutex_enter(&pp->p_lock); 3959 e.rcep_p.zone = zone; 3960 e.rcep_t = RCENTITY_ZONE; 3961 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3962 mutex_exit(&pp->p_lock); 3963 rctl_prealloc_destroy(gp); 3964 3965 /* 3966 * Apply the rctls passed in to zone_create(). This is basically a list 3967 * assignment: all of the old values are removed and the new ones 3968 * inserted. That is, if an empty list is passed in, all values are 3969 * removed. 3970 */ 3971 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3972 rctl_dict_entry_t *rde; 3973 rctl_hndl_t hndl; 3974 char *name; 3975 nvlist_t **nvlarray; 3976 uint_t i, nelem; 3977 int error; /* For ASSERT()s */ 3978 3979 name = nvpair_name(nvp); 3980 hndl = rctl_hndl_lookup(name); 3981 ASSERT(hndl != -1); 3982 rde = rctl_dict_lookup_hndl(hndl); 3983 ASSERT(rde != NULL); 3984 3985 for (; /* ever */; ) { 3986 rctl_val_t oval; 3987 3988 mutex_enter(&pp->p_lock); 3989 error = rctl_local_get(hndl, NULL, &oval, pp); 3990 mutex_exit(&pp->p_lock); 3991 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3992 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3993 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3994 break; 3995 mutex_enter(&pp->p_lock); 3996 error = rctl_local_delete(hndl, &oval, pp); 3997 mutex_exit(&pp->p_lock); 3998 ASSERT(error == 0); 3999 } 4000 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4001 ASSERT(error == 0); 4002 for (i = 0; i < nelem; i++) { 4003 rctl_val_t *nvalp; 4004 4005 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 4006 error = nvlist2rctlval(nvlarray[i], nvalp); 4007 ASSERT(error == 0); 4008 /* 4009 * rctl_local_insert can fail if the value being 4010 * inserted is a duplicate; this is OK. 4011 */ 4012 mutex_enter(&pp->p_lock); 4013 if (rctl_local_insert(hndl, nvalp, pp) != 0) 4014 kmem_cache_free(rctl_val_cache, nvalp); 4015 mutex_exit(&pp->p_lock); 4016 } 4017 } 4018 4019 /* 4020 * Tell the world that we're done setting up. 4021 * 4022 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 4023 * and atomically set the zone's processor set visibility. Once 4024 * we drop pool_lock() this zone will automatically get updated 4025 * to reflect any future changes to the pools configuration. 4026 * 4027 * Note that after we drop the locks below (zonehash_lock in 4028 * particular) other operations such as a zone_getattr call can 4029 * now proceed and observe the zone. That is the reason for doing a 4030 * state transition to the INITIALIZED state. 4031 */ 4032 pool_lock(); 4033 mutex_enter(&cpu_lock); 4034 mutex_enter(&zonehash_lock); 4035 zone_uniqid(zone); 4036 zone_zsd_configure(zone); 4037 if (pool_state == POOL_ENABLED) 4038 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4039 mutex_enter(&zone_status_lock); 4040 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4041 zone_status_set(zone, ZONE_IS_INITIALIZED); 4042 mutex_exit(&zone_status_lock); 4043 mutex_exit(&zonehash_lock); 4044 mutex_exit(&cpu_lock); 4045 pool_unlock(); 4046 4047 /* Now call the create callback for this key */ 4048 zsd_apply_all_keys(zsd_apply_create, zone); 4049 4050 /* The callbacks are complete. Mark ZONE_IS_READY */ 4051 mutex_enter(&zone_status_lock); 4052 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4053 zone_status_set(zone, ZONE_IS_READY); 4054 mutex_exit(&zone_status_lock); 4055 4056 /* 4057 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4058 * we launch init, and set the state to running. 4059 */ 4060 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4061 4062 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4063 id_t cid; 4064 4065 /* 4066 * Ok, this is a little complicated. We need to grab the 4067 * zone's pool's scheduling class ID; note that by now, we 4068 * are already bound to a pool if we need to be (zoneadmd 4069 * will have done that to us while we're in the READY 4070 * state). *But* the scheduling class for the zone's 'init' 4071 * must be explicitly passed to newproc, which doesn't 4072 * respect pool bindings. 4073 * 4074 * We hold the pool_lock across the call to newproc() to 4075 * close the obvious race: the pool's scheduling class 4076 * could change before we manage to create the LWP with 4077 * classid 'cid'. 4078 */ 4079 pool_lock(); 4080 if (zone->zone_defaultcid > 0) 4081 cid = zone->zone_defaultcid; 4082 else 4083 cid = pool_get_class(zone->zone_pool); 4084 if (cid == -1) 4085 cid = defaultcid; 4086 4087 /* 4088 * If this fails, zone_boot will ultimately fail. The 4089 * state of the zone will be set to SHUTTING_DOWN-- userland 4090 * will have to tear down the zone, and fail, or try again. 4091 */ 4092 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4093 minclsyspri - 1, &ct, 0)) != 0) { 4094 mutex_enter(&zone_status_lock); 4095 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4096 mutex_exit(&zone_status_lock); 4097 } else { 4098 zone->zone_boot_time = gethrestime_sec(); 4099 } 4100 4101 pool_unlock(); 4102 } 4103 4104 /* 4105 * Wait for zone_destroy() to be called. This is what we spend 4106 * most of our life doing. 4107 */ 4108 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4109 4110 if (ct) 4111 /* 4112 * At this point the process contract should be empty. 4113 * (Though if it isn't, it's not the end of the world.) 4114 */ 4115 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4116 4117 /* 4118 * Allow kcred to be freed when all referring processes 4119 * (including this one) go away. We can't just do this in 4120 * zone_free because we need to wait for the zone_cred_ref to 4121 * drop to 0 before calling zone_free, and the existence of 4122 * zone_kcred will prevent that. Thus, we call crfree here to 4123 * balance the crdup in zone_create. The crhold calls earlier 4124 * in zsched will be dropped when the thread and process exit. 4125 */ 4126 crfree(zone->zone_kcred); 4127 zone->zone_kcred = NULL; 4128 4129 exit(CLD_EXITED, 0); 4130 } 4131 4132 /* 4133 * Helper function to determine if there are any submounts of the 4134 * provided path. Used to make sure the zone doesn't "inherit" any 4135 * mounts from before it is created. 4136 */ 4137 static uint_t 4138 zone_mount_count(const char *rootpath) 4139 { 4140 vfs_t *vfsp; 4141 uint_t count = 0; 4142 size_t rootpathlen = strlen(rootpath); 4143 4144 /* 4145 * Holding zonehash_lock prevents race conditions with 4146 * vfs_list_add()/vfs_list_remove() since we serialize with 4147 * zone_find_by_path(). 4148 */ 4149 ASSERT(MUTEX_HELD(&zonehash_lock)); 4150 /* 4151 * The rootpath must end with a '/' 4152 */ 4153 ASSERT(rootpath[rootpathlen - 1] == '/'); 4154 4155 /* 4156 * This intentionally does not count the rootpath itself if that 4157 * happens to be a mount point. 4158 */ 4159 vfs_list_read_lock(); 4160 vfsp = rootvfs; 4161 do { 4162 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4163 rootpathlen) == 0) 4164 count++; 4165 vfsp = vfsp->vfs_next; 4166 } while (vfsp != rootvfs); 4167 vfs_list_unlock(); 4168 return (count); 4169 } 4170 4171 /* 4172 * Helper function to make sure that a zone created on 'rootpath' 4173 * wouldn't end up containing other zones' rootpaths. 4174 */ 4175 static boolean_t 4176 zone_is_nested(const char *rootpath) 4177 { 4178 zone_t *zone; 4179 size_t rootpathlen = strlen(rootpath); 4180 size_t len; 4181 4182 ASSERT(MUTEX_HELD(&zonehash_lock)); 4183 4184 /* 4185 * zone_set_root() appended '/' and '\0' at the end of rootpath 4186 */ 4187 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4188 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4189 return (B_TRUE); 4190 4191 for (zone = list_head(&zone_active); zone != NULL; 4192 zone = list_next(&zone_active, zone)) { 4193 if (zone == global_zone) 4194 continue; 4195 len = strlen(zone->zone_rootpath); 4196 if (strncmp(rootpath, zone->zone_rootpath, 4197 MIN(rootpathlen, len)) == 0) 4198 return (B_TRUE); 4199 } 4200 return (B_FALSE); 4201 } 4202 4203 static int 4204 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4205 size_t zone_privssz) 4206 { 4207 priv_set_t *privs; 4208 4209 if (zone_privssz < sizeof (priv_set_t)) 4210 return (ENOMEM); 4211 4212 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4213 4214 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4215 kmem_free(privs, sizeof (priv_set_t)); 4216 return (EFAULT); 4217 } 4218 4219 zone->zone_privset = privs; 4220 return (0); 4221 } 4222 4223 /* 4224 * We make creative use of nvlists to pass in rctls from userland. The list is 4225 * a list of the following structures: 4226 * 4227 * (name = rctl_name, value = nvpair_list_array) 4228 * 4229 * Where each element of the nvpair_list_array is of the form: 4230 * 4231 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4232 * (name = "limit", value = uint64_t), 4233 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4234 */ 4235 static int 4236 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4237 { 4238 nvpair_t *nvp = NULL; 4239 nvlist_t *nvl = NULL; 4240 char *kbuf; 4241 int error; 4242 rctl_val_t rv; 4243 4244 *nvlp = NULL; 4245 4246 if (buflen == 0) 4247 return (0); 4248 4249 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4250 return (ENOMEM); 4251 if (copyin(ubuf, kbuf, buflen)) { 4252 error = EFAULT; 4253 goto out; 4254 } 4255 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4256 /* 4257 * nvl may have been allocated/free'd, but the value set to 4258 * non-NULL, so we reset it here. 4259 */ 4260 nvl = NULL; 4261 error = EINVAL; 4262 goto out; 4263 } 4264 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4265 rctl_dict_entry_t *rde; 4266 rctl_hndl_t hndl; 4267 nvlist_t **nvlarray; 4268 uint_t i, nelem; 4269 char *name; 4270 4271 error = EINVAL; 4272 name = nvpair_name(nvp); 4273 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4274 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4275 goto out; 4276 } 4277 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4278 goto out; 4279 } 4280 rde = rctl_dict_lookup_hndl(hndl); 4281 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4282 ASSERT(error == 0); 4283 for (i = 0; i < nelem; i++) { 4284 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4285 goto out; 4286 } 4287 if (rctl_invalid_value(rde, &rv)) { 4288 error = EINVAL; 4289 goto out; 4290 } 4291 } 4292 error = 0; 4293 *nvlp = nvl; 4294 out: 4295 kmem_free(kbuf, buflen); 4296 if (error && nvl != NULL) 4297 nvlist_free(nvl); 4298 return (error); 4299 } 4300 4301 int 4302 zone_create_error(int er_error, int er_ext, int *er_out) 4303 { 4304 if (er_out != NULL) { 4305 if (copyout(&er_ext, er_out, sizeof (int))) { 4306 return (set_errno(EFAULT)); 4307 } 4308 } 4309 return (set_errno(er_error)); 4310 } 4311 4312 static int 4313 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4314 { 4315 ts_label_t *tsl; 4316 bslabel_t blab; 4317 4318 /* Get label from user */ 4319 if (copyin(lab, &blab, sizeof (blab)) != 0) 4320 return (EFAULT); 4321 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4322 if (tsl == NULL) 4323 return (ENOMEM); 4324 4325 zone->zone_slabel = tsl; 4326 return (0); 4327 } 4328 4329 /* 4330 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4331 */ 4332 static int 4333 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4334 { 4335 char *kbuf; 4336 char *dataset, *next; 4337 zone_dataset_t *zd; 4338 size_t len; 4339 4340 if (ubuf == NULL || buflen == 0) 4341 return (0); 4342 4343 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4344 return (ENOMEM); 4345 4346 if (copyin(ubuf, kbuf, buflen) != 0) { 4347 kmem_free(kbuf, buflen); 4348 return (EFAULT); 4349 } 4350 4351 dataset = next = kbuf; 4352 for (;;) { 4353 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4354 4355 next = strchr(dataset, ','); 4356 4357 if (next == NULL) 4358 len = strlen(dataset); 4359 else 4360 len = next - dataset; 4361 4362 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4363 bcopy(dataset, zd->zd_dataset, len); 4364 zd->zd_dataset[len] = '\0'; 4365 4366 list_insert_head(&zone->zone_datasets, zd); 4367 4368 if (next == NULL) 4369 break; 4370 4371 dataset = next + 1; 4372 } 4373 4374 kmem_free(kbuf, buflen); 4375 return (0); 4376 } 4377 4378 /* 4379 * System call to create/initialize a new zone named 'zone_name', rooted 4380 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4381 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4382 * with labeling set by 'match', 'doi', and 'label'. 4383 * 4384 * If extended error is non-null, we may use it to return more detailed 4385 * error information. 4386 */ 4387 static zoneid_t 4388 zone_create(const char *zone_name, const char *zone_root, 4389 const priv_set_t *zone_privs, size_t zone_privssz, 4390 caddr_t rctlbuf, size_t rctlbufsz, 4391 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4392 int match, uint32_t doi, const bslabel_t *label, 4393 int flags) 4394 { 4395 struct zsched_arg zarg; 4396 nvlist_t *rctls = NULL; 4397 proc_t *pp = curproc; 4398 zone_t *zone, *ztmp; 4399 zoneid_t zoneid; 4400 int error; 4401 int error2 = 0; 4402 char *str; 4403 cred_t *zkcr; 4404 boolean_t insert_label_hash; 4405 4406 if (secpolicy_zone_config(CRED()) != 0) 4407 return (set_errno(EPERM)); 4408 4409 /* can't boot zone from within chroot environment */ 4410 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4411 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4412 extended_error)); 4413 4414 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4415 zoneid = zone->zone_id = id_alloc(zoneid_space); 4416 zone->zone_status = ZONE_IS_UNINITIALIZED; 4417 zone->zone_pool = pool_default; 4418 zone->zone_pool_mod = gethrtime(); 4419 zone->zone_psetid = ZONE_PS_INVAL; 4420 zone->zone_ncpus = 0; 4421 zone->zone_ncpus_online = 0; 4422 zone->zone_restart_init = B_TRUE; 4423 zone->zone_brand = &native_brand; 4424 zone->zone_initname = NULL; 4425 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4426 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4427 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4428 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4429 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4430 offsetof(zone_ref_t, zref_linkage)); 4431 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4432 offsetof(struct zsd_entry, zsd_linkage)); 4433 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4434 offsetof(zone_dataset_t, zd_linkage)); 4435 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4436 offsetof(zone_dl_t, zdl_linkage)); 4437 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4438 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4439 4440 if (flags & ZCF_NET_EXCL) { 4441 zone->zone_flags |= ZF_NET_EXCL; 4442 } 4443 4444 if ((error = zone_set_name(zone, zone_name)) != 0) { 4445 zone_free(zone); 4446 return (zone_create_error(error, 0, extended_error)); 4447 } 4448 4449 if ((error = zone_set_root(zone, zone_root)) != 0) { 4450 zone_free(zone); 4451 return (zone_create_error(error, 0, extended_error)); 4452 } 4453 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4454 zone_free(zone); 4455 return (zone_create_error(error, 0, extended_error)); 4456 } 4457 4458 /* initialize node name to be the same as zone name */ 4459 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4460 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4461 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4462 4463 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4464 zone->zone_domain[0] = '\0'; 4465 zone->zone_hostid = HW_INVALID_HOSTID; 4466 zone->zone_shares = 1; 4467 zone->zone_shmmax = 0; 4468 zone->zone_ipc.ipcq_shmmni = 0; 4469 zone->zone_ipc.ipcq_semmni = 0; 4470 zone->zone_ipc.ipcq_msgmni = 0; 4471 zone->zone_bootargs = NULL; 4472 zone->zone_fs_allowed = NULL; 4473 4474 secflags_zero(&zone0.zone_secflags.psf_lower); 4475 secflags_zero(&zone0.zone_secflags.psf_effective); 4476 secflags_zero(&zone0.zone_secflags.psf_inherit); 4477 secflags_fullset(&zone0.zone_secflags.psf_upper); 4478 4479 zone->zone_initname = 4480 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4481 (void) strcpy(zone->zone_initname, zone_default_initname); 4482 zone->zone_nlwps = 0; 4483 zone->zone_nlwps_ctl = INT_MAX; 4484 zone->zone_nprocs = 0; 4485 zone->zone_nprocs_ctl = INT_MAX; 4486 zone->zone_locked_mem = 0; 4487 zone->zone_locked_mem_ctl = UINT64_MAX; 4488 zone->zone_max_swap = 0; 4489 zone->zone_max_swap_ctl = UINT64_MAX; 4490 zone->zone_max_lofi = 0; 4491 zone->zone_max_lofi_ctl = UINT64_MAX; 4492 zone0.zone_lockedmem_kstat = NULL; 4493 zone0.zone_swapresv_kstat = NULL; 4494 4495 /* 4496 * Zsched initializes the rctls. 4497 */ 4498 zone->zone_rctls = NULL; 4499 4500 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4501 zone_free(zone); 4502 return (zone_create_error(error, 0, extended_error)); 4503 } 4504 4505 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4506 zone_free(zone); 4507 return (set_errno(error)); 4508 } 4509 4510 /* 4511 * Read in the trusted system parameters: 4512 * match flag and sensitivity label. 4513 */ 4514 zone->zone_match = match; 4515 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4516 /* Fail if requested to set doi to anything but system's doi */ 4517 if (doi != 0 && doi != default_doi) { 4518 zone_free(zone); 4519 return (set_errno(EINVAL)); 4520 } 4521 /* Always apply system's doi to the zone */ 4522 error = zone_set_label(zone, label, default_doi); 4523 if (error != 0) { 4524 zone_free(zone); 4525 return (set_errno(error)); 4526 } 4527 insert_label_hash = B_TRUE; 4528 } else { 4529 /* all zones get an admin_low label if system is not labeled */ 4530 zone->zone_slabel = l_admin_low; 4531 label_hold(l_admin_low); 4532 insert_label_hash = B_FALSE; 4533 } 4534 4535 /* 4536 * Stop all lwps since that's what normally happens as part of fork(). 4537 * This needs to happen before we grab any locks to avoid deadlock 4538 * (another lwp in the process could be waiting for the held lock). 4539 */ 4540 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4541 zone_free(zone); 4542 nvlist_free(rctls); 4543 return (zone_create_error(error, 0, extended_error)); 4544 } 4545 4546 if (block_mounts(zone) == 0) { 4547 mutex_enter(&pp->p_lock); 4548 if (curthread != pp->p_agenttp) 4549 continuelwps(pp); 4550 mutex_exit(&pp->p_lock); 4551 zone_free(zone); 4552 nvlist_free(rctls); 4553 return (zone_create_error(error, 0, extended_error)); 4554 } 4555 4556 /* 4557 * Set up credential for kernel access. After this, any errors 4558 * should go through the dance in errout rather than calling 4559 * zone_free directly. 4560 */ 4561 zone->zone_kcred = crdup(kcred); 4562 crsetzone(zone->zone_kcred, zone); 4563 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4564 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4565 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4566 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4567 4568 mutex_enter(&zonehash_lock); 4569 /* 4570 * Make sure zone doesn't already exist. 4571 * 4572 * If the system and zone are labeled, 4573 * make sure no other zone exists that has the same label. 4574 */ 4575 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4576 (insert_label_hash && 4577 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4578 zone_status_t status; 4579 4580 status = zone_status_get(ztmp); 4581 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4582 error = EEXIST; 4583 else 4584 error = EBUSY; 4585 4586 if (insert_label_hash) 4587 error2 = ZE_LABELINUSE; 4588 4589 goto errout; 4590 } 4591 4592 /* 4593 * Don't allow zone creations which would cause one zone's rootpath to 4594 * be accessible from that of another (non-global) zone. 4595 */ 4596 if (zone_is_nested(zone->zone_rootpath)) { 4597 error = EBUSY; 4598 goto errout; 4599 } 4600 4601 ASSERT(zonecount != 0); /* check for leaks */ 4602 if (zonecount + 1 > maxzones) { 4603 error = ENOMEM; 4604 goto errout; 4605 } 4606 4607 if (zone_mount_count(zone->zone_rootpath) != 0) { 4608 error = EBUSY; 4609 error2 = ZE_AREMOUNTS; 4610 goto errout; 4611 } 4612 4613 /* 4614 * Zone is still incomplete, but we need to drop all locks while 4615 * zsched() initializes this zone's kernel process. We 4616 * optimistically add the zone to the hashtable and associated 4617 * lists so a parallel zone_create() doesn't try to create the 4618 * same zone. 4619 */ 4620 zonecount++; 4621 (void) mod_hash_insert(zonehashbyid, 4622 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4623 (mod_hash_val_t)(uintptr_t)zone); 4624 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4625 (void) strcpy(str, zone->zone_name); 4626 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4627 (mod_hash_val_t)(uintptr_t)zone); 4628 if (insert_label_hash) { 4629 (void) mod_hash_insert(zonehashbylabel, 4630 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4631 zone->zone_flags |= ZF_HASHED_LABEL; 4632 } 4633 4634 /* 4635 * Insert into active list. At this point there are no 'hold's 4636 * on the zone, but everyone else knows not to use it, so we can 4637 * continue to use it. zsched() will do a zone_hold() if the 4638 * newproc() is successful. 4639 */ 4640 list_insert_tail(&zone_active, zone); 4641 mutex_exit(&zonehash_lock); 4642 4643 zarg.zone = zone; 4644 zarg.nvlist = rctls; 4645 /* 4646 * The process, task, and project rctls are probably wrong; 4647 * we need an interface to get the default values of all rctls, 4648 * and initialize zsched appropriately. I'm not sure that that 4649 * makes much of a difference, though. 4650 */ 4651 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4652 if (error != 0) { 4653 /* 4654 * We need to undo all globally visible state. 4655 */ 4656 mutex_enter(&zonehash_lock); 4657 list_remove(&zone_active, zone); 4658 if (zone->zone_flags & ZF_HASHED_LABEL) { 4659 ASSERT(zone->zone_slabel != NULL); 4660 (void) mod_hash_destroy(zonehashbylabel, 4661 (mod_hash_key_t)zone->zone_slabel); 4662 } 4663 (void) mod_hash_destroy(zonehashbyname, 4664 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4665 (void) mod_hash_destroy(zonehashbyid, 4666 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4667 ASSERT(zonecount > 1); 4668 zonecount--; 4669 goto errout; 4670 } 4671 4672 /* 4673 * Zone creation can't fail from now on. 4674 */ 4675 4676 /* 4677 * Create zone kstats 4678 */ 4679 zone_kstat_create(zone); 4680 4681 /* 4682 * Let the other lwps continue. 4683 */ 4684 mutex_enter(&pp->p_lock); 4685 if (curthread != pp->p_agenttp) 4686 continuelwps(pp); 4687 mutex_exit(&pp->p_lock); 4688 4689 /* 4690 * Wait for zsched to finish initializing the zone. 4691 */ 4692 zone_status_wait(zone, ZONE_IS_READY); 4693 /* 4694 * The zone is fully visible, so we can let mounts progress. 4695 */ 4696 resume_mounts(zone); 4697 nvlist_free(rctls); 4698 4699 return (zoneid); 4700 4701 errout: 4702 mutex_exit(&zonehash_lock); 4703 /* 4704 * Let the other lwps continue. 4705 */ 4706 mutex_enter(&pp->p_lock); 4707 if (curthread != pp->p_agenttp) 4708 continuelwps(pp); 4709 mutex_exit(&pp->p_lock); 4710 4711 resume_mounts(zone); 4712 nvlist_free(rctls); 4713 /* 4714 * There is currently one reference to the zone, a cred_ref from 4715 * zone_kcred. To free the zone, we call crfree, which will call 4716 * zone_cred_rele, which will call zone_free. 4717 */ 4718 ASSERT(zone->zone_cred_ref == 1); 4719 ASSERT(zone->zone_kcred->cr_ref == 1); 4720 ASSERT(zone->zone_ref == 0); 4721 zkcr = zone->zone_kcred; 4722 zone->zone_kcred = NULL; 4723 crfree(zkcr); /* triggers call to zone_free */ 4724 return (zone_create_error(error, error2, extended_error)); 4725 } 4726 4727 /* 4728 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4729 * the heavy lifting. initname is the path to the program to launch 4730 * at the "top" of the zone; if this is NULL, we use the system default, 4731 * which is stored at zone_default_initname. 4732 */ 4733 static int 4734 zone_boot(zoneid_t zoneid) 4735 { 4736 int err; 4737 zone_t *zone; 4738 4739 if (secpolicy_zone_config(CRED()) != 0) 4740 return (set_errno(EPERM)); 4741 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4742 return (set_errno(EINVAL)); 4743 4744 mutex_enter(&zonehash_lock); 4745 /* 4746 * Look for zone under hash lock to prevent races with calls to 4747 * zone_shutdown, zone_destroy, etc. 4748 */ 4749 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4750 mutex_exit(&zonehash_lock); 4751 return (set_errno(EINVAL)); 4752 } 4753 4754 mutex_enter(&zone_status_lock); 4755 if (zone_status_get(zone) != ZONE_IS_READY) { 4756 mutex_exit(&zone_status_lock); 4757 mutex_exit(&zonehash_lock); 4758 return (set_errno(EINVAL)); 4759 } 4760 zone_status_set(zone, ZONE_IS_BOOTING); 4761 mutex_exit(&zone_status_lock); 4762 4763 zone_hold(zone); /* so we can use the zone_t later */ 4764 mutex_exit(&zonehash_lock); 4765 4766 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4767 zone_rele(zone); 4768 return (set_errno(EINTR)); 4769 } 4770 4771 /* 4772 * Boot (starting init) might have failed, in which case the zone 4773 * will go to the SHUTTING_DOWN state; an appropriate errno will 4774 * be placed in zone->zone_boot_err, and so we return that. 4775 */ 4776 err = zone->zone_boot_err; 4777 zone_rele(zone); 4778 return (err ? set_errno(err) : 0); 4779 } 4780 4781 /* 4782 * Kills all user processes in the zone, waiting for them all to exit 4783 * before returning. 4784 */ 4785 static int 4786 zone_empty(zone_t *zone) 4787 { 4788 int waitstatus; 4789 4790 /* 4791 * We need to drop zonehash_lock before killing all 4792 * processes, otherwise we'll deadlock with zone_find_* 4793 * which can be called from the exit path. 4794 */ 4795 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4796 while ((waitstatus = zone_status_timedwait_sig(zone, 4797 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4798 killall(zone->zone_id); 4799 } 4800 /* 4801 * return EINTR if we were signaled 4802 */ 4803 if (waitstatus == 0) 4804 return (EINTR); 4805 return (0); 4806 } 4807 4808 /* 4809 * This function implements the policy for zone visibility. 4810 * 4811 * In standard Solaris, a non-global zone can only see itself. 4812 * 4813 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4814 * it dominates. For this test, the label of the global zone is treated as 4815 * admin_high so it is special-cased instead of being checked for dominance. 4816 * 4817 * Returns true if zone attributes are viewable, false otherwise. 4818 */ 4819 static boolean_t 4820 zone_list_access(zone_t *zone) 4821 { 4822 4823 if (curproc->p_zone == global_zone || 4824 curproc->p_zone == zone) { 4825 return (B_TRUE); 4826 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4827 bslabel_t *curproc_label; 4828 bslabel_t *zone_label; 4829 4830 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4831 zone_label = label2bslabel(zone->zone_slabel); 4832 4833 if (zone->zone_id != GLOBAL_ZONEID && 4834 bldominates(curproc_label, zone_label)) { 4835 return (B_TRUE); 4836 } else { 4837 return (B_FALSE); 4838 } 4839 } else { 4840 return (B_FALSE); 4841 } 4842 } 4843 4844 /* 4845 * Systemcall to start the zone's halt sequence. By the time this 4846 * function successfully returns, all user processes and kernel threads 4847 * executing in it will have exited, ZSD shutdown callbacks executed, 4848 * and the zone status set to ZONE_IS_DOWN. 4849 * 4850 * It is possible that the call will interrupt itself if the caller is the 4851 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4852 */ 4853 static int 4854 zone_shutdown(zoneid_t zoneid) 4855 { 4856 int error; 4857 zone_t *zone; 4858 zone_status_t status; 4859 4860 if (secpolicy_zone_config(CRED()) != 0) 4861 return (set_errno(EPERM)); 4862 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4863 return (set_errno(EINVAL)); 4864 4865 mutex_enter(&zonehash_lock); 4866 /* 4867 * Look for zone under hash lock to prevent races with other 4868 * calls to zone_shutdown and zone_destroy. 4869 */ 4870 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4871 mutex_exit(&zonehash_lock); 4872 return (set_errno(EINVAL)); 4873 } 4874 4875 /* 4876 * We have to drop zonehash_lock before calling block_mounts. 4877 * Hold the zone so we can continue to use the zone_t. 4878 */ 4879 zone_hold(zone); 4880 mutex_exit(&zonehash_lock); 4881 4882 /* 4883 * Block mounts so that VFS_MOUNT() can get an accurate view of 4884 * the zone's status with regards to ZONE_IS_SHUTTING down. 4885 * 4886 * e.g. NFS can fail the mount if it determines that the zone 4887 * has already begun the shutdown sequence. 4888 * 4889 */ 4890 if (block_mounts(zone) == 0) { 4891 zone_rele(zone); 4892 return (set_errno(EINTR)); 4893 } 4894 4895 mutex_enter(&zonehash_lock); 4896 mutex_enter(&zone_status_lock); 4897 status = zone_status_get(zone); 4898 /* 4899 * Fail if the zone isn't fully initialized yet. 4900 */ 4901 if (status < ZONE_IS_READY) { 4902 mutex_exit(&zone_status_lock); 4903 mutex_exit(&zonehash_lock); 4904 resume_mounts(zone); 4905 zone_rele(zone); 4906 return (set_errno(EINVAL)); 4907 } 4908 /* 4909 * If conditions required for zone_shutdown() to return have been met, 4910 * return success. 4911 */ 4912 if (status >= ZONE_IS_DOWN) { 4913 mutex_exit(&zone_status_lock); 4914 mutex_exit(&zonehash_lock); 4915 resume_mounts(zone); 4916 zone_rele(zone); 4917 return (0); 4918 } 4919 /* 4920 * If zone_shutdown() hasn't been called before, go through the motions. 4921 * If it has, there's nothing to do but wait for the kernel threads to 4922 * drain. 4923 */ 4924 if (status < ZONE_IS_EMPTY) { 4925 uint_t ntasks; 4926 4927 mutex_enter(&zone->zone_lock); 4928 if ((ntasks = zone->zone_ntasks) != 1) { 4929 /* 4930 * There's still stuff running. 4931 */ 4932 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4933 } 4934 mutex_exit(&zone->zone_lock); 4935 if (ntasks == 1) { 4936 /* 4937 * The only way to create another task is through 4938 * zone_enter(), which will block until we drop 4939 * zonehash_lock. The zone is empty. 4940 */ 4941 if (zone->zone_kthreads == NULL) { 4942 /* 4943 * Skip ahead to ZONE_IS_DOWN 4944 */ 4945 zone_status_set(zone, ZONE_IS_DOWN); 4946 } else { 4947 zone_status_set(zone, ZONE_IS_EMPTY); 4948 } 4949 } 4950 } 4951 mutex_exit(&zone_status_lock); 4952 mutex_exit(&zonehash_lock); 4953 resume_mounts(zone); 4954 4955 if (error = zone_empty(zone)) { 4956 zone_rele(zone); 4957 return (set_errno(error)); 4958 } 4959 /* 4960 * After the zone status goes to ZONE_IS_DOWN this zone will no 4961 * longer be notified of changes to the pools configuration, so 4962 * in order to not end up with a stale pool pointer, we point 4963 * ourselves at the default pool and remove all resource 4964 * visibility. This is especially important as the zone_t may 4965 * languish on the deathrow for a very long time waiting for 4966 * cred's to drain out. 4967 * 4968 * This rebinding of the zone can happen multiple times 4969 * (presumably due to interrupted or parallel systemcalls) 4970 * without any adverse effects. 4971 */ 4972 if (pool_lock_intr() != 0) { 4973 zone_rele(zone); 4974 return (set_errno(EINTR)); 4975 } 4976 if (pool_state == POOL_ENABLED) { 4977 mutex_enter(&cpu_lock); 4978 zone_pool_set(zone, pool_default); 4979 /* 4980 * The zone no longer needs to be able to see any cpus. 4981 */ 4982 zone_pset_set(zone, ZONE_PS_INVAL); 4983 mutex_exit(&cpu_lock); 4984 } 4985 pool_unlock(); 4986 4987 /* 4988 * ZSD shutdown callbacks can be executed multiple times, hence 4989 * it is safe to not be holding any locks across this call. 4990 */ 4991 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4992 4993 mutex_enter(&zone_status_lock); 4994 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4995 zone_status_set(zone, ZONE_IS_DOWN); 4996 mutex_exit(&zone_status_lock); 4997 4998 /* 4999 * Wait for kernel threads to drain. 5000 */ 5001 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 5002 zone_rele(zone); 5003 return (set_errno(EINTR)); 5004 } 5005 5006 /* 5007 * Zone can be become down/destroyable even if the above wait 5008 * returns EINTR, so any code added here may never execute. 5009 * (i.e. don't add code here) 5010 */ 5011 5012 zone_rele(zone); 5013 return (0); 5014 } 5015 5016 /* 5017 * Log the specified zone's reference counts. The caller should not be 5018 * holding the zone's zone_lock. 5019 */ 5020 static void 5021 zone_log_refcounts(zone_t *zone) 5022 { 5023 char *buffer; 5024 char *buffer_position; 5025 uint32_t buffer_size; 5026 uint32_t index; 5027 uint_t ref; 5028 uint_t cred_ref; 5029 5030 /* 5031 * Construct a string representing the subsystem-specific reference 5032 * counts. The counts are printed in ascending order by index into the 5033 * zone_t::zone_subsys_ref array. The list will be surrounded by 5034 * square brackets [] and will only contain nonzero reference counts. 5035 * 5036 * The buffer will hold two square bracket characters plus ten digits, 5037 * one colon, one space, one comma, and some characters for a 5038 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5039 * bit integers have at most ten decimal digits.) The last 5040 * reference count's comma is replaced by the closing square 5041 * bracket and a NULL character to terminate the string. 5042 * 5043 * NOTE: We have to grab the zone's zone_lock to create a consistent 5044 * snapshot of the zone's reference counters. 5045 * 5046 * First, figure out how much space the string buffer will need. 5047 * The buffer's size is stored in buffer_size. 5048 */ 5049 buffer_size = 2; /* for the square brackets */ 5050 mutex_enter(&zone->zone_lock); 5051 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5052 ref = zone->zone_ref; 5053 cred_ref = zone->zone_cred_ref; 5054 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5055 if (zone->zone_subsys_ref[index] != 0) 5056 buffer_size += strlen(zone_ref_subsys_names[index]) + 5057 13; 5058 if (buffer_size == 2) { 5059 /* 5060 * No subsystems had nonzero reference counts. Don't bother 5061 * with allocating a buffer; just log the general-purpose and 5062 * credential reference counts. 5063 */ 5064 mutex_exit(&zone->zone_lock); 5065 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5066 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5067 "references and %u credential references are still extant", 5068 zone->zone_name, zone->zone_id, ref, cred_ref); 5069 return; 5070 } 5071 5072 /* 5073 * buffer_size contains the exact number of characters that the 5074 * buffer will need. Allocate the buffer and fill it with nonzero 5075 * subsystem-specific reference counts. Surround the results with 5076 * square brackets afterwards. 5077 */ 5078 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5079 buffer_position = &buffer[1]; 5080 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5081 /* 5082 * NOTE: The DDI's version of sprintf() returns a pointer to 5083 * the modified buffer rather than the number of bytes written 5084 * (as in snprintf(3C)). This is unfortunate and annoying. 5085 * Therefore, we'll use snprintf() with INT_MAX to get the 5086 * number of bytes written. Using INT_MAX is safe because 5087 * the buffer is perfectly sized for the data: we'll never 5088 * overrun the buffer. 5089 */ 5090 if (zone->zone_subsys_ref[index] != 0) 5091 buffer_position += snprintf(buffer_position, INT_MAX, 5092 "%s: %u,", zone_ref_subsys_names[index], 5093 zone->zone_subsys_ref[index]); 5094 } 5095 mutex_exit(&zone->zone_lock); 5096 buffer[0] = '['; 5097 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5098 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5099 buffer_position[-1] = ']'; 5100 5101 /* 5102 * Log the reference counts and free the message buffer. 5103 */ 5104 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5105 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5106 "%u credential references are still extant %s", zone->zone_name, 5107 zone->zone_id, ref, cred_ref, buffer); 5108 kmem_free(buffer, buffer_size); 5109 } 5110 5111 /* 5112 * Systemcall entry point to finalize the zone halt process. The caller 5113 * must have already successfully called zone_shutdown(). 5114 * 5115 * Upon successful completion, the zone will have been fully destroyed: 5116 * zsched will have exited, destructor callbacks executed, and the zone 5117 * removed from the list of active zones. 5118 */ 5119 static int 5120 zone_destroy(zoneid_t zoneid) 5121 { 5122 uint64_t uniqid; 5123 zone_t *zone; 5124 zone_status_t status; 5125 clock_t wait_time; 5126 boolean_t log_refcounts; 5127 5128 if (secpolicy_zone_config(CRED()) != 0) 5129 return (set_errno(EPERM)); 5130 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5131 return (set_errno(EINVAL)); 5132 5133 mutex_enter(&zonehash_lock); 5134 /* 5135 * Look for zone under hash lock to prevent races with other 5136 * calls to zone_destroy. 5137 */ 5138 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5139 mutex_exit(&zonehash_lock); 5140 return (set_errno(EINVAL)); 5141 } 5142 5143 if (zone_mount_count(zone->zone_rootpath) != 0) { 5144 mutex_exit(&zonehash_lock); 5145 return (set_errno(EBUSY)); 5146 } 5147 mutex_enter(&zone_status_lock); 5148 status = zone_status_get(zone); 5149 if (status < ZONE_IS_DOWN) { 5150 mutex_exit(&zone_status_lock); 5151 mutex_exit(&zonehash_lock); 5152 return (set_errno(EBUSY)); 5153 } else if (status == ZONE_IS_DOWN) { 5154 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5155 } 5156 mutex_exit(&zone_status_lock); 5157 zone_hold(zone); 5158 mutex_exit(&zonehash_lock); 5159 5160 /* 5161 * wait for zsched to exit 5162 */ 5163 zone_status_wait(zone, ZONE_IS_DEAD); 5164 zone_zsd_callbacks(zone, ZSD_DESTROY); 5165 zone->zone_netstack = NULL; 5166 uniqid = zone->zone_uniqid; 5167 zone_rele(zone); 5168 zone = NULL; /* potentially free'd */ 5169 5170 log_refcounts = B_FALSE; 5171 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5172 mutex_enter(&zonehash_lock); 5173 for (; /* ever */; ) { 5174 boolean_t unref; 5175 boolean_t refs_have_been_logged; 5176 5177 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5178 zone->zone_uniqid != uniqid) { 5179 /* 5180 * The zone has gone away. Necessary conditions 5181 * are met, so we return success. 5182 */ 5183 mutex_exit(&zonehash_lock); 5184 return (0); 5185 } 5186 mutex_enter(&zone->zone_lock); 5187 unref = ZONE_IS_UNREF(zone); 5188 refs_have_been_logged = (zone->zone_flags & 5189 ZF_REFCOUNTS_LOGGED); 5190 mutex_exit(&zone->zone_lock); 5191 if (unref) { 5192 /* 5193 * There is only one reference to the zone -- that 5194 * added when the zone was added to the hashtables -- 5195 * and things will remain this way until we drop 5196 * zonehash_lock... we can go ahead and cleanup the 5197 * zone. 5198 */ 5199 break; 5200 } 5201 5202 /* 5203 * Wait for zone_rele_common() or zone_cred_rele() to signal 5204 * zone_destroy_cv. zone_destroy_cv is signaled only when 5205 * some zone's general-purpose reference count reaches one. 5206 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5207 * on zone_destroy_cv, then log the zone's reference counts and 5208 * continue to wait for zone_rele() and zone_cred_rele(). 5209 */ 5210 if (!refs_have_been_logged) { 5211 if (!log_refcounts) { 5212 /* 5213 * This thread hasn't timed out waiting on 5214 * zone_destroy_cv yet. Wait wait_time clock 5215 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5216 * seconds) for the zone's references to clear. 5217 */ 5218 ASSERT(wait_time > 0); 5219 wait_time = cv_reltimedwait_sig( 5220 &zone_destroy_cv, &zonehash_lock, wait_time, 5221 TR_SEC); 5222 if (wait_time > 0) { 5223 /* 5224 * A thread in zone_rele() or 5225 * zone_cred_rele() signaled 5226 * zone_destroy_cv before this thread's 5227 * wait timed out. The zone might have 5228 * only one reference left; find out! 5229 */ 5230 continue; 5231 } else if (wait_time == 0) { 5232 /* The thread's process was signaled. */ 5233 mutex_exit(&zonehash_lock); 5234 return (set_errno(EINTR)); 5235 } 5236 5237 /* 5238 * The thread timed out while waiting on 5239 * zone_destroy_cv. Even though the thread 5240 * timed out, it has to check whether another 5241 * thread woke up from zone_destroy_cv and 5242 * destroyed the zone. 5243 * 5244 * If the zone still exists and has more than 5245 * one unreleased general-purpose reference, 5246 * then log the zone's reference counts. 5247 */ 5248 log_refcounts = B_TRUE; 5249 continue; 5250 } 5251 5252 /* 5253 * The thread already timed out on zone_destroy_cv while 5254 * waiting for subsystems to release the zone's last 5255 * general-purpose references. Log the zone's reference 5256 * counts and wait indefinitely on zone_destroy_cv. 5257 */ 5258 zone_log_refcounts(zone); 5259 } 5260 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5261 /* The thread's process was signaled. */ 5262 mutex_exit(&zonehash_lock); 5263 return (set_errno(EINTR)); 5264 } 5265 } 5266 5267 /* 5268 * Remove CPU cap for this zone now since we're not going to 5269 * fail below this point. 5270 */ 5271 cpucaps_zone_remove(zone); 5272 5273 /* Get rid of the zone's kstats */ 5274 zone_kstat_delete(zone); 5275 5276 /* remove the pfexecd doors */ 5277 if (zone->zone_pfexecd != NULL) { 5278 klpd_freelist(&zone->zone_pfexecd); 5279 zone->zone_pfexecd = NULL; 5280 } 5281 5282 /* free brand specific data */ 5283 if (ZONE_IS_BRANDED(zone)) 5284 ZBROP(zone)->b_free_brand_data(zone); 5285 5286 /* Say goodbye to brand framework. */ 5287 brand_unregister_zone(zone->zone_brand); 5288 5289 /* 5290 * It is now safe to let the zone be recreated; remove it from the 5291 * lists. The memory will not be freed until the last cred 5292 * reference goes away. 5293 */ 5294 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5295 zonecount--; 5296 /* remove from active list and hash tables */ 5297 list_remove(&zone_active, zone); 5298 (void) mod_hash_destroy(zonehashbyname, 5299 (mod_hash_key_t)zone->zone_name); 5300 (void) mod_hash_destroy(zonehashbyid, 5301 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5302 if (zone->zone_flags & ZF_HASHED_LABEL) 5303 (void) mod_hash_destroy(zonehashbylabel, 5304 (mod_hash_key_t)zone->zone_slabel); 5305 mutex_exit(&zonehash_lock); 5306 5307 /* 5308 * Release the root vnode; we're not using it anymore. Nor should any 5309 * other thread that might access it exist. 5310 */ 5311 if (zone->zone_rootvp != NULL) { 5312 VN_RELE(zone->zone_rootvp); 5313 zone->zone_rootvp = NULL; 5314 } 5315 5316 /* add to deathrow list */ 5317 mutex_enter(&zone_deathrow_lock); 5318 list_insert_tail(&zone_deathrow, zone); 5319 mutex_exit(&zone_deathrow_lock); 5320 5321 /* 5322 * Drop last reference (which was added by zsched()), this will 5323 * free the zone unless there are outstanding cred references. 5324 */ 5325 zone_rele(zone); 5326 return (0); 5327 } 5328 5329 /* 5330 * Systemcall entry point for zone_getattr(2). 5331 */ 5332 static ssize_t 5333 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5334 { 5335 size_t size; 5336 int error = 0, err; 5337 zone_t *zone; 5338 char *zonepath; 5339 char *outstr; 5340 zone_status_t zone_status; 5341 pid_t initpid; 5342 boolean_t global = (curzone == global_zone); 5343 boolean_t inzone = (curzone->zone_id == zoneid); 5344 ushort_t flags; 5345 zone_net_data_t *zbuf; 5346 5347 mutex_enter(&zonehash_lock); 5348 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5349 mutex_exit(&zonehash_lock); 5350 return (set_errno(EINVAL)); 5351 } 5352 zone_status = zone_status_get(zone); 5353 if (zone_status < ZONE_IS_INITIALIZED) { 5354 mutex_exit(&zonehash_lock); 5355 return (set_errno(EINVAL)); 5356 } 5357 zone_hold(zone); 5358 mutex_exit(&zonehash_lock); 5359 5360 /* 5361 * If not in the global zone, don't show information about other zones, 5362 * unless the system is labeled and the local zone's label dominates 5363 * the other zone. 5364 */ 5365 if (!zone_list_access(zone)) { 5366 zone_rele(zone); 5367 return (set_errno(EINVAL)); 5368 } 5369 5370 switch (attr) { 5371 case ZONE_ATTR_ROOT: 5372 if (global) { 5373 /* 5374 * Copy the path to trim the trailing "/" (except for 5375 * the global zone). 5376 */ 5377 if (zone != global_zone) 5378 size = zone->zone_rootpathlen - 1; 5379 else 5380 size = zone->zone_rootpathlen; 5381 zonepath = kmem_alloc(size, KM_SLEEP); 5382 bcopy(zone->zone_rootpath, zonepath, size); 5383 zonepath[size - 1] = '\0'; 5384 } else { 5385 if (inzone || !is_system_labeled()) { 5386 /* 5387 * Caller is not in the global zone. 5388 * if the query is on the current zone 5389 * or the system is not labeled, 5390 * just return faked-up path for current zone. 5391 */ 5392 zonepath = "/"; 5393 size = 2; 5394 } else { 5395 /* 5396 * Return related path for current zone. 5397 */ 5398 int prefix_len = strlen(zone_prefix); 5399 int zname_len = strlen(zone->zone_name); 5400 5401 size = prefix_len + zname_len + 1; 5402 zonepath = kmem_alloc(size, KM_SLEEP); 5403 bcopy(zone_prefix, zonepath, prefix_len); 5404 bcopy(zone->zone_name, zonepath + 5405 prefix_len, zname_len); 5406 zonepath[size - 1] = '\0'; 5407 } 5408 } 5409 if (bufsize > size) 5410 bufsize = size; 5411 if (buf != NULL) { 5412 err = copyoutstr(zonepath, buf, bufsize, NULL); 5413 if (err != 0 && err != ENAMETOOLONG) 5414 error = EFAULT; 5415 } 5416 if (global || (is_system_labeled() && !inzone)) 5417 kmem_free(zonepath, size); 5418 break; 5419 5420 case ZONE_ATTR_NAME: 5421 size = strlen(zone->zone_name) + 1; 5422 if (bufsize > size) 5423 bufsize = size; 5424 if (buf != NULL) { 5425 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5426 if (err != 0 && err != ENAMETOOLONG) 5427 error = EFAULT; 5428 } 5429 break; 5430 5431 case ZONE_ATTR_STATUS: 5432 /* 5433 * Since we're not holding zonehash_lock, the zone status 5434 * may be anything; leave it up to userland to sort it out. 5435 */ 5436 size = sizeof (zone_status); 5437 if (bufsize > size) 5438 bufsize = size; 5439 zone_status = zone_status_get(zone); 5440 if (buf != NULL && 5441 copyout(&zone_status, buf, bufsize) != 0) 5442 error = EFAULT; 5443 break; 5444 case ZONE_ATTR_FLAGS: 5445 size = sizeof (zone->zone_flags); 5446 if (bufsize > size) 5447 bufsize = size; 5448 flags = zone->zone_flags; 5449 if (buf != NULL && 5450 copyout(&flags, buf, bufsize) != 0) 5451 error = EFAULT; 5452 break; 5453 case ZONE_ATTR_PRIVSET: 5454 size = sizeof (priv_set_t); 5455 if (bufsize > size) 5456 bufsize = size; 5457 if (buf != NULL && 5458 copyout(zone->zone_privset, buf, bufsize) != 0) 5459 error = EFAULT; 5460 break; 5461 case ZONE_ATTR_UNIQID: 5462 size = sizeof (zone->zone_uniqid); 5463 if (bufsize > size) 5464 bufsize = size; 5465 if (buf != NULL && 5466 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5467 error = EFAULT; 5468 break; 5469 case ZONE_ATTR_POOLID: 5470 { 5471 pool_t *pool; 5472 poolid_t poolid; 5473 5474 if (pool_lock_intr() != 0) { 5475 error = EINTR; 5476 break; 5477 } 5478 pool = zone_pool_get(zone); 5479 poolid = pool->pool_id; 5480 pool_unlock(); 5481 size = sizeof (poolid); 5482 if (bufsize > size) 5483 bufsize = size; 5484 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5485 error = EFAULT; 5486 } 5487 break; 5488 case ZONE_ATTR_SLBL: 5489 size = sizeof (bslabel_t); 5490 if (bufsize > size) 5491 bufsize = size; 5492 if (zone->zone_slabel == NULL) 5493 error = EINVAL; 5494 else if (buf != NULL && 5495 copyout(label2bslabel(zone->zone_slabel), buf, 5496 bufsize) != 0) 5497 error = EFAULT; 5498 break; 5499 case ZONE_ATTR_INITPID: 5500 size = sizeof (initpid); 5501 if (bufsize > size) 5502 bufsize = size; 5503 initpid = zone->zone_proc_initpid; 5504 if (initpid == -1) { 5505 error = ESRCH; 5506 break; 5507 } 5508 if (buf != NULL && 5509 copyout(&initpid, buf, bufsize) != 0) 5510 error = EFAULT; 5511 break; 5512 case ZONE_ATTR_BRAND: 5513 size = strlen(zone->zone_brand->b_name) + 1; 5514 5515 if (bufsize > size) 5516 bufsize = size; 5517 if (buf != NULL) { 5518 err = copyoutstr(zone->zone_brand->b_name, buf, 5519 bufsize, NULL); 5520 if (err != 0 && err != ENAMETOOLONG) 5521 error = EFAULT; 5522 } 5523 break; 5524 case ZONE_ATTR_INITNAME: 5525 size = strlen(zone->zone_initname) + 1; 5526 if (bufsize > size) 5527 bufsize = size; 5528 if (buf != NULL) { 5529 err = copyoutstr(zone->zone_initname, buf, bufsize, 5530 NULL); 5531 if (err != 0 && err != ENAMETOOLONG) 5532 error = EFAULT; 5533 } 5534 break; 5535 case ZONE_ATTR_BOOTARGS: 5536 if (zone->zone_bootargs == NULL) 5537 outstr = ""; 5538 else 5539 outstr = zone->zone_bootargs; 5540 size = strlen(outstr) + 1; 5541 if (bufsize > size) 5542 bufsize = size; 5543 if (buf != NULL) { 5544 err = copyoutstr(outstr, buf, bufsize, NULL); 5545 if (err != 0 && err != ENAMETOOLONG) 5546 error = EFAULT; 5547 } 5548 break; 5549 case ZONE_ATTR_PHYS_MCAP: 5550 size = sizeof (zone->zone_phys_mcap); 5551 if (bufsize > size) 5552 bufsize = size; 5553 if (buf != NULL && 5554 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5555 error = EFAULT; 5556 break; 5557 case ZONE_ATTR_SCHED_CLASS: 5558 mutex_enter(&class_lock); 5559 5560 if (zone->zone_defaultcid >= loaded_classes) 5561 outstr = ""; 5562 else 5563 outstr = sclass[zone->zone_defaultcid].cl_name; 5564 size = strlen(outstr) + 1; 5565 if (bufsize > size) 5566 bufsize = size; 5567 if (buf != NULL) { 5568 err = copyoutstr(outstr, buf, bufsize, NULL); 5569 if (err != 0 && err != ENAMETOOLONG) 5570 error = EFAULT; 5571 } 5572 5573 mutex_exit(&class_lock); 5574 break; 5575 case ZONE_ATTR_HOSTID: 5576 if (zone->zone_hostid != HW_INVALID_HOSTID && 5577 bufsize == sizeof (zone->zone_hostid)) { 5578 size = sizeof (zone->zone_hostid); 5579 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5580 bufsize) != 0) 5581 error = EFAULT; 5582 } else { 5583 error = EINVAL; 5584 } 5585 break; 5586 case ZONE_ATTR_FS_ALLOWED: 5587 if (zone->zone_fs_allowed == NULL) 5588 outstr = ""; 5589 else 5590 outstr = zone->zone_fs_allowed; 5591 size = strlen(outstr) + 1; 5592 if (bufsize > size) 5593 bufsize = size; 5594 if (buf != NULL) { 5595 err = copyoutstr(outstr, buf, bufsize, NULL); 5596 if (err != 0 && err != ENAMETOOLONG) 5597 error = EFAULT; 5598 } 5599 break; 5600 case ZONE_ATTR_SECFLAGS: 5601 size = sizeof (zone->zone_secflags); 5602 if (bufsize > size) 5603 bufsize = size; 5604 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0) 5605 error = EFAULT; 5606 break; 5607 case ZONE_ATTR_NETWORK: 5608 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5609 if (copyin(buf, zbuf, bufsize) != 0) { 5610 error = EFAULT; 5611 } else { 5612 error = zone_get_network(zoneid, zbuf); 5613 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5614 error = EFAULT; 5615 } 5616 kmem_free(zbuf, bufsize); 5617 break; 5618 default: 5619 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5620 size = bufsize; 5621 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5622 } else { 5623 error = EINVAL; 5624 } 5625 } 5626 zone_rele(zone); 5627 5628 if (error) 5629 return (set_errno(error)); 5630 return ((ssize_t)size); 5631 } 5632 5633 /* 5634 * Systemcall entry point for zone_setattr(2). 5635 */ 5636 /*ARGSUSED*/ 5637 static int 5638 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5639 { 5640 zone_t *zone; 5641 zone_status_t zone_status; 5642 int err = -1; 5643 zone_net_data_t *zbuf; 5644 5645 if (secpolicy_zone_config(CRED()) != 0) 5646 return (set_errno(EPERM)); 5647 5648 /* 5649 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5650 * global zone. 5651 */ 5652 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5653 return (set_errno(EINVAL)); 5654 } 5655 5656 mutex_enter(&zonehash_lock); 5657 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5658 mutex_exit(&zonehash_lock); 5659 return (set_errno(EINVAL)); 5660 } 5661 zone_hold(zone); 5662 mutex_exit(&zonehash_lock); 5663 5664 /* 5665 * At present most attributes can only be set on non-running, 5666 * non-global zones. 5667 */ 5668 zone_status = zone_status_get(zone); 5669 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5670 err = EINVAL; 5671 goto done; 5672 } 5673 5674 switch (attr) { 5675 case ZONE_ATTR_INITNAME: 5676 err = zone_set_initname(zone, (const char *)buf); 5677 break; 5678 case ZONE_ATTR_INITNORESTART: 5679 zone->zone_restart_init = B_FALSE; 5680 err = 0; 5681 break; 5682 case ZONE_ATTR_BOOTARGS: 5683 err = zone_set_bootargs(zone, (const char *)buf); 5684 break; 5685 case ZONE_ATTR_BRAND: 5686 err = zone_set_brand(zone, (const char *)buf); 5687 break; 5688 case ZONE_ATTR_FS_ALLOWED: 5689 err = zone_set_fs_allowed(zone, (const char *)buf); 5690 break; 5691 case ZONE_ATTR_SECFLAGS: 5692 err = zone_set_secflags(zone, (psecflags_t *)buf); 5693 break; 5694 case ZONE_ATTR_PHYS_MCAP: 5695 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5696 break; 5697 case ZONE_ATTR_SCHED_CLASS: 5698 err = zone_set_sched_class(zone, (const char *)buf); 5699 break; 5700 case ZONE_ATTR_HOSTID: 5701 if (bufsize == sizeof (zone->zone_hostid)) { 5702 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5703 err = 0; 5704 else 5705 err = EFAULT; 5706 } else { 5707 err = EINVAL; 5708 } 5709 break; 5710 case ZONE_ATTR_NETWORK: 5711 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5712 err = EINVAL; 5713 break; 5714 } 5715 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5716 if (copyin(buf, zbuf, bufsize) != 0) { 5717 kmem_free(zbuf, bufsize); 5718 err = EFAULT; 5719 break; 5720 } 5721 err = zone_set_network(zoneid, zbuf); 5722 kmem_free(zbuf, bufsize); 5723 break; 5724 default: 5725 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5726 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5727 else 5728 err = EINVAL; 5729 } 5730 5731 done: 5732 zone_rele(zone); 5733 ASSERT(err != -1); 5734 return (err != 0 ? set_errno(err) : 0); 5735 } 5736 5737 /* 5738 * Return zero if the process has at least one vnode mapped in to its 5739 * address space which shouldn't be allowed to change zones. 5740 * 5741 * Also return zero if the process has any shared mappings which reserve 5742 * swap. This is because the counting for zone.max-swap does not allow swap 5743 * reservation to be shared between zones. zone swap reservation is counted 5744 * on zone->zone_max_swap. 5745 */ 5746 static int 5747 as_can_change_zones(void) 5748 { 5749 proc_t *pp = curproc; 5750 struct seg *seg; 5751 struct as *as = pp->p_as; 5752 vnode_t *vp; 5753 int allow = 1; 5754 5755 ASSERT(pp->p_as != &kas); 5756 AS_LOCK_ENTER(as, RW_READER); 5757 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5758 5759 /* 5760 * Cannot enter zone with shared anon memory which 5761 * reserves swap. See comment above. 5762 */ 5763 if (seg_can_change_zones(seg) == B_FALSE) { 5764 allow = 0; 5765 break; 5766 } 5767 /* 5768 * if we can't get a backing vnode for this segment then skip 5769 * it. 5770 */ 5771 vp = NULL; 5772 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5773 continue; 5774 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5775 allow = 0; 5776 break; 5777 } 5778 } 5779 AS_LOCK_EXIT(as); 5780 return (allow); 5781 } 5782 5783 /* 5784 * Count swap reserved by curproc's address space 5785 */ 5786 static size_t 5787 as_swresv(void) 5788 { 5789 proc_t *pp = curproc; 5790 struct seg *seg; 5791 struct as *as = pp->p_as; 5792 size_t swap = 0; 5793 5794 ASSERT(pp->p_as != &kas); 5795 ASSERT(AS_WRITE_HELD(as)); 5796 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5797 swap += seg_swresv(seg); 5798 5799 return (swap); 5800 } 5801 5802 /* 5803 * Systemcall entry point for zone_enter(). 5804 * 5805 * The current process is injected into said zone. In the process 5806 * it will change its project membership, privileges, rootdir/cwd, 5807 * zone-wide rctls, and pool association to match those of the zone. 5808 * 5809 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5810 * state will transition it to ZONE_IS_RUNNING. Processes may only 5811 * enter a zone that is "ready" or "running". 5812 */ 5813 static int 5814 zone_enter(zoneid_t zoneid) 5815 { 5816 zone_t *zone; 5817 vnode_t *vp; 5818 proc_t *pp = curproc; 5819 contract_t *ct; 5820 cont_process_t *ctp; 5821 task_t *tk, *oldtk; 5822 kproject_t *zone_proj0; 5823 cred_t *cr, *newcr; 5824 pool_t *oldpool, *newpool; 5825 sess_t *sp; 5826 uid_t uid; 5827 zone_status_t status; 5828 int err = 0; 5829 rctl_entity_p_t e; 5830 size_t swap; 5831 kthread_id_t t; 5832 5833 if (secpolicy_zone_config(CRED()) != 0) 5834 return (set_errno(EPERM)); 5835 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5836 return (set_errno(EINVAL)); 5837 5838 /* 5839 * Stop all lwps so we don't need to hold a lock to look at 5840 * curproc->p_zone. This needs to happen before we grab any 5841 * locks to avoid deadlock (another lwp in the process could 5842 * be waiting for the held lock). 5843 */ 5844 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5845 return (set_errno(EINTR)); 5846 5847 /* 5848 * Make sure we're not changing zones with files open or mapped in 5849 * to our address space which shouldn't be changing zones. 5850 */ 5851 if (!files_can_change_zones()) { 5852 err = EBADF; 5853 goto out; 5854 } 5855 if (!as_can_change_zones()) { 5856 err = EFAULT; 5857 goto out; 5858 } 5859 5860 mutex_enter(&zonehash_lock); 5861 if (pp->p_zone != global_zone) { 5862 mutex_exit(&zonehash_lock); 5863 err = EINVAL; 5864 goto out; 5865 } 5866 5867 zone = zone_find_all_by_id(zoneid); 5868 if (zone == NULL) { 5869 mutex_exit(&zonehash_lock); 5870 err = EINVAL; 5871 goto out; 5872 } 5873 5874 /* 5875 * To prevent processes in a zone from holding contracts on 5876 * extrazonal resources, and to avoid process contract 5877 * memberships which span zones, contract holders and processes 5878 * which aren't the sole members of their encapsulating process 5879 * contracts are not allowed to zone_enter. 5880 */ 5881 ctp = pp->p_ct_process; 5882 ct = &ctp->conp_contract; 5883 mutex_enter(&ct->ct_lock); 5884 mutex_enter(&pp->p_lock); 5885 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5886 mutex_exit(&pp->p_lock); 5887 mutex_exit(&ct->ct_lock); 5888 mutex_exit(&zonehash_lock); 5889 err = EINVAL; 5890 goto out; 5891 } 5892 5893 /* 5894 * Moreover, we don't allow processes whose encapsulating 5895 * process contracts have inherited extrazonal contracts. 5896 * While it would be easier to eliminate all process contracts 5897 * with inherited contracts, we need to be able to give a 5898 * restarted init (or other zone-penetrating process) its 5899 * predecessor's contracts. 5900 */ 5901 if (ctp->conp_ninherited != 0) { 5902 contract_t *next; 5903 for (next = list_head(&ctp->conp_inherited); next; 5904 next = list_next(&ctp->conp_inherited, next)) { 5905 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5906 mutex_exit(&pp->p_lock); 5907 mutex_exit(&ct->ct_lock); 5908 mutex_exit(&zonehash_lock); 5909 err = EINVAL; 5910 goto out; 5911 } 5912 } 5913 } 5914 5915 mutex_exit(&pp->p_lock); 5916 mutex_exit(&ct->ct_lock); 5917 5918 status = zone_status_get(zone); 5919 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5920 /* 5921 * Can't join 5922 */ 5923 mutex_exit(&zonehash_lock); 5924 err = EINVAL; 5925 goto out; 5926 } 5927 5928 /* 5929 * Make sure new priv set is within the permitted set for caller 5930 */ 5931 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5932 mutex_exit(&zonehash_lock); 5933 err = EPERM; 5934 goto out; 5935 } 5936 /* 5937 * We want to momentarily drop zonehash_lock while we optimistically 5938 * bind curproc to the pool it should be running in. This is safe 5939 * since the zone can't disappear (we have a hold on it). 5940 */ 5941 zone_hold(zone); 5942 mutex_exit(&zonehash_lock); 5943 5944 /* 5945 * Grab pool_lock to keep the pools configuration from changing 5946 * and to stop ourselves from getting rebound to another pool 5947 * until we join the zone. 5948 */ 5949 if (pool_lock_intr() != 0) { 5950 zone_rele(zone); 5951 err = EINTR; 5952 goto out; 5953 } 5954 ASSERT(secpolicy_pool(CRED()) == 0); 5955 /* 5956 * Bind ourselves to the pool currently associated with the zone. 5957 */ 5958 oldpool = curproc->p_pool; 5959 newpool = zone_pool_get(zone); 5960 if (pool_state == POOL_ENABLED && newpool != oldpool && 5961 (err = pool_do_bind(newpool, P_PID, P_MYID, 5962 POOL_BIND_ALL)) != 0) { 5963 pool_unlock(); 5964 zone_rele(zone); 5965 goto out; 5966 } 5967 5968 /* 5969 * Grab cpu_lock now; we'll need it later when we call 5970 * task_join(). 5971 */ 5972 mutex_enter(&cpu_lock); 5973 mutex_enter(&zonehash_lock); 5974 /* 5975 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5976 */ 5977 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5978 /* 5979 * Can't join anymore. 5980 */ 5981 mutex_exit(&zonehash_lock); 5982 mutex_exit(&cpu_lock); 5983 if (pool_state == POOL_ENABLED && 5984 newpool != oldpool) 5985 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5986 POOL_BIND_ALL); 5987 pool_unlock(); 5988 zone_rele(zone); 5989 err = EINVAL; 5990 goto out; 5991 } 5992 5993 /* 5994 * a_lock must be held while transfering locked memory and swap 5995 * reservation from the global zone to the non global zone because 5996 * asynchronous faults on the processes' address space can lock 5997 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5998 * segments respectively. 5999 */ 6000 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 6001 swap = as_swresv(); 6002 mutex_enter(&pp->p_lock); 6003 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 6004 /* verify that we do not exceed and task or lwp limits */ 6005 mutex_enter(&zone->zone_nlwps_lock); 6006 /* add new lwps to zone and zone's proj0 */ 6007 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 6008 zone->zone_nlwps += pp->p_lwpcnt; 6009 /* add 1 task to zone's proj0 */ 6010 zone_proj0->kpj_ntasks += 1; 6011 6012 zone_proj0->kpj_nprocs++; 6013 zone->zone_nprocs++; 6014 mutex_exit(&zone->zone_nlwps_lock); 6015 6016 mutex_enter(&zone->zone_mem_lock); 6017 zone->zone_locked_mem += pp->p_locked_mem; 6018 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 6019 zone->zone_max_swap += swap; 6020 mutex_exit(&zone->zone_mem_lock); 6021 6022 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6023 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 6024 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6025 6026 /* remove lwps and process from proc's old zone and old project */ 6027 mutex_enter(&pp->p_zone->zone_nlwps_lock); 6028 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 6029 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 6030 pp->p_task->tk_proj->kpj_nprocs--; 6031 pp->p_zone->zone_nprocs--; 6032 mutex_exit(&pp->p_zone->zone_nlwps_lock); 6033 6034 mutex_enter(&pp->p_zone->zone_mem_lock); 6035 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 6036 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 6037 pp->p_zone->zone_max_swap -= swap; 6038 mutex_exit(&pp->p_zone->zone_mem_lock); 6039 6040 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6041 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 6042 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6043 6044 pp->p_flag |= SZONETOP; 6045 pp->p_zone = zone; 6046 mutex_exit(&pp->p_lock); 6047 AS_LOCK_EXIT(pp->p_as); 6048 6049 /* 6050 * Joining the zone cannot fail from now on. 6051 * 6052 * This means that a lot of the following code can be commonized and 6053 * shared with zsched(). 6054 */ 6055 6056 /* 6057 * If the process contract fmri was inherited, we need to 6058 * flag this so that any contract status will not leak 6059 * extra zone information, svc_fmri in this case 6060 */ 6061 if (ctp->conp_svc_ctid != ct->ct_id) { 6062 mutex_enter(&ct->ct_lock); 6063 ctp->conp_svc_zone_enter = ct->ct_id; 6064 mutex_exit(&ct->ct_lock); 6065 } 6066 6067 /* 6068 * Reset the encapsulating process contract's zone. 6069 */ 6070 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6071 contract_setzuniqid(ct, zone->zone_uniqid); 6072 6073 /* 6074 * Create a new task and associate the process with the project keyed 6075 * by (projid,zoneid). 6076 * 6077 * We might as well be in project 0; the global zone's projid doesn't 6078 * make much sense in a zone anyhow. 6079 * 6080 * This also increments zone_ntasks, and returns with p_lock held. 6081 */ 6082 tk = task_create(0, zone); 6083 oldtk = task_join(tk, 0); 6084 mutex_exit(&cpu_lock); 6085 6086 /* 6087 * call RCTLOP_SET functions on this proc 6088 */ 6089 e.rcep_p.zone = zone; 6090 e.rcep_t = RCENTITY_ZONE; 6091 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6092 RCD_CALLBACK); 6093 mutex_exit(&pp->p_lock); 6094 6095 /* 6096 * We don't need to hold any of zsched's locks here; not only do we know 6097 * the process and zone aren't going away, we know its session isn't 6098 * changing either. 6099 * 6100 * By joining zsched's session here, we mimic the behavior in the 6101 * global zone of init's sid being the pid of sched. We extend this 6102 * to all zlogin-like zone_enter()'ing processes as well. 6103 */ 6104 mutex_enter(&pidlock); 6105 sp = zone->zone_zsched->p_sessp; 6106 sess_hold(zone->zone_zsched); 6107 mutex_enter(&pp->p_lock); 6108 pgexit(pp); 6109 sess_rele(pp->p_sessp, B_TRUE); 6110 pp->p_sessp = sp; 6111 pgjoin(pp, zone->zone_zsched->p_pidp); 6112 6113 /* 6114 * If any threads are scheduled to be placed on zone wait queue they 6115 * should abandon the idea since the wait queue is changing. 6116 * We need to be holding pidlock & p_lock to do this. 6117 */ 6118 if ((t = pp->p_tlist) != NULL) { 6119 do { 6120 thread_lock(t); 6121 /* 6122 * Kick this thread so that he doesn't sit 6123 * on a wrong wait queue. 6124 */ 6125 if (ISWAITING(t)) 6126 setrun_locked(t); 6127 6128 if (t->t_schedflag & TS_ANYWAITQ) 6129 t->t_schedflag &= ~ TS_ANYWAITQ; 6130 6131 thread_unlock(t); 6132 } while ((t = t->t_forw) != pp->p_tlist); 6133 } 6134 6135 /* 6136 * If there is a default scheduling class for the zone and it is not 6137 * the class we are currently in, change all of the threads in the 6138 * process to the new class. We need to be holding pidlock & p_lock 6139 * when we call parmsset so this is a good place to do it. 6140 */ 6141 if (zone->zone_defaultcid > 0 && 6142 zone->zone_defaultcid != curthread->t_cid) { 6143 pcparms_t pcparms; 6144 6145 pcparms.pc_cid = zone->zone_defaultcid; 6146 pcparms.pc_clparms[0] = 0; 6147 6148 /* 6149 * If setting the class fails, we still want to enter the zone. 6150 */ 6151 if ((t = pp->p_tlist) != NULL) { 6152 do { 6153 (void) parmsset(&pcparms, t); 6154 } while ((t = t->t_forw) != pp->p_tlist); 6155 } 6156 } 6157 6158 mutex_exit(&pp->p_lock); 6159 mutex_exit(&pidlock); 6160 6161 mutex_exit(&zonehash_lock); 6162 /* 6163 * We're firmly in the zone; let pools progress. 6164 */ 6165 pool_unlock(); 6166 task_rele(oldtk); 6167 /* 6168 * We don't need to retain a hold on the zone since we already 6169 * incremented zone_ntasks, so the zone isn't going anywhere. 6170 */ 6171 zone_rele(zone); 6172 6173 /* 6174 * Chroot 6175 */ 6176 vp = zone->zone_rootvp; 6177 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6178 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6179 6180 /* 6181 * Change process credentials 6182 */ 6183 newcr = cralloc(); 6184 mutex_enter(&pp->p_crlock); 6185 cr = pp->p_cred; 6186 crcopy_to(cr, newcr); 6187 crsetzone(newcr, zone); 6188 pp->p_cred = newcr; 6189 6190 /* 6191 * Restrict all process privilege sets to zone limit 6192 */ 6193 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6194 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6195 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6196 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6197 mutex_exit(&pp->p_crlock); 6198 crset(pp, newcr); 6199 6200 /* 6201 * Adjust upcount to reflect zone entry. 6202 */ 6203 uid = crgetruid(newcr); 6204 mutex_enter(&pidlock); 6205 upcount_dec(uid, GLOBAL_ZONEID); 6206 upcount_inc(uid, zoneid); 6207 mutex_exit(&pidlock); 6208 6209 /* 6210 * Set up core file path and content. 6211 */ 6212 set_core_defaults(); 6213 6214 out: 6215 /* 6216 * Let the other lwps continue. 6217 */ 6218 mutex_enter(&pp->p_lock); 6219 if (curthread != pp->p_agenttp) 6220 continuelwps(pp); 6221 mutex_exit(&pp->p_lock); 6222 6223 return (err != 0 ? set_errno(err) : 0); 6224 } 6225 6226 /* 6227 * Systemcall entry point for zone_list(2). 6228 * 6229 * Processes running in a (non-global) zone only see themselves. 6230 * On labeled systems, they see all zones whose label they dominate. 6231 */ 6232 static int 6233 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6234 { 6235 zoneid_t *zoneids; 6236 zone_t *zone, *myzone; 6237 uint_t user_nzones, real_nzones; 6238 uint_t domi_nzones; 6239 int error; 6240 6241 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6242 return (set_errno(EFAULT)); 6243 6244 myzone = curproc->p_zone; 6245 if (myzone != global_zone) { 6246 bslabel_t *mybslab; 6247 6248 if (!is_system_labeled()) { 6249 /* just return current zone */ 6250 real_nzones = domi_nzones = 1; 6251 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6252 zoneids[0] = myzone->zone_id; 6253 } else { 6254 /* return all zones that are dominated */ 6255 mutex_enter(&zonehash_lock); 6256 real_nzones = zonecount; 6257 domi_nzones = 0; 6258 if (real_nzones > 0) { 6259 zoneids = kmem_alloc(real_nzones * 6260 sizeof (zoneid_t), KM_SLEEP); 6261 mybslab = label2bslabel(myzone->zone_slabel); 6262 for (zone = list_head(&zone_active); 6263 zone != NULL; 6264 zone = list_next(&zone_active, zone)) { 6265 if (zone->zone_id == GLOBAL_ZONEID) 6266 continue; 6267 if (zone != myzone && 6268 (zone->zone_flags & ZF_IS_SCRATCH)) 6269 continue; 6270 /* 6271 * Note that a label always dominates 6272 * itself, so myzone is always included 6273 * in the list. 6274 */ 6275 if (bldominates(mybslab, 6276 label2bslabel(zone->zone_slabel))) { 6277 zoneids[domi_nzones++] = 6278 zone->zone_id; 6279 } 6280 } 6281 } 6282 mutex_exit(&zonehash_lock); 6283 } 6284 } else { 6285 mutex_enter(&zonehash_lock); 6286 real_nzones = zonecount; 6287 domi_nzones = 0; 6288 if (real_nzones > 0) { 6289 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6290 KM_SLEEP); 6291 for (zone = list_head(&zone_active); zone != NULL; 6292 zone = list_next(&zone_active, zone)) 6293 zoneids[domi_nzones++] = zone->zone_id; 6294 ASSERT(domi_nzones == real_nzones); 6295 } 6296 mutex_exit(&zonehash_lock); 6297 } 6298 6299 /* 6300 * If user has allocated space for fewer entries than we found, then 6301 * return only up to his limit. Either way, tell him exactly how many 6302 * we found. 6303 */ 6304 if (domi_nzones < user_nzones) 6305 user_nzones = domi_nzones; 6306 error = 0; 6307 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6308 error = EFAULT; 6309 } else if (zoneidlist != NULL && user_nzones != 0) { 6310 if (copyout(zoneids, zoneidlist, 6311 user_nzones * sizeof (zoneid_t)) != 0) 6312 error = EFAULT; 6313 } 6314 6315 if (real_nzones > 0) 6316 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6317 6318 if (error != 0) 6319 return (set_errno(error)); 6320 else 6321 return (0); 6322 } 6323 6324 /* 6325 * Systemcall entry point for zone_lookup(2). 6326 * 6327 * Non-global zones are only able to see themselves and (on labeled systems) 6328 * the zones they dominate. 6329 */ 6330 static zoneid_t 6331 zone_lookup(const char *zone_name) 6332 { 6333 char *kname; 6334 zone_t *zone; 6335 zoneid_t zoneid; 6336 int err; 6337 6338 if (zone_name == NULL) { 6339 /* return caller's zone id */ 6340 return (getzoneid()); 6341 } 6342 6343 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6344 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6345 kmem_free(kname, ZONENAME_MAX); 6346 return (set_errno(err)); 6347 } 6348 6349 mutex_enter(&zonehash_lock); 6350 zone = zone_find_all_by_name(kname); 6351 kmem_free(kname, ZONENAME_MAX); 6352 /* 6353 * In a non-global zone, can only lookup global and own name. 6354 * In Trusted Extensions zone label dominance rules apply. 6355 */ 6356 if (zone == NULL || 6357 zone_status_get(zone) < ZONE_IS_READY || 6358 !zone_list_access(zone)) { 6359 mutex_exit(&zonehash_lock); 6360 return (set_errno(EINVAL)); 6361 } else { 6362 zoneid = zone->zone_id; 6363 mutex_exit(&zonehash_lock); 6364 return (zoneid); 6365 } 6366 } 6367 6368 static int 6369 zone_version(int *version_arg) 6370 { 6371 int version = ZONE_SYSCALL_API_VERSION; 6372 6373 if (copyout(&version, version_arg, sizeof (int)) != 0) 6374 return (set_errno(EFAULT)); 6375 return (0); 6376 } 6377 6378 /* ARGSUSED */ 6379 long 6380 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6381 { 6382 zone_def zs; 6383 int err; 6384 6385 switch (cmd) { 6386 case ZONE_CREATE: 6387 if (get_udatamodel() == DATAMODEL_NATIVE) { 6388 if (copyin(arg1, &zs, sizeof (zone_def))) { 6389 return (set_errno(EFAULT)); 6390 } 6391 } else { 6392 #ifdef _SYSCALL32_IMPL 6393 zone_def32 zs32; 6394 6395 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6396 return (set_errno(EFAULT)); 6397 } 6398 zs.zone_name = 6399 (const char *)(unsigned long)zs32.zone_name; 6400 zs.zone_root = 6401 (const char *)(unsigned long)zs32.zone_root; 6402 zs.zone_privs = 6403 (const struct priv_set *) 6404 (unsigned long)zs32.zone_privs; 6405 zs.zone_privssz = zs32.zone_privssz; 6406 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6407 zs.rctlbufsz = zs32.rctlbufsz; 6408 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6409 zs.zfsbufsz = zs32.zfsbufsz; 6410 zs.extended_error = 6411 (int *)(unsigned long)zs32.extended_error; 6412 zs.match = zs32.match; 6413 zs.doi = zs32.doi; 6414 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6415 zs.flags = zs32.flags; 6416 #else 6417 panic("get_udatamodel() returned bogus result\n"); 6418 #endif 6419 } 6420 6421 return (zone_create(zs.zone_name, zs.zone_root, 6422 zs.zone_privs, zs.zone_privssz, 6423 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6424 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6425 zs.extended_error, zs.match, zs.doi, 6426 zs.label, zs.flags)); 6427 case ZONE_BOOT: 6428 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6429 case ZONE_DESTROY: 6430 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6431 case ZONE_GETATTR: 6432 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6433 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6434 case ZONE_SETATTR: 6435 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6436 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6437 case ZONE_ENTER: 6438 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6439 case ZONE_LIST: 6440 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6441 case ZONE_SHUTDOWN: 6442 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6443 case ZONE_LOOKUP: 6444 return (zone_lookup((const char *)arg1)); 6445 case ZONE_VERSION: 6446 return (zone_version((int *)arg1)); 6447 case ZONE_ADD_DATALINK: 6448 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6449 (datalink_id_t)(uintptr_t)arg2)); 6450 case ZONE_DEL_DATALINK: 6451 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6452 (datalink_id_t)(uintptr_t)arg2)); 6453 case ZONE_CHECK_DATALINK: { 6454 zoneid_t zoneid; 6455 boolean_t need_copyout; 6456 6457 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6458 return (EFAULT); 6459 need_copyout = (zoneid == ALL_ZONES); 6460 err = zone_check_datalink(&zoneid, 6461 (datalink_id_t)(uintptr_t)arg2); 6462 if (err == 0 && need_copyout) { 6463 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6464 err = EFAULT; 6465 } 6466 return (err == 0 ? 0 : set_errno(err)); 6467 } 6468 case ZONE_LIST_DATALINK: 6469 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6470 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6471 default: 6472 return (set_errno(EINVAL)); 6473 } 6474 } 6475 6476 struct zarg { 6477 zone_t *zone; 6478 zone_cmd_arg_t arg; 6479 }; 6480 6481 static int 6482 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6483 { 6484 char *buf; 6485 size_t buflen; 6486 int error; 6487 6488 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6489 buf = kmem_alloc(buflen, KM_SLEEP); 6490 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6491 error = door_ki_open(buf, doorp); 6492 kmem_free(buf, buflen); 6493 return (error); 6494 } 6495 6496 static void 6497 zone_release_door(door_handle_t *doorp) 6498 { 6499 door_ki_rele(*doorp); 6500 *doorp = NULL; 6501 } 6502 6503 static void 6504 zone_ki_call_zoneadmd(struct zarg *zargp) 6505 { 6506 door_handle_t door = NULL; 6507 door_arg_t darg, save_arg; 6508 char *zone_name; 6509 size_t zone_namelen; 6510 zoneid_t zoneid; 6511 zone_t *zone; 6512 zone_cmd_arg_t arg; 6513 uint64_t uniqid; 6514 size_t size; 6515 int error; 6516 int retry; 6517 6518 zone = zargp->zone; 6519 arg = zargp->arg; 6520 kmem_free(zargp, sizeof (*zargp)); 6521 6522 zone_namelen = strlen(zone->zone_name) + 1; 6523 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6524 bcopy(zone->zone_name, zone_name, zone_namelen); 6525 zoneid = zone->zone_id; 6526 uniqid = zone->zone_uniqid; 6527 /* 6528 * zoneadmd may be down, but at least we can empty out the zone. 6529 * We can ignore the return value of zone_empty() since we're called 6530 * from a kernel thread and know we won't be delivered any signals. 6531 */ 6532 ASSERT(curproc == &p0); 6533 (void) zone_empty(zone); 6534 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6535 zone_rele(zone); 6536 6537 size = sizeof (arg); 6538 darg.rbuf = (char *)&arg; 6539 darg.data_ptr = (char *)&arg; 6540 darg.rsize = size; 6541 darg.data_size = size; 6542 darg.desc_ptr = NULL; 6543 darg.desc_num = 0; 6544 6545 save_arg = darg; 6546 /* 6547 * Since we're not holding a reference to the zone, any number of 6548 * things can go wrong, including the zone disappearing before we get a 6549 * chance to talk to zoneadmd. 6550 */ 6551 for (retry = 0; /* forever */; retry++) { 6552 if (door == NULL && 6553 (error = zone_lookup_door(zone_name, &door)) != 0) { 6554 goto next; 6555 } 6556 ASSERT(door != NULL); 6557 6558 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6559 SIZE_MAX, 0)) == 0) { 6560 break; 6561 } 6562 switch (error) { 6563 case EINTR: 6564 /* FALLTHROUGH */ 6565 case EAGAIN: /* process may be forking */ 6566 /* 6567 * Back off for a bit 6568 */ 6569 break; 6570 case EBADF: 6571 zone_release_door(&door); 6572 if (zone_lookup_door(zone_name, &door) != 0) { 6573 /* 6574 * zoneadmd may be dead, but it may come back to 6575 * life later. 6576 */ 6577 break; 6578 } 6579 break; 6580 default: 6581 cmn_err(CE_WARN, 6582 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6583 error); 6584 goto out; 6585 } 6586 next: 6587 /* 6588 * If this isn't the same zone_t that we originally had in mind, 6589 * then this is the same as if two kadmin requests come in at 6590 * the same time: the first one wins. This means we lose, so we 6591 * bail. 6592 */ 6593 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6594 /* 6595 * Problem is solved. 6596 */ 6597 break; 6598 } 6599 if (zone->zone_uniqid != uniqid) { 6600 /* 6601 * zoneid recycled 6602 */ 6603 zone_rele(zone); 6604 break; 6605 } 6606 /* 6607 * We could zone_status_timedwait(), but there doesn't seem to 6608 * be much point in doing that (plus, it would mean that 6609 * zone_free() isn't called until this thread exits). 6610 */ 6611 zone_rele(zone); 6612 delay(hz); 6613 darg = save_arg; 6614 } 6615 out: 6616 if (door != NULL) { 6617 zone_release_door(&door); 6618 } 6619 kmem_free(zone_name, zone_namelen); 6620 thread_exit(); 6621 } 6622 6623 /* 6624 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6625 * kadmin(). The caller is a process in the zone. 6626 * 6627 * In order to shutdown the zone, we will hand off control to zoneadmd 6628 * (running in the global zone) via a door. We do a half-hearted job at 6629 * killing all processes in the zone, create a kernel thread to contact 6630 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6631 * a form of generation number used to let zoneadmd (as well as 6632 * zone_destroy()) know exactly which zone they're re talking about. 6633 */ 6634 int 6635 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6636 { 6637 struct zarg *zargp; 6638 zone_cmd_t zcmd; 6639 zone_t *zone; 6640 6641 zone = curproc->p_zone; 6642 ASSERT(getzoneid() != GLOBAL_ZONEID); 6643 6644 switch (cmd) { 6645 case A_SHUTDOWN: 6646 switch (fcn) { 6647 case AD_HALT: 6648 case AD_POWEROFF: 6649 zcmd = Z_HALT; 6650 break; 6651 case AD_BOOT: 6652 zcmd = Z_REBOOT; 6653 break; 6654 case AD_IBOOT: 6655 case AD_SBOOT: 6656 case AD_SIBOOT: 6657 case AD_NOSYNC: 6658 return (ENOTSUP); 6659 default: 6660 return (EINVAL); 6661 } 6662 break; 6663 case A_REBOOT: 6664 zcmd = Z_REBOOT; 6665 break; 6666 case A_FTRACE: 6667 case A_REMOUNT: 6668 case A_FREEZE: 6669 case A_DUMP: 6670 case A_CONFIG: 6671 return (ENOTSUP); 6672 default: 6673 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6674 return (EINVAL); 6675 } 6676 6677 if (secpolicy_zone_admin(credp, B_FALSE)) 6678 return (EPERM); 6679 mutex_enter(&zone_status_lock); 6680 6681 /* 6682 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6683 * is in the zone. 6684 */ 6685 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6686 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6687 /* 6688 * This zone is already on its way down. 6689 */ 6690 mutex_exit(&zone_status_lock); 6691 return (0); 6692 } 6693 /* 6694 * Prevent future zone_enter()s 6695 */ 6696 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6697 mutex_exit(&zone_status_lock); 6698 6699 /* 6700 * Kill everyone now and call zoneadmd later. 6701 * zone_ki_call_zoneadmd() will do a more thorough job of this 6702 * later. 6703 */ 6704 killall(zone->zone_id); 6705 /* 6706 * Now, create the thread to contact zoneadmd and do the rest of the 6707 * work. This thread can't be created in our zone otherwise 6708 * zone_destroy() would deadlock. 6709 */ 6710 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6711 zargp->arg.cmd = zcmd; 6712 zargp->arg.uniqid = zone->zone_uniqid; 6713 zargp->zone = zone; 6714 (void) strcpy(zargp->arg.locale, "C"); 6715 /* mdep was already copied in for us by uadmin */ 6716 if (mdep != NULL) 6717 (void) strlcpy(zargp->arg.bootbuf, mdep, 6718 sizeof (zargp->arg.bootbuf)); 6719 zone_hold(zone); 6720 6721 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6722 TS_RUN, minclsyspri); 6723 exit(CLD_EXITED, 0); 6724 6725 return (EINVAL); 6726 } 6727 6728 /* 6729 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6730 * status to ZONE_IS_SHUTTING_DOWN. 6731 * 6732 * This function also shuts down all running zones to ensure that they won't 6733 * fork new processes. 6734 */ 6735 void 6736 zone_shutdown_global(void) 6737 { 6738 zone_t *current_zonep; 6739 6740 ASSERT(INGLOBALZONE(curproc)); 6741 mutex_enter(&zonehash_lock); 6742 mutex_enter(&zone_status_lock); 6743 6744 /* Modify the global zone's status first. */ 6745 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6746 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6747 6748 /* 6749 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6750 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6751 * could cause assertions to fail (e.g., assertions about a zone's 6752 * state during initialization, readying, or booting) or produce races. 6753 * We'll let threads continue to initialize and ready new zones: they'll 6754 * fail to boot the new zones when they see that the global zone is 6755 * shutting down. 6756 */ 6757 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6758 current_zonep = list_next(&zone_active, current_zonep)) { 6759 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6760 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6761 } 6762 mutex_exit(&zone_status_lock); 6763 mutex_exit(&zonehash_lock); 6764 } 6765 6766 /* 6767 * Returns true if the named dataset is visible in the current zone. 6768 * The 'write' parameter is set to 1 if the dataset is also writable. 6769 */ 6770 int 6771 zone_dataset_visible(const char *dataset, int *write) 6772 { 6773 static int zfstype = -1; 6774 zone_dataset_t *zd; 6775 size_t len; 6776 zone_t *zone = curproc->p_zone; 6777 const char *name = NULL; 6778 vfs_t *vfsp = NULL; 6779 6780 if (dataset[0] == '\0') 6781 return (0); 6782 6783 /* 6784 * Walk the list once, looking for datasets which match exactly, or 6785 * specify a dataset underneath an exported dataset. If found, return 6786 * true and note that it is writable. 6787 */ 6788 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6789 zd = list_next(&zone->zone_datasets, zd)) { 6790 6791 len = strlen(zd->zd_dataset); 6792 if (strlen(dataset) >= len && 6793 bcmp(dataset, zd->zd_dataset, len) == 0 && 6794 (dataset[len] == '\0' || dataset[len] == '/' || 6795 dataset[len] == '@')) { 6796 if (write) 6797 *write = 1; 6798 return (1); 6799 } 6800 } 6801 6802 /* 6803 * Walk the list a second time, searching for datasets which are parents 6804 * of exported datasets. These should be visible, but read-only. 6805 * 6806 * Note that we also have to support forms such as 'pool/dataset/', with 6807 * a trailing slash. 6808 */ 6809 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6810 zd = list_next(&zone->zone_datasets, zd)) { 6811 6812 len = strlen(dataset); 6813 if (dataset[len - 1] == '/') 6814 len--; /* Ignore trailing slash */ 6815 if (len < strlen(zd->zd_dataset) && 6816 bcmp(dataset, zd->zd_dataset, len) == 0 && 6817 zd->zd_dataset[len] == '/') { 6818 if (write) 6819 *write = 0; 6820 return (1); 6821 } 6822 } 6823 6824 /* 6825 * We reach here if the given dataset is not found in the zone_dataset 6826 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6827 * instead of delegation. For this we search for the dataset in the 6828 * zone_vfslist of this zone. If found, return true and note that it is 6829 * not writable. 6830 */ 6831 6832 /* 6833 * Initialize zfstype if it is not initialized yet. 6834 */ 6835 if (zfstype == -1) { 6836 struct vfssw *vswp = vfs_getvfssw("zfs"); 6837 zfstype = vswp - vfssw; 6838 vfs_unrefvfssw(vswp); 6839 } 6840 6841 vfs_list_read_lock(); 6842 vfsp = zone->zone_vfslist; 6843 do { 6844 ASSERT(vfsp); 6845 if (vfsp->vfs_fstype == zfstype) { 6846 name = refstr_value(vfsp->vfs_resource); 6847 6848 /* 6849 * Check if we have an exact match. 6850 */ 6851 if (strcmp(dataset, name) == 0) { 6852 vfs_list_unlock(); 6853 if (write) 6854 *write = 0; 6855 return (1); 6856 } 6857 /* 6858 * We need to check if we are looking for parents of 6859 * a dataset. These should be visible, but read-only. 6860 */ 6861 len = strlen(dataset); 6862 if (dataset[len - 1] == '/') 6863 len--; 6864 6865 if (len < strlen(name) && 6866 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6867 vfs_list_unlock(); 6868 if (write) 6869 *write = 0; 6870 return (1); 6871 } 6872 } 6873 vfsp = vfsp->vfs_zone_next; 6874 } while (vfsp != zone->zone_vfslist); 6875 6876 vfs_list_unlock(); 6877 return (0); 6878 } 6879 6880 /* 6881 * zone_find_by_any_path() - 6882 * 6883 * kernel-private routine similar to zone_find_by_path(), but which 6884 * effectively compares against zone paths rather than zonerootpath 6885 * (i.e., the last component of zonerootpaths, which should be "root/", 6886 * are not compared.) This is done in order to accurately identify all 6887 * paths, whether zone-visible or not, including those which are parallel 6888 * to /root/, such as /dev/, /home/, etc... 6889 * 6890 * If the specified path does not fall under any zone path then global 6891 * zone is returned. 6892 * 6893 * The treat_abs parameter indicates whether the path should be treated as 6894 * an absolute path although it does not begin with "/". (This supports 6895 * nfs mount syntax such as host:any/path.) 6896 * 6897 * The caller is responsible for zone_rele of the returned zone. 6898 */ 6899 zone_t * 6900 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6901 { 6902 zone_t *zone; 6903 int path_offset = 0; 6904 6905 if (path == NULL) { 6906 zone_hold(global_zone); 6907 return (global_zone); 6908 } 6909 6910 if (*path != '/') { 6911 ASSERT(treat_abs); 6912 path_offset = 1; 6913 } 6914 6915 mutex_enter(&zonehash_lock); 6916 for (zone = list_head(&zone_active); zone != NULL; 6917 zone = list_next(&zone_active, zone)) { 6918 char *c; 6919 size_t pathlen; 6920 char *rootpath_start; 6921 6922 if (zone == global_zone) /* skip global zone */ 6923 continue; 6924 6925 /* scan backwards to find start of last component */ 6926 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6927 do { 6928 c--; 6929 } while (*c != '/'); 6930 6931 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6932 rootpath_start = (zone->zone_rootpath + path_offset); 6933 if (strncmp(path, rootpath_start, pathlen) == 0) 6934 break; 6935 } 6936 if (zone == NULL) 6937 zone = global_zone; 6938 zone_hold(zone); 6939 mutex_exit(&zonehash_lock); 6940 return (zone); 6941 } 6942 6943 /* 6944 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6945 * zone_dl_t pointer if found, and NULL otherwise. 6946 */ 6947 static zone_dl_t * 6948 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6949 { 6950 zone_dl_t *zdl; 6951 6952 ASSERT(mutex_owned(&zone->zone_lock)); 6953 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6954 zdl = list_next(&zone->zone_dl_list, zdl)) { 6955 if (zdl->zdl_id == linkid) 6956 break; 6957 } 6958 return (zdl); 6959 } 6960 6961 static boolean_t 6962 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6963 { 6964 boolean_t exists; 6965 6966 mutex_enter(&zone->zone_lock); 6967 exists = (zone_find_dl(zone, linkid) != NULL); 6968 mutex_exit(&zone->zone_lock); 6969 return (exists); 6970 } 6971 6972 /* 6973 * Add an data link name for the zone. 6974 */ 6975 static int 6976 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6977 { 6978 zone_dl_t *zdl; 6979 zone_t *zone; 6980 zone_t *thiszone; 6981 6982 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6983 return (set_errno(ENXIO)); 6984 6985 /* Verify that the datalink ID doesn't already belong to a zone. */ 6986 mutex_enter(&zonehash_lock); 6987 for (zone = list_head(&zone_active); zone != NULL; 6988 zone = list_next(&zone_active, zone)) { 6989 if (zone_dl_exists(zone, linkid)) { 6990 mutex_exit(&zonehash_lock); 6991 zone_rele(thiszone); 6992 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6993 } 6994 } 6995 6996 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6997 zdl->zdl_id = linkid; 6998 zdl->zdl_net = NULL; 6999 mutex_enter(&thiszone->zone_lock); 7000 list_insert_head(&thiszone->zone_dl_list, zdl); 7001 mutex_exit(&thiszone->zone_lock); 7002 mutex_exit(&zonehash_lock); 7003 zone_rele(thiszone); 7004 return (0); 7005 } 7006 7007 static int 7008 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 7009 { 7010 zone_dl_t *zdl; 7011 zone_t *zone; 7012 int err = 0; 7013 7014 if ((zone = zone_find_by_id(zoneid)) == NULL) 7015 return (set_errno(EINVAL)); 7016 7017 mutex_enter(&zone->zone_lock); 7018 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7019 err = ENXIO; 7020 } else { 7021 list_remove(&zone->zone_dl_list, zdl); 7022 nvlist_free(zdl->zdl_net); 7023 kmem_free(zdl, sizeof (zone_dl_t)); 7024 } 7025 mutex_exit(&zone->zone_lock); 7026 zone_rele(zone); 7027 return (err == 0 ? 0 : set_errno(err)); 7028 } 7029 7030 /* 7031 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 7032 * the linkid. Otherwise we just check if the specified zoneidp has been 7033 * assigned the supplied linkid. 7034 */ 7035 int 7036 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 7037 { 7038 zone_t *zone; 7039 int err = ENXIO; 7040 7041 if (*zoneidp != ALL_ZONES) { 7042 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 7043 if (zone_dl_exists(zone, linkid)) 7044 err = 0; 7045 zone_rele(zone); 7046 } 7047 return (err); 7048 } 7049 7050 mutex_enter(&zonehash_lock); 7051 for (zone = list_head(&zone_active); zone != NULL; 7052 zone = list_next(&zone_active, zone)) { 7053 if (zone_dl_exists(zone, linkid)) { 7054 *zoneidp = zone->zone_id; 7055 err = 0; 7056 break; 7057 } 7058 } 7059 mutex_exit(&zonehash_lock); 7060 return (err); 7061 } 7062 7063 /* 7064 * Get the list of datalink IDs assigned to a zone. 7065 * 7066 * On input, *nump is the number of datalink IDs that can fit in the supplied 7067 * idarray. Upon return, *nump is either set to the number of datalink IDs 7068 * that were placed in the array if the array was large enough, or to the 7069 * number of datalink IDs that the function needs to place in the array if the 7070 * array is too small. 7071 */ 7072 static int 7073 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7074 { 7075 uint_t num, dlcount; 7076 zone_t *zone; 7077 zone_dl_t *zdl; 7078 datalink_id_t *idptr = idarray; 7079 7080 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7081 return (set_errno(EFAULT)); 7082 if ((zone = zone_find_by_id(zoneid)) == NULL) 7083 return (set_errno(ENXIO)); 7084 7085 num = 0; 7086 mutex_enter(&zone->zone_lock); 7087 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7088 zdl = list_next(&zone->zone_dl_list, zdl)) { 7089 /* 7090 * If the list is bigger than what the caller supplied, just 7091 * count, don't do copyout. 7092 */ 7093 if (++num > dlcount) 7094 continue; 7095 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7096 mutex_exit(&zone->zone_lock); 7097 zone_rele(zone); 7098 return (set_errno(EFAULT)); 7099 } 7100 idptr++; 7101 } 7102 mutex_exit(&zone->zone_lock); 7103 zone_rele(zone); 7104 7105 /* Increased or decreased, caller should be notified. */ 7106 if (num != dlcount) { 7107 if (copyout(&num, nump, sizeof (num)) != 0) 7108 return (set_errno(EFAULT)); 7109 } 7110 return (0); 7111 } 7112 7113 /* 7114 * Public interface for looking up a zone by zoneid. It's a customized version 7115 * for netstack_zone_create(). It can only be called from the zsd create 7116 * callbacks, since it doesn't have reference on the zone structure hence if 7117 * it is called elsewhere the zone could disappear after the zonehash_lock 7118 * is dropped. 7119 * 7120 * Furthermore it 7121 * 1. Doesn't check the status of the zone. 7122 * 2. It will be called even before zone_init is called, in that case the 7123 * address of zone0 is returned directly, and netstack_zone_create() 7124 * will only assign a value to zone0.zone_netstack, won't break anything. 7125 * 3. Returns without the zone being held. 7126 */ 7127 zone_t * 7128 zone_find_by_id_nolock(zoneid_t zoneid) 7129 { 7130 zone_t *zone; 7131 7132 mutex_enter(&zonehash_lock); 7133 if (zonehashbyid == NULL) 7134 zone = &zone0; 7135 else 7136 zone = zone_find_all_by_id(zoneid); 7137 mutex_exit(&zonehash_lock); 7138 return (zone); 7139 } 7140 7141 /* 7142 * Walk the datalinks for a given zone 7143 */ 7144 int 7145 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7146 void *data) 7147 { 7148 zone_t *zone; 7149 zone_dl_t *zdl; 7150 datalink_id_t *idarray; 7151 uint_t idcount = 0; 7152 int i, ret = 0; 7153 7154 if ((zone = zone_find_by_id(zoneid)) == NULL) 7155 return (ENOENT); 7156 7157 /* 7158 * We first build an array of linkid's so that we can walk these and 7159 * execute the callback with the zone_lock dropped. 7160 */ 7161 mutex_enter(&zone->zone_lock); 7162 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7163 zdl = list_next(&zone->zone_dl_list, zdl)) { 7164 idcount++; 7165 } 7166 7167 if (idcount == 0) { 7168 mutex_exit(&zone->zone_lock); 7169 zone_rele(zone); 7170 return (0); 7171 } 7172 7173 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7174 if (idarray == NULL) { 7175 mutex_exit(&zone->zone_lock); 7176 zone_rele(zone); 7177 return (ENOMEM); 7178 } 7179 7180 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7181 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7182 idarray[i] = zdl->zdl_id; 7183 } 7184 7185 mutex_exit(&zone->zone_lock); 7186 7187 for (i = 0; i < idcount && ret == 0; i++) { 7188 if ((ret = (*cb)(idarray[i], data)) != 0) 7189 break; 7190 } 7191 7192 zone_rele(zone); 7193 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7194 return (ret); 7195 } 7196 7197 static char * 7198 zone_net_type2name(int type) 7199 { 7200 switch (type) { 7201 case ZONE_NETWORK_ADDRESS: 7202 return (ZONE_NET_ADDRNAME); 7203 case ZONE_NETWORK_DEFROUTER: 7204 return (ZONE_NET_RTRNAME); 7205 default: 7206 return (NULL); 7207 } 7208 } 7209 7210 static int 7211 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7212 { 7213 zone_t *zone; 7214 zone_dl_t *zdl; 7215 nvlist_t *nvl; 7216 int err = 0; 7217 uint8_t *new = NULL; 7218 char *nvname; 7219 int bufsize; 7220 datalink_id_t linkid = znbuf->zn_linkid; 7221 7222 if (secpolicy_zone_config(CRED()) != 0) 7223 return (set_errno(EPERM)); 7224 7225 if (zoneid == GLOBAL_ZONEID) 7226 return (set_errno(EINVAL)); 7227 7228 nvname = zone_net_type2name(znbuf->zn_type); 7229 bufsize = znbuf->zn_len; 7230 new = znbuf->zn_val; 7231 if (nvname == NULL) 7232 return (set_errno(EINVAL)); 7233 7234 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7235 return (set_errno(EINVAL)); 7236 } 7237 7238 mutex_enter(&zone->zone_lock); 7239 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7240 err = ENXIO; 7241 goto done; 7242 } 7243 if ((nvl = zdl->zdl_net) == NULL) { 7244 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7245 err = ENOMEM; 7246 goto done; 7247 } else { 7248 zdl->zdl_net = nvl; 7249 } 7250 } 7251 if (nvlist_exists(nvl, nvname)) { 7252 err = EINVAL; 7253 goto done; 7254 } 7255 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7256 ASSERT(err == 0); 7257 done: 7258 mutex_exit(&zone->zone_lock); 7259 zone_rele(zone); 7260 if (err != 0) 7261 return (set_errno(err)); 7262 else 7263 return (0); 7264 } 7265 7266 static int 7267 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7268 { 7269 zone_t *zone; 7270 zone_dl_t *zdl; 7271 nvlist_t *nvl; 7272 uint8_t *ptr; 7273 uint_t psize; 7274 int err = 0; 7275 char *nvname; 7276 int bufsize; 7277 void *buf; 7278 datalink_id_t linkid = znbuf->zn_linkid; 7279 7280 if (zoneid == GLOBAL_ZONEID) 7281 return (set_errno(EINVAL)); 7282 7283 nvname = zone_net_type2name(znbuf->zn_type); 7284 bufsize = znbuf->zn_len; 7285 buf = znbuf->zn_val; 7286 7287 if (nvname == NULL) 7288 return (set_errno(EINVAL)); 7289 if ((zone = zone_find_by_id(zoneid)) == NULL) 7290 return (set_errno(EINVAL)); 7291 7292 mutex_enter(&zone->zone_lock); 7293 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7294 err = ENXIO; 7295 goto done; 7296 } 7297 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7298 err = ENOENT; 7299 goto done; 7300 } 7301 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7302 ASSERT(err == 0); 7303 7304 if (psize > bufsize) { 7305 err = ENOBUFS; 7306 goto done; 7307 } 7308 znbuf->zn_len = psize; 7309 bcopy(ptr, buf, psize); 7310 done: 7311 mutex_exit(&zone->zone_lock); 7312 zone_rele(zone); 7313 if (err != 0) 7314 return (set_errno(err)); 7315 else 7316 return (0); 7317 }