1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * The vfork() system call trap is no longer invoked by libc. 97 * It is retained only for the benefit of applications running 98 * within a solaris10 branded zone. It should be eliminated 99 * when we no longer support solaris10 branded zones. 100 */ 101 int64_t 102 vfork(void) 103 { 104 curthread->t_post_sys = 1; /* so vfwait() will be called */ 105 return (cfork(1, 1, 0)); 106 } 107 108 /* 109 * forksys system call - forkx, forkallx, vforkx. This is the 110 * interface invoked by libc for fork1(), forkall(), and vfork() 111 */ 112 int64_t 113 forksys(int subcode, int flags) 114 { 115 switch (subcode) { 116 case 0: 117 return (cfork(0, 1, flags)); /* forkx(flags) */ 118 case 1: 119 return (cfork(0, 0, flags)); /* forkallx(flags) */ 120 case 2: 121 curthread->t_post_sys = 1; /* so vfwait() will be called */ 122 return (cfork(1, 1, flags)); /* vforkx(flags) */ 123 default: 124 return ((int64_t)set_errno(EINVAL)); 125 } 126 } 127 128 /* ARGSUSED */ 129 static int64_t 130 cfork(int isvfork, int isfork1, int flags) 131 { 132 proc_t *p = ttoproc(curthread); 133 struct as *as; 134 proc_t *cp, **orphpp; 135 klwp_t *clone; 136 kthread_t *t; 137 task_t *tk; 138 rval_t r; 139 int error; 140 int i; 141 rctl_set_t *dup_set; 142 rctl_alloc_gp_t *dup_gp; 143 rctl_entity_p_t e; 144 lwpdir_t *ldp; 145 lwpent_t *lep; 146 lwpent_t *clep; 147 148 /* 149 * Allow only these two flags. 150 */ 151 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 152 error = EINVAL; 153 atomic_inc_32(&curproc->p_zone->zone_ffmisc); 154 goto forkerr; 155 } 156 157 /* 158 * fork is not supported for the /proc agent lwp. 159 */ 160 if (curthread == p->p_agenttp) { 161 error = ENOTSUP; 162 atomic_inc_32(&curproc->p_zone->zone_ffmisc); 163 goto forkerr; 164 } 165 166 if ((error = secpolicy_basic_fork(CRED())) != 0) { 167 atomic_inc_32(&p->p_zone->zone_ffmisc); 168 goto forkerr; 169 } 170 171 /* 172 * If the calling lwp is doing a fork1() then the 173 * other lwps in this process are not duplicated and 174 * don't need to be held where their kernel stacks can be 175 * cloned. If doing forkall(), the process is held with 176 * SHOLDFORK, so that the lwps are at a point where their 177 * stacks can be copied which is on entry or exit from 178 * the kernel. 179 */ 180 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 181 aston(curthread); 182 error = EINTR; 183 atomic_inc_32(&p->p_zone->zone_ffmisc); 184 goto forkerr; 185 } 186 187 #if defined(__sparc) 188 /* 189 * Ensure that the user stack is fully constructed 190 * before creating the child process structure. 191 */ 192 (void) flush_user_windows_to_stack(NULL); 193 #endif 194 195 mutex_enter(&p->p_lock); 196 /* 197 * If this is vfork(), cancel any suspend request we might 198 * have gotten from some other thread via lwp_suspend(). 199 * Otherwise we could end up with a deadlock on return 200 * from the vfork() in both the parent and the child. 201 */ 202 if (isvfork) 203 curthread->t_proc_flag &= ~TP_HOLDLWP; 204 /* 205 * Prevent our resource set associations from being changed during fork. 206 */ 207 pool_barrier_enter(); 208 mutex_exit(&p->p_lock); 209 210 /* 211 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 212 */ 213 if (getproc(&cp, 0, GETPROC_USER) < 0) { 214 mutex_enter(&p->p_lock); 215 pool_barrier_exit(); 216 continuelwps(p); 217 mutex_exit(&p->p_lock); 218 error = EAGAIN; 219 goto forkerr; 220 } 221 222 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 223 224 /* 225 * Assign an address space to child 226 */ 227 if (isvfork) { 228 /* 229 * Clear any watched areas and remember the 230 * watched pages for restoring in vfwait(). 231 */ 232 as = p->p_as; 233 if (avl_numnodes(&as->a_wpage) != 0) { 234 AS_LOCK_ENTER(as, RW_WRITER); 235 as_clearwatch(as); 236 p->p_wpage = as->a_wpage; 237 avl_create(&as->a_wpage, wp_compare, 238 sizeof (struct watched_page), 239 offsetof(struct watched_page, wp_link)); 240 AS_LOCK_EXIT(as); 241 } 242 cp->p_as = as; 243 cp->p_flag |= SVFORK; 244 245 /* 246 * Use the parent's shm segment list information for 247 * the child as it uses its address space till it execs. 248 */ 249 cp->p_segacct = p->p_segacct; 250 } else { 251 /* 252 * We need to hold P_PR_LOCK until the address space has 253 * been duplicated and we've had a chance to remove from the 254 * child any DTrace probes that were in the parent. Holding 255 * P_PR_LOCK prevents any new probes from being added and any 256 * extant probes from being removed. 257 */ 258 mutex_enter(&p->p_lock); 259 sprlock_proc(p); 260 p->p_flag |= SFORKING; 261 mutex_exit(&p->p_lock); 262 263 error = as_dup(p->p_as, cp); 264 if (error != 0) { 265 mutex_enter(&p->p_lock); 266 sprunlock(p); 267 fork_fail(cp); 268 mutex_enter(&pidlock); 269 orphpp = &p->p_orphan; 270 while (*orphpp != cp) 271 orphpp = &(*orphpp)->p_nextorph; 272 *orphpp = cp->p_nextorph; 273 if (p->p_child == cp) 274 p->p_child = cp->p_sibling; 275 if (cp->p_sibling) 276 cp->p_sibling->p_psibling = cp->p_psibling; 277 if (cp->p_psibling) 278 cp->p_psibling->p_sibling = cp->p_sibling; 279 mutex_enter(&cp->p_lock); 280 tk = cp->p_task; 281 task_detach(cp); 282 ASSERT(cp->p_pool->pool_ref > 0); 283 atomic_dec_32(&cp->p_pool->pool_ref); 284 mutex_exit(&cp->p_lock); 285 pid_exit(cp, tk); 286 mutex_exit(&pidlock); 287 task_rele(tk); 288 289 mutex_enter(&p->p_lock); 290 p->p_flag &= ~SFORKING; 291 pool_barrier_exit(); 292 continuelwps(p); 293 mutex_exit(&p->p_lock); 294 /* 295 * Preserve ENOMEM error condition but 296 * map all others to EAGAIN. 297 */ 298 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 299 atomic_inc_32(&p->p_zone->zone_ffnomem); 300 goto forkerr; 301 } 302 303 /* 304 * Remove all DTrace tracepoints from the child process. We 305 * need to do this _before_ duplicating USDT providers since 306 * any associated probes may be immediately enabled. 307 */ 308 if (p->p_dtrace_count > 0) 309 dtrace_fasttrap_fork(p, cp); 310 311 mutex_enter(&p->p_lock); 312 sprunlock(p); 313 314 /* Duplicate parent's shared memory */ 315 if (p->p_segacct) 316 shmfork(p, cp); 317 318 /* 319 * Duplicate any helper actions and providers. The SFORKING 320 * we set above informs the code to enable USDT probes that 321 * sprlock() may fail because the child is being forked. 322 */ 323 if (p->p_dtrace_helpers != NULL) { 324 ASSERT(dtrace_helpers_fork != NULL); 325 (*dtrace_helpers_fork)(p, cp); 326 } 327 328 mutex_enter(&p->p_lock); 329 p->p_flag &= ~SFORKING; 330 mutex_exit(&p->p_lock); 331 } 332 333 /* 334 * Duplicate parent's resource controls. 335 */ 336 dup_set = rctl_set_create(); 337 for (;;) { 338 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 339 mutex_enter(&p->p_rctls->rcs_lock); 340 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 341 break; 342 mutex_exit(&p->p_rctls->rcs_lock); 343 rctl_prealloc_destroy(dup_gp); 344 } 345 e.rcep_p.proc = cp; 346 e.rcep_t = RCENTITY_PROCESS; 347 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 348 RCD_DUP | RCD_CALLBACK); 349 mutex_exit(&p->p_rctls->rcs_lock); 350 351 rctl_prealloc_destroy(dup_gp); 352 353 /* 354 * Allocate the child's lwp directory and lwpid hash table. 355 */ 356 if (isfork1) 357 cp->p_lwpdir_sz = 2; 358 else 359 cp->p_lwpdir_sz = p->p_lwpdir_sz; 360 cp->p_lwpdir = cp->p_lwpfree = ldp = 361 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 362 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 363 ldp->ld_next = ldp + 1; 364 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 365 cp->p_tidhash = 366 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 367 368 /* 369 * Duplicate parent's lwps. 370 * Mutual exclusion is not needed because the process is 371 * in the hold state and only the current lwp is running. 372 */ 373 klgrpset_clear(cp->p_lgrpset); 374 if (isfork1) { 375 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 376 if (clone == NULL) 377 goto forklwperr; 378 /* 379 * Inherit only the lwp_wait()able flag, 380 * Daemon threads should not call fork1(), but oh well... 381 */ 382 lwptot(clone)->t_proc_flag |= 383 (curthread->t_proc_flag & TP_TWAIT); 384 } else { 385 /* this is forkall(), no one can be in lwp_wait() */ 386 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 387 /* for each entry in the parent's lwp directory... */ 388 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 389 klwp_t *clwp; 390 kthread_t *ct; 391 392 if ((lep = ldp->ld_entry) == NULL) 393 continue; 394 395 if ((t = lep->le_thread) != NULL) { 396 clwp = forklwp(ttolwp(t), cp, t->t_tid); 397 if (clwp == NULL) 398 goto forklwperr; 399 ct = lwptot(clwp); 400 /* 401 * Inherit lwp_wait()able and daemon flags. 402 */ 403 ct->t_proc_flag |= 404 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 405 /* 406 * Keep track of the clone of curthread to 407 * post return values through lwp_setrval(). 408 * Mark other threads for special treatment 409 * by lwp_rtt() / post_syscall(). 410 */ 411 if (t == curthread) 412 clone = clwp; 413 else 414 ct->t_flag |= T_FORKALL; 415 } else { 416 /* 417 * Replicate zombie lwps in the child. 418 */ 419 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 420 clep->le_lwpid = lep->le_lwpid; 421 clep->le_start = lep->le_start; 422 lwp_hash_in(cp, clep, 423 cp->p_tidhash, cp->p_tidhash_sz, 0); 424 } 425 } 426 } 427 428 /* 429 * Put new process in the parent's process contract, or put it 430 * in a new one if there is an active process template. Send a 431 * fork event (if requested) to whatever contract the child is 432 * a member of. Fails if the parent has been SIGKILLed. 433 */ 434 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) { 435 atomic_inc_32(&p->p_zone->zone_ffmisc); 436 goto forklwperr; 437 } 438 439 /* 440 * No fork failures occur beyond this point. 441 */ 442 443 cp->p_lwpid = p->p_lwpid; 444 if (!isfork1) { 445 cp->p_lwpdaemon = p->p_lwpdaemon; 446 cp->p_zombcnt = p->p_zombcnt; 447 /* 448 * If the parent's lwp ids have wrapped around, so have the 449 * child's. 450 */ 451 cp->p_flag |= p->p_flag & SLWPWRAP; 452 } 453 454 mutex_enter(&p->p_lock); 455 corectl_path_hold(cp->p_corefile = p->p_corefile); 456 corectl_content_hold(cp->p_content = p->p_content); 457 mutex_exit(&p->p_lock); 458 459 /* 460 * Duplicate process context ops, if any. 461 */ 462 if (p->p_pctx) 463 forkpctx(p, cp); 464 465 #ifdef __sparc 466 utrap_dup(p, cp); 467 #endif 468 /* 469 * If the child process has been marked to stop on exit 470 * from this fork, arrange for all other lwps to stop in 471 * sympathy with the active lwp. 472 */ 473 if (PTOU(cp)->u_systrap && 474 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 475 mutex_enter(&cp->p_lock); 476 t = cp->p_tlist; 477 do { 478 t->t_proc_flag |= TP_PRSTOP; 479 aston(t); /* so TP_PRSTOP will be seen */ 480 } while ((t = t->t_forw) != cp->p_tlist); 481 mutex_exit(&cp->p_lock); 482 } 483 /* 484 * If the parent process has been marked to stop on exit 485 * from this fork, and its asynchronous-stop flag has not 486 * been set, arrange for all other lwps to stop before 487 * they return back to user level. 488 */ 489 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 490 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 491 mutex_enter(&p->p_lock); 492 t = p->p_tlist; 493 do { 494 t->t_proc_flag |= TP_PRSTOP; 495 aston(t); /* so TP_PRSTOP will be seen */ 496 } while ((t = t->t_forw) != p->p_tlist); 497 mutex_exit(&p->p_lock); 498 } 499 500 if (PROC_IS_BRANDED(p)) 501 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 502 else 503 lwp_setrval(clone, p->p_pid, 1); 504 505 /* set return values for parent */ 506 r.r_val1 = (int)cp->p_pid; 507 r.r_val2 = 0; 508 509 /* 510 * pool_barrier_exit() can now be called because the child process has: 511 * - all identifying features cloned or set (p_pid, p_task, p_pool) 512 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 513 * - any other fields set which are used in resource set binding. 514 */ 515 mutex_enter(&p->p_lock); 516 pool_barrier_exit(); 517 mutex_exit(&p->p_lock); 518 519 mutex_enter(&pidlock); 520 mutex_enter(&cp->p_lock); 521 522 /* 523 * Set flags telling the child what (not) to do on exit. 524 */ 525 if (flags & FORK_NOSIGCHLD) 526 cp->p_pidflag |= CLDNOSIGCHLD; 527 if (flags & FORK_WAITPID) 528 cp->p_pidflag |= CLDWAITPID; 529 530 /* 531 * Now that there are lwps and threads attached, add the new 532 * process to the process group. 533 */ 534 pgjoin(cp, p->p_pgidp); 535 cp->p_stat = SRUN; 536 /* 537 * We are now done with all the lwps in the child process. 538 */ 539 t = cp->p_tlist; 540 do { 541 /* 542 * Set the lwp_suspend()ed lwps running. 543 * They will suspend properly at syscall exit. 544 */ 545 if (t->t_proc_flag & TP_HOLDLWP) 546 lwp_create_done(t); 547 else { 548 /* set TS_CREATE to allow continuelwps() to work */ 549 thread_lock(t); 550 ASSERT(t->t_state == TS_STOPPED && 551 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 552 t->t_schedflag |= TS_CREATE; 553 thread_unlock(t); 554 } 555 } while ((t = t->t_forw) != cp->p_tlist); 556 mutex_exit(&cp->p_lock); 557 558 if (isvfork) { 559 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 560 mutex_enter(&p->p_lock); 561 p->p_flag |= SVFWAIT; 562 curthread->t_flag |= T_VFPARENT; 563 DTRACE_PROC1(create, proc_t *, cp); 564 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 565 mutex_exit(&p->p_lock); 566 /* 567 * Grab child's p_lock before dropping pidlock to ensure 568 * the process will not disappear before we set it running. 569 */ 570 mutex_enter(&cp->p_lock); 571 mutex_exit(&pidlock); 572 sigdefault(cp); 573 continuelwps(cp); 574 mutex_exit(&cp->p_lock); 575 } else { 576 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 577 DTRACE_PROC1(create, proc_t *, cp); 578 /* 579 * It is CL_FORKRET's job to drop pidlock. 580 * If we do it here, the process could be set running 581 * and disappear before CL_FORKRET() is called. 582 */ 583 CL_FORKRET(curthread, cp->p_tlist); 584 schedctl_set_cidpri(curthread); 585 ASSERT(MUTEX_NOT_HELD(&pidlock)); 586 } 587 588 return (r.r_vals); 589 590 forklwperr: 591 if (isvfork) { 592 if (avl_numnodes(&p->p_wpage) != 0) { 593 /* restore watchpoints to parent */ 594 as = p->p_as; 595 AS_LOCK_ENTER(as, RW_WRITER); 596 as->a_wpage = p->p_wpage; 597 avl_create(&p->p_wpage, wp_compare, 598 sizeof (struct watched_page), 599 offsetof(struct watched_page, wp_link)); 600 as_setwatch(as); 601 AS_LOCK_EXIT(as); 602 } 603 } else { 604 if (cp->p_segacct) 605 shmexit(cp); 606 as = cp->p_as; 607 cp->p_as = &kas; 608 as_free(as); 609 } 610 611 if (cp->p_lwpdir) { 612 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 613 if ((lep = ldp->ld_entry) != NULL) 614 kmem_free(lep, sizeof (*lep)); 615 kmem_free(cp->p_lwpdir, 616 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 617 } 618 cp->p_lwpdir = NULL; 619 cp->p_lwpfree = NULL; 620 cp->p_lwpdir_sz = 0; 621 622 if (cp->p_tidhash) 623 kmem_free(cp->p_tidhash, 624 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 625 cp->p_tidhash = NULL; 626 cp->p_tidhash_sz = 0; 627 628 forklwp_fail(cp); 629 fork_fail(cp); 630 rctl_set_free(cp->p_rctls); 631 mutex_enter(&pidlock); 632 633 /* 634 * Detach failed child from task. 635 */ 636 mutex_enter(&cp->p_lock); 637 tk = cp->p_task; 638 task_detach(cp); 639 ASSERT(cp->p_pool->pool_ref > 0); 640 atomic_dec_32(&cp->p_pool->pool_ref); 641 mutex_exit(&cp->p_lock); 642 643 orphpp = &p->p_orphan; 644 while (*orphpp != cp) 645 orphpp = &(*orphpp)->p_nextorph; 646 *orphpp = cp->p_nextorph; 647 if (p->p_child == cp) 648 p->p_child = cp->p_sibling; 649 if (cp->p_sibling) 650 cp->p_sibling->p_psibling = cp->p_psibling; 651 if (cp->p_psibling) 652 cp->p_psibling->p_sibling = cp->p_sibling; 653 pid_exit(cp, tk); 654 mutex_exit(&pidlock); 655 656 task_rele(tk); 657 658 mutex_enter(&p->p_lock); 659 pool_barrier_exit(); 660 continuelwps(p); 661 mutex_exit(&p->p_lock); 662 error = EAGAIN; 663 forkerr: 664 return ((int64_t)set_errno(error)); 665 } 666 667 /* 668 * Free allocated resources from getproc() if a fork failed. 669 */ 670 static void 671 fork_fail(proc_t *cp) 672 { 673 uf_info_t *fip = P_FINFO(cp); 674 675 fcnt_add(fip, -1); 676 sigdelq(cp, NULL, 0); 677 678 mutex_enter(&pidlock); 679 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 680 mutex_exit(&pidlock); 681 682 /* 683 * single threaded, so no locking needed here 684 */ 685 crfree(cp->p_cred); 686 687 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 688 689 VN_RELE(PTOU(curproc)->u_cdir); 690 if (PTOU(curproc)->u_rdir) 691 VN_RELE(PTOU(curproc)->u_rdir); 692 if (cp->p_exec) 693 VN_RELE(cp->p_exec); 694 if (cp->p_execdir) 695 VN_RELE(cp->p_execdir); 696 if (PTOU(curproc)->u_cwd) 697 refstr_rele(PTOU(curproc)->u_cwd); 698 if (PROC_IS_BRANDED(cp)) { 699 brand_clearbrand(cp, B_TRUE); 700 } 701 } 702 703 /* 704 * Clean up the lwps already created for this child process. 705 * The fork failed while duplicating all the lwps of the parent 706 * and those lwps already created must be freed. 707 * This process is invisible to the rest of the system, 708 * so we don't need to hold p->p_lock to protect the list. 709 */ 710 static void 711 forklwp_fail(proc_t *p) 712 { 713 kthread_t *t; 714 task_t *tk; 715 int branded = 0; 716 717 if (PROC_IS_BRANDED(p)) 718 branded = 1; 719 720 while ((t = p->p_tlist) != NULL) { 721 /* 722 * First remove the lwp from the process's p_tlist. 723 */ 724 if (t != t->t_forw) 725 p->p_tlist = t->t_forw; 726 else 727 p->p_tlist = NULL; 728 p->p_lwpcnt--; 729 t->t_forw->t_back = t->t_back; 730 t->t_back->t_forw = t->t_forw; 731 732 tk = p->p_task; 733 mutex_enter(&p->p_zone->zone_nlwps_lock); 734 tk->tk_nlwps--; 735 tk->tk_proj->kpj_nlwps--; 736 p->p_zone->zone_nlwps--; 737 mutex_exit(&p->p_zone->zone_nlwps_lock); 738 739 ASSERT(t->t_schedctl == NULL); 740 741 if (branded) 742 BROP(p)->b_freelwp(ttolwp(t)); 743 744 if (t->t_door != NULL) { 745 kmem_free(t->t_door, sizeof (door_data_t)); 746 t->t_door = NULL; 747 } 748 lwp_ctmpl_clear(ttolwp(t)); 749 750 /* 751 * Remove the thread from the all threads list. 752 * We need to hold pidlock for this. 753 */ 754 mutex_enter(&pidlock); 755 t->t_next->t_prev = t->t_prev; 756 t->t_prev->t_next = t->t_next; 757 CL_EXIT(t); /* tell the scheduler that we're exiting */ 758 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 759 mutex_exit(&pidlock); 760 761 /* 762 * Let the lgroup load averages know that this thread isn't 763 * going to show up (i.e. un-do what was done on behalf of 764 * this thread by the earlier lgrp_move_thread()). 765 */ 766 kpreempt_disable(); 767 lgrp_move_thread(t, NULL, 1); 768 kpreempt_enable(); 769 770 /* 771 * The thread was created TS_STOPPED. 772 * We change it to TS_FREE to avoid an 773 * ASSERT() panic in thread_free(). 774 */ 775 t->t_state = TS_FREE; 776 thread_rele(t); 777 thread_free(t); 778 } 779 } 780 781 extern struct as kas; 782 783 /* 784 * fork a kernel process. 785 */ 786 int 787 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 788 pid_t pid) 789 { 790 proc_t *p; 791 struct user *up; 792 kthread_t *t; 793 cont_process_t *ctp = NULL; 794 rctl_entity_p_t e; 795 796 ASSERT(cid != sysdccid); 797 ASSERT(cid != syscid || ct == NULL); 798 if (CLASS_KERNEL(cid)) { 799 rctl_alloc_gp_t *init_gp; 800 rctl_set_t *init_set; 801 802 ASSERT(pid != 1); 803 804 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 805 return (EAGAIN); 806 807 /* 808 * Release the hold on the p_exec and p_execdir, these 809 * were acquired in getproc() 810 */ 811 if (p->p_execdir != NULL) 812 VN_RELE(p->p_execdir); 813 if (p->p_exec != NULL) 814 VN_RELE(p->p_exec); 815 p->p_flag |= SNOWAIT; 816 p->p_exec = NULL; 817 p->p_execdir = NULL; 818 819 init_set = rctl_set_create(); 820 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 821 822 /* 823 * kernel processes do not inherit /proc tracing flags. 824 */ 825 sigemptyset(&p->p_sigmask); 826 premptyset(&p->p_fltmask); 827 up = PTOU(p); 828 up->u_systrap = 0; 829 premptyset(&(up->u_entrymask)); 830 premptyset(&(up->u_exitmask)); 831 mutex_enter(&p->p_lock); 832 e.rcep_p.proc = p; 833 e.rcep_t = RCENTITY_PROCESS; 834 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 835 init_gp); 836 mutex_exit(&p->p_lock); 837 838 rctl_prealloc_destroy(init_gp); 839 840 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 841 } else { 842 rctl_alloc_gp_t *init_gp, *default_gp; 843 rctl_set_t *init_set; 844 task_t *tk, *tk_old; 845 klwp_t *lwp; 846 847 if (getproc(&p, pid, GETPROC_USER) < 0) 848 return (EAGAIN); 849 /* 850 * init creates a new task, distinct from the task 851 * containing kernel "processes". 852 */ 853 tk = task_create(0, p->p_zone); 854 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 855 tk->tk_proj->kpj_ntasks++; 856 tk->tk_nprocs++; 857 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 858 859 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 860 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 861 init_set = rctl_set_create(); 862 863 mutex_enter(&pidlock); 864 mutex_enter(&p->p_lock); 865 tk_old = p->p_task; /* switch to new task */ 866 867 task_detach(p); 868 task_begin(tk, p); 869 mutex_exit(&pidlock); 870 871 mutex_enter(&tk_old->tk_zone->zone_nlwps_lock); 872 tk_old->tk_nprocs--; 873 mutex_exit(&tk_old->tk_zone->zone_nlwps_lock); 874 875 e.rcep_p.proc = p; 876 e.rcep_t = RCENTITY_PROCESS; 877 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 878 init_gp); 879 rctlproc_default_init(p, default_gp); 880 mutex_exit(&p->p_lock); 881 882 task_rele(tk_old); 883 rctl_prealloc_destroy(default_gp); 884 rctl_prealloc_destroy(init_gp); 885 886 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 887 &curthread->t_hold, cid, 1)) == NULL) { 888 task_t *tk; 889 fork_fail(p); 890 mutex_enter(&pidlock); 891 mutex_enter(&p->p_lock); 892 tk = p->p_task; 893 task_detach(p); 894 ASSERT(p->p_pool->pool_ref > 0); 895 atomic_add_32(&p->p_pool->pool_ref, -1); 896 mutex_exit(&p->p_lock); 897 pid_exit(p, tk); 898 mutex_exit(&pidlock); 899 task_rele(tk); 900 901 return (EAGAIN); 902 } 903 t = lwptot(lwp); 904 905 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 906 B_FALSE); 907 ASSERT(ctp != NULL); 908 if (ct != NULL) 909 *ct = &ctp->conp_contract; 910 } 911 912 ASSERT3U(t->t_tid, ==, 1); 913 p->p_lwpid = 1; 914 mutex_enter(&pidlock); 915 pgjoin(p, p->p_parent->p_pgidp); 916 p->p_stat = SRUN; 917 mutex_enter(&p->p_lock); 918 t->t_proc_flag &= ~TP_HOLDLWP; 919 lwp_create_done(t); 920 mutex_exit(&p->p_lock); 921 mutex_exit(&pidlock); 922 return (0); 923 } 924 925 /* 926 * create a child proc struct. 927 */ 928 static int 929 getproc(proc_t **cpp, pid_t pid, uint_t flags) 930 { 931 proc_t *pp, *cp; 932 pid_t newpid; 933 struct user *uarea; 934 extern uint_t nproc; 935 struct cred *cr; 936 uid_t ruid; 937 zoneid_t zoneid; 938 task_t *task; 939 kproject_t *proj; 940 zone_t *zone; 941 int rctlfail = 0; 942 943 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 944 return (-1); /* no point in starting new processes */ 945 946 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 947 task = pp->p_task; 948 proj = task->tk_proj; 949 zone = pp->p_zone; 950 951 mutex_enter(&pp->p_lock); 952 mutex_enter(&zone->zone_nlwps_lock); 953 if (proj != proj0p) { 954 if (task->tk_nprocs >= task->tk_nprocs_ctl) 955 if (rctl_test(rc_task_nprocs, task->tk_rctls, 956 pp, 1, 0) & RCT_DENY) 957 rctlfail = 1; 958 959 if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl) 960 if (rctl_test(rc_project_nprocs, proj->kpj_rctls, 961 pp, 1, 0) & RCT_DENY) 962 rctlfail = 1; 963 964 if (zone->zone_nprocs >= zone->zone_nprocs_ctl) 965 if (rctl_test(rc_zone_nprocs, zone->zone_rctls, 966 pp, 1, 0) & RCT_DENY) 967 rctlfail = 1; 968 969 if (rctlfail) { 970 mutex_exit(&zone->zone_nlwps_lock); 971 mutex_exit(&pp->p_lock); 972 atomic_inc_32(&zone->zone_ffcap); 973 goto punish; 974 } 975 } 976 task->tk_nprocs++; 977 proj->kpj_nprocs++; 978 zone->zone_nprocs++; 979 mutex_exit(&zone->zone_nlwps_lock); 980 mutex_exit(&pp->p_lock); 981 982 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 983 bzero(cp, sizeof (proc_t)); 984 985 /* 986 * Make proc entry for child process 987 */ 988 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 989 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 990 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 991 #if defined(__x86) 992 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 993 #endif 994 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 995 cp->p_stat = SIDL; 996 cp->p_mstart = gethrtime(); 997 cp->p_as = &kas; 998 /* 999 * p_zone must be set before we call pid_allocate since the process 1000 * will be visible after that and code such as prfind_zone will 1001 * look at the p_zone field. 1002 */ 1003 cp->p_zone = pp->p_zone; 1004 cp->p_t1_lgrpid = LGRP_NONE; 1005 cp->p_tr_lgrpid = LGRP_NONE; 1006 1007 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 1008 if (nproc == v.v_proc) { 1009 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 1010 cmn_err(CE_WARN, "out of processes"); 1011 } 1012 goto bad; 1013 } 1014 1015 mutex_enter(&pp->p_lock); 1016 cp->p_exec = pp->p_exec; 1017 cp->p_execdir = pp->p_execdir; 1018 mutex_exit(&pp->p_lock); 1019 1020 if (cp->p_exec) { 1021 VN_HOLD(cp->p_exec); 1022 /* 1023 * Each VOP_OPEN() must be paired with a corresponding 1024 * VOP_CLOSE(). In this case, the executable will be 1025 * closed for the child in either proc_exit() or gexec(). 1026 */ 1027 if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) { 1028 VN_RELE(cp->p_exec); 1029 cp->p_exec = NULLVP; 1030 cp->p_execdir = NULLVP; 1031 goto bad; 1032 } 1033 } 1034 if (cp->p_execdir) 1035 VN_HOLD(cp->p_execdir); 1036 1037 /* 1038 * If not privileged make sure that this user hasn't exceeded 1039 * v.v_maxup processes, and that users collectively haven't 1040 * exceeded v.v_maxupttl processes. 1041 */ 1042 mutex_enter(&pidlock); 1043 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 1044 cr = CRED(); 1045 ruid = crgetruid(cr); 1046 zoneid = crgetzoneid(cr); 1047 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 1048 (nproc >= v.v_maxupttl || 1049 upcount_get(ruid, zoneid) >= v.v_maxup) && 1050 secpolicy_newproc(cr) != 0) { 1051 mutex_exit(&pidlock); 1052 zcmn_err(zoneid, CE_NOTE, 1053 "out of per-user processes for uid %d", ruid); 1054 goto bad; 1055 } 1056 1057 /* 1058 * Everything is cool, put the new proc on the active process list. 1059 * It is already on the pid list and in /proc. 1060 * Increment the per uid process count (upcount). 1061 */ 1062 nproc++; 1063 upcount_inc(ruid, zoneid); 1064 1065 cp->p_next = practive; 1066 practive->p_prev = cp; 1067 practive = cp; 1068 1069 cp->p_ignore = pp->p_ignore; 1070 cp->p_siginfo = pp->p_siginfo; 1071 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1072 cp->p_sessp = pp->p_sessp; 1073 sess_hold(pp); 1074 cp->p_brand = pp->p_brand; 1075 if (PROC_IS_BRANDED(pp)) 1076 BROP(pp)->b_copy_procdata(cp, pp); 1077 cp->p_bssbase = pp->p_bssbase; 1078 cp->p_brkbase = pp->p_brkbase; 1079 cp->p_brksize = pp->p_brksize; 1080 cp->p_brkpageszc = pp->p_brkpageszc; 1081 cp->p_stksize = pp->p_stksize; 1082 cp->p_stkpageszc = pp->p_stkpageszc; 1083 cp->p_stkprot = pp->p_stkprot; 1084 cp->p_datprot = pp->p_datprot; 1085 cp->p_usrstack = pp->p_usrstack; 1086 cp->p_model = pp->p_model; 1087 cp->p_ppid = pp->p_pid; 1088 cp->p_ancpid = pp->p_pid; 1089 cp->p_portcnt = pp->p_portcnt; 1090 /* 1091 * Security flags are preserved on fork, the inherited copy come into 1092 * effect on exec 1093 */ 1094 cp->p_secflags = pp->p_secflags; 1095 1096 /* 1097 * Initialize watchpoint structures 1098 */ 1099 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1100 offsetof(struct watched_area, wa_link)); 1101 1102 /* 1103 * Initialize immediate resource control values. 1104 */ 1105 cp->p_stk_ctl = pp->p_stk_ctl; 1106 cp->p_fsz_ctl = pp->p_fsz_ctl; 1107 cp->p_vmem_ctl = pp->p_vmem_ctl; 1108 cp->p_fno_ctl = pp->p_fno_ctl; 1109 1110 /* 1111 * Link up to parent-child-sibling chain. No need to lock 1112 * in general since only a call to freeproc() (done by the 1113 * same parent as newproc()) diddles with the child chain. 1114 */ 1115 cp->p_sibling = pp->p_child; 1116 if (pp->p_child) 1117 pp->p_child->p_psibling = cp; 1118 1119 cp->p_parent = pp; 1120 pp->p_child = cp; 1121 1122 cp->p_child_ns = NULL; 1123 cp->p_sibling_ns = NULL; 1124 1125 cp->p_nextorph = pp->p_orphan; 1126 cp->p_nextofkin = pp; 1127 pp->p_orphan = cp; 1128 1129 /* 1130 * Inherit profiling state; do not inherit REALPROF profiling state. 1131 */ 1132 cp->p_prof = pp->p_prof; 1133 cp->p_rprof_cyclic = CYCLIC_NONE; 1134 1135 /* 1136 * Inherit pool pointer from the parent. Kernel processes are 1137 * always bound to the default pool. 1138 */ 1139 mutex_enter(&pp->p_lock); 1140 if (flags & GETPROC_KERNEL) { 1141 cp->p_pool = pool_default; 1142 cp->p_flag |= SSYS; 1143 } else { 1144 cp->p_pool = pp->p_pool; 1145 } 1146 atomic_inc_32(&cp->p_pool->pool_ref); 1147 mutex_exit(&pp->p_lock); 1148 1149 /* 1150 * Add the child process to the current task. Kernel processes 1151 * are always attached to task0. 1152 */ 1153 mutex_enter(&cp->p_lock); 1154 if (flags & GETPROC_KERNEL) 1155 task_attach(task0p, cp); 1156 else 1157 task_attach(pp->p_task, cp); 1158 mutex_exit(&cp->p_lock); 1159 mutex_exit(&pidlock); 1160 1161 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1162 offsetof(contract_t, ct_ctlist)); 1163 1164 /* 1165 * Duplicate any audit information kept in the process table 1166 */ 1167 if (audit_active) /* copy audit data to cp */ 1168 audit_newproc(cp); 1169 1170 crhold(cp->p_cred = cr); 1171 1172 /* 1173 * Bump up the counts on the file structures pointed at by the 1174 * parent's file table since the child will point at them too. 1175 */ 1176 fcnt_add(P_FINFO(pp), 1); 1177 1178 if (PTOU(pp)->u_cdir) { 1179 VN_HOLD(PTOU(pp)->u_cdir); 1180 } else { 1181 ASSERT(pp == &p0); 1182 /* 1183 * We must be at or before vfs_mountroot(); it will take care of 1184 * assigning our current directory. 1185 */ 1186 } 1187 if (PTOU(pp)->u_rdir) 1188 VN_HOLD(PTOU(pp)->u_rdir); 1189 if (PTOU(pp)->u_cwd) 1190 refstr_hold(PTOU(pp)->u_cwd); 1191 1192 /* 1193 * copy the parent's uarea. 1194 */ 1195 uarea = PTOU(cp); 1196 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1197 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1198 1199 gethrestime(&uarea->u_start); 1200 uarea->u_ticks = ddi_get_lbolt(); 1201 uarea->u_mem = rm_asrss(pp->p_as); 1202 uarea->u_acflag = AFORK; 1203 1204 /* 1205 * If inherit-on-fork, copy /proc tracing flags to child. 1206 */ 1207 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1208 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1209 cp->p_sigmask = pp->p_sigmask; 1210 cp->p_fltmask = pp->p_fltmask; 1211 } else { 1212 sigemptyset(&cp->p_sigmask); 1213 premptyset(&cp->p_fltmask); 1214 uarea->u_systrap = 0; 1215 premptyset(&uarea->u_entrymask); 1216 premptyset(&uarea->u_exitmask); 1217 } 1218 /* 1219 * If microstate accounting is being inherited, mark child 1220 */ 1221 if ((pp->p_flag & SMSFORK) != 0) 1222 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1223 1224 /* 1225 * Inherit fixalignment flag from the parent 1226 */ 1227 cp->p_fixalignment = pp->p_fixalignment; 1228 1229 *cpp = cp; 1230 return (0); 1231 1232 bad: 1233 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1234 1235 mutex_destroy(&cp->p_crlock); 1236 mutex_destroy(&cp->p_pflock); 1237 #if defined(__x86) 1238 mutex_destroy(&cp->p_ldtlock); 1239 #endif 1240 if (newpid != -1) { 1241 proc_entry_free(cp->p_pidp); 1242 (void) pid_rele(cp->p_pidp); 1243 } 1244 kmem_cache_free(process_cache, cp); 1245 1246 mutex_enter(&zone->zone_nlwps_lock); 1247 task->tk_nprocs--; 1248 proj->kpj_nprocs--; 1249 zone->zone_nprocs--; 1250 mutex_exit(&zone->zone_nlwps_lock); 1251 atomic_inc_32(&zone->zone_ffnoproc); 1252 1253 punish: 1254 /* 1255 * We most likely got into this situation because some process is 1256 * forking out of control. As punishment, put it to sleep for a 1257 * bit so it can't eat the machine alive. Sleep interval is chosen 1258 * to allow no more than one fork failure per cpu per clock tick 1259 * on average (yes, I just made this up). This has two desirable 1260 * properties: (1) it sets a constant limit on the fork failure 1261 * rate, and (2) the busier the system is, the harsher the penalty 1262 * for abusing it becomes. 1263 */ 1264 INCR_COUNT(&fork_fail_pending, &pidlock); 1265 delay(fork_fail_pending / ncpus + 1); 1266 DECR_COUNT(&fork_fail_pending, &pidlock); 1267 1268 return (-1); /* out of memory or proc slots */ 1269 } 1270 1271 /* 1272 * Release virtual memory. 1273 * In the case of vfork(), the child was given exclusive access to its 1274 * parent's address space. The parent is waiting in vfwait() for the 1275 * child to release its exclusive claim via relvm(). 1276 */ 1277 void 1278 relvm() 1279 { 1280 proc_t *p = curproc; 1281 1282 ASSERT((unsigned)p->p_lwpcnt <= 1); 1283 1284 prrelvm(); /* inform /proc */ 1285 1286 if (p->p_flag & SVFORK) { 1287 proc_t *pp = p->p_parent; 1288 /* 1289 * The child process is either exec'ing or exit'ing. 1290 * The child is now separated from the parent's address 1291 * space. The parent process is made dispatchable. 1292 * 1293 * This is a delicate locking maneuver, involving 1294 * both the parent's p_lock and the child's p_lock. 1295 * As soon as the SVFORK flag is turned off, the 1296 * parent is free to run, but it must not run until 1297 * we wake it up using its p_cv because it might 1298 * exit and we would be referencing invalid memory. 1299 * Therefore, we hold the parent with its p_lock 1300 * while protecting our p_flags with our own p_lock. 1301 */ 1302 try_again: 1303 mutex_enter(&p->p_lock); /* grab child's lock first */ 1304 prbarrier(p); /* make sure /proc is blocked out */ 1305 mutex_enter(&pp->p_lock); 1306 1307 /* 1308 * Check if parent is locked by /proc. 1309 */ 1310 if (pp->p_proc_flag & P_PR_LOCK) { 1311 /* 1312 * Delay until /proc is done with the parent. 1313 * We must drop our (the child's) p->p_lock, wait 1314 * via prbarrier() on the parent, then start over. 1315 */ 1316 mutex_exit(&p->p_lock); 1317 prbarrier(pp); 1318 mutex_exit(&pp->p_lock); 1319 goto try_again; 1320 } 1321 p->p_flag &= ~SVFORK; 1322 kpreempt_disable(); 1323 p->p_as = &kas; 1324 1325 /* 1326 * notify hat of change in thread's address space 1327 */ 1328 hat_thread_exit(curthread); 1329 kpreempt_enable(); 1330 1331 /* 1332 * child sizes are copied back to parent because 1333 * child may have grown. 1334 */ 1335 pp->p_brkbase = p->p_brkbase; 1336 pp->p_brksize = p->p_brksize; 1337 pp->p_stksize = p->p_stksize; 1338 1339 /* 1340 * Copy back the shm accounting information 1341 * to the parent process. 1342 */ 1343 pp->p_segacct = p->p_segacct; 1344 p->p_segacct = NULL; 1345 1346 /* 1347 * The parent is no longer waiting for the vfork()d child. 1348 * Restore the parent's watched pages, if any. This is 1349 * safe because we know the parent is not locked by /proc 1350 */ 1351 pp->p_flag &= ~SVFWAIT; 1352 if (avl_numnodes(&pp->p_wpage) != 0) { 1353 pp->p_as->a_wpage = pp->p_wpage; 1354 avl_create(&pp->p_wpage, wp_compare, 1355 sizeof (struct watched_page), 1356 offsetof(struct watched_page, wp_link)); 1357 } 1358 cv_signal(&pp->p_cv); 1359 mutex_exit(&pp->p_lock); 1360 mutex_exit(&p->p_lock); 1361 } else { 1362 if (p->p_as != &kas) { 1363 struct as *as; 1364 1365 if (p->p_segacct) 1366 shmexit(p); 1367 1368 /* 1369 * We grab p_lock for the benefit of /proc 1370 */ 1371 kpreempt_disable(); 1372 mutex_enter(&p->p_lock); 1373 prbarrier(p); /* make sure /proc is blocked out */ 1374 as = p->p_as; 1375 p->p_as = &kas; 1376 mutex_exit(&p->p_lock); 1377 1378 /* 1379 * notify hat of change in thread's address space 1380 */ 1381 hat_thread_exit(curthread); 1382 kpreempt_enable(); 1383 1384 as_free(as); 1385 p->p_tr_lgrpid = LGRP_NONE; 1386 } 1387 } 1388 } 1389 1390 /* 1391 * Wait for child to exec or exit. 1392 * Called by parent of vfork'ed process. 1393 * See important comments in relvm(), above. 1394 */ 1395 void 1396 vfwait(pid_t pid) 1397 { 1398 int signalled = 0; 1399 proc_t *pp = ttoproc(curthread); 1400 proc_t *cp; 1401 1402 /* 1403 * Wait for child to exec or exit. 1404 */ 1405 for (;;) { 1406 mutex_enter(&pidlock); 1407 cp = prfind(pid); 1408 if (cp == NULL || cp->p_parent != pp) { 1409 /* 1410 * Child has exit()ed. 1411 */ 1412 mutex_exit(&pidlock); 1413 break; 1414 } 1415 /* 1416 * Grab the child's p_lock before releasing pidlock. 1417 * Otherwise, the child could exit and we would be 1418 * referencing invalid memory. 1419 */ 1420 mutex_enter(&cp->p_lock); 1421 mutex_exit(&pidlock); 1422 if (!(cp->p_flag & SVFORK)) { 1423 /* 1424 * Child has exec()ed or is exit()ing. 1425 */ 1426 mutex_exit(&cp->p_lock); 1427 break; 1428 } 1429 mutex_enter(&pp->p_lock); 1430 mutex_exit(&cp->p_lock); 1431 /* 1432 * We might be waked up spuriously from the cv_wait(). 1433 * We have to do the whole operation over again to be 1434 * sure the child's SVFORK flag really is turned off. 1435 * We cannot make reference to the child because it can 1436 * exit before we return and we would be referencing 1437 * invalid memory. 1438 * 1439 * Because this is potentially a very long-term wait, 1440 * we call cv_wait_sig() (for its jobcontrol and /proc 1441 * side-effects) unless there is a current signal, in 1442 * which case we use cv_wait() because we cannot return 1443 * from this function until the child has released the 1444 * address space. Calling cv_wait_sig() with a current 1445 * signal would lead to an indefinite loop here because 1446 * cv_wait_sig() returns immediately in this case. 1447 */ 1448 if (signalled) 1449 cv_wait(&pp->p_cv, &pp->p_lock); 1450 else 1451 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1452 mutex_exit(&pp->p_lock); 1453 } 1454 1455 /* restore watchpoints to parent */ 1456 if (pr_watch_active(pp)) { 1457 struct as *as = pp->p_as; 1458 AS_LOCK_ENTER(as, RW_WRITER); 1459 as_setwatch(as); 1460 AS_LOCK_EXIT(as); 1461 } 1462 1463 mutex_enter(&pp->p_lock); 1464 prbarrier(pp); /* barrier against /proc locking */ 1465 continuelwps(pp); 1466 mutex_exit(&pp->p_lock); 1467 }