1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
  25  */
  26 
  27 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  28 /*        All Rights Reserved   */
  29 
  30 #include <sys/types.h>
  31 #include <sys/t_lock.h>
  32 #include <sys/param.h>
  33 #include <sys/cmn_err.h>
  34 #include <sys/cred.h>
  35 #include <sys/priv.h>
  36 #include <sys/debug.h>
  37 #include <sys/errno.h>
  38 #include <sys/inline.h>
  39 #include <sys/kmem.h>
  40 #include <sys/mman.h>
  41 #include <sys/proc.h>
  42 #include <sys/brand.h>
  43 #include <sys/sobject.h>
  44 #include <sys/sysmacros.h>
  45 #include <sys/systm.h>
  46 #include <sys/uio.h>
  47 #include <sys/var.h>
  48 #include <sys/vfs.h>
  49 #include <sys/vnode.h>
  50 #include <sys/session.h>
  51 #include <sys/pcb.h>
  52 #include <sys/signal.h>
  53 #include <sys/user.h>
  54 #include <sys/disp.h>
  55 #include <sys/class.h>
  56 #include <sys/ts.h>
  57 #include <sys/bitmap.h>
  58 #include <sys/poll.h>
  59 #include <sys/shm_impl.h>
  60 #include <sys/fault.h>
  61 #include <sys/syscall.h>
  62 #include <sys/procfs.h>
  63 #include <sys/processor.h>
  64 #include <sys/cpuvar.h>
  65 #include <sys/copyops.h>
  66 #include <sys/time.h>
  67 #include <sys/msacct.h>
  68 #include <vm/as.h>
  69 #include <vm/rm.h>
  70 #include <vm/seg.h>
  71 #include <vm/seg_vn.h>
  72 #include <vm/seg_dev.h>
  73 #include <vm/seg_spt.h>
  74 #include <vm/page.h>
  75 #include <sys/vmparam.h>
  76 #include <sys/swap.h>
  77 #include <fs/proc/prdata.h>
  78 #include <sys/task.h>
  79 #include <sys/project.h>
  80 #include <sys/contract_impl.h>
  81 #include <sys/contract/process.h>
  82 #include <sys/contract/process_impl.h>
  83 #include <sys/schedctl.h>
  84 #include <sys/pool.h>
  85 #include <sys/zone.h>
  86 #include <sys/atomic.h>
  87 #include <sys/sdt.h>
  88 
  89 #define MAX_ITERS_SPIN  5
  90 
  91 typedef struct prpagev {
  92         uint_t *pg_protv;       /* vector of page permissions */
  93         char *pg_incore;        /* vector of incore flags */
  94         size_t pg_npages;       /* number of pages in protv and incore */
  95         ulong_t pg_pnbase;      /* pn within segment of first protv element */
  96 } prpagev_t;
  97 
  98 size_t pagev_lim = 256 * 1024;  /* limit on number of pages in prpagev_t */
  99 
 100 extern struct seg_ops segdev_ops;       /* needs a header file */
 101 extern struct seg_ops segspt_shmops;    /* needs a header file */
 102 
 103 static  int     set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t);
 104 static  void    clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t);
 105 
 106 /*
 107  * Choose an lwp from the complete set of lwps for the process.
 108  * This is called for any operation applied to the process
 109  * file descriptor that requires an lwp to operate upon.
 110  *
 111  * Returns a pointer to the thread for the selected LWP,
 112  * and with the dispatcher lock held for the thread.
 113  *
 114  * The algorithm for choosing an lwp is critical for /proc semantics;
 115  * don't touch this code unless you know all of the implications.
 116  */
 117 kthread_t *
 118 prchoose(proc_t *p)
 119 {
 120         kthread_t *t;
 121         kthread_t *t_onproc = NULL;     /* running on processor */
 122         kthread_t *t_run = NULL;        /* runnable, on disp queue */
 123         kthread_t *t_sleep = NULL;      /* sleeping */
 124         kthread_t *t_hold = NULL;       /* sleeping, performing hold */
 125         kthread_t *t_susp = NULL;       /* suspended stop */
 126         kthread_t *t_jstop = NULL;      /* jobcontrol stop, w/o directed stop */
 127         kthread_t *t_jdstop = NULL;     /* jobcontrol stop with directed stop */
 128         kthread_t *t_req = NULL;        /* requested stop */
 129         kthread_t *t_istop = NULL;      /* event-of-interest stop */
 130         kthread_t *t_dtrace = NULL;     /* DTrace stop */
 131 
 132         ASSERT(MUTEX_HELD(&p->p_lock));
 133 
 134         /*
 135          * If the agent lwp exists, it takes precedence over all others.
 136          */
 137         if ((t = p->p_agenttp) != NULL) {
 138                 thread_lock(t);
 139                 return (t);
 140         }
 141 
 142         if ((t = p->p_tlist) == NULL)        /* start at the head of the list */
 143                 return (t);
 144         do {            /* for eacn lwp in the process */
 145                 if (VSTOPPED(t)) {      /* virtually stopped */
 146                         if (t_req == NULL)
 147                                 t_req = t;
 148                         continue;
 149                 }
 150 
 151                 thread_lock(t);         /* make sure thread is in good state */
 152                 switch (t->t_state) {
 153                 default:
 154                         panic("prchoose: bad thread state %d, thread 0x%p",
 155                             t->t_state, (void *)t);
 156                         /*NOTREACHED*/
 157                 case TS_SLEEP:
 158                         /* this is filthy */
 159                         if (t->t_wchan == (caddr_t)&p->p_holdlwps &&
 160                             t->t_wchan0 == NULL) {
 161                                 if (t_hold == NULL)
 162                                         t_hold = t;
 163                         } else {
 164                                 if (t_sleep == NULL)
 165                                         t_sleep = t;
 166                         }
 167                         break;
 168                 case TS_RUN:
 169                 case TS_WAIT:
 170                         if (t_run == NULL)
 171                                 t_run = t;
 172                         break;
 173                 case TS_ONPROC:
 174                         if (t_onproc == NULL)
 175                                 t_onproc = t;
 176                         break;
 177                 case TS_ZOMB:           /* last possible choice */
 178                         break;
 179                 case TS_STOPPED:
 180                         switch (t->t_whystop) {
 181                         case PR_SUSPENDED:
 182                                 if (t_susp == NULL)
 183                                         t_susp = t;
 184                                 break;
 185                         case PR_JOBCONTROL:
 186                                 if (t->t_proc_flag & TP_PRSTOP) {
 187                                         if (t_jdstop == NULL)
 188                                                 t_jdstop = t;
 189                                 } else {
 190                                         if (t_jstop == NULL)
 191                                                 t_jstop = t;
 192                                 }
 193                                 break;
 194                         case PR_REQUESTED:
 195                                 if (t->t_dtrace_stop && t_dtrace == NULL)
 196                                         t_dtrace = t;
 197                                 else if (t_req == NULL)
 198                                         t_req = t;
 199                                 break;
 200                         case PR_SYSENTRY:
 201                         case PR_SYSEXIT:
 202                         case PR_SIGNALLED:
 203                         case PR_FAULTED:
 204                                 /*
 205                                  * Make an lwp calling exit() be the
 206                                  * last lwp seen in the process.
 207                                  */
 208                                 if (t_istop == NULL ||
 209                                     (t_istop->t_whystop == PR_SYSENTRY &&
 210                                     t_istop->t_whatstop == SYS_exit))
 211                                         t_istop = t;
 212                                 break;
 213                         case PR_CHECKPOINT:     /* can't happen? */
 214                                 break;
 215                         default:
 216                                 panic("prchoose: bad t_whystop %d, thread 0x%p",
 217                                     t->t_whystop, (void *)t);
 218                                 /*NOTREACHED*/
 219                         }
 220                         break;
 221                 }
 222                 thread_unlock(t);
 223         } while ((t = t->t_forw) != p->p_tlist);
 224 
 225         if (t_onproc)
 226                 t = t_onproc;
 227         else if (t_run)
 228                 t = t_run;
 229         else if (t_sleep)
 230                 t = t_sleep;
 231         else if (t_jstop)
 232                 t = t_jstop;
 233         else if (t_jdstop)
 234                 t = t_jdstop;
 235         else if (t_istop)
 236                 t = t_istop;
 237         else if (t_dtrace)
 238                 t = t_dtrace;
 239         else if (t_req)
 240                 t = t_req;
 241         else if (t_hold)
 242                 t = t_hold;
 243         else if (t_susp)
 244                 t = t_susp;
 245         else                    /* TS_ZOMB */
 246                 t = p->p_tlist;
 247 
 248         if (t != NULL)
 249                 thread_lock(t);
 250         return (t);
 251 }
 252 
 253 /*
 254  * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop.
 255  * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI
 256  * on the /proc file descriptor.  Called from stop() when a traced
 257  * process stops on an event of interest.  Also called from exit()
 258  * and prinvalidate() to indicate POLLHUP and POLLERR respectively.
 259  */
 260 void
 261 prnotify(struct vnode *vp)
 262 {
 263         prcommon_t *pcp = VTOP(vp)->pr_common;
 264 
 265         mutex_enter(&pcp->prc_mutex);
 266         cv_broadcast(&pcp->prc_wait);
 267         mutex_exit(&pcp->prc_mutex);
 268         if (pcp->prc_flags & PRC_POLL) {
 269                 /*
 270                  * We call pollwakeup() with POLLHUP to ensure that
 271                  * the pollers are awakened even if they are polling
 272                  * for nothing (i.e., waiting for the process to exit).
 273                  * This enables the use of the PRC_POLL flag for optimization
 274                  * (we can turn off PRC_POLL only if we know no pollers remain).
 275                  */
 276                 pcp->prc_flags &= ~PRC_POLL;
 277                 pollwakeup(&pcp->prc_pollhead, POLLHUP);
 278         }
 279 }
 280 
 281 /* called immediately below, in prfree() */
 282 static void
 283 prfreenotify(vnode_t *vp)
 284 {
 285         prnode_t *pnp;
 286         prcommon_t *pcp;
 287 
 288         while (vp != NULL) {
 289                 pnp = VTOP(vp);
 290                 pcp = pnp->pr_common;
 291                 ASSERT(pcp->prc_thread == NULL);
 292                 pcp->prc_proc = NULL;
 293                 /*
 294                  * We can't call prnotify() here because we are holding
 295                  * pidlock.  We assert that there is no need to.
 296                  */
 297                 mutex_enter(&pcp->prc_mutex);
 298                 cv_broadcast(&pcp->prc_wait);
 299                 mutex_exit(&pcp->prc_mutex);
 300                 ASSERT(!(pcp->prc_flags & PRC_POLL));
 301 
 302                 vp = pnp->pr_next;
 303                 pnp->pr_next = NULL;
 304         }
 305 }
 306 
 307 /*
 308  * Called from a hook in freeproc() when a traced process is removed
 309  * from the process table.  The proc-table pointers of all associated
 310  * /proc vnodes are cleared to indicate that the process has gone away.
 311  */
 312 void
 313 prfree(proc_t *p)
 314 {
 315         uint_t slot = p->p_slot;
 316 
 317         ASSERT(MUTEX_HELD(&pidlock));
 318 
 319         /*
 320          * Block the process against /proc so it can be freed.
 321          * It cannot be freed while locked by some controlling process.
 322          * Lock ordering:
 323          *      pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex
 324          */
 325         mutex_enter(&pr_pidlock);   /* protects pcp->prc_proc */
 326         mutex_enter(&p->p_lock);
 327         while (p->p_proc_flag & P_PR_LOCK) {
 328                 mutex_exit(&pr_pidlock);
 329                 cv_wait(&pr_pid_cv[slot], &p->p_lock);
 330                 mutex_exit(&p->p_lock);
 331                 mutex_enter(&pr_pidlock);
 332                 mutex_enter(&p->p_lock);
 333         }
 334 
 335         ASSERT(p->p_tlist == NULL);
 336 
 337         prfreenotify(p->p_plist);
 338         p->p_plist = NULL;
 339 
 340         prfreenotify(p->p_trace);
 341         p->p_trace = NULL;
 342 
 343         /*
 344          * We broadcast to wake up everyone waiting for this process.
 345          * No one can reach this process from this point on.
 346          */
 347         cv_broadcast(&pr_pid_cv[slot]);
 348 
 349         mutex_exit(&p->p_lock);
 350         mutex_exit(&pr_pidlock);
 351 }
 352 
 353 /*
 354  * Called from a hook in exit() when a traced process is becoming a zombie.
 355  */
 356 void
 357 prexit(proc_t *p)
 358 {
 359         ASSERT(MUTEX_HELD(&p->p_lock));
 360 
 361         if (pr_watch_active(p)) {
 362                 pr_free_watchpoints(p);
 363                 watch_disable(curthread);
 364         }
 365         /* pr_free_watched_pages() is called in exit(), after dropping p_lock */
 366         if (p->p_trace) {
 367                 VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY;
 368                 prnotify(p->p_trace);
 369         }
 370         cv_broadcast(&pr_pid_cv[p->p_slot]);     /* pauselwps() */
 371 }
 372 
 373 /*
 374  * Called when a thread calls lwp_exit().
 375  */
 376 void
 377 prlwpexit(kthread_t *t)
 378 {
 379         vnode_t *vp;
 380         prnode_t *pnp;
 381         prcommon_t *pcp;
 382         proc_t *p = ttoproc(t);
 383         lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry;
 384 
 385         ASSERT(t == curthread);
 386         ASSERT(MUTEX_HELD(&p->p_lock));
 387 
 388         /*
 389          * The process must be blocked against /proc to do this safely.
 390          * The lwp must not disappear while the process is marked P_PR_LOCK.
 391          * It is the caller's responsibility to have called prbarrier(p).
 392          */
 393         ASSERT(!(p->p_proc_flag & P_PR_LOCK));
 394 
 395         for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
 396                 pnp = VTOP(vp);
 397                 pcp = pnp->pr_common;
 398                 if (pcp->prc_thread == t) {
 399                         pcp->prc_thread = NULL;
 400                         pcp->prc_flags |= PRC_DESTROY;
 401                 }
 402         }
 403 
 404         for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) {
 405                 pnp = VTOP(vp);
 406                 pcp = pnp->pr_common;
 407                 pcp->prc_thread = NULL;
 408                 pcp->prc_flags |= PRC_DESTROY;
 409                 prnotify(vp);
 410         }
 411 
 412         if (p->p_trace)
 413                 prnotify(p->p_trace);
 414 }
 415 
 416 /*
 417  * Called when a zombie thread is joined or when a
 418  * detached lwp exits.  Called from lwp_hash_out().
 419  */
 420 void
 421 prlwpfree(proc_t *p, lwpent_t *lep)
 422 {
 423         vnode_t *vp;
 424         prnode_t *pnp;
 425         prcommon_t *pcp;
 426 
 427         ASSERT(MUTEX_HELD(&p->p_lock));
 428 
 429         /*
 430          * The process must be blocked against /proc to do this safely.
 431          * The lwp must not disappear while the process is marked P_PR_LOCK.
 432          * It is the caller's responsibility to have called prbarrier(p).
 433          */
 434         ASSERT(!(p->p_proc_flag & P_PR_LOCK));
 435 
 436         vp = lep->le_trace;
 437         lep->le_trace = NULL;
 438         while (vp) {
 439                 prnotify(vp);
 440                 pnp = VTOP(vp);
 441                 pcp = pnp->pr_common;
 442                 ASSERT(pcp->prc_thread == NULL &&
 443                     (pcp->prc_flags & PRC_DESTROY));
 444                 pcp->prc_tslot = -1;
 445                 vp = pnp->pr_next;
 446                 pnp->pr_next = NULL;
 447         }
 448 
 449         if (p->p_trace)
 450                 prnotify(p->p_trace);
 451 }
 452 
 453 /*
 454  * Called from a hook in exec() when a thread starts exec().
 455  */
 456 void
 457 prexecstart(void)
 458 {
 459         proc_t *p = ttoproc(curthread);
 460         klwp_t *lwp = ttolwp(curthread);
 461 
 462         /*
 463          * The P_PR_EXEC flag blocks /proc operations for
 464          * the duration of the exec().
 465          * We can't start exec() while the process is
 466          * locked by /proc, so we call prbarrier().
 467          * lwp_nostop keeps the process from being stopped
 468          * via job control for the duration of the exec().
 469          */
 470 
 471         ASSERT(MUTEX_HELD(&p->p_lock));
 472         prbarrier(p);
 473         lwp->lwp_nostop++;
 474         p->p_proc_flag |= P_PR_EXEC;
 475 }
 476 
 477 /*
 478  * Called from a hook in exec() when a thread finishes exec().
 479  * The thread may or may not have succeeded.  Some other thread
 480  * may have beat it to the punch.
 481  */
 482 void
 483 prexecend(void)
 484 {
 485         proc_t *p = ttoproc(curthread);
 486         klwp_t *lwp = ttolwp(curthread);
 487         vnode_t *vp;
 488         prnode_t *pnp;
 489         prcommon_t *pcp;
 490         model_t model = p->p_model;
 491         id_t tid = curthread->t_tid;
 492         int tslot = curthread->t_dslot;
 493 
 494         ASSERT(MUTEX_HELD(&p->p_lock));
 495 
 496         lwp->lwp_nostop--;
 497         if (p->p_flag & SEXITLWPS) {
 498                 /*
 499                  * We are on our way to exiting because some
 500                  * other thread beat us in the race to exec().
 501                  * Don't clear the P_PR_EXEC flag in this case.
 502                  */
 503                 return;
 504         }
 505 
 506         /*
 507          * Wake up anyone waiting in /proc for the process to complete exec().
 508          */
 509         p->p_proc_flag &= ~P_PR_EXEC;
 510         if ((vp = p->p_trace) != NULL) {
 511                 pcp = VTOP(vp)->pr_common;
 512                 mutex_enter(&pcp->prc_mutex);
 513                 cv_broadcast(&pcp->prc_wait);
 514                 mutex_exit(&pcp->prc_mutex);
 515                 for (; vp != NULL; vp = pnp->pr_next) {
 516                         pnp = VTOP(vp);
 517                         pnp->pr_common->prc_datamodel = model;
 518                 }
 519         }
 520         if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) {
 521                 /*
 522                  * We dealt with the process common above.
 523                  */
 524                 ASSERT(p->p_trace != NULL);
 525                 pcp = VTOP(vp)->pr_common;
 526                 mutex_enter(&pcp->prc_mutex);
 527                 cv_broadcast(&pcp->prc_wait);
 528                 mutex_exit(&pcp->prc_mutex);
 529                 for (; vp != NULL; vp = pnp->pr_next) {
 530                         pnp = VTOP(vp);
 531                         pcp = pnp->pr_common;
 532                         pcp->prc_datamodel = model;
 533                         pcp->prc_tid = tid;
 534                         pcp->prc_tslot = tslot;
 535                 }
 536         }
 537 }
 538 
 539 /*
 540  * Called from a hook in relvm() just before freeing the address space.
 541  * We free all the watched areas now.
 542  */
 543 void
 544 prrelvm(void)
 545 {
 546         proc_t *p = ttoproc(curthread);
 547 
 548         mutex_enter(&p->p_lock);
 549         prbarrier(p);   /* block all other /proc operations */
 550         if (pr_watch_active(p)) {
 551                 pr_free_watchpoints(p);
 552                 watch_disable(curthread);
 553         }
 554         mutex_exit(&p->p_lock);
 555         pr_free_watched_pages(p);
 556 }
 557 
 558 /*
 559  * Called from hooks in exec-related code when a traced process
 560  * attempts to exec(2) a setuid/setgid program or an unreadable
 561  * file.  Rather than fail the exec we invalidate the associated
 562  * /proc vnodes so that subsequent attempts to use them will fail.
 563  *
 564  * All /proc vnodes, except directory vnodes, are retained on a linked
 565  * list (rooted at p_plist in the process structure) until last close.
 566  *
 567  * A controlling process must re-open the /proc files in order to
 568  * regain control.
 569  */
 570 void
 571 prinvalidate(struct user *up)
 572 {
 573         kthread_t *t = curthread;
 574         proc_t *p = ttoproc(t);
 575         vnode_t *vp;
 576         prnode_t *pnp;
 577         int writers = 0;
 578 
 579         mutex_enter(&p->p_lock);
 580         prbarrier(p);   /* block all other /proc operations */
 581 
 582         /*
 583          * At this moment, there can be only one lwp in the process.
 584          */
 585         ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
 586 
 587         /*
 588          * Invalidate any currently active /proc vnodes.
 589          */
 590         for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
 591                 pnp = VTOP(vp);
 592                 switch (pnp->pr_type) {
 593                 case PR_PSINFO:         /* these files can read by anyone */
 594                 case PR_LPSINFO:
 595                 case PR_LWPSINFO:
 596                 case PR_LWPDIR:
 597                 case PR_LWPIDDIR:
 598                 case PR_USAGE:
 599                 case PR_LUSAGE:
 600                 case PR_LWPUSAGE:
 601                         break;
 602                 default:
 603                         pnp->pr_flags |= PR_INVAL;
 604                         break;
 605                 }
 606         }
 607         /*
 608          * Wake up anyone waiting for the process or lwp.
 609          * p->p_trace is guaranteed to be non-NULL if there
 610          * are any open /proc files for this process.
 611          */
 612         if ((vp = p->p_trace) != NULL) {
 613                 prcommon_t *pcp = VTOP(vp)->pr_pcommon;
 614 
 615                 prnotify(vp);
 616                 /*
 617                  * Are there any writers?
 618                  */
 619                 if ((writers = pcp->prc_writers) != 0) {
 620                         /*
 621                          * Clear the exclusive open flag (old /proc interface).
 622                          * Set prc_selfopens equal to prc_writers so that
 623                          * the next O_EXCL|O_WRITE open will succeed
 624                          * even with existing (though invalid) writers.
 625                          * prclose() must decrement prc_selfopens when
 626                          * the invalid files are closed.
 627                          */
 628                         pcp->prc_flags &= ~PRC_EXCL;
 629                         ASSERT(pcp->prc_selfopens <= writers);
 630                         pcp->prc_selfopens = writers;
 631                 }
 632         }
 633         vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace;
 634         while (vp != NULL) {
 635                 /*
 636                  * We should not invalidate the lwpiddir vnodes,
 637                  * but the necessities of maintaining the old
 638                  * ioctl()-based version of /proc require it.
 639                  */
 640                 pnp = VTOP(vp);
 641                 pnp->pr_flags |= PR_INVAL;
 642                 prnotify(vp);
 643                 vp = pnp->pr_next;
 644         }
 645 
 646         /*
 647          * If any tracing flags are in effect and any vnodes are open for
 648          * writing then set the requested-stop and run-on-last-close flags.
 649          * Otherwise, clear all tracing flags.
 650          */
 651         t->t_proc_flag &= ~TP_PAUSE;
 652         if ((p->p_proc_flag & P_PR_TRACE) && writers) {
 653                 t->t_proc_flag |= TP_PRSTOP;
 654                 aston(t);               /* so ISSIG will see the flag */
 655                 p->p_proc_flag |= P_PR_RUNLCL;
 656         } else {
 657                 premptyset(&up->u_entrymask);            /* syscalls */
 658                 premptyset(&up->u_exitmask);
 659                 up->u_systrap = 0;
 660                 premptyset(&p->p_sigmask);               /* signals */
 661                 premptyset(&p->p_fltmask);               /* faults */
 662                 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING);
 663                 p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE);
 664                 prnostep(ttolwp(t));
 665         }
 666 
 667         mutex_exit(&p->p_lock);
 668 }
 669 
 670 /*
 671  * Acquire the controlled process's p_lock and mark it P_PR_LOCK.
 672  * Return with pr_pidlock held in all cases.
 673  * Return with p_lock held if the the process still exists.
 674  * Return value is the process pointer if the process still exists, else NULL.
 675  * If we lock the process, give ourself kernel priority to avoid deadlocks;
 676  * this is undone in prunlock().
 677  */
 678 proc_t *
 679 pr_p_lock(prnode_t *pnp)
 680 {
 681         proc_t *p;
 682         prcommon_t *pcp;
 683 
 684         mutex_enter(&pr_pidlock);
 685         if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL)
 686                 return (NULL);
 687         mutex_enter(&p->p_lock);
 688         while (p->p_proc_flag & P_PR_LOCK) {
 689                 /*
 690                  * This cv/mutex pair is persistent even if
 691                  * the process disappears while we sleep.
 692                  */
 693                 kcondvar_t *cv = &pr_pid_cv[p->p_slot];
 694                 kmutex_t *mp = &p->p_lock;
 695 
 696                 mutex_exit(&pr_pidlock);
 697                 cv_wait(cv, mp);
 698                 mutex_exit(mp);
 699                 mutex_enter(&pr_pidlock);
 700                 if (pcp->prc_proc == NULL)
 701                         return (NULL);
 702                 ASSERT(p == pcp->prc_proc);
 703                 mutex_enter(&p->p_lock);
 704         }
 705         p->p_proc_flag |= P_PR_LOCK;
 706         THREAD_KPRI_REQUEST();
 707         return (p);
 708 }
 709 
 710 /*
 711  * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock.
 712  * This prevents any lwp of the process from disappearing and
 713  * blocks most operations that a process can perform on itself.
 714  * Returns 0 on success, a non-zero error number on failure.
 715  *
 716  * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when
 717  * the subject process is a zombie (ZYES) or fail for zombies (ZNO).
 718  *
 719  * error returns:
 720  *      ENOENT: process or lwp has disappeared or process is exiting
 721  *              (or has become a zombie and zdisp == ZNO).
 722  *      EAGAIN: procfs vnode has become invalid.
 723  *      EINTR:  signal arrived while waiting for exec to complete.
 724  */
 725 int
 726 prlock(prnode_t *pnp, int zdisp)
 727 {
 728         prcommon_t *pcp;
 729         proc_t *p;
 730 
 731 again:
 732         pcp = pnp->pr_common;
 733         p = pr_p_lock(pnp);
 734         mutex_exit(&pr_pidlock);
 735 
 736         /*
 737          * Return ENOENT immediately if there is no process.
 738          */
 739         if (p == NULL)
 740                 return (ENOENT);
 741 
 742         ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL);
 743 
 744         /*
 745          * Return ENOENT if process entered zombie state or is exiting
 746          * and the 'zdisp' flag is set to ZNO indicating not to lock zombies.
 747          */
 748         if (zdisp == ZNO &&
 749             ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) {
 750                 prunlock(pnp);
 751                 return (ENOENT);
 752         }
 753 
 754         /*
 755          * If lwp-specific, check to see if lwp has disappeared.
 756          */
 757         if (pcp->prc_flags & PRC_LWP) {
 758                 if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) ||
 759                     pcp->prc_tslot == -1) {
 760                         prunlock(pnp);
 761                         return (ENOENT);
 762                 }
 763         }
 764 
 765         /*
 766          * Return EAGAIN if we have encountered a security violation.
 767          * (The process exec'd a set-id or unreadable executable file.)
 768          */
 769         if (pnp->pr_flags & PR_INVAL) {
 770                 prunlock(pnp);
 771                 return (EAGAIN);
 772         }
 773 
 774         /*
 775          * If process is undergoing an exec(), wait for
 776          * completion and then start all over again.
 777          */
 778         if (p->p_proc_flag & P_PR_EXEC) {
 779                 pcp = pnp->pr_pcommon;       /* Put on the correct sleep queue */
 780                 mutex_enter(&pcp->prc_mutex);
 781                 prunlock(pnp);
 782                 if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) {
 783                         mutex_exit(&pcp->prc_mutex);
 784                         return (EINTR);
 785                 }
 786                 mutex_exit(&pcp->prc_mutex);
 787                 goto again;
 788         }
 789 
 790         /*
 791          * We return holding p->p_lock.
 792          */
 793         return (0);
 794 }
 795 
 796 /*
 797  * Undo prlock() and pr_p_lock().
 798  * p->p_lock is still held; pr_pidlock is no longer held.
 799  *
 800  * prunmark() drops the P_PR_LOCK flag and wakes up another thread,
 801  * if any, waiting for the flag to be dropped; it retains p->p_lock.
 802  *
 803  * prunlock() calls prunmark() and then drops p->p_lock.
 804  */
 805 void
 806 prunmark(proc_t *p)
 807 {
 808         ASSERT(p->p_proc_flag & P_PR_LOCK);
 809         ASSERT(MUTEX_HELD(&p->p_lock));
 810 
 811         cv_signal(&pr_pid_cv[p->p_slot]);
 812         p->p_proc_flag &= ~P_PR_LOCK;
 813         THREAD_KPRI_RELEASE();
 814 }
 815 
 816 void
 817 prunlock(prnode_t *pnp)
 818 {
 819         prcommon_t *pcp = pnp->pr_common;
 820         proc_t *p = pcp->prc_proc;
 821 
 822         /*
 823          * If we (or someone) gave it a SIGKILL, and it is not
 824          * already a zombie, set it running unconditionally.
 825          */
 826         if ((p->p_flag & SKILLED) &&
 827             !(p->p_flag & SEXITING) &&
 828             !(pcp->prc_flags & PRC_DESTROY) &&
 829             !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1))
 830                 (void) pr_setrun(pnp, 0);
 831         prunmark(p);
 832         mutex_exit(&p->p_lock);
 833 }
 834 
 835 /*
 836  * Called while holding p->p_lock to delay until the process is unlocked.
 837  * We enter holding p->p_lock; p->p_lock is dropped and reacquired.
 838  * The process cannot become locked again until p->p_lock is dropped.
 839  */
 840 void
 841 prbarrier(proc_t *p)
 842 {
 843         ASSERT(MUTEX_HELD(&p->p_lock));
 844 
 845         if (p->p_proc_flag & P_PR_LOCK) {
 846                 /* The process is locked; delay until not locked */
 847                 uint_t slot = p->p_slot;
 848 
 849                 while (p->p_proc_flag & P_PR_LOCK)
 850                         cv_wait(&pr_pid_cv[slot], &p->p_lock);
 851                 cv_signal(&pr_pid_cv[slot]);
 852         }
 853 }
 854 
 855 /*
 856  * Return process/lwp status.
 857  * The u-block is mapped in by this routine and unmapped at the end.
 858  */
 859 void
 860 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp)
 861 {
 862         kthread_t *t;
 863 
 864         ASSERT(MUTEX_HELD(&p->p_lock));
 865 
 866         t = prchoose(p);        /* returns locked thread */
 867         ASSERT(t != NULL);
 868         thread_unlock(t);
 869 
 870         /* just bzero the process part, prgetlwpstatus() does the rest */
 871         bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t));
 872         sp->pr_nlwp = p->p_lwpcnt;
 873         sp->pr_nzomb = p->p_zombcnt;
 874         prassignset(&sp->pr_sigpend, &p->p_sig);
 875         sp->pr_brkbase = (uintptr_t)p->p_brkbase;
 876         sp->pr_brksize = p->p_brksize;
 877         sp->pr_stkbase = (uintptr_t)prgetstackbase(p);
 878         sp->pr_stksize = p->p_stksize;
 879         sp->pr_pid = p->p_pid;
 880         if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
 881             (p->p_flag & SZONETOP)) {
 882                 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
 883                 /*
 884                  * Inside local zones, fake zsched's pid as parent pids for
 885                  * processes which reference processes outside of the zone.
 886                  */
 887                 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
 888         } else {
 889                 sp->pr_ppid = p->p_ppid;
 890         }
 891         sp->pr_pgid  = p->p_pgrp;
 892         sp->pr_sid   = p->p_sessp->s_sid;
 893         sp->pr_taskid = p->p_task->tk_tkid;
 894         sp->pr_projid = p->p_task->tk_proj->kpj_id;
 895         sp->pr_zoneid = p->p_zone->zone_id;
 896         hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
 897         hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
 898         TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime);
 899         TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime);
 900         prassignset(&sp->pr_sigtrace, &p->p_sigmask);
 901         prassignset(&sp->pr_flttrace, &p->p_fltmask);
 902         prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
 903         prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
 904         switch (p->p_model) {
 905         case DATAMODEL_ILP32:
 906                 sp->pr_dmodel = PR_MODEL_ILP32;
 907                 break;
 908         case DATAMODEL_LP64:
 909                 sp->pr_dmodel = PR_MODEL_LP64;
 910                 break;
 911         }
 912         if (p->p_agenttp)
 913                 sp->pr_agentid = p->p_agenttp->t_tid;
 914 
 915         /* get the chosen lwp's status */
 916         prgetlwpstatus(t, &sp->pr_lwp, zp);
 917 
 918         /* replicate the flags */
 919         sp->pr_flags = sp->pr_lwp.pr_flags;
 920 }
 921 
 922 #ifdef _SYSCALL32_IMPL
 923 void
 924 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp)
 925 {
 926         proc_t *p = ttoproc(t);
 927         klwp_t *lwp = ttolwp(t);
 928         struct mstate *ms = &lwp->lwp_mstate;
 929         hrtime_t usr, sys;
 930         int flags;
 931         ulong_t instr;
 932 
 933         ASSERT(MUTEX_HELD(&p->p_lock));
 934 
 935         bzero(sp, sizeof (*sp));
 936         flags = 0L;
 937         if (t->t_state == TS_STOPPED) {
 938                 flags |= PR_STOPPED;
 939                 if ((t->t_schedflag & TS_PSTART) == 0)
 940                         flags |= PR_ISTOP;
 941         } else if (VSTOPPED(t)) {
 942                 flags |= PR_STOPPED|PR_ISTOP;
 943         }
 944         if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
 945                 flags |= PR_DSTOP;
 946         if (lwp->lwp_asleep)
 947                 flags |= PR_ASLEEP;
 948         if (t == p->p_agenttp)
 949                 flags |= PR_AGENT;
 950         if (!(t->t_proc_flag & TP_TWAIT))
 951                 flags |= PR_DETACH;
 952         if (t->t_proc_flag & TP_DAEMON)
 953                 flags |= PR_DAEMON;
 954         if (p->p_proc_flag & P_PR_FORK)
 955                 flags |= PR_FORK;
 956         if (p->p_proc_flag & P_PR_RUNLCL)
 957                 flags |= PR_RLC;
 958         if (p->p_proc_flag & P_PR_KILLCL)
 959                 flags |= PR_KLC;
 960         if (p->p_proc_flag & P_PR_ASYNC)
 961                 flags |= PR_ASYNC;
 962         if (p->p_proc_flag & P_PR_BPTADJ)
 963                 flags |= PR_BPTADJ;
 964         if (p->p_proc_flag & P_PR_PTRACE)
 965                 flags |= PR_PTRACE;
 966         if (p->p_flag & SMSACCT)
 967                 flags |= PR_MSACCT;
 968         if (p->p_flag & SMSFORK)
 969                 flags |= PR_MSFORK;
 970         if (p->p_flag & SVFWAIT)
 971                 flags |= PR_VFORKP;
 972         sp->pr_flags = flags;
 973         if (VSTOPPED(t)) {
 974                 sp->pr_why   = PR_REQUESTED;
 975                 sp->pr_what  = 0;
 976         } else {
 977                 sp->pr_why   = t->t_whystop;
 978                 sp->pr_what  = t->t_whatstop;
 979         }
 980         sp->pr_lwpid = t->t_tid;
 981         sp->pr_cursig  = lwp->lwp_cursig;
 982         prassignset(&sp->pr_lwppend, &t->t_sig);
 983         schedctl_finish_sigblock(t);
 984         prassignset(&sp->pr_lwphold, &t->t_hold);
 985         if (t->t_whystop == PR_FAULTED) {
 986                 siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info);
 987                 if (t->t_whatstop == FLTPAGE)
 988                         sp->pr_info.si_addr =
 989                             (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr;
 990         } else if (lwp->lwp_curinfo)
 991                 siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info);
 992         if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
 993             sp->pr_info.si_zoneid != zp->zone_id) {
 994                 sp->pr_info.si_pid = zp->zone_zsched->p_pid;
 995                 sp->pr_info.si_uid = 0;
 996                 sp->pr_info.si_ctid = -1;
 997                 sp->pr_info.si_zoneid = zp->zone_id;
 998         }
 999         sp->pr_altstack.ss_sp =
1000             (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp;
1001         sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size;
1002         sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags;
1003         prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1004         sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext;
1005         sp->pr_ustack = (caddr32_t)lwp->lwp_ustack;
1006         (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1007             sizeof (sp->pr_clname) - 1);
1008         if (flags & PR_STOPPED)
1009                 hrt2ts32(t->t_stoptime, &sp->pr_tstamp);
1010         usr = ms->ms_acct[LMS_USER];
1011         sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1012         scalehrtime(&usr);
1013         scalehrtime(&sys);
1014         hrt2ts32(usr, &sp->pr_utime);
1015         hrt2ts32(sys, &sp->pr_stime);
1016 
1017         /*
1018          * Fetch the current instruction, if not a system process.
1019          * We don't attempt this unless the lwp is stopped.
1020          */
1021         if ((p->p_flag & SSYS) || p->p_as == &kas)
1022                 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1023         else if (!(flags & PR_STOPPED))
1024                 sp->pr_flags |= PR_PCINVAL;
1025         else if (!prfetchinstr(lwp, &instr))
1026                 sp->pr_flags |= PR_PCINVAL;
1027         else
1028                 sp->pr_instr = (uint32_t)instr;
1029 
1030         /*
1031          * Drop p_lock while touching the lwp's stack.
1032          */
1033         mutex_exit(&p->p_lock);
1034         if (prisstep(lwp))
1035                 sp->pr_flags |= PR_STEP;
1036         if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1037                 int i;
1038 
1039                 sp->pr_syscall = get_syscall32_args(lwp,
1040                     (int *)sp->pr_sysarg, &i);
1041                 sp->pr_nsysarg = (ushort_t)i;
1042         }
1043         if ((flags & PR_STOPPED) || t == curthread)
1044                 prgetprregs32(lwp, sp->pr_reg);
1045         if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1046             (flags & PR_VFORKP)) {
1047                 long r1, r2;
1048                 user_t *up;
1049                 auxv_t *auxp;
1050                 int i;
1051 
1052                 sp->pr_errno = prgetrvals(lwp, &r1, &r2);
1053                 if (sp->pr_errno == 0) {
1054                         sp->pr_rval1 = (int32_t)r1;
1055                         sp->pr_rval2 = (int32_t)r2;
1056                         sp->pr_errpriv = PRIV_NONE;
1057                 } else
1058                         sp->pr_errpriv = lwp->lwp_badpriv;
1059 
1060                 if (t->t_sysnum == SYS_execve) {
1061                         up = PTOU(p);
1062                         sp->pr_sysarg[0] = 0;
1063                         sp->pr_sysarg[1] = (caddr32_t)up->u_argv;
1064                         sp->pr_sysarg[2] = (caddr32_t)up->u_envp;
1065                         for (i = 0, auxp = up->u_auxv;
1066                             i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1067                             i++, auxp++) {
1068                                 if (auxp->a_type == AT_SUN_EXECNAME) {
1069                                         sp->pr_sysarg[0] =
1070                                             (caddr32_t)
1071                                             (uintptr_t)auxp->a_un.a_ptr;
1072                                         break;
1073                                 }
1074                         }
1075                 }
1076         }
1077         if (prhasfp())
1078                 prgetprfpregs32(lwp, &sp->pr_fpreg);
1079         mutex_enter(&p->p_lock);
1080 }
1081 
1082 void
1083 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp)
1084 {
1085         kthread_t *t;
1086 
1087         ASSERT(MUTEX_HELD(&p->p_lock));
1088 
1089         t = prchoose(p);        /* returns locked thread */
1090         ASSERT(t != NULL);
1091         thread_unlock(t);
1092 
1093         /* just bzero the process part, prgetlwpstatus32() does the rest */
1094         bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t));
1095         sp->pr_nlwp = p->p_lwpcnt;
1096         sp->pr_nzomb = p->p_zombcnt;
1097         prassignset(&sp->pr_sigpend, &p->p_sig);
1098         sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase;
1099         sp->pr_brksize = (uint32_t)p->p_brksize;
1100         sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p);
1101         sp->pr_stksize = (uint32_t)p->p_stksize;
1102         sp->pr_pid   = p->p_pid;
1103         if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
1104             (p->p_flag & SZONETOP)) {
1105                 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
1106                 /*
1107                  * Inside local zones, fake zsched's pid as parent pids for
1108                  * processes which reference processes outside of the zone.
1109                  */
1110                 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
1111         } else {
1112                 sp->pr_ppid = p->p_ppid;
1113         }
1114         sp->pr_pgid  = p->p_pgrp;
1115         sp->pr_sid   = p->p_sessp->s_sid;
1116         sp->pr_taskid = p->p_task->tk_tkid;
1117         sp->pr_projid = p->p_task->tk_proj->kpj_id;
1118         sp->pr_zoneid = p->p_zone->zone_id;
1119         hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
1120         hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
1121         TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime);
1122         TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime);
1123         prassignset(&sp->pr_sigtrace, &p->p_sigmask);
1124         prassignset(&sp->pr_flttrace, &p->p_fltmask);
1125         prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
1126         prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
1127         switch (p->p_model) {
1128         case DATAMODEL_ILP32:
1129                 sp->pr_dmodel = PR_MODEL_ILP32;
1130                 break;
1131         case DATAMODEL_LP64:
1132                 sp->pr_dmodel = PR_MODEL_LP64;
1133                 break;
1134         }
1135         if (p->p_agenttp)
1136                 sp->pr_agentid = p->p_agenttp->t_tid;
1137 
1138         /* get the chosen lwp's status */
1139         prgetlwpstatus32(t, &sp->pr_lwp, zp);
1140 
1141         /* replicate the flags */
1142         sp->pr_flags = sp->pr_lwp.pr_flags;
1143 }
1144 #endif  /* _SYSCALL32_IMPL */
1145 
1146 /*
1147  * Return lwp status.
1148  */
1149 void
1150 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp)
1151 {
1152         proc_t *p = ttoproc(t);
1153         klwp_t *lwp = ttolwp(t);
1154         struct mstate *ms = &lwp->lwp_mstate;
1155         hrtime_t usr, sys;
1156         int flags;
1157         ulong_t instr;
1158 
1159         ASSERT(MUTEX_HELD(&p->p_lock));
1160 
1161         bzero(sp, sizeof (*sp));
1162         flags = 0L;
1163         if (t->t_state == TS_STOPPED) {
1164                 flags |= PR_STOPPED;
1165                 if ((t->t_schedflag & TS_PSTART) == 0)
1166                         flags |= PR_ISTOP;
1167         } else if (VSTOPPED(t)) {
1168                 flags |= PR_STOPPED|PR_ISTOP;
1169         }
1170         if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
1171                 flags |= PR_DSTOP;
1172         if (lwp->lwp_asleep)
1173                 flags |= PR_ASLEEP;
1174         if (t == p->p_agenttp)
1175                 flags |= PR_AGENT;
1176         if (!(t->t_proc_flag & TP_TWAIT))
1177                 flags |= PR_DETACH;
1178         if (t->t_proc_flag & TP_DAEMON)
1179                 flags |= PR_DAEMON;
1180         if (p->p_proc_flag & P_PR_FORK)
1181                 flags |= PR_FORK;
1182         if (p->p_proc_flag & P_PR_RUNLCL)
1183                 flags |= PR_RLC;
1184         if (p->p_proc_flag & P_PR_KILLCL)
1185                 flags |= PR_KLC;
1186         if (p->p_proc_flag & P_PR_ASYNC)
1187                 flags |= PR_ASYNC;
1188         if (p->p_proc_flag & P_PR_BPTADJ)
1189                 flags |= PR_BPTADJ;
1190         if (p->p_proc_flag & P_PR_PTRACE)
1191                 flags |= PR_PTRACE;
1192         if (p->p_flag & SMSACCT)
1193                 flags |= PR_MSACCT;
1194         if (p->p_flag & SMSFORK)
1195                 flags |= PR_MSFORK;
1196         if (p->p_flag & SVFWAIT)
1197                 flags |= PR_VFORKP;
1198         if (p->p_pgidp->pid_pgorphaned)
1199                 flags |= PR_ORPHAN;
1200         if (p->p_pidflag & CLDNOSIGCHLD)
1201                 flags |= PR_NOSIGCHLD;
1202         if (p->p_pidflag & CLDWAITPID)
1203                 flags |= PR_WAITPID;
1204         sp->pr_flags = flags;
1205         if (VSTOPPED(t)) {
1206                 sp->pr_why   = PR_REQUESTED;
1207                 sp->pr_what  = 0;
1208         } else {
1209                 sp->pr_why   = t->t_whystop;
1210                 sp->pr_what  = t->t_whatstop;
1211         }
1212         sp->pr_lwpid = t->t_tid;
1213         sp->pr_cursig  = lwp->lwp_cursig;
1214         prassignset(&sp->pr_lwppend, &t->t_sig);
1215         schedctl_finish_sigblock(t);
1216         prassignset(&sp->pr_lwphold, &t->t_hold);
1217         if (t->t_whystop == PR_FAULTED)
1218                 bcopy(&lwp->lwp_siginfo,
1219                     &sp->pr_info, sizeof (k_siginfo_t));
1220         else if (lwp->lwp_curinfo)
1221                 bcopy(&lwp->lwp_curinfo->sq_info,
1222                     &sp->pr_info, sizeof (k_siginfo_t));
1223         if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
1224             sp->pr_info.si_zoneid != zp->zone_id) {
1225                 sp->pr_info.si_pid = zp->zone_zsched->p_pid;
1226                 sp->pr_info.si_uid = 0;
1227                 sp->pr_info.si_ctid = -1;
1228                 sp->pr_info.si_zoneid = zp->zone_id;
1229         }
1230         sp->pr_altstack = lwp->lwp_sigaltstack;
1231         prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1232         sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext;
1233         sp->pr_ustack = lwp->lwp_ustack;
1234         (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1235             sizeof (sp->pr_clname) - 1);
1236         if (flags & PR_STOPPED)
1237                 hrt2ts(t->t_stoptime, &sp->pr_tstamp);
1238         usr = ms->ms_acct[LMS_USER];
1239         sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1240         scalehrtime(&usr);
1241         scalehrtime(&sys);
1242         hrt2ts(usr, &sp->pr_utime);
1243         hrt2ts(sys, &sp->pr_stime);
1244 
1245         /*
1246          * Fetch the current instruction, if not a system process.
1247          * We don't attempt this unless the lwp is stopped.
1248          */
1249         if ((p->p_flag & SSYS) || p->p_as == &kas)
1250                 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1251         else if (!(flags & PR_STOPPED))
1252                 sp->pr_flags |= PR_PCINVAL;
1253         else if (!prfetchinstr(lwp, &instr))
1254                 sp->pr_flags |= PR_PCINVAL;
1255         else
1256                 sp->pr_instr = instr;
1257 
1258         /*
1259          * Drop p_lock while touching the lwp's stack.
1260          */
1261         mutex_exit(&p->p_lock);
1262         if (prisstep(lwp))
1263                 sp->pr_flags |= PR_STEP;
1264         if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1265                 int i;
1266 
1267                 sp->pr_syscall = get_syscall_args(lwp,
1268                     (long *)sp->pr_sysarg, &i);
1269                 sp->pr_nsysarg = (ushort_t)i;
1270         }
1271         if ((flags & PR_STOPPED) || t == curthread)
1272                 prgetprregs(lwp, sp->pr_reg);
1273         if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1274             (flags & PR_VFORKP)) {
1275                 user_t *up;
1276                 auxv_t *auxp;
1277                 int i;
1278 
1279                 sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2);
1280                 if (sp->pr_errno == 0)
1281                         sp->pr_errpriv = PRIV_NONE;
1282                 else
1283                         sp->pr_errpriv = lwp->lwp_badpriv;
1284 
1285                 if (t->t_sysnum == SYS_execve) {
1286                         up = PTOU(p);
1287                         sp->pr_sysarg[0] = 0;
1288                         sp->pr_sysarg[1] = (uintptr_t)up->u_argv;
1289                         sp->pr_sysarg[2] = (uintptr_t)up->u_envp;
1290                         for (i = 0, auxp = up->u_auxv;
1291                             i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1292                             i++, auxp++) {
1293                                 if (auxp->a_type == AT_SUN_EXECNAME) {
1294                                         sp->pr_sysarg[0] =
1295                                             (uintptr_t)auxp->a_un.a_ptr;
1296                                         break;
1297                                 }
1298                         }
1299                 }
1300         }
1301         if (prhasfp())
1302                 prgetprfpregs(lwp, &sp->pr_fpreg);
1303         mutex_enter(&p->p_lock);
1304 }
1305 
1306 /*
1307  * Get the sigaction structure for the specified signal.  The u-block
1308  * must already have been mapped in by the caller.
1309  */
1310 void
1311 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp)
1312 {
1313         int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
1314 
1315         bzero(sp, sizeof (*sp));
1316 
1317         if (sig != 0 && (unsigned)sig < nsig) {
1318                 sp->sa_handler = up->u_signal[sig-1];
1319                 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1320                 if (sigismember(&up->u_sigonstack, sig))
1321                         sp->sa_flags |= SA_ONSTACK;
1322                 if (sigismember(&up->u_sigresethand, sig))
1323                         sp->sa_flags |= SA_RESETHAND;
1324                 if (sigismember(&up->u_sigrestart, sig))
1325                         sp->sa_flags |= SA_RESTART;
1326                 if (sigismember(&p->p_siginfo, sig))
1327                         sp->sa_flags |= SA_SIGINFO;
1328                 if (sigismember(&up->u_signodefer, sig))
1329                         sp->sa_flags |= SA_NODEFER;
1330                 if (sig == SIGCLD) {
1331                         if (p->p_flag & SNOWAIT)
1332                                 sp->sa_flags |= SA_NOCLDWAIT;
1333                         if ((p->p_flag & SJCTL) == 0)
1334                                 sp->sa_flags |= SA_NOCLDSTOP;
1335                 }
1336         }
1337 }
1338 
1339 #ifdef _SYSCALL32_IMPL
1340 void
1341 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp)
1342 {
1343         int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
1344 
1345         bzero(sp, sizeof (*sp));
1346 
1347         if (sig != 0 && (unsigned)sig < nsig) {
1348                 sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1];
1349                 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1350                 if (sigismember(&up->u_sigonstack, sig))
1351                         sp->sa_flags |= SA_ONSTACK;
1352                 if (sigismember(&up->u_sigresethand, sig))
1353                         sp->sa_flags |= SA_RESETHAND;
1354                 if (sigismember(&up->u_sigrestart, sig))
1355                         sp->sa_flags |= SA_RESTART;
1356                 if (sigismember(&p->p_siginfo, sig))
1357                         sp->sa_flags |= SA_SIGINFO;
1358                 if (sigismember(&up->u_signodefer, sig))
1359                         sp->sa_flags |= SA_NODEFER;
1360                 if (sig == SIGCLD) {
1361                         if (p->p_flag & SNOWAIT)
1362                                 sp->sa_flags |= SA_NOCLDWAIT;
1363                         if ((p->p_flag & SJCTL) == 0)
1364                                 sp->sa_flags |= SA_NOCLDSTOP;
1365                 }
1366         }
1367 }
1368 #endif  /* _SYSCALL32_IMPL */
1369 
1370 /*
1371  * Count the number of segments in this process's address space.
1372  */
1373 int
1374 prnsegs(struct as *as, int reserved)
1375 {
1376         int n = 0;
1377         struct seg *seg;
1378 
1379         ASSERT(as != &kas && AS_WRITE_HELD(as));
1380 
1381         for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1382                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1383                 caddr_t saddr, naddr;
1384                 void *tmp = NULL;
1385 
1386                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1387                         (void) pr_getprot(seg, reserved, &tmp,
1388                             &saddr, &naddr, eaddr);
1389                         if (saddr != naddr)
1390                                 n++;
1391                 }
1392 
1393                 ASSERT(tmp == NULL);
1394         }
1395 
1396         return (n);
1397 }
1398 
1399 /*
1400  * Convert uint32_t to decimal string w/o leading zeros.
1401  * Add trailing null characters if 'len' is greater than string length.
1402  * Return the string length.
1403  */
1404 int
1405 pr_u32tos(uint32_t n, char *s, int len)
1406 {
1407         char cbuf[11];          /* 32-bit unsigned integer fits in 10 digits */
1408         char *cp = cbuf;
1409         char *end = s + len;
1410 
1411         do {
1412                 *cp++ = (char)(n % 10 + '0');
1413                 n /= 10;
1414         } while (n);
1415 
1416         len = (int)(cp - cbuf);
1417 
1418         do {
1419                 *s++ = *--cp;
1420         } while (cp > cbuf);
1421 
1422         while (s < end)              /* optional pad */
1423                 *s++ = '\0';
1424 
1425         return (len);
1426 }
1427 
1428 /*
1429  * Convert uint64_t to decimal string w/o leading zeros.
1430  * Return the string length.
1431  */
1432 static int
1433 pr_u64tos(uint64_t n, char *s)
1434 {
1435         char cbuf[21];          /* 64-bit unsigned integer fits in 20 digits */
1436         char *cp = cbuf;
1437         int len;
1438 
1439         do {
1440                 *cp++ = (char)(n % 10 + '0');
1441                 n /= 10;
1442         } while (n);
1443 
1444         len = (int)(cp - cbuf);
1445 
1446         do {
1447                 *s++ = *--cp;
1448         } while (cp > cbuf);
1449 
1450         return (len);
1451 }
1452 
1453 void
1454 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr)
1455 {
1456         char *s = name;
1457         struct vfs *vfsp;
1458         struct vfssw *vfsswp;
1459 
1460         if ((vfsp = vp->v_vfsp) != NULL &&
1461             ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) &&
1462             *vfsswp->vsw_name) {
1463                 (void) strcpy(s, vfsswp->vsw_name);
1464                 s += strlen(s);
1465                 *s++ = '.';
1466         }
1467         s += pr_u32tos(getmajor(vattr->va_fsid), s, 0);
1468         *s++ = '.';
1469         s += pr_u32tos(getminor(vattr->va_fsid), s, 0);
1470         *s++ = '.';
1471         s += pr_u64tos(vattr->va_nodeid, s);
1472         *s++ = '\0';
1473 }
1474 
1475 struct seg *
1476 break_seg(proc_t *p)
1477 {
1478         caddr_t addr = p->p_brkbase;
1479         struct seg *seg;
1480         struct vnode *vp;
1481 
1482         if (p->p_brksize != 0)
1483                 addr += p->p_brksize - 1;
1484         seg = as_segat(p->p_as, addr);
1485         if (seg != NULL && seg->s_ops == &segvn_ops &&
1486             (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL))
1487                 return (seg);
1488         return (NULL);
1489 }
1490 
1491 /*
1492  * Implementation of service functions to handle procfs generic chained
1493  * copyout buffers.
1494  */
1495 typedef struct pr_iobuf_list {
1496         list_node_t     piol_link;      /* buffer linkage */
1497         size_t          piol_size;      /* total size (header + data) */
1498         size_t          piol_usedsize;  /* amount to copy out from this buf */
1499 } piol_t;
1500 
1501 #define MAPSIZE (64 * 1024)
1502 #define PIOL_DATABUF(iol)       ((void *)(&(iol)[1]))
1503 
1504 void
1505 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n)
1506 {
1507         piol_t  *iol;
1508         size_t  initial_size = MIN(1, n) * itemsize;
1509 
1510         list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link));
1511 
1512         ASSERT(list_head(iolhead) == NULL);
1513         ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1514         ASSERT(initial_size > 0);
1515 
1516         /*
1517          * Someone creating chained copyout buffers may ask for less than
1518          * MAPSIZE if the amount of data to be buffered is known to be
1519          * smaller than that.
1520          * But in order to prevent involuntary self-denial of service,
1521          * the requested input size is clamped at MAPSIZE.
1522          */
1523         initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol));
1524         iol = kmem_alloc(initial_size, KM_SLEEP);
1525         list_insert_head(iolhead, iol);
1526         iol->piol_usedsize = 0;
1527         iol->piol_size = initial_size;
1528 }
1529 
1530 void *
1531 pr_iol_newbuf(list_t *iolhead, size_t itemsize)
1532 {
1533         piol_t  *iol;
1534         char    *new;
1535 
1536         ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1537         ASSERT(list_head(iolhead) != NULL);
1538 
1539         iol = (piol_t *)list_tail(iolhead);
1540 
1541         if (iol->piol_size <
1542             iol->piol_usedsize + sizeof (*iol) + itemsize) {
1543                 /*
1544                  * Out of space in the current buffer. Allocate more.
1545                  */
1546                 piol_t *newiol;
1547 
1548                 newiol = kmem_alloc(MAPSIZE, KM_SLEEP);
1549                 newiol->piol_size = MAPSIZE;
1550                 newiol->piol_usedsize = 0;
1551 
1552                 list_insert_after(iolhead, iol, newiol);
1553                 iol = list_next(iolhead, iol);
1554                 ASSERT(iol == newiol);
1555         }
1556         new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize;
1557         iol->piol_usedsize += itemsize;
1558         bzero(new, itemsize);
1559         return (new);
1560 }
1561 
1562 int
1563 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin)
1564 {
1565         int error = errin;
1566         piol_t  *iol;
1567 
1568         while ((iol = list_head(iolhead)) != NULL) {
1569                 list_remove(iolhead, iol);
1570                 if (!error) {
1571                         if (copyout(PIOL_DATABUF(iol), *tgt,
1572                             iol->piol_usedsize))
1573                                 error = EFAULT;
1574                         *tgt += iol->piol_usedsize;
1575                 }
1576                 kmem_free(iol, iol->piol_size);
1577         }
1578         list_destroy(iolhead);
1579 
1580         return (error);
1581 }
1582 
1583 int
1584 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin)
1585 {
1586         offset_t        off = uiop->uio_offset;
1587         char            *base;
1588         size_t          size;
1589         piol_t          *iol;
1590         int             error = errin;
1591 
1592         while ((iol = list_head(iolhead)) != NULL) {
1593                 list_remove(iolhead, iol);
1594                 base = PIOL_DATABUF(iol);
1595                 size = iol->piol_usedsize;
1596                 if (off <= size && error == 0 && uiop->uio_resid > 0)
1597                         error = uiomove(base + off, size - off,
1598                             UIO_READ, uiop);
1599                 off = MAX(0, off - (offset_t)size);
1600                 kmem_free(iol, iol->piol_size);
1601         }
1602         list_destroy(iolhead);
1603 
1604         return (error);
1605 }
1606 
1607 /*
1608  * Return an array of structures with memory map information.
1609  * We allocate here; the caller must deallocate.
1610  */
1611 int
1612 prgetmap(proc_t *p, int reserved, list_t *iolhead)
1613 {
1614         struct as *as = p->p_as;
1615         prmap_t *mp;
1616         struct seg *seg;
1617         struct seg *brkseg, *stkseg;
1618         struct vnode *vp;
1619         struct vattr vattr;
1620         uint_t prot;
1621 
1622         ASSERT(as != &kas && AS_WRITE_HELD(as));
1623 
1624         /*
1625          * Request an initial buffer size that doesn't waste memory
1626          * if the address space has only a small number of segments.
1627          */
1628         pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1629 
1630         if ((seg = AS_SEGFIRST(as)) == NULL)
1631                 return (0);
1632 
1633         brkseg = break_seg(p);
1634         stkseg = as_segat(as, prgetstackbase(p));
1635 
1636         do {
1637                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1638                 caddr_t saddr, naddr;
1639                 void *tmp = NULL;
1640 
1641                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1642                         prot = pr_getprot(seg, reserved, &tmp,
1643                             &saddr, &naddr, eaddr);
1644                         if (saddr == naddr)
1645                                 continue;
1646 
1647                         mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1648 
1649                         mp->pr_vaddr = (uintptr_t)saddr;
1650                         mp->pr_size = naddr - saddr;
1651                         mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1652                         mp->pr_mflags = 0;
1653                         if (prot & PROT_READ)
1654                                 mp->pr_mflags |= MA_READ;
1655                         if (prot & PROT_WRITE)
1656                                 mp->pr_mflags |= MA_WRITE;
1657                         if (prot & PROT_EXEC)
1658                                 mp->pr_mflags |= MA_EXEC;
1659                         if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1660                                 mp->pr_mflags |= MA_SHARED;
1661                         if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1662                                 mp->pr_mflags |= MA_NORESERVE;
1663                         if (seg->s_ops == &segspt_shmops ||
1664                             (seg->s_ops == &segvn_ops &&
1665                             (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1666                                 mp->pr_mflags |= MA_ANON;
1667                         if (seg == brkseg)
1668                                 mp->pr_mflags |= MA_BREAK;
1669                         else if (seg == stkseg) {
1670                                 mp->pr_mflags |= MA_STACK;
1671                                 if (reserved) {
1672                                         size_t maxstack =
1673                                             ((size_t)p->p_stk_ctl +
1674                                             PAGEOFFSET) & PAGEMASK;
1675                                         mp->pr_vaddr =
1676                                             (uintptr_t)prgetstackbase(p) +
1677                                             p->p_stksize - maxstack;
1678                                         mp->pr_size = (uintptr_t)naddr -
1679                                             mp->pr_vaddr;
1680                                 }
1681                         }
1682                         if (seg->s_ops == &segspt_shmops)
1683                                 mp->pr_mflags |= MA_ISM | MA_SHM;
1684                         mp->pr_pagesize = PAGESIZE;
1685 
1686                         /*
1687                          * Manufacture a filename for the "object" directory.
1688                          */
1689                         vattr.va_mask = AT_FSID|AT_NODEID;
1690                         if (seg->s_ops == &segvn_ops &&
1691                             SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1692                             vp != NULL && vp->v_type == VREG &&
1693                             VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
1694                                 if (vp == p->p_exec)
1695                                         (void) strcpy(mp->pr_mapname, "a.out");
1696                                 else
1697                                         pr_object_name(mp->pr_mapname,
1698                                             vp, &vattr);
1699                         }
1700 
1701                         /*
1702                          * Get the SysV shared memory id, if any.
1703                          */
1704                         if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1705                             (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1706                             SHMID_NONE) {
1707                                 if (mp->pr_shmid == SHMID_FREE)
1708                                         mp->pr_shmid = -1;
1709 
1710                                 mp->pr_mflags |= MA_SHM;
1711                         } else {
1712                                 mp->pr_shmid = -1;
1713                         }
1714                 }
1715                 ASSERT(tmp == NULL);
1716         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1717 
1718         return (0);
1719 }
1720 
1721 #ifdef _SYSCALL32_IMPL
1722 int
1723 prgetmap32(proc_t *p, int reserved, list_t *iolhead)
1724 {
1725         struct as *as = p->p_as;
1726         prmap32_t *mp;
1727         struct seg *seg;
1728         struct seg *brkseg, *stkseg;
1729         struct vnode *vp;
1730         struct vattr vattr;
1731         uint_t prot;
1732 
1733         ASSERT(as != &kas && AS_WRITE_HELD(as));
1734 
1735         /*
1736          * Request an initial buffer size that doesn't waste memory
1737          * if the address space has only a small number of segments.
1738          */
1739         pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1740 
1741         if ((seg = AS_SEGFIRST(as)) == NULL)
1742                 return (0);
1743 
1744         brkseg = break_seg(p);
1745         stkseg = as_segat(as, prgetstackbase(p));
1746 
1747         do {
1748                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1749                 caddr_t saddr, naddr;
1750                 void *tmp = NULL;
1751 
1752                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1753                         prot = pr_getprot(seg, reserved, &tmp,
1754                             &saddr, &naddr, eaddr);
1755                         if (saddr == naddr)
1756                                 continue;
1757 
1758                         mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1759 
1760                         mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
1761                         mp->pr_size = (size32_t)(naddr - saddr);
1762                         mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1763                         mp->pr_mflags = 0;
1764                         if (prot & PROT_READ)
1765                                 mp->pr_mflags |= MA_READ;
1766                         if (prot & PROT_WRITE)
1767                                 mp->pr_mflags |= MA_WRITE;
1768                         if (prot & PROT_EXEC)
1769                                 mp->pr_mflags |= MA_EXEC;
1770                         if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1771                                 mp->pr_mflags |= MA_SHARED;
1772                         if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1773                                 mp->pr_mflags |= MA_NORESERVE;
1774                         if (seg->s_ops == &segspt_shmops ||
1775                             (seg->s_ops == &segvn_ops &&
1776                             (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1777                                 mp->pr_mflags |= MA_ANON;
1778                         if (seg == brkseg)
1779                                 mp->pr_mflags |= MA_BREAK;
1780                         else if (seg == stkseg) {
1781                                 mp->pr_mflags |= MA_STACK;
1782                                 if (reserved) {
1783                                         size_t maxstack =
1784                                             ((size_t)p->p_stk_ctl +
1785                                             PAGEOFFSET) & PAGEMASK;
1786                                         uintptr_t vaddr =
1787                                             (uintptr_t)prgetstackbase(p) +
1788                                             p->p_stksize - maxstack;
1789                                         mp->pr_vaddr = (caddr32_t)vaddr;
1790                                         mp->pr_size = (size32_t)
1791                                             ((uintptr_t)naddr - vaddr);
1792                                 }
1793                         }
1794                         if (seg->s_ops == &segspt_shmops)
1795                                 mp->pr_mflags |= MA_ISM | MA_SHM;
1796                         mp->pr_pagesize = PAGESIZE;
1797 
1798                         /*
1799                          * Manufacture a filename for the "object" directory.
1800                          */
1801                         vattr.va_mask = AT_FSID|AT_NODEID;
1802                         if (seg->s_ops == &segvn_ops &&
1803                             SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1804                             vp != NULL && vp->v_type == VREG &&
1805                             VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
1806                                 if (vp == p->p_exec)
1807                                         (void) strcpy(mp->pr_mapname, "a.out");
1808                                 else
1809                                         pr_object_name(mp->pr_mapname,
1810                                             vp, &vattr);
1811                         }
1812 
1813                         /*
1814                          * Get the SysV shared memory id, if any.
1815                          */
1816                         if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1817                             (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1818                             SHMID_NONE) {
1819                                 if (mp->pr_shmid == SHMID_FREE)
1820                                         mp->pr_shmid = -1;
1821 
1822                                 mp->pr_mflags |= MA_SHM;
1823                         } else {
1824                                 mp->pr_shmid = -1;
1825                         }
1826                 }
1827                 ASSERT(tmp == NULL);
1828         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1829 
1830         return (0);
1831 }
1832 #endif  /* _SYSCALL32_IMPL */
1833 
1834 /*
1835  * Return the size of the /proc page data file.
1836  */
1837 size_t
1838 prpdsize(struct as *as)
1839 {
1840         struct seg *seg;
1841         size_t size;
1842 
1843         ASSERT(as != &kas && AS_WRITE_HELD(as));
1844 
1845         if ((seg = AS_SEGFIRST(as)) == NULL)
1846                 return (0);
1847 
1848         size = sizeof (prpageheader_t);
1849         do {
1850                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1851                 caddr_t saddr, naddr;
1852                 void *tmp = NULL;
1853                 size_t npage;
1854 
1855                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1856                         (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1857                         if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1858                                 size += sizeof (prasmap_t) + round8(npage);
1859                 }
1860                 ASSERT(tmp == NULL);
1861         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1862 
1863         return (size);
1864 }
1865 
1866 #ifdef _SYSCALL32_IMPL
1867 size_t
1868 prpdsize32(struct as *as)
1869 {
1870         struct seg *seg;
1871         size_t size;
1872 
1873         ASSERT(as != &kas && AS_WRITE_HELD(as));
1874 
1875         if ((seg = AS_SEGFIRST(as)) == NULL)
1876                 return (0);
1877 
1878         size = sizeof (prpageheader32_t);
1879         do {
1880                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1881                 caddr_t saddr, naddr;
1882                 void *tmp = NULL;
1883                 size_t npage;
1884 
1885                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1886                         (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1887                         if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1888                                 size += sizeof (prasmap32_t) + round8(npage);
1889                 }
1890                 ASSERT(tmp == NULL);
1891         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1892 
1893         return (size);
1894 }
1895 #endif  /* _SYSCALL32_IMPL */
1896 
1897 /*
1898  * Read page data information.
1899  */
1900 int
1901 prpdread(proc_t *p, uint_t hatid, struct uio *uiop)
1902 {
1903         struct as *as = p->p_as;
1904         caddr_t buf;
1905         size_t size;
1906         prpageheader_t *php;
1907         prasmap_t *pmp;
1908         struct seg *seg;
1909         int error;
1910 
1911 again:
1912         AS_LOCK_ENTER(as, RW_WRITER);
1913 
1914         if ((seg = AS_SEGFIRST(as)) == NULL) {
1915                 AS_LOCK_EXIT(as);
1916                 return (0);
1917         }
1918         size = prpdsize(as);
1919         if (uiop->uio_resid < size) {
1920                 AS_LOCK_EXIT(as);
1921                 return (E2BIG);
1922         }
1923 
1924         buf = kmem_zalloc(size, KM_SLEEP);
1925         php = (prpageheader_t *)buf;
1926         pmp = (prasmap_t *)(buf + sizeof (prpageheader_t));
1927 
1928         hrt2ts(gethrtime(), &php->pr_tstamp);
1929         php->pr_nmap = 0;
1930         php->pr_npage = 0;
1931         do {
1932                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1933                 caddr_t saddr, naddr;
1934                 void *tmp = NULL;
1935 
1936                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1937                         struct vnode *vp;
1938                         struct vattr vattr;
1939                         size_t len;
1940                         size_t npage;
1941                         uint_t prot;
1942                         uintptr_t next;
1943 
1944                         prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1945                         if ((len = (size_t)(naddr - saddr)) == 0)
1946                                 continue;
1947                         npage = len / PAGESIZE;
1948                         next = (uintptr_t)(pmp + 1) + round8(npage);
1949                         /*
1950                          * It's possible that the address space can change
1951                          * subtlely even though we're holding as->a_lock
1952                          * due to the nondeterminism of page_exists() in
1953                          * the presence of asychronously flushed pages or
1954                          * mapped files whose sizes are changing.
1955                          * page_exists() may be called indirectly from
1956                          * pr_getprot() by a SEGOP_INCORE() routine.
1957                          * If this happens we need to make sure we don't
1958                          * overrun the buffer whose size we computed based
1959                          * on the initial iteration through the segments.
1960                          * Once we've detected an overflow, we need to clean
1961                          * up the temporary memory allocated in pr_getprot()
1962                          * and retry. If there's a pending signal, we return
1963                          * EINTR so that this thread can be dislodged if
1964                          * a latent bug causes us to spin indefinitely.
1965                          */
1966                         if (next > (uintptr_t)buf + size) {
1967                                 pr_getprot_done(&tmp);
1968                                 AS_LOCK_EXIT(as);
1969 
1970                                 kmem_free(buf, size);
1971 
1972                                 if (ISSIG(curthread, JUSTLOOKING))
1973                                         return (EINTR);
1974 
1975                                 goto again;
1976                         }
1977 
1978                         php->pr_nmap++;
1979                         php->pr_npage += npage;
1980                         pmp->pr_vaddr = (uintptr_t)saddr;
1981                         pmp->pr_npage = npage;
1982                         pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1983                         pmp->pr_mflags = 0;
1984                         if (prot & PROT_READ)
1985                                 pmp->pr_mflags |= MA_READ;
1986                         if (prot & PROT_WRITE)
1987                                 pmp->pr_mflags |= MA_WRITE;
1988                         if (prot & PROT_EXEC)
1989                                 pmp->pr_mflags |= MA_EXEC;
1990                         if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1991                                 pmp->pr_mflags |= MA_SHARED;
1992                         if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1993                                 pmp->pr_mflags |= MA_NORESERVE;
1994                         if (seg->s_ops == &segspt_shmops ||
1995                             (seg->s_ops == &segvn_ops &&
1996                             (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1997                                 pmp->pr_mflags |= MA_ANON;
1998                         if (seg->s_ops == &segspt_shmops)
1999                                 pmp->pr_mflags |= MA_ISM | MA_SHM;
2000                         pmp->pr_pagesize = PAGESIZE;
2001                         /*
2002                          * Manufacture a filename for the "object" directory.
2003                          */
2004                         vattr.va_mask = AT_FSID|AT_NODEID;
2005                         if (seg->s_ops == &segvn_ops &&
2006                             SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2007                             vp != NULL && vp->v_type == VREG &&
2008                             VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
2009                                 if (vp == p->p_exec)
2010                                         (void) strcpy(pmp->pr_mapname, "a.out");
2011                                 else
2012                                         pr_object_name(pmp->pr_mapname,
2013                                             vp, &vattr);
2014                         }
2015 
2016                         /*
2017                          * Get the SysV shared memory id, if any.
2018                          */
2019                         if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2020                             (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2021                             SHMID_NONE) {
2022                                 if (pmp->pr_shmid == SHMID_FREE)
2023                                         pmp->pr_shmid = -1;
2024 
2025                                 pmp->pr_mflags |= MA_SHM;
2026                         } else {
2027                                 pmp->pr_shmid = -1;
2028                         }
2029 
2030                         hat_getstat(as, saddr, len, hatid,
2031                             (char *)(pmp + 1), HAT_SYNC_ZERORM);
2032                         pmp = (prasmap_t *)next;
2033                 }
2034                 ASSERT(tmp == NULL);
2035         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2036 
2037         AS_LOCK_EXIT(as);
2038 
2039         ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2040         error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2041         kmem_free(buf, size);
2042 
2043         return (error);
2044 }
2045 
2046 #ifdef _SYSCALL32_IMPL
2047 int
2048 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop)
2049 {
2050         struct as *as = p->p_as;
2051         caddr_t buf;
2052         size_t size;
2053         prpageheader32_t *php;
2054         prasmap32_t *pmp;
2055         struct seg *seg;
2056         int error;
2057 
2058 again:
2059         AS_LOCK_ENTER(as, RW_WRITER);
2060 
2061         if ((seg = AS_SEGFIRST(as)) == NULL) {
2062                 AS_LOCK_EXIT(as);
2063                 return (0);
2064         }
2065         size = prpdsize32(as);
2066         if (uiop->uio_resid < size) {
2067                 AS_LOCK_EXIT(as);
2068                 return (E2BIG);
2069         }
2070 
2071         buf = kmem_zalloc(size, KM_SLEEP);
2072         php = (prpageheader32_t *)buf;
2073         pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t));
2074 
2075         hrt2ts32(gethrtime(), &php->pr_tstamp);
2076         php->pr_nmap = 0;
2077         php->pr_npage = 0;
2078         do {
2079                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2080                 caddr_t saddr, naddr;
2081                 void *tmp = NULL;
2082 
2083                 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2084                         struct vnode *vp;
2085                         struct vattr vattr;
2086                         size_t len;
2087                         size_t npage;
2088                         uint_t prot;
2089                         uintptr_t next;
2090 
2091                         prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2092                         if ((len = (size_t)(naddr - saddr)) == 0)
2093                                 continue;
2094                         npage = len / PAGESIZE;
2095                         next = (uintptr_t)(pmp + 1) + round8(npage);
2096                         /*
2097                          * It's possible that the address space can change
2098                          * subtlely even though we're holding as->a_lock
2099                          * due to the nondeterminism of page_exists() in
2100                          * the presence of asychronously flushed pages or
2101                          * mapped files whose sizes are changing.
2102                          * page_exists() may be called indirectly from
2103                          * pr_getprot() by a SEGOP_INCORE() routine.
2104                          * If this happens we need to make sure we don't
2105                          * overrun the buffer whose size we computed based
2106                          * on the initial iteration through the segments.
2107                          * Once we've detected an overflow, we need to clean
2108                          * up the temporary memory allocated in pr_getprot()
2109                          * and retry. If there's a pending signal, we return
2110                          * EINTR so that this thread can be dislodged if
2111                          * a latent bug causes us to spin indefinitely.
2112                          */
2113                         if (next > (uintptr_t)buf + size) {
2114                                 pr_getprot_done(&tmp);
2115                                 AS_LOCK_EXIT(as);
2116 
2117                                 kmem_free(buf, size);
2118 
2119                                 if (ISSIG(curthread, JUSTLOOKING))
2120                                         return (EINTR);
2121 
2122                                 goto again;
2123                         }
2124 
2125                         php->pr_nmap++;
2126                         php->pr_npage += npage;
2127                         pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
2128                         pmp->pr_npage = (size32_t)npage;
2129                         pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
2130                         pmp->pr_mflags = 0;
2131                         if (prot & PROT_READ)
2132                                 pmp->pr_mflags |= MA_READ;
2133                         if (prot & PROT_WRITE)
2134                                 pmp->pr_mflags |= MA_WRITE;
2135                         if (prot & PROT_EXEC)
2136                                 pmp->pr_mflags |= MA_EXEC;
2137                         if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
2138                                 pmp->pr_mflags |= MA_SHARED;
2139                         if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
2140                                 pmp->pr_mflags |= MA_NORESERVE;
2141                         if (seg->s_ops == &segspt_shmops ||
2142                             (seg->s_ops == &segvn_ops &&
2143                             (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
2144                                 pmp->pr_mflags |= MA_ANON;
2145                         if (seg->s_ops == &segspt_shmops)
2146                                 pmp->pr_mflags |= MA_ISM | MA_SHM;
2147                         pmp->pr_pagesize = PAGESIZE;
2148                         /*
2149                          * Manufacture a filename for the "object" directory.
2150                          */
2151                         vattr.va_mask = AT_FSID|AT_NODEID;
2152                         if (seg->s_ops == &segvn_ops &&
2153                             SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2154                             vp != NULL && vp->v_type == VREG &&
2155                             VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
2156                                 if (vp == p->p_exec)
2157                                         (void) strcpy(pmp->pr_mapname, "a.out");
2158                                 else
2159                                         pr_object_name(pmp->pr_mapname,
2160                                             vp, &vattr);
2161                         }
2162 
2163                         /*
2164                          * Get the SysV shared memory id, if any.
2165                          */
2166                         if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2167                             (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2168                             SHMID_NONE) {
2169                                 if (pmp->pr_shmid == SHMID_FREE)
2170                                         pmp->pr_shmid = -1;
2171 
2172                                 pmp->pr_mflags |= MA_SHM;
2173                         } else {
2174                                 pmp->pr_shmid = -1;
2175                         }
2176 
2177                         hat_getstat(as, saddr, len, hatid,
2178                             (char *)(pmp + 1), HAT_SYNC_ZERORM);
2179                         pmp = (prasmap32_t *)next;
2180                 }
2181                 ASSERT(tmp == NULL);
2182         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2183 
2184         AS_LOCK_EXIT(as);
2185 
2186         ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2187         error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2188         kmem_free(buf, size);
2189 
2190         return (error);
2191 }
2192 #endif  /* _SYSCALL32_IMPL */
2193 
2194 ushort_t
2195 prgetpctcpu(uint64_t pct)
2196 {
2197         /*
2198          * The value returned will be relevant in the zone of the examiner,
2199          * which may not be the same as the zone which performed the procfs
2200          * mount.
2201          */
2202         int nonline = zone_ncpus_online_get(curproc->p_zone);
2203 
2204         /*
2205          * Prorate over online cpus so we don't exceed 100%
2206          */
2207         if (nonline > 1)
2208                 pct /= nonline;
2209         pct >>= 16;               /* convert to 16-bit scaled integer */
2210         if (pct > 0x8000)    /* might happen, due to rounding */
2211                 pct = 0x8000;
2212         return ((ushort_t)pct);
2213 }
2214 
2215 /*
2216  * Return information used by ps(1).
2217  */
2218 void
2219 prgetpsinfo(proc_t *p, psinfo_t *psp)
2220 {
2221         kthread_t *t;
2222         struct cred *cred;
2223         hrtime_t hrutime, hrstime;
2224 
2225         ASSERT(MUTEX_HELD(&p->p_lock));
2226 
2227         if ((t = prchoose(p)) == NULL)  /* returns locked thread */
2228                 bzero(psp, sizeof (*psp));
2229         else {
2230                 thread_unlock(t);
2231                 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2232         }
2233 
2234         /*
2235          * only export SSYS and SMSACCT; everything else is off-limits to
2236          * userland apps.
2237          */
2238         psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2239         psp->pr_nlwp = p->p_lwpcnt;
2240         psp->pr_nzomb = p->p_zombcnt;
2241         mutex_enter(&p->p_crlock);
2242         cred = p->p_cred;
2243         psp->pr_uid = crgetruid(cred);
2244         psp->pr_euid = crgetuid(cred);
2245         psp->pr_gid = crgetrgid(cred);
2246         psp->pr_egid = crgetgid(cred);
2247         mutex_exit(&p->p_crlock);
2248         psp->pr_pid = p->p_pid;
2249         if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2250             (p->p_flag & SZONETOP)) {
2251                 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2252                 /*
2253                  * Inside local zones, fake zsched's pid as parent pids for
2254                  * processes which reference processes outside of the zone.
2255                  */
2256                 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2257         } else {
2258                 psp->pr_ppid = p->p_ppid;
2259         }
2260         psp->pr_pgid = p->p_pgrp;
2261         psp->pr_sid = p->p_sessp->s_sid;
2262         psp->pr_taskid = p->p_task->tk_tkid;
2263         psp->pr_projid = p->p_task->tk_proj->kpj_id;
2264         psp->pr_poolid = p->p_pool->pool_id;
2265         psp->pr_zoneid = p->p_zone->zone_id;
2266         if ((psp->pr_contract = PRCTID(p)) == 0)
2267                 psp->pr_contract = -1;
2268         psp->pr_addr = (uintptr_t)prgetpsaddr(p);
2269         switch (p->p_model) {
2270         case DATAMODEL_ILP32:
2271                 psp->pr_dmodel = PR_MODEL_ILP32;
2272                 break;
2273         case DATAMODEL_LP64:
2274                 psp->pr_dmodel = PR_MODEL_LP64;
2275                 break;
2276         }
2277         hrutime = mstate_aggr_state(p, LMS_USER);
2278         hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2279         hrt2ts((hrutime + hrstime), &psp->pr_time);
2280         TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2281 
2282         if (t == NULL) {
2283                 int wcode = p->p_wcode;              /* must be atomic read */
2284 
2285                 if (wcode)
2286                         psp->pr_wstat = wstat(wcode, p->p_wdata);
2287                 psp->pr_ttydev = PRNODEV;
2288                 psp->pr_lwp.pr_state = SZOMB;
2289                 psp->pr_lwp.pr_sname = 'Z';
2290                 psp->pr_lwp.pr_bindpro = PBIND_NONE;
2291                 psp->pr_lwp.pr_bindpset = PS_NONE;
2292         } else {
2293                 user_t *up = PTOU(p);
2294                 struct as *as;
2295                 dev_t d;
2296                 extern dev_t rwsconsdev, rconsdev, uconsdev;
2297 
2298                 d = cttydev(p);
2299                 /*
2300                  * If the controlling terminal is the real
2301                  * or workstation console device, map to what the
2302                  * user thinks is the console device. Handle case when
2303                  * rwsconsdev or rconsdev is set to NODEV for Starfire.
2304                  */
2305                 if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2306                         d = uconsdev;
2307                 psp->pr_ttydev = (d == NODEV) ? PRNODEV : d;
2308                 psp->pr_start = up->u_start;
2309                 bcopy(up->u_comm, psp->pr_fname,
2310                     MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2311                 bcopy(up->u_psargs, psp->pr_psargs,
2312                     MIN(PRARGSZ-1, PSARGSZ));
2313                 psp->pr_argc = up->u_argc;
2314                 psp->pr_argv = up->u_argv;
2315                 psp->pr_envp = up->u_envp;
2316 
2317                 /* get the chosen lwp's lwpsinfo */
2318                 prgetlwpsinfo(t, &psp->pr_lwp);
2319 
2320                 /* compute %cpu for the process */
2321                 if (p->p_lwpcnt == 1)
2322                         psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2323                 else {
2324                         uint64_t pct = 0;
2325                         hrtime_t cur_time = gethrtime_unscaled();
2326 
2327                         t = p->p_tlist;
2328                         do {
2329                                 pct += cpu_update_pct(t, cur_time);
2330                         } while ((t = t->t_forw) != p->p_tlist);
2331 
2332                         psp->pr_pctcpu = prgetpctcpu(pct);
2333                 }
2334                 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2335                         psp->pr_size = 0;
2336                         psp->pr_rssize = 0;
2337                 } else {
2338                         mutex_exit(&p->p_lock);
2339                         AS_LOCK_ENTER(as, RW_READER);
2340                         psp->pr_size = btopr(as->a_resvsize) *
2341                             (PAGESIZE / 1024);
2342                         psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024);
2343                         psp->pr_pctmem = rm_pctmemory(as);
2344                         AS_LOCK_EXIT(as);
2345                         mutex_enter(&p->p_lock);
2346                 }
2347         }
2348 }
2349 
2350 #ifdef _SYSCALL32_IMPL
2351 void
2352 prgetpsinfo32(proc_t *p, psinfo32_t *psp)
2353 {
2354         kthread_t *t;
2355         struct cred *cred;
2356         hrtime_t hrutime, hrstime;
2357 
2358         ASSERT(MUTEX_HELD(&p->p_lock));
2359 
2360         if ((t = prchoose(p)) == NULL)  /* returns locked thread */
2361                 bzero(psp, sizeof (*psp));
2362         else {
2363                 thread_unlock(t);
2364                 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2365         }
2366 
2367         /*
2368          * only export SSYS and SMSACCT; everything else is off-limits to
2369          * userland apps.
2370          */
2371         psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2372         psp->pr_nlwp = p->p_lwpcnt;
2373         psp->pr_nzomb = p->p_zombcnt;
2374         mutex_enter(&p->p_crlock);
2375         cred = p->p_cred;
2376         psp->pr_uid = crgetruid(cred);
2377         psp->pr_euid = crgetuid(cred);
2378         psp->pr_gid = crgetrgid(cred);
2379         psp->pr_egid = crgetgid(cred);
2380         mutex_exit(&p->p_crlock);
2381         psp->pr_pid = p->p_pid;
2382         if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2383             (p->p_flag & SZONETOP)) {
2384                 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2385                 /*
2386                  * Inside local zones, fake zsched's pid as parent pids for
2387                  * processes which reference processes outside of the zone.
2388                  */
2389                 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2390         } else {
2391                 psp->pr_ppid = p->p_ppid;
2392         }
2393         psp->pr_pgid = p->p_pgrp;
2394         psp->pr_sid = p->p_sessp->s_sid;
2395         psp->pr_taskid = p->p_task->tk_tkid;
2396         psp->pr_projid = p->p_task->tk_proj->kpj_id;
2397         psp->pr_poolid = p->p_pool->pool_id;
2398         psp->pr_zoneid = p->p_zone->zone_id;
2399         if ((psp->pr_contract = PRCTID(p)) == 0)
2400                 psp->pr_contract = -1;
2401         psp->pr_addr = 0;    /* cannot represent 64-bit addr in 32 bits */
2402         switch (p->p_model) {
2403         case DATAMODEL_ILP32:
2404                 psp->pr_dmodel = PR_MODEL_ILP32;
2405                 break;
2406         case DATAMODEL_LP64:
2407                 psp->pr_dmodel = PR_MODEL_LP64;
2408                 break;
2409         }
2410         hrutime = mstate_aggr_state(p, LMS_USER);
2411         hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2412         hrt2ts32(hrutime + hrstime, &psp->pr_time);
2413         TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2414 
2415         if (t == NULL) {
2416                 extern int wstat(int, int);     /* needs a header file */
2417                 int wcode = p->p_wcode;              /* must be atomic read */
2418 
2419                 if (wcode)
2420                         psp->pr_wstat = wstat(wcode, p->p_wdata);
2421                 psp->pr_ttydev = PRNODEV32;
2422                 psp->pr_lwp.pr_state = SZOMB;
2423                 psp->pr_lwp.pr_sname = 'Z';
2424         } else {
2425                 user_t *up = PTOU(p);
2426                 struct as *as;
2427                 dev_t d;
2428                 extern dev_t rwsconsdev, rconsdev, uconsdev;
2429 
2430                 d = cttydev(p);
2431                 /*
2432                  * If the controlling terminal is the real
2433                  * or workstation console device, map to what the
2434                  * user thinks is the console device. Handle case when
2435                  * rwsconsdev or rconsdev is set to NODEV for Starfire.
2436                  */
2437                 if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2438                         d = uconsdev;
2439                 (void) cmpldev(&psp->pr_ttydev, d);
2440                 TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start);
2441                 bcopy(up->u_comm, psp->pr_fname,
2442                     MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2443                 bcopy(up->u_psargs, psp->pr_psargs,
2444                     MIN(PRARGSZ-1, PSARGSZ));
2445                 psp->pr_argc = up->u_argc;
2446                 psp->pr_argv = (caddr32_t)up->u_argv;
2447                 psp->pr_envp = (caddr32_t)up->u_envp;
2448 
2449                 /* get the chosen lwp's lwpsinfo */
2450                 prgetlwpsinfo32(t, &psp->pr_lwp);
2451 
2452                 /* compute %cpu for the process */
2453                 if (p->p_lwpcnt == 1)
2454                         psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2455                 else {
2456                         uint64_t pct = 0;
2457                         hrtime_t cur_time;
2458 
2459                         t = p->p_tlist;
2460                         cur_time = gethrtime_unscaled();
2461                         do {
2462                                 pct += cpu_update_pct(t, cur_time);
2463                         } while ((t = t->t_forw) != p->p_tlist);
2464 
2465                         psp->pr_pctcpu = prgetpctcpu(pct);
2466                 }
2467                 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2468                         psp->pr_size = 0;
2469                         psp->pr_rssize = 0;
2470                 } else {
2471                         mutex_exit(&p->p_lock);
2472                         AS_LOCK_ENTER(as, RW_READER);
2473                         psp->pr_size = (size32_t)
2474                             (btopr(as->a_resvsize) * (PAGESIZE / 1024));
2475                         psp->pr_rssize = (size32_t)
2476                             (rm_asrss(as) * (PAGESIZE / 1024));
2477                         psp->pr_pctmem = rm_pctmemory(as);
2478                         AS_LOCK_EXIT(as);
2479                         mutex_enter(&p->p_lock);
2480                 }
2481         }
2482 
2483         /*
2484          * If we are looking at an LP64 process, zero out
2485          * the fields that cannot be represented in ILP32.
2486          */
2487         if (p->p_model != DATAMODEL_ILP32) {
2488                 psp->pr_size = 0;
2489                 psp->pr_rssize = 0;
2490                 psp->pr_argv = 0;
2491                 psp->pr_envp = 0;
2492         }
2493 }
2494 
2495 #endif  /* _SYSCALL32_IMPL */
2496 
2497 void
2498 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp)
2499 {
2500         klwp_t *lwp = ttolwp(t);
2501         sobj_ops_t *sobj;
2502         char c, state;
2503         uint64_t pct;
2504         int retval, niceval;
2505         hrtime_t hrutime, hrstime;
2506 
2507         ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2508 
2509         bzero(psp, sizeof (*psp));
2510 
2511         psp->pr_flag = 0;    /* lwpsinfo_t.pr_flag is deprecated */
2512         psp->pr_lwpid = t->t_tid;
2513         psp->pr_addr = (uintptr_t)t;
2514         psp->pr_wchan = (uintptr_t)t->t_wchan;
2515 
2516         /* map the thread state enum into a process state enum */
2517         state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2518         switch (state) {
2519         case TS_SLEEP:          state = SSLEEP;         c = 'S';        break;
2520         case TS_RUN:            state = SRUN;           c = 'R';        break;
2521         case TS_ONPROC:         state = SONPROC;        c = 'O';        break;
2522         case TS_ZOMB:           state = SZOMB;          c = 'Z';        break;
2523         case TS_STOPPED:        state = SSTOP;          c = 'T';        break;
2524         case TS_WAIT:           state = SWAIT;          c = 'W';        break;
2525         default:                state = 0;              c = '?';        break;
2526         }
2527         psp->pr_state = state;
2528         psp->pr_sname = c;
2529         if ((sobj = t->t_sobj_ops) != NULL)
2530                 psp->pr_stype = SOBJ_TYPE(sobj);
2531         retval = CL_DONICE(t, NULL, 0, &niceval);
2532         if (retval == 0) {
2533                 psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2534                 psp->pr_nice = niceval + NZERO;
2535         }
2536         psp->pr_syscall = t->t_sysnum;
2537         psp->pr_pri = t->t_pri;
2538         psp->pr_start.tv_sec = t->t_start;
2539         psp->pr_start.tv_nsec = 0L;
2540         hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2541         scalehrtime(&hrutime);
2542         hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2543             lwp->lwp_mstate.ms_acct[LMS_TRAP];
2544         scalehrtime(&hrstime);
2545         hrt2ts(hrutime + hrstime, &psp->pr_time);
2546         /* compute %cpu for the lwp */
2547         pct = cpu_update_pct(t, gethrtime_unscaled());
2548         psp->pr_pctcpu = prgetpctcpu(pct);
2549         psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;  /* [0..99] */
2550         if (psp->pr_cpu > 99)
2551                 psp->pr_cpu = 99;
2552 
2553         (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2554             sizeof (psp->pr_clname) - 1);
2555         bzero(psp->pr_name, sizeof (psp->pr_name));       /* XXX ??? */
2556         psp->pr_onpro = t->t_cpu->cpu_id;
2557         psp->pr_bindpro = t->t_bind_cpu;
2558         psp->pr_bindpset = t->t_bind_pset;
2559         psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2560 }
2561 
2562 #ifdef _SYSCALL32_IMPL
2563 void
2564 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp)
2565 {
2566         proc_t *p = ttoproc(t);
2567         klwp_t *lwp = ttolwp(t);
2568         sobj_ops_t *sobj;
2569         char c, state;
2570         uint64_t pct;
2571         int retval, niceval;
2572         hrtime_t hrutime, hrstime;
2573 
2574         ASSERT(MUTEX_HELD(&p->p_lock));
2575 
2576         bzero(psp, sizeof (*psp));
2577 
2578         psp->pr_flag = 0;    /* lwpsinfo_t.pr_flag is deprecated */
2579         psp->pr_lwpid = t->t_tid;
2580         psp->pr_addr = 0;    /* cannot represent 64-bit addr in 32 bits */
2581         psp->pr_wchan = 0;   /* cannot represent 64-bit addr in 32 bits */
2582 
2583         /* map the thread state enum into a process state enum */
2584         state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2585         switch (state) {
2586         case TS_SLEEP:          state = SSLEEP;         c = 'S';        break;
2587         case TS_RUN:            state = SRUN;           c = 'R';        break;
2588         case TS_ONPROC:         state = SONPROC;        c = 'O';        break;
2589         case TS_ZOMB:           state = SZOMB;          c = 'Z';        break;
2590         case TS_STOPPED:        state = SSTOP;          c = 'T';        break;
2591         case TS_WAIT:           state = SWAIT;          c = 'W';        break;
2592         default:                state = 0;              c = '?';        break;
2593         }
2594         psp->pr_state = state;
2595         psp->pr_sname = c;
2596         if ((sobj = t->t_sobj_ops) != NULL)
2597                 psp->pr_stype = SOBJ_TYPE(sobj);
2598         retval = CL_DONICE(t, NULL, 0, &niceval);
2599         if (retval == 0) {
2600                 psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2601                 psp->pr_nice = niceval + NZERO;
2602         } else {
2603                 psp->pr_oldpri = 0;
2604                 psp->pr_nice = 0;
2605         }
2606         psp->pr_syscall = t->t_sysnum;
2607         psp->pr_pri = t->t_pri;
2608         psp->pr_start.tv_sec = (time32_t)t->t_start;
2609         psp->pr_start.tv_nsec = 0L;
2610         hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2611         scalehrtime(&hrutime);
2612         hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2613             lwp->lwp_mstate.ms_acct[LMS_TRAP];
2614         scalehrtime(&hrstime);
2615         hrt2ts32(hrutime + hrstime, &psp->pr_time);
2616         /* compute %cpu for the lwp */
2617         pct = cpu_update_pct(t, gethrtime_unscaled());
2618         psp->pr_pctcpu = prgetpctcpu(pct);
2619         psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;  /* [0..99] */
2620         if (psp->pr_cpu > 99)
2621                 psp->pr_cpu = 99;
2622 
2623         (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2624             sizeof (psp->pr_clname) - 1);
2625         bzero(psp->pr_name, sizeof (psp->pr_name));       /* XXX ??? */
2626         psp->pr_onpro = t->t_cpu->cpu_id;
2627         psp->pr_bindpro = t->t_bind_cpu;
2628         psp->pr_bindpset = t->t_bind_pset;
2629         psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2630 }
2631 #endif  /* _SYSCALL32_IMPL */
2632 
2633 #ifdef _SYSCALL32_IMPL
2634 
2635 #define PR_COPY_FIELD(s, d, field)       d->field = s->field
2636 
2637 #define PR_COPY_FIELD_ILP32(s, d, field)                                \
2638         if (s->pr_dmodel == PR_MODEL_ILP32) {                        \
2639                 d->field = s->field;                              \
2640         }
2641 
2642 #define PR_COPY_TIMESPEC(s, d, field)                           \
2643         TIMESPEC_TO_TIMESPEC32(&d->field, &s->field);
2644 
2645 #define PR_COPY_BUF(s, d, field)                                \
2646         bcopy(s->field, d->field, sizeof (d->field));
2647 
2648 #define PR_IGNORE_FIELD(s, d, field)
2649 
2650 void
2651 lwpsinfo_kto32(const struct lwpsinfo *src, struct lwpsinfo32 *dest)
2652 {
2653         bzero(dest, sizeof (*dest));
2654 
2655         PR_COPY_FIELD(src, dest, pr_flag);
2656         PR_COPY_FIELD(src, dest, pr_lwpid);
2657         PR_IGNORE_FIELD(src, dest, pr_addr);
2658         PR_IGNORE_FIELD(src, dest, pr_wchan);
2659         PR_COPY_FIELD(src, dest, pr_stype);
2660         PR_COPY_FIELD(src, dest, pr_state);
2661         PR_COPY_FIELD(src, dest, pr_sname);
2662         PR_COPY_FIELD(src, dest, pr_nice);
2663         PR_COPY_FIELD(src, dest, pr_syscall);
2664         PR_COPY_FIELD(src, dest, pr_oldpri);
2665         PR_COPY_FIELD(src, dest, pr_cpu);
2666         PR_COPY_FIELD(src, dest, pr_pri);
2667         PR_COPY_FIELD(src, dest, pr_pctcpu);
2668         PR_COPY_TIMESPEC(src, dest, pr_start);
2669         PR_COPY_BUF(src, dest, pr_clname);
2670         PR_COPY_BUF(src, dest, pr_name);
2671         PR_COPY_FIELD(src, dest, pr_onpro);
2672         PR_COPY_FIELD(src, dest, pr_bindpro);
2673         PR_COPY_FIELD(src, dest, pr_bindpset);
2674         PR_COPY_FIELD(src, dest, pr_lgrp);
2675 }
2676 
2677 void
2678 psinfo_kto32(const struct psinfo *src, struct psinfo32 *dest)
2679 {
2680         bzero(dest, sizeof (*dest));
2681 
2682         PR_COPY_FIELD(src, dest, pr_flag);
2683         PR_COPY_FIELD(src, dest, pr_nlwp);
2684         PR_COPY_FIELD(src, dest, pr_pid);
2685         PR_COPY_FIELD(src, dest, pr_ppid);
2686         PR_COPY_FIELD(src, dest, pr_pgid);
2687         PR_COPY_FIELD(src, dest, pr_sid);
2688         PR_COPY_FIELD(src, dest, pr_uid);
2689         PR_COPY_FIELD(src, dest, pr_euid);
2690         PR_COPY_FIELD(src, dest, pr_gid);
2691         PR_COPY_FIELD(src, dest, pr_egid);
2692         PR_IGNORE_FIELD(src, dest, pr_addr);
2693         PR_COPY_FIELD_ILP32(src, dest, pr_size);
2694         PR_COPY_FIELD_ILP32(src, dest, pr_rssize);
2695         PR_COPY_FIELD(src, dest, pr_ttydev);
2696         PR_COPY_FIELD(src, dest, pr_pctcpu);
2697         PR_COPY_FIELD(src, dest, pr_pctmem);
2698         PR_COPY_TIMESPEC(src, dest, pr_start);
2699         PR_COPY_TIMESPEC(src, dest, pr_time);
2700         PR_COPY_TIMESPEC(src, dest, pr_ctime);
2701         PR_COPY_BUF(src, dest, pr_fname);
2702         PR_COPY_BUF(src, dest, pr_psargs);
2703         PR_COPY_FIELD(src, dest, pr_wstat);
2704         PR_COPY_FIELD(src, dest, pr_argc);
2705         PR_COPY_FIELD_ILP32(src, dest, pr_argv);
2706         PR_COPY_FIELD_ILP32(src, dest, pr_envp);
2707         PR_COPY_FIELD(src, dest, pr_dmodel);
2708         PR_COPY_FIELD(src, dest, pr_taskid);
2709         PR_COPY_FIELD(src, dest, pr_projid);
2710         PR_COPY_FIELD(src, dest, pr_nzomb);
2711         PR_COPY_FIELD(src, dest, pr_poolid);
2712         PR_COPY_FIELD(src, dest, pr_contract);
2713         PR_COPY_FIELD(src, dest, pr_poolid);
2714         PR_COPY_FIELD(src, dest, pr_poolid);
2715 
2716         lwpsinfo_kto32(&src->pr_lwp, &dest->pr_lwp);
2717 }
2718 
2719 #undef  PR_COPY_FIELD
2720 #undef  PR_COPY_FIELD_ILP32
2721 #undef  PR_COPY_TIMESPEC
2722 #undef  PR_COPY_BUF
2723 #undef  PR_IGNORE_FIELD
2724 
2725 #endif  /* _SYSCALL32_IMPL */
2726 
2727 /*
2728  * This used to get called when microstate accounting was disabled but
2729  * microstate information was requested.  Since Microstate accounting is on
2730  * regardless of the proc flags, this simply makes it appear to procfs that
2731  * microstate accounting is on.  This is relatively meaningless since you
2732  * can't turn it off, but this is here for the sake of appearances.
2733  */
2734 
2735 /*ARGSUSED*/
2736 void
2737 estimate_msacct(kthread_t *t, hrtime_t curtime)
2738 {
2739         proc_t *p;
2740 
2741         if (t == NULL)
2742                 return;
2743 
2744         p = ttoproc(t);
2745         ASSERT(MUTEX_HELD(&p->p_lock));
2746 
2747         /*
2748          * A system process (p0) could be referenced if the thread is
2749          * in the process of exiting.  Don't turn on microstate accounting
2750          * in that case.
2751          */
2752         if (p->p_flag & SSYS)
2753                 return;
2754 
2755         /*
2756          * Loop through all the LWPs (kernel threads) in the process.
2757          */
2758         t = p->p_tlist;
2759         do {
2760                 t->t_proc_flag |= TP_MSACCT;
2761         } while ((t = t->t_forw) != p->p_tlist);
2762 
2763         p->p_flag |= SMSACCT;                        /* set process-wide MSACCT */
2764 }
2765 
2766 /*
2767  * It's not really possible to disable microstate accounting anymore.
2768  * However, this routine simply turns off the ms accounting flags in a process
2769  * This way procfs can still pretend to turn microstate accounting on and
2770  * off for a process, but it actually doesn't do anything.  This is
2771  * a neutered form of preemptive idiot-proofing.
2772  */
2773 void
2774 disable_msacct(proc_t *p)
2775 {
2776         kthread_t *t;
2777 
2778         ASSERT(MUTEX_HELD(&p->p_lock));
2779 
2780         p->p_flag &= ~SMSACCT;           /* clear process-wide MSACCT */
2781         /*
2782          * Loop through all the LWPs (kernel threads) in the process.
2783          */
2784         if ((t = p->p_tlist) != NULL) {
2785                 do {
2786                         /* clear per-thread flag */
2787                         t->t_proc_flag &= ~TP_MSACCT;
2788                 } while ((t = t->t_forw) != p->p_tlist);
2789         }
2790 }
2791 
2792 /*
2793  * Return resource usage information.
2794  */
2795 void
2796 prgetusage(kthread_t *t, prhusage_t *pup)
2797 {
2798         klwp_t *lwp = ttolwp(t);
2799         hrtime_t *mstimep;
2800         struct mstate *ms = &lwp->lwp_mstate;
2801         int state;
2802         int i;
2803         hrtime_t curtime;
2804         hrtime_t waitrq;
2805         hrtime_t tmp1;
2806 
2807         curtime = gethrtime_unscaled();
2808 
2809         pup->pr_lwpid        = t->t_tid;
2810         pup->pr_count        = 1;
2811         pup->pr_create       = ms->ms_start;
2812         pup->pr_term    = ms->ms_term;
2813         scalehrtime(&pup->pr_create);
2814         scalehrtime(&pup->pr_term);
2815         if (ms->ms_term == 0) {
2816                 pup->pr_rtime = curtime - ms->ms_start;
2817                 scalehrtime(&pup->pr_rtime);
2818         } else {
2819                 pup->pr_rtime = ms->ms_term - ms->ms_start;
2820                 scalehrtime(&pup->pr_rtime);
2821         }
2822 
2823 
2824         pup->pr_utime    = ms->ms_acct[LMS_USER];
2825         pup->pr_stime    = ms->ms_acct[LMS_SYSTEM];
2826         pup->pr_ttime    = ms->ms_acct[LMS_TRAP];
2827         pup->pr_tftime   = ms->ms_acct[LMS_TFAULT];
2828         pup->pr_dftime   = ms->ms_acct[LMS_DFAULT];
2829         pup->pr_kftime   = ms->ms_acct[LMS_KFAULT];
2830         pup->pr_ltime    = ms->ms_acct[LMS_USER_LOCK];
2831         pup->pr_slptime  = ms->ms_acct[LMS_SLEEP];
2832         pup->pr_wtime    = ms->ms_acct[LMS_WAIT_CPU];
2833         pup->pr_stoptime = ms->ms_acct[LMS_STOPPED];
2834 
2835         prscaleusage(pup);
2836 
2837         /*
2838          * Adjust for time waiting in the dispatcher queue.
2839          */
2840         waitrq = t->t_waitrq;        /* hopefully atomic */
2841         if (waitrq != 0) {
2842                 if (waitrq > curtime) {
2843                         curtime = gethrtime_unscaled();
2844                 }
2845                 tmp1 = curtime - waitrq;
2846                 scalehrtime(&tmp1);
2847                 pup->pr_wtime += tmp1;
2848                 curtime = waitrq;
2849         }
2850 
2851         /*
2852          * Adjust for time spent in current microstate.
2853          */
2854         if (ms->ms_state_start > curtime) {
2855                 curtime = gethrtime_unscaled();
2856         }
2857 
2858         i = 0;
2859         do {
2860                 switch (state = t->t_mstate) {
2861                 case LMS_SLEEP:
2862                         /*
2863                          * Update the timer for the current sleep state.
2864                          */
2865                         switch (state = ms->ms_prev) {
2866                         case LMS_TFAULT:
2867                         case LMS_DFAULT:
2868                         case LMS_KFAULT:
2869                         case LMS_USER_LOCK:
2870                                 break;
2871                         default:
2872                                 state = LMS_SLEEP;
2873                                 break;
2874                         }
2875                         break;
2876                 case LMS_TFAULT:
2877                 case LMS_DFAULT:
2878                 case LMS_KFAULT:
2879                 case LMS_USER_LOCK:
2880                         state = LMS_SYSTEM;
2881                         break;
2882                 }
2883                 switch (state) {
2884                 case LMS_USER:          mstimep = &pup->pr_utime;        break;
2885                 case LMS_SYSTEM:        mstimep = &pup->pr_stime;        break;
2886                 case LMS_TRAP:          mstimep = &pup->pr_ttime;        break;
2887                 case LMS_TFAULT:        mstimep = &pup->pr_tftime;       break;
2888                 case LMS_DFAULT:        mstimep = &pup->pr_dftime;       break;
2889                 case LMS_KFAULT:        mstimep = &pup->pr_kftime;       break;
2890                 case LMS_USER_LOCK:     mstimep = &pup->pr_ltime;        break;
2891                 case LMS_SLEEP:         mstimep = &pup->pr_slptime;      break;
2892                 case LMS_WAIT_CPU:      mstimep = &pup->pr_wtime;        break;
2893                 case LMS_STOPPED:       mstimep = &pup->pr_stoptime;     break;
2894                 default:                panic("prgetusage: unknown microstate");
2895                 }
2896                 tmp1 = curtime - ms->ms_state_start;
2897                 if (tmp1 < 0) {
2898                         curtime = gethrtime_unscaled();
2899                         i++;
2900                         continue;
2901                 }
2902                 scalehrtime(&tmp1);
2903         } while (tmp1 < 0 && i < MAX_ITERS_SPIN);
2904 
2905         *mstimep += tmp1;
2906 
2907         /* update pup timestamp */
2908         pup->pr_tstamp = curtime;
2909         scalehrtime(&pup->pr_tstamp);
2910 
2911         /*
2912          * Resource usage counters.
2913          */
2914         pup->pr_minf  = lwp->lwp_ru.minflt;
2915         pup->pr_majf  = lwp->lwp_ru.majflt;
2916         pup->pr_nswap = lwp->lwp_ru.nswap;
2917         pup->pr_inblk = lwp->lwp_ru.inblock;
2918         pup->pr_oublk = lwp->lwp_ru.oublock;
2919         pup->pr_msnd  = lwp->lwp_ru.msgsnd;
2920         pup->pr_mrcv  = lwp->lwp_ru.msgrcv;
2921         pup->pr_sigs  = lwp->lwp_ru.nsignals;
2922         pup->pr_vctx  = lwp->lwp_ru.nvcsw;
2923         pup->pr_ictx  = lwp->lwp_ru.nivcsw;
2924         pup->pr_sysc  = lwp->lwp_ru.sysc;
2925         pup->pr_ioch  = lwp->lwp_ru.ioch;
2926 }
2927 
2928 /*
2929  * Convert ms_acct stats from unscaled high-res time to nanoseconds
2930  */
2931 void
2932 prscaleusage(prhusage_t *usg)
2933 {
2934         scalehrtime(&usg->pr_utime);
2935         scalehrtime(&usg->pr_stime);
2936         scalehrtime(&usg->pr_ttime);
2937         scalehrtime(&usg->pr_tftime);
2938         scalehrtime(&usg->pr_dftime);
2939         scalehrtime(&usg->pr_kftime);
2940         scalehrtime(&usg->pr_ltime);
2941         scalehrtime(&usg->pr_slptime);
2942         scalehrtime(&usg->pr_wtime);
2943         scalehrtime(&usg->pr_stoptime);
2944 }
2945 
2946 
2947 /*
2948  * Sum resource usage information.
2949  */
2950 void
2951 praddusage(kthread_t *t, prhusage_t *pup)
2952 {
2953         klwp_t *lwp = ttolwp(t);
2954         hrtime_t *mstimep;
2955         struct mstate *ms = &lwp->lwp_mstate;
2956         int state;
2957         int i;
2958         hrtime_t curtime;
2959         hrtime_t waitrq;
2960         hrtime_t tmp;
2961         prhusage_t conv;
2962 
2963         curtime = gethrtime_unscaled();
2964 
2965         if (ms->ms_term == 0) {
2966                 tmp = curtime - ms->ms_start;
2967                 scalehrtime(&tmp);
2968                 pup->pr_rtime += tmp;
2969         } else {
2970                 tmp = ms->ms_term - ms->ms_start;
2971                 scalehrtime(&tmp);
2972                 pup->pr_rtime += tmp;
2973         }
2974 
2975         conv.pr_utime = ms->ms_acct[LMS_USER];
2976         conv.pr_stime = ms->ms_acct[LMS_SYSTEM];
2977         conv.pr_ttime = ms->ms_acct[LMS_TRAP];
2978         conv.pr_tftime = ms->ms_acct[LMS_TFAULT];
2979         conv.pr_dftime = ms->ms_acct[LMS_DFAULT];
2980         conv.pr_kftime = ms->ms_acct[LMS_KFAULT];
2981         conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK];
2982         conv.pr_slptime = ms->ms_acct[LMS_SLEEP];
2983         conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU];
2984         conv.pr_stoptime = ms->ms_acct[LMS_STOPPED];
2985 
2986         prscaleusage(&conv);
2987 
2988         pup->pr_utime        += conv.pr_utime;
2989         pup->pr_stime        += conv.pr_stime;
2990         pup->pr_ttime        += conv.pr_ttime;
2991         pup->pr_tftime       += conv.pr_tftime;
2992         pup->pr_dftime       += conv.pr_dftime;
2993         pup->pr_kftime       += conv.pr_kftime;
2994         pup->pr_ltime        += conv.pr_ltime;
2995         pup->pr_slptime      += conv.pr_slptime;
2996         pup->pr_wtime        += conv.pr_wtime;
2997         pup->pr_stoptime += conv.pr_stoptime;
2998 
2999         /*
3000          * Adjust for time waiting in the dispatcher queue.
3001          */
3002         waitrq = t->t_waitrq;        /* hopefully atomic */
3003         if (waitrq != 0) {
3004                 if (waitrq > curtime) {
3005                         curtime = gethrtime_unscaled();
3006                 }
3007                 tmp = curtime - waitrq;
3008                 scalehrtime(&tmp);
3009                 pup->pr_wtime += tmp;
3010                 curtime = waitrq;
3011         }
3012 
3013         /*
3014          * Adjust for time spent in current microstate.
3015          */
3016         if (ms->ms_state_start > curtime) {
3017                 curtime = gethrtime_unscaled();
3018         }
3019 
3020         i = 0;
3021         do {
3022                 switch (state = t->t_mstate) {
3023                 case LMS_SLEEP:
3024                         /*
3025                          * Update the timer for the current sleep state.
3026                          */
3027                         switch (state = ms->ms_prev) {
3028                         case LMS_TFAULT:
3029                         case LMS_DFAULT:
3030                         case LMS_KFAULT:
3031                         case LMS_USER_LOCK:
3032                                 break;
3033                         default:
3034                                 state = LMS_SLEEP;
3035                                 break;
3036                         }
3037                         break;
3038                 case LMS_TFAULT:
3039                 case LMS_DFAULT:
3040                 case LMS_KFAULT:
3041                 case LMS_USER_LOCK:
3042                         state = LMS_SYSTEM;
3043                         break;
3044                 }
3045                 switch (state) {
3046                 case LMS_USER:          mstimep = &pup->pr_utime;        break;
3047                 case LMS_SYSTEM:        mstimep = &pup->pr_stime;        break;
3048                 case LMS_TRAP:          mstimep = &pup->pr_ttime;        break;
3049                 case LMS_TFAULT:        mstimep = &pup->pr_tftime;       break;
3050                 case LMS_DFAULT:        mstimep = &pup->pr_dftime;       break;
3051                 case LMS_KFAULT:        mstimep = &pup->pr_kftime;       break;
3052                 case LMS_USER_LOCK:     mstimep = &pup->pr_ltime;        break;
3053                 case LMS_SLEEP:         mstimep = &pup->pr_slptime;      break;
3054                 case LMS_WAIT_CPU:      mstimep = &pup->pr_wtime;        break;
3055                 case LMS_STOPPED:       mstimep = &pup->pr_stoptime;     break;
3056                 default:                panic("praddusage: unknown microstate");
3057                 }
3058                 tmp = curtime - ms->ms_state_start;
3059                 if (tmp < 0) {
3060                         curtime = gethrtime_unscaled();
3061                         i++;
3062                         continue;
3063                 }
3064                 scalehrtime(&tmp);
3065         } while (tmp < 0 && i < MAX_ITERS_SPIN);
3066 
3067         *mstimep += tmp;
3068 
3069         /* update pup timestamp */
3070         pup->pr_tstamp = curtime;
3071         scalehrtime(&pup->pr_tstamp);
3072 
3073         /*
3074          * Resource usage counters.
3075          */
3076         pup->pr_minf  += lwp->lwp_ru.minflt;
3077         pup->pr_majf  += lwp->lwp_ru.majflt;
3078         pup->pr_nswap += lwp->lwp_ru.nswap;
3079         pup->pr_inblk += lwp->lwp_ru.inblock;
3080         pup->pr_oublk += lwp->lwp_ru.oublock;
3081         pup->pr_msnd  += lwp->lwp_ru.msgsnd;
3082         pup->pr_mrcv  += lwp->lwp_ru.msgrcv;
3083         pup->pr_sigs  += lwp->lwp_ru.nsignals;
3084         pup->pr_vctx  += lwp->lwp_ru.nvcsw;
3085         pup->pr_ictx  += lwp->lwp_ru.nivcsw;
3086         pup->pr_sysc  += lwp->lwp_ru.sysc;
3087         pup->pr_ioch  += lwp->lwp_ru.ioch;
3088 }
3089 
3090 /*
3091  * Convert a prhusage_t to a prusage_t.
3092  * This means convert each hrtime_t to a timestruc_t
3093  * and copy the count fields uint64_t => ulong_t.
3094  */
3095 void
3096 prcvtusage(prhusage_t *pup, prusage_t *upup)
3097 {
3098         uint64_t *ullp;
3099         ulong_t *ulp;
3100         int i;
3101 
3102         upup->pr_lwpid = pup->pr_lwpid;
3103         upup->pr_count = pup->pr_count;
3104 
3105         hrt2ts(pup->pr_tstamp,       &upup->pr_tstamp);
3106         hrt2ts(pup->pr_create,       &upup->pr_create);
3107         hrt2ts(pup->pr_term, &upup->pr_term);
3108         hrt2ts(pup->pr_rtime,        &upup->pr_rtime);
3109         hrt2ts(pup->pr_utime,        &upup->pr_utime);
3110         hrt2ts(pup->pr_stime,        &upup->pr_stime);
3111         hrt2ts(pup->pr_ttime,        &upup->pr_ttime);
3112         hrt2ts(pup->pr_tftime,       &upup->pr_tftime);
3113         hrt2ts(pup->pr_dftime,       &upup->pr_dftime);
3114         hrt2ts(pup->pr_kftime,       &upup->pr_kftime);
3115         hrt2ts(pup->pr_ltime,        &upup->pr_ltime);
3116         hrt2ts(pup->pr_slptime,      &upup->pr_slptime);
3117         hrt2ts(pup->pr_wtime,        &upup->pr_wtime);
3118         hrt2ts(pup->pr_stoptime, &upup->pr_stoptime);
3119         bzero(upup->filltime, sizeof (upup->filltime));
3120 
3121         ullp = &pup->pr_minf;
3122         ulp = &upup->pr_minf;
3123         for (i = 0; i < 22; i++)
3124                 *ulp++ = (ulong_t)*ullp++;
3125 }
3126 
3127 #ifdef _SYSCALL32_IMPL
3128 void
3129 prcvtusage32(prhusage_t *pup, prusage32_t *upup)
3130 {
3131         uint64_t *ullp;
3132         uint32_t *ulp;
3133         int i;
3134 
3135         upup->pr_lwpid = pup->pr_lwpid;
3136         upup->pr_count = pup->pr_count;
3137 
3138         hrt2ts32(pup->pr_tstamp,     &upup->pr_tstamp);
3139         hrt2ts32(pup->pr_create,     &upup->pr_create);
3140         hrt2ts32(pup->pr_term,               &upup->pr_term);
3141         hrt2ts32(pup->pr_rtime,              &upup->pr_rtime);
3142         hrt2ts32(pup->pr_utime,              &upup->pr_utime);
3143         hrt2ts32(pup->pr_stime,              &upup->pr_stime);
3144         hrt2ts32(pup->pr_ttime,              &upup->pr_ttime);
3145         hrt2ts32(pup->pr_tftime,     &upup->pr_tftime);
3146         hrt2ts32(pup->pr_dftime,     &upup->pr_dftime);
3147         hrt2ts32(pup->pr_kftime,     &upup->pr_kftime);
3148         hrt2ts32(pup->pr_ltime,              &upup->pr_ltime);
3149         hrt2ts32(pup->pr_slptime,    &upup->pr_slptime);
3150         hrt2ts32(pup->pr_wtime,              &upup->pr_wtime);
3151         hrt2ts32(pup->pr_stoptime,   &upup->pr_stoptime);
3152         bzero(upup->filltime, sizeof (upup->filltime));
3153 
3154         ullp = &pup->pr_minf;
3155         ulp = &upup->pr_minf;
3156         for (i = 0; i < 22; i++)
3157                 *ulp++ = (uint32_t)*ullp++;
3158 }
3159 #endif  /* _SYSCALL32_IMPL */
3160 
3161 /*
3162  * Determine whether a set is empty.
3163  */
3164 int
3165 setisempty(uint32_t *sp, uint_t n)
3166 {
3167         while (n--)
3168                 if (*sp++)
3169                         return (0);
3170         return (1);
3171 }
3172 
3173 /*
3174  * Utility routine for establishing a watched area in the process.
3175  * Keep the list of watched areas sorted by virtual address.
3176  */
3177 int
3178 set_watched_area(proc_t *p, struct watched_area *pwa)
3179 {
3180         caddr_t vaddr = pwa->wa_vaddr;
3181         caddr_t eaddr = pwa->wa_eaddr;
3182         ulong_t flags = pwa->wa_flags;
3183         struct watched_area *target;
3184         avl_index_t where;
3185         int error = 0;
3186 
3187         /* we must not be holding p->p_lock, but the process must be locked */
3188         ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3189         ASSERT(p->p_proc_flag & P_PR_LOCK);
3190 
3191         /*
3192          * If this is our first watchpoint, enable watchpoints for the process.
3193          */
3194         if (!pr_watch_active(p)) {
3195                 kthread_t *t;
3196 
3197                 mutex_enter(&p->p_lock);
3198                 if ((t = p->p_tlist) != NULL) {
3199                         do {
3200                                 watch_enable(t);
3201                         } while ((t = t->t_forw) != p->p_tlist);
3202                 }
3203                 mutex_exit(&p->p_lock);
3204         }
3205 
3206         target = pr_find_watched_area(p, pwa, &where);
3207         if (target != NULL) {
3208                 /*
3209                  * We discovered an existing, overlapping watched area.
3210                  * Allow it only if it is an exact match.
3211                  */
3212                 if (target->wa_vaddr != vaddr ||
3213                     target->wa_eaddr != eaddr)
3214                         error = EINVAL;
3215                 else if (target->wa_flags != flags) {
3216                         error = set_watched_page(p, vaddr, eaddr,
3217                             flags, target->wa_flags);
3218                         target->wa_flags = flags;
3219                 }
3220                 kmem_free(pwa, sizeof (struct watched_area));
3221         } else {
3222                 avl_insert(&p->p_warea, pwa, where);
3223                 error = set_watched_page(p, vaddr, eaddr, flags, 0);
3224         }
3225 
3226         return (error);
3227 }
3228 
3229 /*
3230  * Utility routine for clearing a watched area in the process.
3231  * Must be an exact match of the virtual address.
3232  * size and flags don't matter.
3233  */
3234 int
3235 clear_watched_area(proc_t *p, struct watched_area *pwa)
3236 {
3237         struct watched_area *found;
3238 
3239         /* we must not be holding p->p_lock, but the process must be locked */
3240         ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3241         ASSERT(p->p_proc_flag & P_PR_LOCK);
3242 
3243 
3244         if (!pr_watch_active(p)) {
3245                 kmem_free(pwa, sizeof (struct watched_area));
3246                 return (0);
3247         }
3248 
3249         /*
3250          * Look for a matching address in the watched areas.  If a match is
3251          * found, clear the old watched area and adjust the watched page(s).  It
3252          * is not an error if there is no match.
3253          */
3254         if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL &&
3255             found->wa_vaddr == pwa->wa_vaddr) {
3256                 clear_watched_page(p, found->wa_vaddr, found->wa_eaddr,
3257                     found->wa_flags);
3258                 avl_remove(&p->p_warea, found);
3259                 kmem_free(found, sizeof (struct watched_area));
3260         }
3261 
3262         kmem_free(pwa, sizeof (struct watched_area));
3263 
3264         /*
3265          * If we removed the last watched area from the process, disable
3266          * watchpoints.
3267          */
3268         if (!pr_watch_active(p)) {
3269                 kthread_t *t;
3270 
3271                 mutex_enter(&p->p_lock);
3272                 if ((t = p->p_tlist) != NULL) {
3273                         do {
3274                                 watch_disable(t);
3275                         } while ((t = t->t_forw) != p->p_tlist);
3276                 }
3277                 mutex_exit(&p->p_lock);
3278         }
3279 
3280         return (0);
3281 }
3282 
3283 /*
3284  * Frees all the watched_area structures
3285  */
3286 void
3287 pr_free_watchpoints(proc_t *p)
3288 {
3289         struct watched_area *delp;
3290         void *cookie;
3291 
3292         cookie = NULL;
3293         while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL)
3294                 kmem_free(delp, sizeof (struct watched_area));
3295 
3296         avl_destroy(&p->p_warea);
3297 }
3298 
3299 /*
3300  * This one is called by the traced process to unwatch all the
3301  * pages while deallocating the list of watched_page structs.
3302  */
3303 void
3304 pr_free_watched_pages(proc_t *p)
3305 {
3306         struct as *as = p->p_as;
3307         struct watched_page *pwp;
3308         uint_t prot;
3309         int    retrycnt, err;
3310         void *cookie;
3311 
3312         if (as == NULL || avl_numnodes(&as->a_wpage) == 0)
3313                 return;
3314 
3315         ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
3316         AS_LOCK_ENTER(as, RW_WRITER);
3317 
3318         pwp = avl_first(&as->a_wpage);
3319 
3320         cookie = NULL;
3321         while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) {
3322                 retrycnt = 0;
3323                 if ((prot = pwp->wp_oprot) != 0) {
3324                         caddr_t addr = pwp->wp_vaddr;
3325                         struct seg *seg;
3326                 retry:
3327 
3328                         if ((pwp->wp_prot != prot ||
3329                             (pwp->wp_flags & WP_NOWATCH)) &&
3330                             (seg = as_segat(as, addr)) != NULL) {
3331                                 err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot);
3332                                 if (err == IE_RETRY) {
3333                                         ASSERT(retrycnt == 0);
3334                                         retrycnt++;
3335                                         goto retry;
3336                                 }
3337                         }
3338                 }
3339                 kmem_free(pwp, sizeof (struct watched_page));
3340         }
3341 
3342         avl_destroy(&as->a_wpage);
3343         p->p_wprot = NULL;
3344 
3345         AS_LOCK_EXIT(as);
3346 }
3347 
3348 /*
3349  * Insert a watched area into the list of watched pages.
3350  * If oflags is zero then we are adding a new watched area.
3351  * Otherwise we are changing the flags of an existing watched area.
3352  */
3353 static int
3354 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr,
3355     ulong_t flags, ulong_t oflags)
3356 {
3357         struct as *as = p->p_as;
3358         avl_tree_t *pwp_tree;
3359         struct watched_page *pwp, *newpwp;
3360         struct watched_page tpw;
3361         avl_index_t where;
3362         struct seg *seg;
3363         uint_t prot;
3364         caddr_t addr;
3365 
3366         /*
3367          * We need to pre-allocate a list of structures before we grab the
3368          * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks
3369          * held.
3370          */
3371         newpwp = NULL;
3372         for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3373             addr < eaddr; addr += PAGESIZE) {
3374                 pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP);
3375                 pwp->wp_list = newpwp;
3376                 newpwp = pwp;
3377         }
3378 
3379         AS_LOCK_ENTER(as, RW_WRITER);
3380 
3381         /*
3382          * Search for an existing watched page to contain the watched area.
3383          * If none is found, grab a new one from the available list
3384          * and insert it in the active list, keeping the list sorted
3385          * by user-level virtual address.
3386          */
3387         if (p->p_flag & SVFWAIT)
3388                 pwp_tree = &p->p_wpage;
3389         else
3390                 pwp_tree = &as->a_wpage;
3391 
3392 again:
3393         if (avl_numnodes(pwp_tree) > prnwatch) {
3394                 AS_LOCK_EXIT(as);
3395                 while (newpwp != NULL) {
3396                         pwp = newpwp->wp_list;
3397                         kmem_free(newpwp, sizeof (struct watched_page));
3398                         newpwp = pwp;
3399                 }
3400                 return (E2BIG);
3401         }
3402 
3403         tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3404         if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) {
3405                 pwp = newpwp;
3406                 newpwp = newpwp->wp_list;
3407                 pwp->wp_list = NULL;
3408                 pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr &
3409                     (uintptr_t)PAGEMASK);
3410                 avl_insert(pwp_tree, pwp, where);
3411         }
3412 
3413         ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE);
3414 
3415         if (oflags & WA_READ)
3416                 pwp->wp_read--;
3417         if (oflags & WA_WRITE)
3418                 pwp->wp_write--;
3419         if (oflags & WA_EXEC)
3420                 pwp->wp_exec--;
3421 
3422         ASSERT(pwp->wp_read >= 0);
3423         ASSERT(pwp->wp_write >= 0);
3424         ASSERT(pwp->wp_exec >= 0);
3425 
3426         if (flags & WA_READ)
3427                 pwp->wp_read++;
3428         if (flags & WA_WRITE)
3429                 pwp->wp_write++;
3430         if (flags & WA_EXEC)
3431                 pwp->wp_exec++;
3432 
3433         if (!(p->p_flag & SVFWAIT)) {
3434                 vaddr = pwp->wp_vaddr;
3435                 if (pwp->wp_oprot == 0 &&
3436                     (seg = as_segat(as, vaddr)) != NULL) {
3437                         SEGOP_GETPROT(seg, vaddr, 0, &prot);
3438                         pwp->wp_oprot = (uchar_t)prot;
3439                         pwp->wp_prot = (uchar_t)prot;
3440                 }
3441                 if (pwp->wp_oprot != 0) {
3442                         prot = pwp->wp_oprot;
3443                         if (pwp->wp_read)
3444                                 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3445                         if (pwp->wp_write)
3446                                 prot &= ~PROT_WRITE;
3447                         if (pwp->wp_exec)
3448                                 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3449                         if (!(pwp->wp_flags & WP_NOWATCH) &&
3450                             pwp->wp_prot != prot &&
3451                             (pwp->wp_flags & WP_SETPROT) == 0) {
3452                                 pwp->wp_flags |= WP_SETPROT;
3453                                 pwp->wp_list = p->p_wprot;
3454                                 p->p_wprot = pwp;
3455                         }
3456                         pwp->wp_prot = (uchar_t)prot;
3457                 }
3458         }
3459 
3460         /*
3461          * If the watched area extends into the next page then do
3462          * it over again with the virtual address of the next page.
3463          */
3464         if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr)
3465                 goto again;
3466 
3467         AS_LOCK_EXIT(as);
3468 
3469         /*
3470          * Free any pages we may have over-allocated
3471          */
3472         while (newpwp != NULL) {
3473                 pwp = newpwp->wp_list;
3474                 kmem_free(newpwp, sizeof (struct watched_page));
3475                 newpwp = pwp;
3476         }
3477 
3478         return (0);
3479 }
3480 
3481 /*
3482  * Remove a watched area from the list of watched pages.
3483  * A watched area may extend over more than one page.
3484  */
3485 static void
3486 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags)
3487 {
3488         struct as *as = p->p_as;
3489         struct watched_page *pwp;
3490         struct watched_page tpw;
3491         avl_tree_t *tree;
3492         avl_index_t where;
3493 
3494         AS_LOCK_ENTER(as, RW_WRITER);
3495 
3496         if (p->p_flag & SVFWAIT)
3497                 tree = &p->p_wpage;
3498         else
3499                 tree = &as->a_wpage;
3500 
3501         tpw.wp_vaddr = vaddr =
3502             (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3503         pwp = avl_find(tree, &tpw, &where);
3504         if (pwp == NULL)
3505                 pwp = avl_nearest(tree, where, AVL_AFTER);
3506 
3507         while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3508                 ASSERT(vaddr <=  pwp->wp_vaddr);
3509 
3510                 if (flags & WA_READ)
3511                         pwp->wp_read--;
3512                 if (flags & WA_WRITE)
3513                         pwp->wp_write--;
3514                 if (flags & WA_EXEC)
3515                         pwp->wp_exec--;
3516 
3517                 if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) {
3518                         /*
3519                          * Reset the hat layer's protections on this page.
3520                          */
3521                         if (pwp->wp_oprot != 0) {
3522                                 uint_t prot = pwp->wp_oprot;
3523 
3524                                 if (pwp->wp_read)
3525                                         prot &=
3526                                             ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3527                                 if (pwp->wp_write)
3528                                         prot &= ~PROT_WRITE;
3529                                 if (pwp->wp_exec)
3530                                         prot &=
3531                                             ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3532                                 if (!(pwp->wp_flags & WP_NOWATCH) &&
3533                                     pwp->wp_prot != prot &&
3534                                     (pwp->wp_flags & WP_SETPROT) == 0) {
3535                                         pwp->wp_flags |= WP_SETPROT;
3536                                         pwp->wp_list = p->p_wprot;
3537                                         p->p_wprot = pwp;
3538                                 }
3539                                 pwp->wp_prot = (uchar_t)prot;
3540                         }
3541                 } else {
3542                         /*
3543                          * No watched areas remain in this page.
3544                          * Reset everything to normal.
3545                          */
3546                         if (pwp->wp_oprot != 0) {
3547                                 pwp->wp_prot = pwp->wp_oprot;
3548                                 if ((pwp->wp_flags & WP_SETPROT) == 0) {
3549                                         pwp->wp_flags |= WP_SETPROT;
3550                                         pwp->wp_list = p->p_wprot;
3551                                         p->p_wprot = pwp;
3552                                 }
3553                         }
3554                 }
3555 
3556                 pwp = AVL_NEXT(tree, pwp);
3557         }
3558 
3559         AS_LOCK_EXIT(as);
3560 }
3561 
3562 /*
3563  * Return the original protections for the specified page.
3564  */
3565 static void
3566 getwatchprot(struct as *as, caddr_t addr, uint_t *prot)
3567 {
3568         struct watched_page *pwp;
3569         struct watched_page tpw;
3570 
3571         ASSERT(AS_LOCK_HELD(as));
3572 
3573         tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3574         if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL)
3575                 *prot = pwp->wp_oprot;
3576 }
3577 
3578 static prpagev_t *
3579 pr_pagev_create(struct seg *seg, int check_noreserve)
3580 {
3581         prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP);
3582         size_t total_pages = seg_pages(seg);
3583 
3584         /*
3585          * Limit the size of our vectors to pagev_lim pages at a time.  We need
3586          * 4 or 5 bytes of storage per page, so this means we limit ourself
3587          * to about a megabyte of kernel heap by default.
3588          */
3589         pagev->pg_npages = MIN(total_pages, pagev_lim);
3590         pagev->pg_pnbase = 0;
3591 
3592         pagev->pg_protv =
3593             kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP);
3594 
3595         if (check_noreserve)
3596                 pagev->pg_incore =
3597                     kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP);
3598         else
3599                 pagev->pg_incore = NULL;
3600 
3601         return (pagev);
3602 }
3603 
3604 static void
3605 pr_pagev_destroy(prpagev_t *pagev)
3606 {
3607         if (pagev->pg_incore != NULL)
3608                 kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char));
3609 
3610         kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t));
3611         kmem_free(pagev, sizeof (prpagev_t));
3612 }
3613 
3614 static caddr_t
3615 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr)
3616 {
3617         ulong_t lastpg = seg_page(seg, eaddr - 1);
3618         ulong_t pn, pnlim;
3619         caddr_t saddr;
3620         size_t len;
3621 
3622         ASSERT(addr >= seg->s_base && addr <= eaddr);
3623 
3624         if (addr == eaddr)
3625                 return (eaddr);
3626 
3627 refill:
3628         ASSERT(addr < eaddr);
3629         pagev->pg_pnbase = seg_page(seg, addr);
3630         pnlim = pagev->pg_pnbase + pagev->pg_npages;
3631         saddr = addr;
3632 
3633         if (lastpg < pnlim)
3634                 len = (size_t)(eaddr - addr);
3635         else
3636                 len = pagev->pg_npages * PAGESIZE;
3637 
3638         if (pagev->pg_incore != NULL) {
3639                 /*
3640                  * INCORE cleverly has different semantics than GETPROT:
3641                  * it returns info on pages up to but NOT including addr + len.
3642                  */
3643                 SEGOP_INCORE(seg, addr, len, pagev->pg_incore);
3644                 pn = pagev->pg_pnbase;
3645 
3646                 do {
3647                         /*
3648                          * Guilty knowledge here:  We know that segvn_incore
3649                          * returns more than just the low-order bit that
3650                          * indicates the page is actually in memory.  If any
3651                          * bits are set, then the page has backing store.
3652                          */
3653                         if (pagev->pg_incore[pn++ - pagev->pg_pnbase])
3654                                 goto out;
3655 
3656                 } while ((addr += PAGESIZE) < eaddr && pn < pnlim);
3657 
3658                 /*
3659                  * If we examined all the pages in the vector but we're not
3660                  * at the end of the segment, take another lap.
3661                  */
3662                 if (addr < eaddr)
3663                         goto refill;
3664         }
3665 
3666         /*
3667          * Need to take len - 1 because addr + len is the address of the
3668          * first byte of the page just past the end of what we want.
3669          */
3670 out:
3671         SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv);
3672         return (addr);
3673 }
3674 
3675 static caddr_t
3676 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg,
3677     caddr_t *saddrp, caddr_t eaddr, uint_t *protp)
3678 {
3679         /*
3680          * Our starting address is either the specified address, or the base
3681          * address from the start of the pagev.  If the latter is greater,
3682          * this means a previous call to pr_pagev_fill has already scanned
3683          * further than the end of the previous mapping.
3684          */
3685         caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE;
3686         caddr_t addr = MAX(*saddrp, base);
3687         ulong_t pn = seg_page(seg, addr);
3688         uint_t prot, nprot;
3689 
3690         /*
3691          * If we're dealing with noreserve pages, then advance addr to
3692          * the address of the next page which has backing store.
3693          */
3694         if (pagev->pg_incore != NULL) {
3695                 while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) {
3696                         if ((addr += PAGESIZE) == eaddr) {
3697                                 *saddrp = addr;
3698                                 prot = 0;
3699                                 goto out;
3700                         }
3701                         if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3702                                 addr = pr_pagev_fill(pagev, seg, addr, eaddr);
3703                                 if (addr == eaddr) {
3704                                         *saddrp = addr;
3705                                         prot = 0;
3706                                         goto out;
3707                                 }
3708                                 pn = seg_page(seg, addr);
3709                         }
3710                 }
3711         }
3712 
3713         /*
3714          * Get the protections on the page corresponding to addr.
3715          */
3716         pn = seg_page(seg, addr);
3717         ASSERT(pn >= pagev->pg_pnbase);
3718         ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages));
3719 
3720         prot = pagev->pg_protv[pn - pagev->pg_pnbase];
3721         getwatchprot(seg->s_as, addr, &prot);
3722         *saddrp = addr;
3723 
3724         /*
3725          * Now loop until we find a backed page with different protections
3726          * or we reach the end of this segment.
3727          */
3728         while ((addr += PAGESIZE) < eaddr) {
3729                 /*
3730                  * If pn has advanced to the page number following what we
3731                  * have information on, refill the page vector and reset
3732                  * addr and pn.  If pr_pagev_fill does not return the
3733                  * address of the next page, we have a discontiguity and
3734                  * thus have reached the end of the current mapping.
3735                  */
3736                 if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3737                         caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr);
3738                         if (naddr != addr)
3739                                 goto out;
3740                         pn = seg_page(seg, addr);
3741                 }
3742 
3743                 /*
3744                  * The previous page's protections are in prot, and it has
3745                  * backing.  If this page is MAP_NORESERVE and has no backing,
3746                  * then end this mapping and return the previous protections.
3747                  */
3748                 if (pagev->pg_incore != NULL &&
3749                     pagev->pg_incore[pn - pagev->pg_pnbase] == 0)
3750                         break;
3751 
3752                 /*
3753                  * Otherwise end the mapping if this page's protections (nprot)
3754                  * are different than those in the previous page (prot).
3755                  */
3756                 nprot = pagev->pg_protv[pn - pagev->pg_pnbase];
3757                 getwatchprot(seg->s_as, addr, &nprot);
3758 
3759                 if (nprot != prot)
3760                         break;
3761         }
3762 
3763 out:
3764         *protp = prot;
3765         return (addr);
3766 }
3767 
3768 size_t
3769 pr_getsegsize(struct seg *seg, int reserved)
3770 {
3771         size_t size = seg->s_size;
3772 
3773         /*
3774          * If we're interested in the reserved space, return the size of the
3775          * segment itself.  Everything else in this function is a special case
3776          * to determine the actual underlying size of various segment types.
3777          */
3778         if (reserved)
3779                 return (size);
3780 
3781         /*
3782          * If this is a segvn mapping of a regular file, return the smaller
3783          * of the segment size and the remaining size of the file beyond
3784          * the file offset corresponding to seg->s_base.
3785          */
3786         if (seg->s_ops == &segvn_ops) {
3787                 vattr_t vattr;
3788                 vnode_t *vp;
3789 
3790                 vattr.va_mask = AT_SIZE;
3791 
3792                 if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 &&
3793                     vp != NULL && vp->v_type == VREG &&
3794                     VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
3795 
3796                         u_offset_t fsize = vattr.va_size;
3797                         u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base);
3798 
3799                         if (fsize < offset)
3800                                 fsize = 0;
3801                         else
3802                                 fsize -= offset;
3803 
3804                         fsize = roundup(fsize, (u_offset_t)PAGESIZE);
3805 
3806                         if (fsize < (u_offset_t)size)
3807                                 size = (size_t)fsize;
3808                 }
3809 
3810                 return (size);
3811         }
3812 
3813         /*
3814          * If this is an ISM shared segment, don't include pages that are
3815          * beyond the real size of the spt segment that backs it.
3816          */
3817         if (seg->s_ops == &segspt_shmops)
3818                 return (MIN(spt_realsize(seg), size));
3819 
3820         /*
3821          * If this is segment is a mapping from /dev/null, then this is a
3822          * reservation of virtual address space and has no actual size.
3823          * Such segments are backed by segdev and have type set to neither
3824          * MAP_SHARED nor MAP_PRIVATE.
3825          */
3826         if (seg->s_ops == &segdev_ops &&
3827             ((SEGOP_GETTYPE(seg, seg->s_base) &
3828             (MAP_SHARED | MAP_PRIVATE)) == 0))
3829                 return (0);
3830 
3831         /*
3832          * If this segment doesn't match one of the special types we handle,
3833          * just return the size of the segment itself.
3834          */
3835         return (size);
3836 }
3837 
3838 uint_t
3839 pr_getprot(struct seg *seg, int reserved, void **tmp,
3840     caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr)
3841 {
3842         struct as *as = seg->s_as;
3843 
3844         caddr_t saddr = *saddrp;
3845         caddr_t naddr;
3846 
3847         int check_noreserve;
3848         uint_t prot;
3849 
3850         union {
3851                 struct segvn_data *svd;
3852                 struct segdev_data *sdp;
3853                 void *data;
3854         } s;
3855 
3856         s.data = seg->s_data;
3857 
3858         ASSERT(AS_WRITE_HELD(as));
3859         ASSERT(saddr >= seg->s_base && saddr < eaddr);
3860         ASSERT(eaddr <= seg->s_base + seg->s_size);
3861 
3862         /*
3863          * Don't include MAP_NORESERVE pages in the address range
3864          * unless their mappings have actually materialized.
3865          * We cheat by knowing that segvn is the only segment
3866          * driver that supports MAP_NORESERVE.
3867          */
3868         check_noreserve =
3869             (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL &&
3870             (s.svd->vp == NULL || s.svd->vp->v_type != VREG) &&
3871             (s.svd->flags & MAP_NORESERVE));
3872 
3873         /*
3874          * Examine every page only as a last resort.  We use guilty knowledge
3875          * of segvn and segdev to avoid this: if there are no per-page
3876          * protections present in the segment and we don't care about
3877          * MAP_NORESERVE, then s_data->prot is the prot for the whole segment.
3878          */
3879         if (!check_noreserve && saddr == seg->s_base &&
3880             seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) {
3881                 prot = s.svd->prot;
3882                 getwatchprot(as, saddr, &prot);
3883                 naddr = eaddr;
3884 
3885         } else if (saddr == seg->s_base && seg->s_ops == &segdev_ops &&
3886             s.sdp != NULL && s.sdp->pageprot == 0) {
3887                 prot = s.sdp->prot;
3888                 getwatchprot(as, saddr, &prot);
3889                 naddr = eaddr;
3890 
3891         } else {
3892                 prpagev_t *pagev;
3893 
3894                 /*
3895                  * If addr is sitting at the start of the segment, then
3896                  * create a page vector to store protection and incore
3897                  * information for pages in the segment, and fill it.
3898                  * Otherwise, we expect *tmp to address the prpagev_t
3899                  * allocated by a previous call to this function.
3900                  */
3901                 if (saddr == seg->s_base) {
3902                         pagev = pr_pagev_create(seg, check_noreserve);
3903                         saddr = pr_pagev_fill(pagev, seg, saddr, eaddr);
3904 
3905                         ASSERT(*tmp == NULL);
3906                         *tmp = pagev;
3907 
3908                         ASSERT(saddr <= eaddr);
3909                         *saddrp = saddr;
3910 
3911                         if (saddr == eaddr) {
3912                                 naddr = saddr;
3913                                 prot = 0;
3914                                 goto out;
3915                         }
3916 
3917                 } else {
3918                         ASSERT(*tmp != NULL);
3919                         pagev = (prpagev_t *)*tmp;
3920                 }
3921 
3922                 naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot);
3923                 ASSERT(naddr <= eaddr);
3924         }
3925 
3926 out:
3927         if (naddr == eaddr)
3928                 pr_getprot_done(tmp);
3929         *naddrp = naddr;
3930         return (prot);
3931 }
3932 
3933 void
3934 pr_getprot_done(void **tmp)
3935 {
3936         if (*tmp != NULL) {
3937                 pr_pagev_destroy((prpagev_t *)*tmp);
3938                 *tmp = NULL;
3939         }
3940 }
3941 
3942 /*
3943  * Return true iff the vnode is a /proc file from the object directory.
3944  */
3945 int
3946 pr_isobject(vnode_t *vp)
3947 {
3948         return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT);
3949 }
3950 
3951 /*
3952  * Return true iff the vnode is a /proc file opened by the process itself.
3953  */
3954 int
3955 pr_isself(vnode_t *vp)
3956 {
3957         /*
3958          * XXX: To retain binary compatibility with the old
3959          * ioctl()-based version of /proc, we exempt self-opens
3960          * of /proc/<pid> from being marked close-on-exec.
3961          */
3962         return (vn_matchops(vp, prvnodeops) &&
3963             (VTOP(vp)->pr_flags & PR_ISSELF) &&
3964             VTOP(vp)->pr_type != PR_PIDDIR);
3965 }
3966 
3967 static ssize_t
3968 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr)
3969 {
3970         ssize_t pagesize, hatsize;
3971 
3972         ASSERT(AS_WRITE_HELD(seg->s_as));
3973         ASSERT(IS_P2ALIGNED(saddr, PAGESIZE));
3974         ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE));
3975         ASSERT(saddr < eaddr);
3976 
3977         pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr);
3978         ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize));
3979         ASSERT(pagesize != 0);
3980 
3981         if (pagesize == -1)
3982                 pagesize = PAGESIZE;
3983 
3984         saddr += P2NPHASE((uintptr_t)saddr, pagesize);
3985 
3986         while (saddr < eaddr) {
3987                 if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr))
3988                         break;
3989                 ASSERT(IS_P2ALIGNED(saddr, pagesize));
3990                 saddr += pagesize;
3991         }
3992 
3993         *naddrp = ((saddr < eaddr) ? saddr : eaddr);
3994         return (hatsize);
3995 }
3996 
3997 /*
3998  * Return an array of structures with extended memory map information.
3999  * We allocate here; the caller must deallocate.
4000  */
4001 int
4002 prgetxmap(proc_t *p, list_t *iolhead)
4003 {
4004         struct as *as = p->p_as;
4005         prxmap_t *mp;
4006         struct seg *seg;
4007         struct seg *brkseg, *stkseg;
4008         struct vnode *vp;
4009         struct vattr vattr;
4010         uint_t prot;
4011 
4012         ASSERT(as != &kas && AS_WRITE_HELD(as));
4013 
4014         /*
4015          * Request an initial buffer size that doesn't waste memory
4016          * if the address space has only a small number of segments.
4017          */
4018         pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
4019 
4020         if ((seg = AS_SEGFIRST(as)) == NULL)
4021                 return (0);
4022 
4023         brkseg = break_seg(p);
4024         stkseg = as_segat(as, prgetstackbase(p));
4025 
4026         do {
4027                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4028                 caddr_t saddr, naddr, baddr;
4029                 void *tmp = NULL;
4030                 ssize_t psz;
4031                 char *parr;
4032                 uint64_t npages;
4033                 uint64_t pagenum;
4034 
4035                 /*
4036                  * Segment loop part one: iterate from the base of the segment
4037                  * to its end, pausing at each address boundary (baddr) between
4038                  * ranges that have different virtual memory protections.
4039                  */
4040                 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4041                         prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4042                         ASSERT(baddr >= saddr && baddr <= eaddr);
4043 
4044                         /*
4045                          * Segment loop part two: iterate from the current
4046                          * position to the end of the protection boundary,
4047                          * pausing at each address boundary (naddr) between
4048                          * ranges that have different underlying page sizes.
4049                          */
4050                         for (; saddr < baddr; saddr = naddr) {
4051                                 psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4052                                 ASSERT(naddr >= saddr && naddr <= baddr);
4053 
4054                                 mp = pr_iol_newbuf(iolhead, sizeof (*mp));
4055 
4056                                 mp->pr_vaddr = (uintptr_t)saddr;
4057                                 mp->pr_size = naddr - saddr;
4058                                 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
4059                                 mp->pr_mflags = 0;
4060                                 if (prot & PROT_READ)
4061                                         mp->pr_mflags |= MA_READ;
4062                                 if (prot & PROT_WRITE)
4063                                         mp->pr_mflags |= MA_WRITE;
4064                                 if (prot & PROT_EXEC)
4065                                         mp->pr_mflags |= MA_EXEC;
4066                                 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
4067                                         mp->pr_mflags |= MA_SHARED;
4068                                 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
4069                                         mp->pr_mflags |= MA_NORESERVE;
4070                                 if (seg->s_ops == &segspt_shmops ||
4071                                     (seg->s_ops == &segvn_ops &&
4072                                     (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
4073                                     vp == NULL)))
4074                                         mp->pr_mflags |= MA_ANON;
4075                                 if (seg == brkseg)
4076                                         mp->pr_mflags |= MA_BREAK;
4077                                 else if (seg == stkseg)
4078                                         mp->pr_mflags |= MA_STACK;
4079                                 if (seg->s_ops == &segspt_shmops)
4080                                         mp->pr_mflags |= MA_ISM | MA_SHM;
4081 
4082                                 mp->pr_pagesize = PAGESIZE;
4083                                 if (psz == -1) {
4084                                         mp->pr_hatpagesize = 0;
4085                                 } else {
4086                                         mp->pr_hatpagesize = psz;
4087                                 }
4088 
4089                                 /*
4090                                  * Manufacture a filename for the "object" dir.
4091                                  */
4092                                 mp->pr_dev = PRNODEV;
4093                                 vattr.va_mask = AT_FSID|AT_NODEID;
4094                                 if (seg->s_ops == &segvn_ops &&
4095                                     SEGOP_GETVP(seg, saddr, &vp) == 0 &&
4096                                     vp != NULL && vp->v_type == VREG &&
4097                                     VOP_GETATTR(vp, &vattr, 0, CRED(),
4098                                     NULL) == 0) {
4099                                         mp->pr_dev = vattr.va_fsid;
4100                                         mp->pr_ino = vattr.va_nodeid;
4101                                         if (vp == p->p_exec)
4102                                                 (void) strcpy(mp->pr_mapname,
4103                                                     "a.out");
4104                                         else
4105                                                 pr_object_name(mp->pr_mapname,
4106                                                     vp, &vattr);
4107                                 }
4108 
4109                                 /*
4110                                  * Get the SysV shared memory id, if any.
4111                                  */
4112                                 if ((mp->pr_mflags & MA_SHARED) &&
4113                                     p->p_segacct && (mp->pr_shmid = shmgetid(p,
4114                                     seg->s_base)) != SHMID_NONE) {
4115                                         if (mp->pr_shmid == SHMID_FREE)
4116                                                 mp->pr_shmid = -1;
4117 
4118                                         mp->pr_mflags |= MA_SHM;
4119                                 } else {
4120                                         mp->pr_shmid = -1;
4121                                 }
4122 
4123                                 npages = ((uintptr_t)(naddr - saddr)) >>
4124                                     PAGESHIFT;
4125                                 parr = kmem_zalloc(npages, KM_SLEEP);
4126 
4127                                 SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4128 
4129                                 for (pagenum = 0; pagenum < npages; pagenum++) {
4130                                         if (parr[pagenum] & SEG_PAGE_INCORE)
4131                                                 mp->pr_rss++;
4132                                         if (parr[pagenum] & SEG_PAGE_ANON)
4133                                                 mp->pr_anon++;
4134                                         if (parr[pagenum] & SEG_PAGE_LOCKED)
4135                                                 mp->pr_locked++;
4136                                 }
4137                                 kmem_free(parr, npages);
4138                         }
4139                 }
4140                 ASSERT(tmp == NULL);
4141         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4142 
4143         return (0);
4144 }
4145 
4146 /*
4147  * Return the process's credentials.  We don't need a 32-bit equivalent of
4148  * this function because prcred_t and prcred32_t are actually the same.
4149  */
4150 void
4151 prgetcred(proc_t *p, prcred_t *pcrp)
4152 {
4153         mutex_enter(&p->p_crlock);
4154         cred2prcred(p->p_cred, pcrp);
4155         mutex_exit(&p->p_crlock);
4156 }
4157 
4158 void
4159 prgetsecflags(proc_t *p, prsecflags_t *psfp)
4160 {
4161         ASSERT(psfp != NULL);
4162 
4163         psfp->pr_version = PRSECFLAGS_VERSION_CURRENT;
4164         psfp->pr_lower = p->p_secflags.psf_lower;
4165         psfp->pr_upper = p->p_secflags.psf_upper;
4166         psfp->pr_effective = p->p_secflags.psf_effective;
4167         psfp->pr_inherit = p->p_secflags.psf_inherit;
4168 }
4169 
4170 /*
4171  * Compute actual size of the prpriv_t structure.
4172  */
4173 
4174 size_t
4175 prgetprivsize(void)
4176 {
4177         return (priv_prgetprivsize(NULL));
4178 }
4179 
4180 /*
4181  * Return the process's privileges.  We don't need a 32-bit equivalent of
4182  * this function because prpriv_t and prpriv32_t are actually the same.
4183  */
4184 void
4185 prgetpriv(proc_t *p, prpriv_t *pprp)
4186 {
4187         mutex_enter(&p->p_crlock);
4188         cred2prpriv(p->p_cred, pprp);
4189         mutex_exit(&p->p_crlock);
4190 }
4191 
4192 #ifdef _SYSCALL32_IMPL
4193 /*
4194  * Return an array of structures with HAT memory map information.
4195  * We allocate here; the caller must deallocate.
4196  */
4197 int
4198 prgetxmap32(proc_t *p, list_t *iolhead)
4199 {
4200         struct as *as = p->p_as;
4201         prxmap32_t *mp;
4202         struct seg *seg;
4203         struct seg *brkseg, *stkseg;
4204         struct vnode *vp;
4205         struct vattr vattr;
4206         uint_t prot;
4207 
4208         ASSERT(as != &kas && AS_WRITE_HELD(as));
4209 
4210         /*
4211          * Request an initial buffer size that doesn't waste memory
4212          * if the address space has only a small number of segments.
4213          */
4214         pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
4215 
4216         if ((seg = AS_SEGFIRST(as)) == NULL)
4217                 return (0);
4218 
4219         brkseg = break_seg(p);
4220         stkseg = as_segat(as, prgetstackbase(p));
4221 
4222         do {
4223                 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4224                 caddr_t saddr, naddr, baddr;
4225                 void *tmp = NULL;
4226                 ssize_t psz;
4227                 char *parr;
4228                 uint64_t npages;
4229                 uint64_t pagenum;
4230 
4231                 /*
4232                  * Segment loop part one: iterate from the base of the segment
4233                  * to its end, pausing at each address boundary (baddr) between
4234                  * ranges that have different virtual memory protections.
4235                  */
4236                 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4237                         prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4238                         ASSERT(baddr >= saddr && baddr <= eaddr);
4239 
4240                         /*
4241                          * Segment loop part two: iterate from the current
4242                          * position to the end of the protection boundary,
4243                          * pausing at each address boundary (naddr) between
4244                          * ranges that have different underlying page sizes.
4245                          */
4246                         for (; saddr < baddr; saddr = naddr) {
4247                                 psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4248                                 ASSERT(naddr >= saddr && naddr <= baddr);
4249 
4250                                 mp = pr_iol_newbuf(iolhead, sizeof (*mp));
4251 
4252                                 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
4253                                 mp->pr_size = (size32_t)(naddr - saddr);
4254                                 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
4255                                 mp->pr_mflags = 0;
4256                                 if (prot & PROT_READ)
4257                                         mp->pr_mflags |= MA_READ;
4258                                 if (prot & PROT_WRITE)
4259                                         mp->pr_mflags |= MA_WRITE;
4260                                 if (prot & PROT_EXEC)
4261                                         mp->pr_mflags |= MA_EXEC;
4262                                 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
4263                                         mp->pr_mflags |= MA_SHARED;
4264                                 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
4265                                         mp->pr_mflags |= MA_NORESERVE;
4266                                 if (seg->s_ops == &segspt_shmops ||
4267                                     (seg->s_ops == &segvn_ops &&
4268                                     (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
4269                                     vp == NULL)))
4270                                         mp->pr_mflags |= MA_ANON;
4271                                 if (seg == brkseg)
4272                                         mp->pr_mflags |= MA_BREAK;
4273                                 else if (seg == stkseg)
4274                                         mp->pr_mflags |= MA_STACK;
4275                                 if (seg->s_ops == &segspt_shmops)
4276                                         mp->pr_mflags |= MA_ISM | MA_SHM;
4277 
4278                                 mp->pr_pagesize = PAGESIZE;
4279                                 if (psz == -1) {
4280                                         mp->pr_hatpagesize = 0;
4281                                 } else {
4282                                         mp->pr_hatpagesize = psz;
4283                                 }
4284 
4285                                 /*
4286                                  * Manufacture a filename for the "object" dir.
4287                                  */
4288                                 mp->pr_dev = PRNODEV32;
4289                                 vattr.va_mask = AT_FSID|AT_NODEID;
4290                                 if (seg->s_ops == &segvn_ops &&
4291                                     SEGOP_GETVP(seg, saddr, &vp) == 0 &&
4292                                     vp != NULL && vp->v_type == VREG &&
4293                                     VOP_GETATTR(vp, &vattr, 0, CRED(),
4294                                     NULL) == 0) {
4295                                         (void) cmpldev(&mp->pr_dev,
4296                                             vattr.va_fsid);
4297                                         mp->pr_ino = vattr.va_nodeid;
4298                                         if (vp == p->p_exec)
4299                                                 (void) strcpy(mp->pr_mapname,
4300                                                     "a.out");
4301                                         else
4302                                                 pr_object_name(mp->pr_mapname,
4303                                                     vp, &vattr);
4304                                 }
4305 
4306                                 /*
4307                                  * Get the SysV shared memory id, if any.
4308                                  */
4309                                 if ((mp->pr_mflags & MA_SHARED) &&
4310                                     p->p_segacct && (mp->pr_shmid = shmgetid(p,
4311                                     seg->s_base)) != SHMID_NONE) {
4312                                         if (mp->pr_shmid == SHMID_FREE)
4313                                                 mp->pr_shmid = -1;
4314 
4315                                         mp->pr_mflags |= MA_SHM;
4316                                 } else {
4317                                         mp->pr_shmid = -1;
4318                                 }
4319 
4320                                 npages = ((uintptr_t)(naddr - saddr)) >>
4321                                     PAGESHIFT;
4322                                 parr = kmem_zalloc(npages, KM_SLEEP);
4323 
4324                                 SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4325 
4326                                 for (pagenum = 0; pagenum < npages; pagenum++) {
4327                                         if (parr[pagenum] & SEG_PAGE_INCORE)
4328                                                 mp->pr_rss++;
4329                                         if (parr[pagenum] & SEG_PAGE_ANON)
4330                                                 mp->pr_anon++;
4331                                         if (parr[pagenum] & SEG_PAGE_LOCKED)
4332                                                 mp->pr_locked++;
4333                                 }
4334                                 kmem_free(parr, npages);
4335                         }
4336                 }
4337                 ASSERT(tmp == NULL);
4338         } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4339 
4340         return (0);
4341 }
4342 #endif  /* _SYSCALL32_IMPL */