1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/policy.h> 46 #include <sys/cmn_err.h> 47 #include <sys/systm.h> 48 #include <sys/elf.h> 49 #include <sys/vmsystm.h> 50 #include <sys/debug.h> 51 #include <sys/auxv.h> 52 #include <sys/exec.h> 53 #include <sys/prsystm.h> 54 #include <vm/as.h> 55 #include <vm/rm.h> 56 #include <vm/seg.h> 57 #include <vm/seg_vn.h> 58 #include <sys/modctl.h> 59 #include <sys/systeminfo.h> 60 #include <sys/vmparam.h> 61 #include <sys/machelf.h> 62 #include <sys/shm_impl.h> 63 #include <sys/archsystm.h> 64 #include <sys/fasttrap.h> 65 #include <sys/brand.h> 66 #include "elf_impl.h" 67 #include <sys/sdt.h> 68 #include <sys/siginfo.h> 69 #include <sys/random.h> 70 71 extern int at_flags; 72 extern volatile size_t aslr_max_brk_skew; 73 74 #define ORIGIN_STR "ORIGIN" 75 #define ORIGIN_STR_SIZE 6 76 77 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 78 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 79 ssize_t *); 80 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 81 ssize_t *, caddr_t *, ssize_t *); 82 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 83 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 84 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 85 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 86 87 typedef enum { 88 STR_CTF, 89 STR_SYMTAB, 90 STR_DYNSYM, 91 STR_STRTAB, 92 STR_DYNSTR, 93 STR_SHSTRTAB, 94 STR_NUM 95 } shstrtype_t; 96 97 static const char *shstrtab_data[] = { 98 ".SUNW_ctf", 99 ".symtab", 100 ".dynsym", 101 ".strtab", 102 ".dynstr", 103 ".shstrtab" 104 }; 105 106 typedef struct shstrtab { 107 int sst_ndx[STR_NUM]; 108 int sst_cur; 109 } shstrtab_t; 110 111 static void 112 shstrtab_init(shstrtab_t *s) 113 { 114 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 115 s->sst_cur = 1; 116 } 117 118 static int 119 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 120 { 121 int ret; 122 123 if ((ret = s->sst_ndx[type]) != 0) 124 return (ret); 125 126 ret = s->sst_ndx[type] = s->sst_cur; 127 s->sst_cur += strlen(shstrtab_data[type]) + 1; 128 129 return (ret); 130 } 131 132 static size_t 133 shstrtab_size(const shstrtab_t *s) 134 { 135 return (s->sst_cur); 136 } 137 138 static void 139 shstrtab_dump(const shstrtab_t *s, char *buf) 140 { 141 int i, ndx; 142 143 *buf = '\0'; 144 for (i = 0; i < STR_NUM; i++) { 145 if ((ndx = s->sst_ndx[i]) != 0) 146 (void) strcpy(buf + ndx, shstrtab_data[i]); 147 } 148 } 149 150 static int 151 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 152 { 153 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 154 155 /* 156 * See the comment in fasttrap.h for information on how to safely 157 * update this program header. 158 */ 159 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 160 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 161 return (-1); 162 163 args->thrptr = phdrp->p_vaddr + base; 164 165 return (0); 166 } 167 168 static int 169 handle_secflag_dt(proc_t *p, uint_t dt, uint_t val) 170 { 171 uint_t flag; 172 173 switch (dt) { 174 case DT_SUNW_ASLR: 175 flag = PROC_SEC_ASLR; 176 break; 177 default: 178 return (EINVAL); 179 } 180 181 if (val == 0) { 182 if (secflag_isset(p->p_secflags.psf_lower, flag)) 183 return (EPERM); 184 if ((secpolicy_psecflags(CRED(), p, p) != 0) && 185 secflag_isset(p->p_secflags.psf_inherit, flag)) 186 return (EPERM); 187 188 secflag_clear(&p->p_secflags.psf_effective, flag); 189 } else { 190 if (!secflag_isset(p->p_secflags.psf_upper, flag)) 191 return (EPERM); 192 193 if ((secpolicy_psecflags(CRED(), p, p) != 0) && 194 !secflag_isset(p->p_secflags.psf_inherit, flag)) 195 return (EPERM); 196 197 secflag_set(&p->p_secflags.psf_effective, flag); 198 } 199 200 return (0); 201 } 202 203 /* 204 * Map in the executable pointed to by vp. Returns 0 on success. 205 */ 206 int 207 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 208 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 209 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 210 { 211 size_t len; 212 struct vattr vat; 213 caddr_t phdrbase = NULL; 214 ssize_t phdrsize; 215 int nshdrs, shstrndx, nphdrs; 216 int error = 0; 217 Phdr *uphdr = NULL; 218 Phdr *junk = NULL; 219 Phdr *dynphdr = NULL; 220 Phdr *dtrphdr = NULL; 221 uintptr_t lddata; 222 long execsz; 223 intptr_t minaddr; 224 225 if (lddatap != NULL) 226 *lddatap = NULL; 227 228 if (error = execpermissions(vp, &vat, args)) { 229 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 230 return (error); 231 } 232 233 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 234 &nphdrs)) != 0 || 235 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 236 &phdrsize)) != 0) { 237 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 238 return (error); 239 } 240 241 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 242 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 243 kmem_free(phdrbase, phdrsize); 244 return (ENOEXEC); 245 } 246 if (lddatap != NULL) 247 *lddatap = lddata; 248 249 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 250 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 251 len, &execsz, brksize)) { 252 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 253 kmem_free(phdrbase, phdrsize); 254 return (error); 255 } 256 257 /* 258 * Inform our caller if the executable needs an interpreter. 259 */ 260 *interp = (dynphdr == NULL) ? 0 : 1; 261 262 /* 263 * If this is a statically linked executable, voffset should indicate 264 * the address of the executable itself (it normally holds the address 265 * of the interpreter). 266 */ 267 if (ehdr->e_type == ET_EXEC && *interp == 0) 268 *voffset = minaddr; 269 270 if (uphdr != NULL) { 271 *uphdr_vaddr = uphdr->p_vaddr; 272 } else { 273 *uphdr_vaddr = (Addr)-1; 274 } 275 276 kmem_free(phdrbase, phdrsize); 277 return (error); 278 } 279 280 /*ARGSUSED*/ 281 int 282 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 283 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 284 int brand_action) 285 { 286 caddr_t phdrbase = NULL; 287 caddr_t bssbase = 0; 288 caddr_t brkbase = 0; 289 size_t brksize = 0; 290 ssize_t dlnsize; 291 aux_entry_t *aux; 292 int error; 293 ssize_t resid; 294 int fd = -1; 295 intptr_t voffset; 296 Phdr *intphdr = NULL; 297 Phdr *dynamicphdr = NULL; 298 Phdr *stphdr = NULL; 299 Phdr *uphdr = NULL; 300 Phdr *junk = NULL; 301 size_t len; 302 ssize_t phdrsize; 303 int postfixsize = 0; 304 int i, hsize; 305 Phdr *phdrp; 306 Phdr *dataphdrp = NULL; 307 Phdr *dtrphdr; 308 Phdr *capphdr = NULL; 309 Cap *cap = NULL; 310 ssize_t capsize; 311 Dyn *dyn = NULL; 312 int hasu = 0; 313 int hasauxv = 0; 314 int hasintp = 0; 315 int branded = 0; 316 317 struct proc *p = ttoproc(curthread); 318 struct user *up = PTOU(p); 319 struct bigwad { 320 Ehdr ehdr; 321 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 322 char dl_name[MAXPATHLEN]; 323 char pathbuf[MAXPATHLEN]; 324 struct vattr vattr; 325 struct execenv exenv; 326 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 327 Ehdr *ehdrp; 328 int nshdrs, shstrndx, nphdrs; 329 char *dlnp; 330 char *pathbufp; 331 rlim64_t limit; 332 rlim64_t roundlimit; 333 334 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 335 336 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 337 ehdrp = &bigwad->ehdr; 338 dlnp = bigwad->dl_name; 339 pathbufp = bigwad->pathbuf; 340 341 /* 342 * Obtain ELF and program header information. 343 */ 344 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 345 &nphdrs)) != 0 || 346 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 347 &phdrsize)) != 0) 348 goto out; 349 350 /* 351 * Prevent executing an ELF file that has no entry point. 352 */ 353 if (ehdrp->e_entry == 0) { 354 uprintf("%s: Bad entry point\n", exec_file); 355 goto bad; 356 } 357 358 /* 359 * Put data model that we're exec-ing to into the args passed to 360 * exec_args(), so it will know what it is copying to on new stack. 361 * Now that we know whether we are exec-ing a 32-bit or 64-bit 362 * executable, we can set execsz with the appropriate NCARGS. 363 */ 364 #ifdef _LP64 365 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 366 args->to_model = DATAMODEL_ILP32; 367 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 368 } else { 369 args->to_model = DATAMODEL_LP64; 370 args->stk_prot &= ~PROT_EXEC; 371 #if defined(__i386) || defined(__amd64) 372 args->dat_prot &= ~PROT_EXEC; 373 #endif 374 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 375 } 376 #else /* _LP64 */ 377 args->to_model = DATAMODEL_ILP32; 378 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 379 #endif /* _LP64 */ 380 381 /* 382 * We delay invoking the brand callback until we've figured out 383 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 384 * We do this because now the brand library can just check 385 * args->to_model to see if the target is 32-bit or 64-bit without 386 * having do duplicate all the code above. 387 * 388 * The level checks associated with brand handling below are used to 389 * prevent a loop since the brand elfexec function typically comes back 390 * through this function. We must check <= here since the nested 391 * handling in the #! interpreter code will increment the level before 392 * calling gexec to run the final elfexec interpreter. 393 */ 394 if ((level <= INTP_MAXDEPTH) && 395 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 396 error = BROP(p)->b_elfexec(vp, uap, args, 397 idatap, level + 1, execsz, setid, exec_file, cred, 398 brand_action); 399 goto out; 400 } 401 402 /* 403 * Determine aux size now so that stack can be built 404 * in one shot (except actual copyout of aux image), 405 * determine any non-default stack protections, 406 * and still have this code be machine independent. 407 */ 408 hsize = ehdrp->e_phentsize; 409 phdrp = (Phdr *)phdrbase; 410 for (i = nphdrs; i > 0; i--) { 411 switch (phdrp->p_type) { 412 case PT_INTERP: 413 hasauxv = hasintp = 1; 414 break; 415 case PT_PHDR: 416 hasu = 1; 417 break; 418 case PT_SUNWSTACK: 419 args->stk_prot = PROT_USER; 420 if (phdrp->p_flags & PF_R) 421 args->stk_prot |= PROT_READ; 422 if (phdrp->p_flags & PF_W) 423 args->stk_prot |= PROT_WRITE; 424 if (phdrp->p_flags & PF_X) 425 args->stk_prot |= PROT_EXEC; 426 break; 427 case PT_LOAD: 428 dataphdrp = phdrp; 429 break; 430 case PT_SUNWCAP: 431 capphdr = phdrp; 432 break; 433 case PT_DYNAMIC: 434 dynamicphdr = phdrp; 435 break; 436 } 437 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 438 } 439 440 if (ehdrp->e_type != ET_EXEC) { 441 dataphdrp = NULL; 442 hasauxv = 1; 443 } 444 445 /* Copy BSS permissions to args->dat_prot */ 446 if (dataphdrp != NULL) { 447 args->dat_prot = PROT_USER; 448 if (dataphdrp->p_flags & PF_R) 449 args->dat_prot |= PROT_READ; 450 if (dataphdrp->p_flags & PF_W) 451 args->dat_prot |= PROT_WRITE; 452 if (dataphdrp->p_flags & PF_X) 453 args->dat_prot |= PROT_EXEC; 454 } 455 456 /* 457 * If a auxvector will be required - reserve the space for 458 * it now. This may be increased by exec_args if there are 459 * ISA-specific types (included in __KERN_NAUXV_IMPL). 460 */ 461 if (hasauxv) { 462 /* 463 * If a AUX vector is being built - the base AUX 464 * entries are: 465 * 466 * AT_BASE 467 * AT_FLAGS 468 * AT_PAGESZ 469 * AT_SUN_AUXFLAGS 470 * AT_SUN_HWCAP 471 * AT_SUN_HWCAP2 472 * AT_SUN_PLATFORM (added in stk_copyout) 473 * AT_SUN_EXECNAME (added in stk_copyout) 474 * AT_NULL 475 * 476 * total == 9 477 */ 478 if (hasintp && hasu) { 479 /* 480 * Has PT_INTERP & PT_PHDR - the auxvectors that 481 * will be built are: 482 * 483 * AT_PHDR 484 * AT_PHENT 485 * AT_PHNUM 486 * AT_ENTRY 487 * AT_LDDATA 488 * 489 * total = 5 490 */ 491 args->auxsize = (9 + 5) * sizeof (aux_entry_t); 492 } else if (hasintp) { 493 /* 494 * Has PT_INTERP but no PT_PHDR 495 * 496 * AT_EXECFD 497 * AT_LDDATA 498 * 499 * total = 2 500 */ 501 args->auxsize = (9 + 2) * sizeof (aux_entry_t); 502 } else { 503 args->auxsize = 9 * sizeof (aux_entry_t); 504 } 505 } else { 506 args->auxsize = 0; 507 } 508 509 /* 510 * If this binary is using an emulator, we need to add an 511 * AT_SUN_EMULATOR aux entry. 512 */ 513 if (args->emulator != NULL) 514 args->auxsize += sizeof (aux_entry_t); 515 516 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 517 branded = 1; 518 /* 519 * We will be adding 4 entries to the aux vectors. One for 520 * the the brandname and 3 for the brand specific aux vectors. 521 */ 522 args->auxsize += 4 * sizeof (aux_entry_t); 523 } 524 525 /* If the binary has an explicit ASLR flag, it must be honoured */ 526 if ((dynamicphdr != NULL) && 527 (dynamicphdr->p_filesz > 0)) { 528 Dyn *dp; 529 off_t i = 0; 530 531 #define DYN_STRIDE 100 532 for (i = 0; i < dynamicphdr->p_filesz; 533 i += sizeof (*dyn) * DYN_STRIDE) { 534 int ndyns = (dynamicphdr->p_filesz - i) / sizeof (*dyn); 535 size_t dynsize; 536 537 ndyns = MIN(DYN_STRIDE, ndyns); 538 dynsize = ndyns * sizeof (*dyn); 539 540 dyn = kmem_alloc(dynsize, KM_SLEEP); 541 542 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn, 543 dynsize, (offset_t)(dynamicphdr->p_offset + i), 544 UIO_SYSSPACE, 0, (rlim64_t)0, 545 CRED(), &resid)) != 0) { 546 uprintf("%s: cannot read .dynamic section\n", 547 exec_file); 548 goto out; 549 } 550 551 for (dp = dyn; dp < (dyn + ndyns); dp++) { 552 if (dp->d_tag == DT_SUNW_ASLR) { 553 if ((error = handle_secflag_dt(p, 554 DT_SUNW_ASLR, 555 dp->d_un.d_val)) != 0) { 556 uprintf("%s: error setting " 557 "security-flag from " 558 "DT_SUNW_ASLR: %d\n", 559 exec_file, error); 560 goto out; 561 } 562 } 563 } 564 565 kmem_free(dyn, dynsize); 566 } 567 } 568 569 /* Hardware/Software capabilities */ 570 if (capphdr != NULL && 571 (capsize = capphdr->p_filesz) > 0 && 572 capsize <= 16 * sizeof (*cap)) { 573 int ncaps = capsize / sizeof (*cap); 574 Cap *cp; 575 576 cap = kmem_alloc(capsize, KM_SLEEP); 577 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 578 capsize, (offset_t)capphdr->p_offset, 579 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 580 uprintf("%s: Cannot read capabilities section\n", 581 exec_file); 582 goto out; 583 } 584 for (cp = cap; cp < cap + ncaps; cp++) { 585 if (cp->c_tag == CA_SUNW_SF_1 && 586 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 587 if (args->to_model == DATAMODEL_LP64) 588 args->addr32 = 1; 589 break; 590 } 591 } 592 } 593 594 aux = bigwad->elfargs; 595 /* 596 * Move args to the user's stack. 597 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. 598 */ 599 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 600 if (error == -1) { 601 error = ENOEXEC; 602 goto bad; 603 } 604 goto out; 605 } 606 /* we're single threaded after this point */ 607 608 /* 609 * If this is an ET_DYN executable (shared object), 610 * determine its memory size so that mapelfexec() can load it. 611 */ 612 if (ehdrp->e_type == ET_DYN) 613 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 614 else 615 len = 0; 616 617 dtrphdr = NULL; 618 619 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr, 620 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 621 len, execsz, &brksize)) != 0) 622 goto bad; 623 624 if (uphdr != NULL && intphdr == NULL) 625 goto bad; 626 627 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 628 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 629 goto bad; 630 } 631 632 if (intphdr != NULL) { 633 size_t len; 634 uintptr_t lddata; 635 char *p; 636 struct vnode *nvp; 637 638 dlnsize = intphdr->p_filesz; 639 640 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 641 goto bad; 642 643 /* 644 * Read in "interpreter" pathname. 645 */ 646 if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz, 647 (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 648 CRED(), &resid)) != 0) { 649 uprintf("%s: Cannot obtain interpreter pathname\n", 650 exec_file); 651 goto bad; 652 } 653 654 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 655 goto bad; 656 657 /* 658 * Search for '$ORIGIN' token in interpreter path. 659 * If found, expand it. 660 */ 661 for (p = dlnp; p = strchr(p, '$'); ) { 662 uint_t len, curlen; 663 char *_ptr; 664 665 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 666 continue; 667 668 /* 669 * We don't support $ORIGIN on setid programs to close 670 * a potential attack vector. 671 */ 672 if ((setid & EXECSETID_SETID) != 0) { 673 error = ENOEXEC; 674 goto bad; 675 } 676 677 curlen = 0; 678 len = p - dlnp - 1; 679 if (len) { 680 bcopy(dlnp, pathbufp, len); 681 curlen += len; 682 } 683 if (_ptr = strrchr(args->pathname, '/')) { 684 len = _ptr - args->pathname; 685 if ((curlen + len) > MAXPATHLEN) 686 break; 687 688 bcopy(args->pathname, &pathbufp[curlen], len); 689 curlen += len; 690 } else { 691 /* 692 * executable is a basename found in the 693 * current directory. So - just substitue 694 * '.' for ORIGIN. 695 */ 696 pathbufp[curlen] = '.'; 697 curlen++; 698 } 699 p += ORIGIN_STR_SIZE; 700 len = strlen(p); 701 702 if ((curlen + len) > MAXPATHLEN) 703 break; 704 bcopy(p, &pathbufp[curlen], len); 705 curlen += len; 706 pathbufp[curlen++] = '\0'; 707 bcopy(pathbufp, dlnp, curlen); 708 } 709 710 /* 711 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 712 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 713 * Just in case /usr is not mounted, change it now. 714 */ 715 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 716 dlnp += 4; 717 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 718 if (error && dlnp != bigwad->dl_name) { 719 /* new kernel, old user-level */ 720 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 721 NULLVPP, &nvp); 722 } 723 if (error) { 724 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 725 goto bad; 726 } 727 728 /* 729 * Setup the "aux" vector. 730 */ 731 if (uphdr) { 732 if (ehdrp->e_type == ET_DYN) { 733 /* don't use the first page */ 734 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 735 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 736 } else { 737 bigwad->exenv.ex_bssbase = bssbase; 738 bigwad->exenv.ex_brkbase = brkbase; 739 } 740 bigwad->exenv.ex_brksize = brksize; 741 bigwad->exenv.ex_magic = elfmagic; 742 bigwad->exenv.ex_vp = vp; 743 setexecenv(&bigwad->exenv); 744 745 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 746 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 747 ADDAUX(aux, AT_PHNUM, nphdrs) 748 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 749 } else { 750 if ((error = execopen(&vp, &fd)) != 0) { 751 VN_RELE(nvp); 752 goto bad; 753 } 754 755 ADDAUX(aux, AT_EXECFD, fd) 756 } 757 758 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 759 VN_RELE(nvp); 760 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 761 goto bad; 762 } 763 764 /* 765 * Now obtain the ELF header along with the entire program 766 * header contained in "nvp". 767 */ 768 kmem_free(phdrbase, phdrsize); 769 phdrbase = NULL; 770 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 771 &shstrndx, &nphdrs)) != 0 || 772 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 773 &phdrsize)) != 0) { 774 VN_RELE(nvp); 775 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 776 goto bad; 777 } 778 779 /* 780 * Determine memory size of the "interpreter's" loadable 781 * sections. This size is then used to obtain the virtual 782 * address of a hole, in the user's address space, large 783 * enough to map the "interpreter". 784 */ 785 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 786 VN_RELE(nvp); 787 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 788 goto bad; 789 } 790 791 dtrphdr = NULL; 792 793 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 794 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 795 execsz, NULL); 796 if (error || junk != NULL) { 797 VN_RELE(nvp); 798 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 799 goto bad; 800 } 801 802 /* 803 * We use the DTrace program header to initialize the 804 * architecture-specific user per-LWP location. The dtrace 805 * fasttrap provider requires ready access to per-LWP scratch 806 * space. We assume that there is only one such program header 807 * in the interpreter. 808 */ 809 if (dtrphdr != NULL && 810 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 811 VN_RELE(nvp); 812 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 813 goto bad; 814 } 815 816 VN_RELE(nvp); 817 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 818 } 819 820 if (hasauxv) { 821 int auxf = AF_SUN_HWCAPVERIFY; 822 /* 823 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via 824 * exec_args() 825 */ 826 ADDAUX(aux, AT_BASE, voffset) 827 ADDAUX(aux, AT_FLAGS, at_flags) 828 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 829 /* 830 * Linker flags. (security) 831 * p_flag not yet set at this time. 832 * We rely on gexec() to provide us with the information. 833 * If the application is set-uid but this is not reflected 834 * in a mismatch between real/effective uids/gids, then 835 * don't treat this as a set-uid exec. So we care about 836 * the EXECSETID_UGIDS flag but not the ...SETID flag. 837 */ 838 if ((setid &= ~EXECSETID_SETID) != 0) 839 auxf |= AF_SUN_SETUGID; 840 841 /* 842 * If we're running a native process from within a branded 843 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 844 * that the native ld.so.1 is able to link with the native 845 * libraries instead of using the brand libraries that are 846 * installed in the zone. We only do this for processes 847 * which we trust because we see they are already running 848 * under pfexec (where uid != euid). This prevents a 849 * malicious user within the zone from crafting a wrapper to 850 * run native suid commands with unsecure libraries interposed. 851 */ 852 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 853 (setid &= ~EXECSETID_SETID) != 0)) 854 auxf &= ~AF_SUN_SETUGID; 855 856 /* 857 * Record the user addr of the auxflags aux vector entry 858 * since brands may optionally want to manipulate this field. 859 */ 860 args->auxp_auxflags = 861 (char *)((char *)args->stackend + 862 ((char *)&aux->a_type - 863 (char *)bigwad->elfargs)); 864 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 865 866 /* 867 * Hardware capability flag word (performance hints) 868 * Used for choosing faster library routines. 869 * (Potentially different between 32-bit and 64-bit ABIs) 870 */ 871 #if defined(_LP64) 872 if (args->to_model == DATAMODEL_NATIVE) { 873 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 874 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 875 } else { 876 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 877 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 878 } 879 #else 880 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 881 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 882 #endif 883 if (branded) { 884 /* 885 * Reserve space for the brand-private aux vectors, 886 * and record the user addr of that space. 887 */ 888 args->auxp_brand = 889 (char *)((char *)args->stackend + 890 ((char *)&aux->a_type - 891 (char *)bigwad->elfargs)); 892 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 893 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 894 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 895 } 896 897 ADDAUX(aux, AT_NULL, 0) 898 postfixsize = (char *)aux - (char *)bigwad->elfargs; 899 900 /* 901 * We make assumptions above when we determine how many aux 902 * vector entries we will be adding. However, if we have an 903 * invalid elf file, it is possible that mapelfexec might 904 * behave differently (but not return an error), in which case 905 * the number of aux entries we actually add will be different. 906 * We detect that now and error out. 907 */ 908 if (postfixsize != args->auxsize) { 909 DTRACE_PROBE2(elfexec_badaux, int, postfixsize, 910 int, args->auxsize); 911 goto bad; 912 } 913 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 914 } 915 916 /* 917 * For the 64-bit kernel, the limit is big enough that rounding it up 918 * to a page can overflow the 64-bit limit, so we check for btopr() 919 * overflowing here by comparing it with the unrounded limit in pages. 920 * If it hasn't overflowed, compare the exec size with the rounded up 921 * limit in pages. Otherwise, just compare with the unrounded limit. 922 */ 923 limit = btop(p->p_vmem_ctl); 924 roundlimit = btopr(p->p_vmem_ctl); 925 if ((roundlimit > limit && *execsz > roundlimit) || 926 (roundlimit < limit && *execsz > limit)) { 927 mutex_enter(&p->p_lock); 928 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 929 RCA_SAFE); 930 mutex_exit(&p->p_lock); 931 error = ENOMEM; 932 goto bad; 933 } 934 935 bzero(up->u_auxv, sizeof (up->u_auxv)); 936 if (postfixsize) { 937 int num_auxv; 938 939 /* 940 * Copy the aux vector to the user stack. 941 */ 942 error = execpoststack(args, bigwad->elfargs, postfixsize); 943 if (error) 944 goto bad; 945 946 /* 947 * Copy auxv to the process's user structure for use by /proc. 948 * If this is a branded process, the brand's exec routine will 949 * copy it's private entries to the user structure later. It 950 * relies on the fact that the blank entries are at the end. 951 */ 952 num_auxv = postfixsize / sizeof (aux_entry_t); 953 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 954 aux = bigwad->elfargs; 955 for (i = 0; i < num_auxv; i++) { 956 up->u_auxv[i].a_type = aux[i].a_type; 957 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 958 } 959 } 960 961 /* 962 * Pass back the starting address so we can set the program counter. 963 */ 964 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 965 966 if (!uphdr) { 967 if (ehdrp->e_type == ET_DYN) { 968 /* 969 * If we are executing a shared library which doesn't 970 * have a interpreter (probably ld.so.1) then 971 * we don't set the brkbase now. Instead we 972 * delay it's setting until the first call 973 * via grow.c::brk(). This permits ld.so.1 to 974 * initialize brkbase to the tail of the executable it 975 * loads (which is where it needs to be). 976 */ 977 bigwad->exenv.ex_brkbase = (caddr_t)0; 978 bigwad->exenv.ex_bssbase = (caddr_t)0; 979 bigwad->exenv.ex_brksize = 0; 980 } else { 981 bigwad->exenv.ex_brkbase = brkbase; 982 bigwad->exenv.ex_bssbase = bssbase; 983 bigwad->exenv.ex_brksize = brksize; 984 } 985 bigwad->exenv.ex_magic = elfmagic; 986 bigwad->exenv.ex_vp = vp; 987 setexecenv(&bigwad->exenv); 988 } 989 990 ASSERT(error == 0); 991 goto out; 992 993 bad: 994 if (fd != -1) /* did we open the a.out yet */ 995 (void) execclose(fd); 996 997 psignal(p, SIGKILL); 998 999 if (error == 0) 1000 error = ENOEXEC; 1001 out: 1002 if (phdrbase != NULL) 1003 kmem_free(phdrbase, phdrsize); 1004 if (cap != NULL) 1005 kmem_free(cap, capsize); 1006 kmem_free(bigwad, sizeof (struct bigwad)); 1007 return (error); 1008 } 1009 1010 /* 1011 * Compute the memory size requirement for the ELF file. 1012 */ 1013 static size_t 1014 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 1015 { 1016 size_t len; 1017 Phdr *phdrp = (Phdr *)phdrbase; 1018 int hsize = ehdrp->e_phentsize; 1019 int first = 1; 1020 int dfirst = 1; /* first data segment */ 1021 uintptr_t loaddr = 0; 1022 uintptr_t hiaddr = 0; 1023 uintptr_t lo, hi; 1024 int i; 1025 1026 for (i = nphdrs; i > 0; i--) { 1027 if (phdrp->p_type == PT_LOAD) { 1028 lo = phdrp->p_vaddr; 1029 hi = lo + phdrp->p_memsz; 1030 if (first) { 1031 loaddr = lo; 1032 hiaddr = hi; 1033 first = 0; 1034 } else { 1035 if (loaddr > lo) 1036 loaddr = lo; 1037 if (hiaddr < hi) 1038 hiaddr = hi; 1039 } 1040 1041 /* 1042 * save the address of the first data segment 1043 * of a object - used for the AT_SUNW_LDDATA 1044 * aux entry. 1045 */ 1046 if ((lddata != NULL) && dfirst && 1047 (phdrp->p_flags & PF_W)) { 1048 *lddata = lo; 1049 dfirst = 0; 1050 } 1051 } 1052 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 1053 } 1054 1055 len = hiaddr - (loaddr & PAGEMASK); 1056 len = roundup(len, PAGESIZE); 1057 1058 return (len); 1059 } 1060 1061 /* 1062 * Read in the ELF header and program header table. 1063 * SUSV3 requires: 1064 * ENOEXEC File format is not recognized 1065 * EINVAL Format recognized but execution not supported 1066 */ 1067 static int 1068 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 1069 int *nphdrs) 1070 { 1071 int error; 1072 ssize_t resid; 1073 1074 /* 1075 * We got here by the first two bytes in ident, 1076 * now read the entire ELF header. 1077 */ 1078 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 1079 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 1080 (rlim64_t)0, credp, &resid)) != 0) 1081 return (error); 1082 1083 /* 1084 * Since a separate version is compiled for handling 32-bit and 1085 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 1086 * doesn't need to be able to deal with 32-bit ELF files. 1087 */ 1088 if (resid != 0 || 1089 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1090 ehdr->e_ident[EI_MAG3] != ELFMAG3) 1091 return (ENOEXEC); 1092 1093 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 1094 #if defined(_ILP32) || defined(_ELF32_COMPAT) 1095 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1096 #else 1097 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1098 #endif 1099 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 1100 ehdr->e_flags)) 1101 return (EINVAL); 1102 1103 *nshdrs = ehdr->e_shnum; 1104 *shstrndx = ehdr->e_shstrndx; 1105 *nphdrs = ehdr->e_phnum; 1106 1107 /* 1108 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 1109 * to read in the section header at index zero to acces the true 1110 * values for those fields. 1111 */ 1112 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 1113 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 1114 Shdr shdr; 1115 1116 if (ehdr->e_shoff == 0) 1117 return (EINVAL); 1118 1119 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1120 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1121 (rlim64_t)0, credp, &resid)) != 0) 1122 return (error); 1123 1124 if (*nshdrs == 0) 1125 *nshdrs = shdr.sh_size; 1126 if (*shstrndx == SHN_XINDEX) 1127 *shstrndx = shdr.sh_link; 1128 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1129 *nphdrs = shdr.sh_info; 1130 } 1131 1132 return (0); 1133 } 1134 1135 #ifdef _ELF32_COMPAT 1136 extern size_t elf_nphdr_max; 1137 #else 1138 size_t elf_nphdr_max = 1000; 1139 #endif 1140 1141 static int 1142 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1143 caddr_t *phbasep, ssize_t *phsizep) 1144 { 1145 ssize_t resid, minsize; 1146 int err; 1147 1148 /* 1149 * Since we're going to be using e_phentsize to iterate down the 1150 * array of program headers, it must be 8-byte aligned or else 1151 * a we might cause a misaligned access. We use all members through 1152 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1153 * e_phentsize must be at least large enough to include those 1154 * members. 1155 */ 1156 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1157 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1158 #else 1159 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1160 #endif 1161 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1162 return (EINVAL); 1163 1164 *phsizep = nphdrs * ehdr->e_phentsize; 1165 1166 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1167 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1168 return (ENOMEM); 1169 } else { 1170 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1171 } 1172 1173 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1174 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1175 credp, &resid)) != 0) { 1176 kmem_free(*phbasep, *phsizep); 1177 *phbasep = NULL; 1178 return (err); 1179 } 1180 1181 return (0); 1182 } 1183 1184 #ifdef _ELF32_COMPAT 1185 extern size_t elf_nshdr_max; 1186 extern size_t elf_shstrtab_max; 1187 #else 1188 size_t elf_nshdr_max = 10000; 1189 size_t elf_shstrtab_max = 100 * 1024; 1190 #endif 1191 1192 1193 static int 1194 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1195 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1196 char **shstrbasep, ssize_t *shstrsizep) 1197 { 1198 ssize_t resid, minsize; 1199 int err; 1200 Shdr *shdr; 1201 1202 /* 1203 * Since we're going to be using e_shentsize to iterate down the 1204 * array of section headers, it must be 8-byte aligned or else 1205 * a we might cause a misaligned access. We use all members through 1206 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1207 * must be at least large enough to include that member. The index 1208 * of the string table section must also be valid. 1209 */ 1210 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1211 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1212 shstrndx >= nshdrs) 1213 return (EINVAL); 1214 1215 *shsizep = nshdrs * ehdr->e_shentsize; 1216 1217 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1218 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1219 return (ENOMEM); 1220 } else { 1221 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1222 } 1223 1224 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1225 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1226 credp, &resid)) != 0) { 1227 kmem_free(*shbasep, *shsizep); 1228 return (err); 1229 } 1230 1231 /* 1232 * Pull the section string table out of the vnode; fail if the size 1233 * is zero. 1234 */ 1235 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1236 if ((*shstrsizep = shdr->sh_size) == 0) { 1237 kmem_free(*shbasep, *shsizep); 1238 return (EINVAL); 1239 } 1240 1241 if (*shstrsizep > elf_shstrtab_max) { 1242 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1243 KM_NOSLEEP)) == NULL) { 1244 kmem_free(*shbasep, *shsizep); 1245 return (ENOMEM); 1246 } 1247 } else { 1248 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1249 } 1250 1251 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1252 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1253 credp, &resid)) != 0) { 1254 kmem_free(*shbasep, *shsizep); 1255 kmem_free(*shstrbasep, *shstrsizep); 1256 return (err); 1257 } 1258 1259 /* 1260 * Make sure the strtab is null-terminated to make sure we 1261 * don't run off the end of the table. 1262 */ 1263 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1264 1265 return (0); 1266 } 1267 1268 static int 1269 mapelfexec( 1270 vnode_t *vp, 1271 Ehdr *ehdr, 1272 int nphdrs, 1273 caddr_t phdrbase, 1274 Phdr **uphdr, 1275 Phdr **intphdr, 1276 Phdr **stphdr, 1277 Phdr **dtphdr, 1278 Phdr *dataphdrp, 1279 caddr_t *bssbase, 1280 caddr_t *brkbase, 1281 intptr_t *voffset, 1282 intptr_t *minaddr, 1283 size_t len, 1284 long *execsz, 1285 size_t *brksize) 1286 { 1287 Phdr *phdr; 1288 int i, prot, error; 1289 caddr_t addr = NULL; 1290 size_t zfodsz; 1291 int ptload = 0; 1292 int page; 1293 off_t offset; 1294 int hsize = ehdr->e_phentsize; 1295 caddr_t mintmp = (caddr_t)-1; 1296 extern int use_brk_lpg; 1297 1298 if (ehdr->e_type == ET_DYN) { 1299 secflagset_t flags = 0; 1300 /* 1301 * Obtain the virtual address of a hole in the 1302 * address space to map the "interpreter". 1303 */ 1304 if (secflag_enabled(curproc, PROC_SEC_ASLR)) 1305 flags |= _MAP_RANDOMIZE; 1306 1307 map_addr(&addr, len, (offset_t)0, 1, flags); 1308 if (addr == NULL) 1309 return (ENOMEM); 1310 *voffset = (intptr_t)addr; 1311 1312 /* 1313 * Calculate the minimum vaddr so it can be subtracted out. 1314 * According to the ELF specification, since PT_LOAD sections 1315 * must be sorted by increasing p_vaddr values, this is 1316 * guaranteed to be the first PT_LOAD section. 1317 */ 1318 phdr = (Phdr *)phdrbase; 1319 for (i = nphdrs; i > 0; i--) { 1320 if (phdr->p_type == PT_LOAD) { 1321 *voffset -= (uintptr_t)phdr->p_vaddr; 1322 break; 1323 } 1324 phdr = (Phdr *)((caddr_t)phdr + hsize); 1325 } 1326 1327 } else { 1328 *voffset = 0; 1329 } 1330 phdr = (Phdr *)phdrbase; 1331 for (i = nphdrs; i > 0; i--) { 1332 switch (phdr->p_type) { 1333 case PT_LOAD: 1334 if ((*intphdr != NULL) && (*uphdr == NULL)) 1335 return (0); 1336 1337 ptload = 1; 1338 prot = PROT_USER; 1339 if (phdr->p_flags & PF_R) 1340 prot |= PROT_READ; 1341 if (phdr->p_flags & PF_W) 1342 prot |= PROT_WRITE; 1343 if (phdr->p_flags & PF_X) 1344 prot |= PROT_EXEC; 1345 1346 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1347 1348 /* 1349 * Keep track of the segment with the lowest starting 1350 * address. 1351 */ 1352 if (addr < mintmp) 1353 mintmp = addr; 1354 1355 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1356 1357 offset = phdr->p_offset; 1358 if (((uintptr_t)offset & PAGEOFFSET) == 1359 ((uintptr_t)addr & PAGEOFFSET) && 1360 (!(vp->v_flag & VNOMAP))) { 1361 page = 1; 1362 } else { 1363 page = 0; 1364 } 1365 1366 /* 1367 * Set the heap pagesize for OOB when the bss size 1368 * is known and use_brk_lpg is not 0. 1369 */ 1370 if (brksize != NULL && use_brk_lpg && 1371 zfodsz != 0 && phdr == dataphdrp && 1372 (prot & PROT_WRITE)) { 1373 size_t tlen = P2NPHASE((uintptr_t)addr + 1374 phdr->p_filesz, PAGESIZE); 1375 1376 if (zfodsz > tlen) { 1377 curproc->p_brkpageszc = 1378 page_szc(map_pgsz(MAPPGSZ_HEAP, 1379 curproc, addr + phdr->p_filesz + 1380 tlen, zfodsz - tlen, 0)); 1381 } 1382 } 1383 1384 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1385 (prot & PROT_WRITE)) { 1386 uint_t szc = curproc->p_brkpageszc; 1387 size_t pgsz = page_get_pagesize(szc); 1388 caddr_t ebss = addr + phdr->p_memsz; 1389 /* 1390 * If we need extra space to keep the BSS an 1391 * integral number of pages in size, some of 1392 * that space may fall beyond p_brkbase, so we 1393 * need to set p_brksize to account for it 1394 * being (logically) part of the brk. 1395 */ 1396 size_t extra_zfodsz; 1397 1398 ASSERT(pgsz > PAGESIZE); 1399 1400 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1401 1402 if (error = execmap(vp, addr, phdr->p_filesz, 1403 zfodsz + extra_zfodsz, phdr->p_offset, 1404 prot, page, szc)) 1405 goto bad; 1406 if (brksize != NULL) 1407 *brksize = extra_zfodsz; 1408 } else { 1409 if (error = execmap(vp, addr, phdr->p_filesz, 1410 zfodsz, phdr->p_offset, prot, page, 0)) 1411 goto bad; 1412 } 1413 1414 if (bssbase != NULL && addr >= *bssbase && 1415 phdr == dataphdrp) { 1416 *bssbase = addr + phdr->p_filesz; 1417 } 1418 if (brkbase != NULL && addr >= *brkbase) { 1419 *brkbase = addr + phdr->p_memsz; 1420 } 1421 1422 *execsz += btopr(phdr->p_memsz); 1423 break; 1424 1425 case PT_INTERP: 1426 if (ptload) 1427 goto bad; 1428 *intphdr = phdr; 1429 break; 1430 1431 case PT_SHLIB: 1432 *stphdr = phdr; 1433 break; 1434 1435 case PT_PHDR: 1436 if (ptload) 1437 goto bad; 1438 *uphdr = phdr; 1439 break; 1440 1441 case PT_NULL: 1442 case PT_DYNAMIC: 1443 case PT_NOTE: 1444 break; 1445 1446 case PT_SUNWDTRACE: 1447 if (dtphdr != NULL) 1448 *dtphdr = phdr; 1449 break; 1450 1451 default: 1452 break; 1453 } 1454 phdr = (Phdr *)((caddr_t)phdr + hsize); 1455 } 1456 1457 if (minaddr != NULL) { 1458 ASSERT(mintmp != (caddr_t)-1); 1459 *minaddr = (intptr_t)mintmp; 1460 } 1461 1462 if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) { 1463 size_t off; 1464 uintptr_t base = (uintptr_t)*brkbase; 1465 uintptr_t oend = base + *brksize; 1466 1467 ASSERT(ISP2(aslr_max_brk_skew)); 1468 1469 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); 1470 base += P2PHASE(off, aslr_max_brk_skew); 1471 base = P2ROUNDUP(base, PAGESIZE); 1472 *brkbase = (caddr_t)base; 1473 /* 1474 * Above, we set *brksize to account for the possibility we 1475 * had to grow the 'brk' in padding out the BSS to a page 1476 * boundary. 1477 * 1478 * We now need to adjust that based on where we now are 1479 * actually putting the brk. 1480 */ 1481 if (oend > base) 1482 *brksize = oend - base; 1483 else 1484 *brksize = 0; 1485 } 1486 1487 return (0); 1488 bad: 1489 if (error == 0) 1490 error = EINVAL; 1491 return (error); 1492 } 1493 1494 int 1495 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1496 rlim64_t rlimit, cred_t *credp) 1497 { 1498 Note note; 1499 int error; 1500 1501 bzero(¬e, sizeof (note)); 1502 bcopy("CORE", note.name, 4); 1503 note.nhdr.n_type = type; 1504 /* 1505 * The System V ABI states that n_namesz must be the length of the 1506 * string that follows the Nhdr structure including the terminating 1507 * null. The ABI also specifies that sufficient padding should be 1508 * included so that the description that follows the name string 1509 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1510 * respectively. However, since this change was not made correctly 1511 * at the time of the 64-bit port, both 32- and 64-bit binaries 1512 * descriptions are only guaranteed to begin on a 4-byte boundary. 1513 */ 1514 note.nhdr.n_namesz = 5; 1515 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1516 1517 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1518 sizeof (note), rlimit, credp)) 1519 return (error); 1520 1521 *offsetp += sizeof (note); 1522 1523 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1524 note.nhdr.n_descsz, rlimit, credp)) 1525 return (error); 1526 1527 *offsetp += note.nhdr.n_descsz; 1528 return (0); 1529 } 1530 1531 /* 1532 * Copy the section data from one vnode to the section of another vnode. 1533 */ 1534 static void 1535 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1536 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1537 { 1538 ssize_t resid; 1539 size_t len, n = src->sh_size; 1540 offset_t off = 0; 1541 1542 while (n != 0) { 1543 len = MIN(size, n); 1544 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1545 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1546 resid >= len || 1547 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1548 buf, len - resid, rlimit, credp) != 0) { 1549 dst->sh_size = 0; 1550 dst->sh_offset = 0; 1551 return; 1552 } 1553 1554 ASSERT(n >= len - resid); 1555 1556 n -= len - resid; 1557 off += len - resid; 1558 } 1559 1560 *doffset += src->sh_size; 1561 } 1562 1563 #ifdef _ELF32_COMPAT 1564 extern size_t elf_datasz_max; 1565 #else 1566 size_t elf_datasz_max = 1 * 1024 * 1024; 1567 #endif 1568 1569 /* 1570 * This function processes mappings that correspond to load objects to 1571 * examine their respective sections for elfcore(). It's called once with 1572 * v set to NULL to count the number of sections that we're going to need 1573 * and then again with v set to some allocated buffer that we fill in with 1574 * all the section data. 1575 */ 1576 static int 1577 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1578 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1579 { 1580 vnode_t *lastvp = NULL; 1581 struct seg *seg; 1582 int i, j; 1583 void *data = NULL; 1584 size_t datasz = 0; 1585 shstrtab_t shstrtab; 1586 struct as *as = p->p_as; 1587 int error = 0; 1588 1589 if (v != NULL) 1590 shstrtab_init(&shstrtab); 1591 1592 i = 1; 1593 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1594 uint_t prot; 1595 vnode_t *mvp; 1596 void *tmp = NULL; 1597 caddr_t saddr = seg->s_base; 1598 caddr_t naddr; 1599 caddr_t eaddr; 1600 size_t segsize; 1601 1602 Ehdr ehdr; 1603 int nshdrs, shstrndx, nphdrs; 1604 caddr_t shbase; 1605 ssize_t shsize; 1606 char *shstrbase; 1607 ssize_t shstrsize; 1608 1609 Shdr *shdr; 1610 const char *name; 1611 size_t sz; 1612 uintptr_t off; 1613 1614 int ctf_ndx = 0; 1615 int symtab_ndx = 0; 1616 1617 /* 1618 * Since we're just looking for text segments of load 1619 * objects, we only care about the protection bits; we don't 1620 * care about the actual size of the segment so we use the 1621 * reserved size. If the segment's size is zero, there's 1622 * something fishy going on so we ignore this segment. 1623 */ 1624 if (seg->s_ops != &segvn_ops || 1625 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1626 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1627 (segsize = pr_getsegsize(seg, 1)) == 0) 1628 continue; 1629 1630 eaddr = saddr + segsize; 1631 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1632 pr_getprot_done(&tmp); 1633 1634 /* 1635 * Skip this segment unless the protection bits look like 1636 * what we'd expect for a text segment. 1637 */ 1638 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1639 continue; 1640 1641 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1642 &nphdrs) != 0 || 1643 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1644 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1645 continue; 1646 1647 off = ehdr.e_shentsize; 1648 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1649 Shdr *symtab = NULL, *strtab; 1650 1651 shdr = (Shdr *)(shbase + off); 1652 1653 if (shdr->sh_name >= shstrsize) 1654 continue; 1655 1656 name = shstrbase + shdr->sh_name; 1657 1658 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1659 if ((content & CC_CONTENT_CTF) == 0 || 1660 ctf_ndx != 0) 1661 continue; 1662 1663 if (shdr->sh_link > 0 && 1664 shdr->sh_link < nshdrs) { 1665 symtab = (Shdr *)(shbase + 1666 shdr->sh_link * ehdr.e_shentsize); 1667 } 1668 1669 if (v != NULL && i < nv - 1) { 1670 if (shdr->sh_size > datasz && 1671 shdr->sh_size <= elf_datasz_max) { 1672 if (data != NULL) 1673 kmem_free(data, datasz); 1674 1675 datasz = shdr->sh_size; 1676 data = kmem_alloc(datasz, 1677 KM_SLEEP); 1678 } 1679 1680 v[i].sh_name = shstrtab_ndx(&shstrtab, 1681 STR_CTF); 1682 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1683 v[i].sh_type = SHT_PROGBITS; 1684 v[i].sh_addralign = 4; 1685 *doffsetp = roundup(*doffsetp, 1686 v[i].sh_addralign); 1687 v[i].sh_offset = *doffsetp; 1688 v[i].sh_size = shdr->sh_size; 1689 if (symtab == NULL) { 1690 v[i].sh_link = 0; 1691 } else if (symtab->sh_type == 1692 SHT_SYMTAB && 1693 symtab_ndx != 0) { 1694 v[i].sh_link = 1695 symtab_ndx; 1696 } else { 1697 v[i].sh_link = i + 1; 1698 } 1699 1700 copy_scn(shdr, mvp, &v[i], vp, 1701 doffsetp, data, datasz, credp, 1702 rlimit); 1703 } 1704 1705 ctf_ndx = i++; 1706 1707 /* 1708 * We've already dumped the symtab. 1709 */ 1710 if (symtab != NULL && 1711 symtab->sh_type == SHT_SYMTAB && 1712 symtab_ndx != 0) 1713 continue; 1714 1715 } else if (strcmp(name, 1716 shstrtab_data[STR_SYMTAB]) == 0) { 1717 if ((content & CC_CONTENT_SYMTAB) == 0 || 1718 symtab != 0) 1719 continue; 1720 1721 symtab = shdr; 1722 } 1723 1724 if (symtab != NULL) { 1725 if ((symtab->sh_type != SHT_DYNSYM && 1726 symtab->sh_type != SHT_SYMTAB) || 1727 symtab->sh_link == 0 || 1728 symtab->sh_link >= nshdrs) 1729 continue; 1730 1731 strtab = (Shdr *)(shbase + 1732 symtab->sh_link * ehdr.e_shentsize); 1733 1734 if (strtab->sh_type != SHT_STRTAB) 1735 continue; 1736 1737 if (v != NULL && i < nv - 2) { 1738 sz = MAX(symtab->sh_size, 1739 strtab->sh_size); 1740 if (sz > datasz && 1741 sz <= elf_datasz_max) { 1742 if (data != NULL) 1743 kmem_free(data, datasz); 1744 1745 datasz = sz; 1746 data = kmem_alloc(datasz, 1747 KM_SLEEP); 1748 } 1749 1750 if (symtab->sh_type == SHT_DYNSYM) { 1751 v[i].sh_name = shstrtab_ndx( 1752 &shstrtab, STR_DYNSYM); 1753 v[i + 1].sh_name = shstrtab_ndx( 1754 &shstrtab, STR_DYNSTR); 1755 } else { 1756 v[i].sh_name = shstrtab_ndx( 1757 &shstrtab, STR_SYMTAB); 1758 v[i + 1].sh_name = shstrtab_ndx( 1759 &shstrtab, STR_STRTAB); 1760 } 1761 1762 v[i].sh_type = symtab->sh_type; 1763 v[i].sh_addr = symtab->sh_addr; 1764 if (ehdr.e_type == ET_DYN || 1765 v[i].sh_addr == 0) 1766 v[i].sh_addr += 1767 (Addr)(uintptr_t)saddr; 1768 v[i].sh_addralign = 1769 symtab->sh_addralign; 1770 *doffsetp = roundup(*doffsetp, 1771 v[i].sh_addralign); 1772 v[i].sh_offset = *doffsetp; 1773 v[i].sh_size = symtab->sh_size; 1774 v[i].sh_link = i + 1; 1775 v[i].sh_entsize = symtab->sh_entsize; 1776 v[i].sh_info = symtab->sh_info; 1777 1778 copy_scn(symtab, mvp, &v[i], vp, 1779 doffsetp, data, datasz, credp, 1780 rlimit); 1781 1782 v[i + 1].sh_type = SHT_STRTAB; 1783 v[i + 1].sh_flags = SHF_STRINGS; 1784 v[i + 1].sh_addr = symtab->sh_addr; 1785 if (ehdr.e_type == ET_DYN || 1786 v[i + 1].sh_addr == 0) 1787 v[i + 1].sh_addr += 1788 (Addr)(uintptr_t)saddr; 1789 v[i + 1].sh_addralign = 1790 strtab->sh_addralign; 1791 *doffsetp = roundup(*doffsetp, 1792 v[i + 1].sh_addralign); 1793 v[i + 1].sh_offset = *doffsetp; 1794 v[i + 1].sh_size = strtab->sh_size; 1795 1796 copy_scn(strtab, mvp, &v[i + 1], vp, 1797 doffsetp, data, datasz, credp, 1798 rlimit); 1799 } 1800 1801 if (symtab->sh_type == SHT_SYMTAB) 1802 symtab_ndx = i; 1803 i += 2; 1804 } 1805 } 1806 1807 kmem_free(shstrbase, shstrsize); 1808 kmem_free(shbase, shsize); 1809 1810 lastvp = mvp; 1811 } 1812 1813 if (v == NULL) { 1814 if (i == 1) 1815 *nshdrsp = 0; 1816 else 1817 *nshdrsp = i + 1; 1818 goto done; 1819 } 1820 1821 if (i != nv - 1) { 1822 cmn_err(CE_WARN, "elfcore: core dump failed for " 1823 "process %d; address space is changing", p->p_pid); 1824 error = EIO; 1825 goto done; 1826 } 1827 1828 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1829 v[i].sh_size = shstrtab_size(&shstrtab); 1830 v[i].sh_addralign = 1; 1831 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1832 v[i].sh_offset = *doffsetp; 1833 v[i].sh_flags = SHF_STRINGS; 1834 v[i].sh_type = SHT_STRTAB; 1835 1836 if (v[i].sh_size > datasz) { 1837 if (data != NULL) 1838 kmem_free(data, datasz); 1839 1840 datasz = v[i].sh_size; 1841 data = kmem_alloc(datasz, 1842 KM_SLEEP); 1843 } 1844 1845 shstrtab_dump(&shstrtab, data); 1846 1847 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1848 data, v[i].sh_size, rlimit, credp)) != 0) 1849 goto done; 1850 1851 *doffsetp += v[i].sh_size; 1852 1853 done: 1854 if (data != NULL) 1855 kmem_free(data, datasz); 1856 1857 return (error); 1858 } 1859 1860 int 1861 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1862 core_content_t content) 1863 { 1864 offset_t poffset, soffset; 1865 Off doffset; 1866 int error, i, nphdrs, nshdrs; 1867 int overflow = 0; 1868 struct seg *seg; 1869 struct as *as = p->p_as; 1870 union { 1871 Ehdr ehdr; 1872 Phdr phdr[1]; 1873 Shdr shdr[1]; 1874 } *bigwad; 1875 size_t bigsize; 1876 size_t phdrsz, shdrsz; 1877 Ehdr *ehdr; 1878 Phdr *v; 1879 caddr_t brkbase; 1880 size_t brksize; 1881 caddr_t stkbase; 1882 size_t stksize; 1883 int ntries = 0; 1884 klwp_t *lwp = ttolwp(curthread); 1885 1886 top: 1887 /* 1888 * Make sure we have everything we need (registers, etc.). 1889 * All other lwps have already stopped and are in an orderly state. 1890 */ 1891 ASSERT(p == ttoproc(curthread)); 1892 prstop(0, 0); 1893 1894 AS_LOCK_ENTER(as, RW_WRITER); 1895 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1896 1897 /* 1898 * Count the number of section headers we're going to need. 1899 */ 1900 nshdrs = 0; 1901 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1902 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1903 NULL, &nshdrs); 1904 } 1905 AS_LOCK_EXIT(as); 1906 1907 ASSERT(nshdrs == 0 || nshdrs > 1); 1908 1909 /* 1910 * The core file contents may required zero section headers, but if 1911 * we overflow the 16 bits allotted to the program header count in 1912 * the ELF header, we'll need that program header at index zero. 1913 */ 1914 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1915 nshdrs = 1; 1916 1917 phdrsz = nphdrs * sizeof (Phdr); 1918 shdrsz = nshdrs * sizeof (Shdr); 1919 1920 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1921 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1922 1923 ehdr = &bigwad->ehdr; 1924 bzero(ehdr, sizeof (*ehdr)); 1925 1926 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1927 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1928 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1929 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1930 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1931 ehdr->e_type = ET_CORE; 1932 1933 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1934 1935 #if defined(__sparc) 1936 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1937 ehdr->e_machine = EM_SPARC; 1938 #elif defined(__i386) || defined(__i386_COMPAT) 1939 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1940 ehdr->e_machine = EM_386; 1941 #else 1942 #error "no recognized machine type is defined" 1943 #endif 1944 1945 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1946 1947 #if defined(__sparc) 1948 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1949 ehdr->e_machine = EM_SPARCV9; 1950 #elif defined(__amd64) 1951 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1952 ehdr->e_machine = EM_AMD64; 1953 #else 1954 #error "no recognized 64-bit machine type is defined" 1955 #endif 1956 1957 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1958 1959 /* 1960 * If the count of program headers or section headers or the index 1961 * of the section string table can't fit in the mere 16 bits 1962 * shortsightedly allotted to them in the ELF header, we use the 1963 * extended formats and put the real values in the section header 1964 * as index 0. 1965 */ 1966 ehdr->e_version = EV_CURRENT; 1967 ehdr->e_ehsize = sizeof (Ehdr); 1968 1969 if (nphdrs >= PN_XNUM) 1970 ehdr->e_phnum = PN_XNUM; 1971 else 1972 ehdr->e_phnum = (unsigned short)nphdrs; 1973 1974 ehdr->e_phoff = sizeof (Ehdr); 1975 ehdr->e_phentsize = sizeof (Phdr); 1976 1977 if (nshdrs > 0) { 1978 if (nshdrs >= SHN_LORESERVE) 1979 ehdr->e_shnum = 0; 1980 else 1981 ehdr->e_shnum = (unsigned short)nshdrs; 1982 1983 if (nshdrs - 1 >= SHN_LORESERVE) 1984 ehdr->e_shstrndx = SHN_XINDEX; 1985 else 1986 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 1987 1988 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 1989 ehdr->e_shentsize = sizeof (Shdr); 1990 } 1991 1992 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 1993 sizeof (Ehdr), rlimit, credp)) 1994 goto done; 1995 1996 poffset = sizeof (Ehdr); 1997 soffset = sizeof (Ehdr) + phdrsz; 1998 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 1999 2000 v = &bigwad->phdr[0]; 2001 bzero(v, phdrsz); 2002 2003 setup_old_note_header(&v[0], p); 2004 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 2005 doffset += v[0].p_filesz; 2006 2007 setup_note_header(&v[1], p); 2008 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 2009 doffset += v[1].p_filesz; 2010 2011 mutex_enter(&p->p_lock); 2012 2013 brkbase = p->p_brkbase; 2014 brksize = p->p_brksize; 2015 2016 stkbase = p->p_usrstack - p->p_stksize; 2017 stksize = p->p_stksize; 2018 2019 mutex_exit(&p->p_lock); 2020 2021 AS_LOCK_ENTER(as, RW_WRITER); 2022 i = 2; 2023 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 2024 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 2025 caddr_t saddr, naddr; 2026 void *tmp = NULL; 2027 extern struct seg_ops segspt_shmops; 2028 2029 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 2030 uint_t prot; 2031 size_t size; 2032 int type; 2033 vnode_t *mvp; 2034 2035 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 2036 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 2037 if ((size = (size_t)(naddr - saddr)) == 0) 2038 continue; 2039 if (i == nphdrs) { 2040 overflow++; 2041 continue; 2042 } 2043 v[i].p_type = PT_LOAD; 2044 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 2045 v[i].p_memsz = size; 2046 if (prot & PROT_READ) 2047 v[i].p_flags |= PF_R; 2048 if (prot & PROT_WRITE) 2049 v[i].p_flags |= PF_W; 2050 if (prot & PROT_EXEC) 2051 v[i].p_flags |= PF_X; 2052 2053 /* 2054 * Figure out which mappings to include in the core. 2055 */ 2056 type = SEGOP_GETTYPE(seg, saddr); 2057 2058 if (saddr == stkbase && size == stksize) { 2059 if (!(content & CC_CONTENT_STACK)) 2060 goto exclude; 2061 2062 } else if (saddr == brkbase && size == brksize) { 2063 if (!(content & CC_CONTENT_HEAP)) 2064 goto exclude; 2065 2066 } else if (seg->s_ops == &segspt_shmops) { 2067 if (type & MAP_NORESERVE) { 2068 if (!(content & CC_CONTENT_DISM)) 2069 goto exclude; 2070 } else { 2071 if (!(content & CC_CONTENT_ISM)) 2072 goto exclude; 2073 } 2074 2075 } else if (seg->s_ops != &segvn_ops) { 2076 goto exclude; 2077 2078 } else if (type & MAP_SHARED) { 2079 if (shmgetid(p, saddr) != SHMID_NONE) { 2080 if (!(content & CC_CONTENT_SHM)) 2081 goto exclude; 2082 2083 } else if (SEGOP_GETVP(seg, seg->s_base, 2084 &mvp) != 0 || mvp == NULL || 2085 mvp->v_type != VREG) { 2086 if (!(content & CC_CONTENT_SHANON)) 2087 goto exclude; 2088 2089 } else { 2090 if (!(content & CC_CONTENT_SHFILE)) 2091 goto exclude; 2092 } 2093 2094 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 2095 mvp == NULL || mvp->v_type != VREG) { 2096 if (!(content & CC_CONTENT_ANON)) 2097 goto exclude; 2098 2099 } else if (prot == (PROT_READ | PROT_EXEC)) { 2100 if (!(content & CC_CONTENT_TEXT)) 2101 goto exclude; 2102 2103 } else if (prot == PROT_READ) { 2104 if (!(content & CC_CONTENT_RODATA)) 2105 goto exclude; 2106 2107 } else { 2108 if (!(content & CC_CONTENT_DATA)) 2109 goto exclude; 2110 } 2111 2112 doffset = roundup(doffset, sizeof (Word)); 2113 v[i].p_offset = doffset; 2114 v[i].p_filesz = size; 2115 doffset += size; 2116 exclude: 2117 i++; 2118 } 2119 ASSERT(tmp == NULL); 2120 } 2121 AS_LOCK_EXIT(as); 2122 2123 if (overflow || i != nphdrs) { 2124 if (ntries++ == 0) { 2125 kmem_free(bigwad, bigsize); 2126 overflow = 0; 2127 goto top; 2128 } 2129 cmn_err(CE_WARN, "elfcore: core dump failed for " 2130 "process %d; address space is changing", p->p_pid); 2131 error = EIO; 2132 goto done; 2133 } 2134 2135 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 2136 v, phdrsz, rlimit, credp)) != 0) 2137 goto done; 2138 2139 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 2140 credp)) != 0) 2141 goto done; 2142 2143 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 2144 credp, content)) != 0) 2145 goto done; 2146 2147 for (i = 2; i < nphdrs; i++) { 2148 prkillinfo_t killinfo; 2149 sigqueue_t *sq; 2150 int sig, j; 2151 2152 if (v[i].p_filesz == 0) 2153 continue; 2154 2155 /* 2156 * If dumping out this segment fails, rather than failing 2157 * the core dump entirely, we reset the size of the mapping 2158 * to zero to indicate that the data is absent from the core 2159 * file and or in the PF_SUNW_FAILURE flag to differentiate 2160 * this from mappings that were excluded due to the core file 2161 * content settings. 2162 */ 2163 if ((error = core_seg(p, vp, v[i].p_offset, 2164 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2165 rlimit, credp)) == 0) { 2166 continue; 2167 } 2168 2169 if ((sig = lwp->lwp_cursig) == 0) { 2170 /* 2171 * We failed due to something other than a signal. 2172 * Since the space reserved for the segment is now 2173 * unused, we stash the errno in the first four 2174 * bytes. This undocumented interface will let us 2175 * understand the nature of the failure. 2176 */ 2177 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2178 &error, sizeof (error), rlimit, credp); 2179 2180 v[i].p_filesz = 0; 2181 v[i].p_flags |= PF_SUNW_FAILURE; 2182 if ((error = core_write(vp, UIO_SYSSPACE, 2183 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2184 rlimit, credp)) != 0) 2185 goto done; 2186 2187 continue; 2188 } 2189 2190 /* 2191 * We took a signal. We want to abort the dump entirely, but 2192 * we also want to indicate what failed and why. We therefore 2193 * use the space reserved for the first failing segment to 2194 * write our error (which, for purposes of compatability with 2195 * older core dump readers, we set to EINTR) followed by any 2196 * siginfo associated with the signal. 2197 */ 2198 bzero(&killinfo, sizeof (killinfo)); 2199 killinfo.prk_error = EINTR; 2200 2201 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2202 2203 if (sq != NULL) { 2204 bcopy(&sq->sq_info, &killinfo.prk_info, 2205 sizeof (sq->sq_info)); 2206 } else { 2207 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2208 killinfo.prk_info.si_code = SI_NOINFO; 2209 } 2210 2211 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2212 /* 2213 * If this is a 32-bit process, we need to translate from the 2214 * native siginfo to the 32-bit variant. (Core readers must 2215 * always have the same data model as their target or must 2216 * be aware of -- and compensate for -- data model differences.) 2217 */ 2218 if (curproc->p_model == DATAMODEL_ILP32) { 2219 siginfo32_t si32; 2220 2221 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2222 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2223 } 2224 #endif 2225 2226 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2227 &killinfo, sizeof (killinfo), rlimit, credp); 2228 2229 /* 2230 * For the segment on which we took the signal, indicate that 2231 * its data now refers to a siginfo. 2232 */ 2233 v[i].p_filesz = 0; 2234 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2235 PF_SUNW_SIGINFO; 2236 2237 /* 2238 * And for every other segment, indicate that its absence 2239 * is due to a signal. 2240 */ 2241 for (j = i + 1; j < nphdrs; j++) { 2242 v[j].p_filesz = 0; 2243 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2244 } 2245 2246 /* 2247 * Finally, write out our modified program headers. 2248 */ 2249 if ((error = core_write(vp, UIO_SYSSPACE, 2250 poffset + sizeof (v[i]) * i, &v[i], 2251 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2252 goto done; 2253 2254 break; 2255 } 2256 2257 if (nshdrs > 0) { 2258 bzero(&bigwad->shdr[0], shdrsz); 2259 2260 if (nshdrs >= SHN_LORESERVE) 2261 bigwad->shdr[0].sh_size = nshdrs; 2262 2263 if (nshdrs - 1 >= SHN_LORESERVE) 2264 bigwad->shdr[0].sh_link = nshdrs - 1; 2265 2266 if (nphdrs >= PN_XNUM) 2267 bigwad->shdr[0].sh_info = nphdrs; 2268 2269 if (nshdrs > 1) { 2270 AS_LOCK_ENTER(as, RW_WRITER); 2271 if ((error = process_scns(content, p, credp, vp, 2272 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2273 NULL)) != 0) { 2274 AS_LOCK_EXIT(as); 2275 goto done; 2276 } 2277 AS_LOCK_EXIT(as); 2278 } 2279 2280 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2281 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2282 goto done; 2283 } 2284 2285 done: 2286 kmem_free(bigwad, bigsize); 2287 return (error); 2288 } 2289 2290 #ifndef _ELF32_COMPAT 2291 2292 static struct execsw esw = { 2293 #ifdef _LP64 2294 elf64magicstr, 2295 #else /* _LP64 */ 2296 elf32magicstr, 2297 #endif /* _LP64 */ 2298 0, 2299 5, 2300 elfexec, 2301 elfcore 2302 }; 2303 2304 static struct modlexec modlexec = { 2305 &mod_execops, "exec module for elf", &esw 2306 }; 2307 2308 #ifdef _LP64 2309 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2310 intpdata_t *idatap, int level, long *execsz, 2311 int setid, caddr_t exec_file, cred_t *cred, 2312 int brand_action); 2313 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2314 rlim64_t rlimit, int sig, core_content_t content); 2315 2316 static struct execsw esw32 = { 2317 elf32magicstr, 2318 0, 2319 5, 2320 elf32exec, 2321 elf32core 2322 }; 2323 2324 static struct modlexec modlexec32 = { 2325 &mod_execops, "32-bit exec module for elf", &esw32 2326 }; 2327 #endif /* _LP64 */ 2328 2329 static struct modlinkage modlinkage = { 2330 MODREV_1, 2331 (void *)&modlexec, 2332 #ifdef _LP64 2333 (void *)&modlexec32, 2334 #endif /* _LP64 */ 2335 NULL 2336 }; 2337 2338 int 2339 _init(void) 2340 { 2341 return (mod_install(&modlinkage)); 2342 } 2343 2344 int 2345 _fini(void) 2346 { 2347 return (mod_remove(&modlinkage)); 2348 } 2349 2350 int 2351 _info(struct modinfo *modinfop) 2352 { 2353 return (mod_info(&modlinkage, modinfop)); 2354 } 2355 2356 #endif /* !_ELF32_COMPAT */