1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 30 /* All Rights Reserved */ 31 32 /* 33 * Portions of this source code were derived from Berkeley 4.3 BSD 34 * under license from the Regents of the University of California. 35 */ 36 37 /* 38 * UNIX machine dependent virtual memory support. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/user.h> 45 #include <sys/proc.h> 46 #include <sys/kmem.h> 47 #include <sys/vmem.h> 48 #include <sys/buf.h> 49 #include <sys/cpuvar.h> 50 #include <sys/lgrp.h> 51 #include <sys/disp.h> 52 #include <sys/vm.h> 53 #include <sys/mman.h> 54 #include <sys/vnode.h> 55 #include <sys/cred.h> 56 #include <sys/exec.h> 57 #include <sys/exechdr.h> 58 #include <sys/debug.h> 59 #include <sys/vmsystm.h> 60 #include <sys/swap.h> 61 #include <sys/dumphdr.h> 62 #include <sys/random.h> 63 64 #include <vm/hat.h> 65 #include <vm/as.h> 66 #include <vm/seg.h> 67 #include <vm/seg_kp.h> 68 #include <vm/seg_vn.h> 69 #include <vm/page.h> 70 #include <vm/seg_kmem.h> 71 #include <vm/seg_kpm.h> 72 #include <vm/vm_dep.h> 73 74 #include <sys/cpu.h> 75 #include <sys/vm_machparam.h> 76 #include <sys/memlist.h> 77 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 78 #include <vm/hat_i86.h> 79 #include <sys/x86_archext.h> 80 #include <sys/elf_386.h> 81 #include <sys/cmn_err.h> 82 #include <sys/archsystm.h> 83 #include <sys/machsystm.h> 84 #include <sys/secflags.h> 85 86 #include <sys/vtrace.h> 87 #include <sys/ddidmareq.h> 88 #include <sys/promif.h> 89 #include <sys/memnode.h> 90 #include <sys/stack.h> 91 #include <util/qsort.h> 92 #include <sys/taskq.h> 93 94 #ifdef __xpv 95 96 #include <sys/hypervisor.h> 97 #include <sys/xen_mmu.h> 98 #include <sys/balloon_impl.h> 99 100 /* 101 * domain 0 pages usable for DMA are kept pre-allocated and kept in 102 * distinct lists, ordered by increasing mfn. 103 */ 104 static kmutex_t io_pool_lock; 105 static kmutex_t contig_list_lock; 106 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 107 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 108 static long io_pool_cnt; 109 static long io_pool_cnt_max = 0; 110 #define DEFAULT_IO_POOL_MIN 128 111 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 112 static long io_pool_cnt_lowater = 0; 113 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 114 static long io_pool_shrinks; /* how many times did we really shrink */ 115 static long io_pool_grows; /* how many times did we grow */ 116 static mfn_t start_mfn = 1; 117 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 118 119 static int create_contig_pfnlist(uint_t); 120 121 /* 122 * percentage of phys mem to hold in the i/o pool 123 */ 124 #define DEFAULT_IO_POOL_PCT 2 125 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 126 static void page_io_pool_sub(page_t **, page_t *, page_t *); 127 int ioalloc_dbg = 0; 128 129 #endif /* __xpv */ 130 131 uint_t vac_colors = 1; 132 133 int largepagesupport = 0; 134 extern uint_t page_create_new; 135 extern uint_t page_create_exists; 136 extern uint_t page_create_putbacks; 137 /* 138 * Allow users to disable the kernel's use of SSE. 139 */ 140 extern int use_sse_pagecopy, use_sse_pagezero; 141 142 /* 143 * combined memory ranges from mnode and memranges[] to manage single 144 * mnode/mtype dimension in the page lists. 145 */ 146 typedef struct { 147 pfn_t mnr_pfnlo; 148 pfn_t mnr_pfnhi; 149 int mnr_mnode; 150 int mnr_memrange; /* index into memranges[] */ 151 int mnr_next; /* next lower PA mnoderange */ 152 int mnr_exists; 153 /* maintain page list stats */ 154 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 155 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */ 156 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */ 157 #ifdef DEBUG 158 struct mnr_mts { /* mnode/mtype szc stats */ 159 pgcnt_t mnr_mts_pgcnt; 160 int mnr_mts_colors; 161 pgcnt_t *mnr_mtsc_pgcnt; 162 } *mnr_mts; 163 #endif 164 } mnoderange_t; 165 166 #define MEMRANGEHI(mtype) \ 167 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 168 #define MEMRANGELO(mtype) (memranges[mtype]) 169 170 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt) 171 172 /* 173 * As the PC architecture evolved memory up was clumped into several 174 * ranges for various historical I/O devices to do DMA. 175 * < 16Meg - ISA bus 176 * < 2Gig - ??? 177 * < 4Gig - PCI bus or drivers that don't understand PAE mode 178 * 179 * These are listed in reverse order, so that we can skip over unused 180 * ranges on machines with small memories. 181 * 182 * For now under the Hypervisor, we'll only ever have one memrange. 183 */ 184 #define PFN_4GIG 0x100000 185 #define PFN_16MEG 0x1000 186 /* Indices into the memory range (arch_memranges) array. */ 187 #define MRI_4G 0 188 #define MRI_2G 1 189 #define MRI_16M 2 190 #define MRI_0 3 191 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 192 PFN_4GIG, /* pfn range for 4G and above */ 193 0x80000, /* pfn range for 2G-4G */ 194 PFN_16MEG, /* pfn range for 16M-2G */ 195 0x00000, /* pfn range for 0-16M */ 196 }; 197 pfn_t *memranges = &arch_memranges[0]; 198 int nranges = NUM_MEM_RANGES; 199 200 /* 201 * This combines mem_node_config and memranges into one data 202 * structure to be used for page list management. 203 */ 204 mnoderange_t *mnoderanges; 205 int mnoderangecnt; 206 int mtype4g; 207 int mtype16m; 208 int mtypetop; /* index of highest pfn'ed mnoderange */ 209 210 /* 211 * 4g memory management variables for systems with more than 4g of memory: 212 * 213 * physical memory below 4g is required for 32bit dma devices and, currently, 214 * for kmem memory. On systems with more than 4g of memory, the pool of memory 215 * below 4g can be depleted without any paging activity given that there is 216 * likely to be sufficient memory above 4g. 217 * 218 * physmax4g is set true if the largest pfn is over 4g. The rest of the 219 * 4g memory management code is enabled only when physmax4g is true. 220 * 221 * maxmem4g is the count of the maximum number of pages on the page lists 222 * with physical addresses below 4g. It can be a lot less then 4g given that 223 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 224 * agp aperture etc. 225 * 226 * freemem4g maintains the count of the number of available pages on the 227 * page lists with physical addresses below 4g. 228 * 229 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 230 * 6% (desfree4gshift = 4) of maxmem4g. 231 * 232 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 233 * and the amount of physical memory above 4g is greater than freemem4g. 234 * In this case, page_get_* routines will restrict below 4g allocations 235 * for requests that don't specifically require it. 236 */ 237 238 #define DESFREE4G (maxmem4g >> desfree4gshift) 239 240 #define RESTRICT4G_ALLOC \ 241 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 242 243 static pgcnt_t maxmem4g; 244 static pgcnt_t freemem4g; 245 static int physmax4g; 246 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 247 248 /* 249 * 16m memory management: 250 * 251 * reserve some amount of physical memory below 16m for legacy devices. 252 * 253 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 254 * 16m or if the 16m pool drops below DESFREE16M. 255 * 256 * In this case, general page allocations via page_get_{free,cache}list 257 * routines will be restricted from allocating from the 16m pool. Allocations 258 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 259 * are not restricted. 260 */ 261 262 #define FREEMEM16M MTYPE_FREEMEM(mtype16m) 263 #define DESFREE16M desfree16m 264 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 265 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \ 266 ((freemem >= (FREEMEM16M)) || \ 267 (FREEMEM16M < (DESFREE16M + pgcnt)))) 268 269 static pgcnt_t desfree16m = 0x380; 270 271 /* 272 * This can be patched via /etc/system to allow old non-PAE aware device 273 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 274 */ 275 int restricted_kmemalloc = 0; 276 277 #ifdef VM_STATS 278 struct { 279 ulong_t pga_alloc; 280 ulong_t pga_notfullrange; 281 ulong_t pga_nulldmaattr; 282 ulong_t pga_allocok; 283 ulong_t pga_allocfailed; 284 ulong_t pgma_alloc; 285 ulong_t pgma_allocok; 286 ulong_t pgma_allocfailed; 287 ulong_t pgma_allocempty; 288 } pga_vmstats; 289 #endif 290 291 uint_t mmu_page_sizes; 292 293 /* How many page sizes the users can see */ 294 uint_t mmu_exported_page_sizes; 295 296 /* page sizes that legacy applications can see */ 297 uint_t mmu_legacy_page_sizes; 298 299 /* 300 * Number of pages in 1 GB. Don't enable automatic large pages if we have 301 * fewer than this many pages. 302 */ 303 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 304 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 305 306 /* 307 * Maximum and default segment size tunables for user private 308 * and shared anon memory, and user text and initialized data. 309 * These can be patched via /etc/system to allow large pages 310 * to be used for mapping application private and shared anon memory. 311 */ 312 size_t mcntl0_lpsize = MMU_PAGESIZE; 313 size_t max_uheap_lpsize = MMU_PAGESIZE; 314 size_t default_uheap_lpsize = MMU_PAGESIZE; 315 size_t max_ustack_lpsize = MMU_PAGESIZE; 316 size_t default_ustack_lpsize = MMU_PAGESIZE; 317 size_t max_privmap_lpsize = MMU_PAGESIZE; 318 size_t max_uidata_lpsize = MMU_PAGESIZE; 319 size_t max_utext_lpsize = MMU_PAGESIZE; 320 size_t max_shm_lpsize = MMU_PAGESIZE; 321 322 323 /* 324 * initialized by page_coloring_init(). 325 */ 326 uint_t page_colors; 327 uint_t page_colors_mask; 328 uint_t page_coloring_shift; 329 int cpu_page_colors; 330 static uint_t l2_colors; 331 332 /* 333 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 334 * and page_colors are calculated from the l2 cache n-way set size. Within a 335 * mnode range, the page freelist and cachelist are hashed into bins based on 336 * color. This makes it easier to search for a page within a specific memory 337 * range. 338 */ 339 #define PAGE_COLORS_MIN 16 340 341 page_t ****page_freelists; 342 page_t ***page_cachelists; 343 344 345 /* 346 * Used by page layer to know about page sizes 347 */ 348 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 349 350 kmutex_t *fpc_mutex[NPC_MUTEX]; 351 kmutex_t *cpc_mutex[NPC_MUTEX]; 352 353 /* Lock to protect mnoderanges array for memory DR operations. */ 354 static kmutex_t mnoderange_lock; 355 356 /* 357 * Only let one thread at a time try to coalesce large pages, to 358 * prevent them from working against each other. 359 */ 360 static kmutex_t contig_lock; 361 #define CONTIG_LOCK() mutex_enter(&contig_lock); 362 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 363 364 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 365 366 /* 367 * Return the optimum page size for a given mapping 368 */ 369 /*ARGSUSED*/ 370 size_t 371 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 372 { 373 level_t l = 0; 374 size_t pgsz = MMU_PAGESIZE; 375 size_t max_lpsize; 376 uint_t mszc; 377 378 ASSERT(maptype != MAPPGSZ_VA); 379 380 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 381 return (MMU_PAGESIZE); 382 } 383 384 switch (maptype) { 385 case MAPPGSZ_HEAP: 386 case MAPPGSZ_STK: 387 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 388 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 389 if (max_lpsize == MMU_PAGESIZE) { 390 return (MMU_PAGESIZE); 391 } 392 if (len == 0) { 393 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 394 p->p_brksize - p->p_bssbase : p->p_stksize; 395 } 396 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 397 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 398 399 /* 400 * use the pages size that best fits len 401 */ 402 for (l = mmu.umax_page_level; l > 0; --l) { 403 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 404 continue; 405 } else { 406 pgsz = LEVEL_SIZE(l); 407 } 408 break; 409 } 410 411 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 412 p->p_stkpageszc); 413 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 414 pgsz = hw_page_array[mszc].hp_size; 415 } 416 return (pgsz); 417 418 case MAPPGSZ_ISM: 419 for (l = mmu.umax_page_level; l > 0; --l) { 420 if (len >= LEVEL_SIZE(l)) 421 return (LEVEL_SIZE(l)); 422 } 423 return (LEVEL_SIZE(0)); 424 } 425 return (pgsz); 426 } 427 428 static uint_t 429 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 430 size_t min_physmem) 431 { 432 caddr_t eaddr = addr + size; 433 uint_t szcvec = 0; 434 caddr_t raddr; 435 caddr_t readdr; 436 size_t pgsz; 437 int i; 438 439 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 440 return (0); 441 } 442 443 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 444 pgsz = page_get_pagesize(i); 445 if (pgsz > max_lpsize) { 446 continue; 447 } 448 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 449 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 450 if (raddr < addr || raddr >= readdr) { 451 continue; 452 } 453 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 454 continue; 455 } 456 /* 457 * Set szcvec to the remaining page sizes. 458 */ 459 szcvec = ((1 << (i + 1)) - 1) & ~1; 460 break; 461 } 462 return (szcvec); 463 } 464 465 /* 466 * Return a bit vector of large page size codes that 467 * can be used to map [addr, addr + len) region. 468 */ 469 /*ARGSUSED*/ 470 uint_t 471 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 472 int memcntl) 473 { 474 size_t max_lpsize = mcntl0_lpsize; 475 476 if (mmu.max_page_level == 0) 477 return (0); 478 479 if (flags & MAP_TEXT) { 480 if (!memcntl) 481 max_lpsize = max_utext_lpsize; 482 return (map_szcvec(addr, size, off, max_lpsize, 483 shm_lpg_min_physmem)); 484 485 } else if (flags & MAP_INITDATA) { 486 if (!memcntl) 487 max_lpsize = max_uidata_lpsize; 488 return (map_szcvec(addr, size, off, max_lpsize, 489 privm_lpg_min_physmem)); 490 491 } else if (type == MAPPGSZC_SHM) { 492 if (!memcntl) 493 max_lpsize = max_shm_lpsize; 494 return (map_szcvec(addr, size, off, max_lpsize, 495 shm_lpg_min_physmem)); 496 497 } else if (type == MAPPGSZC_HEAP) { 498 if (!memcntl) 499 max_lpsize = max_uheap_lpsize; 500 return (map_szcvec(addr, size, off, max_lpsize, 501 privm_lpg_min_physmem)); 502 503 } else if (type == MAPPGSZC_STACK) { 504 if (!memcntl) 505 max_lpsize = max_ustack_lpsize; 506 return (map_szcvec(addr, size, off, max_lpsize, 507 privm_lpg_min_physmem)); 508 509 } else { 510 if (!memcntl) 511 max_lpsize = max_privmap_lpsize; 512 return (map_szcvec(addr, size, off, max_lpsize, 513 privm_lpg_min_physmem)); 514 } 515 } 516 517 /* 518 * Handle a pagefault. 519 */ 520 faultcode_t 521 pagefault( 522 caddr_t addr, 523 enum fault_type type, 524 enum seg_rw rw, 525 int iskernel) 526 { 527 struct as *as; 528 struct hat *hat; 529 struct proc *p; 530 kthread_t *t; 531 faultcode_t res; 532 caddr_t base; 533 size_t len; 534 int err; 535 int mapped_red; 536 uintptr_t ea; 537 538 ASSERT_STACK_ALIGNED(); 539 540 if (INVALID_VADDR(addr)) 541 return (FC_NOMAP); 542 543 mapped_red = segkp_map_red(); 544 545 if (iskernel) { 546 as = &kas; 547 hat = as->a_hat; 548 } else { 549 t = curthread; 550 p = ttoproc(t); 551 as = p->p_as; 552 hat = as->a_hat; 553 } 554 555 /* 556 * Dispatch pagefault. 557 */ 558 res = as_fault(hat, as, addr, 1, type, rw); 559 560 /* 561 * If this isn't a potential unmapped hole in the user's 562 * UNIX data or stack segments, just return status info. 563 */ 564 if (res != FC_NOMAP || iskernel) 565 goto out; 566 567 /* 568 * Check to see if we happened to faulted on a currently unmapped 569 * part of the UNIX data or stack segments. If so, create a zfod 570 * mapping there and then try calling the fault routine again. 571 */ 572 base = p->p_brkbase; 573 len = p->p_brksize; 574 575 if (addr < base || addr >= base + len) { /* data seg? */ 576 base = (caddr_t)p->p_usrstack - p->p_stksize; 577 len = p->p_stksize; 578 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 579 /* not in either UNIX data or stack segments */ 580 res = FC_NOMAP; 581 goto out; 582 } 583 } 584 585 /* 586 * the rest of this function implements a 3.X 4.X 5.X compatibility 587 * This code is probably not needed anymore 588 */ 589 if (p->p_model == DATAMODEL_ILP32) { 590 591 /* expand the gap to the page boundaries on each side */ 592 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 593 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 594 len = ea - (uintptr_t)base; 595 596 as_rangelock(as); 597 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 598 0) { 599 err = as_map(as, base, len, segvn_create, zfod_argsp); 600 as_rangeunlock(as); 601 if (err) { 602 res = FC_MAKE_ERR(err); 603 goto out; 604 } 605 } else { 606 /* 607 * This page is already mapped by another thread after 608 * we returned from as_fault() above. We just fall 609 * through as_fault() below. 610 */ 611 as_rangeunlock(as); 612 } 613 614 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 615 } 616 617 out: 618 if (mapped_red) 619 segkp_unmap_red(); 620 621 return (res); 622 } 623 624 void 625 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 626 { 627 struct proc *p = curproc; 628 caddr_t userlimit = (flags & _MAP_LOW32) ? 629 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 630 631 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 632 } 633 634 /*ARGSUSED*/ 635 int 636 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 637 { 638 return (0); 639 } 640 641 /* 642 * The maximum amount a randomized mapping will be slewed. We should perhaps 643 * arrange things so these tunables can be separate for mmap, mmapobj, and 644 * ld.so 645 */ 646 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */ 647 648 /* 649 * map_addr_proc() is the routine called when the system is to 650 * choose an address for the user. We will pick an address 651 * range which is the highest available below userlimit. 652 * 653 * Every mapping will have a redzone of a single page on either side of 654 * the request. This is done to leave one page unmapped between segments. 655 * This is not required, but it's useful for the user because if their 656 * program strays across a segment boundary, it will catch a fault 657 * immediately making debugging a little easier. Currently the redzone 658 * is mandatory. 659 * 660 * addrp is a value/result parameter. 661 * On input it is a hint from the user to be used in a completely 662 * machine dependent fashion. We decide to completely ignore this hint. 663 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which 664 * must be some "power of two" multiple of pagesize. 665 * 666 * On output it is NULL if no address can be found in the current 667 * processes address space or else an address that is currently 668 * not mapped for len bytes with a page of red zone on either side. 669 * 670 * vacalign is not needed on x86 (it's for viturally addressed caches) 671 */ 672 /*ARGSUSED*/ 673 void 674 map_addr_proc( 675 caddr_t *addrp, 676 size_t len, 677 offset_t off, 678 int vacalign, 679 caddr_t userlimit, 680 struct proc *p, 681 uint_t flags) 682 { 683 struct as *as = p->p_as; 684 caddr_t addr; 685 caddr_t base; 686 size_t slen; 687 size_t align_amount; 688 689 ASSERT32(userlimit == as->a_userlimit); 690 691 base = p->p_brkbase; 692 #if defined(__amd64) 693 /* 694 * XX64 Yes, this needs more work. 695 */ 696 if (p->p_model == DATAMODEL_NATIVE) { 697 if (userlimit < as->a_userlimit) { 698 /* 699 * This happens when a program wants to map 700 * something in a range that's accessible to a 701 * program in a smaller address space. For example, 702 * a 64-bit program calling mmap32(2) to guarantee 703 * that the returned address is below 4Gbytes. 704 */ 705 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 706 707 if (userlimit > base) 708 slen = userlimit - base; 709 else { 710 *addrp = NULL; 711 return; 712 } 713 } else { 714 /* 715 * XX64 This layout is probably wrong .. but in 716 * the event we make the amd64 address space look 717 * like sparcv9 i.e. with the stack -above- the 718 * heap, this bit of code might even be correct. 719 */ 720 slen = p->p_usrstack - base - 721 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 722 } 723 } else 724 #endif 725 slen = userlimit - base; 726 727 /* Make len be a multiple of PAGESIZE */ 728 len = (len + PAGEOFFSET) & PAGEMASK; 729 730 /* 731 * figure out what the alignment should be 732 * 733 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 734 */ 735 if (len <= ELF_386_MAXPGSZ) { 736 /* 737 * Align virtual addresses to ensure that ELF shared libraries 738 * are mapped with the appropriate alignment constraints by 739 * the run-time linker. 740 */ 741 align_amount = ELF_386_MAXPGSZ; 742 } else { 743 /* 744 * For 32-bit processes, only those which have specified 745 * MAP_ALIGN and an addr will be aligned on a larger page size. 746 * Not doing so can potentially waste up to 1G of process 747 * address space. 748 */ 749 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 : 750 mmu.umax_page_level; 751 752 while (lvl && len < LEVEL_SIZE(lvl)) 753 --lvl; 754 755 align_amount = LEVEL_SIZE(lvl); 756 } 757 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 758 align_amount = (uintptr_t)*addrp; 759 760 ASSERT(ISP2(align_amount)); 761 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 762 763 off = off & (align_amount - 1); 764 765 /* 766 * Look for a large enough hole starting below userlimit. 767 * After finding it, use the upper part. 768 */ 769 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 770 PAGESIZE, off) == 0) { 771 caddr_t as_addr; 772 773 /* 774 * addr is the highest possible address to use since we have 775 * a PAGESIZE redzone at the beginning and end. 776 */ 777 addr = base + slen - (PAGESIZE + len); 778 as_addr = addr; 779 /* 780 * Round address DOWN to the alignment amount and 781 * add the offset in. 782 * If addr is greater than as_addr, len would not be large 783 * enough to include the redzone, so we must adjust down 784 * by the alignment amount. 785 */ 786 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 787 addr += (uintptr_t)off; 788 if (addr > as_addr) { 789 addr -= align_amount; 790 } 791 792 /* 793 * If randomization is requested, slew the allocation 794 * backwards, within the same gap, by a random amount. 795 */ 796 if (flags & _MAP_RANDOMIZE) { 797 uint32_t slew; 798 799 (void) random_get_pseudo_bytes((uint8_t *)&slew, 800 sizeof (slew)); 801 802 slew = slew % MIN(aslr_max_map_skew, (addr - base)); 803 addr -= P2ALIGN(slew, align_amount); 804 } 805 806 ASSERT(addr > base); 807 ASSERT(addr + len < base + slen); 808 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 809 ((uintptr_t)(off))); 810 *addrp = addr; 811 } else { 812 *addrp = NULL; /* no more virtual space */ 813 } 814 } 815 816 int valid_va_range_aligned_wraparound; 817 818 /* 819 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 820 * addresses at least "minlen" long, where the base of the range is at "off" 821 * phase from an "align" boundary and there is space for a "redzone"-sized 822 * redzone on either side of the range. On success, 1 is returned and *basep 823 * and *lenp are adjusted to describe the acceptable range (including 824 * the redzone). On failure, 0 is returned. 825 */ 826 /*ARGSUSED3*/ 827 int 828 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 829 size_t align, size_t redzone, size_t off) 830 { 831 uintptr_t hi, lo; 832 size_t tot_len; 833 834 ASSERT(align == 0 ? off == 0 : off < align); 835 ASSERT(ISP2(align)); 836 ASSERT(align == 0 || align >= PAGESIZE); 837 838 lo = (uintptr_t)*basep; 839 hi = lo + *lenp; 840 tot_len = minlen + 2 * redzone; /* need at least this much space */ 841 842 /* 843 * If hi rolled over the top, try cutting back. 844 */ 845 if (hi < lo) { 846 *lenp = 0UL - lo - 1UL; 847 /* See if this really happens. If so, then we figure out why */ 848 valid_va_range_aligned_wraparound++; 849 hi = lo + *lenp; 850 } 851 if (*lenp < tot_len) { 852 return (0); 853 } 854 855 #if defined(__amd64) 856 /* 857 * Deal with a possible hole in the address range between 858 * hole_start and hole_end that should never be mapped. 859 */ 860 if (lo < hole_start) { 861 if (hi > hole_start) { 862 if (hi < hole_end) { 863 hi = hole_start; 864 } else { 865 /* lo < hole_start && hi >= hole_end */ 866 if (dir == AH_LO) { 867 /* 868 * prefer lowest range 869 */ 870 if (hole_start - lo >= tot_len) 871 hi = hole_start; 872 else if (hi - hole_end >= tot_len) 873 lo = hole_end; 874 else 875 return (0); 876 } else { 877 /* 878 * prefer highest range 879 */ 880 if (hi - hole_end >= tot_len) 881 lo = hole_end; 882 else if (hole_start - lo >= tot_len) 883 hi = hole_start; 884 else 885 return (0); 886 } 887 } 888 } 889 } else { 890 /* lo >= hole_start */ 891 if (hi < hole_end) 892 return (0); 893 if (lo < hole_end) 894 lo = hole_end; 895 } 896 #endif 897 898 if (hi - lo < tot_len) 899 return (0); 900 901 if (align > 1) { 902 uintptr_t tlo = lo + redzone; 903 uintptr_t thi = hi - redzone; 904 tlo = (uintptr_t)P2PHASEUP(tlo, align, off); 905 if (tlo < lo + redzone) { 906 return (0); 907 } 908 if (thi < tlo || thi - tlo < minlen) { 909 return (0); 910 } 911 } 912 913 *basep = (caddr_t)lo; 914 *lenp = hi - lo; 915 return (1); 916 } 917 918 /* 919 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 920 * addresses at least "minlen" long. On success, 1 is returned and *basep 921 * and *lenp are adjusted to describe the acceptable range. On failure, 0 922 * is returned. 923 */ 924 int 925 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 926 { 927 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 928 } 929 930 /* 931 * Default to forbidding the first 64k of address space. This protects most 932 * reasonably sized structures from dereferences through NULL: 933 * ((foo_t *)0)->bar 934 */ 935 uintptr_t forbidden_null_mapping_sz = 0x10000; 936 937 /* 938 * Determine whether [addr, addr+len] are valid user addresses. 939 */ 940 /*ARGSUSED*/ 941 int 942 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 943 caddr_t userlimit) 944 { 945 caddr_t eaddr = addr + len; 946 947 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 948 return (RANGE_BADADDR); 949 950 if ((addr <= (caddr_t)forbidden_null_mapping_sz) && 951 secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP)) 952 return (RANGE_BADADDR); 953 954 #if defined(__amd64) 955 /* 956 * Check for the VA hole 957 */ 958 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 959 return (RANGE_BADADDR); 960 #endif 961 962 return (RANGE_OKAY); 963 } 964 965 /* 966 * Return 1 if the page frame is onboard memory, else 0. 967 */ 968 int 969 pf_is_memory(pfn_t pf) 970 { 971 if (pfn_is_foreign(pf)) 972 return (0); 973 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 974 } 975 976 /* 977 * return the memrange containing pfn 978 */ 979 int 980 memrange_num(pfn_t pfn) 981 { 982 int n; 983 984 for (n = 0; n < nranges - 1; ++n) { 985 if (pfn >= memranges[n]) 986 break; 987 } 988 return (n); 989 } 990 991 /* 992 * return the mnoderange containing pfn 993 */ 994 /*ARGSUSED*/ 995 int 996 pfn_2_mtype(pfn_t pfn) 997 { 998 #if defined(__xpv) 999 return (0); 1000 #else 1001 int n; 1002 1003 /* Always start from highest pfn and work our way down */ 1004 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1005 if (pfn >= mnoderanges[n].mnr_pfnlo) { 1006 break; 1007 } 1008 } 1009 return (n); 1010 #endif 1011 } 1012 1013 #if !defined(__xpv) 1014 /* 1015 * is_contigpage_free: 1016 * returns a page list of contiguous pages. It minimally has to return 1017 * minctg pages. Caller determines minctg based on the scatter-gather 1018 * list length. 1019 * 1020 * pfnp is set to the next page frame to search on return. 1021 */ 1022 static page_t * 1023 is_contigpage_free( 1024 pfn_t *pfnp, 1025 pgcnt_t *pgcnt, 1026 pgcnt_t minctg, 1027 uint64_t pfnseg, 1028 int iolock) 1029 { 1030 int i = 0; 1031 pfn_t pfn = *pfnp; 1032 page_t *pp; 1033 page_t *plist = NULL; 1034 1035 /* 1036 * fail if pfn + minctg crosses a segment boundary. 1037 * Adjust for next starting pfn to begin at segment boundary. 1038 */ 1039 1040 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 1041 *pfnp = roundup(*pfnp, pfnseg + 1); 1042 return (NULL); 1043 } 1044 1045 do { 1046 retry: 1047 pp = page_numtopp_nolock(pfn + i); 1048 if ((pp == NULL) || IS_DUMP_PAGE(pp) || 1049 (page_trylock(pp, SE_EXCL) == 0)) { 1050 (*pfnp)++; 1051 break; 1052 } 1053 if (page_pptonum(pp) != pfn + i) { 1054 page_unlock(pp); 1055 goto retry; 1056 } 1057 1058 if (!(PP_ISFREE(pp))) { 1059 page_unlock(pp); 1060 (*pfnp)++; 1061 break; 1062 } 1063 1064 if (!PP_ISAGED(pp)) { 1065 page_list_sub(pp, PG_CACHE_LIST); 1066 page_hashout(pp, (kmutex_t *)NULL); 1067 } else { 1068 page_list_sub(pp, PG_FREE_LIST); 1069 } 1070 1071 if (iolock) 1072 page_io_lock(pp); 1073 page_list_concat(&plist, &pp); 1074 1075 /* 1076 * exit loop when pgcnt satisfied or segment boundary reached. 1077 */ 1078 1079 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 1080 1081 *pfnp += i; /* set to next pfn to search */ 1082 1083 if (i >= minctg) { 1084 *pgcnt -= i; 1085 return (plist); 1086 } 1087 1088 /* 1089 * failure: minctg not satisfied. 1090 * 1091 * if next request crosses segment boundary, set next pfn 1092 * to search from the segment boundary. 1093 */ 1094 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 1095 *pfnp = roundup(*pfnp, pfnseg + 1); 1096 1097 /* clean up any pages already allocated */ 1098 1099 while (plist) { 1100 pp = plist; 1101 page_sub(&plist, pp); 1102 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1103 if (iolock) 1104 page_io_unlock(pp); 1105 page_unlock(pp); 1106 } 1107 1108 return (NULL); 1109 } 1110 #endif /* !__xpv */ 1111 1112 /* 1113 * verify that pages being returned from allocator have correct DMA attribute 1114 */ 1115 #ifndef DEBUG 1116 #define check_dma(a, b, c) (void)(0) 1117 #else 1118 static void 1119 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1120 { 1121 if (dma_attr == NULL) 1122 return; 1123 1124 while (cnt-- > 0) { 1125 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1126 dma_attr->dma_attr_addr_lo) 1127 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp); 1128 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1129 dma_attr->dma_attr_addr_hi) 1130 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp); 1131 pp = pp->p_next; 1132 } 1133 } 1134 #endif 1135 1136 #if !defined(__xpv) 1137 static page_t * 1138 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1139 { 1140 pfn_t pfn; 1141 int sgllen; 1142 uint64_t pfnseg; 1143 pgcnt_t minctg; 1144 page_t *pplist = NULL, *plist; 1145 uint64_t lo, hi; 1146 pgcnt_t pfnalign = 0; 1147 static pfn_t startpfn; 1148 static pgcnt_t lastctgcnt; 1149 uintptr_t align; 1150 1151 CONTIG_LOCK(); 1152 1153 if (mattr) { 1154 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1155 hi = mmu_btop(mattr->dma_attr_addr_hi); 1156 if (hi >= physmax) 1157 hi = physmax - 1; 1158 sgllen = mattr->dma_attr_sgllen; 1159 pfnseg = mmu_btop(mattr->dma_attr_seg); 1160 1161 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1162 if (align > MMU_PAGESIZE) 1163 pfnalign = mmu_btop(align); 1164 1165 /* 1166 * in order to satisfy the request, must minimally 1167 * acquire minctg contiguous pages 1168 */ 1169 minctg = howmany(*pgcnt, sgllen); 1170 1171 ASSERT(hi >= lo); 1172 1173 /* 1174 * start from where last searched if the minctg >= lastctgcnt 1175 */ 1176 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1177 startpfn = lo; 1178 } else { 1179 hi = physmax - 1; 1180 lo = 0; 1181 sgllen = 1; 1182 pfnseg = mmu.highest_pfn; 1183 minctg = *pgcnt; 1184 1185 if (minctg < lastctgcnt) 1186 startpfn = lo; 1187 } 1188 lastctgcnt = minctg; 1189 1190 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1191 1192 /* conserve 16m memory - start search above 16m when possible */ 1193 if (hi > PFN_16M && startpfn < PFN_16M) 1194 startpfn = PFN_16M; 1195 1196 pfn = startpfn; 1197 if (pfnalign) 1198 pfn = P2ROUNDUP(pfn, pfnalign); 1199 1200 while (pfn + minctg - 1 <= hi) { 1201 1202 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1203 if (plist) { 1204 page_list_concat(&pplist, &plist); 1205 sgllen--; 1206 /* 1207 * return when contig pages no longer needed 1208 */ 1209 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1210 startpfn = pfn; 1211 CONTIG_UNLOCK(); 1212 check_dma(mattr, pplist, *pgcnt); 1213 return (pplist); 1214 } 1215 minctg = howmany(*pgcnt, sgllen); 1216 } 1217 if (pfnalign) 1218 pfn = P2ROUNDUP(pfn, pfnalign); 1219 } 1220 1221 /* cannot find contig pages in specified range */ 1222 if (startpfn == lo) { 1223 CONTIG_UNLOCK(); 1224 return (NULL); 1225 } 1226 1227 /* did not start with lo previously */ 1228 pfn = lo; 1229 if (pfnalign) 1230 pfn = P2ROUNDUP(pfn, pfnalign); 1231 1232 /* allow search to go above startpfn */ 1233 while (pfn < startpfn) { 1234 1235 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1236 if (plist != NULL) { 1237 1238 page_list_concat(&pplist, &plist); 1239 sgllen--; 1240 1241 /* 1242 * return when contig pages no longer needed 1243 */ 1244 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1245 startpfn = pfn; 1246 CONTIG_UNLOCK(); 1247 check_dma(mattr, pplist, *pgcnt); 1248 return (pplist); 1249 } 1250 minctg = howmany(*pgcnt, sgllen); 1251 } 1252 if (pfnalign) 1253 pfn = P2ROUNDUP(pfn, pfnalign); 1254 } 1255 CONTIG_UNLOCK(); 1256 return (NULL); 1257 } 1258 #endif /* !__xpv */ 1259 1260 /* 1261 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1262 * memranges[]. Used to determine the size of page lists and mnoderanges. 1263 */ 1264 int 1265 mnode_range_cnt(int mnode) 1266 { 1267 #if defined(__xpv) 1268 ASSERT(mnode == 0); 1269 return (1); 1270 #else /* __xpv */ 1271 int mri; 1272 int mnrcnt = 0; 1273 1274 if (mem_node_config[mnode].exists != 0) { 1275 mri = nranges - 1; 1276 1277 /* find the memranges index below contained in mnode range */ 1278 1279 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1280 mri--; 1281 1282 /* 1283 * increment mnode range counter when memranges or mnode 1284 * boundary is reached. 1285 */ 1286 while (mri >= 0 && 1287 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1288 mnrcnt++; 1289 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1290 mri--; 1291 else 1292 break; 1293 } 1294 } 1295 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1296 return (mnrcnt); 1297 #endif /* __xpv */ 1298 } 1299 1300 /* 1301 * mnode_range_setup() initializes mnoderanges. 1302 */ 1303 void 1304 mnode_range_setup(mnoderange_t *mnoderanges) 1305 { 1306 mnoderange_t *mp = mnoderanges; 1307 int mnode, mri; 1308 int mindex = 0; /* current index into mnoderanges array */ 1309 int i, j; 1310 pfn_t hipfn; 1311 int last, hi; 1312 1313 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 1314 if (mem_node_config[mnode].exists == 0) 1315 continue; 1316 1317 mri = nranges - 1; 1318 1319 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1320 mri--; 1321 1322 while (mri >= 0 && mem_node_config[mnode].physmax >= 1323 MEMRANGELO(mri)) { 1324 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri), 1325 mem_node_config[mnode].physbase); 1326 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1327 mem_node_config[mnode].physmax); 1328 mnoderanges->mnr_mnode = mnode; 1329 mnoderanges->mnr_memrange = mri; 1330 mnoderanges->mnr_exists = 1; 1331 mnoderanges++; 1332 mindex++; 1333 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1334 mri--; 1335 else 1336 break; 1337 } 1338 } 1339 1340 /* 1341 * For now do a simple sort of the mnoderanges array to fill in 1342 * the mnr_next fields. Since mindex is expected to be relatively 1343 * small, using a simple O(N^2) algorithm. 1344 */ 1345 for (i = 0; i < mindex; i++) { 1346 if (mp[i].mnr_pfnlo == 0) /* find lowest */ 1347 break; 1348 } 1349 ASSERT(i < mindex); 1350 last = i; 1351 mtype16m = last; 1352 mp[last].mnr_next = -1; 1353 for (i = 0; i < mindex - 1; i++) { 1354 hipfn = (pfn_t)(-1); 1355 hi = -1; 1356 /* find next highest mnode range */ 1357 for (j = 0; j < mindex; j++) { 1358 if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo && 1359 mp[j].mnr_pfnlo < hipfn) { 1360 hipfn = mp[j].mnr_pfnlo; 1361 hi = j; 1362 } 1363 } 1364 mp[hi].mnr_next = last; 1365 last = hi; 1366 } 1367 mtypetop = last; 1368 } 1369 1370 #ifndef __xpv 1371 /* 1372 * Update mnoderanges for memory hot-add DR operations. 1373 */ 1374 static void 1375 mnode_range_add(int mnode) 1376 { 1377 int *prev; 1378 int n, mri; 1379 pfn_t start, end; 1380 extern void membar_sync(void); 1381 1382 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1383 ASSERT(mem_node_config[mnode].exists); 1384 start = mem_node_config[mnode].physbase; 1385 end = mem_node_config[mnode].physmax; 1386 ASSERT(start <= end); 1387 mutex_enter(&mnoderange_lock); 1388 1389 #ifdef DEBUG 1390 /* Check whether it interleaves with other memory nodes. */ 1391 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1392 ASSERT(mnoderanges[n].mnr_exists); 1393 if (mnoderanges[n].mnr_mnode == mnode) 1394 continue; 1395 ASSERT(start > mnoderanges[n].mnr_pfnhi || 1396 end < mnoderanges[n].mnr_pfnlo); 1397 } 1398 #endif /* DEBUG */ 1399 1400 mri = nranges - 1; 1401 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1402 mri--; 1403 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1404 /* Check whether mtype already exists. */ 1405 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1406 if (mnoderanges[n].mnr_mnode == mnode && 1407 mnoderanges[n].mnr_memrange == mri) { 1408 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), 1409 start); 1410 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), 1411 end); 1412 break; 1413 } 1414 } 1415 1416 /* Add a new entry if it doesn't exist yet. */ 1417 if (n == -1) { 1418 /* Try to find an unused entry in mnoderanges array. */ 1419 for (n = 0; n < mnoderangecnt; n++) { 1420 if (mnoderanges[n].mnr_exists == 0) 1421 break; 1422 } 1423 ASSERT(n < mnoderangecnt); 1424 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start); 1425 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end); 1426 mnoderanges[n].mnr_mnode = mnode; 1427 mnoderanges[n].mnr_memrange = mri; 1428 mnoderanges[n].mnr_exists = 1; 1429 /* Page 0 should always be present. */ 1430 for (prev = &mtypetop; 1431 mnoderanges[*prev].mnr_pfnlo > start; 1432 prev = &mnoderanges[*prev].mnr_next) { 1433 ASSERT(mnoderanges[*prev].mnr_next >= 0); 1434 ASSERT(mnoderanges[*prev].mnr_pfnlo > end); 1435 } 1436 mnoderanges[n].mnr_next = *prev; 1437 membar_sync(); 1438 *prev = n; 1439 } 1440 1441 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1442 mri--; 1443 else 1444 break; 1445 } 1446 1447 mutex_exit(&mnoderange_lock); 1448 } 1449 1450 /* 1451 * Update mnoderanges for memory hot-removal DR operations. 1452 */ 1453 static void 1454 mnode_range_del(int mnode) 1455 { 1456 _NOTE(ARGUNUSED(mnode)); 1457 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1458 /* TODO: support deletion operation. */ 1459 ASSERT(0); 1460 } 1461 1462 void 1463 plat_slice_add(pfn_t start, pfn_t end) 1464 { 1465 mem_node_add_slice(start, end); 1466 if (plat_dr_enabled()) { 1467 mnode_range_add(PFN_2_MEM_NODE(start)); 1468 } 1469 } 1470 1471 void 1472 plat_slice_del(pfn_t start, pfn_t end) 1473 { 1474 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end)); 1475 ASSERT(plat_dr_enabled()); 1476 mnode_range_del(PFN_2_MEM_NODE(start)); 1477 mem_node_del_slice(start, end); 1478 } 1479 #endif /* __xpv */ 1480 1481 /*ARGSUSED*/ 1482 int 1483 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1484 { 1485 int mtype = mtypetop; 1486 1487 #if !defined(__xpv) 1488 #if defined(__i386) 1489 /* 1490 * set the mtype range 1491 * - kmem requests need to be below 4g if restricted_kmemalloc is set. 1492 * - for non kmem requests, set range to above 4g if memory below 4g 1493 * runs low. 1494 */ 1495 if (restricted_kmemalloc && VN_ISKAS(vp) && 1496 (caddr_t)(vaddr) >= kernelheap && 1497 (caddr_t)(vaddr) < ekernelheap) { 1498 ASSERT(physmax4g); 1499 mtype = mtype4g; 1500 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1501 btop(pgsz), *flags)) { 1502 *flags |= PGI_MT_RANGE16M; 1503 } else { 1504 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1505 VM_STAT_COND_ADD((*flags & PG_PANIC), 1506 vmm_vmstats.pgpanicalloc); 1507 *flags |= PGI_MT_RANGE0; 1508 } 1509 return (mtype); 1510 } 1511 #endif /* __i386 */ 1512 1513 if (RESTRICT4G_ALLOC) { 1514 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1515 /* here only for > 4g systems */ 1516 *flags |= PGI_MT_RANGE4G; 1517 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1518 *flags |= PGI_MT_RANGE16M; 1519 } else { 1520 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1521 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1522 *flags |= PGI_MT_RANGE0; 1523 } 1524 #endif /* !__xpv */ 1525 return (mtype); 1526 } 1527 1528 1529 /* mtype init for page_get_replacement_page */ 1530 /*ARGSUSED*/ 1531 int 1532 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1533 { 1534 int mtype = mtypetop; 1535 #if !defined(__xpv) 1536 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1537 *flags |= PGI_MT_RANGE16M; 1538 } else { 1539 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1540 *flags |= PGI_MT_RANGE0; 1541 } 1542 #endif 1543 return (mtype); 1544 } 1545 1546 /* 1547 * Determine if the mnode range specified in mtype contains memory belonging 1548 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1549 * the range from high pfn to 0, 16m or 4g. 1550 * 1551 * Return first mnode range type index found otherwise return -1 if none found. 1552 */ 1553 int 1554 mtype_func(int mnode, int mtype, uint_t flags) 1555 { 1556 if (flags & PGI_MT_RANGE) { 1557 int mnr_lim = MRI_0; 1558 1559 if (flags & PGI_MT_NEXT) { 1560 mtype = mnoderanges[mtype].mnr_next; 1561 } 1562 if (flags & PGI_MT_RANGE4G) 1563 mnr_lim = MRI_4G; /* exclude 0-4g range */ 1564 else if (flags & PGI_MT_RANGE16M) 1565 mnr_lim = MRI_16M; /* exclude 0-16m range */ 1566 while (mtype != -1 && 1567 mnoderanges[mtype].mnr_memrange <= mnr_lim) { 1568 if (mnoderanges[mtype].mnr_mnode == mnode) 1569 return (mtype); 1570 mtype = mnoderanges[mtype].mnr_next; 1571 } 1572 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1573 return (mtype); 1574 } 1575 return (-1); 1576 } 1577 1578 /* 1579 * Update the page list max counts with the pfn range specified by the 1580 * input parameters. 1581 */ 1582 void 1583 mtype_modify_max(pfn_t startpfn, long cnt) 1584 { 1585 int mtype; 1586 pgcnt_t inc; 1587 spgcnt_t scnt = (spgcnt_t)(cnt); 1588 pgcnt_t acnt = ABS(scnt); 1589 pfn_t endpfn = startpfn + acnt; 1590 pfn_t pfn, lo; 1591 1592 if (!physmax4g) 1593 return; 1594 1595 mtype = mtypetop; 1596 for (pfn = endpfn; pfn > startpfn; ) { 1597 ASSERT(mtype != -1); 1598 lo = mnoderanges[mtype].mnr_pfnlo; 1599 if (pfn > lo) { 1600 if (startpfn >= lo) { 1601 inc = pfn - startpfn; 1602 } else { 1603 inc = pfn - lo; 1604 } 1605 if (mnoderanges[mtype].mnr_memrange != MRI_4G) { 1606 if (scnt > 0) 1607 maxmem4g += inc; 1608 else 1609 maxmem4g -= inc; 1610 } 1611 pfn -= inc; 1612 } 1613 mtype = mnoderanges[mtype].mnr_next; 1614 } 1615 } 1616 1617 int 1618 mtype_2_mrange(int mtype) 1619 { 1620 return (mnoderanges[mtype].mnr_memrange); 1621 } 1622 1623 void 1624 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1625 { 1626 _NOTE(ARGUNUSED(mnode)); 1627 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1628 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1629 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1630 } 1631 1632 size_t 1633 plcnt_sz(size_t ctrs_sz) 1634 { 1635 #ifdef DEBUG 1636 int szc, colors; 1637 1638 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1639 for (szc = 0; szc < mmu_page_sizes; szc++) { 1640 colors = page_get_pagecolors(szc); 1641 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1642 } 1643 #endif 1644 return (ctrs_sz); 1645 } 1646 1647 caddr_t 1648 plcnt_init(caddr_t addr) 1649 { 1650 #ifdef DEBUG 1651 int mt, szc, colors; 1652 1653 for (mt = 0; mt < mnoderangecnt; mt++) { 1654 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1655 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1656 for (szc = 0; szc < mmu_page_sizes; szc++) { 1657 colors = page_get_pagecolors(szc); 1658 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1659 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1660 (pgcnt_t *)addr; 1661 addr += (sizeof (pgcnt_t) * colors); 1662 } 1663 } 1664 #endif 1665 return (addr); 1666 } 1667 1668 void 1669 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1670 { 1671 _NOTE(ARGUNUSED(pp)); 1672 #ifdef DEBUG 1673 int bin = PP_2_BIN(pp); 1674 1675 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1676 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1677 cnt); 1678 #endif 1679 ASSERT(mtype == PP_2_MTYPE(pp)); 1680 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G) 1681 atomic_add_long(&freemem4g, cnt); 1682 if (flags & PG_CACHE_LIST) 1683 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1684 else 1685 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt); 1686 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt); 1687 } 1688 1689 /* 1690 * Returns the free page count for mnode 1691 */ 1692 int 1693 mnode_pgcnt(int mnode) 1694 { 1695 int mtype = mtypetop; 1696 int flags = PGI_MT_RANGE0; 1697 pgcnt_t pgcnt = 0; 1698 1699 mtype = mtype_func(mnode, mtype, flags); 1700 1701 while (mtype != -1) { 1702 pgcnt += MTYPE_FREEMEM(mtype); 1703 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1704 } 1705 return (pgcnt); 1706 } 1707 1708 /* 1709 * Initialize page coloring variables based on the l2 cache parameters. 1710 * Calculate and return memory needed for page coloring data structures. 1711 */ 1712 size_t 1713 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1714 { 1715 _NOTE(ARGUNUSED(l2_linesz)); 1716 size_t colorsz = 0; 1717 int i; 1718 int colors; 1719 1720 #if defined(__xpv) 1721 /* 1722 * Hypervisor domains currently don't have any concept of NUMA. 1723 * Hence we'll act like there is only 1 memrange. 1724 */ 1725 i = memrange_num(1); 1726 #else /* !__xpv */ 1727 /* 1728 * Reduce the memory ranges lists if we don't have large amounts 1729 * of memory. This avoids searching known empty free lists. 1730 * To support memory DR operations, we need to keep memory ranges 1731 * for possible memory hot-add operations. 1732 */ 1733 if (plat_dr_physmax > physmax) 1734 i = memrange_num(plat_dr_physmax); 1735 else 1736 i = memrange_num(physmax); 1737 #if defined(__i386) 1738 if (i > MRI_4G) 1739 restricted_kmemalloc = 0; 1740 #endif 1741 /* physmax greater than 4g */ 1742 if (i == MRI_4G) 1743 physmax4g = 1; 1744 #endif /* !__xpv */ 1745 memranges += i; 1746 nranges -= i; 1747 1748 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1749 1750 ASSERT(ISP2(l2_linesz)); 1751 ASSERT(l2_sz > MMU_PAGESIZE); 1752 1753 /* l2_assoc is 0 for fully associative l2 cache */ 1754 if (l2_assoc) 1755 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1756 else 1757 l2_colors = 1; 1758 1759 ASSERT(ISP2(l2_colors)); 1760 1761 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1762 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1763 1764 /* 1765 * cpu_page_colors is non-zero when a page color may be spread across 1766 * multiple bins. 1767 */ 1768 if (l2_colors < page_colors) 1769 cpu_page_colors = l2_colors; 1770 1771 ASSERT(ISP2(page_colors)); 1772 1773 page_colors_mask = page_colors - 1; 1774 1775 ASSERT(ISP2(CPUSETSIZE())); 1776 page_coloring_shift = lowbit(CPUSETSIZE()); 1777 1778 /* initialize number of colors per page size */ 1779 for (i = 0; i <= mmu.max_page_level; i++) { 1780 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1781 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1782 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1783 hw_page_array[i].hp_colors = (page_colors_mask >> 1784 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1785 + 1; 1786 colorequivszc[i] = 0; 1787 } 1788 1789 /* 1790 * The value of cpu_page_colors determines if additional color bins 1791 * need to be checked for a particular color in the page_get routines. 1792 */ 1793 if (cpu_page_colors != 0) { 1794 1795 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1796 ASSERT(a > 0); 1797 ASSERT(a < 16); 1798 1799 for (i = 0; i <= mmu.max_page_level; i++) { 1800 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1801 colorequivszc[i] = 0; 1802 continue; 1803 } 1804 while ((colors >> a) == 0) 1805 a--; 1806 ASSERT(a >= 0); 1807 1808 /* higher 4 bits encodes color equiv mask */ 1809 colorequivszc[i] = (a << 4); 1810 } 1811 } 1812 1813 /* factor in colorequiv to check additional 'equivalent' bins. */ 1814 if (colorequiv > 1) { 1815 1816 int a = lowbit(colorequiv) - 1; 1817 if (a > 15) 1818 a = 15; 1819 1820 for (i = 0; i <= mmu.max_page_level; i++) { 1821 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1822 continue; 1823 } 1824 while ((colors >> a) == 0) 1825 a--; 1826 if ((a << 4) > colorequivszc[i]) { 1827 colorequivszc[i] = (a << 4); 1828 } 1829 } 1830 } 1831 1832 /* size for mnoderanges */ 1833 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1834 mnoderangecnt += mnode_range_cnt(i); 1835 if (plat_dr_support_memory()) { 1836 /* 1837 * Reserve enough space for memory DR operations. 1838 * Two extra mnoderanges for possbile fragmentations, 1839 * one for the 2G boundary and the other for the 4G boundary. 1840 * We don't expect a memory board crossing the 16M boundary 1841 * for memory hot-add operations on x86 platforms. 1842 */ 1843 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt; 1844 } 1845 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1846 1847 /* size for fpc_mutex and cpc_mutex */ 1848 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1849 1850 /* size of page_freelists */ 1851 colorsz += mnoderangecnt * sizeof (page_t ***); 1852 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1853 1854 for (i = 0; i < mmu_page_sizes; i++) { 1855 colors = page_get_pagecolors(i); 1856 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1857 } 1858 1859 /* size of page_cachelists */ 1860 colorsz += mnoderangecnt * sizeof (page_t **); 1861 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1862 1863 return (colorsz); 1864 } 1865 1866 /* 1867 * Called once at startup to configure page_coloring data structures and 1868 * does the 1st page_free()/page_freelist_add(). 1869 */ 1870 void 1871 page_coloring_setup(caddr_t pcmemaddr) 1872 { 1873 int i; 1874 int j; 1875 int k; 1876 caddr_t addr; 1877 int colors; 1878 1879 /* 1880 * do page coloring setup 1881 */ 1882 addr = pcmemaddr; 1883 1884 mnoderanges = (mnoderange_t *)addr; 1885 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1886 1887 mnode_range_setup(mnoderanges); 1888 1889 if (physmax4g) 1890 mtype4g = pfn_2_mtype(0xfffff); 1891 1892 for (k = 0; k < NPC_MUTEX; k++) { 1893 fpc_mutex[k] = (kmutex_t *)addr; 1894 addr += (max_mem_nodes * sizeof (kmutex_t)); 1895 } 1896 for (k = 0; k < NPC_MUTEX; k++) { 1897 cpc_mutex[k] = (kmutex_t *)addr; 1898 addr += (max_mem_nodes * sizeof (kmutex_t)); 1899 } 1900 page_freelists = (page_t ****)addr; 1901 addr += (mnoderangecnt * sizeof (page_t ***)); 1902 1903 page_cachelists = (page_t ***)addr; 1904 addr += (mnoderangecnt * sizeof (page_t **)); 1905 1906 for (i = 0; i < mnoderangecnt; i++) { 1907 page_freelists[i] = (page_t ***)addr; 1908 addr += (mmu_page_sizes * sizeof (page_t **)); 1909 1910 for (j = 0; j < mmu_page_sizes; j++) { 1911 colors = page_get_pagecolors(j); 1912 page_freelists[i][j] = (page_t **)addr; 1913 addr += (colors * sizeof (page_t *)); 1914 } 1915 page_cachelists[i] = (page_t **)addr; 1916 addr += (page_colors * sizeof (page_t *)); 1917 } 1918 } 1919 1920 #if defined(__xpv) 1921 /* 1922 * Give back 10% of the io_pool pages to the free list. 1923 * Don't shrink the pool below some absolute minimum. 1924 */ 1925 static void 1926 page_io_pool_shrink() 1927 { 1928 int retcnt; 1929 page_t *pp, *pp_first, *pp_last, **curpool; 1930 mfn_t mfn; 1931 int bothpools = 0; 1932 1933 mutex_enter(&io_pool_lock); 1934 io_pool_shrink_attempts++; /* should be a kstat? */ 1935 retcnt = io_pool_cnt / 10; 1936 if (io_pool_cnt - retcnt < io_pool_cnt_min) 1937 retcnt = io_pool_cnt - io_pool_cnt_min; 1938 if (retcnt <= 0) 1939 goto done; 1940 io_pool_shrinks++; /* should be a kstat? */ 1941 curpool = &io_pool_4g; 1942 domore: 1943 /* 1944 * Loop through taking pages from the end of the list 1945 * (highest mfns) till amount to return reached. 1946 */ 1947 for (pp = *curpool; pp && retcnt > 0; ) { 1948 pp_first = pp_last = pp->p_prev; 1949 if (pp_first == *curpool) 1950 break; 1951 retcnt--; 1952 io_pool_cnt--; 1953 page_io_pool_sub(curpool, pp_first, pp_last); 1954 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 1955 start_mfn = mfn; 1956 page_free(pp_first, 1); 1957 pp = *curpool; 1958 } 1959 if (retcnt != 0 && !bothpools) { 1960 /* 1961 * If not enough found in less constrained pool try the 1962 * more constrained one. 1963 */ 1964 curpool = &io_pool_16m; 1965 bothpools = 1; 1966 goto domore; 1967 } 1968 done: 1969 mutex_exit(&io_pool_lock); 1970 } 1971 1972 #endif /* __xpv */ 1973 1974 uint_t 1975 page_create_update_flags_x86(uint_t flags) 1976 { 1977 #if defined(__xpv) 1978 /* 1979 * Check this is an urgent allocation and free pages are depleted. 1980 */ 1981 if (!(flags & PG_WAIT) && freemem < desfree) 1982 page_io_pool_shrink(); 1983 #else /* !__xpv */ 1984 /* 1985 * page_create_get_something may call this because 4g memory may be 1986 * depleted. Set flags to allow for relocation of base page below 1987 * 4g if necessary. 1988 */ 1989 if (physmax4g) 1990 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1991 #endif /* __xpv */ 1992 return (flags); 1993 } 1994 1995 /*ARGSUSED*/ 1996 int 1997 bp_color(struct buf *bp) 1998 { 1999 return (0); 2000 } 2001 2002 #if defined(__xpv) 2003 2004 /* 2005 * Take pages out of an io_pool 2006 */ 2007 static void 2008 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 2009 { 2010 if (*poolp == pp_first) { 2011 *poolp = pp_last->p_next; 2012 if (*poolp == pp_first) 2013 *poolp = NULL; 2014 } 2015 pp_first->p_prev->p_next = pp_last->p_next; 2016 pp_last->p_next->p_prev = pp_first->p_prev; 2017 pp_first->p_prev = pp_last; 2018 pp_last->p_next = pp_first; 2019 } 2020 2021 /* 2022 * Put a page on the io_pool list. The list is ordered by increasing MFN. 2023 */ 2024 static void 2025 page_io_pool_add(page_t **poolp, page_t *pp) 2026 { 2027 page_t *look; 2028 mfn_t mfn = mfn_list[pp->p_pagenum]; 2029 2030 if (*poolp == NULL) { 2031 *poolp = pp; 2032 pp->p_next = pp; 2033 pp->p_prev = pp; 2034 return; 2035 } 2036 2037 /* 2038 * Since we try to take pages from the high end of the pool 2039 * chances are good that the pages to be put on the list will 2040 * go at or near the end of the list. so start at the end and 2041 * work backwards. 2042 */ 2043 look = (*poolp)->p_prev; 2044 while (mfn < mfn_list[look->p_pagenum]) { 2045 look = look->p_prev; 2046 if (look == (*poolp)->p_prev) 2047 break; /* backed all the way to front of list */ 2048 } 2049 2050 /* insert after look */ 2051 pp->p_prev = look; 2052 pp->p_next = look->p_next; 2053 pp->p_next->p_prev = pp; 2054 look->p_next = pp; 2055 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 2056 /* 2057 * we inserted a new first list element 2058 * adjust pool pointer to newly inserted element 2059 */ 2060 *poolp = pp; 2061 } 2062 } 2063 2064 /* 2065 * Add a page to the io_pool. Setting the force flag will force the page 2066 * into the io_pool no matter what. 2067 */ 2068 static void 2069 add_page_to_pool(page_t *pp, int force) 2070 { 2071 page_t *highest; 2072 page_t *freep = NULL; 2073 2074 mutex_enter(&io_pool_lock); 2075 /* 2076 * Always keep the scarce low memory pages 2077 */ 2078 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 2079 ++io_pool_cnt; 2080 page_io_pool_add(&io_pool_16m, pp); 2081 goto done; 2082 } 2083 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) { 2084 ++io_pool_cnt; 2085 page_io_pool_add(&io_pool_4g, pp); 2086 } else { 2087 highest = io_pool_4g->p_prev; 2088 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 2089 page_io_pool_sub(&io_pool_4g, highest, highest); 2090 page_io_pool_add(&io_pool_4g, pp); 2091 freep = highest; 2092 } else { 2093 freep = pp; 2094 } 2095 } 2096 done: 2097 mutex_exit(&io_pool_lock); 2098 if (freep) 2099 page_free(freep, 1); 2100 } 2101 2102 2103 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 2104 int contig_pfn_max; /* capacity of the contig pfn list */ 2105 int next_alloc_pfn; /* next position in list to start a contig search */ 2106 int contig_pfnlist_updates; /* pfn list update count */ 2107 int contig_pfnlist_builds; /* how many times have we (re)built list */ 2108 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 2109 int create_contig_pending; /* nonzero means taskq creating contig list */ 2110 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 2111 2112 /* 2113 * Function to use in sorting a list of pfns by their underlying mfns. 2114 */ 2115 static int 2116 mfn_compare(const void *pfnp1, const void *pfnp2) 2117 { 2118 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 2119 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 2120 2121 if (mfn1 > mfn2) 2122 return (1); 2123 if (mfn1 < mfn2) 2124 return (-1); 2125 return (0); 2126 } 2127 2128 /* 2129 * Compact the contig_pfn_list by tossing all the non-contiguous 2130 * elements from the list. 2131 */ 2132 static void 2133 compact_contig_pfn_list(void) 2134 { 2135 pfn_t pfn, lapfn, prev_lapfn; 2136 mfn_t mfn; 2137 int i, newcnt = 0; 2138 2139 prev_lapfn = 0; 2140 for (i = 0; i < contig_pfn_cnt - 1; i++) { 2141 pfn = contig_pfn_list[i]; 2142 lapfn = contig_pfn_list[i + 1]; 2143 mfn = mfn_list[pfn]; 2144 /* 2145 * See if next pfn is for a contig mfn 2146 */ 2147 if (mfn_list[lapfn] != mfn + 1) 2148 continue; 2149 /* 2150 * pfn and lookahead are both put in list 2151 * unless pfn is the previous lookahead. 2152 */ 2153 if (pfn != prev_lapfn) 2154 contig_pfn_list[newcnt++] = pfn; 2155 contig_pfn_list[newcnt++] = lapfn; 2156 prev_lapfn = lapfn; 2157 } 2158 for (i = newcnt; i < contig_pfn_cnt; i++) 2159 contig_pfn_list[i] = 0; 2160 contig_pfn_cnt = newcnt; 2161 } 2162 2163 /*ARGSUSED*/ 2164 static void 2165 call_create_contiglist(void *arg) 2166 { 2167 (void) create_contig_pfnlist(PG_WAIT); 2168 } 2169 2170 /* 2171 * Create list of freelist pfns that have underlying 2172 * contiguous mfns. The list is kept in ascending mfn order. 2173 * returns 1 if list created else 0. 2174 */ 2175 static int 2176 create_contig_pfnlist(uint_t flags) 2177 { 2178 pfn_t pfn; 2179 page_t *pp; 2180 int ret = 1; 2181 2182 mutex_enter(&contig_list_lock); 2183 if (contig_pfn_list != NULL) 2184 goto out; 2185 contig_pfn_max = freemem + (freemem / 10); 2186 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 2187 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 2188 if (contig_pfn_list == NULL) { 2189 /* 2190 * If we could not create the contig list (because 2191 * we could not sleep for memory). Dispatch a taskq that can 2192 * sleep to get the memory. 2193 */ 2194 if (!create_contig_pending) { 2195 if (taskq_dispatch(system_taskq, call_create_contiglist, 2196 NULL, TQ_NOSLEEP) != NULL) 2197 create_contig_pending = 1; 2198 } 2199 contig_pfnlist_buildfailed++; /* count list build failures */ 2200 ret = 0; 2201 goto out; 2202 } 2203 create_contig_pending = 0; 2204 ASSERT(contig_pfn_cnt == 0); 2205 for (pfn = 0; pfn < mfn_count; pfn++) { 2206 pp = page_numtopp_nolock(pfn); 2207 if (pp == NULL || !PP_ISFREE(pp)) 2208 continue; 2209 contig_pfn_list[contig_pfn_cnt] = pfn; 2210 if (++contig_pfn_cnt == contig_pfn_max) 2211 break; 2212 } 2213 /* 2214 * Sanity check the new list. 2215 */ 2216 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2217 contig_pfn_cnt = 0; 2218 contig_pfnlist_buildfailed++; 2219 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t)); 2220 contig_pfn_list = NULL; 2221 contig_pfn_max = 0; 2222 ret = 0; 2223 goto out; 2224 } 2225 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 2226 compact_contig_pfn_list(); 2227 /* 2228 * Make sure next search of the newly created contiguous pfn 2229 * list starts at the beginning of the list. 2230 */ 2231 next_alloc_pfn = 0; 2232 contig_pfnlist_builds++; /* count list builds */ 2233 out: 2234 mutex_exit(&contig_list_lock); 2235 return (ret); 2236 } 2237 2238 2239 /* 2240 * Toss the current contig pfnlist. Someone is about to do a massive 2241 * update to pfn<->mfn mappings. So we have them destroy the list and lock 2242 * it till they are done with their update. 2243 */ 2244 void 2245 clear_and_lock_contig_pfnlist() 2246 { 2247 pfn_t *listp = NULL; 2248 size_t listsize; 2249 2250 mutex_enter(&contig_list_lock); 2251 if (contig_pfn_list != NULL) { 2252 listp = contig_pfn_list; 2253 listsize = contig_pfn_max * sizeof (pfn_t); 2254 contig_pfn_list = NULL; 2255 contig_pfn_max = contig_pfn_cnt = 0; 2256 } 2257 if (listp != NULL) 2258 kmem_free(listp, listsize); 2259 } 2260 2261 /* 2262 * Unlock the contig_pfn_list. The next attempted use of it will cause 2263 * it to be re-created. 2264 */ 2265 void 2266 unlock_contig_pfnlist() 2267 { 2268 mutex_exit(&contig_list_lock); 2269 } 2270 2271 /* 2272 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 2273 */ 2274 void 2275 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 2276 { 2277 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 2278 pfn_t probe_pfn; 2279 mfn_t probe_mfn; 2280 int drop_lock = 0; 2281 2282 if (mutex_owner(&contig_list_lock) != curthread) { 2283 drop_lock = 1; 2284 mutex_enter(&contig_list_lock); 2285 } 2286 if (contig_pfn_list == NULL) 2287 goto done; 2288 contig_pfnlist_updates++; 2289 /* 2290 * Find the pfn in the current list. Use a binary chop to locate it. 2291 */ 2292 probe_hi = contig_pfn_cnt - 1; 2293 probe_lo = 0; 2294 probe_pos = (probe_hi + probe_lo) / 2; 2295 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2296 if (probe_pos == probe_lo) { /* pfn not in list */ 2297 probe_pos = -1; 2298 break; 2299 } 2300 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2301 probe_lo = probe_pos; 2302 else 2303 probe_hi = probe_pos; 2304 probe_pos = (probe_hi + probe_lo) / 2; 2305 } 2306 if (probe_pos >= 0) { 2307 /* 2308 * Remove pfn from list and ensure next alloc 2309 * position stays in bounds. 2310 */ 2311 if (--contig_pfn_cnt <= next_alloc_pfn) 2312 next_alloc_pfn = 0; 2313 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2314 contig_pfn_cnt = 0; 2315 kmem_free(contig_pfn_list, 2316 contig_pfn_max * sizeof (pfn_t)); 2317 contig_pfn_list = NULL; 2318 contig_pfn_max = 0; 2319 goto done; 2320 } 2321 ovbcopy(&contig_pfn_list[probe_pos + 1], 2322 &contig_pfn_list[probe_pos], 2323 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2324 } 2325 if (newmfn == MFN_INVALID) 2326 goto done; 2327 /* 2328 * Check if new mfn has adjacent mfns in the list 2329 */ 2330 probe_hi = contig_pfn_cnt - 1; 2331 probe_lo = 0; 2332 insert_after = -2; 2333 do { 2334 probe_pos = (probe_hi + probe_lo) / 2; 2335 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2336 if (newmfn == probe_mfn + 1) 2337 insert_after = probe_pos; 2338 else if (newmfn == probe_mfn - 1) 2339 insert_after = probe_pos - 1; 2340 if (probe_pos == probe_lo) 2341 break; 2342 if (probe_mfn <= newmfn) 2343 probe_lo = probe_pos; 2344 else 2345 probe_hi = probe_pos; 2346 } while (insert_after == -2); 2347 /* 2348 * If there is space in the list and there are adjacent mfns 2349 * insert the pfn in to its proper place in the list. 2350 */ 2351 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2352 insert_point = insert_after + 1; 2353 ovbcopy(&contig_pfn_list[insert_point], 2354 &contig_pfn_list[insert_point + 1], 2355 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2356 contig_pfn_list[insert_point] = pfn; 2357 contig_pfn_cnt++; 2358 } 2359 done: 2360 if (drop_lock) 2361 mutex_exit(&contig_list_lock); 2362 } 2363 2364 /* 2365 * Called to (re-)populate the io_pool from the free page lists. 2366 */ 2367 long 2368 populate_io_pool(void) 2369 { 2370 pfn_t pfn; 2371 mfn_t mfn, max_mfn; 2372 page_t *pp; 2373 2374 /* 2375 * Figure out the bounds of the pool on first invocation. 2376 * We use a percentage of memory for the io pool size. 2377 * we allow that to shrink, but not to less than a fixed minimum 2378 */ 2379 if (io_pool_cnt_max == 0) { 2380 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2381 io_pool_cnt_lowater = io_pool_cnt_max; 2382 /* 2383 * This is the first time in populate_io_pool, grab a va to use 2384 * when we need to allocate pages. 2385 */ 2386 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2387 } 2388 /* 2389 * If we are out of pages in the pool, then grow the size of the pool 2390 */ 2391 if (io_pool_cnt == 0) { 2392 /* 2393 * Grow the max size of the io pool by 5%, but never more than 2394 * 25% of physical memory. 2395 */ 2396 if (io_pool_cnt_max < physmem / 4) 2397 io_pool_cnt_max += io_pool_cnt_max / 20; 2398 } 2399 io_pool_grows++; /* should be a kstat? */ 2400 2401 /* 2402 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2403 */ 2404 (void) mfn_to_pfn(start_mfn); 2405 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2406 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2407 pfn = mfn_to_pfn(mfn); 2408 if (pfn & PFN_IS_FOREIGN_MFN) 2409 continue; 2410 /* 2411 * try to allocate it from free pages 2412 */ 2413 pp = page_numtopp_alloc(pfn); 2414 if (pp == NULL) 2415 continue; 2416 PP_CLRFREE(pp); 2417 add_page_to_pool(pp, 1); 2418 if (io_pool_cnt >= io_pool_cnt_max) 2419 break; 2420 } 2421 2422 return (io_pool_cnt); 2423 } 2424 2425 /* 2426 * Destroy a page that was being used for DMA I/O. It may or 2427 * may not actually go back to the io_pool. 2428 */ 2429 void 2430 page_destroy_io(page_t *pp) 2431 { 2432 mfn_t mfn = mfn_list[pp->p_pagenum]; 2433 2434 /* 2435 * When the page was alloc'd a reservation was made, release it now 2436 */ 2437 page_unresv(1); 2438 /* 2439 * Unload translations, if any, then hash out the 2440 * page to erase its identity. 2441 */ 2442 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2443 page_hashout(pp, NULL); 2444 2445 /* 2446 * If the page came from the free lists, just put it back to them. 2447 * DomU pages always go on the free lists as well. 2448 */ 2449 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2450 page_free(pp, 1); 2451 return; 2452 } 2453 2454 add_page_to_pool(pp, 0); 2455 } 2456 2457 2458 long contig_searches; /* count of times contig pages requested */ 2459 long contig_search_restarts; /* count of contig ranges tried */ 2460 long contig_search_failed; /* count of contig alloc failures */ 2461 2462 /* 2463 * Free partial page list 2464 */ 2465 static void 2466 free_partial_list(page_t **pplist) 2467 { 2468 page_t *pp; 2469 2470 while (*pplist != NULL) { 2471 pp = *pplist; 2472 page_io_pool_sub(pplist, pp, pp); 2473 page_free(pp, 1); 2474 } 2475 } 2476 2477 /* 2478 * Look thru the contiguous pfns that are not part of the io_pool for 2479 * contiguous free pages. Return a list of the found pages or NULL. 2480 */ 2481 page_t * 2482 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg, 2483 pgcnt_t pfnalign) 2484 { 2485 page_t *pp, *plist = NULL; 2486 mfn_t mfn, prev_mfn, start_mfn; 2487 pfn_t pfn; 2488 int pages_needed, pages_requested; 2489 int search_start; 2490 2491 /* 2492 * create the contig pfn list if not already done 2493 */ 2494 retry: 2495 mutex_enter(&contig_list_lock); 2496 if (contig_pfn_list == NULL) { 2497 mutex_exit(&contig_list_lock); 2498 if (!create_contig_pfnlist(flags)) { 2499 return (NULL); 2500 } 2501 goto retry; 2502 } 2503 contig_searches++; 2504 /* 2505 * Search contiguous pfn list for physically contiguous pages not in 2506 * the io_pool. Start the search where the last search left off. 2507 */ 2508 pages_requested = pages_needed = npages; 2509 search_start = next_alloc_pfn; 2510 start_mfn = prev_mfn = 0; 2511 while (pages_needed) { 2512 pfn = contig_pfn_list[next_alloc_pfn]; 2513 mfn = pfn_to_mfn(pfn); 2514 /* 2515 * Check if mfn is first one or contig to previous one and 2516 * if page corresponding to mfn is free and that mfn 2517 * range is not crossing a segment boundary. 2518 */ 2519 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2520 (pp = page_numtopp_alloc(pfn)) != NULL && 2521 !((mfn & pfnseg) < (start_mfn & pfnseg))) { 2522 PP_CLRFREE(pp); 2523 page_io_pool_add(&plist, pp); 2524 pages_needed--; 2525 if (prev_mfn == 0) { 2526 if (pfnalign && 2527 mfn != P2ROUNDUP(mfn, pfnalign)) { 2528 /* 2529 * not properly aligned 2530 */ 2531 contig_search_restarts++; 2532 free_partial_list(&plist); 2533 pages_needed = pages_requested; 2534 start_mfn = prev_mfn = 0; 2535 goto skip; 2536 } 2537 start_mfn = mfn; 2538 } 2539 prev_mfn = mfn; 2540 } else { 2541 contig_search_restarts++; 2542 free_partial_list(&plist); 2543 pages_needed = pages_requested; 2544 start_mfn = prev_mfn = 0; 2545 } 2546 skip: 2547 if (++next_alloc_pfn == contig_pfn_cnt) 2548 next_alloc_pfn = 0; 2549 if (next_alloc_pfn == search_start) 2550 break; /* all pfns searched */ 2551 } 2552 mutex_exit(&contig_list_lock); 2553 if (pages_needed) { 2554 contig_search_failed++; 2555 /* 2556 * Failed to find enough contig pages. 2557 * free partial page list 2558 */ 2559 free_partial_list(&plist); 2560 } 2561 return (plist); 2562 } 2563 2564 /* 2565 * Search the reserved io pool pages for a page range with the 2566 * desired characteristics. 2567 */ 2568 page_t * 2569 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg) 2570 { 2571 page_t *pp_first, *pp_last; 2572 page_t *pp, **poolp; 2573 pgcnt_t nwanted, pfnalign; 2574 uint64_t pfnseg; 2575 mfn_t mfn, tmfn, hi_mfn, lo_mfn; 2576 int align, attempt = 0; 2577 2578 if (minctg == 1) 2579 contig = 0; 2580 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2581 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2582 pfnseg = mmu_btop(mattr->dma_attr_seg); 2583 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2584 if (align > MMU_PAGESIZE) 2585 pfnalign = mmu_btop(align); 2586 else 2587 pfnalign = 0; 2588 2589 try_again: 2590 /* 2591 * See if we want pages for a legacy device 2592 */ 2593 if (hi_mfn < PFN_16MEG) 2594 poolp = &io_pool_16m; 2595 else 2596 poolp = &io_pool_4g; 2597 try_smaller: 2598 /* 2599 * Take pages from I/O pool. We'll use pages from the highest 2600 * MFN range possible. 2601 */ 2602 pp_first = pp_last = NULL; 2603 mutex_enter(&io_pool_lock); 2604 nwanted = minctg; 2605 for (pp = *poolp; pp && nwanted > 0; ) { 2606 pp = pp->p_prev; 2607 2608 /* 2609 * skip pages above allowable range 2610 */ 2611 mfn = mfn_list[pp->p_pagenum]; 2612 if (hi_mfn < mfn) 2613 goto skip; 2614 2615 /* 2616 * stop at pages below allowable range 2617 */ 2618 if (lo_mfn > mfn) 2619 break; 2620 restart: 2621 if (pp_last == NULL) { 2622 /* 2623 * Check alignment 2624 */ 2625 tmfn = mfn - (minctg - 1); 2626 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign)) 2627 goto skip; /* not properly aligned */ 2628 /* 2629 * Check segment 2630 */ 2631 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2632 goto skip; /* crosses seg boundary */ 2633 /* 2634 * Start building page list 2635 */ 2636 pp_first = pp_last = pp; 2637 nwanted--; 2638 } else { 2639 /* 2640 * check physical contiguity if required 2641 */ 2642 if (contig && 2643 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2644 /* 2645 * not a contiguous page, restart list. 2646 */ 2647 pp_last = NULL; 2648 nwanted = minctg; 2649 goto restart; 2650 } else { /* add page to list */ 2651 pp_first = pp; 2652 nwanted--; 2653 } 2654 } 2655 skip: 2656 if (pp == *poolp) 2657 break; 2658 } 2659 2660 /* 2661 * If we didn't find memory. Try the more constrained pool, then 2662 * sweep free pages into the DMA pool and try again. 2663 */ 2664 if (nwanted != 0) { 2665 mutex_exit(&io_pool_lock); 2666 /* 2667 * If we were looking in the less constrained pool and 2668 * didn't find pages, try the more constrained pool. 2669 */ 2670 if (poolp == &io_pool_4g) { 2671 poolp = &io_pool_16m; 2672 goto try_smaller; 2673 } 2674 kmem_reap(); 2675 if (++attempt < 4) { 2676 /* 2677 * Grab some more io_pool pages 2678 */ 2679 (void) populate_io_pool(); 2680 goto try_again; /* go around and retry */ 2681 } 2682 return (NULL); 2683 } 2684 /* 2685 * Found the pages, now snip them from the list 2686 */ 2687 page_io_pool_sub(poolp, pp_first, pp_last); 2688 io_pool_cnt -= minctg; 2689 /* 2690 * reset low water mark 2691 */ 2692 if (io_pool_cnt < io_pool_cnt_lowater) 2693 io_pool_cnt_lowater = io_pool_cnt; 2694 mutex_exit(&io_pool_lock); 2695 return (pp_first); 2696 } 2697 2698 page_t * 2699 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr, 2700 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg) 2701 { 2702 uint_t kflags; 2703 int order, extra, extpages, i, contig, nbits, extents; 2704 page_t *pp, *expp, *pp_first, **pplist = NULL; 2705 mfn_t *mfnlist = NULL; 2706 2707 contig = flags & PG_PHYSCONTIG; 2708 if (minctg == 1) 2709 contig = 0; 2710 flags &= ~PG_PHYSCONTIG; 2711 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2712 /* 2713 * Hypervisor will allocate extents, if we want contig 2714 * pages extent must be >= minctg 2715 */ 2716 if (contig) { 2717 order = highbit(minctg) - 1; 2718 if (minctg & ((1 << order) - 1)) 2719 order++; 2720 extpages = 1 << order; 2721 } else { 2722 order = 0; 2723 extpages = minctg; 2724 } 2725 if (extpages > minctg) { 2726 extra = extpages - minctg; 2727 if (!page_resv(extra, kflags)) 2728 return (NULL); 2729 } 2730 pp_first = NULL; 2731 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2732 if (pplist == NULL) 2733 goto balloon_fail; 2734 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2735 if (mfnlist == NULL) 2736 goto balloon_fail; 2737 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr); 2738 if (pp == NULL) 2739 goto balloon_fail; 2740 pp_first = pp; 2741 if (extpages > minctg) { 2742 /* 2743 * fill out the rest of extent pages to swap 2744 * with the hypervisor 2745 */ 2746 for (i = 0; i < extra; i++) { 2747 expp = page_create_va(vp, 2748 (u_offset_t)(uintptr_t)io_pool_kva, 2749 PAGESIZE, flags, &kvseg, io_pool_kva); 2750 if (expp == NULL) 2751 goto balloon_fail; 2752 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2753 page_io_unlock(expp); 2754 page_hashout(expp, NULL); 2755 page_io_lock(expp); 2756 /* 2757 * add page to end of list 2758 */ 2759 expp->p_prev = pp_first->p_prev; 2760 expp->p_next = pp_first; 2761 expp->p_prev->p_next = expp; 2762 pp_first->p_prev = expp; 2763 } 2764 2765 } 2766 for (i = 0; i < extpages; i++) { 2767 pplist[i] = pp; 2768 pp = pp->p_next; 2769 } 2770 nbits = highbit(mattr->dma_attr_addr_hi); 2771 extents = contig ? 1 : minctg; 2772 if (balloon_replace_pages(extents, pplist, nbits, order, 2773 mfnlist) != extents) { 2774 if (ioalloc_dbg) 2775 cmn_err(CE_NOTE, "request to hypervisor" 2776 " for %d pages, maxaddr %" PRIx64 " failed", 2777 extpages, mattr->dma_attr_addr_hi); 2778 goto balloon_fail; 2779 } 2780 2781 kmem_free(pplist, extpages * sizeof (page_t *)); 2782 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2783 /* 2784 * Return any excess pages to free list 2785 */ 2786 if (extpages > minctg) { 2787 for (i = 0; i < extra; i++) { 2788 pp = pp_first->p_prev; 2789 page_sub(&pp_first, pp); 2790 page_io_unlock(pp); 2791 page_unresv(1); 2792 page_free(pp, 1); 2793 } 2794 } 2795 return (pp_first); 2796 balloon_fail: 2797 /* 2798 * Return pages to free list and return failure 2799 */ 2800 while (pp_first != NULL) { 2801 pp = pp_first; 2802 page_sub(&pp_first, pp); 2803 page_io_unlock(pp); 2804 if (pp->p_vnode != NULL) 2805 page_hashout(pp, NULL); 2806 page_free(pp, 1); 2807 } 2808 if (pplist) 2809 kmem_free(pplist, extpages * sizeof (page_t *)); 2810 if (mfnlist) 2811 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2812 page_unresv(extpages - minctg); 2813 return (NULL); 2814 } 2815 2816 static void 2817 return_partial_alloc(page_t *plist) 2818 { 2819 page_t *pp; 2820 2821 while (plist != NULL) { 2822 pp = plist; 2823 page_sub(&plist, pp); 2824 page_io_unlock(pp); 2825 page_destroy_io(pp); 2826 } 2827 } 2828 2829 static page_t * 2830 page_get_contigpages( 2831 struct vnode *vp, 2832 u_offset_t off, 2833 int *npagesp, 2834 uint_t flags, 2835 caddr_t vaddr, 2836 ddi_dma_attr_t *mattr) 2837 { 2838 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2839 page_t *plist; /* list to return */ 2840 page_t *pp, *mcpl; 2841 int contig, anyaddr, npages, getone = 0; 2842 mfn_t lo_mfn; 2843 mfn_t hi_mfn; 2844 pgcnt_t pfnalign = 0; 2845 int align, sgllen; 2846 uint64_t pfnseg; 2847 pgcnt_t minctg; 2848 2849 npages = *npagesp; 2850 ASSERT(mattr != NULL); 2851 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2852 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2853 sgllen = mattr->dma_attr_sgllen; 2854 pfnseg = mmu_btop(mattr->dma_attr_seg); 2855 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2856 if (align > MMU_PAGESIZE) 2857 pfnalign = mmu_btop(align); 2858 2859 contig = flags & PG_PHYSCONTIG; 2860 if (npages == -1) { 2861 npages = 1; 2862 pfnalign = 0; 2863 } 2864 /* 2865 * Clear the contig flag if only one page is needed. 2866 */ 2867 if (npages == 1) { 2868 getone = 1; 2869 contig = 0; 2870 } 2871 2872 /* 2873 * Check if any page in the system is fine. 2874 */ 2875 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn; 2876 if (!contig && anyaddr && !pfnalign) { 2877 flags &= ~PG_PHYSCONTIG; 2878 plist = page_create_va(vp, off, npages * MMU_PAGESIZE, 2879 flags, &kvseg, vaddr); 2880 if (plist != NULL) { 2881 *npagesp = 0; 2882 return (plist); 2883 } 2884 } 2885 plist = NULL; 2886 minctg = howmany(npages, sgllen); 2887 while (npages > sgllen || getone) { 2888 if (minctg > npages) 2889 minctg = npages; 2890 mcpl = NULL; 2891 /* 2892 * We could want contig pages with no address range limits. 2893 */ 2894 if (anyaddr && contig) { 2895 /* 2896 * Look for free contig pages to satisfy the request. 2897 */ 2898 mcpl = find_contig_free(minctg, flags, pfnseg, 2899 pfnalign); 2900 } 2901 /* 2902 * Try the reserved io pools next 2903 */ 2904 if (mcpl == NULL) 2905 mcpl = page_io_pool_alloc(mattr, contig, minctg); 2906 if (mcpl != NULL) { 2907 pp = mcpl; 2908 do { 2909 if (!page_hashin(pp, vp, off, NULL)) { 2910 panic("page_get_contigpages:" 2911 " hashin failed" 2912 " pp %p, vp %p, off %llx", 2913 (void *)pp, (void *)vp, off); 2914 } 2915 off += MMU_PAGESIZE; 2916 PP_CLRFREE(pp); 2917 PP_CLRAGED(pp); 2918 page_set_props(pp, P_REF); 2919 page_io_lock(pp); 2920 pp = pp->p_next; 2921 } while (pp != mcpl); 2922 } else { 2923 /* 2924 * Hypervisor exchange doesn't handle segment or 2925 * alignment constraints 2926 */ 2927 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || 2928 pfnalign) 2929 goto fail; 2930 /* 2931 * Try exchanging pages with the hypervisor 2932 */ 2933 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr, 2934 flags, minctg); 2935 if (mcpl == NULL) 2936 goto fail; 2937 off += minctg * MMU_PAGESIZE; 2938 } 2939 check_dma(mattr, mcpl, minctg); 2940 /* 2941 * Here with a minctg run of contiguous pages, add them to the 2942 * list we will return for this request. 2943 */ 2944 page_list_concat(&plist, &mcpl); 2945 npages -= minctg; 2946 *npagesp = npages; 2947 sgllen--; 2948 if (getone) 2949 break; 2950 } 2951 return (plist); 2952 fail: 2953 return_partial_alloc(plist); 2954 return (NULL); 2955 } 2956 2957 /* 2958 * Allocator for domain 0 I/O pages. We match the required 2959 * DMA attributes and contiguity constraints. 2960 */ 2961 /*ARGSUSED*/ 2962 page_t * 2963 page_create_io( 2964 struct vnode *vp, 2965 u_offset_t off, 2966 uint_t bytes, 2967 uint_t flags, 2968 struct as *as, 2969 caddr_t vaddr, 2970 ddi_dma_attr_t *mattr) 2971 { 2972 page_t *plist = NULL, *pp; 2973 int npages = 0, contig, anyaddr, pages_req; 2974 mfn_t lo_mfn; 2975 mfn_t hi_mfn; 2976 pgcnt_t pfnalign = 0; 2977 int align; 2978 int is_domu = 0; 2979 int dummy, bytes_got; 2980 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2981 2982 ASSERT(mattr != NULL); 2983 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2984 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2985 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2986 if (align > MMU_PAGESIZE) 2987 pfnalign = mmu_btop(align); 2988 2989 /* 2990 * Clear the contig flag if only one page is needed or the scatter 2991 * gather list length is >= npages. 2992 */ 2993 pages_req = npages = mmu_btopr(bytes); 2994 contig = (flags & PG_PHYSCONTIG); 2995 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 2996 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages) 2997 contig = 0; 2998 2999 /* 3000 * Check if any old page in the system is fine. 3001 * DomU should always go down this path. 3002 */ 3003 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 3004 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 3005 if ((!contig && anyaddr) || is_domu) { 3006 flags &= ~PG_PHYSCONTIG; 3007 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 3008 if (plist != NULL) 3009 return (plist); 3010 else if (is_domu) 3011 return (NULL); /* no memory available */ 3012 } 3013 /* 3014 * DomU should never reach here 3015 */ 3016 if (contig) { 3017 plist = page_get_contigpages(vp, off, &npages, flags, vaddr, 3018 mattr); 3019 if (plist == NULL) 3020 goto fail; 3021 bytes_got = (pages_req - npages) << MMU_PAGESHIFT; 3022 vaddr += bytes_got; 3023 off += bytes_got; 3024 /* 3025 * We now have all the contiguous pages we need, but 3026 * we may still need additional non-contiguous pages. 3027 */ 3028 } 3029 /* 3030 * now loop collecting the requested number of pages, these do 3031 * not have to be contiguous pages but we will use the contig 3032 * page alloc code to get the pages since it will honor any 3033 * other constraints the pages may have. 3034 */ 3035 while (npages--) { 3036 dummy = -1; 3037 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr); 3038 if (pp == NULL) 3039 goto fail; 3040 page_add(&plist, pp); 3041 vaddr += MMU_PAGESIZE; 3042 off += MMU_PAGESIZE; 3043 } 3044 return (plist); 3045 fail: 3046 /* 3047 * Failed to get enough pages, return ones we did get 3048 */ 3049 return_partial_alloc(plist); 3050 return (NULL); 3051 } 3052 3053 /* 3054 * Lock and return the page with the highest mfn that we can find. last_mfn 3055 * holds the last one found, so the next search can start from there. We 3056 * also keep a counter so that we don't loop forever if the machine has no 3057 * free pages. 3058 * 3059 * This is called from the balloon thread to find pages to give away. new_high 3060 * is used when new mfn's have been added to the system - we will reset our 3061 * search if the new mfn's are higher than our current search position. 3062 */ 3063 page_t * 3064 page_get_high_mfn(mfn_t new_high) 3065 { 3066 static mfn_t last_mfn = 0; 3067 pfn_t pfn; 3068 page_t *pp; 3069 ulong_t loop_count = 0; 3070 3071 if (new_high > last_mfn) 3072 last_mfn = new_high; 3073 3074 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 3075 if (last_mfn == 0) { 3076 last_mfn = cached_max_mfn; 3077 } 3078 3079 pfn = mfn_to_pfn(last_mfn); 3080 if (pfn & PFN_IS_FOREIGN_MFN) 3081 continue; 3082 3083 /* See if the page is free. If so, lock it. */ 3084 pp = page_numtopp_alloc(pfn); 3085 if (pp == NULL) 3086 continue; 3087 PP_CLRFREE(pp); 3088 3089 ASSERT(PAGE_EXCL(pp)); 3090 ASSERT(pp->p_vnode == NULL); 3091 ASSERT(!hat_page_is_mapped(pp)); 3092 last_mfn--; 3093 return (pp); 3094 } 3095 return (NULL); 3096 } 3097 3098 #else /* !__xpv */ 3099 3100 /* 3101 * get a page from any list with the given mnode 3102 */ 3103 static page_t * 3104 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 3105 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 3106 { 3107 kmutex_t *pcm; 3108 int i; 3109 page_t *pp; 3110 page_t *first_pp; 3111 uint64_t pgaddr; 3112 ulong_t bin; 3113 int mtypestart; 3114 int plw_initialized; 3115 page_list_walker_t plw; 3116 3117 VM_STAT_ADD(pga_vmstats.pgma_alloc); 3118 3119 ASSERT((flags & PG_MATCH_COLOR) == 0); 3120 ASSERT(szc == 0); 3121 ASSERT(dma_attr != NULL); 3122 3123 MTYPE_START(mnode, mtype, flags); 3124 if (mtype < 0) { 3125 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 3126 return (NULL); 3127 } 3128 3129 mtypestart = mtype; 3130 3131 bin = origbin; 3132 3133 /* 3134 * check up to page_colors + 1 bins - origbin may be checked twice 3135 * because of BIN_STEP skip 3136 */ 3137 do { 3138 plw_initialized = 0; 3139 3140 for (plw.plw_count = 0; 3141 plw.plw_count < page_colors; plw.plw_count++) { 3142 3143 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL) 3144 goto nextfreebin; 3145 3146 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST); 3147 mutex_enter(pcm); 3148 pp = PAGE_FREELISTS(mnode, szc, bin, mtype); 3149 first_pp = pp; 3150 while (pp != NULL) { 3151 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3152 SE_EXCL) == 0) { 3153 pp = pp->p_next; 3154 if (pp == first_pp) { 3155 pp = NULL; 3156 } 3157 continue; 3158 } 3159 3160 ASSERT(PP_ISFREE(pp)); 3161 ASSERT(PP_ISAGED(pp)); 3162 ASSERT(pp->p_vnode == NULL); 3163 ASSERT(pp->p_hash == NULL); 3164 ASSERT(pp->p_offset == (u_offset_t)-1); 3165 ASSERT(pp->p_szc == szc); 3166 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3167 /* check if page within DMA attributes */ 3168 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3169 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3170 (pgaddr + MMU_PAGESIZE - 1 <= 3171 dma_attr->dma_attr_addr_hi)) { 3172 break; 3173 } 3174 3175 /* continue looking */ 3176 page_unlock(pp); 3177 pp = pp->p_next; 3178 if (pp == first_pp) 3179 pp = NULL; 3180 3181 } 3182 if (pp != NULL) { 3183 ASSERT(mtype == PP_2_MTYPE(pp)); 3184 ASSERT(pp->p_szc == 0); 3185 3186 /* found a page with specified DMA attributes */ 3187 page_sub(&PAGE_FREELISTS(mnode, szc, bin, 3188 mtype), pp); 3189 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 3190 3191 if ((PP_ISFREE(pp) == 0) || 3192 (PP_ISAGED(pp) == 0)) { 3193 cmn_err(CE_PANIC, "page %p is not free", 3194 (void *)pp); 3195 } 3196 3197 mutex_exit(pcm); 3198 check_dma(dma_attr, pp, 1); 3199 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3200 return (pp); 3201 } 3202 mutex_exit(pcm); 3203 nextfreebin: 3204 if (plw_initialized == 0) { 3205 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 3206 ASSERT(plw.plw_ceq_dif == page_colors); 3207 plw_initialized = 1; 3208 } 3209 3210 if (plw.plw_do_split) { 3211 pp = page_freelist_split(szc, bin, mnode, 3212 mtype, 3213 mmu_btop(dma_attr->dma_attr_addr_lo), 3214 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 3215 &plw); 3216 if (pp != NULL) { 3217 check_dma(dma_attr, pp, 1); 3218 return (pp); 3219 } 3220 } 3221 3222 bin = page_list_walk_next_bin(szc, bin, &plw); 3223 } 3224 3225 MTYPE_NEXT(mnode, mtype, flags); 3226 } while (mtype >= 0); 3227 3228 /* failed to find a page in the freelist; try it in the cachelist */ 3229 3230 /* reset mtype start for cachelist search */ 3231 mtype = mtypestart; 3232 ASSERT(mtype >= 0); 3233 3234 /* start with the bin of matching color */ 3235 bin = origbin; 3236 3237 do { 3238 for (i = 0; i <= page_colors; i++) { 3239 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 3240 goto nextcachebin; 3241 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST); 3242 mutex_enter(pcm); 3243 pp = PAGE_CACHELISTS(mnode, bin, mtype); 3244 first_pp = pp; 3245 while (pp != NULL) { 3246 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3247 SE_EXCL) == 0) { 3248 pp = pp->p_next; 3249 if (pp == first_pp) 3250 pp = NULL; 3251 continue; 3252 } 3253 ASSERT(pp->p_vnode); 3254 ASSERT(PP_ISAGED(pp) == 0); 3255 ASSERT(pp->p_szc == 0); 3256 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3257 3258 /* check if page within DMA attributes */ 3259 3260 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3261 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3262 (pgaddr + MMU_PAGESIZE - 1 <= 3263 dma_attr->dma_attr_addr_hi)) { 3264 break; 3265 } 3266 3267 /* continue looking */ 3268 page_unlock(pp); 3269 pp = pp->p_next; 3270 if (pp == first_pp) 3271 pp = NULL; 3272 } 3273 3274 if (pp != NULL) { 3275 ASSERT(mtype == PP_2_MTYPE(pp)); 3276 ASSERT(pp->p_szc == 0); 3277 3278 /* found a page with specified DMA attributes */ 3279 page_sub(&PAGE_CACHELISTS(mnode, bin, 3280 mtype), pp); 3281 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 3282 3283 mutex_exit(pcm); 3284 ASSERT(pp->p_vnode); 3285 ASSERT(PP_ISAGED(pp) == 0); 3286 check_dma(dma_attr, pp, 1); 3287 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3288 return (pp); 3289 } 3290 mutex_exit(pcm); 3291 nextcachebin: 3292 bin += (i == 0) ? BIN_STEP : 1; 3293 bin &= page_colors_mask; 3294 } 3295 MTYPE_NEXT(mnode, mtype, flags); 3296 } while (mtype >= 0); 3297 3298 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 3299 return (NULL); 3300 } 3301 3302 /* 3303 * This function is similar to page_get_freelist()/page_get_cachelist() 3304 * but it searches both the lists to find a page with the specified 3305 * color (or no color) and DMA attributes. The search is done in the 3306 * freelist first and then in the cache list within the highest memory 3307 * range (based on DMA attributes) before searching in the lower 3308 * memory ranges. 3309 * 3310 * Note: This function is called only by page_create_io(). 3311 */ 3312 /*ARGSUSED*/ 3313 static page_t * 3314 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 3315 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 3316 { 3317 uint_t bin; 3318 int mtype; 3319 page_t *pp; 3320 int n; 3321 int m; 3322 int szc; 3323 int fullrange; 3324 int mnode; 3325 int local_failed_stat = 0; 3326 lgrp_mnode_cookie_t lgrp_cookie; 3327 3328 VM_STAT_ADD(pga_vmstats.pga_alloc); 3329 3330 /* only base pagesize currently supported */ 3331 if (size != MMU_PAGESIZE) 3332 return (NULL); 3333 3334 /* 3335 * If we're passed a specific lgroup, we use it. Otherwise, 3336 * assume first-touch placement is desired. 3337 */ 3338 if (!LGRP_EXISTS(lgrp)) 3339 lgrp = lgrp_home_lgrp(); 3340 3341 /* LINTED */ 3342 AS_2_BIN(as, seg, vp, vaddr, bin, 0); 3343 3344 /* 3345 * Only hold one freelist or cachelist lock at a time, that way we 3346 * can start anywhere and not have to worry about lock 3347 * ordering. 3348 */ 3349 if (dma_attr == NULL) { 3350 n = mtype16m; 3351 m = mtypetop; 3352 fullrange = 1; 3353 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 3354 } else { 3355 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 3356 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 3357 3358 /* 3359 * We can guarantee alignment only for page boundary. 3360 */ 3361 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 3362 return (NULL); 3363 3364 /* Sanity check the dma_attr */ 3365 if (pfnlo > pfnhi) 3366 return (NULL); 3367 3368 n = pfn_2_mtype(pfnlo); 3369 m = pfn_2_mtype(pfnhi); 3370 3371 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 3372 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 3373 } 3374 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 3375 3376 szc = 0; 3377 3378 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */ 3379 if (n == mtype16m) { 3380 flags |= PGI_MT_RANGE0; 3381 n = m; 3382 } 3383 3384 /* 3385 * Try local memory node first, but try remote if we can't 3386 * get a page of the right color. 3387 */ 3388 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 3389 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 3390 /* 3391 * allocate pages from high pfn to low. 3392 */ 3393 mtype = m; 3394 do { 3395 if (fullrange != 0) { 3396 pp = page_get_mnode_freelist(mnode, 3397 bin, mtype, szc, flags); 3398 if (pp == NULL) { 3399 pp = page_get_mnode_cachelist( 3400 bin, flags, mnode, mtype); 3401 } 3402 } else { 3403 pp = page_get_mnode_anylist(bin, szc, 3404 flags, mnode, mtype, dma_attr); 3405 } 3406 if (pp != NULL) { 3407 VM_STAT_ADD(pga_vmstats.pga_allocok); 3408 check_dma(dma_attr, pp, 1); 3409 return (pp); 3410 } 3411 } while (mtype != n && 3412 (mtype = mnoderanges[mtype].mnr_next) != -1); 3413 if (!local_failed_stat) { 3414 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 3415 local_failed_stat = 1; 3416 } 3417 } 3418 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 3419 3420 return (NULL); 3421 } 3422 3423 /* 3424 * page_create_io() 3425 * 3426 * This function is a copy of page_create_va() with an additional 3427 * argument 'mattr' that specifies DMA memory requirements to 3428 * the page list functions. This function is used by the segkmem 3429 * allocator so it is only to create new pages (i.e PG_EXCL is 3430 * set). 3431 * 3432 * Note: This interface is currently used by x86 PSM only and is 3433 * not fully specified so the commitment level is only for 3434 * private interface specific to x86. This interface uses PSM 3435 * specific page_get_anylist() interface. 3436 */ 3437 3438 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 3439 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 3440 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 3441 break; \ 3442 } \ 3443 } 3444 3445 3446 page_t * 3447 page_create_io( 3448 struct vnode *vp, 3449 u_offset_t off, 3450 uint_t bytes, 3451 uint_t flags, 3452 struct as *as, 3453 caddr_t vaddr, 3454 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 3455 { 3456 page_t *plist = NULL; 3457 uint_t plist_len = 0; 3458 pgcnt_t npages; 3459 page_t *npp = NULL; 3460 uint_t pages_req; 3461 page_t *pp; 3462 kmutex_t *phm = NULL; 3463 uint_t index; 3464 3465 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 3466 "page_create_start:vp %p off %llx bytes %u flags %x", 3467 vp, off, bytes, flags); 3468 3469 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 3470 3471 pages_req = npages = mmu_btopr(bytes); 3472 3473 /* 3474 * Do the freemem and pcf accounting. 3475 */ 3476 if (!page_create_wait(npages, flags)) { 3477 return (NULL); 3478 } 3479 3480 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 3481 "page_create_success:vp %p off %llx", vp, off); 3482 3483 /* 3484 * If satisfying this request has left us with too little 3485 * memory, start the wheels turning to get some back. The 3486 * first clause of the test prevents waking up the pageout 3487 * daemon in situations where it would decide that there's 3488 * nothing to do. 3489 */ 3490 if (nscan < desscan && freemem < minfree) { 3491 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 3492 "pageout_cv_signal:freemem %ld", freemem); 3493 cv_signal(&proc_pageout->p_cv); 3494 } 3495 3496 if (flags & PG_PHYSCONTIG) { 3497 3498 plist = page_get_contigpage(&npages, mattr, 1); 3499 if (plist == NULL) { 3500 page_create_putback(npages); 3501 return (NULL); 3502 } 3503 3504 pp = plist; 3505 3506 do { 3507 if (!page_hashin(pp, vp, off, NULL)) { 3508 panic("pg_creat_io: hashin failed %p %p %llx", 3509 (void *)pp, (void *)vp, off); 3510 } 3511 VM_STAT_ADD(page_create_new); 3512 off += MMU_PAGESIZE; 3513 PP_CLRFREE(pp); 3514 PP_CLRAGED(pp); 3515 page_set_props(pp, P_REF); 3516 pp = pp->p_next; 3517 } while (pp != plist); 3518 3519 if (!npages) { 3520 check_dma(mattr, plist, pages_req); 3521 return (plist); 3522 } else { 3523 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3524 } 3525 3526 /* 3527 * fall-thru: 3528 * 3529 * page_get_contigpage returns when npages <= sgllen. 3530 * Grab the rest of the non-contig pages below from anylist. 3531 */ 3532 } 3533 3534 /* 3535 * Loop around collecting the requested number of pages. 3536 * Most of the time, we have to `create' a new page. With 3537 * this in mind, pull the page off the free list before 3538 * getting the hash lock. This will minimize the hash 3539 * lock hold time, nesting, and the like. If it turns 3540 * out we don't need the page, we put it back at the end. 3541 */ 3542 while (npages--) { 3543 phm = NULL; 3544 3545 index = PAGE_HASH_FUNC(vp, off); 3546 top: 3547 ASSERT(phm == NULL); 3548 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3549 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3550 3551 if (npp == NULL) { 3552 /* 3553 * Try to get the page of any color either from 3554 * the freelist or from the cache list. 3555 */ 3556 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3557 flags & ~PG_MATCH_COLOR, mattr, NULL); 3558 if (npp == NULL) { 3559 if (mattr == NULL) { 3560 /* 3561 * Not looking for a special page; 3562 * panic! 3563 */ 3564 panic("no page found %d", (int)npages); 3565 } 3566 /* 3567 * No page found! This can happen 3568 * if we are looking for a page 3569 * within a specific memory range 3570 * for DMA purposes. If PG_WAIT is 3571 * specified then we wait for a 3572 * while and then try again. The 3573 * wait could be forever if we 3574 * don't get the page(s) we need. 3575 * 3576 * Note: XXX We really need a mechanism 3577 * to wait for pages in the desired 3578 * range. For now, we wait for any 3579 * pages and see if we can use it. 3580 */ 3581 3582 if ((mattr != NULL) && (flags & PG_WAIT)) { 3583 delay(10); 3584 goto top; 3585 } 3586 goto fail; /* undo accounting stuff */ 3587 } 3588 3589 if (PP_ISAGED(npp) == 0) { 3590 /* 3591 * Since this page came from the 3592 * cachelist, we must destroy the 3593 * old vnode association. 3594 */ 3595 page_hashout(npp, (kmutex_t *)NULL); 3596 } 3597 } 3598 3599 /* 3600 * We own this page! 3601 */ 3602 ASSERT(PAGE_EXCL(npp)); 3603 ASSERT(npp->p_vnode == NULL); 3604 ASSERT(!hat_page_is_mapped(npp)); 3605 PP_CLRFREE(npp); 3606 PP_CLRAGED(npp); 3607 3608 /* 3609 * Here we have a page in our hot little mits and are 3610 * just waiting to stuff it on the appropriate lists. 3611 * Get the mutex and check to see if it really does 3612 * not exist. 3613 */ 3614 phm = PAGE_HASH_MUTEX(index); 3615 mutex_enter(phm); 3616 PAGE_HASH_SEARCH(index, pp, vp, off); 3617 if (pp == NULL) { 3618 VM_STAT_ADD(page_create_new); 3619 pp = npp; 3620 npp = NULL; 3621 if (!page_hashin(pp, vp, off, phm)) { 3622 /* 3623 * Since we hold the page hash mutex and 3624 * just searched for this page, page_hashin 3625 * had better not fail. If it does, that 3626 * means somethread did not follow the 3627 * page hash mutex rules. Panic now and 3628 * get it over with. As usual, go down 3629 * holding all the locks. 3630 */ 3631 ASSERT(MUTEX_HELD(phm)); 3632 panic("page_create: hashin fail %p %p %llx %p", 3633 (void *)pp, (void *)vp, off, (void *)phm); 3634 3635 } 3636 ASSERT(MUTEX_HELD(phm)); 3637 mutex_exit(phm); 3638 phm = NULL; 3639 3640 /* 3641 * Hat layer locking need not be done to set 3642 * the following bits since the page is not hashed 3643 * and was on the free list (i.e., had no mappings). 3644 * 3645 * Set the reference bit to protect 3646 * against immediate pageout 3647 * 3648 * XXXmh modify freelist code to set reference 3649 * bit so we don't have to do it here. 3650 */ 3651 page_set_props(pp, P_REF); 3652 } else { 3653 ASSERT(MUTEX_HELD(phm)); 3654 mutex_exit(phm); 3655 phm = NULL; 3656 /* 3657 * NOTE: This should not happen for pages associated 3658 * with kernel vnode 'kvp'. 3659 */ 3660 /* XX64 - to debug why this happens! */ 3661 ASSERT(!VN_ISKAS(vp)); 3662 if (VN_ISKAS(vp)) 3663 cmn_err(CE_NOTE, 3664 "page_create: page not expected " 3665 "in hash list for kernel vnode - pp 0x%p", 3666 (void *)pp); 3667 VM_STAT_ADD(page_create_exists); 3668 goto fail; 3669 } 3670 3671 /* 3672 * Got a page! It is locked. Acquire the i/o 3673 * lock since we are going to use the p_next and 3674 * p_prev fields to link the requested pages together. 3675 */ 3676 page_io_lock(pp); 3677 page_add(&plist, pp); 3678 plist = plist->p_next; 3679 off += MMU_PAGESIZE; 3680 vaddr += MMU_PAGESIZE; 3681 } 3682 3683 check_dma(mattr, plist, pages_req); 3684 return (plist); 3685 3686 fail: 3687 if (npp != NULL) { 3688 /* 3689 * Did not need this page after all. 3690 * Put it back on the free list. 3691 */ 3692 VM_STAT_ADD(page_create_putbacks); 3693 PP_SETFREE(npp); 3694 PP_SETAGED(npp); 3695 npp->p_offset = (u_offset_t)-1; 3696 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3697 page_unlock(npp); 3698 } 3699 3700 /* 3701 * Give up the pages we already got. 3702 */ 3703 while (plist != NULL) { 3704 pp = plist; 3705 page_sub(&plist, pp); 3706 page_io_unlock(pp); 3707 plist_len++; 3708 /*LINTED: constant in conditional ctx*/ 3709 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3710 } 3711 3712 /* 3713 * VN_DISPOSE does freemem accounting for the pages in plist 3714 * by calling page_free. So, we need to undo the pcf accounting 3715 * for only the remaining pages. 3716 */ 3717 VM_STAT_ADD(page_create_putbacks); 3718 page_create_putback(pages_req - plist_len); 3719 3720 return (NULL); 3721 } 3722 #endif /* !__xpv */ 3723 3724 3725 /* 3726 * Copy the data from the physical page represented by "frompp" to 3727 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3728 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3729 * level and no one sleeps with an active mapping there. 3730 * 3731 * Note that the ref/mod bits in the page_t's are not affected by 3732 * this operation, hence it is up to the caller to update them appropriately. 3733 */ 3734 int 3735 ppcopy(page_t *frompp, page_t *topp) 3736 { 3737 caddr_t pp_addr1; 3738 caddr_t pp_addr2; 3739 hat_mempte_t pte1; 3740 hat_mempte_t pte2; 3741 kmutex_t *ppaddr_mutex; 3742 label_t ljb; 3743 int ret = 1; 3744 3745 ASSERT_STACK_ALIGNED(); 3746 ASSERT(PAGE_LOCKED(frompp)); 3747 ASSERT(PAGE_LOCKED(topp)); 3748 3749 if (kpm_enable) { 3750 pp_addr1 = hat_kpm_page2va(frompp, 0); 3751 pp_addr2 = hat_kpm_page2va(topp, 0); 3752 kpreempt_disable(); 3753 } else { 3754 /* 3755 * disable pre-emption so that CPU can't change 3756 */ 3757 kpreempt_disable(); 3758 3759 pp_addr1 = CPU->cpu_caddr1; 3760 pp_addr2 = CPU->cpu_caddr2; 3761 pte1 = CPU->cpu_caddr1pte; 3762 pte2 = CPU->cpu_caddr2pte; 3763 3764 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3765 mutex_enter(ppaddr_mutex); 3766 3767 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3768 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3769 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3770 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3771 HAT_LOAD_NOCONSIST); 3772 } 3773 3774 if (on_fault(&ljb)) { 3775 ret = 0; 3776 goto faulted; 3777 } 3778 if (use_sse_pagecopy) 3779 #ifdef __xpv 3780 page_copy_no_xmm(pp_addr2, pp_addr1); 3781 #else 3782 hwblkpagecopy(pp_addr1, pp_addr2); 3783 #endif 3784 else 3785 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3786 3787 no_fault(); 3788 faulted: 3789 if (!kpm_enable) { 3790 #ifdef __xpv 3791 /* 3792 * We can't leave unused mappings laying about under the 3793 * hypervisor, so blow them away. 3794 */ 3795 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3796 UVMF_INVLPG | UVMF_LOCAL) < 0) 3797 panic("HYPERVISOR_update_va_mapping() failed"); 3798 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3799 UVMF_INVLPG | UVMF_LOCAL) < 0) 3800 panic("HYPERVISOR_update_va_mapping() failed"); 3801 #endif 3802 mutex_exit(ppaddr_mutex); 3803 } 3804 kpreempt_enable(); 3805 return (ret); 3806 } 3807 3808 void 3809 pagezero(page_t *pp, uint_t off, uint_t len) 3810 { 3811 ASSERT(PAGE_LOCKED(pp)); 3812 pfnzero(page_pptonum(pp), off, len); 3813 } 3814 3815 /* 3816 * Zero the physical page from off to off + len given by pfn 3817 * without changing the reference and modified bits of page. 3818 * 3819 * We use this using CPU private page address #2, see ppcopy() for more info. 3820 * pfnzero() must not be called at interrupt level. 3821 */ 3822 void 3823 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3824 { 3825 caddr_t pp_addr2; 3826 hat_mempte_t pte2; 3827 kmutex_t *ppaddr_mutex = NULL; 3828 3829 ASSERT_STACK_ALIGNED(); 3830 ASSERT(len <= MMU_PAGESIZE); 3831 ASSERT(off <= MMU_PAGESIZE); 3832 ASSERT(off + len <= MMU_PAGESIZE); 3833 3834 if (kpm_enable && !pfn_is_foreign(pfn)) { 3835 pp_addr2 = hat_kpm_pfn2va(pfn); 3836 kpreempt_disable(); 3837 } else { 3838 kpreempt_disable(); 3839 3840 pp_addr2 = CPU->cpu_caddr2; 3841 pte2 = CPU->cpu_caddr2pte; 3842 3843 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3844 mutex_enter(ppaddr_mutex); 3845 3846 hat_mempte_remap(pfn, pp_addr2, pte2, 3847 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3848 HAT_LOAD_NOCONSIST); 3849 } 3850 3851 if (use_sse_pagezero) { 3852 #ifdef __xpv 3853 uint_t rem; 3854 3855 /* 3856 * zero a byte at a time until properly aligned for 3857 * block_zero_no_xmm(). 3858 */ 3859 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3860 pp_addr2[off++] = 0; 3861 3862 /* 3863 * Now use faster block_zero_no_xmm() for any range 3864 * that is properly aligned and sized. 3865 */ 3866 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3867 len -= rem; 3868 if (len != 0) { 3869 block_zero_no_xmm(pp_addr2 + off, len); 3870 off += len; 3871 } 3872 3873 /* 3874 * zero remainder with byte stores. 3875 */ 3876 while (rem-- > 0) 3877 pp_addr2[off++] = 0; 3878 #else 3879 hwblkclr(pp_addr2 + off, len); 3880 #endif 3881 } else { 3882 bzero(pp_addr2 + off, len); 3883 } 3884 3885 if (!kpm_enable || pfn_is_foreign(pfn)) { 3886 #ifdef __xpv 3887 /* 3888 * On the hypervisor this page might get used for a page 3889 * table before any intervening change to this mapping, 3890 * so blow it away. 3891 */ 3892 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3893 UVMF_INVLPG) < 0) 3894 panic("HYPERVISOR_update_va_mapping() failed"); 3895 #endif 3896 mutex_exit(ppaddr_mutex); 3897 } 3898 3899 kpreempt_enable(); 3900 } 3901 3902 /* 3903 * Platform-dependent page scrub call. 3904 */ 3905 void 3906 pagescrub(page_t *pp, uint_t off, uint_t len) 3907 { 3908 /* 3909 * For now, we rely on the fact that pagezero() will 3910 * always clear UEs. 3911 */ 3912 pagezero(pp, off, len); 3913 } 3914 3915 /* 3916 * set up two private addresses for use on a given CPU for use in ppcopy() 3917 */ 3918 void 3919 setup_vaddr_for_ppcopy(struct cpu *cpup) 3920 { 3921 void *addr; 3922 hat_mempte_t pte_pa; 3923 3924 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3925 pte_pa = hat_mempte_setup(addr); 3926 cpup->cpu_caddr1 = addr; 3927 cpup->cpu_caddr1pte = pte_pa; 3928 3929 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3930 pte_pa = hat_mempte_setup(addr); 3931 cpup->cpu_caddr2 = addr; 3932 cpup->cpu_caddr2pte = pte_pa; 3933 3934 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 3935 } 3936 3937 /* 3938 * Undo setup_vaddr_for_ppcopy 3939 */ 3940 void 3941 teardown_vaddr_for_ppcopy(struct cpu *cpup) 3942 { 3943 mutex_destroy(&cpup->cpu_ppaddr_mutex); 3944 3945 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 3946 cpup->cpu_caddr2pte = 0; 3947 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 3948 cpup->cpu_caddr2 = 0; 3949 3950 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 3951 cpup->cpu_caddr1pte = 0; 3952 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 3953 cpup->cpu_caddr1 = 0; 3954 } 3955 3956 /* 3957 * Function for flushing D-cache when performing module relocations 3958 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 3959 */ 3960 void 3961 dcache_flushall() 3962 {} 3963 3964 /* 3965 * Allocate a memory page. The argument 'seed' can be any pseudo-random 3966 * number to vary where the pages come from. This is quite a hacked up 3967 * method -- it works for now, but really needs to be fixed up a bit. 3968 * 3969 * We currently use page_create_va() on the kvp with fake offsets, 3970 * segments and virt address. This is pretty bogus, but was copied from the 3971 * old hat_i86.c code. A better approach would be to specify either mnode 3972 * random or mnode local and takes a page from whatever color has the MOST 3973 * available - this would have a minimal impact on page coloring. 3974 */ 3975 page_t * 3976 page_get_physical(uintptr_t seed) 3977 { 3978 page_t *pp; 3979 u_offset_t offset; 3980 static struct seg tmpseg; 3981 static uintptr_t ctr = 0; 3982 3983 /* 3984 * This code is gross, we really need a simpler page allocator. 3985 * 3986 * We need to assign an offset for the page to call page_create_va() 3987 * To avoid conflicts with other pages, we get creative with the offset. 3988 * For 32 bits, we need an offset > 4Gig 3989 * For 64 bits, need an offset somewhere in the VA hole. 3990 */ 3991 offset = seed; 3992 if (offset > kernelbase) 3993 offset -= kernelbase; 3994 offset <<= MMU_PAGESHIFT; 3995 #if defined(__amd64) 3996 offset += mmu.hole_start; /* something in VA hole */ 3997 #else 3998 offset += 1ULL << 40; /* something > 4 Gig */ 3999 #endif 4000 4001 if (page_resv(1, KM_NOSLEEP) == 0) 4002 return (NULL); 4003 4004 #ifdef DEBUG 4005 pp = page_exists(&kvp, offset); 4006 if (pp != NULL) 4007 panic("page already exists %p", (void *)pp); 4008 #endif 4009 4010 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 4011 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 4012 if (pp != NULL) { 4013 page_io_unlock(pp); 4014 page_downgrade(pp); 4015 } 4016 return (pp); 4017 }