1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 382 const char * const zone_default_initname = "/sbin/init"; 383 static char * const zone_prefix = "/zone/"; 384 static int zone_shutdown(zoneid_t zoneid); 385 static int zone_add_datalink(zoneid_t, datalink_id_t); 386 static int zone_remove_datalink(zoneid_t, datalink_id_t); 387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 388 static int zone_set_network(zoneid_t, zone_net_data_t *); 389 static int zone_get_network(zoneid_t, zone_net_data_t *); 390 391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 392 393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 397 zone_key_t); 398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 400 kmutex_t *); 401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 404 /* 405 * Bump this number when you alter the zone syscall interfaces; this is 406 * because we need to have support for previous API versions in libc 407 * to support patching; libc calls into the kernel to determine this number. 408 * 409 * Version 1 of the API is the version originally shipped with Solaris 10 410 * Version 2 alters the zone_create system call in order to support more 411 * arguments by moving the args into a structure; and to do better 412 * error reporting when zone_create() fails. 413 * Version 3 alters the zone_create system call in order to support the 414 * import of ZFS datasets to zones. 415 * Version 4 alters the zone_create system call in order to support 416 * Trusted Extensions. 417 * Version 5 alters the zone_boot system call, and converts its old 418 * bootargs parameter to be set by the zone_setattr API instead. 419 * Version 6 adds the flag argument to zone_create. 420 */ 421 static const int ZONE_SYSCALL_API_VERSION = 6; 422 423 /* 424 * Certain filesystems (such as NFS and autofs) need to know which zone 425 * the mount is being placed in. Because of this, we need to be able to 426 * ensure that a zone isn't in the process of being created/destroyed such 427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 428 * it gets added the list of mounted zones, it ends up on the wrong zone's 429 * mount list. Since a zone can't reside on an NFS file system, we don't 430 * have to worry about the zonepath itself. 431 * 432 * The following functions: block_mounts()/resume_mounts() and 433 * mount_in_progress()/mount_completed() are used by zones and the VFS 434 * layer (respectively) to synchronize zone state transitions and new 435 * mounts within a zone. This syncronization is on a per-zone basis, so 436 * activity for one zone will not interfere with activity for another zone. 437 * 438 * The semantics are like a reader-reader lock such that there may 439 * either be multiple mounts (or zone state transitions, if that weren't 440 * serialized by zonehash_lock) in progress at the same time, but not 441 * both. 442 * 443 * We use cv's so the user can ctrl-C out of the operation if it's 444 * taking too long. 445 * 446 * The semantics are such that there is unfair bias towards the 447 * "current" operation. This means that zone halt may starve if 448 * there is a rapid succession of new mounts coming in to the zone. 449 */ 450 /* 451 * Prevent new mounts from progressing to the point of calling 452 * VFS_MOUNT(). If there are already mounts in this "region", wait for 453 * them to complete. 454 */ 455 static int 456 block_mounts(zone_t *zp) 457 { 458 int retval = 0; 459 460 /* 461 * Since it may block for a long time, block_mounts() shouldn't be 462 * called with zonehash_lock held. 463 */ 464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 465 mutex_enter(&zp->zone_mount_lock); 466 while (zp->zone_mounts_in_progress > 0) { 467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 468 goto signaled; 469 } 470 /* 471 * A negative value of mounts_in_progress indicates that mounts 472 * have been blocked by (-mounts_in_progress) different callers 473 * (remotely possible if two threads enter zone_shutdown at the same 474 * time). 475 */ 476 zp->zone_mounts_in_progress--; 477 retval = 1; 478 signaled: 479 mutex_exit(&zp->zone_mount_lock); 480 return (retval); 481 } 482 483 /* 484 * The VFS layer may progress with new mounts as far as we're concerned. 485 * Allow them to progress if we were the last obstacle. 486 */ 487 static void 488 resume_mounts(zone_t *zp) 489 { 490 mutex_enter(&zp->zone_mount_lock); 491 if (++zp->zone_mounts_in_progress == 0) 492 cv_broadcast(&zp->zone_mount_cv); 493 mutex_exit(&zp->zone_mount_lock); 494 } 495 496 /* 497 * The VFS layer is busy with a mount; this zone should wait until all 498 * of its mounts are completed to progress. 499 */ 500 void 501 mount_in_progress(zone_t *zp) 502 { 503 mutex_enter(&zp->zone_mount_lock); 504 while (zp->zone_mounts_in_progress < 0) 505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 506 zp->zone_mounts_in_progress++; 507 mutex_exit(&zp->zone_mount_lock); 508 } 509 510 /* 511 * VFS is done with one mount; wake up any waiting block_mounts() 512 * callers if this is the last mount. 513 */ 514 void 515 mount_completed(zone_t *zp) 516 { 517 mutex_enter(&zp->zone_mount_lock); 518 if (--zp->zone_mounts_in_progress == 0) 519 cv_broadcast(&zp->zone_mount_cv); 520 mutex_exit(&zp->zone_mount_lock); 521 } 522 523 /* 524 * ZSD routines. 525 * 526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 527 * defined by the pthread_key_create() and related interfaces. 528 * 529 * Kernel subsystems may register one or more data items and/or 530 * callbacks to be executed when a zone is created, shutdown, or 531 * destroyed. 532 * 533 * Unlike the thread counterpart, destructor callbacks will be executed 534 * even if the data pointer is NULL and/or there are no constructor 535 * callbacks, so it is the responsibility of such callbacks to check for 536 * NULL data values if necessary. 537 * 538 * The locking strategy and overall picture is as follows: 539 * 540 * When someone calls zone_key_create(), a template ZSD entry is added to the 541 * global list "zsd_registered_keys", protected by zsd_key_lock. While 542 * holding that lock all the existing zones are marked as 543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 544 * zone_zsd list (protected by zone_lock). The global list is updated first 545 * (under zone_key_lock) to make sure that newly created zones use the 546 * most recent list of keys. Then under zonehash_lock we walk the zones 547 * and mark them. Similar locking is used in zone_key_delete(). 548 * 549 * The actual create, shutdown, and destroy callbacks are done without 550 * holding any lock. And zsd_flags are used to ensure that the operations 551 * completed so that when zone_key_create (and zone_create) is done, as well as 552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 553 * are completed. 554 * 555 * When new zones are created constructor callbacks for all registered ZSD 556 * entries will be called. That also uses the above two phases of marking 557 * what needs to be done, and then running the callbacks without holding 558 * any locks. 559 * 560 * The framework does not provide any locking around zone_getspecific() and 561 * zone_setspecific() apart from that needed for internal consistency, so 562 * callers interested in atomic "test-and-set" semantics will need to provide 563 * their own locking. 564 */ 565 566 /* 567 * Helper function to find the zsd_entry associated with the key in the 568 * given list. 569 */ 570 static struct zsd_entry * 571 zsd_find(list_t *l, zone_key_t key) 572 { 573 struct zsd_entry *zsd; 574 575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 576 if (zsd->zsd_key == key) { 577 return (zsd); 578 } 579 } 580 return (NULL); 581 } 582 583 /* 584 * Helper function to find the zsd_entry associated with the key in the 585 * given list. Move it to the front of the list. 586 */ 587 static struct zsd_entry * 588 zsd_find_mru(list_t *l, zone_key_t key) 589 { 590 struct zsd_entry *zsd; 591 592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 593 if (zsd->zsd_key == key) { 594 /* 595 * Move to head of list to keep list in MRU order. 596 */ 597 if (zsd != list_head(l)) { 598 list_remove(l, zsd); 599 list_insert_head(l, zsd); 600 } 601 return (zsd); 602 } 603 } 604 return (NULL); 605 } 606 607 void 608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 610 { 611 struct zsd_entry *zsdp; 612 struct zsd_entry *t; 613 struct zone *zone; 614 zone_key_t key; 615 616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 617 zsdp->zsd_data = NULL; 618 zsdp->zsd_create = create; 619 zsdp->zsd_shutdown = shutdown; 620 zsdp->zsd_destroy = destroy; 621 622 /* 623 * Insert in global list of callbacks. Makes future zone creations 624 * see it. 625 */ 626 mutex_enter(&zsd_key_lock); 627 key = zsdp->zsd_key = ++zsd_keyval; 628 ASSERT(zsd_keyval != 0); 629 list_insert_tail(&zsd_registered_keys, zsdp); 630 mutex_exit(&zsd_key_lock); 631 632 /* 633 * Insert for all existing zones and mark them as needing 634 * a create callback. 635 */ 636 mutex_enter(&zonehash_lock); /* stop the world */ 637 for (zone = list_head(&zone_active); zone != NULL; 638 zone = list_next(&zone_active, zone)) { 639 zone_status_t status; 640 641 mutex_enter(&zone->zone_lock); 642 643 /* Skip zones that are on the way down or not yet up */ 644 status = zone_status_get(zone); 645 if (status >= ZONE_IS_DOWN || 646 status == ZONE_IS_UNINITIALIZED) { 647 mutex_exit(&zone->zone_lock); 648 continue; 649 } 650 651 t = zsd_find_mru(&zone->zone_zsd, key); 652 if (t != NULL) { 653 /* 654 * A zsd_configure already inserted it after 655 * we dropped zsd_key_lock above. 656 */ 657 mutex_exit(&zone->zone_lock); 658 continue; 659 } 660 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 661 t->zsd_key = key; 662 t->zsd_create = create; 663 t->zsd_shutdown = shutdown; 664 t->zsd_destroy = destroy; 665 if (create != NULL) { 666 t->zsd_flags = ZSD_CREATE_NEEDED; 667 DTRACE_PROBE2(zsd__create__needed, 668 zone_t *, zone, zone_key_t, key); 669 } 670 list_insert_tail(&zone->zone_zsd, t); 671 mutex_exit(&zone->zone_lock); 672 } 673 mutex_exit(&zonehash_lock); 674 675 if (create != NULL) { 676 /* Now call the create callback for this key */ 677 zsd_apply_all_zones(zsd_apply_create, key); 678 } 679 /* 680 * It is safe for consumers to use the key now, make it 681 * globally visible. Specifically zone_getspecific() will 682 * always successfully return the zone specific data associated 683 * with the key. 684 */ 685 *keyp = key; 686 687 } 688 689 /* 690 * Function called when a module is being unloaded, or otherwise wishes 691 * to unregister its ZSD key and callbacks. 692 * 693 * Remove from the global list and determine the functions that need to 694 * be called under a global lock. Then call the functions without 695 * holding any locks. Finally free up the zone_zsd entries. (The apply 696 * functions need to access the zone_zsd entries to find zsd_data etc.) 697 */ 698 int 699 zone_key_delete(zone_key_t key) 700 { 701 struct zsd_entry *zsdp = NULL; 702 zone_t *zone; 703 704 mutex_enter(&zsd_key_lock); 705 zsdp = zsd_find_mru(&zsd_registered_keys, key); 706 if (zsdp == NULL) { 707 mutex_exit(&zsd_key_lock); 708 return (-1); 709 } 710 list_remove(&zsd_registered_keys, zsdp); 711 mutex_exit(&zsd_key_lock); 712 713 mutex_enter(&zonehash_lock); 714 for (zone = list_head(&zone_active); zone != NULL; 715 zone = list_next(&zone_active, zone)) { 716 struct zsd_entry *del; 717 718 mutex_enter(&zone->zone_lock); 719 del = zsd_find_mru(&zone->zone_zsd, key); 720 if (del == NULL) { 721 /* 722 * Somebody else got here first e.g the zone going 723 * away. 724 */ 725 mutex_exit(&zone->zone_lock); 726 continue; 727 } 728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 730 if (del->zsd_shutdown != NULL && 731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 733 DTRACE_PROBE2(zsd__shutdown__needed, 734 zone_t *, zone, zone_key_t, key); 735 } 736 if (del->zsd_destroy != NULL && 737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 738 del->zsd_flags |= ZSD_DESTROY_NEEDED; 739 DTRACE_PROBE2(zsd__destroy__needed, 740 zone_t *, zone, zone_key_t, key); 741 } 742 mutex_exit(&zone->zone_lock); 743 } 744 mutex_exit(&zonehash_lock); 745 kmem_free(zsdp, sizeof (*zsdp)); 746 747 /* Now call the shutdown and destroy callback for this key */ 748 zsd_apply_all_zones(zsd_apply_shutdown, key); 749 zsd_apply_all_zones(zsd_apply_destroy, key); 750 751 /* Now we can free up the zsdp structures in each zone */ 752 mutex_enter(&zonehash_lock); 753 for (zone = list_head(&zone_active); zone != NULL; 754 zone = list_next(&zone_active, zone)) { 755 struct zsd_entry *del; 756 757 mutex_enter(&zone->zone_lock); 758 del = zsd_find(&zone->zone_zsd, key); 759 if (del != NULL) { 760 list_remove(&zone->zone_zsd, del); 761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 762 kmem_free(del, sizeof (*del)); 763 } 764 mutex_exit(&zone->zone_lock); 765 } 766 mutex_exit(&zonehash_lock); 767 768 return (0); 769 } 770 771 /* 772 * ZSD counterpart of pthread_setspecific(). 773 * 774 * Since all zsd callbacks, including those with no create function, 775 * have an entry in zone_zsd, if the key is registered it is part of 776 * the zone_zsd list. 777 * Return an error if the key wasn't registerd. 778 */ 779 int 780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 781 { 782 struct zsd_entry *t; 783 784 mutex_enter(&zone->zone_lock); 785 t = zsd_find_mru(&zone->zone_zsd, key); 786 if (t != NULL) { 787 /* 788 * Replace old value with new 789 */ 790 t->zsd_data = (void *)data; 791 mutex_exit(&zone->zone_lock); 792 return (0); 793 } 794 mutex_exit(&zone->zone_lock); 795 return (-1); 796 } 797 798 /* 799 * ZSD counterpart of pthread_getspecific(). 800 */ 801 void * 802 zone_getspecific(zone_key_t key, zone_t *zone) 803 { 804 struct zsd_entry *t; 805 void *data; 806 807 mutex_enter(&zone->zone_lock); 808 t = zsd_find_mru(&zone->zone_zsd, key); 809 data = (t == NULL ? NULL : t->zsd_data); 810 mutex_exit(&zone->zone_lock); 811 return (data); 812 } 813 814 /* 815 * Function used to initialize a zone's list of ZSD callbacks and data 816 * when the zone is being created. The callbacks are initialized from 817 * the template list (zsd_registered_keys). The constructor callback is 818 * executed later (once the zone exists and with locks dropped). 819 */ 820 static void 821 zone_zsd_configure(zone_t *zone) 822 { 823 struct zsd_entry *zsdp; 824 struct zsd_entry *t; 825 826 ASSERT(MUTEX_HELD(&zonehash_lock)); 827 ASSERT(list_head(&zone->zone_zsd) == NULL); 828 mutex_enter(&zone->zone_lock); 829 mutex_enter(&zsd_key_lock); 830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 831 zsdp = list_next(&zsd_registered_keys, zsdp)) { 832 /* 833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 834 * should not have added anything to it. 835 */ 836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 837 838 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 839 t->zsd_key = zsdp->zsd_key; 840 t->zsd_create = zsdp->zsd_create; 841 t->zsd_shutdown = zsdp->zsd_shutdown; 842 t->zsd_destroy = zsdp->zsd_destroy; 843 if (zsdp->zsd_create != NULL) { 844 t->zsd_flags = ZSD_CREATE_NEEDED; 845 DTRACE_PROBE2(zsd__create__needed, 846 zone_t *, zone, zone_key_t, zsdp->zsd_key); 847 } 848 list_insert_tail(&zone->zone_zsd, t); 849 } 850 mutex_exit(&zsd_key_lock); 851 mutex_exit(&zone->zone_lock); 852 } 853 854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 855 856 /* 857 * Helper function to execute shutdown or destructor callbacks. 858 */ 859 static void 860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 861 { 862 struct zsd_entry *t; 863 864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 867 868 /* 869 * Run the callback solely based on what is registered for the zone 870 * in zone_zsd. The global list can change independently of this 871 * as keys are registered and unregistered and we don't register new 872 * callbacks for a zone that is in the process of going away. 873 */ 874 mutex_enter(&zone->zone_lock); 875 for (t = list_head(&zone->zone_zsd); t != NULL; 876 t = list_next(&zone->zone_zsd, t)) { 877 zone_key_t key = t->zsd_key; 878 879 /* Skip if no callbacks registered */ 880 881 if (ct == ZSD_SHUTDOWN) { 882 if (t->zsd_shutdown != NULL && 883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 885 DTRACE_PROBE2(zsd__shutdown__needed, 886 zone_t *, zone, zone_key_t, key); 887 } 888 } else { 889 if (t->zsd_destroy != NULL && 890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 891 t->zsd_flags |= ZSD_DESTROY_NEEDED; 892 DTRACE_PROBE2(zsd__destroy__needed, 893 zone_t *, zone, zone_key_t, key); 894 } 895 } 896 } 897 mutex_exit(&zone->zone_lock); 898 899 /* Now call the shutdown and destroy callback for this key */ 900 zsd_apply_all_keys(zsd_apply_shutdown, zone); 901 zsd_apply_all_keys(zsd_apply_destroy, zone); 902 903 } 904 905 /* 906 * Called when the zone is going away; free ZSD-related memory, and 907 * destroy the zone_zsd list. 908 */ 909 static void 910 zone_free_zsd(zone_t *zone) 911 { 912 struct zsd_entry *t, *next; 913 914 /* 915 * Free all the zsd_entry's we had on this zone. 916 */ 917 mutex_enter(&zone->zone_lock); 918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 919 next = list_next(&zone->zone_zsd, t); 920 list_remove(&zone->zone_zsd, t); 921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 922 kmem_free(t, sizeof (*t)); 923 } 924 list_destroy(&zone->zone_zsd); 925 mutex_exit(&zone->zone_lock); 926 927 } 928 929 /* 930 * Apply a function to all zones for particular key value. 931 * 932 * The applyfn has to drop zonehash_lock if it does some work, and 933 * then reacquire it before it returns. 934 * When the lock is dropped we don't follow list_next even 935 * if it is possible to do so without any hazards. This is 936 * because we want the design to allow for the list of zones 937 * to change in any arbitrary way during the time the 938 * lock was dropped. 939 * 940 * It is safe to restart the loop at list_head since the applyfn 941 * changes the zsd_flags as it does work, so a subsequent 942 * pass through will have no effect in applyfn, hence the loop will terminate 943 * in at worst O(N^2). 944 */ 945 static void 946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 947 { 948 zone_t *zone; 949 950 mutex_enter(&zonehash_lock); 951 zone = list_head(&zone_active); 952 while (zone != NULL) { 953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 954 /* Lock dropped - restart at head */ 955 zone = list_head(&zone_active); 956 } else { 957 zone = list_next(&zone_active, zone); 958 } 959 } 960 mutex_exit(&zonehash_lock); 961 } 962 963 /* 964 * Apply a function to all keys for a particular zone. 965 * 966 * The applyfn has to drop zonehash_lock if it does some work, and 967 * then reacquire it before it returns. 968 * When the lock is dropped we don't follow list_next even 969 * if it is possible to do so without any hazards. This is 970 * because we want the design to allow for the list of zsd callbacks 971 * to change in any arbitrary way during the time the 972 * lock was dropped. 973 * 974 * It is safe to restart the loop at list_head since the applyfn 975 * changes the zsd_flags as it does work, so a subsequent 976 * pass through will have no effect in applyfn, hence the loop will terminate 977 * in at worst O(N^2). 978 */ 979 static void 980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 981 { 982 struct zsd_entry *t; 983 984 mutex_enter(&zone->zone_lock); 985 t = list_head(&zone->zone_zsd); 986 while (t != NULL) { 987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 988 /* Lock dropped - restart at head */ 989 t = list_head(&zone->zone_zsd); 990 } else { 991 t = list_next(&zone->zone_zsd, t); 992 } 993 } 994 mutex_exit(&zone->zone_lock); 995 } 996 997 /* 998 * Call the create function for the zone and key if CREATE_NEEDED 999 * is set. 1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1001 * we wait for that thread to complete so that we can ensure that 1002 * all the callbacks are done when we've looped over all zones/keys. 1003 * 1004 * When we call the create function, we drop the global held by the 1005 * caller, and return true to tell the caller it needs to re-evalute the 1006 * state. 1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1008 * remains held on exit. 1009 */ 1010 static boolean_t 1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1012 zone_t *zone, zone_key_t key) 1013 { 1014 void *result; 1015 struct zsd_entry *t; 1016 boolean_t dropped; 1017 1018 if (lockp != NULL) { 1019 ASSERT(MUTEX_HELD(lockp)); 1020 } 1021 if (zone_lock_held) { 1022 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1023 } else { 1024 mutex_enter(&zone->zone_lock); 1025 } 1026 1027 t = zsd_find(&zone->zone_zsd, key); 1028 if (t == NULL) { 1029 /* 1030 * Somebody else got here first e.g the zone going 1031 * away. 1032 */ 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (B_FALSE); 1036 } 1037 dropped = B_FALSE; 1038 if (zsd_wait_for_inprogress(zone, t, lockp)) 1039 dropped = B_TRUE; 1040 1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1044 DTRACE_PROBE2(zsd__create__inprogress, 1045 zone_t *, zone, zone_key_t, key); 1046 mutex_exit(&zone->zone_lock); 1047 if (lockp != NULL) 1048 mutex_exit(lockp); 1049 1050 dropped = B_TRUE; 1051 ASSERT(t->zsd_create != NULL); 1052 DTRACE_PROBE2(zsd__create__start, 1053 zone_t *, zone, zone_key_t, key); 1054 1055 result = (*t->zsd_create)(zone->zone_id); 1056 1057 DTRACE_PROBE2(zsd__create__end, 1058 zone_t *, zone, voidn *, result); 1059 1060 ASSERT(result != NULL); 1061 if (lockp != NULL) 1062 mutex_enter(lockp); 1063 mutex_enter(&zone->zone_lock); 1064 t->zsd_data = result; 1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1066 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1067 cv_broadcast(&t->zsd_cv); 1068 DTRACE_PROBE2(zsd__create__completed, 1069 zone_t *, zone, zone_key_t, key); 1070 } 1071 if (!zone_lock_held) 1072 mutex_exit(&zone->zone_lock); 1073 return (dropped); 1074 } 1075 1076 /* 1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1078 * is set. 1079 * If some other thread gets here first and sets *_INPROGRESS, then 1080 * we wait for that thread to complete so that we can ensure that 1081 * all the callbacks are done when we've looped over all zones/keys. 1082 * 1083 * When we call the shutdown function, we drop the global held by the 1084 * caller, and return true to tell the caller it needs to re-evalute the 1085 * state. 1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1087 * remains held on exit. 1088 */ 1089 static boolean_t 1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1091 zone_t *zone, zone_key_t key) 1092 { 1093 struct zsd_entry *t; 1094 void *data; 1095 boolean_t dropped; 1096 1097 if (lockp != NULL) { 1098 ASSERT(MUTEX_HELD(lockp)); 1099 } 1100 if (zone_lock_held) { 1101 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1102 } else { 1103 mutex_enter(&zone->zone_lock); 1104 } 1105 1106 t = zsd_find(&zone->zone_zsd, key); 1107 if (t == NULL) { 1108 /* 1109 * Somebody else got here first e.g the zone going 1110 * away. 1111 */ 1112 if (!zone_lock_held) 1113 mutex_exit(&zone->zone_lock); 1114 return (B_FALSE); 1115 } 1116 dropped = B_FALSE; 1117 if (zsd_wait_for_creator(zone, t, lockp)) 1118 dropped = B_TRUE; 1119 1120 if (zsd_wait_for_inprogress(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1126 DTRACE_PROBE2(zsd__shutdown__inprogress, 1127 zone_t *, zone, zone_key_t, key); 1128 mutex_exit(&zone->zone_lock); 1129 if (lockp != NULL) 1130 mutex_exit(lockp); 1131 dropped = B_TRUE; 1132 1133 ASSERT(t->zsd_shutdown != NULL); 1134 data = t->zsd_data; 1135 1136 DTRACE_PROBE2(zsd__shutdown__start, 1137 zone_t *, zone, zone_key_t, key); 1138 1139 (t->zsd_shutdown)(zone->zone_id, data); 1140 DTRACE_PROBE2(zsd__shutdown__end, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 if (lockp != NULL) 1144 mutex_enter(lockp); 1145 mutex_enter(&zone->zone_lock); 1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1148 cv_broadcast(&t->zsd_cv); 1149 DTRACE_PROBE2(zsd__shutdown__completed, 1150 zone_t *, zone, zone_key_t, key); 1151 } 1152 if (!zone_lock_held) 1153 mutex_exit(&zone->zone_lock); 1154 return (dropped); 1155 } 1156 1157 /* 1158 * Call the destroy function for the zone and key if DESTROY_NEEDED 1159 * is set. 1160 * If some other thread gets here first and sets *_INPROGRESS, then 1161 * we wait for that thread to complete so that we can ensure that 1162 * all the callbacks are done when we've looped over all zones/keys. 1163 * 1164 * When we call the destroy function, we drop the global held by the 1165 * caller, and return true to tell the caller it needs to re-evalute the 1166 * state. 1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1168 * remains held on exit. 1169 */ 1170 static boolean_t 1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1172 zone_t *zone, zone_key_t key) 1173 { 1174 struct zsd_entry *t; 1175 void *data; 1176 boolean_t dropped; 1177 1178 if (lockp != NULL) { 1179 ASSERT(MUTEX_HELD(lockp)); 1180 } 1181 if (zone_lock_held) { 1182 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1183 } else { 1184 mutex_enter(&zone->zone_lock); 1185 } 1186 1187 t = zsd_find(&zone->zone_zsd, key); 1188 if (t == NULL) { 1189 /* 1190 * Somebody else got here first e.g the zone going 1191 * away. 1192 */ 1193 if (!zone_lock_held) 1194 mutex_exit(&zone->zone_lock); 1195 return (B_FALSE); 1196 } 1197 dropped = B_FALSE; 1198 if (zsd_wait_for_creator(zone, t, lockp)) 1199 dropped = B_TRUE; 1200 1201 if (zsd_wait_for_inprogress(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1207 DTRACE_PROBE2(zsd__destroy__inprogress, 1208 zone_t *, zone, zone_key_t, key); 1209 mutex_exit(&zone->zone_lock); 1210 if (lockp != NULL) 1211 mutex_exit(lockp); 1212 dropped = B_TRUE; 1213 1214 ASSERT(t->zsd_destroy != NULL); 1215 data = t->zsd_data; 1216 DTRACE_PROBE2(zsd__destroy__start, 1217 zone_t *, zone, zone_key_t, key); 1218 1219 (t->zsd_destroy)(zone->zone_id, data); 1220 DTRACE_PROBE2(zsd__destroy__end, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 if (lockp != NULL) 1224 mutex_enter(lockp); 1225 mutex_enter(&zone->zone_lock); 1226 t->zsd_data = NULL; 1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1229 cv_broadcast(&t->zsd_cv); 1230 DTRACE_PROBE2(zsd__destroy__completed, 1231 zone_t *, zone, zone_key_t, key); 1232 } 1233 if (!zone_lock_held) 1234 mutex_exit(&zone->zone_lock); 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any CREATE_NEEDED flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1248 DTRACE_PROBE2(zsd__wait__for__creator, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Wait for any INPROGRESS flag to be cleared. 1267 * Returns true if lockp was temporarily dropped while waiting. 1268 */ 1269 static boolean_t 1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1271 { 1272 boolean_t dropped = B_FALSE; 1273 1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1275 DTRACE_PROBE2(zsd__wait__for__inprogress, 1276 zone_t *, zone, struct zsd_entry *, t); 1277 if (lockp != NULL) { 1278 dropped = B_TRUE; 1279 mutex_exit(lockp); 1280 } 1281 cv_wait(&t->zsd_cv, &zone->zone_lock); 1282 if (lockp != NULL) { 1283 /* First drop zone_lock to preserve order */ 1284 mutex_exit(&zone->zone_lock); 1285 mutex_enter(lockp); 1286 mutex_enter(&zone->zone_lock); 1287 } 1288 } 1289 return (dropped); 1290 } 1291 1292 /* 1293 * Frees memory associated with the zone dataset list. 1294 */ 1295 static void 1296 zone_free_datasets(zone_t *zone) 1297 { 1298 zone_dataset_t *t, *next; 1299 1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1301 next = list_next(&zone->zone_datasets, t); 1302 list_remove(&zone->zone_datasets, t); 1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1304 kmem_free(t, sizeof (*t)); 1305 } 1306 list_destroy(&zone->zone_datasets); 1307 } 1308 1309 /* 1310 * zone.cpu-shares resource control support. 1311 */ 1312 /*ARGSUSED*/ 1313 static rctl_qty_t 1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1315 { 1316 ASSERT(MUTEX_HELD(&p->p_lock)); 1317 return (p->p_zone->zone_shares); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static int 1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1323 rctl_qty_t nv) 1324 { 1325 ASSERT(MUTEX_HELD(&p->p_lock)); 1326 ASSERT(e->rcep_t == RCENTITY_ZONE); 1327 if (e->rcep_p.zone == NULL) 1328 return (0); 1329 1330 e->rcep_p.zone->zone_shares = nv; 1331 return (0); 1332 } 1333 1334 static rctl_ops_t zone_cpu_shares_ops = { 1335 rcop_no_action, 1336 zone_cpu_shares_usage, 1337 zone_cpu_shares_set, 1338 rcop_no_test 1339 }; 1340 1341 /* 1342 * zone.cpu-cap resource control support. 1343 */ 1344 /*ARGSUSED*/ 1345 static rctl_qty_t 1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1347 { 1348 ASSERT(MUTEX_HELD(&p->p_lock)); 1349 return (cpucaps_zone_get(p->p_zone)); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1355 rctl_qty_t nv) 1356 { 1357 zone_t *zone = e->rcep_p.zone; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 1362 if (zone == NULL) 1363 return (0); 1364 1365 /* 1366 * set cap to the new value. 1367 */ 1368 return (cpucaps_zone_set(zone, nv)); 1369 } 1370 1371 static rctl_ops_t zone_cpu_cap_ops = { 1372 rcop_no_action, 1373 zone_cpu_cap_get, 1374 zone_cpu_cap_set, 1375 rcop_no_test 1376 }; 1377 1378 /*ARGSUSED*/ 1379 static rctl_qty_t 1380 zone_lwps_usage(rctl_t *r, proc_t *p) 1381 { 1382 rctl_qty_t nlwps; 1383 zone_t *zone = p->p_zone; 1384 1385 ASSERT(MUTEX_HELD(&p->p_lock)); 1386 1387 mutex_enter(&zone->zone_nlwps_lock); 1388 nlwps = zone->zone_nlwps; 1389 mutex_exit(&zone->zone_nlwps_lock); 1390 1391 return (nlwps); 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1397 rctl_qty_t incr, uint_t flags) 1398 { 1399 rctl_qty_t nlwps; 1400 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 if (e->rcep_p.zone == NULL) 1404 return (0); 1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1406 nlwps = e->rcep_p.zone->zone_nlwps; 1407 1408 if (nlwps + incr > rcntl->rcv_value) 1409 return (1); 1410 1411 return (0); 1412 } 1413 1414 /*ARGSUSED*/ 1415 static int 1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1417 { 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 if (e->rcep_p.zone == NULL) 1421 return (0); 1422 e->rcep_p.zone->zone_nlwps_ctl = nv; 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_lwps_ops = { 1427 rcop_no_action, 1428 zone_lwps_usage, 1429 zone_lwps_set, 1430 zone_lwps_test, 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static rctl_qty_t 1435 zone_procs_usage(rctl_t *r, proc_t *p) 1436 { 1437 rctl_qty_t nprocs; 1438 zone_t *zone = p->p_zone; 1439 1440 ASSERT(MUTEX_HELD(&p->p_lock)); 1441 1442 mutex_enter(&zone->zone_nlwps_lock); 1443 nprocs = zone->zone_nprocs; 1444 mutex_exit(&zone->zone_nlwps_lock); 1445 1446 return (nprocs); 1447 } 1448 1449 /*ARGSUSED*/ 1450 static int 1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1452 rctl_qty_t incr, uint_t flags) 1453 { 1454 rctl_qty_t nprocs; 1455 1456 ASSERT(MUTEX_HELD(&p->p_lock)); 1457 ASSERT(e->rcep_t == RCENTITY_ZONE); 1458 if (e->rcep_p.zone == NULL) 1459 return (0); 1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1461 nprocs = e->rcep_p.zone->zone_nprocs; 1462 1463 if (nprocs + incr > rcntl->rcv_value) 1464 return (1); 1465 1466 return (0); 1467 } 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1472 { 1473 ASSERT(MUTEX_HELD(&p->p_lock)); 1474 ASSERT(e->rcep_t == RCENTITY_ZONE); 1475 if (e->rcep_p.zone == NULL) 1476 return (0); 1477 e->rcep_p.zone->zone_nprocs_ctl = nv; 1478 return (0); 1479 } 1480 1481 static rctl_ops_t zone_procs_ops = { 1482 rcop_no_action, 1483 zone_procs_usage, 1484 zone_procs_set, 1485 zone_procs_test, 1486 }; 1487 1488 /*ARGSUSED*/ 1489 static int 1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1491 rctl_qty_t incr, uint_t flags) 1492 { 1493 rctl_qty_t v; 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 ASSERT(e->rcep_t == RCENTITY_ZONE); 1496 v = e->rcep_p.zone->zone_shmmax + incr; 1497 if (v > rval->rcv_value) 1498 return (1); 1499 return (0); 1500 } 1501 1502 static rctl_ops_t zone_shmmax_ops = { 1503 rcop_no_action, 1504 rcop_no_usage, 1505 rcop_no_set, 1506 zone_shmmax_test 1507 }; 1508 1509 /*ARGSUSED*/ 1510 static int 1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1512 rctl_qty_t incr, uint_t flags) 1513 { 1514 rctl_qty_t v; 1515 ASSERT(MUTEX_HELD(&p->p_lock)); 1516 ASSERT(e->rcep_t == RCENTITY_ZONE); 1517 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1518 if (v > rval->rcv_value) 1519 return (1); 1520 return (0); 1521 } 1522 1523 static rctl_ops_t zone_shmmni_ops = { 1524 rcop_no_action, 1525 rcop_no_usage, 1526 rcop_no_set, 1527 zone_shmmni_test 1528 }; 1529 1530 /*ARGSUSED*/ 1531 static int 1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1533 rctl_qty_t incr, uint_t flags) 1534 { 1535 rctl_qty_t v; 1536 ASSERT(MUTEX_HELD(&p->p_lock)); 1537 ASSERT(e->rcep_t == RCENTITY_ZONE); 1538 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1539 if (v > rval->rcv_value) 1540 return (1); 1541 return (0); 1542 } 1543 1544 static rctl_ops_t zone_semmni_ops = { 1545 rcop_no_action, 1546 rcop_no_usage, 1547 rcop_no_set, 1548 zone_semmni_test 1549 }; 1550 1551 /*ARGSUSED*/ 1552 static int 1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1554 rctl_qty_t incr, uint_t flags) 1555 { 1556 rctl_qty_t v; 1557 ASSERT(MUTEX_HELD(&p->p_lock)); 1558 ASSERT(e->rcep_t == RCENTITY_ZONE); 1559 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1560 if (v > rval->rcv_value) 1561 return (1); 1562 return (0); 1563 } 1564 1565 static rctl_ops_t zone_msgmni_ops = { 1566 rcop_no_action, 1567 rcop_no_usage, 1568 rcop_no_set, 1569 zone_msgmni_test 1570 }; 1571 1572 /*ARGSUSED*/ 1573 static rctl_qty_t 1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1575 { 1576 rctl_qty_t q; 1577 ASSERT(MUTEX_HELD(&p->p_lock)); 1578 mutex_enter(&p->p_zone->zone_mem_lock); 1579 q = p->p_zone->zone_locked_mem; 1580 mutex_exit(&p->p_zone->zone_mem_lock); 1581 return (q); 1582 } 1583 1584 /*ARGSUSED*/ 1585 static int 1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1587 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1588 { 1589 rctl_qty_t q; 1590 zone_t *z; 1591 1592 z = e->rcep_p.zone; 1593 ASSERT(MUTEX_HELD(&p->p_lock)); 1594 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1595 q = z->zone_locked_mem; 1596 if (q + incr > rcntl->rcv_value) 1597 return (1); 1598 return (0); 1599 } 1600 1601 /*ARGSUSED*/ 1602 static int 1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1604 rctl_qty_t nv) 1605 { 1606 ASSERT(MUTEX_HELD(&p->p_lock)); 1607 ASSERT(e->rcep_t == RCENTITY_ZONE); 1608 if (e->rcep_p.zone == NULL) 1609 return (0); 1610 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1611 return (0); 1612 } 1613 1614 static rctl_ops_t zone_locked_mem_ops = { 1615 rcop_no_action, 1616 zone_locked_mem_usage, 1617 zone_locked_mem_set, 1618 zone_locked_mem_test 1619 }; 1620 1621 /*ARGSUSED*/ 1622 static rctl_qty_t 1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1624 { 1625 rctl_qty_t q; 1626 zone_t *z = p->p_zone; 1627 1628 ASSERT(MUTEX_HELD(&p->p_lock)); 1629 mutex_enter(&z->zone_mem_lock); 1630 q = z->zone_max_swap; 1631 mutex_exit(&z->zone_mem_lock); 1632 return (q); 1633 } 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1638 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1639 { 1640 rctl_qty_t q; 1641 zone_t *z; 1642 1643 z = e->rcep_p.zone; 1644 ASSERT(MUTEX_HELD(&p->p_lock)); 1645 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1646 q = z->zone_max_swap; 1647 if (q + incr > rcntl->rcv_value) 1648 return (1); 1649 return (0); 1650 } 1651 1652 /*ARGSUSED*/ 1653 static int 1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1655 rctl_qty_t nv) 1656 { 1657 ASSERT(MUTEX_HELD(&p->p_lock)); 1658 ASSERT(e->rcep_t == RCENTITY_ZONE); 1659 if (e->rcep_p.zone == NULL) 1660 return (0); 1661 e->rcep_p.zone->zone_max_swap_ctl = nv; 1662 return (0); 1663 } 1664 1665 static rctl_ops_t zone_max_swap_ops = { 1666 rcop_no_action, 1667 zone_max_swap_usage, 1668 zone_max_swap_set, 1669 zone_max_swap_test 1670 }; 1671 1672 /*ARGSUSED*/ 1673 static rctl_qty_t 1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1675 { 1676 rctl_qty_t q; 1677 zone_t *z = p->p_zone; 1678 1679 ASSERT(MUTEX_HELD(&p->p_lock)); 1680 mutex_enter(&z->zone_rctl_lock); 1681 q = z->zone_max_lofi; 1682 mutex_exit(&z->zone_rctl_lock); 1683 return (q); 1684 } 1685 1686 /*ARGSUSED*/ 1687 static int 1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1689 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1690 { 1691 rctl_qty_t q; 1692 zone_t *z; 1693 1694 z = e->rcep_p.zone; 1695 ASSERT(MUTEX_HELD(&p->p_lock)); 1696 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1697 q = z->zone_max_lofi; 1698 if (q + incr > rcntl->rcv_value) 1699 return (1); 1700 return (0); 1701 } 1702 1703 /*ARGSUSED*/ 1704 static int 1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1706 rctl_qty_t nv) 1707 { 1708 ASSERT(MUTEX_HELD(&p->p_lock)); 1709 ASSERT(e->rcep_t == RCENTITY_ZONE); 1710 if (e->rcep_p.zone == NULL) 1711 return (0); 1712 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1713 return (0); 1714 } 1715 1716 static rctl_ops_t zone_max_lofi_ops = { 1717 rcop_no_action, 1718 zone_max_lofi_usage, 1719 zone_max_lofi_set, 1720 zone_max_lofi_test 1721 }; 1722 1723 /* 1724 * Helper function to brand the zone with a unique ID. 1725 */ 1726 static void 1727 zone_uniqid(zone_t *zone) 1728 { 1729 static uint64_t uniqid = 0; 1730 1731 ASSERT(MUTEX_HELD(&zonehash_lock)); 1732 zone->zone_uniqid = uniqid++; 1733 } 1734 1735 /* 1736 * Returns a held pointer to the "kcred" for the specified zone. 1737 */ 1738 struct cred * 1739 zone_get_kcred(zoneid_t zoneid) 1740 { 1741 zone_t *zone; 1742 cred_t *cr; 1743 1744 if ((zone = zone_find_by_id(zoneid)) == NULL) 1745 return (NULL); 1746 cr = zone->zone_kcred; 1747 crhold(cr); 1748 zone_rele(zone); 1749 return (cr); 1750 } 1751 1752 static int 1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1754 { 1755 zone_t *zone = ksp->ks_private; 1756 zone_kstat_t *zk = ksp->ks_data; 1757 1758 if (rw == KSTAT_WRITE) 1759 return (EACCES); 1760 1761 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1762 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1763 return (0); 1764 } 1765 1766 static int 1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1768 { 1769 zone_t *zone = ksp->ks_private; 1770 zone_kstat_t *zk = ksp->ks_data; 1771 1772 if (rw == KSTAT_WRITE) 1773 return (EACCES); 1774 1775 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1776 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1777 return (0); 1778 } 1779 1780 static int 1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1782 { 1783 zone_t *zone = ksp->ks_private; 1784 zone_kstat_t *zk = ksp->ks_data; 1785 1786 if (rw == KSTAT_WRITE) 1787 return (EACCES); 1788 1789 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1790 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1791 return (0); 1792 } 1793 1794 static kstat_t * 1795 zone_kstat_create_common(zone_t *zone, char *name, 1796 int (*updatefunc) (kstat_t *, int)) 1797 { 1798 kstat_t *ksp; 1799 zone_kstat_t *zk; 1800 1801 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1802 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1803 KSTAT_FLAG_VIRTUAL); 1804 1805 if (ksp == NULL) 1806 return (NULL); 1807 1808 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1809 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1810 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1811 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1812 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1813 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1814 ksp->ks_update = updatefunc; 1815 ksp->ks_private = zone; 1816 kstat_install(ksp); 1817 return (ksp); 1818 } 1819 1820 1821 static int 1822 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1823 { 1824 zone_t *zone = ksp->ks_private; 1825 zone_mcap_kstat_t *zmp = ksp->ks_data; 1826 1827 if (rw == KSTAT_WRITE) 1828 return (EACCES); 1829 1830 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1831 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1832 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1833 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1834 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1835 1836 return (0); 1837 } 1838 1839 static kstat_t * 1840 zone_mcap_kstat_create(zone_t *zone) 1841 { 1842 kstat_t *ksp; 1843 zone_mcap_kstat_t *zmp; 1844 1845 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1846 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1847 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1848 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1849 return (NULL); 1850 1851 if (zone->zone_id != GLOBAL_ZONEID) 1852 kstat_zone_add(ksp, GLOBAL_ZONEID); 1853 1854 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1855 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1856 ksp->ks_lock = &zone->zone_mcap_lock; 1857 zone->zone_mcap_stats = zmp; 1858 1859 /* The kstat "name" field is not large enough for a full zonename */ 1860 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1861 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1862 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1863 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1864 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1865 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1866 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1867 KSTAT_DATA_UINT64); 1868 1869 ksp->ks_update = zone_mcap_kstat_update; 1870 ksp->ks_private = zone; 1871 1872 kstat_install(ksp); 1873 return (ksp); 1874 } 1875 1876 static int 1877 zone_misc_kstat_update(kstat_t *ksp, int rw) 1878 { 1879 zone_t *zone = ksp->ks_private; 1880 zone_misc_kstat_t *zmp = ksp->ks_data; 1881 hrtime_t tmp; 1882 1883 if (rw == KSTAT_WRITE) 1884 return (EACCES); 1885 1886 tmp = zone->zone_utime; 1887 scalehrtime(&tmp); 1888 zmp->zm_utime.value.ui64 = tmp; 1889 tmp = zone->zone_stime; 1890 scalehrtime(&tmp); 1891 zmp->zm_stime.value.ui64 = tmp; 1892 tmp = zone->zone_wtime; 1893 scalehrtime(&tmp); 1894 zmp->zm_wtime.value.ui64 = tmp; 1895 1896 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1897 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1898 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1899 1900 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1901 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1902 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1903 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1904 1905 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1906 1907 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1908 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1909 1910 return (0); 1911 } 1912 1913 static kstat_t * 1914 zone_misc_kstat_create(zone_t *zone) 1915 { 1916 kstat_t *ksp; 1917 zone_misc_kstat_t *zmp; 1918 1919 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1920 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1921 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1922 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1923 return (NULL); 1924 1925 if (zone->zone_id != GLOBAL_ZONEID) 1926 kstat_zone_add(ksp, GLOBAL_ZONEID); 1927 1928 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1929 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1930 ksp->ks_lock = &zone->zone_misc_lock; 1931 zone->zone_misc_stats = zmp; 1932 1933 /* The kstat "name" field is not large enough for a full zonename */ 1934 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1935 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1936 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1937 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1938 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1939 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1940 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1941 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1942 KSTAT_DATA_UINT32); 1943 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1944 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1945 KSTAT_DATA_UINT32); 1946 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1947 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1948 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1949 KSTAT_DATA_UINT32); 1950 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1951 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1952 1953 ksp->ks_update = zone_misc_kstat_update; 1954 ksp->ks_private = zone; 1955 1956 kstat_install(ksp); 1957 return (ksp); 1958 } 1959 1960 static void 1961 zone_kstat_create(zone_t *zone) 1962 { 1963 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1964 "lockedmem", zone_lockedmem_kstat_update); 1965 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1966 "swapresv", zone_swapresv_kstat_update); 1967 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1968 "nprocs", zone_nprocs_kstat_update); 1969 1970 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 1971 zone->zone_mcap_stats = kmem_zalloc( 1972 sizeof (zone_mcap_kstat_t), KM_SLEEP); 1973 } 1974 1975 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1976 zone->zone_misc_stats = kmem_zalloc( 1977 sizeof (zone_misc_kstat_t), KM_SLEEP); 1978 } 1979 } 1980 1981 static void 1982 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1983 { 1984 void *data; 1985 1986 if (*pkstat != NULL) { 1987 data = (*pkstat)->ks_data; 1988 kstat_delete(*pkstat); 1989 kmem_free(data, datasz); 1990 *pkstat = NULL; 1991 } 1992 } 1993 1994 static void 1995 zone_kstat_delete(zone_t *zone) 1996 { 1997 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1998 sizeof (zone_kstat_t)); 1999 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2000 sizeof (zone_kstat_t)); 2001 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2002 sizeof (zone_kstat_t)); 2003 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2004 sizeof (zone_mcap_kstat_t)); 2005 zone_kstat_delete_common(&zone->zone_misc_ksp, 2006 sizeof (zone_misc_kstat_t)); 2007 } 2008 2009 /* 2010 * Called very early on in boot to initialize the ZSD list so that 2011 * zone_key_create() can be called before zone_init(). It also initializes 2012 * portions of zone0 which may be used before zone_init() is called. The 2013 * variable "global_zone" will be set when zone0 is fully initialized by 2014 * zone_init(). 2015 */ 2016 void 2017 zone_zsd_init(void) 2018 { 2019 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2020 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2021 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2022 offsetof(struct zsd_entry, zsd_linkage)); 2023 list_create(&zone_active, sizeof (zone_t), 2024 offsetof(zone_t, zone_linkage)); 2025 list_create(&zone_deathrow, sizeof (zone_t), 2026 offsetof(zone_t, zone_linkage)); 2027 2028 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2029 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2030 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2031 zone0.zone_shares = 1; 2032 zone0.zone_nlwps = 0; 2033 zone0.zone_nlwps_ctl = INT_MAX; 2034 zone0.zone_nprocs = 0; 2035 zone0.zone_nprocs_ctl = INT_MAX; 2036 zone0.zone_locked_mem = 0; 2037 zone0.zone_locked_mem_ctl = UINT64_MAX; 2038 ASSERT(zone0.zone_max_swap == 0); 2039 zone0.zone_max_swap_ctl = UINT64_MAX; 2040 zone0.zone_max_lofi = 0; 2041 zone0.zone_max_lofi_ctl = UINT64_MAX; 2042 zone0.zone_shmmax = 0; 2043 zone0.zone_ipc.ipcq_shmmni = 0; 2044 zone0.zone_ipc.ipcq_semmni = 0; 2045 zone0.zone_ipc.ipcq_msgmni = 0; 2046 zone0.zone_name = GLOBAL_ZONENAME; 2047 zone0.zone_nodename = utsname.nodename; 2048 zone0.zone_domain = srpc_domain; 2049 zone0.zone_hostid = HW_INVALID_HOSTID; 2050 zone0.zone_fs_allowed = NULL; 2051 zone0.zone_ref = 1; 2052 zone0.zone_id = GLOBAL_ZONEID; 2053 zone0.zone_status = ZONE_IS_RUNNING; 2054 zone0.zone_rootpath = "/"; 2055 zone0.zone_rootpathlen = 2; 2056 zone0.zone_psetid = ZONE_PS_INVAL; 2057 zone0.zone_ncpus = 0; 2058 zone0.zone_ncpus_online = 0; 2059 zone0.zone_proc_initpid = 1; 2060 zone0.zone_initname = initname; 2061 zone0.zone_lockedmem_kstat = NULL; 2062 zone0.zone_swapresv_kstat = NULL; 2063 zone0.zone_nprocs_kstat = NULL; 2064 2065 zone0.zone_stime = 0; 2066 zone0.zone_utime = 0; 2067 zone0.zone_wtime = 0; 2068 2069 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2070 offsetof(zone_ref_t, zref_linkage)); 2071 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2072 offsetof(struct zsd_entry, zsd_linkage)); 2073 list_insert_head(&zone_active, &zone0); 2074 2075 /* 2076 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2077 * to anything meaningful. It is assigned to be 'rootdir' in 2078 * vfs_mountroot(). 2079 */ 2080 zone0.zone_rootvp = NULL; 2081 zone0.zone_vfslist = NULL; 2082 zone0.zone_bootargs = initargs; 2083 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2084 /* 2085 * The global zone has all privileges 2086 */ 2087 priv_fillset(zone0.zone_privset); 2088 /* 2089 * Add p0 to the global zone 2090 */ 2091 zone0.zone_zsched = &p0; 2092 p0.p_zone = &zone0; 2093 } 2094 2095 /* 2096 * Compute a hash value based on the contents of the label and the DOI. The 2097 * hash algorithm is somewhat arbitrary, but is based on the observation that 2098 * humans will likely pick labels that differ by amounts that work out to be 2099 * multiples of the number of hash chains, and thus stirring in some primes 2100 * should help. 2101 */ 2102 static uint_t 2103 hash_bylabel(void *hdata, mod_hash_key_t key) 2104 { 2105 const ts_label_t *lab = (ts_label_t *)key; 2106 const uint32_t *up, *ue; 2107 uint_t hash; 2108 int i; 2109 2110 _NOTE(ARGUNUSED(hdata)); 2111 2112 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2113 /* we depend on alignment of label, but not representation */ 2114 up = (const uint32_t *)&lab->tsl_label; 2115 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2116 i = 1; 2117 while (up < ue) { 2118 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2119 hash += *up + (*up << ((i % 16) + 1)); 2120 up++; 2121 i++; 2122 } 2123 return (hash); 2124 } 2125 2126 /* 2127 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2128 * equal). This may need to be changed if less than / greater than is ever 2129 * needed. 2130 */ 2131 static int 2132 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2133 { 2134 ts_label_t *lab1 = (ts_label_t *)key1; 2135 ts_label_t *lab2 = (ts_label_t *)key2; 2136 2137 return (label_equal(lab1, lab2) ? 0 : 1); 2138 } 2139 2140 /* 2141 * Called by main() to initialize the zones framework. 2142 */ 2143 void 2144 zone_init(void) 2145 { 2146 rctl_dict_entry_t *rde; 2147 rctl_val_t *dval; 2148 rctl_set_t *set; 2149 rctl_alloc_gp_t *gp; 2150 rctl_entity_p_t e; 2151 int res; 2152 2153 ASSERT(curproc == &p0); 2154 2155 /* 2156 * Create ID space for zone IDs. ID 0 is reserved for the 2157 * global zone. 2158 */ 2159 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2160 2161 /* 2162 * Initialize generic zone resource controls, if any. 2163 */ 2164 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2165 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2166 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2167 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2168 2169 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2170 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2171 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2172 RCTL_GLOBAL_INFINITE, 2173 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2174 2175 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2176 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2177 INT_MAX, INT_MAX, &zone_lwps_ops); 2178 2179 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2180 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2181 INT_MAX, INT_MAX, &zone_procs_ops); 2182 2183 /* 2184 * System V IPC resource controls 2185 */ 2186 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2187 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2188 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2189 2190 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2191 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2192 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2193 2194 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2195 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2196 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2197 2198 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2199 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2200 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2201 2202 /* 2203 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2204 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2205 */ 2206 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2207 bzero(dval, sizeof (rctl_val_t)); 2208 dval->rcv_value = 1; 2209 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2210 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2211 dval->rcv_action_recip_pid = -1; 2212 2213 rde = rctl_dict_lookup("zone.cpu-shares"); 2214 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2215 2216 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2217 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2218 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2219 &zone_locked_mem_ops); 2220 2221 rc_zone_max_swap = rctl_register("zone.max-swap", 2222 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2223 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2224 &zone_max_swap_ops); 2225 2226 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2227 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2228 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2229 &zone_max_lofi_ops); 2230 2231 /* 2232 * Initialize the ``global zone''. 2233 */ 2234 set = rctl_set_create(); 2235 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2236 mutex_enter(&p0.p_lock); 2237 e.rcep_p.zone = &zone0; 2238 e.rcep_t = RCENTITY_ZONE; 2239 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2240 gp); 2241 2242 zone0.zone_nlwps = p0.p_lwpcnt; 2243 zone0.zone_nprocs = 1; 2244 zone0.zone_ntasks = 1; 2245 mutex_exit(&p0.p_lock); 2246 zone0.zone_restart_init = B_TRUE; 2247 zone0.zone_brand = &native_brand; 2248 rctl_prealloc_destroy(gp); 2249 /* 2250 * pool_default hasn't been initialized yet, so we let pool_init() 2251 * take care of making sure the global zone is in the default pool. 2252 */ 2253 2254 /* 2255 * Initialize global zone kstats 2256 */ 2257 zone_kstat_create(&zone0); 2258 2259 /* 2260 * Initialize zone label. 2261 * mlp are initialized when tnzonecfg is loaded. 2262 */ 2263 zone0.zone_slabel = l_admin_low; 2264 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2265 label_hold(l_admin_low); 2266 2267 /* 2268 * Initialise the lock for the database structure used by mntfs. 2269 */ 2270 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2271 2272 mutex_enter(&zonehash_lock); 2273 zone_uniqid(&zone0); 2274 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2275 2276 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2277 mod_hash_null_valdtor); 2278 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2279 zone_hash_size, mod_hash_null_valdtor); 2280 /* 2281 * maintain zonehashbylabel only for labeled systems 2282 */ 2283 if (is_system_labeled()) 2284 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2285 zone_hash_size, mod_hash_null_keydtor, 2286 mod_hash_null_valdtor, hash_bylabel, NULL, 2287 hash_labelkey_cmp, KM_SLEEP); 2288 zonecount = 1; 2289 2290 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2291 (mod_hash_val_t)&zone0); 2292 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2293 (mod_hash_val_t)&zone0); 2294 if (is_system_labeled()) { 2295 zone0.zone_flags |= ZF_HASHED_LABEL; 2296 (void) mod_hash_insert(zonehashbylabel, 2297 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2298 } 2299 mutex_exit(&zonehash_lock); 2300 2301 /* 2302 * We avoid setting zone_kcred until now, since kcred is initialized 2303 * sometime after zone_zsd_init() and before zone_init(). 2304 */ 2305 zone0.zone_kcred = kcred; 2306 /* 2307 * The global zone is fully initialized (except for zone_rootvp which 2308 * will be set when the root filesystem is mounted). 2309 */ 2310 global_zone = &zone0; 2311 2312 /* 2313 * Setup an event channel to send zone status change notifications on 2314 */ 2315 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2316 EVCH_CREAT); 2317 2318 if (res) 2319 panic("Sysevent_evc_bind failed during zone setup.\n"); 2320 2321 } 2322 2323 static void 2324 zone_free(zone_t *zone) 2325 { 2326 ASSERT(zone != global_zone); 2327 ASSERT(zone->zone_ntasks == 0); 2328 ASSERT(zone->zone_nlwps == 0); 2329 ASSERT(zone->zone_nprocs == 0); 2330 ASSERT(zone->zone_cred_ref == 0); 2331 ASSERT(zone->zone_kcred == NULL); 2332 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2333 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2334 ASSERT(list_is_empty(&zone->zone_ref_list)); 2335 2336 /* 2337 * Remove any zone caps. 2338 */ 2339 cpucaps_zone_remove(zone); 2340 2341 ASSERT(zone->zone_cpucap == NULL); 2342 2343 /* remove from deathrow list */ 2344 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2345 ASSERT(zone->zone_ref == 0); 2346 mutex_enter(&zone_deathrow_lock); 2347 list_remove(&zone_deathrow, zone); 2348 mutex_exit(&zone_deathrow_lock); 2349 } 2350 2351 list_destroy(&zone->zone_ref_list); 2352 zone_free_zsd(zone); 2353 zone_free_datasets(zone); 2354 list_destroy(&zone->zone_dl_list); 2355 2356 if (zone->zone_rootvp != NULL) 2357 VN_RELE(zone->zone_rootvp); 2358 if (zone->zone_rootpath) 2359 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2360 if (zone->zone_name != NULL) 2361 kmem_free(zone->zone_name, ZONENAME_MAX); 2362 if (zone->zone_slabel != NULL) 2363 label_rele(zone->zone_slabel); 2364 if (zone->zone_nodename != NULL) 2365 kmem_free(zone->zone_nodename, _SYS_NMLN); 2366 if (zone->zone_domain != NULL) 2367 kmem_free(zone->zone_domain, _SYS_NMLN); 2368 if (zone->zone_privset != NULL) 2369 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2370 if (zone->zone_rctls != NULL) 2371 rctl_set_free(zone->zone_rctls); 2372 if (zone->zone_bootargs != NULL) 2373 strfree(zone->zone_bootargs); 2374 if (zone->zone_initname != NULL) 2375 strfree(zone->zone_initname); 2376 if (zone->zone_fs_allowed != NULL) 2377 strfree(zone->zone_fs_allowed); 2378 if (zone->zone_pfexecd != NULL) 2379 klpd_freelist(&zone->zone_pfexecd); 2380 id_free(zoneid_space, zone->zone_id); 2381 mutex_destroy(&zone->zone_lock); 2382 cv_destroy(&zone->zone_cv); 2383 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2384 rw_destroy(&zone->zone_mntfs_db_lock); 2385 kmem_free(zone, sizeof (zone_t)); 2386 } 2387 2388 /* 2389 * See block comment at the top of this file for information about zone 2390 * status values. 2391 */ 2392 /* 2393 * Convenience function for setting zone status. 2394 */ 2395 static void 2396 zone_status_set(zone_t *zone, zone_status_t status) 2397 { 2398 2399 nvlist_t *nvl = NULL; 2400 ASSERT(MUTEX_HELD(&zone_status_lock)); 2401 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2402 status >= zone_status_get(zone)); 2403 2404 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2405 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2406 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2407 zone_status_table[status]) || 2408 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2409 zone_status_table[zone->zone_status]) || 2410 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2411 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2412 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2413 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2414 #ifdef DEBUG 2415 (void) printf( 2416 "Failed to allocate and send zone state change event.\n"); 2417 #endif 2418 } 2419 nvlist_free(nvl); 2420 2421 zone->zone_status = status; 2422 2423 cv_broadcast(&zone->zone_cv); 2424 } 2425 2426 /* 2427 * Public function to retrieve the zone status. The zone status may 2428 * change after it is retrieved. 2429 */ 2430 zone_status_t 2431 zone_status_get(zone_t *zone) 2432 { 2433 return (zone->zone_status); 2434 } 2435 2436 static int 2437 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2438 { 2439 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2440 int err = 0; 2441 2442 ASSERT(zone != global_zone); 2443 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2444 goto done; /* EFAULT or ENAMETOOLONG */ 2445 2446 if (zone->zone_bootargs != NULL) 2447 strfree(zone->zone_bootargs); 2448 2449 zone->zone_bootargs = strdup(buf); 2450 2451 done: 2452 kmem_free(buf, BOOTARGS_MAX); 2453 return (err); 2454 } 2455 2456 static int 2457 zone_set_brand(zone_t *zone, const char *brand) 2458 { 2459 struct brand_attr *attrp; 2460 brand_t *bp; 2461 2462 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2463 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2464 kmem_free(attrp, sizeof (struct brand_attr)); 2465 return (EFAULT); 2466 } 2467 2468 bp = brand_register_zone(attrp); 2469 kmem_free(attrp, sizeof (struct brand_attr)); 2470 if (bp == NULL) 2471 return (EINVAL); 2472 2473 /* 2474 * This is the only place where a zone can change it's brand. 2475 * We already need to hold zone_status_lock to check the zone 2476 * status, so we'll just use that lock to serialize zone 2477 * branding requests as well. 2478 */ 2479 mutex_enter(&zone_status_lock); 2480 2481 /* Re-Branding is not allowed and the zone can't be booted yet */ 2482 if ((ZONE_IS_BRANDED(zone)) || 2483 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2484 mutex_exit(&zone_status_lock); 2485 brand_unregister_zone(bp); 2486 return (EINVAL); 2487 } 2488 2489 /* set up the brand specific data */ 2490 zone->zone_brand = bp; 2491 ZBROP(zone)->b_init_brand_data(zone); 2492 2493 mutex_exit(&zone_status_lock); 2494 return (0); 2495 } 2496 2497 static int 2498 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2499 { 2500 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2501 int err = 0; 2502 2503 ASSERT(zone != global_zone); 2504 if ((err = copyinstr(zone_fs_allowed, buf, 2505 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2506 goto done; 2507 2508 if (zone->zone_fs_allowed != NULL) 2509 strfree(zone->zone_fs_allowed); 2510 2511 zone->zone_fs_allowed = strdup(buf); 2512 2513 done: 2514 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2515 return (err); 2516 } 2517 2518 static int 2519 zone_set_initname(zone_t *zone, const char *zone_initname) 2520 { 2521 char initname[INITNAME_SZ]; 2522 size_t len; 2523 int err = 0; 2524 2525 ASSERT(zone != global_zone); 2526 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2527 return (err); /* EFAULT or ENAMETOOLONG */ 2528 2529 if (zone->zone_initname != NULL) 2530 strfree(zone->zone_initname); 2531 2532 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2533 (void) strcpy(zone->zone_initname, initname); 2534 return (0); 2535 } 2536 2537 static int 2538 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2539 { 2540 uint64_t mcap; 2541 int err = 0; 2542 2543 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2544 zone->zone_phys_mcap = mcap; 2545 2546 return (err); 2547 } 2548 2549 static int 2550 zone_set_sched_class(zone_t *zone, const char *new_class) 2551 { 2552 char sched_class[PC_CLNMSZ]; 2553 id_t classid; 2554 int err; 2555 2556 ASSERT(zone != global_zone); 2557 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2558 return (err); /* EFAULT or ENAMETOOLONG */ 2559 2560 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2561 return (set_errno(EINVAL)); 2562 zone->zone_defaultcid = classid; 2563 ASSERT(zone->zone_defaultcid > 0 && 2564 zone->zone_defaultcid < loaded_classes); 2565 2566 return (0); 2567 } 2568 2569 /* 2570 * Block indefinitely waiting for (zone_status >= status) 2571 */ 2572 void 2573 zone_status_wait(zone_t *zone, zone_status_t status) 2574 { 2575 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2576 2577 mutex_enter(&zone_status_lock); 2578 while (zone->zone_status < status) { 2579 cv_wait(&zone->zone_cv, &zone_status_lock); 2580 } 2581 mutex_exit(&zone_status_lock); 2582 } 2583 2584 /* 2585 * Private CPR-safe version of zone_status_wait(). 2586 */ 2587 static void 2588 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2589 { 2590 callb_cpr_t cprinfo; 2591 2592 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2593 2594 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2595 str); 2596 mutex_enter(&zone_status_lock); 2597 while (zone->zone_status < status) { 2598 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2599 cv_wait(&zone->zone_cv, &zone_status_lock); 2600 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2601 } 2602 /* 2603 * zone_status_lock is implicitly released by the following. 2604 */ 2605 CALLB_CPR_EXIT(&cprinfo); 2606 } 2607 2608 /* 2609 * Block until zone enters requested state or signal is received. Return (0) 2610 * if signaled, non-zero otherwise. 2611 */ 2612 int 2613 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2614 { 2615 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2616 2617 mutex_enter(&zone_status_lock); 2618 while (zone->zone_status < status) { 2619 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2620 mutex_exit(&zone_status_lock); 2621 return (0); 2622 } 2623 } 2624 mutex_exit(&zone_status_lock); 2625 return (1); 2626 } 2627 2628 /* 2629 * Block until the zone enters the requested state or the timeout expires, 2630 * whichever happens first. Return (-1) if operation timed out, time remaining 2631 * otherwise. 2632 */ 2633 clock_t 2634 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2635 { 2636 clock_t timeleft = 0; 2637 2638 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2639 2640 mutex_enter(&zone_status_lock); 2641 while (zone->zone_status < status && timeleft != -1) { 2642 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2643 } 2644 mutex_exit(&zone_status_lock); 2645 return (timeleft); 2646 } 2647 2648 /* 2649 * Block until the zone enters the requested state, the current process is 2650 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2651 * operation timed out, 0 if signaled, time remaining otherwise. 2652 */ 2653 clock_t 2654 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2655 { 2656 clock_t timeleft = tim - ddi_get_lbolt(); 2657 2658 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2659 2660 mutex_enter(&zone_status_lock); 2661 while (zone->zone_status < status) { 2662 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2663 tim); 2664 if (timeleft <= 0) 2665 break; 2666 } 2667 mutex_exit(&zone_status_lock); 2668 return (timeleft); 2669 } 2670 2671 /* 2672 * Zones have two reference counts: one for references from credential 2673 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2674 * This is so we can allow a zone to be rebooted while there are still 2675 * outstanding cred references, since certain drivers cache dblks (which 2676 * implicitly results in cached creds). We wait for zone_ref to drop to 2677 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2678 * later freed when the zone_cred_ref drops to 0, though nothing other 2679 * than the zone id and privilege set should be accessed once the zone 2680 * is "dead". 2681 * 2682 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2683 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2684 * to 0. This can be useful to flush out other sources of cached creds 2685 * that may be less innocuous than the driver case. 2686 * 2687 * Zones also provide a tracked reference counting mechanism in which zone 2688 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2689 * debuggers determine the sources of leaked zone references. See 2690 * zone_hold_ref() and zone_rele_ref() below for more information. 2691 */ 2692 2693 int zone_wait_for_cred = 0; 2694 2695 static void 2696 zone_hold_locked(zone_t *z) 2697 { 2698 ASSERT(MUTEX_HELD(&z->zone_lock)); 2699 z->zone_ref++; 2700 ASSERT(z->zone_ref != 0); 2701 } 2702 2703 /* 2704 * Increment the specified zone's reference count. The zone's zone_t structure 2705 * will not be freed as long as the zone's reference count is nonzero. 2706 * Decrement the zone's reference count via zone_rele(). 2707 * 2708 * NOTE: This function should only be used to hold zones for short periods of 2709 * time. Use zone_hold_ref() if the zone must be held for a long time. 2710 */ 2711 void 2712 zone_hold(zone_t *z) 2713 { 2714 mutex_enter(&z->zone_lock); 2715 zone_hold_locked(z); 2716 mutex_exit(&z->zone_lock); 2717 } 2718 2719 /* 2720 * If the non-cred ref count drops to 1 and either the cred ref count 2721 * is 0 or we aren't waiting for cred references, the zone is ready to 2722 * be destroyed. 2723 */ 2724 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2725 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2726 2727 /* 2728 * Common zone reference release function invoked by zone_rele() and 2729 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2730 * zone's subsystem-specific reference counters are not affected by the 2731 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2732 * removed from the specified zone's reference list. ref must be non-NULL iff 2733 * subsys is not ZONE_REF_NUM_SUBSYS. 2734 */ 2735 static void 2736 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2737 { 2738 boolean_t wakeup; 2739 2740 mutex_enter(&z->zone_lock); 2741 ASSERT(z->zone_ref != 0); 2742 z->zone_ref--; 2743 if (subsys != ZONE_REF_NUM_SUBSYS) { 2744 ASSERT(z->zone_subsys_ref[subsys] != 0); 2745 z->zone_subsys_ref[subsys]--; 2746 list_remove(&z->zone_ref_list, ref); 2747 } 2748 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2749 /* no more refs, free the structure */ 2750 mutex_exit(&z->zone_lock); 2751 zone_free(z); 2752 return; 2753 } 2754 /* signal zone_destroy so the zone can finish halting */ 2755 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2756 mutex_exit(&z->zone_lock); 2757 2758 if (wakeup) { 2759 /* 2760 * Grabbing zonehash_lock here effectively synchronizes with 2761 * zone_destroy() to avoid missed signals. 2762 */ 2763 mutex_enter(&zonehash_lock); 2764 cv_broadcast(&zone_destroy_cv); 2765 mutex_exit(&zonehash_lock); 2766 } 2767 } 2768 2769 /* 2770 * Decrement the specified zone's reference count. The specified zone will 2771 * cease to exist after this function returns if the reference count drops to 2772 * zero. This function should be paired with zone_hold(). 2773 */ 2774 void 2775 zone_rele(zone_t *z) 2776 { 2777 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2778 } 2779 2780 /* 2781 * Initialize a zone reference structure. This function must be invoked for 2782 * a reference structure before the structure is passed to zone_hold_ref(). 2783 */ 2784 void 2785 zone_init_ref(zone_ref_t *ref) 2786 { 2787 ref->zref_zone = NULL; 2788 list_link_init(&ref->zref_linkage); 2789 } 2790 2791 /* 2792 * Acquire a reference to zone z. The caller must specify the 2793 * zone_ref_subsys_t constant associated with its subsystem. The specified 2794 * zone_ref_t structure will represent a reference to the specified zone. Use 2795 * zone_rele_ref() to release the reference. 2796 * 2797 * The referenced zone_t structure will not be freed as long as the zone_t's 2798 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2799 * references. 2800 * 2801 * NOTE: The zone_ref_t structure must be initialized before it is used. 2802 * See zone_init_ref() above. 2803 */ 2804 void 2805 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2806 { 2807 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2808 2809 /* 2810 * Prevent consumers from reusing a reference structure before 2811 * releasing it. 2812 */ 2813 VERIFY(ref->zref_zone == NULL); 2814 2815 ref->zref_zone = z; 2816 mutex_enter(&z->zone_lock); 2817 zone_hold_locked(z); 2818 z->zone_subsys_ref[subsys]++; 2819 ASSERT(z->zone_subsys_ref[subsys] != 0); 2820 list_insert_head(&z->zone_ref_list, ref); 2821 mutex_exit(&z->zone_lock); 2822 } 2823 2824 /* 2825 * Release the zone reference represented by the specified zone_ref_t. 2826 * The reference is invalid after it's released; however, the zone_ref_t 2827 * structure can be reused without having to invoke zone_init_ref(). 2828 * subsys should be the same value that was passed to zone_hold_ref() 2829 * when the reference was acquired. 2830 */ 2831 void 2832 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2833 { 2834 zone_rele_common(ref->zref_zone, ref, subsys); 2835 2836 /* 2837 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2838 * when consumers dereference the reference. This helps us catch 2839 * consumers who use released references. Furthermore, this lets 2840 * consumers reuse the zone_ref_t structure without having to 2841 * invoke zone_init_ref(). 2842 */ 2843 ref->zref_zone = NULL; 2844 } 2845 2846 void 2847 zone_cred_hold(zone_t *z) 2848 { 2849 mutex_enter(&z->zone_lock); 2850 z->zone_cred_ref++; 2851 ASSERT(z->zone_cred_ref != 0); 2852 mutex_exit(&z->zone_lock); 2853 } 2854 2855 void 2856 zone_cred_rele(zone_t *z) 2857 { 2858 boolean_t wakeup; 2859 2860 mutex_enter(&z->zone_lock); 2861 ASSERT(z->zone_cred_ref != 0); 2862 z->zone_cred_ref--; 2863 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2864 /* no more refs, free the structure */ 2865 mutex_exit(&z->zone_lock); 2866 zone_free(z); 2867 return; 2868 } 2869 /* 2870 * If zone_destroy is waiting for the cred references to drain 2871 * out, and they have, signal it. 2872 */ 2873 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2874 zone_status_get(z) >= ZONE_IS_DEAD); 2875 mutex_exit(&z->zone_lock); 2876 2877 if (wakeup) { 2878 /* 2879 * Grabbing zonehash_lock here effectively synchronizes with 2880 * zone_destroy() to avoid missed signals. 2881 */ 2882 mutex_enter(&zonehash_lock); 2883 cv_broadcast(&zone_destroy_cv); 2884 mutex_exit(&zonehash_lock); 2885 } 2886 } 2887 2888 void 2889 zone_task_hold(zone_t *z) 2890 { 2891 mutex_enter(&z->zone_lock); 2892 z->zone_ntasks++; 2893 ASSERT(z->zone_ntasks != 0); 2894 mutex_exit(&z->zone_lock); 2895 } 2896 2897 void 2898 zone_task_rele(zone_t *zone) 2899 { 2900 uint_t refcnt; 2901 2902 mutex_enter(&zone->zone_lock); 2903 ASSERT(zone->zone_ntasks != 0); 2904 refcnt = --zone->zone_ntasks; 2905 if (refcnt > 1) { /* Common case */ 2906 mutex_exit(&zone->zone_lock); 2907 return; 2908 } 2909 zone_hold_locked(zone); /* so we can use the zone_t later */ 2910 mutex_exit(&zone->zone_lock); 2911 if (refcnt == 1) { 2912 /* 2913 * See if the zone is shutting down. 2914 */ 2915 mutex_enter(&zone_status_lock); 2916 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2917 goto out; 2918 } 2919 2920 /* 2921 * Make sure the ntasks didn't change since we 2922 * dropped zone_lock. 2923 */ 2924 mutex_enter(&zone->zone_lock); 2925 if (refcnt != zone->zone_ntasks) { 2926 mutex_exit(&zone->zone_lock); 2927 goto out; 2928 } 2929 mutex_exit(&zone->zone_lock); 2930 2931 /* 2932 * No more user processes in the zone. The zone is empty. 2933 */ 2934 zone_status_set(zone, ZONE_IS_EMPTY); 2935 goto out; 2936 } 2937 2938 ASSERT(refcnt == 0); 2939 /* 2940 * zsched has exited; the zone is dead. 2941 */ 2942 zone->zone_zsched = NULL; /* paranoia */ 2943 mutex_enter(&zone_status_lock); 2944 zone_status_set(zone, ZONE_IS_DEAD); 2945 out: 2946 mutex_exit(&zone_status_lock); 2947 zone_rele(zone); 2948 } 2949 2950 zoneid_t 2951 getzoneid(void) 2952 { 2953 return (curproc->p_zone->zone_id); 2954 } 2955 2956 /* 2957 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2958 * check the validity of a zone's state. 2959 */ 2960 static zone_t * 2961 zone_find_all_by_id(zoneid_t zoneid) 2962 { 2963 mod_hash_val_t hv; 2964 zone_t *zone = NULL; 2965 2966 ASSERT(MUTEX_HELD(&zonehash_lock)); 2967 2968 if (mod_hash_find(zonehashbyid, 2969 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2970 zone = (zone_t *)hv; 2971 return (zone); 2972 } 2973 2974 static zone_t * 2975 zone_find_all_by_label(const ts_label_t *label) 2976 { 2977 mod_hash_val_t hv; 2978 zone_t *zone = NULL; 2979 2980 ASSERT(MUTEX_HELD(&zonehash_lock)); 2981 2982 /* 2983 * zonehashbylabel is not maintained for unlabeled systems 2984 */ 2985 if (!is_system_labeled()) 2986 return (NULL); 2987 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2988 zone = (zone_t *)hv; 2989 return (zone); 2990 } 2991 2992 static zone_t * 2993 zone_find_all_by_name(char *name) 2994 { 2995 mod_hash_val_t hv; 2996 zone_t *zone = NULL; 2997 2998 ASSERT(MUTEX_HELD(&zonehash_lock)); 2999 3000 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3001 zone = (zone_t *)hv; 3002 return (zone); 3003 } 3004 3005 /* 3006 * Public interface for looking up a zone by zoneid. Only returns the zone if 3007 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3008 * Caller must call zone_rele() once it is done with the zone. 3009 * 3010 * The zone may begin the zone_destroy() sequence immediately after this 3011 * function returns, but may be safely used until zone_rele() is called. 3012 */ 3013 zone_t * 3014 zone_find_by_id(zoneid_t zoneid) 3015 { 3016 zone_t *zone; 3017 zone_status_t status; 3018 3019 mutex_enter(&zonehash_lock); 3020 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3021 mutex_exit(&zonehash_lock); 3022 return (NULL); 3023 } 3024 status = zone_status_get(zone); 3025 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3026 /* 3027 * For all practical purposes the zone doesn't exist. 3028 */ 3029 mutex_exit(&zonehash_lock); 3030 return (NULL); 3031 } 3032 zone_hold(zone); 3033 mutex_exit(&zonehash_lock); 3034 return (zone); 3035 } 3036 3037 /* 3038 * Similar to zone_find_by_id, but using zone label as the key. 3039 */ 3040 zone_t * 3041 zone_find_by_label(const ts_label_t *label) 3042 { 3043 zone_t *zone; 3044 zone_status_t status; 3045 3046 mutex_enter(&zonehash_lock); 3047 if ((zone = zone_find_all_by_label(label)) == NULL) { 3048 mutex_exit(&zonehash_lock); 3049 return (NULL); 3050 } 3051 3052 status = zone_status_get(zone); 3053 if (status > ZONE_IS_DOWN) { 3054 /* 3055 * For all practical purposes the zone doesn't exist. 3056 */ 3057 mutex_exit(&zonehash_lock); 3058 return (NULL); 3059 } 3060 zone_hold(zone); 3061 mutex_exit(&zonehash_lock); 3062 return (zone); 3063 } 3064 3065 /* 3066 * Similar to zone_find_by_id, but using zone name as the key. 3067 */ 3068 zone_t * 3069 zone_find_by_name(char *name) 3070 { 3071 zone_t *zone; 3072 zone_status_t status; 3073 3074 mutex_enter(&zonehash_lock); 3075 if ((zone = zone_find_all_by_name(name)) == NULL) { 3076 mutex_exit(&zonehash_lock); 3077 return (NULL); 3078 } 3079 status = zone_status_get(zone); 3080 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3081 /* 3082 * For all practical purposes the zone doesn't exist. 3083 */ 3084 mutex_exit(&zonehash_lock); 3085 return (NULL); 3086 } 3087 zone_hold(zone); 3088 mutex_exit(&zonehash_lock); 3089 return (zone); 3090 } 3091 3092 /* 3093 * Similar to zone_find_by_id(), using the path as a key. For instance, 3094 * if there is a zone "foo" rooted at /foo/root, and the path argument 3095 * is "/foo/root/proc", it will return the held zone_t corresponding to 3096 * zone "foo". 3097 * 3098 * zone_find_by_path() always returns a non-NULL value, since at the 3099 * very least every path will be contained in the global zone. 3100 * 3101 * As with the other zone_find_by_*() functions, the caller is 3102 * responsible for zone_rele()ing the return value of this function. 3103 */ 3104 zone_t * 3105 zone_find_by_path(const char *path) 3106 { 3107 zone_t *zone; 3108 zone_t *zret = NULL; 3109 zone_status_t status; 3110 3111 if (path == NULL) { 3112 /* 3113 * Call from rootconf(). 3114 */ 3115 zone_hold(global_zone); 3116 return (global_zone); 3117 } 3118 ASSERT(*path == '/'); 3119 mutex_enter(&zonehash_lock); 3120 for (zone = list_head(&zone_active); zone != NULL; 3121 zone = list_next(&zone_active, zone)) { 3122 if (ZONE_PATH_VISIBLE(path, zone)) 3123 zret = zone; 3124 } 3125 ASSERT(zret != NULL); 3126 status = zone_status_get(zret); 3127 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3128 /* 3129 * Zone practically doesn't exist. 3130 */ 3131 zret = global_zone; 3132 } 3133 zone_hold(zret); 3134 mutex_exit(&zonehash_lock); 3135 return (zret); 3136 } 3137 3138 /* 3139 * Public interface for updating per-zone load averages. Called once per 3140 * second. 3141 * 3142 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3143 */ 3144 void 3145 zone_loadavg_update() 3146 { 3147 zone_t *zp; 3148 zone_status_t status; 3149 struct loadavg_s *lavg; 3150 hrtime_t zone_total; 3151 int i; 3152 hrtime_t hr_avg; 3153 int nrun; 3154 static int64_t f[3] = { 135, 27, 9 }; 3155 int64_t q, r; 3156 3157 mutex_enter(&zonehash_lock); 3158 for (zp = list_head(&zone_active); zp != NULL; 3159 zp = list_next(&zone_active, zp)) { 3160 mutex_enter(&zp->zone_lock); 3161 3162 /* Skip zones that are on the way down or not yet up */ 3163 status = zone_status_get(zp); 3164 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3165 /* For all practical purposes the zone doesn't exist. */ 3166 mutex_exit(&zp->zone_lock); 3167 continue; 3168 } 3169 3170 /* 3171 * Update the 10 second moving average data in zone_loadavg. 3172 */ 3173 lavg = &zp->zone_loadavg; 3174 3175 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3176 scalehrtime(&zone_total); 3177 3178 /* The zone_total should always be increasing. */ 3179 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3180 zone_total - lavg->lg_total : 0; 3181 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3182 /* lg_total holds the prev. 1 sec. total */ 3183 lavg->lg_total = zone_total; 3184 3185 /* 3186 * To simplify the calculation, we don't calculate the load avg. 3187 * until the zone has been up for at least 10 seconds and our 3188 * moving average is thus full. 3189 */ 3190 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3191 lavg->lg_len++; 3192 mutex_exit(&zp->zone_lock); 3193 continue; 3194 } 3195 3196 /* Now calculate the 1min, 5min, 15 min load avg. */ 3197 hr_avg = 0; 3198 for (i = 0; i < S_LOADAVG_SZ; i++) 3199 hr_avg += lavg->lg_loads[i]; 3200 hr_avg = hr_avg / S_LOADAVG_SZ; 3201 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3202 3203 /* Compute load avg. See comment in calcloadavg() */ 3204 for (i = 0; i < 3; i++) { 3205 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3206 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3207 zp->zone_hp_avenrun[i] += 3208 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3209 3210 /* avenrun[] can only hold 31 bits of load avg. */ 3211 if (zp->zone_hp_avenrun[i] < 3212 ((uint64_t)1<<(31+16-FSHIFT))) 3213 zp->zone_avenrun[i] = (int32_t) 3214 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3215 else 3216 zp->zone_avenrun[i] = 0x7fffffff; 3217 } 3218 3219 mutex_exit(&zp->zone_lock); 3220 } 3221 mutex_exit(&zonehash_lock); 3222 } 3223 3224 /* 3225 * Get the number of cpus visible to this zone. The system-wide global 3226 * 'ncpus' is returned if pools are disabled, the caller is in the 3227 * global zone, or a NULL zone argument is passed in. 3228 */ 3229 int 3230 zone_ncpus_get(zone_t *zone) 3231 { 3232 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3233 3234 return (myncpus != 0 ? myncpus : ncpus); 3235 } 3236 3237 /* 3238 * Get the number of online cpus visible to this zone. The system-wide 3239 * global 'ncpus_online' is returned if pools are disabled, the caller 3240 * is in the global zone, or a NULL zone argument is passed in. 3241 */ 3242 int 3243 zone_ncpus_online_get(zone_t *zone) 3244 { 3245 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3246 3247 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3248 } 3249 3250 /* 3251 * Return the pool to which the zone is currently bound. 3252 */ 3253 pool_t * 3254 zone_pool_get(zone_t *zone) 3255 { 3256 ASSERT(pool_lock_held()); 3257 3258 return (zone->zone_pool); 3259 } 3260 3261 /* 3262 * Set the zone's pool pointer and update the zone's visibility to match 3263 * the resources in the new pool. 3264 */ 3265 void 3266 zone_pool_set(zone_t *zone, pool_t *pool) 3267 { 3268 ASSERT(pool_lock_held()); 3269 ASSERT(MUTEX_HELD(&cpu_lock)); 3270 3271 zone->zone_pool = pool; 3272 zone_pset_set(zone, pool->pool_pset->pset_id); 3273 } 3274 3275 /* 3276 * Return the cached value of the id of the processor set to which the 3277 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3278 * facility is disabled. 3279 */ 3280 psetid_t 3281 zone_pset_get(zone_t *zone) 3282 { 3283 ASSERT(MUTEX_HELD(&cpu_lock)); 3284 3285 return (zone->zone_psetid); 3286 } 3287 3288 /* 3289 * Set the cached value of the id of the processor set to which the zone 3290 * is currently bound. Also update the zone's visibility to match the 3291 * resources in the new processor set. 3292 */ 3293 void 3294 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3295 { 3296 psetid_t oldpsetid; 3297 3298 ASSERT(MUTEX_HELD(&cpu_lock)); 3299 oldpsetid = zone_pset_get(zone); 3300 3301 if (oldpsetid == newpsetid) 3302 return; 3303 /* 3304 * Global zone sees all. 3305 */ 3306 if (zone != global_zone) { 3307 zone->zone_psetid = newpsetid; 3308 if (newpsetid != ZONE_PS_INVAL) 3309 pool_pset_visibility_add(newpsetid, zone); 3310 if (oldpsetid != ZONE_PS_INVAL) 3311 pool_pset_visibility_remove(oldpsetid, zone); 3312 } 3313 /* 3314 * Disabling pools, so we should start using the global values 3315 * for ncpus and ncpus_online. 3316 */ 3317 if (newpsetid == ZONE_PS_INVAL) { 3318 zone->zone_ncpus = 0; 3319 zone->zone_ncpus_online = 0; 3320 } 3321 } 3322 3323 /* 3324 * Walk the list of active zones and issue the provided callback for 3325 * each of them. 3326 * 3327 * Caller must not be holding any locks that may be acquired under 3328 * zonehash_lock. See comment at the beginning of the file for a list of 3329 * common locks and their interactions with zones. 3330 */ 3331 int 3332 zone_walk(int (*cb)(zone_t *, void *), void *data) 3333 { 3334 zone_t *zone; 3335 int ret = 0; 3336 zone_status_t status; 3337 3338 mutex_enter(&zonehash_lock); 3339 for (zone = list_head(&zone_active); zone != NULL; 3340 zone = list_next(&zone_active, zone)) { 3341 /* 3342 * Skip zones that shouldn't be externally visible. 3343 */ 3344 status = zone_status_get(zone); 3345 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3346 continue; 3347 /* 3348 * Bail immediately if any callback invocation returns a 3349 * non-zero value. 3350 */ 3351 ret = (*cb)(zone, data); 3352 if (ret != 0) 3353 break; 3354 } 3355 mutex_exit(&zonehash_lock); 3356 return (ret); 3357 } 3358 3359 static int 3360 zone_set_root(zone_t *zone, const char *upath) 3361 { 3362 vnode_t *vp; 3363 int trycount; 3364 int error = 0; 3365 char *path; 3366 struct pathname upn, pn; 3367 size_t pathlen; 3368 3369 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3370 return (error); 3371 3372 pn_alloc(&pn); 3373 3374 /* prevent infinite loop */ 3375 trycount = 10; 3376 for (;;) { 3377 if (--trycount <= 0) { 3378 error = ESTALE; 3379 goto out; 3380 } 3381 3382 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3383 /* 3384 * VOP_ACCESS() may cover 'vp' with a new 3385 * filesystem, if 'vp' is an autoFS vnode. 3386 * Get the new 'vp' if so. 3387 */ 3388 if ((error = 3389 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3390 (!vn_ismntpt(vp) || 3391 (error = traverse(&vp)) == 0)) { 3392 pathlen = pn.pn_pathlen + 2; 3393 path = kmem_alloc(pathlen, KM_SLEEP); 3394 (void) strncpy(path, pn.pn_path, 3395 pn.pn_pathlen + 1); 3396 path[pathlen - 2] = '/'; 3397 path[pathlen - 1] = '\0'; 3398 pn_free(&pn); 3399 pn_free(&upn); 3400 3401 /* Success! */ 3402 break; 3403 } 3404 VN_RELE(vp); 3405 } 3406 if (error != ESTALE) 3407 goto out; 3408 } 3409 3410 ASSERT(error == 0); 3411 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3412 zone->zone_rootpath = path; 3413 zone->zone_rootpathlen = pathlen; 3414 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3415 zone->zone_flags |= ZF_IS_SCRATCH; 3416 return (0); 3417 3418 out: 3419 pn_free(&pn); 3420 pn_free(&upn); 3421 return (error); 3422 } 3423 3424 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3425 ((c) >= 'a' && (c) <= 'z') || \ 3426 ((c) >= 'A' && (c) <= 'Z')) 3427 3428 static int 3429 zone_set_name(zone_t *zone, const char *uname) 3430 { 3431 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3432 size_t len; 3433 int i, err; 3434 3435 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3436 kmem_free(kname, ZONENAME_MAX); 3437 return (err); /* EFAULT or ENAMETOOLONG */ 3438 } 3439 3440 /* must be less than ZONENAME_MAX */ 3441 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3442 kmem_free(kname, ZONENAME_MAX); 3443 return (EINVAL); 3444 } 3445 3446 /* 3447 * Name must start with an alphanumeric and must contain only 3448 * alphanumerics, '-', '_' and '.'. 3449 */ 3450 if (!isalnum(kname[0])) { 3451 kmem_free(kname, ZONENAME_MAX); 3452 return (EINVAL); 3453 } 3454 for (i = 1; i < len - 1; i++) { 3455 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3456 kname[i] != '.') { 3457 kmem_free(kname, ZONENAME_MAX); 3458 return (EINVAL); 3459 } 3460 } 3461 3462 zone->zone_name = kname; 3463 return (0); 3464 } 3465 3466 /* 3467 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3468 * is NULL or it points to a zone with no hostid emulation, then the machine's 3469 * hostid (i.e., the global zone's hostid) is returned. This function returns 3470 * zero if neither the zone nor the host machine (global zone) have hostids. It 3471 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3472 * hostid and the machine's hostid is invalid. 3473 */ 3474 uint32_t 3475 zone_get_hostid(zone_t *zonep) 3476 { 3477 unsigned long machine_hostid; 3478 3479 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3480 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3481 return (HW_INVALID_HOSTID); 3482 return ((uint32_t)machine_hostid); 3483 } 3484 return (zonep->zone_hostid); 3485 } 3486 3487 /* 3488 * Similar to thread_create(), but makes sure the thread is in the appropriate 3489 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3490 */ 3491 /*ARGSUSED*/ 3492 kthread_t * 3493 zthread_create( 3494 caddr_t stk, 3495 size_t stksize, 3496 void (*proc)(), 3497 void *arg, 3498 size_t len, 3499 pri_t pri) 3500 { 3501 kthread_t *t; 3502 zone_t *zone = curproc->p_zone; 3503 proc_t *pp = zone->zone_zsched; 3504 3505 zone_hold(zone); /* Reference to be dropped when thread exits */ 3506 3507 /* 3508 * No-one should be trying to create threads if the zone is shutting 3509 * down and there aren't any kernel threads around. See comment 3510 * in zthread_exit(). 3511 */ 3512 ASSERT(!(zone->zone_kthreads == NULL && 3513 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3514 /* 3515 * Create a thread, but don't let it run until we've finished setting 3516 * things up. 3517 */ 3518 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3519 ASSERT(t->t_forw == NULL); 3520 mutex_enter(&zone_status_lock); 3521 if (zone->zone_kthreads == NULL) { 3522 t->t_forw = t->t_back = t; 3523 } else { 3524 kthread_t *tx = zone->zone_kthreads; 3525 3526 t->t_forw = tx; 3527 t->t_back = tx->t_back; 3528 tx->t_back->t_forw = t; 3529 tx->t_back = t; 3530 } 3531 zone->zone_kthreads = t; 3532 mutex_exit(&zone_status_lock); 3533 3534 mutex_enter(&pp->p_lock); 3535 t->t_proc_flag |= TP_ZTHREAD; 3536 project_rele(t->t_proj); 3537 t->t_proj = project_hold(pp->p_task->tk_proj); 3538 3539 /* 3540 * Setup complete, let it run. 3541 */ 3542 thread_lock(t); 3543 t->t_schedflag |= TS_ALLSTART; 3544 setrun_locked(t); 3545 thread_unlock(t); 3546 3547 mutex_exit(&pp->p_lock); 3548 3549 return (t); 3550 } 3551 3552 /* 3553 * Similar to thread_exit(). Must be called by threads created via 3554 * zthread_exit(). 3555 */ 3556 void 3557 zthread_exit(void) 3558 { 3559 kthread_t *t = curthread; 3560 proc_t *pp = curproc; 3561 zone_t *zone = pp->p_zone; 3562 3563 mutex_enter(&zone_status_lock); 3564 3565 /* 3566 * Reparent to p0 3567 */ 3568 kpreempt_disable(); 3569 mutex_enter(&pp->p_lock); 3570 t->t_proc_flag &= ~TP_ZTHREAD; 3571 t->t_procp = &p0; 3572 hat_thread_exit(t); 3573 mutex_exit(&pp->p_lock); 3574 kpreempt_enable(); 3575 3576 if (t->t_back == t) { 3577 ASSERT(t->t_forw == t); 3578 /* 3579 * If the zone is empty, once the thread count 3580 * goes to zero no further kernel threads can be 3581 * created. This is because if the creator is a process 3582 * in the zone, then it must have exited before the zone 3583 * state could be set to ZONE_IS_EMPTY. 3584 * Otherwise, if the creator is a kernel thread in the 3585 * zone, the thread count is non-zero. 3586 * 3587 * This really means that non-zone kernel threads should 3588 * not create zone kernel threads. 3589 */ 3590 zone->zone_kthreads = NULL; 3591 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3592 zone_status_set(zone, ZONE_IS_DOWN); 3593 /* 3594 * Remove any CPU caps on this zone. 3595 */ 3596 cpucaps_zone_remove(zone); 3597 } 3598 } else { 3599 t->t_forw->t_back = t->t_back; 3600 t->t_back->t_forw = t->t_forw; 3601 if (zone->zone_kthreads == t) 3602 zone->zone_kthreads = t->t_forw; 3603 } 3604 mutex_exit(&zone_status_lock); 3605 zone_rele(zone); 3606 thread_exit(); 3607 /* NOTREACHED */ 3608 } 3609 3610 static void 3611 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3612 { 3613 vnode_t *oldvp; 3614 3615 /* we're going to hold a reference here to the directory */ 3616 VN_HOLD(vp); 3617 3618 /* update abs cwd/root path see c2/audit.c */ 3619 if (AU_AUDITING()) 3620 audit_chdirec(vp, vpp); 3621 3622 mutex_enter(&pp->p_lock); 3623 oldvp = *vpp; 3624 *vpp = vp; 3625 mutex_exit(&pp->p_lock); 3626 if (oldvp != NULL) 3627 VN_RELE(oldvp); 3628 } 3629 3630 /* 3631 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3632 */ 3633 static int 3634 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3635 { 3636 nvpair_t *nvp = NULL; 3637 boolean_t priv_set = B_FALSE; 3638 boolean_t limit_set = B_FALSE; 3639 boolean_t action_set = B_FALSE; 3640 3641 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3642 const char *name; 3643 uint64_t ui64; 3644 3645 name = nvpair_name(nvp); 3646 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3647 return (EINVAL); 3648 (void) nvpair_value_uint64(nvp, &ui64); 3649 if (strcmp(name, "privilege") == 0) { 3650 /* 3651 * Currently only privileged values are allowed, but 3652 * this may change in the future. 3653 */ 3654 if (ui64 != RCPRIV_PRIVILEGED) 3655 return (EINVAL); 3656 rv->rcv_privilege = ui64; 3657 priv_set = B_TRUE; 3658 } else if (strcmp(name, "limit") == 0) { 3659 rv->rcv_value = ui64; 3660 limit_set = B_TRUE; 3661 } else if (strcmp(name, "action") == 0) { 3662 if (ui64 != RCTL_LOCAL_NOACTION && 3663 ui64 != RCTL_LOCAL_DENY) 3664 return (EINVAL); 3665 rv->rcv_flagaction = ui64; 3666 action_set = B_TRUE; 3667 } else { 3668 return (EINVAL); 3669 } 3670 } 3671 3672 if (!(priv_set && limit_set && action_set)) 3673 return (EINVAL); 3674 rv->rcv_action_signal = 0; 3675 rv->rcv_action_recipient = NULL; 3676 rv->rcv_action_recip_pid = -1; 3677 rv->rcv_firing_time = 0; 3678 3679 return (0); 3680 } 3681 3682 /* 3683 * Non-global zone version of start_init. 3684 */ 3685 void 3686 zone_start_init(void) 3687 { 3688 proc_t *p = ttoproc(curthread); 3689 zone_t *z = p->p_zone; 3690 3691 ASSERT(!INGLOBALZONE(curproc)); 3692 3693 /* 3694 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3695 * storing just the pid of init is sufficient. 3696 */ 3697 z->zone_proc_initpid = p->p_pid; 3698 3699 /* 3700 * We maintain zone_boot_err so that we can return the cause of the 3701 * failure back to the caller of the zone_boot syscall. 3702 */ 3703 p->p_zone->zone_boot_err = start_init_common(); 3704 3705 /* 3706 * We will prevent booting zones from becoming running zones if the 3707 * global zone is shutting down. 3708 */ 3709 mutex_enter(&zone_status_lock); 3710 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3711 ZONE_IS_SHUTTING_DOWN) { 3712 /* 3713 * Make sure we are still in the booting state-- we could have 3714 * raced and already be shutting down, or even further along. 3715 */ 3716 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3717 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3718 } 3719 mutex_exit(&zone_status_lock); 3720 /* It's gone bad, dispose of the process */ 3721 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3722 mutex_enter(&p->p_lock); 3723 ASSERT(p->p_flag & SEXITLWPS); 3724 lwp_exit(); 3725 } 3726 } else { 3727 if (zone_status_get(z) == ZONE_IS_BOOTING) 3728 zone_status_set(z, ZONE_IS_RUNNING); 3729 mutex_exit(&zone_status_lock); 3730 /* cause the process to return to userland. */ 3731 lwp_rtt(); 3732 } 3733 } 3734 3735 struct zsched_arg { 3736 zone_t *zone; 3737 nvlist_t *nvlist; 3738 }; 3739 3740 /* 3741 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3742 * anything to do with scheduling, but rather with the fact that 3743 * per-zone kernel threads are parented to zsched, just like regular 3744 * kernel threads are parented to sched (p0). 3745 * 3746 * zsched is also responsible for launching init for the zone. 3747 */ 3748 static void 3749 zsched(void *arg) 3750 { 3751 struct zsched_arg *za = arg; 3752 proc_t *pp = curproc; 3753 proc_t *initp = proc_init; 3754 zone_t *zone = za->zone; 3755 cred_t *cr, *oldcred; 3756 rctl_set_t *set; 3757 rctl_alloc_gp_t *gp; 3758 contract_t *ct = NULL; 3759 task_t *tk, *oldtk; 3760 rctl_entity_p_t e; 3761 kproject_t *pj; 3762 3763 nvlist_t *nvl = za->nvlist; 3764 nvpair_t *nvp = NULL; 3765 3766 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3767 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3768 PTOU(pp)->u_argc = 0; 3769 PTOU(pp)->u_argv = NULL; 3770 PTOU(pp)->u_envp = NULL; 3771 closeall(P_FINFO(pp)); 3772 3773 /* 3774 * We are this zone's "zsched" process. As the zone isn't generally 3775 * visible yet we don't need to grab any locks before initializing its 3776 * zone_proc pointer. 3777 */ 3778 zone_hold(zone); /* this hold is released by zone_destroy() */ 3779 zone->zone_zsched = pp; 3780 mutex_enter(&pp->p_lock); 3781 pp->p_zone = zone; 3782 mutex_exit(&pp->p_lock); 3783 3784 /* 3785 * Disassociate process from its 'parent'; parent ourselves to init 3786 * (pid 1) and change other values as needed. 3787 */ 3788 sess_create(); 3789 3790 mutex_enter(&pidlock); 3791 proc_detach(pp); 3792 pp->p_ppid = 1; 3793 pp->p_flag |= SZONETOP; 3794 pp->p_ancpid = 1; 3795 pp->p_parent = initp; 3796 pp->p_psibling = NULL; 3797 if (initp->p_child) 3798 initp->p_child->p_psibling = pp; 3799 pp->p_sibling = initp->p_child; 3800 initp->p_child = pp; 3801 3802 /* Decrement what newproc() incremented. */ 3803 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3804 /* 3805 * Our credentials are about to become kcred-like, so we don't care 3806 * about the caller's ruid. 3807 */ 3808 upcount_inc(crgetruid(kcred), zone->zone_id); 3809 mutex_exit(&pidlock); 3810 3811 /* 3812 * getting out of global zone, so decrement lwp and process counts 3813 */ 3814 pj = pp->p_task->tk_proj; 3815 mutex_enter(&global_zone->zone_nlwps_lock); 3816 pj->kpj_nlwps -= pp->p_lwpcnt; 3817 global_zone->zone_nlwps -= pp->p_lwpcnt; 3818 pj->kpj_nprocs--; 3819 global_zone->zone_nprocs--; 3820 mutex_exit(&global_zone->zone_nlwps_lock); 3821 3822 /* 3823 * Decrement locked memory counts on old zone and project. 3824 */ 3825 mutex_enter(&global_zone->zone_mem_lock); 3826 global_zone->zone_locked_mem -= pp->p_locked_mem; 3827 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3828 mutex_exit(&global_zone->zone_mem_lock); 3829 3830 /* 3831 * Create and join a new task in project '0' of this zone. 3832 * 3833 * We don't need to call holdlwps() since we know we're the only lwp in 3834 * this process. 3835 * 3836 * task_join() returns with p_lock held. 3837 */ 3838 tk = task_create(0, zone); 3839 mutex_enter(&cpu_lock); 3840 oldtk = task_join(tk, 0); 3841 3842 pj = pp->p_task->tk_proj; 3843 3844 mutex_enter(&zone->zone_mem_lock); 3845 zone->zone_locked_mem += pp->p_locked_mem; 3846 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3847 mutex_exit(&zone->zone_mem_lock); 3848 3849 /* 3850 * add lwp and process counts to zsched's zone, and increment 3851 * project's task and process count due to the task created in 3852 * the above task_create. 3853 */ 3854 mutex_enter(&zone->zone_nlwps_lock); 3855 pj->kpj_nlwps += pp->p_lwpcnt; 3856 pj->kpj_ntasks += 1; 3857 zone->zone_nlwps += pp->p_lwpcnt; 3858 pj->kpj_nprocs++; 3859 zone->zone_nprocs++; 3860 mutex_exit(&zone->zone_nlwps_lock); 3861 3862 mutex_exit(&curproc->p_lock); 3863 mutex_exit(&cpu_lock); 3864 task_rele(oldtk); 3865 3866 /* 3867 * The process was created by a process in the global zone, hence the 3868 * credentials are wrong. We might as well have kcred-ish credentials. 3869 */ 3870 cr = zone->zone_kcred; 3871 crhold(cr); 3872 mutex_enter(&pp->p_crlock); 3873 oldcred = pp->p_cred; 3874 pp->p_cred = cr; 3875 mutex_exit(&pp->p_crlock); 3876 crfree(oldcred); 3877 3878 /* 3879 * Hold credentials again (for thread) 3880 */ 3881 crhold(cr); 3882 3883 /* 3884 * p_lwpcnt can't change since this is a kernel process. 3885 */ 3886 crset(pp, cr); 3887 3888 /* 3889 * Chroot 3890 */ 3891 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3892 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3893 3894 /* 3895 * Initialize zone's rctl set. 3896 */ 3897 set = rctl_set_create(); 3898 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3899 mutex_enter(&pp->p_lock); 3900 e.rcep_p.zone = zone; 3901 e.rcep_t = RCENTITY_ZONE; 3902 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3903 mutex_exit(&pp->p_lock); 3904 rctl_prealloc_destroy(gp); 3905 3906 /* 3907 * Apply the rctls passed in to zone_create(). This is basically a list 3908 * assignment: all of the old values are removed and the new ones 3909 * inserted. That is, if an empty list is passed in, all values are 3910 * removed. 3911 */ 3912 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3913 rctl_dict_entry_t *rde; 3914 rctl_hndl_t hndl; 3915 char *name; 3916 nvlist_t **nvlarray; 3917 uint_t i, nelem; 3918 int error; /* For ASSERT()s */ 3919 3920 name = nvpair_name(nvp); 3921 hndl = rctl_hndl_lookup(name); 3922 ASSERT(hndl != -1); 3923 rde = rctl_dict_lookup_hndl(hndl); 3924 ASSERT(rde != NULL); 3925 3926 for (; /* ever */; ) { 3927 rctl_val_t oval; 3928 3929 mutex_enter(&pp->p_lock); 3930 error = rctl_local_get(hndl, NULL, &oval, pp); 3931 mutex_exit(&pp->p_lock); 3932 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3933 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3934 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3935 break; 3936 mutex_enter(&pp->p_lock); 3937 error = rctl_local_delete(hndl, &oval, pp); 3938 mutex_exit(&pp->p_lock); 3939 ASSERT(error == 0); 3940 } 3941 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3942 ASSERT(error == 0); 3943 for (i = 0; i < nelem; i++) { 3944 rctl_val_t *nvalp; 3945 3946 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3947 error = nvlist2rctlval(nvlarray[i], nvalp); 3948 ASSERT(error == 0); 3949 /* 3950 * rctl_local_insert can fail if the value being 3951 * inserted is a duplicate; this is OK. 3952 */ 3953 mutex_enter(&pp->p_lock); 3954 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3955 kmem_cache_free(rctl_val_cache, nvalp); 3956 mutex_exit(&pp->p_lock); 3957 } 3958 } 3959 /* 3960 * Tell the world that we're done setting up. 3961 * 3962 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3963 * and atomically set the zone's processor set visibility. Once 3964 * we drop pool_lock() this zone will automatically get updated 3965 * to reflect any future changes to the pools configuration. 3966 * 3967 * Note that after we drop the locks below (zonehash_lock in 3968 * particular) other operations such as a zone_getattr call can 3969 * now proceed and observe the zone. That is the reason for doing a 3970 * state transition to the INITIALIZED state. 3971 */ 3972 pool_lock(); 3973 mutex_enter(&cpu_lock); 3974 mutex_enter(&zonehash_lock); 3975 zone_uniqid(zone); 3976 zone_zsd_configure(zone); 3977 if (pool_state == POOL_ENABLED) 3978 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3979 mutex_enter(&zone_status_lock); 3980 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3981 zone_status_set(zone, ZONE_IS_INITIALIZED); 3982 mutex_exit(&zone_status_lock); 3983 mutex_exit(&zonehash_lock); 3984 mutex_exit(&cpu_lock); 3985 pool_unlock(); 3986 3987 /* Now call the create callback for this key */ 3988 zsd_apply_all_keys(zsd_apply_create, zone); 3989 3990 /* The callbacks are complete. Mark ZONE_IS_READY */ 3991 mutex_enter(&zone_status_lock); 3992 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3993 zone_status_set(zone, ZONE_IS_READY); 3994 mutex_exit(&zone_status_lock); 3995 3996 /* 3997 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3998 * we launch init, and set the state to running. 3999 */ 4000 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4001 4002 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4003 id_t cid; 4004 4005 /* 4006 * Ok, this is a little complicated. We need to grab the 4007 * zone's pool's scheduling class ID; note that by now, we 4008 * are already bound to a pool if we need to be (zoneadmd 4009 * will have done that to us while we're in the READY 4010 * state). *But* the scheduling class for the zone's 'init' 4011 * must be explicitly passed to newproc, which doesn't 4012 * respect pool bindings. 4013 * 4014 * We hold the pool_lock across the call to newproc() to 4015 * close the obvious race: the pool's scheduling class 4016 * could change before we manage to create the LWP with 4017 * classid 'cid'. 4018 */ 4019 pool_lock(); 4020 if (zone->zone_defaultcid > 0) 4021 cid = zone->zone_defaultcid; 4022 else 4023 cid = pool_get_class(zone->zone_pool); 4024 if (cid == -1) 4025 cid = defaultcid; 4026 4027 /* 4028 * If this fails, zone_boot will ultimately fail. The 4029 * state of the zone will be set to SHUTTING_DOWN-- userland 4030 * will have to tear down the zone, and fail, or try again. 4031 */ 4032 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4033 minclsyspri - 1, &ct, 0)) != 0) { 4034 mutex_enter(&zone_status_lock); 4035 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4036 mutex_exit(&zone_status_lock); 4037 } else { 4038 zone->zone_boot_time = gethrestime_sec(); 4039 } 4040 4041 pool_unlock(); 4042 } 4043 4044 /* 4045 * Wait for zone_destroy() to be called. This is what we spend 4046 * most of our life doing. 4047 */ 4048 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4049 4050 if (ct) 4051 /* 4052 * At this point the process contract should be empty. 4053 * (Though if it isn't, it's not the end of the world.) 4054 */ 4055 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4056 4057 /* 4058 * Allow kcred to be freed when all referring processes 4059 * (including this one) go away. We can't just do this in 4060 * zone_free because we need to wait for the zone_cred_ref to 4061 * drop to 0 before calling zone_free, and the existence of 4062 * zone_kcred will prevent that. Thus, we call crfree here to 4063 * balance the crdup in zone_create. The crhold calls earlier 4064 * in zsched will be dropped when the thread and process exit. 4065 */ 4066 crfree(zone->zone_kcred); 4067 zone->zone_kcred = NULL; 4068 4069 exit(CLD_EXITED, 0); 4070 } 4071 4072 /* 4073 * Helper function to determine if there are any submounts of the 4074 * provided path. Used to make sure the zone doesn't "inherit" any 4075 * mounts from before it is created. 4076 */ 4077 static uint_t 4078 zone_mount_count(const char *rootpath) 4079 { 4080 vfs_t *vfsp; 4081 uint_t count = 0; 4082 size_t rootpathlen = strlen(rootpath); 4083 4084 /* 4085 * Holding zonehash_lock prevents race conditions with 4086 * vfs_list_add()/vfs_list_remove() since we serialize with 4087 * zone_find_by_path(). 4088 */ 4089 ASSERT(MUTEX_HELD(&zonehash_lock)); 4090 /* 4091 * The rootpath must end with a '/' 4092 */ 4093 ASSERT(rootpath[rootpathlen - 1] == '/'); 4094 4095 /* 4096 * This intentionally does not count the rootpath itself if that 4097 * happens to be a mount point. 4098 */ 4099 vfs_list_read_lock(); 4100 vfsp = rootvfs; 4101 do { 4102 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4103 rootpathlen) == 0) 4104 count++; 4105 vfsp = vfsp->vfs_next; 4106 } while (vfsp != rootvfs); 4107 vfs_list_unlock(); 4108 return (count); 4109 } 4110 4111 /* 4112 * Helper function to make sure that a zone created on 'rootpath' 4113 * wouldn't end up containing other zones' rootpaths. 4114 */ 4115 static boolean_t 4116 zone_is_nested(const char *rootpath) 4117 { 4118 zone_t *zone; 4119 size_t rootpathlen = strlen(rootpath); 4120 size_t len; 4121 4122 ASSERT(MUTEX_HELD(&zonehash_lock)); 4123 4124 /* 4125 * zone_set_root() appended '/' and '\0' at the end of rootpath 4126 */ 4127 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4128 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4129 return (B_TRUE); 4130 4131 for (zone = list_head(&zone_active); zone != NULL; 4132 zone = list_next(&zone_active, zone)) { 4133 if (zone == global_zone) 4134 continue; 4135 len = strlen(zone->zone_rootpath); 4136 if (strncmp(rootpath, zone->zone_rootpath, 4137 MIN(rootpathlen, len)) == 0) 4138 return (B_TRUE); 4139 } 4140 return (B_FALSE); 4141 } 4142 4143 static int 4144 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4145 size_t zone_privssz) 4146 { 4147 priv_set_t *privs; 4148 4149 if (zone_privssz < sizeof (priv_set_t)) 4150 return (ENOMEM); 4151 4152 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4153 4154 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4155 kmem_free(privs, sizeof (priv_set_t)); 4156 return (EFAULT); 4157 } 4158 4159 zone->zone_privset = privs; 4160 return (0); 4161 } 4162 4163 /* 4164 * We make creative use of nvlists to pass in rctls from userland. The list is 4165 * a list of the following structures: 4166 * 4167 * (name = rctl_name, value = nvpair_list_array) 4168 * 4169 * Where each element of the nvpair_list_array is of the form: 4170 * 4171 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4172 * (name = "limit", value = uint64_t), 4173 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4174 */ 4175 static int 4176 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4177 { 4178 nvpair_t *nvp = NULL; 4179 nvlist_t *nvl = NULL; 4180 char *kbuf; 4181 int error; 4182 rctl_val_t rv; 4183 4184 *nvlp = NULL; 4185 4186 if (buflen == 0) 4187 return (0); 4188 4189 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4190 return (ENOMEM); 4191 if (copyin(ubuf, kbuf, buflen)) { 4192 error = EFAULT; 4193 goto out; 4194 } 4195 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4196 /* 4197 * nvl may have been allocated/free'd, but the value set to 4198 * non-NULL, so we reset it here. 4199 */ 4200 nvl = NULL; 4201 error = EINVAL; 4202 goto out; 4203 } 4204 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4205 rctl_dict_entry_t *rde; 4206 rctl_hndl_t hndl; 4207 nvlist_t **nvlarray; 4208 uint_t i, nelem; 4209 char *name; 4210 4211 error = EINVAL; 4212 name = nvpair_name(nvp); 4213 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4214 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4215 goto out; 4216 } 4217 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4218 goto out; 4219 } 4220 rde = rctl_dict_lookup_hndl(hndl); 4221 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4222 ASSERT(error == 0); 4223 for (i = 0; i < nelem; i++) { 4224 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4225 goto out; 4226 } 4227 if (rctl_invalid_value(rde, &rv)) { 4228 error = EINVAL; 4229 goto out; 4230 } 4231 } 4232 error = 0; 4233 *nvlp = nvl; 4234 out: 4235 kmem_free(kbuf, buflen); 4236 if (error && nvl != NULL) 4237 nvlist_free(nvl); 4238 return (error); 4239 } 4240 4241 int 4242 zone_create_error(int er_error, int er_ext, int *er_out) { 4243 if (er_out != NULL) { 4244 if (copyout(&er_ext, er_out, sizeof (int))) { 4245 return (set_errno(EFAULT)); 4246 } 4247 } 4248 return (set_errno(er_error)); 4249 } 4250 4251 static int 4252 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4253 { 4254 ts_label_t *tsl; 4255 bslabel_t blab; 4256 4257 /* Get label from user */ 4258 if (copyin(lab, &blab, sizeof (blab)) != 0) 4259 return (EFAULT); 4260 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4261 if (tsl == NULL) 4262 return (ENOMEM); 4263 4264 zone->zone_slabel = tsl; 4265 return (0); 4266 } 4267 4268 /* 4269 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4270 */ 4271 static int 4272 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4273 { 4274 char *kbuf; 4275 char *dataset, *next; 4276 zone_dataset_t *zd; 4277 size_t len; 4278 4279 if (ubuf == NULL || buflen == 0) 4280 return (0); 4281 4282 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4283 return (ENOMEM); 4284 4285 if (copyin(ubuf, kbuf, buflen) != 0) { 4286 kmem_free(kbuf, buflen); 4287 return (EFAULT); 4288 } 4289 4290 dataset = next = kbuf; 4291 for (;;) { 4292 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4293 4294 next = strchr(dataset, ','); 4295 4296 if (next == NULL) 4297 len = strlen(dataset); 4298 else 4299 len = next - dataset; 4300 4301 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4302 bcopy(dataset, zd->zd_dataset, len); 4303 zd->zd_dataset[len] = '\0'; 4304 4305 list_insert_head(&zone->zone_datasets, zd); 4306 4307 if (next == NULL) 4308 break; 4309 4310 dataset = next + 1; 4311 } 4312 4313 kmem_free(kbuf, buflen); 4314 return (0); 4315 } 4316 4317 /* 4318 * System call to create/initialize a new zone named 'zone_name', rooted 4319 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4320 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4321 * with labeling set by 'match', 'doi', and 'label'. 4322 * 4323 * If extended error is non-null, we may use it to return more detailed 4324 * error information. 4325 */ 4326 static zoneid_t 4327 zone_create(const char *zone_name, const char *zone_root, 4328 const priv_set_t *zone_privs, size_t zone_privssz, 4329 caddr_t rctlbuf, size_t rctlbufsz, 4330 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4331 int match, uint32_t doi, const bslabel_t *label, 4332 int flags) 4333 { 4334 struct zsched_arg zarg; 4335 nvlist_t *rctls = NULL; 4336 proc_t *pp = curproc; 4337 zone_t *zone, *ztmp; 4338 zoneid_t zoneid; 4339 int error; 4340 int error2 = 0; 4341 char *str; 4342 cred_t *zkcr; 4343 boolean_t insert_label_hash; 4344 4345 if (secpolicy_zone_config(CRED()) != 0) 4346 return (set_errno(EPERM)); 4347 4348 /* can't boot zone from within chroot environment */ 4349 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4350 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4351 extended_error)); 4352 4353 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4354 zoneid = zone->zone_id = id_alloc(zoneid_space); 4355 zone->zone_status = ZONE_IS_UNINITIALIZED; 4356 zone->zone_pool = pool_default; 4357 zone->zone_pool_mod = gethrtime(); 4358 zone->zone_psetid = ZONE_PS_INVAL; 4359 zone->zone_ncpus = 0; 4360 zone->zone_ncpus_online = 0; 4361 zone->zone_restart_init = B_TRUE; 4362 zone->zone_brand = &native_brand; 4363 zone->zone_initname = NULL; 4364 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4365 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4366 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4367 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4368 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4369 offsetof(zone_ref_t, zref_linkage)); 4370 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4371 offsetof(struct zsd_entry, zsd_linkage)); 4372 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4373 offsetof(zone_dataset_t, zd_linkage)); 4374 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4375 offsetof(zone_dl_t, zdl_linkage)); 4376 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4377 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4378 4379 if (flags & ZCF_NET_EXCL) { 4380 zone->zone_flags |= ZF_NET_EXCL; 4381 } 4382 4383 if ((error = zone_set_name(zone, zone_name)) != 0) { 4384 zone_free(zone); 4385 return (zone_create_error(error, 0, extended_error)); 4386 } 4387 4388 if ((error = zone_set_root(zone, zone_root)) != 0) { 4389 zone_free(zone); 4390 return (zone_create_error(error, 0, extended_error)); 4391 } 4392 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4393 zone_free(zone); 4394 return (zone_create_error(error, 0, extended_error)); 4395 } 4396 4397 /* initialize node name to be the same as zone name */ 4398 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4399 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4400 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4401 4402 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4403 zone->zone_domain[0] = '\0'; 4404 zone->zone_hostid = HW_INVALID_HOSTID; 4405 zone->zone_shares = 1; 4406 zone->zone_shmmax = 0; 4407 zone->zone_ipc.ipcq_shmmni = 0; 4408 zone->zone_ipc.ipcq_semmni = 0; 4409 zone->zone_ipc.ipcq_msgmni = 0; 4410 zone->zone_bootargs = NULL; 4411 zone->zone_fs_allowed = NULL; 4412 zone->zone_initname = 4413 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4414 (void) strcpy(zone->zone_initname, zone_default_initname); 4415 zone->zone_nlwps = 0; 4416 zone->zone_nlwps_ctl = INT_MAX; 4417 zone->zone_nprocs = 0; 4418 zone->zone_nprocs_ctl = INT_MAX; 4419 zone->zone_locked_mem = 0; 4420 zone->zone_locked_mem_ctl = UINT64_MAX; 4421 zone->zone_max_swap = 0; 4422 zone->zone_max_swap_ctl = UINT64_MAX; 4423 zone->zone_max_lofi = 0; 4424 zone->zone_max_lofi_ctl = UINT64_MAX; 4425 zone0.zone_lockedmem_kstat = NULL; 4426 zone0.zone_swapresv_kstat = NULL; 4427 4428 /* 4429 * Zsched initializes the rctls. 4430 */ 4431 zone->zone_rctls = NULL; 4432 4433 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4434 zone_free(zone); 4435 return (zone_create_error(error, 0, extended_error)); 4436 } 4437 4438 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4439 zone_free(zone); 4440 return (set_errno(error)); 4441 } 4442 4443 /* 4444 * Read in the trusted system parameters: 4445 * match flag and sensitivity label. 4446 */ 4447 zone->zone_match = match; 4448 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4449 /* Fail if requested to set doi to anything but system's doi */ 4450 if (doi != 0 && doi != default_doi) { 4451 zone_free(zone); 4452 return (set_errno(EINVAL)); 4453 } 4454 /* Always apply system's doi to the zone */ 4455 error = zone_set_label(zone, label, default_doi); 4456 if (error != 0) { 4457 zone_free(zone); 4458 return (set_errno(error)); 4459 } 4460 insert_label_hash = B_TRUE; 4461 } else { 4462 /* all zones get an admin_low label if system is not labeled */ 4463 zone->zone_slabel = l_admin_low; 4464 label_hold(l_admin_low); 4465 insert_label_hash = B_FALSE; 4466 } 4467 4468 /* 4469 * Stop all lwps since that's what normally happens as part of fork(). 4470 * This needs to happen before we grab any locks to avoid deadlock 4471 * (another lwp in the process could be waiting for the held lock). 4472 */ 4473 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4474 zone_free(zone); 4475 nvlist_free(rctls); 4476 return (zone_create_error(error, 0, extended_error)); 4477 } 4478 4479 if (block_mounts(zone) == 0) { 4480 mutex_enter(&pp->p_lock); 4481 if (curthread != pp->p_agenttp) 4482 continuelwps(pp); 4483 mutex_exit(&pp->p_lock); 4484 zone_free(zone); 4485 nvlist_free(rctls); 4486 return (zone_create_error(error, 0, extended_error)); 4487 } 4488 4489 /* 4490 * Set up credential for kernel access. After this, any errors 4491 * should go through the dance in errout rather than calling 4492 * zone_free directly. 4493 */ 4494 zone->zone_kcred = crdup(kcred); 4495 crsetzone(zone->zone_kcred, zone); 4496 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4497 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4498 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4499 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4500 4501 mutex_enter(&zonehash_lock); 4502 /* 4503 * Make sure zone doesn't already exist. 4504 * 4505 * If the system and zone are labeled, 4506 * make sure no other zone exists that has the same label. 4507 */ 4508 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4509 (insert_label_hash && 4510 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4511 zone_status_t status; 4512 4513 status = zone_status_get(ztmp); 4514 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4515 error = EEXIST; 4516 else 4517 error = EBUSY; 4518 4519 if (insert_label_hash) 4520 error2 = ZE_LABELINUSE; 4521 4522 goto errout; 4523 } 4524 4525 /* 4526 * Don't allow zone creations which would cause one zone's rootpath to 4527 * be accessible from that of another (non-global) zone. 4528 */ 4529 if (zone_is_nested(zone->zone_rootpath)) { 4530 error = EBUSY; 4531 goto errout; 4532 } 4533 4534 ASSERT(zonecount != 0); /* check for leaks */ 4535 if (zonecount + 1 > maxzones) { 4536 error = ENOMEM; 4537 goto errout; 4538 } 4539 4540 if (zone_mount_count(zone->zone_rootpath) != 0) { 4541 error = EBUSY; 4542 error2 = ZE_AREMOUNTS; 4543 goto errout; 4544 } 4545 4546 /* 4547 * Zone is still incomplete, but we need to drop all locks while 4548 * zsched() initializes this zone's kernel process. We 4549 * optimistically add the zone to the hashtable and associated 4550 * lists so a parallel zone_create() doesn't try to create the 4551 * same zone. 4552 */ 4553 zonecount++; 4554 (void) mod_hash_insert(zonehashbyid, 4555 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4556 (mod_hash_val_t)(uintptr_t)zone); 4557 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4558 (void) strcpy(str, zone->zone_name); 4559 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4560 (mod_hash_val_t)(uintptr_t)zone); 4561 if (insert_label_hash) { 4562 (void) mod_hash_insert(zonehashbylabel, 4563 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4564 zone->zone_flags |= ZF_HASHED_LABEL; 4565 } 4566 4567 /* 4568 * Insert into active list. At this point there are no 'hold's 4569 * on the zone, but everyone else knows not to use it, so we can 4570 * continue to use it. zsched() will do a zone_hold() if the 4571 * newproc() is successful. 4572 */ 4573 list_insert_tail(&zone_active, zone); 4574 mutex_exit(&zonehash_lock); 4575 4576 zarg.zone = zone; 4577 zarg.nvlist = rctls; 4578 /* 4579 * The process, task, and project rctls are probably wrong; 4580 * we need an interface to get the default values of all rctls, 4581 * and initialize zsched appropriately. I'm not sure that that 4582 * makes much of a difference, though. 4583 */ 4584 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4585 if (error != 0) { 4586 /* 4587 * We need to undo all globally visible state. 4588 */ 4589 mutex_enter(&zonehash_lock); 4590 list_remove(&zone_active, zone); 4591 if (zone->zone_flags & ZF_HASHED_LABEL) { 4592 ASSERT(zone->zone_slabel != NULL); 4593 (void) mod_hash_destroy(zonehashbylabel, 4594 (mod_hash_key_t)zone->zone_slabel); 4595 } 4596 (void) mod_hash_destroy(zonehashbyname, 4597 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4598 (void) mod_hash_destroy(zonehashbyid, 4599 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4600 ASSERT(zonecount > 1); 4601 zonecount--; 4602 goto errout; 4603 } 4604 4605 /* 4606 * Zone creation can't fail from now on. 4607 */ 4608 4609 /* 4610 * Create zone kstats 4611 */ 4612 zone_kstat_create(zone); 4613 4614 /* 4615 * Let the other lwps continue. 4616 */ 4617 mutex_enter(&pp->p_lock); 4618 if (curthread != pp->p_agenttp) 4619 continuelwps(pp); 4620 mutex_exit(&pp->p_lock); 4621 4622 /* 4623 * Wait for zsched to finish initializing the zone. 4624 */ 4625 zone_status_wait(zone, ZONE_IS_READY); 4626 /* 4627 * The zone is fully visible, so we can let mounts progress. 4628 */ 4629 resume_mounts(zone); 4630 nvlist_free(rctls); 4631 4632 return (zoneid); 4633 4634 errout: 4635 mutex_exit(&zonehash_lock); 4636 /* 4637 * Let the other lwps continue. 4638 */ 4639 mutex_enter(&pp->p_lock); 4640 if (curthread != pp->p_agenttp) 4641 continuelwps(pp); 4642 mutex_exit(&pp->p_lock); 4643 4644 resume_mounts(zone); 4645 nvlist_free(rctls); 4646 /* 4647 * There is currently one reference to the zone, a cred_ref from 4648 * zone_kcred. To free the zone, we call crfree, which will call 4649 * zone_cred_rele, which will call zone_free. 4650 */ 4651 ASSERT(zone->zone_cred_ref == 1); 4652 ASSERT(zone->zone_kcred->cr_ref == 1); 4653 ASSERT(zone->zone_ref == 0); 4654 zkcr = zone->zone_kcred; 4655 zone->zone_kcred = NULL; 4656 crfree(zkcr); /* triggers call to zone_free */ 4657 return (zone_create_error(error, error2, extended_error)); 4658 } 4659 4660 /* 4661 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4662 * the heavy lifting. initname is the path to the program to launch 4663 * at the "top" of the zone; if this is NULL, we use the system default, 4664 * which is stored at zone_default_initname. 4665 */ 4666 static int 4667 zone_boot(zoneid_t zoneid) 4668 { 4669 int err; 4670 zone_t *zone; 4671 4672 if (secpolicy_zone_config(CRED()) != 0) 4673 return (set_errno(EPERM)); 4674 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4675 return (set_errno(EINVAL)); 4676 4677 mutex_enter(&zonehash_lock); 4678 /* 4679 * Look for zone under hash lock to prevent races with calls to 4680 * zone_shutdown, zone_destroy, etc. 4681 */ 4682 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4683 mutex_exit(&zonehash_lock); 4684 return (set_errno(EINVAL)); 4685 } 4686 4687 mutex_enter(&zone_status_lock); 4688 if (zone_status_get(zone) != ZONE_IS_READY) { 4689 mutex_exit(&zone_status_lock); 4690 mutex_exit(&zonehash_lock); 4691 return (set_errno(EINVAL)); 4692 } 4693 zone_status_set(zone, ZONE_IS_BOOTING); 4694 mutex_exit(&zone_status_lock); 4695 4696 zone_hold(zone); /* so we can use the zone_t later */ 4697 mutex_exit(&zonehash_lock); 4698 4699 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4700 zone_rele(zone); 4701 return (set_errno(EINTR)); 4702 } 4703 4704 /* 4705 * Boot (starting init) might have failed, in which case the zone 4706 * will go to the SHUTTING_DOWN state; an appropriate errno will 4707 * be placed in zone->zone_boot_err, and so we return that. 4708 */ 4709 err = zone->zone_boot_err; 4710 zone_rele(zone); 4711 return (err ? set_errno(err) : 0); 4712 } 4713 4714 /* 4715 * Kills all user processes in the zone, waiting for them all to exit 4716 * before returning. 4717 */ 4718 static int 4719 zone_empty(zone_t *zone) 4720 { 4721 int waitstatus; 4722 4723 /* 4724 * We need to drop zonehash_lock before killing all 4725 * processes, otherwise we'll deadlock with zone_find_* 4726 * which can be called from the exit path. 4727 */ 4728 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4729 while ((waitstatus = zone_status_timedwait_sig(zone, 4730 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4731 killall(zone->zone_id); 4732 } 4733 /* 4734 * return EINTR if we were signaled 4735 */ 4736 if (waitstatus == 0) 4737 return (EINTR); 4738 return (0); 4739 } 4740 4741 /* 4742 * This function implements the policy for zone visibility. 4743 * 4744 * In standard Solaris, a non-global zone can only see itself. 4745 * 4746 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4747 * it dominates. For this test, the label of the global zone is treated as 4748 * admin_high so it is special-cased instead of being checked for dominance. 4749 * 4750 * Returns true if zone attributes are viewable, false otherwise. 4751 */ 4752 static boolean_t 4753 zone_list_access(zone_t *zone) 4754 { 4755 4756 if (curproc->p_zone == global_zone || 4757 curproc->p_zone == zone) { 4758 return (B_TRUE); 4759 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4760 bslabel_t *curproc_label; 4761 bslabel_t *zone_label; 4762 4763 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4764 zone_label = label2bslabel(zone->zone_slabel); 4765 4766 if (zone->zone_id != GLOBAL_ZONEID && 4767 bldominates(curproc_label, zone_label)) { 4768 return (B_TRUE); 4769 } else { 4770 return (B_FALSE); 4771 } 4772 } else { 4773 return (B_FALSE); 4774 } 4775 } 4776 4777 /* 4778 * Systemcall to start the zone's halt sequence. By the time this 4779 * function successfully returns, all user processes and kernel threads 4780 * executing in it will have exited, ZSD shutdown callbacks executed, 4781 * and the zone status set to ZONE_IS_DOWN. 4782 * 4783 * It is possible that the call will interrupt itself if the caller is the 4784 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4785 */ 4786 static int 4787 zone_shutdown(zoneid_t zoneid) 4788 { 4789 int error; 4790 zone_t *zone; 4791 zone_status_t status; 4792 4793 if (secpolicy_zone_config(CRED()) != 0) 4794 return (set_errno(EPERM)); 4795 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4796 return (set_errno(EINVAL)); 4797 4798 mutex_enter(&zonehash_lock); 4799 /* 4800 * Look for zone under hash lock to prevent races with other 4801 * calls to zone_shutdown and zone_destroy. 4802 */ 4803 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4804 mutex_exit(&zonehash_lock); 4805 return (set_errno(EINVAL)); 4806 } 4807 4808 /* 4809 * We have to drop zonehash_lock before calling block_mounts. 4810 * Hold the zone so we can continue to use the zone_t. 4811 */ 4812 zone_hold(zone); 4813 mutex_exit(&zonehash_lock); 4814 4815 /* 4816 * Block mounts so that VFS_MOUNT() can get an accurate view of 4817 * the zone's status with regards to ZONE_IS_SHUTTING down. 4818 * 4819 * e.g. NFS can fail the mount if it determines that the zone 4820 * has already begun the shutdown sequence. 4821 * 4822 */ 4823 if (block_mounts(zone) == 0) { 4824 zone_rele(zone); 4825 return (set_errno(EINTR)); 4826 } 4827 4828 mutex_enter(&zonehash_lock); 4829 mutex_enter(&zone_status_lock); 4830 status = zone_status_get(zone); 4831 /* 4832 * Fail if the zone isn't fully initialized yet. 4833 */ 4834 if (status < ZONE_IS_READY) { 4835 mutex_exit(&zone_status_lock); 4836 mutex_exit(&zonehash_lock); 4837 resume_mounts(zone); 4838 zone_rele(zone); 4839 return (set_errno(EINVAL)); 4840 } 4841 /* 4842 * If conditions required for zone_shutdown() to return have been met, 4843 * return success. 4844 */ 4845 if (status >= ZONE_IS_DOWN) { 4846 mutex_exit(&zone_status_lock); 4847 mutex_exit(&zonehash_lock); 4848 resume_mounts(zone); 4849 zone_rele(zone); 4850 return (0); 4851 } 4852 /* 4853 * If zone_shutdown() hasn't been called before, go through the motions. 4854 * If it has, there's nothing to do but wait for the kernel threads to 4855 * drain. 4856 */ 4857 if (status < ZONE_IS_EMPTY) { 4858 uint_t ntasks; 4859 4860 mutex_enter(&zone->zone_lock); 4861 if ((ntasks = zone->zone_ntasks) != 1) { 4862 /* 4863 * There's still stuff running. 4864 */ 4865 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4866 } 4867 mutex_exit(&zone->zone_lock); 4868 if (ntasks == 1) { 4869 /* 4870 * The only way to create another task is through 4871 * zone_enter(), which will block until we drop 4872 * zonehash_lock. The zone is empty. 4873 */ 4874 if (zone->zone_kthreads == NULL) { 4875 /* 4876 * Skip ahead to ZONE_IS_DOWN 4877 */ 4878 zone_status_set(zone, ZONE_IS_DOWN); 4879 } else { 4880 zone_status_set(zone, ZONE_IS_EMPTY); 4881 } 4882 } 4883 } 4884 mutex_exit(&zone_status_lock); 4885 mutex_exit(&zonehash_lock); 4886 resume_mounts(zone); 4887 4888 if (error = zone_empty(zone)) { 4889 zone_rele(zone); 4890 return (set_errno(error)); 4891 } 4892 /* 4893 * After the zone status goes to ZONE_IS_DOWN this zone will no 4894 * longer be notified of changes to the pools configuration, so 4895 * in order to not end up with a stale pool pointer, we point 4896 * ourselves at the default pool and remove all resource 4897 * visibility. This is especially important as the zone_t may 4898 * languish on the deathrow for a very long time waiting for 4899 * cred's to drain out. 4900 * 4901 * This rebinding of the zone can happen multiple times 4902 * (presumably due to interrupted or parallel systemcalls) 4903 * without any adverse effects. 4904 */ 4905 if (pool_lock_intr() != 0) { 4906 zone_rele(zone); 4907 return (set_errno(EINTR)); 4908 } 4909 if (pool_state == POOL_ENABLED) { 4910 mutex_enter(&cpu_lock); 4911 zone_pool_set(zone, pool_default); 4912 /* 4913 * The zone no longer needs to be able to see any cpus. 4914 */ 4915 zone_pset_set(zone, ZONE_PS_INVAL); 4916 mutex_exit(&cpu_lock); 4917 } 4918 pool_unlock(); 4919 4920 /* 4921 * ZSD shutdown callbacks can be executed multiple times, hence 4922 * it is safe to not be holding any locks across this call. 4923 */ 4924 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4925 4926 mutex_enter(&zone_status_lock); 4927 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4928 zone_status_set(zone, ZONE_IS_DOWN); 4929 mutex_exit(&zone_status_lock); 4930 4931 /* 4932 * Wait for kernel threads to drain. 4933 */ 4934 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4935 zone_rele(zone); 4936 return (set_errno(EINTR)); 4937 } 4938 4939 /* 4940 * Zone can be become down/destroyable even if the above wait 4941 * returns EINTR, so any code added here may never execute. 4942 * (i.e. don't add code here) 4943 */ 4944 4945 zone_rele(zone); 4946 return (0); 4947 } 4948 4949 /* 4950 * Log the specified zone's reference counts. The caller should not be 4951 * holding the zone's zone_lock. 4952 */ 4953 static void 4954 zone_log_refcounts(zone_t *zone) 4955 { 4956 char *buffer; 4957 char *buffer_position; 4958 uint32_t buffer_size; 4959 uint32_t index; 4960 uint_t ref; 4961 uint_t cred_ref; 4962 4963 /* 4964 * Construct a string representing the subsystem-specific reference 4965 * counts. The counts are printed in ascending order by index into the 4966 * zone_t::zone_subsys_ref array. The list will be surrounded by 4967 * square brackets [] and will only contain nonzero reference counts. 4968 * 4969 * The buffer will hold two square bracket characters plus ten digits, 4970 * one colon, one space, one comma, and some characters for a 4971 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4972 * bit integers have at most ten decimal digits.) The last 4973 * reference count's comma is replaced by the closing square 4974 * bracket and a NULL character to terminate the string. 4975 * 4976 * NOTE: We have to grab the zone's zone_lock to create a consistent 4977 * snapshot of the zone's reference counters. 4978 * 4979 * First, figure out how much space the string buffer will need. 4980 * The buffer's size is stored in buffer_size. 4981 */ 4982 buffer_size = 2; /* for the square brackets */ 4983 mutex_enter(&zone->zone_lock); 4984 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4985 ref = zone->zone_ref; 4986 cred_ref = zone->zone_cred_ref; 4987 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4988 if (zone->zone_subsys_ref[index] != 0) 4989 buffer_size += strlen(zone_ref_subsys_names[index]) + 4990 13; 4991 if (buffer_size == 2) { 4992 /* 4993 * No subsystems had nonzero reference counts. Don't bother 4994 * with allocating a buffer; just log the general-purpose and 4995 * credential reference counts. 4996 */ 4997 mutex_exit(&zone->zone_lock); 4998 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4999 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5000 "references and %u credential references are still extant", 5001 zone->zone_name, zone->zone_id, ref, cred_ref); 5002 return; 5003 } 5004 5005 /* 5006 * buffer_size contains the exact number of characters that the 5007 * buffer will need. Allocate the buffer and fill it with nonzero 5008 * subsystem-specific reference counts. Surround the results with 5009 * square brackets afterwards. 5010 */ 5011 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5012 buffer_position = &buffer[1]; 5013 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5014 /* 5015 * NOTE: The DDI's version of sprintf() returns a pointer to 5016 * the modified buffer rather than the number of bytes written 5017 * (as in snprintf(3C)). This is unfortunate and annoying. 5018 * Therefore, we'll use snprintf() with INT_MAX to get the 5019 * number of bytes written. Using INT_MAX is safe because 5020 * the buffer is perfectly sized for the data: we'll never 5021 * overrun the buffer. 5022 */ 5023 if (zone->zone_subsys_ref[index] != 0) 5024 buffer_position += snprintf(buffer_position, INT_MAX, 5025 "%s: %u,", zone_ref_subsys_names[index], 5026 zone->zone_subsys_ref[index]); 5027 } 5028 mutex_exit(&zone->zone_lock); 5029 buffer[0] = '['; 5030 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5031 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5032 buffer_position[-1] = ']'; 5033 5034 /* 5035 * Log the reference counts and free the message buffer. 5036 */ 5037 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5038 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5039 "%u credential references are still extant %s", zone->zone_name, 5040 zone->zone_id, ref, cred_ref, buffer); 5041 kmem_free(buffer, buffer_size); 5042 } 5043 5044 /* 5045 * Systemcall entry point to finalize the zone halt process. The caller 5046 * must have already successfully called zone_shutdown(). 5047 * 5048 * Upon successful completion, the zone will have been fully destroyed: 5049 * zsched will have exited, destructor callbacks executed, and the zone 5050 * removed from the list of active zones. 5051 */ 5052 static int 5053 zone_destroy(zoneid_t zoneid) 5054 { 5055 uint64_t uniqid; 5056 zone_t *zone; 5057 zone_status_t status; 5058 clock_t wait_time; 5059 boolean_t log_refcounts; 5060 5061 if (secpolicy_zone_config(CRED()) != 0) 5062 return (set_errno(EPERM)); 5063 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5064 return (set_errno(EINVAL)); 5065 5066 mutex_enter(&zonehash_lock); 5067 /* 5068 * Look for zone under hash lock to prevent races with other 5069 * calls to zone_destroy. 5070 */ 5071 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5072 mutex_exit(&zonehash_lock); 5073 return (set_errno(EINVAL)); 5074 } 5075 5076 if (zone_mount_count(zone->zone_rootpath) != 0) { 5077 mutex_exit(&zonehash_lock); 5078 return (set_errno(EBUSY)); 5079 } 5080 mutex_enter(&zone_status_lock); 5081 status = zone_status_get(zone); 5082 if (status < ZONE_IS_DOWN) { 5083 mutex_exit(&zone_status_lock); 5084 mutex_exit(&zonehash_lock); 5085 return (set_errno(EBUSY)); 5086 } else if (status == ZONE_IS_DOWN) { 5087 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5088 } 5089 mutex_exit(&zone_status_lock); 5090 zone_hold(zone); 5091 mutex_exit(&zonehash_lock); 5092 5093 /* 5094 * wait for zsched to exit 5095 */ 5096 zone_status_wait(zone, ZONE_IS_DEAD); 5097 zone_zsd_callbacks(zone, ZSD_DESTROY); 5098 zone->zone_netstack = NULL; 5099 uniqid = zone->zone_uniqid; 5100 zone_rele(zone); 5101 zone = NULL; /* potentially free'd */ 5102 5103 log_refcounts = B_FALSE; 5104 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5105 mutex_enter(&zonehash_lock); 5106 for (; /* ever */; ) { 5107 boolean_t unref; 5108 boolean_t refs_have_been_logged; 5109 5110 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5111 zone->zone_uniqid != uniqid) { 5112 /* 5113 * The zone has gone away. Necessary conditions 5114 * are met, so we return success. 5115 */ 5116 mutex_exit(&zonehash_lock); 5117 return (0); 5118 } 5119 mutex_enter(&zone->zone_lock); 5120 unref = ZONE_IS_UNREF(zone); 5121 refs_have_been_logged = (zone->zone_flags & 5122 ZF_REFCOUNTS_LOGGED); 5123 mutex_exit(&zone->zone_lock); 5124 if (unref) { 5125 /* 5126 * There is only one reference to the zone -- that 5127 * added when the zone was added to the hashtables -- 5128 * and things will remain this way until we drop 5129 * zonehash_lock... we can go ahead and cleanup the 5130 * zone. 5131 */ 5132 break; 5133 } 5134 5135 /* 5136 * Wait for zone_rele_common() or zone_cred_rele() to signal 5137 * zone_destroy_cv. zone_destroy_cv is signaled only when 5138 * some zone's general-purpose reference count reaches one. 5139 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5140 * on zone_destroy_cv, then log the zone's reference counts and 5141 * continue to wait for zone_rele() and zone_cred_rele(). 5142 */ 5143 if (!refs_have_been_logged) { 5144 if (!log_refcounts) { 5145 /* 5146 * This thread hasn't timed out waiting on 5147 * zone_destroy_cv yet. Wait wait_time clock 5148 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5149 * seconds) for the zone's references to clear. 5150 */ 5151 ASSERT(wait_time > 0); 5152 wait_time = cv_reltimedwait_sig( 5153 &zone_destroy_cv, &zonehash_lock, wait_time, 5154 TR_SEC); 5155 if (wait_time > 0) { 5156 /* 5157 * A thread in zone_rele() or 5158 * zone_cred_rele() signaled 5159 * zone_destroy_cv before this thread's 5160 * wait timed out. The zone might have 5161 * only one reference left; find out! 5162 */ 5163 continue; 5164 } else if (wait_time == 0) { 5165 /* The thread's process was signaled. */ 5166 mutex_exit(&zonehash_lock); 5167 return (set_errno(EINTR)); 5168 } 5169 5170 /* 5171 * The thread timed out while waiting on 5172 * zone_destroy_cv. Even though the thread 5173 * timed out, it has to check whether another 5174 * thread woke up from zone_destroy_cv and 5175 * destroyed the zone. 5176 * 5177 * If the zone still exists and has more than 5178 * one unreleased general-purpose reference, 5179 * then log the zone's reference counts. 5180 */ 5181 log_refcounts = B_TRUE; 5182 continue; 5183 } 5184 5185 /* 5186 * The thread already timed out on zone_destroy_cv while 5187 * waiting for subsystems to release the zone's last 5188 * general-purpose references. Log the zone's reference 5189 * counts and wait indefinitely on zone_destroy_cv. 5190 */ 5191 zone_log_refcounts(zone); 5192 } 5193 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5194 /* The thread's process was signaled. */ 5195 mutex_exit(&zonehash_lock); 5196 return (set_errno(EINTR)); 5197 } 5198 } 5199 5200 /* 5201 * Remove CPU cap for this zone now since we're not going to 5202 * fail below this point. 5203 */ 5204 cpucaps_zone_remove(zone); 5205 5206 /* Get rid of the zone's kstats */ 5207 zone_kstat_delete(zone); 5208 5209 /* remove the pfexecd doors */ 5210 if (zone->zone_pfexecd != NULL) { 5211 klpd_freelist(&zone->zone_pfexecd); 5212 zone->zone_pfexecd = NULL; 5213 } 5214 5215 /* free brand specific data */ 5216 if (ZONE_IS_BRANDED(zone)) 5217 ZBROP(zone)->b_free_brand_data(zone); 5218 5219 /* Say goodbye to brand framework. */ 5220 brand_unregister_zone(zone->zone_brand); 5221 5222 /* 5223 * It is now safe to let the zone be recreated; remove it from the 5224 * lists. The memory will not be freed until the last cred 5225 * reference goes away. 5226 */ 5227 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5228 zonecount--; 5229 /* remove from active list and hash tables */ 5230 list_remove(&zone_active, zone); 5231 (void) mod_hash_destroy(zonehashbyname, 5232 (mod_hash_key_t)zone->zone_name); 5233 (void) mod_hash_destroy(zonehashbyid, 5234 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5235 if (zone->zone_flags & ZF_HASHED_LABEL) 5236 (void) mod_hash_destroy(zonehashbylabel, 5237 (mod_hash_key_t)zone->zone_slabel); 5238 mutex_exit(&zonehash_lock); 5239 5240 /* 5241 * Release the root vnode; we're not using it anymore. Nor should any 5242 * other thread that might access it exist. 5243 */ 5244 if (zone->zone_rootvp != NULL) { 5245 VN_RELE(zone->zone_rootvp); 5246 zone->zone_rootvp = NULL; 5247 } 5248 5249 /* add to deathrow list */ 5250 mutex_enter(&zone_deathrow_lock); 5251 list_insert_tail(&zone_deathrow, zone); 5252 mutex_exit(&zone_deathrow_lock); 5253 5254 /* 5255 * Drop last reference (which was added by zsched()), this will 5256 * free the zone unless there are outstanding cred references. 5257 */ 5258 zone_rele(zone); 5259 return (0); 5260 } 5261 5262 /* 5263 * Systemcall entry point for zone_getattr(2). 5264 */ 5265 static ssize_t 5266 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5267 { 5268 size_t size; 5269 int error = 0, err; 5270 zone_t *zone; 5271 char *zonepath; 5272 char *outstr; 5273 zone_status_t zone_status; 5274 pid_t initpid; 5275 boolean_t global = (curzone == global_zone); 5276 boolean_t inzone = (curzone->zone_id == zoneid); 5277 ushort_t flags; 5278 zone_net_data_t *zbuf; 5279 5280 mutex_enter(&zonehash_lock); 5281 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5282 mutex_exit(&zonehash_lock); 5283 return (set_errno(EINVAL)); 5284 } 5285 zone_status = zone_status_get(zone); 5286 if (zone_status < ZONE_IS_INITIALIZED) { 5287 mutex_exit(&zonehash_lock); 5288 return (set_errno(EINVAL)); 5289 } 5290 zone_hold(zone); 5291 mutex_exit(&zonehash_lock); 5292 5293 /* 5294 * If not in the global zone, don't show information about other zones, 5295 * unless the system is labeled and the local zone's label dominates 5296 * the other zone. 5297 */ 5298 if (!zone_list_access(zone)) { 5299 zone_rele(zone); 5300 return (set_errno(EINVAL)); 5301 } 5302 5303 switch (attr) { 5304 case ZONE_ATTR_ROOT: 5305 if (global) { 5306 /* 5307 * Copy the path to trim the trailing "/" (except for 5308 * the global zone). 5309 */ 5310 if (zone != global_zone) 5311 size = zone->zone_rootpathlen - 1; 5312 else 5313 size = zone->zone_rootpathlen; 5314 zonepath = kmem_alloc(size, KM_SLEEP); 5315 bcopy(zone->zone_rootpath, zonepath, size); 5316 zonepath[size - 1] = '\0'; 5317 } else { 5318 if (inzone || !is_system_labeled()) { 5319 /* 5320 * Caller is not in the global zone. 5321 * if the query is on the current zone 5322 * or the system is not labeled, 5323 * just return faked-up path for current zone. 5324 */ 5325 zonepath = "/"; 5326 size = 2; 5327 } else { 5328 /* 5329 * Return related path for current zone. 5330 */ 5331 int prefix_len = strlen(zone_prefix); 5332 int zname_len = strlen(zone->zone_name); 5333 5334 size = prefix_len + zname_len + 1; 5335 zonepath = kmem_alloc(size, KM_SLEEP); 5336 bcopy(zone_prefix, zonepath, prefix_len); 5337 bcopy(zone->zone_name, zonepath + 5338 prefix_len, zname_len); 5339 zonepath[size - 1] = '\0'; 5340 } 5341 } 5342 if (bufsize > size) 5343 bufsize = size; 5344 if (buf != NULL) { 5345 err = copyoutstr(zonepath, buf, bufsize, NULL); 5346 if (err != 0 && err != ENAMETOOLONG) 5347 error = EFAULT; 5348 } 5349 if (global || (is_system_labeled() && !inzone)) 5350 kmem_free(zonepath, size); 5351 break; 5352 5353 case ZONE_ATTR_NAME: 5354 size = strlen(zone->zone_name) + 1; 5355 if (bufsize > size) 5356 bufsize = size; 5357 if (buf != NULL) { 5358 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5359 if (err != 0 && err != ENAMETOOLONG) 5360 error = EFAULT; 5361 } 5362 break; 5363 5364 case ZONE_ATTR_STATUS: 5365 /* 5366 * Since we're not holding zonehash_lock, the zone status 5367 * may be anything; leave it up to userland to sort it out. 5368 */ 5369 size = sizeof (zone_status); 5370 if (bufsize > size) 5371 bufsize = size; 5372 zone_status = zone_status_get(zone); 5373 if (buf != NULL && 5374 copyout(&zone_status, buf, bufsize) != 0) 5375 error = EFAULT; 5376 break; 5377 case ZONE_ATTR_FLAGS: 5378 size = sizeof (zone->zone_flags); 5379 if (bufsize > size) 5380 bufsize = size; 5381 flags = zone->zone_flags; 5382 if (buf != NULL && 5383 copyout(&flags, buf, bufsize) != 0) 5384 error = EFAULT; 5385 break; 5386 case ZONE_ATTR_PRIVSET: 5387 size = sizeof (priv_set_t); 5388 if (bufsize > size) 5389 bufsize = size; 5390 if (buf != NULL && 5391 copyout(zone->zone_privset, buf, bufsize) != 0) 5392 error = EFAULT; 5393 break; 5394 case ZONE_ATTR_UNIQID: 5395 size = sizeof (zone->zone_uniqid); 5396 if (bufsize > size) 5397 bufsize = size; 5398 if (buf != NULL && 5399 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5400 error = EFAULT; 5401 break; 5402 case ZONE_ATTR_POOLID: 5403 { 5404 pool_t *pool; 5405 poolid_t poolid; 5406 5407 if (pool_lock_intr() != 0) { 5408 error = EINTR; 5409 break; 5410 } 5411 pool = zone_pool_get(zone); 5412 poolid = pool->pool_id; 5413 pool_unlock(); 5414 size = sizeof (poolid); 5415 if (bufsize > size) 5416 bufsize = size; 5417 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5418 error = EFAULT; 5419 } 5420 break; 5421 case ZONE_ATTR_SLBL: 5422 size = sizeof (bslabel_t); 5423 if (bufsize > size) 5424 bufsize = size; 5425 if (zone->zone_slabel == NULL) 5426 error = EINVAL; 5427 else if (buf != NULL && 5428 copyout(label2bslabel(zone->zone_slabel), buf, 5429 bufsize) != 0) 5430 error = EFAULT; 5431 break; 5432 case ZONE_ATTR_INITPID: 5433 size = sizeof (initpid); 5434 if (bufsize > size) 5435 bufsize = size; 5436 initpid = zone->zone_proc_initpid; 5437 if (initpid == -1) { 5438 error = ESRCH; 5439 break; 5440 } 5441 if (buf != NULL && 5442 copyout(&initpid, buf, bufsize) != 0) 5443 error = EFAULT; 5444 break; 5445 case ZONE_ATTR_BRAND: 5446 size = strlen(zone->zone_brand->b_name) + 1; 5447 5448 if (bufsize > size) 5449 bufsize = size; 5450 if (buf != NULL) { 5451 err = copyoutstr(zone->zone_brand->b_name, buf, 5452 bufsize, NULL); 5453 if (err != 0 && err != ENAMETOOLONG) 5454 error = EFAULT; 5455 } 5456 break; 5457 case ZONE_ATTR_INITNAME: 5458 size = strlen(zone->zone_initname) + 1; 5459 if (bufsize > size) 5460 bufsize = size; 5461 if (buf != NULL) { 5462 err = copyoutstr(zone->zone_initname, buf, bufsize, 5463 NULL); 5464 if (err != 0 && err != ENAMETOOLONG) 5465 error = EFAULT; 5466 } 5467 break; 5468 case ZONE_ATTR_BOOTARGS: 5469 if (zone->zone_bootargs == NULL) 5470 outstr = ""; 5471 else 5472 outstr = zone->zone_bootargs; 5473 size = strlen(outstr) + 1; 5474 if (bufsize > size) 5475 bufsize = size; 5476 if (buf != NULL) { 5477 err = copyoutstr(outstr, buf, bufsize, NULL); 5478 if (err != 0 && err != ENAMETOOLONG) 5479 error = EFAULT; 5480 } 5481 break; 5482 case ZONE_ATTR_PHYS_MCAP: 5483 size = sizeof (zone->zone_phys_mcap); 5484 if (bufsize > size) 5485 bufsize = size; 5486 if (buf != NULL && 5487 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5488 error = EFAULT; 5489 break; 5490 case ZONE_ATTR_SCHED_CLASS: 5491 mutex_enter(&class_lock); 5492 5493 if (zone->zone_defaultcid >= loaded_classes) 5494 outstr = ""; 5495 else 5496 outstr = sclass[zone->zone_defaultcid].cl_name; 5497 size = strlen(outstr) + 1; 5498 if (bufsize > size) 5499 bufsize = size; 5500 if (buf != NULL) { 5501 err = copyoutstr(outstr, buf, bufsize, NULL); 5502 if (err != 0 && err != ENAMETOOLONG) 5503 error = EFAULT; 5504 } 5505 5506 mutex_exit(&class_lock); 5507 break; 5508 case ZONE_ATTR_HOSTID: 5509 if (zone->zone_hostid != HW_INVALID_HOSTID && 5510 bufsize == sizeof (zone->zone_hostid)) { 5511 size = sizeof (zone->zone_hostid); 5512 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5513 bufsize) != 0) 5514 error = EFAULT; 5515 } else { 5516 error = EINVAL; 5517 } 5518 break; 5519 case ZONE_ATTR_FS_ALLOWED: 5520 if (zone->zone_fs_allowed == NULL) 5521 outstr = ""; 5522 else 5523 outstr = zone->zone_fs_allowed; 5524 size = strlen(outstr) + 1; 5525 if (bufsize > size) 5526 bufsize = size; 5527 if (buf != NULL) { 5528 err = copyoutstr(outstr, buf, bufsize, NULL); 5529 if (err != 0 && err != ENAMETOOLONG) 5530 error = EFAULT; 5531 } 5532 break; 5533 case ZONE_ATTR_NETWORK: 5534 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5535 if (copyin(buf, zbuf, bufsize) != 0) { 5536 error = EFAULT; 5537 } else { 5538 error = zone_get_network(zoneid, zbuf); 5539 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5540 error = EFAULT; 5541 } 5542 kmem_free(zbuf, bufsize); 5543 break; 5544 default: 5545 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5546 size = bufsize; 5547 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5548 } else { 5549 error = EINVAL; 5550 } 5551 } 5552 zone_rele(zone); 5553 5554 if (error) 5555 return (set_errno(error)); 5556 return ((ssize_t)size); 5557 } 5558 5559 /* 5560 * Systemcall entry point for zone_setattr(2). 5561 */ 5562 /*ARGSUSED*/ 5563 static int 5564 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5565 { 5566 zone_t *zone; 5567 zone_status_t zone_status; 5568 int err = -1; 5569 zone_net_data_t *zbuf; 5570 5571 if (secpolicy_zone_config(CRED()) != 0) 5572 return (set_errno(EPERM)); 5573 5574 /* 5575 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5576 * global zone. 5577 */ 5578 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5579 return (set_errno(EINVAL)); 5580 } 5581 5582 mutex_enter(&zonehash_lock); 5583 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5584 mutex_exit(&zonehash_lock); 5585 return (set_errno(EINVAL)); 5586 } 5587 zone_hold(zone); 5588 mutex_exit(&zonehash_lock); 5589 5590 /* 5591 * At present most attributes can only be set on non-running, 5592 * non-global zones. 5593 */ 5594 zone_status = zone_status_get(zone); 5595 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5596 err = EINVAL; 5597 goto done; 5598 } 5599 5600 switch (attr) { 5601 case ZONE_ATTR_INITNAME: 5602 err = zone_set_initname(zone, (const char *)buf); 5603 break; 5604 case ZONE_ATTR_INITNORESTART: 5605 zone->zone_restart_init = B_FALSE; 5606 err = 0; 5607 break; 5608 case ZONE_ATTR_BOOTARGS: 5609 err = zone_set_bootargs(zone, (const char *)buf); 5610 break; 5611 case ZONE_ATTR_BRAND: 5612 err = zone_set_brand(zone, (const char *)buf); 5613 break; 5614 case ZONE_ATTR_FS_ALLOWED: 5615 err = zone_set_fs_allowed(zone, (const char *)buf); 5616 break; 5617 case ZONE_ATTR_PHYS_MCAP: 5618 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5619 break; 5620 case ZONE_ATTR_SCHED_CLASS: 5621 err = zone_set_sched_class(zone, (const char *)buf); 5622 break; 5623 case ZONE_ATTR_HOSTID: 5624 if (bufsize == sizeof (zone->zone_hostid)) { 5625 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5626 err = 0; 5627 else 5628 err = EFAULT; 5629 } else { 5630 err = EINVAL; 5631 } 5632 break; 5633 case ZONE_ATTR_NETWORK: 5634 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5635 err = EINVAL; 5636 break; 5637 } 5638 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5639 if (copyin(buf, zbuf, bufsize) != 0) { 5640 kmem_free(zbuf, bufsize); 5641 err = EFAULT; 5642 break; 5643 } 5644 err = zone_set_network(zoneid, zbuf); 5645 kmem_free(zbuf, bufsize); 5646 break; 5647 default: 5648 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5649 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5650 else 5651 err = EINVAL; 5652 } 5653 5654 done: 5655 zone_rele(zone); 5656 ASSERT(err != -1); 5657 return (err != 0 ? set_errno(err) : 0); 5658 } 5659 5660 /* 5661 * Return zero if the process has at least one vnode mapped in to its 5662 * address space which shouldn't be allowed to change zones. 5663 * 5664 * Also return zero if the process has any shared mappings which reserve 5665 * swap. This is because the counting for zone.max-swap does not allow swap 5666 * reservation to be shared between zones. zone swap reservation is counted 5667 * on zone->zone_max_swap. 5668 */ 5669 static int 5670 as_can_change_zones(void) 5671 { 5672 proc_t *pp = curproc; 5673 struct seg *seg; 5674 struct as *as = pp->p_as; 5675 vnode_t *vp; 5676 int allow = 1; 5677 5678 ASSERT(pp->p_as != &kas); 5679 AS_LOCK_ENTER(as, RW_READER); 5680 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5681 5682 /* 5683 * Cannot enter zone with shared anon memory which 5684 * reserves swap. See comment above. 5685 */ 5686 if (seg_can_change_zones(seg) == B_FALSE) { 5687 allow = 0; 5688 break; 5689 } 5690 /* 5691 * if we can't get a backing vnode for this segment then skip 5692 * it. 5693 */ 5694 vp = NULL; 5695 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5696 continue; 5697 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5698 allow = 0; 5699 break; 5700 } 5701 } 5702 AS_LOCK_EXIT(as); 5703 return (allow); 5704 } 5705 5706 /* 5707 * Count swap reserved by curproc's address space 5708 */ 5709 static size_t 5710 as_swresv(void) 5711 { 5712 proc_t *pp = curproc; 5713 struct seg *seg; 5714 struct as *as = pp->p_as; 5715 size_t swap = 0; 5716 5717 ASSERT(pp->p_as != &kas); 5718 ASSERT(AS_WRITE_HELD(as)); 5719 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5720 swap += seg_swresv(seg); 5721 5722 return (swap); 5723 } 5724 5725 /* 5726 * Systemcall entry point for zone_enter(). 5727 * 5728 * The current process is injected into said zone. In the process 5729 * it will change its project membership, privileges, rootdir/cwd, 5730 * zone-wide rctls, and pool association to match those of the zone. 5731 * 5732 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5733 * state will transition it to ZONE_IS_RUNNING. Processes may only 5734 * enter a zone that is "ready" or "running". 5735 */ 5736 static int 5737 zone_enter(zoneid_t zoneid) 5738 { 5739 zone_t *zone; 5740 vnode_t *vp; 5741 proc_t *pp = curproc; 5742 contract_t *ct; 5743 cont_process_t *ctp; 5744 task_t *tk, *oldtk; 5745 kproject_t *zone_proj0; 5746 cred_t *cr, *newcr; 5747 pool_t *oldpool, *newpool; 5748 sess_t *sp; 5749 uid_t uid; 5750 zone_status_t status; 5751 int err = 0; 5752 rctl_entity_p_t e; 5753 size_t swap; 5754 kthread_id_t t; 5755 5756 if (secpolicy_zone_config(CRED()) != 0) 5757 return (set_errno(EPERM)); 5758 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5759 return (set_errno(EINVAL)); 5760 5761 /* 5762 * Stop all lwps so we don't need to hold a lock to look at 5763 * curproc->p_zone. This needs to happen before we grab any 5764 * locks to avoid deadlock (another lwp in the process could 5765 * be waiting for the held lock). 5766 */ 5767 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5768 return (set_errno(EINTR)); 5769 5770 /* 5771 * Make sure we're not changing zones with files open or mapped in 5772 * to our address space which shouldn't be changing zones. 5773 */ 5774 if (!files_can_change_zones()) { 5775 err = EBADF; 5776 goto out; 5777 } 5778 if (!as_can_change_zones()) { 5779 err = EFAULT; 5780 goto out; 5781 } 5782 5783 mutex_enter(&zonehash_lock); 5784 if (pp->p_zone != global_zone) { 5785 mutex_exit(&zonehash_lock); 5786 err = EINVAL; 5787 goto out; 5788 } 5789 5790 zone = zone_find_all_by_id(zoneid); 5791 if (zone == NULL) { 5792 mutex_exit(&zonehash_lock); 5793 err = EINVAL; 5794 goto out; 5795 } 5796 5797 /* 5798 * To prevent processes in a zone from holding contracts on 5799 * extrazonal resources, and to avoid process contract 5800 * memberships which span zones, contract holders and processes 5801 * which aren't the sole members of their encapsulating process 5802 * contracts are not allowed to zone_enter. 5803 */ 5804 ctp = pp->p_ct_process; 5805 ct = &ctp->conp_contract; 5806 mutex_enter(&ct->ct_lock); 5807 mutex_enter(&pp->p_lock); 5808 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5809 mutex_exit(&pp->p_lock); 5810 mutex_exit(&ct->ct_lock); 5811 mutex_exit(&zonehash_lock); 5812 err = EINVAL; 5813 goto out; 5814 } 5815 5816 /* 5817 * Moreover, we don't allow processes whose encapsulating 5818 * process contracts have inherited extrazonal contracts. 5819 * While it would be easier to eliminate all process contracts 5820 * with inherited contracts, we need to be able to give a 5821 * restarted init (or other zone-penetrating process) its 5822 * predecessor's contracts. 5823 */ 5824 if (ctp->conp_ninherited != 0) { 5825 contract_t *next; 5826 for (next = list_head(&ctp->conp_inherited); next; 5827 next = list_next(&ctp->conp_inherited, next)) { 5828 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5829 mutex_exit(&pp->p_lock); 5830 mutex_exit(&ct->ct_lock); 5831 mutex_exit(&zonehash_lock); 5832 err = EINVAL; 5833 goto out; 5834 } 5835 } 5836 } 5837 5838 mutex_exit(&pp->p_lock); 5839 mutex_exit(&ct->ct_lock); 5840 5841 status = zone_status_get(zone); 5842 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5843 /* 5844 * Can't join 5845 */ 5846 mutex_exit(&zonehash_lock); 5847 err = EINVAL; 5848 goto out; 5849 } 5850 5851 /* 5852 * Make sure new priv set is within the permitted set for caller 5853 */ 5854 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5855 mutex_exit(&zonehash_lock); 5856 err = EPERM; 5857 goto out; 5858 } 5859 /* 5860 * We want to momentarily drop zonehash_lock while we optimistically 5861 * bind curproc to the pool it should be running in. This is safe 5862 * since the zone can't disappear (we have a hold on it). 5863 */ 5864 zone_hold(zone); 5865 mutex_exit(&zonehash_lock); 5866 5867 /* 5868 * Grab pool_lock to keep the pools configuration from changing 5869 * and to stop ourselves from getting rebound to another pool 5870 * until we join the zone. 5871 */ 5872 if (pool_lock_intr() != 0) { 5873 zone_rele(zone); 5874 err = EINTR; 5875 goto out; 5876 } 5877 ASSERT(secpolicy_pool(CRED()) == 0); 5878 /* 5879 * Bind ourselves to the pool currently associated with the zone. 5880 */ 5881 oldpool = curproc->p_pool; 5882 newpool = zone_pool_get(zone); 5883 if (pool_state == POOL_ENABLED && newpool != oldpool && 5884 (err = pool_do_bind(newpool, P_PID, P_MYID, 5885 POOL_BIND_ALL)) != 0) { 5886 pool_unlock(); 5887 zone_rele(zone); 5888 goto out; 5889 } 5890 5891 /* 5892 * Grab cpu_lock now; we'll need it later when we call 5893 * task_join(). 5894 */ 5895 mutex_enter(&cpu_lock); 5896 mutex_enter(&zonehash_lock); 5897 /* 5898 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5899 */ 5900 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5901 /* 5902 * Can't join anymore. 5903 */ 5904 mutex_exit(&zonehash_lock); 5905 mutex_exit(&cpu_lock); 5906 if (pool_state == POOL_ENABLED && 5907 newpool != oldpool) 5908 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5909 POOL_BIND_ALL); 5910 pool_unlock(); 5911 zone_rele(zone); 5912 err = EINVAL; 5913 goto out; 5914 } 5915 5916 /* 5917 * a_lock must be held while transfering locked memory and swap 5918 * reservation from the global zone to the non global zone because 5919 * asynchronous faults on the processes' address space can lock 5920 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5921 * segments respectively. 5922 */ 5923 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 5924 swap = as_swresv(); 5925 mutex_enter(&pp->p_lock); 5926 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5927 /* verify that we do not exceed and task or lwp limits */ 5928 mutex_enter(&zone->zone_nlwps_lock); 5929 /* add new lwps to zone and zone's proj0 */ 5930 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5931 zone->zone_nlwps += pp->p_lwpcnt; 5932 /* add 1 task to zone's proj0 */ 5933 zone_proj0->kpj_ntasks += 1; 5934 5935 zone_proj0->kpj_nprocs++; 5936 zone->zone_nprocs++; 5937 mutex_exit(&zone->zone_nlwps_lock); 5938 5939 mutex_enter(&zone->zone_mem_lock); 5940 zone->zone_locked_mem += pp->p_locked_mem; 5941 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5942 zone->zone_max_swap += swap; 5943 mutex_exit(&zone->zone_mem_lock); 5944 5945 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5946 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5947 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5948 5949 /* remove lwps and process from proc's old zone and old project */ 5950 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5951 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5952 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5953 pp->p_task->tk_proj->kpj_nprocs--; 5954 pp->p_zone->zone_nprocs--; 5955 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5956 5957 mutex_enter(&pp->p_zone->zone_mem_lock); 5958 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5959 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5960 pp->p_zone->zone_max_swap -= swap; 5961 mutex_exit(&pp->p_zone->zone_mem_lock); 5962 5963 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5964 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5965 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5966 5967 pp->p_flag |= SZONETOP; 5968 pp->p_zone = zone; 5969 mutex_exit(&pp->p_lock); 5970 AS_LOCK_EXIT(pp->p_as); 5971 5972 /* 5973 * Joining the zone cannot fail from now on. 5974 * 5975 * This means that a lot of the following code can be commonized and 5976 * shared with zsched(). 5977 */ 5978 5979 /* 5980 * If the process contract fmri was inherited, we need to 5981 * flag this so that any contract status will not leak 5982 * extra zone information, svc_fmri in this case 5983 */ 5984 if (ctp->conp_svc_ctid != ct->ct_id) { 5985 mutex_enter(&ct->ct_lock); 5986 ctp->conp_svc_zone_enter = ct->ct_id; 5987 mutex_exit(&ct->ct_lock); 5988 } 5989 5990 /* 5991 * Reset the encapsulating process contract's zone. 5992 */ 5993 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5994 contract_setzuniqid(ct, zone->zone_uniqid); 5995 5996 /* 5997 * Create a new task and associate the process with the project keyed 5998 * by (projid,zoneid). 5999 * 6000 * We might as well be in project 0; the global zone's projid doesn't 6001 * make much sense in a zone anyhow. 6002 * 6003 * This also increments zone_ntasks, and returns with p_lock held. 6004 */ 6005 tk = task_create(0, zone); 6006 oldtk = task_join(tk, 0); 6007 mutex_exit(&cpu_lock); 6008 6009 /* 6010 * call RCTLOP_SET functions on this proc 6011 */ 6012 e.rcep_p.zone = zone; 6013 e.rcep_t = RCENTITY_ZONE; 6014 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6015 RCD_CALLBACK); 6016 mutex_exit(&pp->p_lock); 6017 6018 /* 6019 * We don't need to hold any of zsched's locks here; not only do we know 6020 * the process and zone aren't going away, we know its session isn't 6021 * changing either. 6022 * 6023 * By joining zsched's session here, we mimic the behavior in the 6024 * global zone of init's sid being the pid of sched. We extend this 6025 * to all zlogin-like zone_enter()'ing processes as well. 6026 */ 6027 mutex_enter(&pidlock); 6028 sp = zone->zone_zsched->p_sessp; 6029 sess_hold(zone->zone_zsched); 6030 mutex_enter(&pp->p_lock); 6031 pgexit(pp); 6032 sess_rele(pp->p_sessp, B_TRUE); 6033 pp->p_sessp = sp; 6034 pgjoin(pp, zone->zone_zsched->p_pidp); 6035 6036 /* 6037 * If any threads are scheduled to be placed on zone wait queue they 6038 * should abandon the idea since the wait queue is changing. 6039 * We need to be holding pidlock & p_lock to do this. 6040 */ 6041 if ((t = pp->p_tlist) != NULL) { 6042 do { 6043 thread_lock(t); 6044 /* 6045 * Kick this thread so that he doesn't sit 6046 * on a wrong wait queue. 6047 */ 6048 if (ISWAITING(t)) 6049 setrun_locked(t); 6050 6051 if (t->t_schedflag & TS_ANYWAITQ) 6052 t->t_schedflag &= ~ TS_ANYWAITQ; 6053 6054 thread_unlock(t); 6055 } while ((t = t->t_forw) != pp->p_tlist); 6056 } 6057 6058 /* 6059 * If there is a default scheduling class for the zone and it is not 6060 * the class we are currently in, change all of the threads in the 6061 * process to the new class. We need to be holding pidlock & p_lock 6062 * when we call parmsset so this is a good place to do it. 6063 */ 6064 if (zone->zone_defaultcid > 0 && 6065 zone->zone_defaultcid != curthread->t_cid) { 6066 pcparms_t pcparms; 6067 6068 pcparms.pc_cid = zone->zone_defaultcid; 6069 pcparms.pc_clparms[0] = 0; 6070 6071 /* 6072 * If setting the class fails, we still want to enter the zone. 6073 */ 6074 if ((t = pp->p_tlist) != NULL) { 6075 do { 6076 (void) parmsset(&pcparms, t); 6077 } while ((t = t->t_forw) != pp->p_tlist); 6078 } 6079 } 6080 6081 mutex_exit(&pp->p_lock); 6082 mutex_exit(&pidlock); 6083 6084 mutex_exit(&zonehash_lock); 6085 /* 6086 * We're firmly in the zone; let pools progress. 6087 */ 6088 pool_unlock(); 6089 task_rele(oldtk); 6090 /* 6091 * We don't need to retain a hold on the zone since we already 6092 * incremented zone_ntasks, so the zone isn't going anywhere. 6093 */ 6094 zone_rele(zone); 6095 6096 /* 6097 * Chroot 6098 */ 6099 vp = zone->zone_rootvp; 6100 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6101 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6102 6103 /* 6104 * Change process credentials 6105 */ 6106 newcr = cralloc(); 6107 mutex_enter(&pp->p_crlock); 6108 cr = pp->p_cred; 6109 crcopy_to(cr, newcr); 6110 crsetzone(newcr, zone); 6111 pp->p_cred = newcr; 6112 6113 /* 6114 * Restrict all process privilege sets to zone limit 6115 */ 6116 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6117 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6118 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6119 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6120 mutex_exit(&pp->p_crlock); 6121 crset(pp, newcr); 6122 6123 /* 6124 * Adjust upcount to reflect zone entry. 6125 */ 6126 uid = crgetruid(newcr); 6127 mutex_enter(&pidlock); 6128 upcount_dec(uid, GLOBAL_ZONEID); 6129 upcount_inc(uid, zoneid); 6130 mutex_exit(&pidlock); 6131 6132 /* 6133 * Set up core file path and content. 6134 */ 6135 set_core_defaults(); 6136 6137 out: 6138 /* 6139 * Let the other lwps continue. 6140 */ 6141 mutex_enter(&pp->p_lock); 6142 if (curthread != pp->p_agenttp) 6143 continuelwps(pp); 6144 mutex_exit(&pp->p_lock); 6145 6146 return (err != 0 ? set_errno(err) : 0); 6147 } 6148 6149 /* 6150 * Systemcall entry point for zone_list(2). 6151 * 6152 * Processes running in a (non-global) zone only see themselves. 6153 * On labeled systems, they see all zones whose label they dominate. 6154 */ 6155 static int 6156 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6157 { 6158 zoneid_t *zoneids; 6159 zone_t *zone, *myzone; 6160 uint_t user_nzones, real_nzones; 6161 uint_t domi_nzones; 6162 int error; 6163 6164 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6165 return (set_errno(EFAULT)); 6166 6167 myzone = curproc->p_zone; 6168 if (myzone != global_zone) { 6169 bslabel_t *mybslab; 6170 6171 if (!is_system_labeled()) { 6172 /* just return current zone */ 6173 real_nzones = domi_nzones = 1; 6174 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6175 zoneids[0] = myzone->zone_id; 6176 } else { 6177 /* return all zones that are dominated */ 6178 mutex_enter(&zonehash_lock); 6179 real_nzones = zonecount; 6180 domi_nzones = 0; 6181 if (real_nzones > 0) { 6182 zoneids = kmem_alloc(real_nzones * 6183 sizeof (zoneid_t), KM_SLEEP); 6184 mybslab = label2bslabel(myzone->zone_slabel); 6185 for (zone = list_head(&zone_active); 6186 zone != NULL; 6187 zone = list_next(&zone_active, zone)) { 6188 if (zone->zone_id == GLOBAL_ZONEID) 6189 continue; 6190 if (zone != myzone && 6191 (zone->zone_flags & ZF_IS_SCRATCH)) 6192 continue; 6193 /* 6194 * Note that a label always dominates 6195 * itself, so myzone is always included 6196 * in the list. 6197 */ 6198 if (bldominates(mybslab, 6199 label2bslabel(zone->zone_slabel))) { 6200 zoneids[domi_nzones++] = 6201 zone->zone_id; 6202 } 6203 } 6204 } 6205 mutex_exit(&zonehash_lock); 6206 } 6207 } else { 6208 mutex_enter(&zonehash_lock); 6209 real_nzones = zonecount; 6210 domi_nzones = 0; 6211 if (real_nzones > 0) { 6212 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6213 KM_SLEEP); 6214 for (zone = list_head(&zone_active); zone != NULL; 6215 zone = list_next(&zone_active, zone)) 6216 zoneids[domi_nzones++] = zone->zone_id; 6217 ASSERT(domi_nzones == real_nzones); 6218 } 6219 mutex_exit(&zonehash_lock); 6220 } 6221 6222 /* 6223 * If user has allocated space for fewer entries than we found, then 6224 * return only up to his limit. Either way, tell him exactly how many 6225 * we found. 6226 */ 6227 if (domi_nzones < user_nzones) 6228 user_nzones = domi_nzones; 6229 error = 0; 6230 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6231 error = EFAULT; 6232 } else if (zoneidlist != NULL && user_nzones != 0) { 6233 if (copyout(zoneids, zoneidlist, 6234 user_nzones * sizeof (zoneid_t)) != 0) 6235 error = EFAULT; 6236 } 6237 6238 if (real_nzones > 0) 6239 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6240 6241 if (error != 0) 6242 return (set_errno(error)); 6243 else 6244 return (0); 6245 } 6246 6247 /* 6248 * Systemcall entry point for zone_lookup(2). 6249 * 6250 * Non-global zones are only able to see themselves and (on labeled systems) 6251 * the zones they dominate. 6252 */ 6253 static zoneid_t 6254 zone_lookup(const char *zone_name) 6255 { 6256 char *kname; 6257 zone_t *zone; 6258 zoneid_t zoneid; 6259 int err; 6260 6261 if (zone_name == NULL) { 6262 /* return caller's zone id */ 6263 return (getzoneid()); 6264 } 6265 6266 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6267 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6268 kmem_free(kname, ZONENAME_MAX); 6269 return (set_errno(err)); 6270 } 6271 6272 mutex_enter(&zonehash_lock); 6273 zone = zone_find_all_by_name(kname); 6274 kmem_free(kname, ZONENAME_MAX); 6275 /* 6276 * In a non-global zone, can only lookup global and own name. 6277 * In Trusted Extensions zone label dominance rules apply. 6278 */ 6279 if (zone == NULL || 6280 zone_status_get(zone) < ZONE_IS_READY || 6281 !zone_list_access(zone)) { 6282 mutex_exit(&zonehash_lock); 6283 return (set_errno(EINVAL)); 6284 } else { 6285 zoneid = zone->zone_id; 6286 mutex_exit(&zonehash_lock); 6287 return (zoneid); 6288 } 6289 } 6290 6291 static int 6292 zone_version(int *version_arg) 6293 { 6294 int version = ZONE_SYSCALL_API_VERSION; 6295 6296 if (copyout(&version, version_arg, sizeof (int)) != 0) 6297 return (set_errno(EFAULT)); 6298 return (0); 6299 } 6300 6301 /* ARGSUSED */ 6302 long 6303 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6304 { 6305 zone_def zs; 6306 int err; 6307 6308 switch (cmd) { 6309 case ZONE_CREATE: 6310 if (get_udatamodel() == DATAMODEL_NATIVE) { 6311 if (copyin(arg1, &zs, sizeof (zone_def))) { 6312 return (set_errno(EFAULT)); 6313 } 6314 } else { 6315 #ifdef _SYSCALL32_IMPL 6316 zone_def32 zs32; 6317 6318 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6319 return (set_errno(EFAULT)); 6320 } 6321 zs.zone_name = 6322 (const char *)(unsigned long)zs32.zone_name; 6323 zs.zone_root = 6324 (const char *)(unsigned long)zs32.zone_root; 6325 zs.zone_privs = 6326 (const struct priv_set *) 6327 (unsigned long)zs32.zone_privs; 6328 zs.zone_privssz = zs32.zone_privssz; 6329 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6330 zs.rctlbufsz = zs32.rctlbufsz; 6331 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6332 zs.zfsbufsz = zs32.zfsbufsz; 6333 zs.extended_error = 6334 (int *)(unsigned long)zs32.extended_error; 6335 zs.match = zs32.match; 6336 zs.doi = zs32.doi; 6337 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6338 zs.flags = zs32.flags; 6339 #else 6340 panic("get_udatamodel() returned bogus result\n"); 6341 #endif 6342 } 6343 6344 return (zone_create(zs.zone_name, zs.zone_root, 6345 zs.zone_privs, zs.zone_privssz, 6346 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6347 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6348 zs.extended_error, zs.match, zs.doi, 6349 zs.label, zs.flags)); 6350 case ZONE_BOOT: 6351 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6352 case ZONE_DESTROY: 6353 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6354 case ZONE_GETATTR: 6355 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6356 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6357 case ZONE_SETATTR: 6358 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6359 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6360 case ZONE_ENTER: 6361 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6362 case ZONE_LIST: 6363 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6364 case ZONE_SHUTDOWN: 6365 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6366 case ZONE_LOOKUP: 6367 return (zone_lookup((const char *)arg1)); 6368 case ZONE_VERSION: 6369 return (zone_version((int *)arg1)); 6370 case ZONE_ADD_DATALINK: 6371 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6372 (datalink_id_t)(uintptr_t)arg2)); 6373 case ZONE_DEL_DATALINK: 6374 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6375 (datalink_id_t)(uintptr_t)arg2)); 6376 case ZONE_CHECK_DATALINK: { 6377 zoneid_t zoneid; 6378 boolean_t need_copyout; 6379 6380 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6381 return (EFAULT); 6382 need_copyout = (zoneid == ALL_ZONES); 6383 err = zone_check_datalink(&zoneid, 6384 (datalink_id_t)(uintptr_t)arg2); 6385 if (err == 0 && need_copyout) { 6386 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6387 err = EFAULT; 6388 } 6389 return (err == 0 ? 0 : set_errno(err)); 6390 } 6391 case ZONE_LIST_DATALINK: 6392 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6393 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6394 default: 6395 return (set_errno(EINVAL)); 6396 } 6397 } 6398 6399 struct zarg { 6400 zone_t *zone; 6401 zone_cmd_arg_t arg; 6402 }; 6403 6404 static int 6405 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6406 { 6407 char *buf; 6408 size_t buflen; 6409 int error; 6410 6411 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6412 buf = kmem_alloc(buflen, KM_SLEEP); 6413 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6414 error = door_ki_open(buf, doorp); 6415 kmem_free(buf, buflen); 6416 return (error); 6417 } 6418 6419 static void 6420 zone_release_door(door_handle_t *doorp) 6421 { 6422 door_ki_rele(*doorp); 6423 *doorp = NULL; 6424 } 6425 6426 static void 6427 zone_ki_call_zoneadmd(struct zarg *zargp) 6428 { 6429 door_handle_t door = NULL; 6430 door_arg_t darg, save_arg; 6431 char *zone_name; 6432 size_t zone_namelen; 6433 zoneid_t zoneid; 6434 zone_t *zone; 6435 zone_cmd_arg_t arg; 6436 uint64_t uniqid; 6437 size_t size; 6438 int error; 6439 int retry; 6440 6441 zone = zargp->zone; 6442 arg = zargp->arg; 6443 kmem_free(zargp, sizeof (*zargp)); 6444 6445 zone_namelen = strlen(zone->zone_name) + 1; 6446 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6447 bcopy(zone->zone_name, zone_name, zone_namelen); 6448 zoneid = zone->zone_id; 6449 uniqid = zone->zone_uniqid; 6450 /* 6451 * zoneadmd may be down, but at least we can empty out the zone. 6452 * We can ignore the return value of zone_empty() since we're called 6453 * from a kernel thread and know we won't be delivered any signals. 6454 */ 6455 ASSERT(curproc == &p0); 6456 (void) zone_empty(zone); 6457 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6458 zone_rele(zone); 6459 6460 size = sizeof (arg); 6461 darg.rbuf = (char *)&arg; 6462 darg.data_ptr = (char *)&arg; 6463 darg.rsize = size; 6464 darg.data_size = size; 6465 darg.desc_ptr = NULL; 6466 darg.desc_num = 0; 6467 6468 save_arg = darg; 6469 /* 6470 * Since we're not holding a reference to the zone, any number of 6471 * things can go wrong, including the zone disappearing before we get a 6472 * chance to talk to zoneadmd. 6473 */ 6474 for (retry = 0; /* forever */; retry++) { 6475 if (door == NULL && 6476 (error = zone_lookup_door(zone_name, &door)) != 0) { 6477 goto next; 6478 } 6479 ASSERT(door != NULL); 6480 6481 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6482 SIZE_MAX, 0)) == 0) { 6483 break; 6484 } 6485 switch (error) { 6486 case EINTR: 6487 /* FALLTHROUGH */ 6488 case EAGAIN: /* process may be forking */ 6489 /* 6490 * Back off for a bit 6491 */ 6492 break; 6493 case EBADF: 6494 zone_release_door(&door); 6495 if (zone_lookup_door(zone_name, &door) != 0) { 6496 /* 6497 * zoneadmd may be dead, but it may come back to 6498 * life later. 6499 */ 6500 break; 6501 } 6502 break; 6503 default: 6504 cmn_err(CE_WARN, 6505 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6506 error); 6507 goto out; 6508 } 6509 next: 6510 /* 6511 * If this isn't the same zone_t that we originally had in mind, 6512 * then this is the same as if two kadmin requests come in at 6513 * the same time: the first one wins. This means we lose, so we 6514 * bail. 6515 */ 6516 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6517 /* 6518 * Problem is solved. 6519 */ 6520 break; 6521 } 6522 if (zone->zone_uniqid != uniqid) { 6523 /* 6524 * zoneid recycled 6525 */ 6526 zone_rele(zone); 6527 break; 6528 } 6529 /* 6530 * We could zone_status_timedwait(), but there doesn't seem to 6531 * be much point in doing that (plus, it would mean that 6532 * zone_free() isn't called until this thread exits). 6533 */ 6534 zone_rele(zone); 6535 delay(hz); 6536 darg = save_arg; 6537 } 6538 out: 6539 if (door != NULL) { 6540 zone_release_door(&door); 6541 } 6542 kmem_free(zone_name, zone_namelen); 6543 thread_exit(); 6544 } 6545 6546 /* 6547 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6548 * kadmin(). The caller is a process in the zone. 6549 * 6550 * In order to shutdown the zone, we will hand off control to zoneadmd 6551 * (running in the global zone) via a door. We do a half-hearted job at 6552 * killing all processes in the zone, create a kernel thread to contact 6553 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6554 * a form of generation number used to let zoneadmd (as well as 6555 * zone_destroy()) know exactly which zone they're re talking about. 6556 */ 6557 int 6558 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6559 { 6560 struct zarg *zargp; 6561 zone_cmd_t zcmd; 6562 zone_t *zone; 6563 6564 zone = curproc->p_zone; 6565 ASSERT(getzoneid() != GLOBAL_ZONEID); 6566 6567 switch (cmd) { 6568 case A_SHUTDOWN: 6569 switch (fcn) { 6570 case AD_HALT: 6571 case AD_POWEROFF: 6572 zcmd = Z_HALT; 6573 break; 6574 case AD_BOOT: 6575 zcmd = Z_REBOOT; 6576 break; 6577 case AD_IBOOT: 6578 case AD_SBOOT: 6579 case AD_SIBOOT: 6580 case AD_NOSYNC: 6581 return (ENOTSUP); 6582 default: 6583 return (EINVAL); 6584 } 6585 break; 6586 case A_REBOOT: 6587 zcmd = Z_REBOOT; 6588 break; 6589 case A_FTRACE: 6590 case A_REMOUNT: 6591 case A_FREEZE: 6592 case A_DUMP: 6593 case A_CONFIG: 6594 return (ENOTSUP); 6595 default: 6596 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6597 return (EINVAL); 6598 } 6599 6600 if (secpolicy_zone_admin(credp, B_FALSE)) 6601 return (EPERM); 6602 mutex_enter(&zone_status_lock); 6603 6604 /* 6605 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6606 * is in the zone. 6607 */ 6608 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6609 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6610 /* 6611 * This zone is already on its way down. 6612 */ 6613 mutex_exit(&zone_status_lock); 6614 return (0); 6615 } 6616 /* 6617 * Prevent future zone_enter()s 6618 */ 6619 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6620 mutex_exit(&zone_status_lock); 6621 6622 /* 6623 * Kill everyone now and call zoneadmd later. 6624 * zone_ki_call_zoneadmd() will do a more thorough job of this 6625 * later. 6626 */ 6627 killall(zone->zone_id); 6628 /* 6629 * Now, create the thread to contact zoneadmd and do the rest of the 6630 * work. This thread can't be created in our zone otherwise 6631 * zone_destroy() would deadlock. 6632 */ 6633 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6634 zargp->arg.cmd = zcmd; 6635 zargp->arg.uniqid = zone->zone_uniqid; 6636 zargp->zone = zone; 6637 (void) strcpy(zargp->arg.locale, "C"); 6638 /* mdep was already copied in for us by uadmin */ 6639 if (mdep != NULL) 6640 (void) strlcpy(zargp->arg.bootbuf, mdep, 6641 sizeof (zargp->arg.bootbuf)); 6642 zone_hold(zone); 6643 6644 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6645 TS_RUN, minclsyspri); 6646 exit(CLD_EXITED, 0); 6647 6648 return (EINVAL); 6649 } 6650 6651 /* 6652 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6653 * status to ZONE_IS_SHUTTING_DOWN. 6654 * 6655 * This function also shuts down all running zones to ensure that they won't 6656 * fork new processes. 6657 */ 6658 void 6659 zone_shutdown_global(void) 6660 { 6661 zone_t *current_zonep; 6662 6663 ASSERT(INGLOBALZONE(curproc)); 6664 mutex_enter(&zonehash_lock); 6665 mutex_enter(&zone_status_lock); 6666 6667 /* Modify the global zone's status first. */ 6668 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6669 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6670 6671 /* 6672 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6673 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6674 * could cause assertions to fail (e.g., assertions about a zone's 6675 * state during initialization, readying, or booting) or produce races. 6676 * We'll let threads continue to initialize and ready new zones: they'll 6677 * fail to boot the new zones when they see that the global zone is 6678 * shutting down. 6679 */ 6680 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6681 current_zonep = list_next(&zone_active, current_zonep)) { 6682 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6683 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6684 } 6685 mutex_exit(&zone_status_lock); 6686 mutex_exit(&zonehash_lock); 6687 } 6688 6689 /* 6690 * Returns true if the named dataset is visible in the current zone. 6691 * The 'write' parameter is set to 1 if the dataset is also writable. 6692 */ 6693 int 6694 zone_dataset_visible(const char *dataset, int *write) 6695 { 6696 static int zfstype = -1; 6697 zone_dataset_t *zd; 6698 size_t len; 6699 zone_t *zone = curproc->p_zone; 6700 const char *name = NULL; 6701 vfs_t *vfsp = NULL; 6702 6703 if (dataset[0] == '\0') 6704 return (0); 6705 6706 /* 6707 * Walk the list once, looking for datasets which match exactly, or 6708 * specify a dataset underneath an exported dataset. If found, return 6709 * true and note that it is writable. 6710 */ 6711 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6712 zd = list_next(&zone->zone_datasets, zd)) { 6713 6714 len = strlen(zd->zd_dataset); 6715 if (strlen(dataset) >= len && 6716 bcmp(dataset, zd->zd_dataset, len) == 0 && 6717 (dataset[len] == '\0' || dataset[len] == '/' || 6718 dataset[len] == '@')) { 6719 if (write) 6720 *write = 1; 6721 return (1); 6722 } 6723 } 6724 6725 /* 6726 * Walk the list a second time, searching for datasets which are parents 6727 * of exported datasets. These should be visible, but read-only. 6728 * 6729 * Note that we also have to support forms such as 'pool/dataset/', with 6730 * a trailing slash. 6731 */ 6732 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6733 zd = list_next(&zone->zone_datasets, zd)) { 6734 6735 len = strlen(dataset); 6736 if (dataset[len - 1] == '/') 6737 len--; /* Ignore trailing slash */ 6738 if (len < strlen(zd->zd_dataset) && 6739 bcmp(dataset, zd->zd_dataset, len) == 0 && 6740 zd->zd_dataset[len] == '/') { 6741 if (write) 6742 *write = 0; 6743 return (1); 6744 } 6745 } 6746 6747 /* 6748 * We reach here if the given dataset is not found in the zone_dataset 6749 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6750 * instead of delegation. For this we search for the dataset in the 6751 * zone_vfslist of this zone. If found, return true and note that it is 6752 * not writable. 6753 */ 6754 6755 /* 6756 * Initialize zfstype if it is not initialized yet. 6757 */ 6758 if (zfstype == -1) { 6759 struct vfssw *vswp = vfs_getvfssw("zfs"); 6760 zfstype = vswp - vfssw; 6761 vfs_unrefvfssw(vswp); 6762 } 6763 6764 vfs_list_read_lock(); 6765 vfsp = zone->zone_vfslist; 6766 do { 6767 ASSERT(vfsp); 6768 if (vfsp->vfs_fstype == zfstype) { 6769 name = refstr_value(vfsp->vfs_resource); 6770 6771 /* 6772 * Check if we have an exact match. 6773 */ 6774 if (strcmp(dataset, name) == 0) { 6775 vfs_list_unlock(); 6776 if (write) 6777 *write = 0; 6778 return (1); 6779 } 6780 /* 6781 * We need to check if we are looking for parents of 6782 * a dataset. These should be visible, but read-only. 6783 */ 6784 len = strlen(dataset); 6785 if (dataset[len - 1] == '/') 6786 len--; 6787 6788 if (len < strlen(name) && 6789 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6790 vfs_list_unlock(); 6791 if (write) 6792 *write = 0; 6793 return (1); 6794 } 6795 } 6796 vfsp = vfsp->vfs_zone_next; 6797 } while (vfsp != zone->zone_vfslist); 6798 6799 vfs_list_unlock(); 6800 return (0); 6801 } 6802 6803 /* 6804 * zone_find_by_any_path() - 6805 * 6806 * kernel-private routine similar to zone_find_by_path(), but which 6807 * effectively compares against zone paths rather than zonerootpath 6808 * (i.e., the last component of zonerootpaths, which should be "root/", 6809 * are not compared.) This is done in order to accurately identify all 6810 * paths, whether zone-visible or not, including those which are parallel 6811 * to /root/, such as /dev/, /home/, etc... 6812 * 6813 * If the specified path does not fall under any zone path then global 6814 * zone is returned. 6815 * 6816 * The treat_abs parameter indicates whether the path should be treated as 6817 * an absolute path although it does not begin with "/". (This supports 6818 * nfs mount syntax such as host:any/path.) 6819 * 6820 * The caller is responsible for zone_rele of the returned zone. 6821 */ 6822 zone_t * 6823 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6824 { 6825 zone_t *zone; 6826 int path_offset = 0; 6827 6828 if (path == NULL) { 6829 zone_hold(global_zone); 6830 return (global_zone); 6831 } 6832 6833 if (*path != '/') { 6834 ASSERT(treat_abs); 6835 path_offset = 1; 6836 } 6837 6838 mutex_enter(&zonehash_lock); 6839 for (zone = list_head(&zone_active); zone != NULL; 6840 zone = list_next(&zone_active, zone)) { 6841 char *c; 6842 size_t pathlen; 6843 char *rootpath_start; 6844 6845 if (zone == global_zone) /* skip global zone */ 6846 continue; 6847 6848 /* scan backwards to find start of last component */ 6849 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6850 do { 6851 c--; 6852 } while (*c != '/'); 6853 6854 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6855 rootpath_start = (zone->zone_rootpath + path_offset); 6856 if (strncmp(path, rootpath_start, pathlen) == 0) 6857 break; 6858 } 6859 if (zone == NULL) 6860 zone = global_zone; 6861 zone_hold(zone); 6862 mutex_exit(&zonehash_lock); 6863 return (zone); 6864 } 6865 6866 /* 6867 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6868 * zone_dl_t pointer if found, and NULL otherwise. 6869 */ 6870 static zone_dl_t * 6871 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6872 { 6873 zone_dl_t *zdl; 6874 6875 ASSERT(mutex_owned(&zone->zone_lock)); 6876 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6877 zdl = list_next(&zone->zone_dl_list, zdl)) { 6878 if (zdl->zdl_id == linkid) 6879 break; 6880 } 6881 return (zdl); 6882 } 6883 6884 static boolean_t 6885 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6886 { 6887 boolean_t exists; 6888 6889 mutex_enter(&zone->zone_lock); 6890 exists = (zone_find_dl(zone, linkid) != NULL); 6891 mutex_exit(&zone->zone_lock); 6892 return (exists); 6893 } 6894 6895 /* 6896 * Add an data link name for the zone. 6897 */ 6898 static int 6899 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6900 { 6901 zone_dl_t *zdl; 6902 zone_t *zone; 6903 zone_t *thiszone; 6904 6905 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6906 return (set_errno(ENXIO)); 6907 6908 /* Verify that the datalink ID doesn't already belong to a zone. */ 6909 mutex_enter(&zonehash_lock); 6910 for (zone = list_head(&zone_active); zone != NULL; 6911 zone = list_next(&zone_active, zone)) { 6912 if (zone_dl_exists(zone, linkid)) { 6913 mutex_exit(&zonehash_lock); 6914 zone_rele(thiszone); 6915 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6916 } 6917 } 6918 6919 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6920 zdl->zdl_id = linkid; 6921 zdl->zdl_net = NULL; 6922 mutex_enter(&thiszone->zone_lock); 6923 list_insert_head(&thiszone->zone_dl_list, zdl); 6924 mutex_exit(&thiszone->zone_lock); 6925 mutex_exit(&zonehash_lock); 6926 zone_rele(thiszone); 6927 return (0); 6928 } 6929 6930 static int 6931 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6932 { 6933 zone_dl_t *zdl; 6934 zone_t *zone; 6935 int err = 0; 6936 6937 if ((zone = zone_find_by_id(zoneid)) == NULL) 6938 return (set_errno(EINVAL)); 6939 6940 mutex_enter(&zone->zone_lock); 6941 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6942 err = ENXIO; 6943 } else { 6944 list_remove(&zone->zone_dl_list, zdl); 6945 nvlist_free(zdl->zdl_net); 6946 kmem_free(zdl, sizeof (zone_dl_t)); 6947 } 6948 mutex_exit(&zone->zone_lock); 6949 zone_rele(zone); 6950 return (err == 0 ? 0 : set_errno(err)); 6951 } 6952 6953 /* 6954 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6955 * the linkid. Otherwise we just check if the specified zoneidp has been 6956 * assigned the supplied linkid. 6957 */ 6958 int 6959 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6960 { 6961 zone_t *zone; 6962 int err = ENXIO; 6963 6964 if (*zoneidp != ALL_ZONES) { 6965 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6966 if (zone_dl_exists(zone, linkid)) 6967 err = 0; 6968 zone_rele(zone); 6969 } 6970 return (err); 6971 } 6972 6973 mutex_enter(&zonehash_lock); 6974 for (zone = list_head(&zone_active); zone != NULL; 6975 zone = list_next(&zone_active, zone)) { 6976 if (zone_dl_exists(zone, linkid)) { 6977 *zoneidp = zone->zone_id; 6978 err = 0; 6979 break; 6980 } 6981 } 6982 mutex_exit(&zonehash_lock); 6983 return (err); 6984 } 6985 6986 /* 6987 * Get the list of datalink IDs assigned to a zone. 6988 * 6989 * On input, *nump is the number of datalink IDs that can fit in the supplied 6990 * idarray. Upon return, *nump is either set to the number of datalink IDs 6991 * that were placed in the array if the array was large enough, or to the 6992 * number of datalink IDs that the function needs to place in the array if the 6993 * array is too small. 6994 */ 6995 static int 6996 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6997 { 6998 uint_t num, dlcount; 6999 zone_t *zone; 7000 zone_dl_t *zdl; 7001 datalink_id_t *idptr = idarray; 7002 7003 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7004 return (set_errno(EFAULT)); 7005 if ((zone = zone_find_by_id(zoneid)) == NULL) 7006 return (set_errno(ENXIO)); 7007 7008 num = 0; 7009 mutex_enter(&zone->zone_lock); 7010 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7011 zdl = list_next(&zone->zone_dl_list, zdl)) { 7012 /* 7013 * If the list is bigger than what the caller supplied, just 7014 * count, don't do copyout. 7015 */ 7016 if (++num > dlcount) 7017 continue; 7018 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7019 mutex_exit(&zone->zone_lock); 7020 zone_rele(zone); 7021 return (set_errno(EFAULT)); 7022 } 7023 idptr++; 7024 } 7025 mutex_exit(&zone->zone_lock); 7026 zone_rele(zone); 7027 7028 /* Increased or decreased, caller should be notified. */ 7029 if (num != dlcount) { 7030 if (copyout(&num, nump, sizeof (num)) != 0) 7031 return (set_errno(EFAULT)); 7032 } 7033 return (0); 7034 } 7035 7036 /* 7037 * Public interface for looking up a zone by zoneid. It's a customized version 7038 * for netstack_zone_create(). It can only be called from the zsd create 7039 * callbacks, since it doesn't have reference on the zone structure hence if 7040 * it is called elsewhere the zone could disappear after the zonehash_lock 7041 * is dropped. 7042 * 7043 * Furthermore it 7044 * 1. Doesn't check the status of the zone. 7045 * 2. It will be called even before zone_init is called, in that case the 7046 * address of zone0 is returned directly, and netstack_zone_create() 7047 * will only assign a value to zone0.zone_netstack, won't break anything. 7048 * 3. Returns without the zone being held. 7049 */ 7050 zone_t * 7051 zone_find_by_id_nolock(zoneid_t zoneid) 7052 { 7053 zone_t *zone; 7054 7055 mutex_enter(&zonehash_lock); 7056 if (zonehashbyid == NULL) 7057 zone = &zone0; 7058 else 7059 zone = zone_find_all_by_id(zoneid); 7060 mutex_exit(&zonehash_lock); 7061 return (zone); 7062 } 7063 7064 /* 7065 * Walk the datalinks for a given zone 7066 */ 7067 int 7068 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7069 void *data) 7070 { 7071 zone_t *zone; 7072 zone_dl_t *zdl; 7073 datalink_id_t *idarray; 7074 uint_t idcount = 0; 7075 int i, ret = 0; 7076 7077 if ((zone = zone_find_by_id(zoneid)) == NULL) 7078 return (ENOENT); 7079 7080 /* 7081 * We first build an array of linkid's so that we can walk these and 7082 * execute the callback with the zone_lock dropped. 7083 */ 7084 mutex_enter(&zone->zone_lock); 7085 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7086 zdl = list_next(&zone->zone_dl_list, zdl)) { 7087 idcount++; 7088 } 7089 7090 if (idcount == 0) { 7091 mutex_exit(&zone->zone_lock); 7092 zone_rele(zone); 7093 return (0); 7094 } 7095 7096 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7097 if (idarray == NULL) { 7098 mutex_exit(&zone->zone_lock); 7099 zone_rele(zone); 7100 return (ENOMEM); 7101 } 7102 7103 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7104 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7105 idarray[i] = zdl->zdl_id; 7106 } 7107 7108 mutex_exit(&zone->zone_lock); 7109 7110 for (i = 0; i < idcount && ret == 0; i++) { 7111 if ((ret = (*cb)(idarray[i], data)) != 0) 7112 break; 7113 } 7114 7115 zone_rele(zone); 7116 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7117 return (ret); 7118 } 7119 7120 static char * 7121 zone_net_type2name(int type) 7122 { 7123 switch (type) { 7124 case ZONE_NETWORK_ADDRESS: 7125 return (ZONE_NET_ADDRNAME); 7126 case ZONE_NETWORK_DEFROUTER: 7127 return (ZONE_NET_RTRNAME); 7128 default: 7129 return (NULL); 7130 } 7131 } 7132 7133 static int 7134 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7135 { 7136 zone_t *zone; 7137 zone_dl_t *zdl; 7138 nvlist_t *nvl; 7139 int err = 0; 7140 uint8_t *new = NULL; 7141 char *nvname; 7142 int bufsize; 7143 datalink_id_t linkid = znbuf->zn_linkid; 7144 7145 if (secpolicy_zone_config(CRED()) != 0) 7146 return (set_errno(EPERM)); 7147 7148 if (zoneid == GLOBAL_ZONEID) 7149 return (set_errno(EINVAL)); 7150 7151 nvname = zone_net_type2name(znbuf->zn_type); 7152 bufsize = znbuf->zn_len; 7153 new = znbuf->zn_val; 7154 if (nvname == NULL) 7155 return (set_errno(EINVAL)); 7156 7157 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7158 return (set_errno(EINVAL)); 7159 } 7160 7161 mutex_enter(&zone->zone_lock); 7162 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7163 err = ENXIO; 7164 goto done; 7165 } 7166 if ((nvl = zdl->zdl_net) == NULL) { 7167 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7168 err = ENOMEM; 7169 goto done; 7170 } else { 7171 zdl->zdl_net = nvl; 7172 } 7173 } 7174 if (nvlist_exists(nvl, nvname)) { 7175 err = EINVAL; 7176 goto done; 7177 } 7178 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7179 ASSERT(err == 0); 7180 done: 7181 mutex_exit(&zone->zone_lock); 7182 zone_rele(zone); 7183 if (err != 0) 7184 return (set_errno(err)); 7185 else 7186 return (0); 7187 } 7188 7189 static int 7190 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7191 { 7192 zone_t *zone; 7193 zone_dl_t *zdl; 7194 nvlist_t *nvl; 7195 uint8_t *ptr; 7196 uint_t psize; 7197 int err = 0; 7198 char *nvname; 7199 int bufsize; 7200 void *buf; 7201 datalink_id_t linkid = znbuf->zn_linkid; 7202 7203 if (zoneid == GLOBAL_ZONEID) 7204 return (set_errno(EINVAL)); 7205 7206 nvname = zone_net_type2name(znbuf->zn_type); 7207 bufsize = znbuf->zn_len; 7208 buf = znbuf->zn_val; 7209 7210 if (nvname == NULL) 7211 return (set_errno(EINVAL)); 7212 if ((zone = zone_find_by_id(zoneid)) == NULL) 7213 return (set_errno(EINVAL)); 7214 7215 mutex_enter(&zone->zone_lock); 7216 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7217 err = ENXIO; 7218 goto done; 7219 } 7220 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7221 err = ENOENT; 7222 goto done; 7223 } 7224 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7225 ASSERT(err == 0); 7226 7227 if (psize > bufsize) { 7228 err = ENOBUFS; 7229 goto done; 7230 } 7231 znbuf->zn_len = psize; 7232 bcopy(ptr, buf, psize); 7233 done: 7234 mutex_exit(&zone->zone_lock); 7235 zone_rele(zone); 7236 if (err != 0) 7237 return (set_errno(err)); 7238 else 7239 return (0); 7240 }