1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 /* 35 * UNIX machine dependent virtual memory support. 36 */ 37 38 #include <sys/vm.h> 39 #include <sys/exec.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpu_module.h> 42 #include <sys/cpu.h> 43 #include <sys/elf_SPARC.h> 44 #include <sys/archsystm.h> 45 #include <vm/hat_sfmmu.h> 46 #include <sys/memnode.h> 47 #include <sys/mem_cage.h> 48 #include <vm/vm_dep.h> 49 50 #if defined(__sparcv9) && defined(SF_ERRATA_57) 51 caddr_t errata57_limit; 52 #endif 53 54 uint_t page_colors = 0; 55 uint_t page_colors_mask = 0; 56 uint_t page_coloring_shift = 0; 57 int consistent_coloring; 58 int update_proc_pgcolorbase_after_fork = 0; 59 60 uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES; 61 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES; 62 uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT; 63 uint_t max_mmu_hashcnt = MAX_HASHCNT; 64 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; 65 66 /* 67 * The sun4u hardware mapping sizes which will always be supported are 68 * 8K, 64K, 512K and 4M. If sun4u based machines need to support other 69 * page sizes, platform or cpu specific routines need to modify the value. 70 * The base pagesize (p_szc == 0) must always be supported by the hardware. 71 */ 72 int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) | 73 (1 << TTE512K) | (1 << TTE4M); 74 uint_t mmu_exported_page_sizes; 75 76 uint_t szc_2_userszc[MMU_PAGE_SIZES]; 77 uint_t userszc_2_szc[MMU_PAGE_SIZES]; 78 79 extern uint_t vac_colors_mask; 80 extern int vac_shift; 81 82 hw_pagesize_t hw_page_array[] = { 83 {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT}, 84 {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0, 85 MMU_PAGESIZE64K >> MMU_PAGESHIFT}, 86 {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0, 87 MMU_PAGESIZE512K >> MMU_PAGESHIFT}, 88 {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT}, 89 {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0, 90 MMU_PAGESIZE32M >> MMU_PAGESHIFT}, 91 {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0, 92 MMU_PAGESIZE256M >> MMU_PAGESHIFT}, 93 {0, 0, 0, 0} 94 }; 95 96 /* 97 * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end 98 */ 99 int max_bootlp_tteszc = TTE4M; 100 101 /* 102 * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these 103 * additional text page sizes for USIII-IV+ and OPL by changing the default 104 * values via /etc/system. 105 */ 106 int use_text_pgsz64K = 0; 107 int use_text_pgsz512K = 0; 108 109 /* 110 * Maximum and default segment size tunables for user heap, stack, private 111 * and shared anonymous memory, and user text and initialized data. 112 */ 113 size_t max_uheap_lpsize = MMU_PAGESIZE4M; 114 size_t default_uheap_lpsize = MMU_PAGESIZE; 115 size_t max_ustack_lpsize = MMU_PAGESIZE4M; 116 size_t default_ustack_lpsize = MMU_PAGESIZE; 117 size_t max_privmap_lpsize = MMU_PAGESIZE4M; 118 size_t max_uidata_lpsize = MMU_PAGESIZE; 119 size_t max_utext_lpsize = MMU_PAGESIZE4M; 120 size_t max_shm_lpsize = MMU_PAGESIZE4M; 121 122 void 123 adjust_data_maxlpsize(size_t ismpagesize) 124 { 125 if (max_uheap_lpsize == MMU_PAGESIZE4M) { 126 max_uheap_lpsize = ismpagesize; 127 } 128 if (max_ustack_lpsize == MMU_PAGESIZE4M) { 129 max_ustack_lpsize = ismpagesize; 130 } 131 if (max_privmap_lpsize == MMU_PAGESIZE4M) { 132 max_privmap_lpsize = ismpagesize; 133 } 134 if (max_shm_lpsize == MMU_PAGESIZE4M) { 135 max_shm_lpsize = ismpagesize; 136 } 137 } 138 139 /* 140 * map_addr_proc() is the routine called when the system is to 141 * choose an address for the user. We will pick an address 142 * range which is just below the current stack limit. The 143 * algorithm used for cache consistency on machines with virtual 144 * address caches is such that offset 0 in the vnode is always 145 * on a shm_alignment'ed aligned address. Unfortunately, this 146 * means that vnodes which are demand paged will not be mapped 147 * cache consistently with the executable images. When the 148 * cache alignment for a given object is inconsistent, the 149 * lower level code must manage the translations so that this 150 * is not seen here (at the cost of efficiency, of course). 151 * 152 * Every mapping will have a redzone of a single page on either side of 153 * the request. This is done to leave one page unmapped between segments. 154 * This is not required, but it's useful for the user because if their 155 * program strays across a segment boundary, it will catch a fault 156 * immediately making debugging a little easier. Currently the redzone 157 * is mandatory. 158 * 159 * 160 * addrp is a value/result parameter. 161 * On input it is a hint from the user to be used in a completely 162 * machine dependent fashion. For MAP_ALIGN, addrp contains the 163 * minimal alignment, which must be some "power of two" multiple of 164 * pagesize. 165 * 166 * On output it is NULL if no address can be found in the current 167 * processes address space or else an address that is currently 168 * not mapped for len bytes with a page of red zone on either side. 169 * If vacalign is true, then the selected address will obey the alignment 170 * constraints of a vac machine based on the given off value. 171 */ 172 /*ARGSUSED4*/ 173 void 174 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign, 175 caddr_t userlimit, struct proc *p, uint_t flags) 176 { 177 struct as *as = p->p_as; 178 caddr_t addr; 179 caddr_t base; 180 size_t slen; 181 uintptr_t align_amount; 182 int allow_largepage_alignment = 1; 183 184 base = p->p_brkbase; 185 if (userlimit < as->a_userlimit) { 186 /* 187 * This happens when a program wants to map something in 188 * a range that's accessible to a program in a smaller 189 * address space. For example, a 64-bit program might 190 * be calling mmap32(2) to guarantee that the returned 191 * address is below 4Gbytes. 192 */ 193 ASSERT(userlimit > base); 194 slen = userlimit - base; 195 } else { 196 slen = p->p_usrstack - base - 197 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 198 } 199 200 /* Make len be a multiple of PAGESIZE */ 201 len = (len + PAGEOFFSET) & PAGEMASK; 202 203 /* 204 * If the request is larger than the size of a particular 205 * mmu level, then we use that level to map the request. 206 * But this requires that both the virtual and the physical 207 * addresses be aligned with respect to that level, so we 208 * do the virtual bit of nastiness here. 209 * 210 * For 32-bit processes, only those which have specified 211 * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise 212 * we can potentially waste up to 256MB of the 4G process address 213 * space just for alignment. 214 */ 215 if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 || 216 ((uintptr_t)*addrp) != 0)) { 217 allow_largepage_alignment = 0; 218 } 219 if ((mmu_page_sizes == max_mmu_page_sizes) && 220 allow_largepage_alignment && 221 (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */ 222 align_amount = MMU_PAGESIZE256M; 223 } else if ((mmu_page_sizes == max_mmu_page_sizes) && 224 allow_largepage_alignment && 225 (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */ 226 align_amount = MMU_PAGESIZE32M; 227 } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */ 228 align_amount = MMU_PAGESIZE4M; 229 } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */ 230 align_amount = MMU_PAGESIZE512K; 231 } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */ 232 align_amount = MMU_PAGESIZE64K; 233 } else { 234 /* 235 * Align virtual addresses on a 64K boundary to ensure 236 * that ELF shared libraries are mapped with the appropriate 237 * alignment constraints by the run-time linker. 238 */ 239 align_amount = ELF_SPARC_MAXPGSZ; 240 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) && 241 ((uintptr_t)*addrp < align_amount)) 242 align_amount = (uintptr_t)*addrp; 243 } 244 245 /* 246 * 64-bit processes require 1024K alignment of ELF shared libraries. 247 */ 248 if (p->p_model == DATAMODEL_LP64) 249 align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ); 250 #ifdef VAC 251 if (vac && vacalign && (align_amount < shm_alignment)) 252 align_amount = shm_alignment; 253 #endif 254 255 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) { 256 align_amount = (uintptr_t)*addrp; 257 } 258 259 ASSERT(ISP2(align_amount)); 260 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 261 262 /* 263 * Look for a large enough hole starting below the stack limit. 264 * After finding it, use the upper part. 265 */ 266 as_purge(as); 267 off = off & (align_amount - 1); 268 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 269 PAGESIZE, off) == 0) { 270 caddr_t as_addr; 271 272 /* 273 * addr is the highest possible address to use since we have 274 * a PAGESIZE redzone at the beginning and end. 275 */ 276 addr = base + slen - (PAGESIZE + len); 277 as_addr = addr; 278 /* 279 * Round address DOWN to the alignment amount and 280 * add the offset in. 281 * If addr is greater than as_addr, len would not be large 282 * enough to include the redzone, so we must adjust down 283 * by the alignment amount. 284 */ 285 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l))); 286 addr += (long)off; 287 if (addr > as_addr) { 288 addr -= align_amount; 289 } 290 291 ASSERT(addr > base); 292 ASSERT(addr + len < base + slen); 293 ASSERT(((uintptr_t)addr & (align_amount - 1l)) == 294 ((uintptr_t)(off))); 295 *addrp = addr; 296 297 #if defined(SF_ERRATA_57) 298 if (AS_TYPE_64BIT(as) && addr < errata57_limit) { 299 *addrp = NULL; 300 } 301 #endif 302 } else { 303 *addrp = NULL; /* no more virtual space */ 304 } 305 } 306 307 /* 308 * Platform-dependent page scrub call. 309 */ 310 void 311 pagescrub(page_t *pp, uint_t off, uint_t len) 312 { 313 /* 314 * For now, we rely on the fact that pagezero() will 315 * always clear UEs. 316 */ 317 pagezero(pp, off, len); 318 } 319 320 /*ARGSUSED*/ 321 void 322 sync_data_memory(caddr_t va, size_t len) 323 { 324 cpu_flush_ecache(); 325 } 326 327 /* 328 * platform specific large pages for kernel heap support 329 */ 330 void 331 mmu_init_kcontext() 332 { 333 extern void set_kcontextreg(); 334 335 if (kcontextreg) 336 set_kcontextreg(); 337 } 338 339 void 340 contig_mem_init(void) 341 { 342 /* not applicable to sun4u */ 343 } 344 345 /*ARGSUSED*/ 346 caddr_t 347 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages) 348 { 349 /* not applicable to sun4u */ 350 return (alloc_base); 351 } 352 353 size_t 354 exec_get_spslew(void) 355 { 356 return (0); 357 }