1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc. All rights reserved.
25 */
26
27 /*
28 * Zones
29 *
30 * A zone is a named collection of processes, namespace constraints,
31 * and other system resources which comprise a secure and manageable
32 * application containment facility.
33 *
34 * Zones (represented by the reference counted zone_t) are tracked in
35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
36 * (zoneid_t) are used to track zone association. Zone IDs are
37 * dynamically generated when the zone is created; if a persistent
38 * identifier is needed (core files, accounting logs, audit trail,
39 * etc.), the zone name should be used.
40 *
41 *
42 * Global Zone:
43 *
44 * The global zone (zoneid 0) is automatically associated with all
45 * system resources that have not been bound to a user-created zone.
46 * This means that even systems where zones are not in active use
47 * have a global zone, and all processes, mounts, etc. are
48 * associated with that zone. The global zone is generally
49 * unconstrained in terms of privileges and access, though the usual
50 * credential and privilege based restrictions apply.
51 *
52 *
53 * Zone States:
54 *
55 * The states in which a zone may be in and the transitions are as
56 * follows:
57 *
58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59 * initialized zone is added to the list of active zones on the system but
60 * isn't accessible.
61 *
62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63 * not yet completed. Not possible to enter the zone, but attributes can
64 * be retrieved.
65 *
66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67 * ready. The zone is made visible after the ZSD constructor callbacks are
68 * executed. A zone remains in this state until it transitions into
69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70 *
71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73 * state.
74 *
75 * ZONE_IS_RUNNING: The zone is open for business: zsched has
76 * successfully started init. A zone remains in this state until
77 * zone_shutdown() is called.
78 *
79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80 * killing all processes running in the zone. The zone remains
81 * in this state until there are no more user processes running in the zone.
82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83 * Since zone_shutdown() is restartable, it may be called successfully
84 * multiple times for the same zone_t. Setting of the zone's state to
85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86 * the zone's status without worrying about it being a moving target.
87 *
88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89 * are no more user processes in the zone. The zone remains in this
90 * state until there are no more kernel threads associated with the
91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
92 * fail.
93 *
94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95 * have exited. zone_shutdown() returns. Henceforth it is not possible to
96 * join the zone or create kernel threads therein.
97 *
98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99 * remains in this state until zsched exits. Calls to zone_find_by_*()
100 * return NULL from now on.
101 *
102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
103 * processes or threads doing work on behalf of the zone. The zone is
104 * removed from the list of active zones. zone_destroy() returns, and
105 * the zone can be recreated.
106 *
107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108 * callbacks are executed, and all memory associated with the zone is
109 * freed.
110 *
111 * Threads can wait for the zone to enter a requested state by using
112 * zone_status_wait() or zone_status_timedwait() with the desired
113 * state passed in as an argument. Zone state transitions are
114 * uni-directional; it is not possible to move back to an earlier state.
115 *
116 *
117 * Zone-Specific Data:
118 *
119 * Subsystems needing to maintain zone-specific data can store that
120 * data using the ZSD mechanism. This provides a zone-specific data
121 * store, similar to thread-specific data (see pthread_getspecific(3C)
122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
123 * to register callbacks to be invoked when a zone is created, shut
124 * down, or destroyed. This can be used to initialize zone-specific
125 * data for new zones and to clean up when zones go away.
126 *
127 *
128 * Data Structures:
129 *
130 * The per-zone structure (zone_t) is reference counted, and freed
131 * when all references are released. zone_hold and zone_rele can be
132 * used to adjust the reference count. In addition, reference counts
133 * associated with the cred_t structure are tracked separately using
134 * zone_cred_hold and zone_cred_rele.
135 *
136 * Pointers to active zone_t's are stored in two hash tables; one
137 * for searching by id, the other for searching by name. Lookups
138 * can be performed on either basis, using zone_find_by_id and
139 * zone_find_by_name. Both return zone_t pointers with the zone
140 * held, so zone_rele should be called when the pointer is no longer
141 * needed. Zones can also be searched by path; zone_find_by_path
142 * returns the zone with which a path name is associated (global
143 * zone if the path is not within some other zone's file system
144 * hierarchy). This currently requires iterating through each zone,
145 * so it is slower than an id or name search via a hash table.
146 *
147 *
148 * Locking:
149 *
150 * zonehash_lock: This is a top-level global lock used to protect the
151 * zone hash tables and lists. Zones cannot be created or destroyed
152 * while this lock is held.
153 * zone_status_lock: This is a global lock protecting zone state.
154 * Zones cannot change state while this lock is held. It also
155 * protects the list of kernel threads associated with a zone.
156 * zone_lock: This is a per-zone lock used to protect several fields of
157 * the zone_t (see <sys/zone.h> for details). In addition, holding
158 * this lock means that the zone cannot go away.
159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
160 * related to the zone.max-lwps rctl.
161 * zone_mem_lock: This is a per-zone lock used to protect the fields
162 * related to the zone.max-locked-memory and zone.max-swap rctls.
163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164 * currently just max_lofi
165 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
166 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
167 * list (a list of zones in the ZONE_IS_DEAD state).
168 *
169 * Ordering requirements:
170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
172 *
173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176 *
177 * Blocking memory allocations are permitted while holding any of the
178 * zone locks.
179 *
180 *
181 * System Call Interface:
182 *
183 * The zone subsystem can be managed and queried from user level with
184 * the following system calls (all subcodes of the primary "zone"
185 * system call):
186 * - zone_create: creates a zone with selected attributes (name,
187 * root path, privileges, resource controls, ZFS datasets)
188 * - zone_enter: allows the current process to enter a zone
189 * - zone_getattr: reports attributes of a zone
190 * - zone_setattr: set attributes of a zone
191 * - zone_boot: set 'init' running for the zone
192 * - zone_list: lists all zones active in the system
193 * - zone_lookup: looks up zone id based on name
194 * - zone_shutdown: initiates shutdown process (see states above)
195 * - zone_destroy: completes shutdown process (see states above)
196 *
197 */
198
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253
254 /*
255 * This constant specifies the number of seconds that threads waiting for
256 * subsystems to release a zone's general-purpose references will wait before
257 * they log the zone's reference counts. The constant's value shouldn't
258 * be so small that reference counts are unnecessarily reported for zones
259 * whose references are slowly released. On the other hand, it shouldn't be so
260 * large that users reboot their systems out of frustration over hung zones
261 * before the system logs the zones' reference counts.
262 */
263 #define ZONE_DESTROY_TIMEOUT_SECS 60
264
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 datalink_id_t zdl_id;
268 nvlist_t *zdl_net;
269 list_node_t zdl_linkage;
270 } zone_dl_t;
271
272 /*
273 * cv used to signal that all references to the zone have been released. This
274 * needs to be global since there may be multiple waiters, and the first to
275 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276 */
277 static kcondvar_t zone_destroy_cv;
278 /*
279 * Lock used to serialize access to zone_cv. This could have been per-zone,
280 * but then we'd need another lock for zone_destroy_cv, and why bother?
281 */
282 static kmutex_t zone_status_lock;
283
284 /*
285 * ZSD-related global variables.
286 */
287 static kmutex_t zsd_key_lock; /* protects the following two */
288 /*
289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290 */
291 static zone_key_t zsd_keyval = 0;
292 /*
293 * Global list of registered keys. We use this when a new zone is created.
294 */
295 static list_t zsd_registered_keys;
296
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302
303 /*
304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305 * kernel proper runs, and which manages all other zones.
306 *
307 * Although not declared as static, the variable "zone0" should not be used
308 * except for by code that needs to reference the global zone early on in boot,
309 * before it is fully initialized. All other consumers should use
310 * 'global_zone'.
311 */
312 zone_t zone0;
313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
314
315 /*
316 * List of active zones, protected by zonehash_lock.
317 */
318 static list_t zone_active;
319
320 /*
321 * List of destroyed zones that still have outstanding cred references.
322 * Used for debugging. Uses a separate lock to avoid lock ordering
323 * problems in zone_free.
324 */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333
334 /*
335 * This table holds the mapping from kernel zone states to
336 * states visible in the state notification API.
337 * The idea is that we only expose "obvious" states and
338 * do not expose states which are just implementation details.
339 */
340 const char *zone_status_table[] = {
341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
342 ZONE_EVENT_INITIALIZED, /* initialized */
343 ZONE_EVENT_READY, /* ready */
344 ZONE_EVENT_READY, /* booting */
345 ZONE_EVENT_RUNNING, /* running */
346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
347 ZONE_EVENT_SHUTTING_DOWN, /* empty */
348 ZONE_EVENT_SHUTTING_DOWN, /* down */
349 ZONE_EVENT_SHUTTING_DOWN, /* dying */
350 ZONE_EVENT_UNINITIALIZED, /* dead */
351 };
352
353 /*
354 * This array contains the names of the subsystems listed in zone_ref_subsys_t
355 * (see sys/zone.h).
356 */
357 static char *zone_ref_subsys_names[] = {
358 "NFS", /* ZONE_REF_NFS */
359 "NFSv4", /* ZONE_REF_NFSV4 */
360 "SMBFS", /* ZONE_REF_SMBFS */
361 "MNTFS", /* ZONE_REF_MNTFS */
362 "LOFI", /* ZONE_REF_LOFI */
363 "VFS", /* ZONE_REF_VFS */
364 "IPC" /* ZONE_REF_IPC */
365 };
366
367 /*
368 * This isn't static so lint doesn't complain.
369 */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
390
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397 zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400 kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402 kmutex_t *);
403
404 /*
405 * Bump this number when you alter the zone syscall interfaces; this is
406 * because we need to have support for previous API versions in libc
407 * to support patching; libc calls into the kernel to determine this number.
408 *
409 * Version 1 of the API is the version originally shipped with Solaris 10
410 * Version 2 alters the zone_create system call in order to support more
411 * arguments by moving the args into a structure; and to do better
412 * error reporting when zone_create() fails.
413 * Version 3 alters the zone_create system call in order to support the
414 * import of ZFS datasets to zones.
415 * Version 4 alters the zone_create system call in order to support
416 * Trusted Extensions.
417 * Version 5 alters the zone_boot system call, and converts its old
418 * bootargs parameter to be set by the zone_setattr API instead.
419 * Version 6 adds the flag argument to zone_create.
420 */
421 static const int ZONE_SYSCALL_API_VERSION = 6;
422
423 /*
424 * Certain filesystems (such as NFS and autofs) need to know which zone
425 * the mount is being placed in. Because of this, we need to be able to
426 * ensure that a zone isn't in the process of being created/destroyed such
427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428 * it gets added the list of mounted zones, it ends up on the wrong zone's
429 * mount list. Since a zone can't reside on an NFS file system, we don't
430 * have to worry about the zonepath itself.
431 *
432 * The following functions: block_mounts()/resume_mounts() and
433 * mount_in_progress()/mount_completed() are used by zones and the VFS
434 * layer (respectively) to synchronize zone state transitions and new
435 * mounts within a zone. This syncronization is on a per-zone basis, so
436 * activity for one zone will not interfere with activity for another zone.
437 *
438 * The semantics are like a reader-reader lock such that there may
439 * either be multiple mounts (or zone state transitions, if that weren't
440 * serialized by zonehash_lock) in progress at the same time, but not
441 * both.
442 *
443 * We use cv's so the user can ctrl-C out of the operation if it's
444 * taking too long.
445 *
446 * The semantics are such that there is unfair bias towards the
447 * "current" operation. This means that zone halt may starve if
448 * there is a rapid succession of new mounts coming in to the zone.
449 */
450 /*
451 * Prevent new mounts from progressing to the point of calling
452 * VFS_MOUNT(). If there are already mounts in this "region", wait for
453 * them to complete.
454 */
455 static int
456 block_mounts(zone_t *zp)
457 {
458 int retval = 0;
459
460 /*
461 * Since it may block for a long time, block_mounts() shouldn't be
462 * called with zonehash_lock held.
463 */
464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 mutex_enter(&zp->zone_mount_lock);
466 while (zp->zone_mounts_in_progress > 0) {
467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 goto signaled;
469 }
470 /*
471 * A negative value of mounts_in_progress indicates that mounts
472 * have been blocked by (-mounts_in_progress) different callers
473 * (remotely possible if two threads enter zone_shutdown at the same
474 * time).
475 */
476 zp->zone_mounts_in_progress--;
477 retval = 1;
478 signaled:
479 mutex_exit(&zp->zone_mount_lock);
480 return (retval);
481 }
482
483 /*
484 * The VFS layer may progress with new mounts as far as we're concerned.
485 * Allow them to progress if we were the last obstacle.
486 */
487 static void
488 resume_mounts(zone_t *zp)
489 {
490 mutex_enter(&zp->zone_mount_lock);
491 if (++zp->zone_mounts_in_progress == 0)
492 cv_broadcast(&zp->zone_mount_cv);
493 mutex_exit(&zp->zone_mount_lock);
494 }
495
496 /*
497 * The VFS layer is busy with a mount; this zone should wait until all
498 * of its mounts are completed to progress.
499 */
500 void
501 mount_in_progress(zone_t *zp)
502 {
503 mutex_enter(&zp->zone_mount_lock);
504 while (zp->zone_mounts_in_progress < 0)
505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 zp->zone_mounts_in_progress++;
507 mutex_exit(&zp->zone_mount_lock);
508 }
509
510 /*
511 * VFS is done with one mount; wake up any waiting block_mounts()
512 * callers if this is the last mount.
513 */
514 void
515 mount_completed(zone_t *zp)
516 {
517 mutex_enter(&zp->zone_mount_lock);
518 if (--zp->zone_mounts_in_progress == 0)
519 cv_broadcast(&zp->zone_mount_cv);
520 mutex_exit(&zp->zone_mount_lock);
521 }
522
523 /*
524 * ZSD routines.
525 *
526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527 * defined by the pthread_key_create() and related interfaces.
528 *
529 * Kernel subsystems may register one or more data items and/or
530 * callbacks to be executed when a zone is created, shutdown, or
531 * destroyed.
532 *
533 * Unlike the thread counterpart, destructor callbacks will be executed
534 * even if the data pointer is NULL and/or there are no constructor
535 * callbacks, so it is the responsibility of such callbacks to check for
536 * NULL data values if necessary.
537 *
538 * The locking strategy and overall picture is as follows:
539 *
540 * When someone calls zone_key_create(), a template ZSD entry is added to the
541 * global list "zsd_registered_keys", protected by zsd_key_lock. While
542 * holding that lock all the existing zones are marked as
543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544 * zone_zsd list (protected by zone_lock). The global list is updated first
545 * (under zone_key_lock) to make sure that newly created zones use the
546 * most recent list of keys. Then under zonehash_lock we walk the zones
547 * and mark them. Similar locking is used in zone_key_delete().
548 *
549 * The actual create, shutdown, and destroy callbacks are done without
550 * holding any lock. And zsd_flags are used to ensure that the operations
551 * completed so that when zone_key_create (and zone_create) is done, as well as
552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553 * are completed.
554 *
555 * When new zones are created constructor callbacks for all registered ZSD
556 * entries will be called. That also uses the above two phases of marking
557 * what needs to be done, and then running the callbacks without holding
558 * any locks.
559 *
560 * The framework does not provide any locking around zone_getspecific() and
561 * zone_setspecific() apart from that needed for internal consistency, so
562 * callers interested in atomic "test-and-set" semantics will need to provide
563 * their own locking.
564 */
565
566 /*
567 * Helper function to find the zsd_entry associated with the key in the
568 * given list.
569 */
570 static struct zsd_entry *
571 zsd_find(list_t *l, zone_key_t key)
572 {
573 struct zsd_entry *zsd;
574
575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 if (zsd->zsd_key == key) {
577 return (zsd);
578 }
579 }
580 return (NULL);
581 }
582
583 /*
584 * Helper function to find the zsd_entry associated with the key in the
585 * given list. Move it to the front of the list.
586 */
587 static struct zsd_entry *
588 zsd_find_mru(list_t *l, zone_key_t key)
589 {
590 struct zsd_entry *zsd;
591
592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 if (zsd->zsd_key == key) {
594 /*
595 * Move to head of list to keep list in MRU order.
596 */
597 if (zsd != list_head(l)) {
598 list_remove(l, zsd);
599 list_insert_head(l, zsd);
600 }
601 return (zsd);
602 }
603 }
604 return (NULL);
605 }
606
607 void
608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 {
611 struct zsd_entry *zsdp;
612 struct zsd_entry *t;
613 struct zone *zone;
614 zone_key_t key;
615
616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 zsdp->zsd_data = NULL;
618 zsdp->zsd_create = create;
619 zsdp->zsd_shutdown = shutdown;
620 zsdp->zsd_destroy = destroy;
621
622 /*
623 * Insert in global list of callbacks. Makes future zone creations
624 * see it.
625 */
626 mutex_enter(&zsd_key_lock);
627 key = zsdp->zsd_key = ++zsd_keyval;
628 ASSERT(zsd_keyval != 0);
629 list_insert_tail(&zsd_registered_keys, zsdp);
630 mutex_exit(&zsd_key_lock);
631
632 /*
633 * Insert for all existing zones and mark them as needing
634 * a create callback.
635 */
636 mutex_enter(&zonehash_lock); /* stop the world */
637 for (zone = list_head(&zone_active); zone != NULL;
638 zone = list_next(&zone_active, zone)) {
639 zone_status_t status;
640
641 mutex_enter(&zone->zone_lock);
642
643 /* Skip zones that are on the way down or not yet up */
644 status = zone_status_get(zone);
645 if (status >= ZONE_IS_DOWN ||
646 status == ZONE_IS_UNINITIALIZED) {
647 mutex_exit(&zone->zone_lock);
648 continue;
649 }
650
651 t = zsd_find_mru(&zone->zone_zsd, key);
652 if (t != NULL) {
653 /*
654 * A zsd_configure already inserted it after
655 * we dropped zsd_key_lock above.
656 */
657 mutex_exit(&zone->zone_lock);
658 continue;
659 }
660 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 t->zsd_key = key;
662 t->zsd_create = create;
663 t->zsd_shutdown = shutdown;
664 t->zsd_destroy = destroy;
665 if (create != NULL) {
666 t->zsd_flags = ZSD_CREATE_NEEDED;
667 DTRACE_PROBE2(zsd__create__needed,
668 zone_t *, zone, zone_key_t, key);
669 }
670 list_insert_tail(&zone->zone_zsd, t);
671 mutex_exit(&zone->zone_lock);
672 }
673 mutex_exit(&zonehash_lock);
674
675 if (create != NULL) {
676 /* Now call the create callback for this key */
677 zsd_apply_all_zones(zsd_apply_create, key);
678 }
679 /*
680 * It is safe for consumers to use the key now, make it
681 * globally visible. Specifically zone_getspecific() will
682 * always successfully return the zone specific data associated
683 * with the key.
684 */
685 *keyp = key;
686
687 }
688
689 /*
690 * Function called when a module is being unloaded, or otherwise wishes
691 * to unregister its ZSD key and callbacks.
692 *
693 * Remove from the global list and determine the functions that need to
694 * be called under a global lock. Then call the functions without
695 * holding any locks. Finally free up the zone_zsd entries. (The apply
696 * functions need to access the zone_zsd entries to find zsd_data etc.)
697 */
698 int
699 zone_key_delete(zone_key_t key)
700 {
701 struct zsd_entry *zsdp = NULL;
702 zone_t *zone;
703
704 mutex_enter(&zsd_key_lock);
705 zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 if (zsdp == NULL) {
707 mutex_exit(&zsd_key_lock);
708 return (-1);
709 }
710 list_remove(&zsd_registered_keys, zsdp);
711 mutex_exit(&zsd_key_lock);
712
713 mutex_enter(&zonehash_lock);
714 for (zone = list_head(&zone_active); zone != NULL;
715 zone = list_next(&zone_active, zone)) {
716 struct zsd_entry *del;
717
718 mutex_enter(&zone->zone_lock);
719 del = zsd_find_mru(&zone->zone_zsd, key);
720 if (del == NULL) {
721 /*
722 * Somebody else got here first e.g the zone going
723 * away.
724 */
725 mutex_exit(&zone->zone_lock);
726 continue;
727 }
728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 if (del->zsd_shutdown != NULL &&
731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 DTRACE_PROBE2(zsd__shutdown__needed,
734 zone_t *, zone, zone_key_t, key);
735 }
736 if (del->zsd_destroy != NULL &&
737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 DTRACE_PROBE2(zsd__destroy__needed,
740 zone_t *, zone, zone_key_t, key);
741 }
742 mutex_exit(&zone->zone_lock);
743 }
744 mutex_exit(&zonehash_lock);
745 kmem_free(zsdp, sizeof (*zsdp));
746
747 /* Now call the shutdown and destroy callback for this key */
748 zsd_apply_all_zones(zsd_apply_shutdown, key);
749 zsd_apply_all_zones(zsd_apply_destroy, key);
750
751 /* Now we can free up the zsdp structures in each zone */
752 mutex_enter(&zonehash_lock);
753 for (zone = list_head(&zone_active); zone != NULL;
754 zone = list_next(&zone_active, zone)) {
755 struct zsd_entry *del;
756
757 mutex_enter(&zone->zone_lock);
758 del = zsd_find(&zone->zone_zsd, key);
759 if (del != NULL) {
760 list_remove(&zone->zone_zsd, del);
761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 kmem_free(del, sizeof (*del));
763 }
764 mutex_exit(&zone->zone_lock);
765 }
766 mutex_exit(&zonehash_lock);
767
768 return (0);
769 }
770
771 /*
772 * ZSD counterpart of pthread_setspecific().
773 *
774 * Since all zsd callbacks, including those with no create function,
775 * have an entry in zone_zsd, if the key is registered it is part of
776 * the zone_zsd list.
777 * Return an error if the key wasn't registerd.
778 */
779 int
780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 {
782 struct zsd_entry *t;
783
784 mutex_enter(&zone->zone_lock);
785 t = zsd_find_mru(&zone->zone_zsd, key);
786 if (t != NULL) {
787 /*
788 * Replace old value with new
789 */
790 t->zsd_data = (void *)data;
791 mutex_exit(&zone->zone_lock);
792 return (0);
793 }
794 mutex_exit(&zone->zone_lock);
795 return (-1);
796 }
797
798 /*
799 * ZSD counterpart of pthread_getspecific().
800 */
801 void *
802 zone_getspecific(zone_key_t key, zone_t *zone)
803 {
804 struct zsd_entry *t;
805 void *data;
806
807 mutex_enter(&zone->zone_lock);
808 t = zsd_find_mru(&zone->zone_zsd, key);
809 data = (t == NULL ? NULL : t->zsd_data);
810 mutex_exit(&zone->zone_lock);
811 return (data);
812 }
813
814 /*
815 * Function used to initialize a zone's list of ZSD callbacks and data
816 * when the zone is being created. The callbacks are initialized from
817 * the template list (zsd_registered_keys). The constructor callback is
818 * executed later (once the zone exists and with locks dropped).
819 */
820 static void
821 zone_zsd_configure(zone_t *zone)
822 {
823 struct zsd_entry *zsdp;
824 struct zsd_entry *t;
825
826 ASSERT(MUTEX_HELD(&zonehash_lock));
827 ASSERT(list_head(&zone->zone_zsd) == NULL);
828 mutex_enter(&zone->zone_lock);
829 mutex_enter(&zsd_key_lock);
830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 /*
833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 * should not have added anything to it.
835 */
836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837
838 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 t->zsd_key = zsdp->zsd_key;
840 t->zsd_create = zsdp->zsd_create;
841 t->zsd_shutdown = zsdp->zsd_shutdown;
842 t->zsd_destroy = zsdp->zsd_destroy;
843 if (zsdp->zsd_create != NULL) {
844 t->zsd_flags = ZSD_CREATE_NEEDED;
845 DTRACE_PROBE2(zsd__create__needed,
846 zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 }
848 list_insert_tail(&zone->zone_zsd, t);
849 }
850 mutex_exit(&zsd_key_lock);
851 mutex_exit(&zone->zone_lock);
852 }
853
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855
856 /*
857 * Helper function to execute shutdown or destructor callbacks.
858 */
859 static void
860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 {
862 struct zsd_entry *t;
863
864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867
868 /*
869 * Run the callback solely based on what is registered for the zone
870 * in zone_zsd. The global list can change independently of this
871 * as keys are registered and unregistered and we don't register new
872 * callbacks for a zone that is in the process of going away.
873 */
874 mutex_enter(&zone->zone_lock);
875 for (t = list_head(&zone->zone_zsd); t != NULL;
876 t = list_next(&zone->zone_zsd, t)) {
877 zone_key_t key = t->zsd_key;
878
879 /* Skip if no callbacks registered */
880
881 if (ct == ZSD_SHUTDOWN) {
882 if (t->zsd_shutdown != NULL &&
883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 DTRACE_PROBE2(zsd__shutdown__needed,
886 zone_t *, zone, zone_key_t, key);
887 }
888 } else {
889 if (t->zsd_destroy != NULL &&
890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 DTRACE_PROBE2(zsd__destroy__needed,
893 zone_t *, zone, zone_key_t, key);
894 }
895 }
896 }
897 mutex_exit(&zone->zone_lock);
898
899 /* Now call the shutdown and destroy callback for this key */
900 zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 zsd_apply_all_keys(zsd_apply_destroy, zone);
902
903 }
904
905 /*
906 * Called when the zone is going away; free ZSD-related memory, and
907 * destroy the zone_zsd list.
908 */
909 static void
910 zone_free_zsd(zone_t *zone)
911 {
912 struct zsd_entry *t, *next;
913
914 /*
915 * Free all the zsd_entry's we had on this zone.
916 */
917 mutex_enter(&zone->zone_lock);
918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 next = list_next(&zone->zone_zsd, t);
920 list_remove(&zone->zone_zsd, t);
921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 kmem_free(t, sizeof (*t));
923 }
924 list_destroy(&zone->zone_zsd);
925 mutex_exit(&zone->zone_lock);
926
927 }
928
929 /*
930 * Apply a function to all zones for particular key value.
931 *
932 * The applyfn has to drop zonehash_lock if it does some work, and
933 * then reacquire it before it returns.
934 * When the lock is dropped we don't follow list_next even
935 * if it is possible to do so without any hazards. This is
936 * because we want the design to allow for the list of zones
937 * to change in any arbitrary way during the time the
938 * lock was dropped.
939 *
940 * It is safe to restart the loop at list_head since the applyfn
941 * changes the zsd_flags as it does work, so a subsequent
942 * pass through will have no effect in applyfn, hence the loop will terminate
943 * in at worst O(N^2).
944 */
945 static void
946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 {
948 zone_t *zone;
949
950 mutex_enter(&zonehash_lock);
951 zone = list_head(&zone_active);
952 while (zone != NULL) {
953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 /* Lock dropped - restart at head */
955 zone = list_head(&zone_active);
956 } else {
957 zone = list_next(&zone_active, zone);
958 }
959 }
960 mutex_exit(&zonehash_lock);
961 }
962
963 /*
964 * Apply a function to all keys for a particular zone.
965 *
966 * The applyfn has to drop zonehash_lock if it does some work, and
967 * then reacquire it before it returns.
968 * When the lock is dropped we don't follow list_next even
969 * if it is possible to do so without any hazards. This is
970 * because we want the design to allow for the list of zsd callbacks
971 * to change in any arbitrary way during the time the
972 * lock was dropped.
973 *
974 * It is safe to restart the loop at list_head since the applyfn
975 * changes the zsd_flags as it does work, so a subsequent
976 * pass through will have no effect in applyfn, hence the loop will terminate
977 * in at worst O(N^2).
978 */
979 static void
980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 {
982 struct zsd_entry *t;
983
984 mutex_enter(&zone->zone_lock);
985 t = list_head(&zone->zone_zsd);
986 while (t != NULL) {
987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 /* Lock dropped - restart at head */
989 t = list_head(&zone->zone_zsd);
990 } else {
991 t = list_next(&zone->zone_zsd, t);
992 }
993 }
994 mutex_exit(&zone->zone_lock);
995 }
996
997 /*
998 * Call the create function for the zone and key if CREATE_NEEDED
999 * is set.
1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001 * we wait for that thread to complete so that we can ensure that
1002 * all the callbacks are done when we've looped over all zones/keys.
1003 *
1004 * When we call the create function, we drop the global held by the
1005 * caller, and return true to tell the caller it needs to re-evalute the
1006 * state.
1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008 * remains held on exit.
1009 */
1010 static boolean_t
1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012 zone_t *zone, zone_key_t key)
1013 {
1014 void *result;
1015 struct zsd_entry *t;
1016 boolean_t dropped;
1017
1018 if (lockp != NULL) {
1019 ASSERT(MUTEX_HELD(lockp));
1020 }
1021 if (zone_lock_held) {
1022 ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 } else {
1024 mutex_enter(&zone->zone_lock);
1025 }
1026
1027 t = zsd_find(&zone->zone_zsd, key);
1028 if (t == NULL) {
1029 /*
1030 * Somebody else got here first e.g the zone going
1031 * away.
1032 */
1033 if (!zone_lock_held)
1034 mutex_exit(&zone->zone_lock);
1035 return (B_FALSE);
1036 }
1037 dropped = B_FALSE;
1038 if (zsd_wait_for_inprogress(zone, t, lockp))
1039 dropped = B_TRUE;
1040
1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 DTRACE_PROBE2(zsd__create__inprogress,
1045 zone_t *, zone, zone_key_t, key);
1046 mutex_exit(&zone->zone_lock);
1047 if (lockp != NULL)
1048 mutex_exit(lockp);
1049
1050 dropped = B_TRUE;
1051 ASSERT(t->zsd_create != NULL);
1052 DTRACE_PROBE2(zsd__create__start,
1053 zone_t *, zone, zone_key_t, key);
1054
1055 result = (*t->zsd_create)(zone->zone_id);
1056
1057 DTRACE_PROBE2(zsd__create__end,
1058 zone_t *, zone, voidn *, result);
1059
1060 ASSERT(result != NULL);
1061 if (lockp != NULL)
1062 mutex_enter(lockp);
1063 mutex_enter(&zone->zone_lock);
1064 t->zsd_data = result;
1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 cv_broadcast(&t->zsd_cv);
1068 DTRACE_PROBE2(zsd__create__completed,
1069 zone_t *, zone, zone_key_t, key);
1070 }
1071 if (!zone_lock_held)
1072 mutex_exit(&zone->zone_lock);
1073 return (dropped);
1074 }
1075
1076 /*
1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078 * is set.
1079 * If some other thread gets here first and sets *_INPROGRESS, then
1080 * we wait for that thread to complete so that we can ensure that
1081 * all the callbacks are done when we've looped over all zones/keys.
1082 *
1083 * When we call the shutdown function, we drop the global held by the
1084 * caller, and return true to tell the caller it needs to re-evalute the
1085 * state.
1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087 * remains held on exit.
1088 */
1089 static boolean_t
1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091 zone_t *zone, zone_key_t key)
1092 {
1093 struct zsd_entry *t;
1094 void *data;
1095 boolean_t dropped;
1096
1097 if (lockp != NULL) {
1098 ASSERT(MUTEX_HELD(lockp));
1099 }
1100 if (zone_lock_held) {
1101 ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 } else {
1103 mutex_enter(&zone->zone_lock);
1104 }
1105
1106 t = zsd_find(&zone->zone_zsd, key);
1107 if (t == NULL) {
1108 /*
1109 * Somebody else got here first e.g the zone going
1110 * away.
1111 */
1112 if (!zone_lock_held)
1113 mutex_exit(&zone->zone_lock);
1114 return (B_FALSE);
1115 }
1116 dropped = B_FALSE;
1117 if (zsd_wait_for_creator(zone, t, lockp))
1118 dropped = B_TRUE;
1119
1120 if (zsd_wait_for_inprogress(zone, t, lockp))
1121 dropped = B_TRUE;
1122
1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 zone_t *, zone, zone_key_t, key);
1128 mutex_exit(&zone->zone_lock);
1129 if (lockp != NULL)
1130 mutex_exit(lockp);
1131 dropped = B_TRUE;
1132
1133 ASSERT(t->zsd_shutdown != NULL);
1134 data = t->zsd_data;
1135
1136 DTRACE_PROBE2(zsd__shutdown__start,
1137 zone_t *, zone, zone_key_t, key);
1138
1139 (t->zsd_shutdown)(zone->zone_id, data);
1140 DTRACE_PROBE2(zsd__shutdown__end,
1141 zone_t *, zone, zone_key_t, key);
1142
1143 if (lockp != NULL)
1144 mutex_enter(lockp);
1145 mutex_enter(&zone->zone_lock);
1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 cv_broadcast(&t->zsd_cv);
1149 DTRACE_PROBE2(zsd__shutdown__completed,
1150 zone_t *, zone, zone_key_t, key);
1151 }
1152 if (!zone_lock_held)
1153 mutex_exit(&zone->zone_lock);
1154 return (dropped);
1155 }
1156
1157 /*
1158 * Call the destroy function for the zone and key if DESTROY_NEEDED
1159 * is set.
1160 * If some other thread gets here first and sets *_INPROGRESS, then
1161 * we wait for that thread to complete so that we can ensure that
1162 * all the callbacks are done when we've looped over all zones/keys.
1163 *
1164 * When we call the destroy function, we drop the global held by the
1165 * caller, and return true to tell the caller it needs to re-evalute the
1166 * state.
1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168 * remains held on exit.
1169 */
1170 static boolean_t
1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172 zone_t *zone, zone_key_t key)
1173 {
1174 struct zsd_entry *t;
1175 void *data;
1176 boolean_t dropped;
1177
1178 if (lockp != NULL) {
1179 ASSERT(MUTEX_HELD(lockp));
1180 }
1181 if (zone_lock_held) {
1182 ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 } else {
1184 mutex_enter(&zone->zone_lock);
1185 }
1186
1187 t = zsd_find(&zone->zone_zsd, key);
1188 if (t == NULL) {
1189 /*
1190 * Somebody else got here first e.g the zone going
1191 * away.
1192 */
1193 if (!zone_lock_held)
1194 mutex_exit(&zone->zone_lock);
1195 return (B_FALSE);
1196 }
1197 dropped = B_FALSE;
1198 if (zsd_wait_for_creator(zone, t, lockp))
1199 dropped = B_TRUE;
1200
1201 if (zsd_wait_for_inprogress(zone, t, lockp))
1202 dropped = B_TRUE;
1203
1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 DTRACE_PROBE2(zsd__destroy__inprogress,
1208 zone_t *, zone, zone_key_t, key);
1209 mutex_exit(&zone->zone_lock);
1210 if (lockp != NULL)
1211 mutex_exit(lockp);
1212 dropped = B_TRUE;
1213
1214 ASSERT(t->zsd_destroy != NULL);
1215 data = t->zsd_data;
1216 DTRACE_PROBE2(zsd__destroy__start,
1217 zone_t *, zone, zone_key_t, key);
1218
1219 (t->zsd_destroy)(zone->zone_id, data);
1220 DTRACE_PROBE2(zsd__destroy__end,
1221 zone_t *, zone, zone_key_t, key);
1222
1223 if (lockp != NULL)
1224 mutex_enter(lockp);
1225 mutex_enter(&zone->zone_lock);
1226 t->zsd_data = NULL;
1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 cv_broadcast(&t->zsd_cv);
1230 DTRACE_PROBE2(zsd__destroy__completed,
1231 zone_t *, zone, zone_key_t, key);
1232 }
1233 if (!zone_lock_held)
1234 mutex_exit(&zone->zone_lock);
1235 return (dropped);
1236 }
1237
1238 /*
1239 * Wait for any CREATE_NEEDED flag to be cleared.
1240 * Returns true if lockp was temporarily dropped while waiting.
1241 */
1242 static boolean_t
1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 boolean_t dropped = B_FALSE;
1246
1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 DTRACE_PROBE2(zsd__wait__for__creator,
1249 zone_t *, zone, struct zsd_entry *, t);
1250 if (lockp != NULL) {
1251 dropped = B_TRUE;
1252 mutex_exit(lockp);
1253 }
1254 cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 if (lockp != NULL) {
1256 /* First drop zone_lock to preserve order */
1257 mutex_exit(&zone->zone_lock);
1258 mutex_enter(lockp);
1259 mutex_enter(&zone->zone_lock);
1260 }
1261 }
1262 return (dropped);
1263 }
1264
1265 /*
1266 * Wait for any INPROGRESS flag to be cleared.
1267 * Returns true if lockp was temporarily dropped while waiting.
1268 */
1269 static boolean_t
1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 {
1272 boolean_t dropped = B_FALSE;
1273
1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 zone_t *, zone, struct zsd_entry *, t);
1277 if (lockp != NULL) {
1278 dropped = B_TRUE;
1279 mutex_exit(lockp);
1280 }
1281 cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 if (lockp != NULL) {
1283 /* First drop zone_lock to preserve order */
1284 mutex_exit(&zone->zone_lock);
1285 mutex_enter(lockp);
1286 mutex_enter(&zone->zone_lock);
1287 }
1288 }
1289 return (dropped);
1290 }
1291
1292 /*
1293 * Frees memory associated with the zone dataset list.
1294 */
1295 static void
1296 zone_free_datasets(zone_t *zone)
1297 {
1298 zone_dataset_t *t, *next;
1299
1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 next = list_next(&zone->zone_datasets, t);
1302 list_remove(&zone->zone_datasets, t);
1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 kmem_free(t, sizeof (*t));
1305 }
1306 list_destroy(&zone->zone_datasets);
1307 }
1308
1309 /*
1310 * zone.cpu-shares resource control support.
1311 */
1312 /*ARGSUSED*/
1313 static rctl_qty_t
1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 {
1316 ASSERT(MUTEX_HELD(&p->p_lock));
1317 return (p->p_zone->zone_shares);
1318 }
1319
1320 /*ARGSUSED*/
1321 static int
1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323 rctl_qty_t nv)
1324 {
1325 ASSERT(MUTEX_HELD(&p->p_lock));
1326 ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 if (e->rcep_p.zone == NULL)
1328 return (0);
1329
1330 e->rcep_p.zone->zone_shares = nv;
1331 return (0);
1332 }
1333
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 rcop_no_action,
1336 zone_cpu_shares_usage,
1337 zone_cpu_shares_set,
1338 rcop_no_test
1339 };
1340
1341 /*
1342 * zone.cpu-cap resource control support.
1343 */
1344 /*ARGSUSED*/
1345 static rctl_qty_t
1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 {
1348 ASSERT(MUTEX_HELD(&p->p_lock));
1349 return (cpucaps_zone_get(p->p_zone));
1350 }
1351
1352 /*ARGSUSED*/
1353 static int
1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355 rctl_qty_t nv)
1356 {
1357 zone_t *zone = e->rcep_p.zone;
1358
1359 ASSERT(MUTEX_HELD(&p->p_lock));
1360 ASSERT(e->rcep_t == RCENTITY_ZONE);
1361
1362 if (zone == NULL)
1363 return (0);
1364
1365 /*
1366 * set cap to the new value.
1367 */
1368 return (cpucaps_zone_set(zone, nv));
1369 }
1370
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 rcop_no_action,
1373 zone_cpu_cap_get,
1374 zone_cpu_cap_set,
1375 rcop_no_test
1376 };
1377
1378 /*ARGSUSED*/
1379 static rctl_qty_t
1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 {
1382 rctl_qty_t nlwps;
1383 zone_t *zone = p->p_zone;
1384
1385 ASSERT(MUTEX_HELD(&p->p_lock));
1386
1387 mutex_enter(&zone->zone_nlwps_lock);
1388 nlwps = zone->zone_nlwps;
1389 mutex_exit(&zone->zone_nlwps_lock);
1390
1391 return (nlwps);
1392 }
1393
1394 /*ARGSUSED*/
1395 static int
1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397 rctl_qty_t incr, uint_t flags)
1398 {
1399 rctl_qty_t nlwps;
1400
1401 ASSERT(MUTEX_HELD(&p->p_lock));
1402 ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 if (e->rcep_p.zone == NULL)
1404 return (0);
1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 nlwps = e->rcep_p.zone->zone_nlwps;
1407
1408 if (nlwps + incr > rcntl->rcv_value)
1409 return (1);
1410
1411 return (0);
1412 }
1413
1414 /*ARGSUSED*/
1415 static int
1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 {
1418 ASSERT(MUTEX_HELD(&p->p_lock));
1419 ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 if (e->rcep_p.zone == NULL)
1421 return (0);
1422 e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 return (0);
1424 }
1425
1426 static rctl_ops_t zone_lwps_ops = {
1427 rcop_no_action,
1428 zone_lwps_usage,
1429 zone_lwps_set,
1430 zone_lwps_test,
1431 };
1432
1433 /*ARGSUSED*/
1434 static rctl_qty_t
1435 zone_procs_usage(rctl_t *r, proc_t *p)
1436 {
1437 rctl_qty_t nprocs;
1438 zone_t *zone = p->p_zone;
1439
1440 ASSERT(MUTEX_HELD(&p->p_lock));
1441
1442 mutex_enter(&zone->zone_nlwps_lock);
1443 nprocs = zone->zone_nprocs;
1444 mutex_exit(&zone->zone_nlwps_lock);
1445
1446 return (nprocs);
1447 }
1448
1449 /*ARGSUSED*/
1450 static int
1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452 rctl_qty_t incr, uint_t flags)
1453 {
1454 rctl_qty_t nprocs;
1455
1456 ASSERT(MUTEX_HELD(&p->p_lock));
1457 ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 if (e->rcep_p.zone == NULL)
1459 return (0);
1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 nprocs = e->rcep_p.zone->zone_nprocs;
1462
1463 if (nprocs + incr > rcntl->rcv_value)
1464 return (1);
1465
1466 return (0);
1467 }
1468
1469 /*ARGSUSED*/
1470 static int
1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 {
1473 ASSERT(MUTEX_HELD(&p->p_lock));
1474 ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 if (e->rcep_p.zone == NULL)
1476 return (0);
1477 e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 return (0);
1479 }
1480
1481 static rctl_ops_t zone_procs_ops = {
1482 rcop_no_action,
1483 zone_procs_usage,
1484 zone_procs_set,
1485 zone_procs_test,
1486 };
1487
1488 /*ARGSUSED*/
1489 static int
1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1491 rctl_qty_t incr, uint_t flags)
1492 {
1493 rctl_qty_t v;
1494 ASSERT(MUTEX_HELD(&p->p_lock));
1495 ASSERT(e->rcep_t == RCENTITY_ZONE);
1496 v = e->rcep_p.zone->zone_shmmax + incr;
1497 if (v > rval->rcv_value)
1498 return (1);
1499 return (0);
1500 }
1501
1502 static rctl_ops_t zone_shmmax_ops = {
1503 rcop_no_action,
1504 rcop_no_usage,
1505 rcop_no_set,
1506 zone_shmmax_test
1507 };
1508
1509 /*ARGSUSED*/
1510 static int
1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1512 rctl_qty_t incr, uint_t flags)
1513 {
1514 rctl_qty_t v;
1515 ASSERT(MUTEX_HELD(&p->p_lock));
1516 ASSERT(e->rcep_t == RCENTITY_ZONE);
1517 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1518 if (v > rval->rcv_value)
1519 return (1);
1520 return (0);
1521 }
1522
1523 static rctl_ops_t zone_shmmni_ops = {
1524 rcop_no_action,
1525 rcop_no_usage,
1526 rcop_no_set,
1527 zone_shmmni_test
1528 };
1529
1530 /*ARGSUSED*/
1531 static int
1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1533 rctl_qty_t incr, uint_t flags)
1534 {
1535 rctl_qty_t v;
1536 ASSERT(MUTEX_HELD(&p->p_lock));
1537 ASSERT(e->rcep_t == RCENTITY_ZONE);
1538 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1539 if (v > rval->rcv_value)
1540 return (1);
1541 return (0);
1542 }
1543
1544 static rctl_ops_t zone_semmni_ops = {
1545 rcop_no_action,
1546 rcop_no_usage,
1547 rcop_no_set,
1548 zone_semmni_test
1549 };
1550
1551 /*ARGSUSED*/
1552 static int
1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1554 rctl_qty_t incr, uint_t flags)
1555 {
1556 rctl_qty_t v;
1557 ASSERT(MUTEX_HELD(&p->p_lock));
1558 ASSERT(e->rcep_t == RCENTITY_ZONE);
1559 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1560 if (v > rval->rcv_value)
1561 return (1);
1562 return (0);
1563 }
1564
1565 static rctl_ops_t zone_msgmni_ops = {
1566 rcop_no_action,
1567 rcop_no_usage,
1568 rcop_no_set,
1569 zone_msgmni_test
1570 };
1571
1572 /*ARGSUSED*/
1573 static rctl_qty_t
1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1575 {
1576 rctl_qty_t q;
1577 ASSERT(MUTEX_HELD(&p->p_lock));
1578 mutex_enter(&p->p_zone->zone_mem_lock);
1579 q = p->p_zone->zone_locked_mem;
1580 mutex_exit(&p->p_zone->zone_mem_lock);
1581 return (q);
1582 }
1583
1584 /*ARGSUSED*/
1585 static int
1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1587 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1588 {
1589 rctl_qty_t q;
1590 zone_t *z;
1591
1592 z = e->rcep_p.zone;
1593 ASSERT(MUTEX_HELD(&p->p_lock));
1594 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1595 q = z->zone_locked_mem;
1596 if (q + incr > rcntl->rcv_value)
1597 return (1);
1598 return (0);
1599 }
1600
1601 /*ARGSUSED*/
1602 static int
1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1604 rctl_qty_t nv)
1605 {
1606 ASSERT(MUTEX_HELD(&p->p_lock));
1607 ASSERT(e->rcep_t == RCENTITY_ZONE);
1608 if (e->rcep_p.zone == NULL)
1609 return (0);
1610 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1611 return (0);
1612 }
1613
1614 static rctl_ops_t zone_locked_mem_ops = {
1615 rcop_no_action,
1616 zone_locked_mem_usage,
1617 zone_locked_mem_set,
1618 zone_locked_mem_test
1619 };
1620
1621 /*ARGSUSED*/
1622 static rctl_qty_t
1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1624 {
1625 rctl_qty_t q;
1626 zone_t *z = p->p_zone;
1627
1628 ASSERT(MUTEX_HELD(&p->p_lock));
1629 mutex_enter(&z->zone_mem_lock);
1630 q = z->zone_max_swap;
1631 mutex_exit(&z->zone_mem_lock);
1632 return (q);
1633 }
1634
1635 /*ARGSUSED*/
1636 static int
1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1638 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1639 {
1640 rctl_qty_t q;
1641 zone_t *z;
1642
1643 z = e->rcep_p.zone;
1644 ASSERT(MUTEX_HELD(&p->p_lock));
1645 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1646 q = z->zone_max_swap;
1647 if (q + incr > rcntl->rcv_value)
1648 return (1);
1649 return (0);
1650 }
1651
1652 /*ARGSUSED*/
1653 static int
1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1655 rctl_qty_t nv)
1656 {
1657 ASSERT(MUTEX_HELD(&p->p_lock));
1658 ASSERT(e->rcep_t == RCENTITY_ZONE);
1659 if (e->rcep_p.zone == NULL)
1660 return (0);
1661 e->rcep_p.zone->zone_max_swap_ctl = nv;
1662 return (0);
1663 }
1664
1665 static rctl_ops_t zone_max_swap_ops = {
1666 rcop_no_action,
1667 zone_max_swap_usage,
1668 zone_max_swap_set,
1669 zone_max_swap_test
1670 };
1671
1672 /*ARGSUSED*/
1673 static rctl_qty_t
1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1675 {
1676 rctl_qty_t q;
1677 zone_t *z = p->p_zone;
1678
1679 ASSERT(MUTEX_HELD(&p->p_lock));
1680 mutex_enter(&z->zone_rctl_lock);
1681 q = z->zone_max_lofi;
1682 mutex_exit(&z->zone_rctl_lock);
1683 return (q);
1684 }
1685
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1689 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1690 {
1691 rctl_qty_t q;
1692 zone_t *z;
1693
1694 z = e->rcep_p.zone;
1695 ASSERT(MUTEX_HELD(&p->p_lock));
1696 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1697 q = z->zone_max_lofi;
1698 if (q + incr > rcntl->rcv_value)
1699 return (1);
1700 return (0);
1701 }
1702
1703 /*ARGSUSED*/
1704 static int
1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1706 rctl_qty_t nv)
1707 {
1708 ASSERT(MUTEX_HELD(&p->p_lock));
1709 ASSERT(e->rcep_t == RCENTITY_ZONE);
1710 if (e->rcep_p.zone == NULL)
1711 return (0);
1712 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1713 return (0);
1714 }
1715
1716 static rctl_ops_t zone_max_lofi_ops = {
1717 rcop_no_action,
1718 zone_max_lofi_usage,
1719 zone_max_lofi_set,
1720 zone_max_lofi_test
1721 };
1722
1723 /*
1724 * Helper function to brand the zone with a unique ID.
1725 */
1726 static void
1727 zone_uniqid(zone_t *zone)
1728 {
1729 static uint64_t uniqid = 0;
1730
1731 ASSERT(MUTEX_HELD(&zonehash_lock));
1732 zone->zone_uniqid = uniqid++;
1733 }
1734
1735 /*
1736 * Returns a held pointer to the "kcred" for the specified zone.
1737 */
1738 struct cred *
1739 zone_get_kcred(zoneid_t zoneid)
1740 {
1741 zone_t *zone;
1742 cred_t *cr;
1743
1744 if ((zone = zone_find_by_id(zoneid)) == NULL)
1745 return (NULL);
1746 cr = zone->zone_kcred;
1747 crhold(cr);
1748 zone_rele(zone);
1749 return (cr);
1750 }
1751
1752 static int
1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1754 {
1755 zone_t *zone = ksp->ks_private;
1756 zone_kstat_t *zk = ksp->ks_data;
1757
1758 if (rw == KSTAT_WRITE)
1759 return (EACCES);
1760
1761 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1762 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1763 return (0);
1764 }
1765
1766 static int
1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1768 {
1769 zone_t *zone = ksp->ks_private;
1770 zone_kstat_t *zk = ksp->ks_data;
1771
1772 if (rw == KSTAT_WRITE)
1773 return (EACCES);
1774
1775 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1776 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1777 return (0);
1778 }
1779
1780 static int
1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1782 {
1783 zone_t *zone = ksp->ks_private;
1784 zone_kstat_t *zk = ksp->ks_data;
1785
1786 if (rw == KSTAT_WRITE)
1787 return (EACCES);
1788
1789 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1790 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1791 return (0);
1792 }
1793
1794 static kstat_t *
1795 zone_kstat_create_common(zone_t *zone, char *name,
1796 int (*updatefunc) (kstat_t *, int))
1797 {
1798 kstat_t *ksp;
1799 zone_kstat_t *zk;
1800
1801 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1802 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1803 KSTAT_FLAG_VIRTUAL);
1804
1805 if (ksp == NULL)
1806 return (NULL);
1807
1808 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1809 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1810 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1811 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1812 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1813 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1814 ksp->ks_update = updatefunc;
1815 ksp->ks_private = zone;
1816 kstat_install(ksp);
1817 return (ksp);
1818 }
1819
1820
1821 static int
1822 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1823 {
1824 zone_t *zone = ksp->ks_private;
1825 zone_mcap_kstat_t *zmp = ksp->ks_data;
1826
1827 if (rw == KSTAT_WRITE)
1828 return (EACCES);
1829
1830 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1831 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1832 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1833 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1834 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1835
1836 return (0);
1837 }
1838
1839 static kstat_t *
1840 zone_mcap_kstat_create(zone_t *zone)
1841 {
1842 kstat_t *ksp;
1843 zone_mcap_kstat_t *zmp;
1844
1845 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1846 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1847 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1848 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1849 return (NULL);
1850
1851 if (zone->zone_id != GLOBAL_ZONEID)
1852 kstat_zone_add(ksp, GLOBAL_ZONEID);
1853
1854 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1855 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1856 ksp->ks_lock = &zone->zone_mcap_lock;
1857 zone->zone_mcap_stats = zmp;
1858
1859 /* The kstat "name" field is not large enough for a full zonename */
1860 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1861 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1862 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1863 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1864 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1865 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1866 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1867 KSTAT_DATA_UINT64);
1868
1869 ksp->ks_update = zone_mcap_kstat_update;
1870 ksp->ks_private = zone;
1871
1872 kstat_install(ksp);
1873 return (ksp);
1874 }
1875
1876 static int
1877 zone_misc_kstat_update(kstat_t *ksp, int rw)
1878 {
1879 zone_t *zone = ksp->ks_private;
1880 zone_misc_kstat_t *zmp = ksp->ks_data;
1881 hrtime_t tmp;
1882
1883 if (rw == KSTAT_WRITE)
1884 return (EACCES);
1885
1886 tmp = zone->zone_utime;
1887 scalehrtime(&tmp);
1888 zmp->zm_utime.value.ui64 = tmp;
1889 tmp = zone->zone_stime;
1890 scalehrtime(&tmp);
1891 zmp->zm_stime.value.ui64 = tmp;
1892 tmp = zone->zone_wtime;
1893 scalehrtime(&tmp);
1894 zmp->zm_wtime.value.ui64 = tmp;
1895
1896 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1897 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1898 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1899
1900 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1901 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1902 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1903 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1904
1905 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1906
1907 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1908 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1909
1910 return (0);
1911 }
1912
1913 static kstat_t *
1914 zone_misc_kstat_create(zone_t *zone)
1915 {
1916 kstat_t *ksp;
1917 zone_misc_kstat_t *zmp;
1918
1919 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1920 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1921 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1922 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1923 return (NULL);
1924
1925 if (zone->zone_id != GLOBAL_ZONEID)
1926 kstat_zone_add(ksp, GLOBAL_ZONEID);
1927
1928 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1929 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1930 ksp->ks_lock = &zone->zone_misc_lock;
1931 zone->zone_misc_stats = zmp;
1932
1933 /* The kstat "name" field is not large enough for a full zonename */
1934 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1935 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1936 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1937 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1938 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1939 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1940 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1941 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1942 KSTAT_DATA_UINT32);
1943 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1944 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1945 KSTAT_DATA_UINT32);
1946 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1947 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1948 kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1949 KSTAT_DATA_UINT32);
1950 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1951 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1952
1953 ksp->ks_update = zone_misc_kstat_update;
1954 ksp->ks_private = zone;
1955
1956 kstat_install(ksp);
1957 return (ksp);
1958 }
1959
1960 static void
1961 zone_kstat_create(zone_t *zone)
1962 {
1963 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1964 "lockedmem", zone_lockedmem_kstat_update);
1965 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1966 "swapresv", zone_swapresv_kstat_update);
1967 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1968 "nprocs", zone_nprocs_kstat_update);
1969
1970 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
1971 zone->zone_mcap_stats = kmem_zalloc(
1972 sizeof (zone_mcap_kstat_t), KM_SLEEP);
1973 }
1974
1975 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1976 zone->zone_misc_stats = kmem_zalloc(
1977 sizeof (zone_misc_kstat_t), KM_SLEEP);
1978 }
1979 }
1980
1981 static void
1982 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1983 {
1984 void *data;
1985
1986 if (*pkstat != NULL) {
1987 data = (*pkstat)->ks_data;
1988 kstat_delete(*pkstat);
1989 kmem_free(data, datasz);
1990 *pkstat = NULL;
1991 }
1992 }
1993
1994 static void
1995 zone_kstat_delete(zone_t *zone)
1996 {
1997 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1998 sizeof (zone_kstat_t));
1999 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2000 sizeof (zone_kstat_t));
2001 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2002 sizeof (zone_kstat_t));
2003 zone_kstat_delete_common(&zone->zone_mcap_ksp,
2004 sizeof (zone_mcap_kstat_t));
2005 zone_kstat_delete_common(&zone->zone_misc_ksp,
2006 sizeof (zone_misc_kstat_t));
2007 }
2008
2009 /*
2010 * Called very early on in boot to initialize the ZSD list so that
2011 * zone_key_create() can be called before zone_init(). It also initializes
2012 * portions of zone0 which may be used before zone_init() is called. The
2013 * variable "global_zone" will be set when zone0 is fully initialized by
2014 * zone_init().
2015 */
2016 void
2017 zone_zsd_init(void)
2018 {
2019 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2020 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2021 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2022 offsetof(struct zsd_entry, zsd_linkage));
2023 list_create(&zone_active, sizeof (zone_t),
2024 offsetof(zone_t, zone_linkage));
2025 list_create(&zone_deathrow, sizeof (zone_t),
2026 offsetof(zone_t, zone_linkage));
2027
2028 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2029 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2030 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2031 zone0.zone_shares = 1;
2032 zone0.zone_nlwps = 0;
2033 zone0.zone_nlwps_ctl = INT_MAX;
2034 zone0.zone_nprocs = 0;
2035 zone0.zone_nprocs_ctl = INT_MAX;
2036 zone0.zone_locked_mem = 0;
2037 zone0.zone_locked_mem_ctl = UINT64_MAX;
2038 ASSERT(zone0.zone_max_swap == 0);
2039 zone0.zone_max_swap_ctl = UINT64_MAX;
2040 zone0.zone_max_lofi = 0;
2041 zone0.zone_max_lofi_ctl = UINT64_MAX;
2042 zone0.zone_shmmax = 0;
2043 zone0.zone_ipc.ipcq_shmmni = 0;
2044 zone0.zone_ipc.ipcq_semmni = 0;
2045 zone0.zone_ipc.ipcq_msgmni = 0;
2046 zone0.zone_name = GLOBAL_ZONENAME;
2047 zone0.zone_nodename = utsname.nodename;
2048 zone0.zone_domain = srpc_domain;
2049 zone0.zone_hostid = HW_INVALID_HOSTID;
2050 zone0.zone_fs_allowed = NULL;
2051 zone0.zone_ref = 1;
2052 zone0.zone_id = GLOBAL_ZONEID;
2053 zone0.zone_status = ZONE_IS_RUNNING;
2054 zone0.zone_rootpath = "/";
2055 zone0.zone_rootpathlen = 2;
2056 zone0.zone_psetid = ZONE_PS_INVAL;
2057 zone0.zone_ncpus = 0;
2058 zone0.zone_ncpus_online = 0;
2059 zone0.zone_proc_initpid = 1;
2060 zone0.zone_initname = initname;
2061 zone0.zone_lockedmem_kstat = NULL;
2062 zone0.zone_swapresv_kstat = NULL;
2063 zone0.zone_nprocs_kstat = NULL;
2064
2065 zone0.zone_stime = 0;
2066 zone0.zone_utime = 0;
2067 zone0.zone_wtime = 0;
2068
2069 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2070 offsetof(zone_ref_t, zref_linkage));
2071 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2072 offsetof(struct zsd_entry, zsd_linkage));
2073 list_insert_head(&zone_active, &zone0);
2074
2075 /*
2076 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2077 * to anything meaningful. It is assigned to be 'rootdir' in
2078 * vfs_mountroot().
2079 */
2080 zone0.zone_rootvp = NULL;
2081 zone0.zone_vfslist = NULL;
2082 zone0.zone_bootargs = initargs;
2083 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2084 /*
2085 * The global zone has all privileges
2086 */
2087 priv_fillset(zone0.zone_privset);
2088 /*
2089 * Add p0 to the global zone
2090 */
2091 zone0.zone_zsched = &p0;
2092 p0.p_zone = &zone0;
2093 }
2094
2095 /*
2096 * Compute a hash value based on the contents of the label and the DOI. The
2097 * hash algorithm is somewhat arbitrary, but is based on the observation that
2098 * humans will likely pick labels that differ by amounts that work out to be
2099 * multiples of the number of hash chains, and thus stirring in some primes
2100 * should help.
2101 */
2102 static uint_t
2103 hash_bylabel(void *hdata, mod_hash_key_t key)
2104 {
2105 const ts_label_t *lab = (ts_label_t *)key;
2106 const uint32_t *up, *ue;
2107 uint_t hash;
2108 int i;
2109
2110 _NOTE(ARGUNUSED(hdata));
2111
2112 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2113 /* we depend on alignment of label, but not representation */
2114 up = (const uint32_t *)&lab->tsl_label;
2115 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2116 i = 1;
2117 while (up < ue) {
2118 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2119 hash += *up + (*up << ((i % 16) + 1));
2120 up++;
2121 i++;
2122 }
2123 return (hash);
2124 }
2125
2126 /*
2127 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2128 * equal). This may need to be changed if less than / greater than is ever
2129 * needed.
2130 */
2131 static int
2132 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2133 {
2134 ts_label_t *lab1 = (ts_label_t *)key1;
2135 ts_label_t *lab2 = (ts_label_t *)key2;
2136
2137 return (label_equal(lab1, lab2) ? 0 : 1);
2138 }
2139
2140 /*
2141 * Called by main() to initialize the zones framework.
2142 */
2143 void
2144 zone_init(void)
2145 {
2146 rctl_dict_entry_t *rde;
2147 rctl_val_t *dval;
2148 rctl_set_t *set;
2149 rctl_alloc_gp_t *gp;
2150 rctl_entity_p_t e;
2151 int res;
2152
2153 ASSERT(curproc == &p0);
2154
2155 /*
2156 * Create ID space for zone IDs. ID 0 is reserved for the
2157 * global zone.
2158 */
2159 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2160
2161 /*
2162 * Initialize generic zone resource controls, if any.
2163 */
2164 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2165 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2166 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2167 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2168
2169 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2170 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2171 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2172 RCTL_GLOBAL_INFINITE,
2173 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2174
2175 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2176 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2177 INT_MAX, INT_MAX, &zone_lwps_ops);
2178
2179 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2180 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2181 INT_MAX, INT_MAX, &zone_procs_ops);
2182
2183 /*
2184 * System V IPC resource controls
2185 */
2186 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2187 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2188 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2189
2190 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2191 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2192 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2193
2194 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2195 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2196 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2197
2198 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2199 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2200 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2201
2202 /*
2203 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2204 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2205 */
2206 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2207 bzero(dval, sizeof (rctl_val_t));
2208 dval->rcv_value = 1;
2209 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2210 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2211 dval->rcv_action_recip_pid = -1;
2212
2213 rde = rctl_dict_lookup("zone.cpu-shares");
2214 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2215
2216 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2217 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2218 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2219 &zone_locked_mem_ops);
2220
2221 rc_zone_max_swap = rctl_register("zone.max-swap",
2222 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2223 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2224 &zone_max_swap_ops);
2225
2226 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2227 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2228 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2229 &zone_max_lofi_ops);
2230
2231 /*
2232 * Initialize the ``global zone''.
2233 */
2234 set = rctl_set_create();
2235 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2236 mutex_enter(&p0.p_lock);
2237 e.rcep_p.zone = &zone0;
2238 e.rcep_t = RCENTITY_ZONE;
2239 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2240 gp);
2241
2242 zone0.zone_nlwps = p0.p_lwpcnt;
2243 zone0.zone_nprocs = 1;
2244 zone0.zone_ntasks = 1;
2245 mutex_exit(&p0.p_lock);
2246 zone0.zone_restart_init = B_TRUE;
2247 zone0.zone_brand = &native_brand;
2248 rctl_prealloc_destroy(gp);
2249 /*
2250 * pool_default hasn't been initialized yet, so we let pool_init()
2251 * take care of making sure the global zone is in the default pool.
2252 */
2253
2254 /*
2255 * Initialize global zone kstats
2256 */
2257 zone_kstat_create(&zone0);
2258
2259 /*
2260 * Initialize zone label.
2261 * mlp are initialized when tnzonecfg is loaded.
2262 */
2263 zone0.zone_slabel = l_admin_low;
2264 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2265 label_hold(l_admin_low);
2266
2267 /*
2268 * Initialise the lock for the database structure used by mntfs.
2269 */
2270 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2271
2272 mutex_enter(&zonehash_lock);
2273 zone_uniqid(&zone0);
2274 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2275
2276 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2277 mod_hash_null_valdtor);
2278 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2279 zone_hash_size, mod_hash_null_valdtor);
2280 /*
2281 * maintain zonehashbylabel only for labeled systems
2282 */
2283 if (is_system_labeled())
2284 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2285 zone_hash_size, mod_hash_null_keydtor,
2286 mod_hash_null_valdtor, hash_bylabel, NULL,
2287 hash_labelkey_cmp, KM_SLEEP);
2288 zonecount = 1;
2289
2290 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2291 (mod_hash_val_t)&zone0);
2292 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2293 (mod_hash_val_t)&zone0);
2294 if (is_system_labeled()) {
2295 zone0.zone_flags |= ZF_HASHED_LABEL;
2296 (void) mod_hash_insert(zonehashbylabel,
2297 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2298 }
2299 mutex_exit(&zonehash_lock);
2300
2301 /*
2302 * We avoid setting zone_kcred until now, since kcred is initialized
2303 * sometime after zone_zsd_init() and before zone_init().
2304 */
2305 zone0.zone_kcred = kcred;
2306 /*
2307 * The global zone is fully initialized (except for zone_rootvp which
2308 * will be set when the root filesystem is mounted).
2309 */
2310 global_zone = &zone0;
2311
2312 /*
2313 * Setup an event channel to send zone status change notifications on
2314 */
2315 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2316 EVCH_CREAT);
2317
2318 if (res)
2319 panic("Sysevent_evc_bind failed during zone setup.\n");
2320
2321 }
2322
2323 static void
2324 zone_free(zone_t *zone)
2325 {
2326 ASSERT(zone != global_zone);
2327 ASSERT(zone->zone_ntasks == 0);
2328 ASSERT(zone->zone_nlwps == 0);
2329 ASSERT(zone->zone_nprocs == 0);
2330 ASSERT(zone->zone_cred_ref == 0);
2331 ASSERT(zone->zone_kcred == NULL);
2332 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2333 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2334 ASSERT(list_is_empty(&zone->zone_ref_list));
2335
2336 /*
2337 * Remove any zone caps.
2338 */
2339 cpucaps_zone_remove(zone);
2340
2341 ASSERT(zone->zone_cpucap == NULL);
2342
2343 /* remove from deathrow list */
2344 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2345 ASSERT(zone->zone_ref == 0);
2346 mutex_enter(&zone_deathrow_lock);
2347 list_remove(&zone_deathrow, zone);
2348 mutex_exit(&zone_deathrow_lock);
2349 }
2350
2351 list_destroy(&zone->zone_ref_list);
2352 zone_free_zsd(zone);
2353 zone_free_datasets(zone);
2354 list_destroy(&zone->zone_dl_list);
2355
2356 if (zone->zone_rootvp != NULL)
2357 VN_RELE(zone->zone_rootvp);
2358 if (zone->zone_rootpath)
2359 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2360 if (zone->zone_name != NULL)
2361 kmem_free(zone->zone_name, ZONENAME_MAX);
2362 if (zone->zone_slabel != NULL)
2363 label_rele(zone->zone_slabel);
2364 if (zone->zone_nodename != NULL)
2365 kmem_free(zone->zone_nodename, _SYS_NMLN);
2366 if (zone->zone_domain != NULL)
2367 kmem_free(zone->zone_domain, _SYS_NMLN);
2368 if (zone->zone_privset != NULL)
2369 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2370 if (zone->zone_rctls != NULL)
2371 rctl_set_free(zone->zone_rctls);
2372 if (zone->zone_bootargs != NULL)
2373 strfree(zone->zone_bootargs);
2374 if (zone->zone_initname != NULL)
2375 strfree(zone->zone_initname);
2376 if (zone->zone_fs_allowed != NULL)
2377 strfree(zone->zone_fs_allowed);
2378 if (zone->zone_pfexecd != NULL)
2379 klpd_freelist(&zone->zone_pfexecd);
2380 id_free(zoneid_space, zone->zone_id);
2381 mutex_destroy(&zone->zone_lock);
2382 cv_destroy(&zone->zone_cv);
2383 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2384 rw_destroy(&zone->zone_mntfs_db_lock);
2385 kmem_free(zone, sizeof (zone_t));
2386 }
2387
2388 /*
2389 * See block comment at the top of this file for information about zone
2390 * status values.
2391 */
2392 /*
2393 * Convenience function for setting zone status.
2394 */
2395 static void
2396 zone_status_set(zone_t *zone, zone_status_t status)
2397 {
2398
2399 nvlist_t *nvl = NULL;
2400 ASSERT(MUTEX_HELD(&zone_status_lock));
2401 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2402 status >= zone_status_get(zone));
2403
2404 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2405 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2406 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2407 zone_status_table[status]) ||
2408 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2409 zone_status_table[zone->zone_status]) ||
2410 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2411 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2412 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2413 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2414 #ifdef DEBUG
2415 (void) printf(
2416 "Failed to allocate and send zone state change event.\n");
2417 #endif
2418 }
2419 nvlist_free(nvl);
2420
2421 zone->zone_status = status;
2422
2423 cv_broadcast(&zone->zone_cv);
2424 }
2425
2426 /*
2427 * Public function to retrieve the zone status. The zone status may
2428 * change after it is retrieved.
2429 */
2430 zone_status_t
2431 zone_status_get(zone_t *zone)
2432 {
2433 return (zone->zone_status);
2434 }
2435
2436 static int
2437 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2438 {
2439 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2440 int err = 0;
2441
2442 ASSERT(zone != global_zone);
2443 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2444 goto done; /* EFAULT or ENAMETOOLONG */
2445
2446 if (zone->zone_bootargs != NULL)
2447 strfree(zone->zone_bootargs);
2448
2449 zone->zone_bootargs = strdup(buf);
2450
2451 done:
2452 kmem_free(buf, BOOTARGS_MAX);
2453 return (err);
2454 }
2455
2456 static int
2457 zone_set_brand(zone_t *zone, const char *brand)
2458 {
2459 struct brand_attr *attrp;
2460 brand_t *bp;
2461
2462 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2463 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2464 kmem_free(attrp, sizeof (struct brand_attr));
2465 return (EFAULT);
2466 }
2467
2468 bp = brand_register_zone(attrp);
2469 kmem_free(attrp, sizeof (struct brand_attr));
2470 if (bp == NULL)
2471 return (EINVAL);
2472
2473 /*
2474 * This is the only place where a zone can change it's brand.
2475 * We already need to hold zone_status_lock to check the zone
2476 * status, so we'll just use that lock to serialize zone
2477 * branding requests as well.
2478 */
2479 mutex_enter(&zone_status_lock);
2480
2481 /* Re-Branding is not allowed and the zone can't be booted yet */
2482 if ((ZONE_IS_BRANDED(zone)) ||
2483 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2484 mutex_exit(&zone_status_lock);
2485 brand_unregister_zone(bp);
2486 return (EINVAL);
2487 }
2488
2489 /* set up the brand specific data */
2490 zone->zone_brand = bp;
2491 ZBROP(zone)->b_init_brand_data(zone);
2492
2493 mutex_exit(&zone_status_lock);
2494 return (0);
2495 }
2496
2497 static int
2498 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2499 {
2500 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2501 int err = 0;
2502
2503 ASSERT(zone != global_zone);
2504 if ((err = copyinstr(zone_fs_allowed, buf,
2505 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2506 goto done;
2507
2508 if (zone->zone_fs_allowed != NULL)
2509 strfree(zone->zone_fs_allowed);
2510
2511 zone->zone_fs_allowed = strdup(buf);
2512
2513 done:
2514 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2515 return (err);
2516 }
2517
2518 static int
2519 zone_set_initname(zone_t *zone, const char *zone_initname)
2520 {
2521 char initname[INITNAME_SZ];
2522 size_t len;
2523 int err = 0;
2524
2525 ASSERT(zone != global_zone);
2526 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2527 return (err); /* EFAULT or ENAMETOOLONG */
2528
2529 if (zone->zone_initname != NULL)
2530 strfree(zone->zone_initname);
2531
2532 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2533 (void) strcpy(zone->zone_initname, initname);
2534 return (0);
2535 }
2536
2537 static int
2538 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2539 {
2540 uint64_t mcap;
2541 int err = 0;
2542
2543 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2544 zone->zone_phys_mcap = mcap;
2545
2546 return (err);
2547 }
2548
2549 static int
2550 zone_set_sched_class(zone_t *zone, const char *new_class)
2551 {
2552 char sched_class[PC_CLNMSZ];
2553 id_t classid;
2554 int err;
2555
2556 ASSERT(zone != global_zone);
2557 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2558 return (err); /* EFAULT or ENAMETOOLONG */
2559
2560 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2561 return (set_errno(EINVAL));
2562 zone->zone_defaultcid = classid;
2563 ASSERT(zone->zone_defaultcid > 0 &&
2564 zone->zone_defaultcid < loaded_classes);
2565
2566 return (0);
2567 }
2568
2569 /*
2570 * Block indefinitely waiting for (zone_status >= status)
2571 */
2572 void
2573 zone_status_wait(zone_t *zone, zone_status_t status)
2574 {
2575 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2576
2577 mutex_enter(&zone_status_lock);
2578 while (zone->zone_status < status) {
2579 cv_wait(&zone->zone_cv, &zone_status_lock);
2580 }
2581 mutex_exit(&zone_status_lock);
2582 }
2583
2584 /*
2585 * Private CPR-safe version of zone_status_wait().
2586 */
2587 static void
2588 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2589 {
2590 callb_cpr_t cprinfo;
2591
2592 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2593
2594 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2595 str);
2596 mutex_enter(&zone_status_lock);
2597 while (zone->zone_status < status) {
2598 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2599 cv_wait(&zone->zone_cv, &zone_status_lock);
2600 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2601 }
2602 /*
2603 * zone_status_lock is implicitly released by the following.
2604 */
2605 CALLB_CPR_EXIT(&cprinfo);
2606 }
2607
2608 /*
2609 * Block until zone enters requested state or signal is received. Return (0)
2610 * if signaled, non-zero otherwise.
2611 */
2612 int
2613 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2614 {
2615 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2616
2617 mutex_enter(&zone_status_lock);
2618 while (zone->zone_status < status) {
2619 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2620 mutex_exit(&zone_status_lock);
2621 return (0);
2622 }
2623 }
2624 mutex_exit(&zone_status_lock);
2625 return (1);
2626 }
2627
2628 /*
2629 * Block until the zone enters the requested state or the timeout expires,
2630 * whichever happens first. Return (-1) if operation timed out, time remaining
2631 * otherwise.
2632 */
2633 clock_t
2634 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2635 {
2636 clock_t timeleft = 0;
2637
2638 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2639
2640 mutex_enter(&zone_status_lock);
2641 while (zone->zone_status < status && timeleft != -1) {
2642 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2643 }
2644 mutex_exit(&zone_status_lock);
2645 return (timeleft);
2646 }
2647
2648 /*
2649 * Block until the zone enters the requested state, the current process is
2650 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2651 * operation timed out, 0 if signaled, time remaining otherwise.
2652 */
2653 clock_t
2654 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2655 {
2656 clock_t timeleft = tim - ddi_get_lbolt();
2657
2658 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2659
2660 mutex_enter(&zone_status_lock);
2661 while (zone->zone_status < status) {
2662 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2663 tim);
2664 if (timeleft <= 0)
2665 break;
2666 }
2667 mutex_exit(&zone_status_lock);
2668 return (timeleft);
2669 }
2670
2671 /*
2672 * Zones have two reference counts: one for references from credential
2673 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2674 * This is so we can allow a zone to be rebooted while there are still
2675 * outstanding cred references, since certain drivers cache dblks (which
2676 * implicitly results in cached creds). We wait for zone_ref to drop to
2677 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2678 * later freed when the zone_cred_ref drops to 0, though nothing other
2679 * than the zone id and privilege set should be accessed once the zone
2680 * is "dead".
2681 *
2682 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2683 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2684 * to 0. This can be useful to flush out other sources of cached creds
2685 * that may be less innocuous than the driver case.
2686 *
2687 * Zones also provide a tracked reference counting mechanism in which zone
2688 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2689 * debuggers determine the sources of leaked zone references. See
2690 * zone_hold_ref() and zone_rele_ref() below for more information.
2691 */
2692
2693 int zone_wait_for_cred = 0;
2694
2695 static void
2696 zone_hold_locked(zone_t *z)
2697 {
2698 ASSERT(MUTEX_HELD(&z->zone_lock));
2699 z->zone_ref++;
2700 ASSERT(z->zone_ref != 0);
2701 }
2702
2703 /*
2704 * Increment the specified zone's reference count. The zone's zone_t structure
2705 * will not be freed as long as the zone's reference count is nonzero.
2706 * Decrement the zone's reference count via zone_rele().
2707 *
2708 * NOTE: This function should only be used to hold zones for short periods of
2709 * time. Use zone_hold_ref() if the zone must be held for a long time.
2710 */
2711 void
2712 zone_hold(zone_t *z)
2713 {
2714 mutex_enter(&z->zone_lock);
2715 zone_hold_locked(z);
2716 mutex_exit(&z->zone_lock);
2717 }
2718
2719 /*
2720 * If the non-cred ref count drops to 1 and either the cred ref count
2721 * is 0 or we aren't waiting for cred references, the zone is ready to
2722 * be destroyed.
2723 */
2724 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2725 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2726
2727 /*
2728 * Common zone reference release function invoked by zone_rele() and
2729 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2730 * zone's subsystem-specific reference counters are not affected by the
2731 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2732 * removed from the specified zone's reference list. ref must be non-NULL iff
2733 * subsys is not ZONE_REF_NUM_SUBSYS.
2734 */
2735 static void
2736 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2737 {
2738 boolean_t wakeup;
2739
2740 mutex_enter(&z->zone_lock);
2741 ASSERT(z->zone_ref != 0);
2742 z->zone_ref--;
2743 if (subsys != ZONE_REF_NUM_SUBSYS) {
2744 ASSERT(z->zone_subsys_ref[subsys] != 0);
2745 z->zone_subsys_ref[subsys]--;
2746 list_remove(&z->zone_ref_list, ref);
2747 }
2748 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2749 /* no more refs, free the structure */
2750 mutex_exit(&z->zone_lock);
2751 zone_free(z);
2752 return;
2753 }
2754 /* signal zone_destroy so the zone can finish halting */
2755 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2756 mutex_exit(&z->zone_lock);
2757
2758 if (wakeup) {
2759 /*
2760 * Grabbing zonehash_lock here effectively synchronizes with
2761 * zone_destroy() to avoid missed signals.
2762 */
2763 mutex_enter(&zonehash_lock);
2764 cv_broadcast(&zone_destroy_cv);
2765 mutex_exit(&zonehash_lock);
2766 }
2767 }
2768
2769 /*
2770 * Decrement the specified zone's reference count. The specified zone will
2771 * cease to exist after this function returns if the reference count drops to
2772 * zero. This function should be paired with zone_hold().
2773 */
2774 void
2775 zone_rele(zone_t *z)
2776 {
2777 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2778 }
2779
2780 /*
2781 * Initialize a zone reference structure. This function must be invoked for
2782 * a reference structure before the structure is passed to zone_hold_ref().
2783 */
2784 void
2785 zone_init_ref(zone_ref_t *ref)
2786 {
2787 ref->zref_zone = NULL;
2788 list_link_init(&ref->zref_linkage);
2789 }
2790
2791 /*
2792 * Acquire a reference to zone z. The caller must specify the
2793 * zone_ref_subsys_t constant associated with its subsystem. The specified
2794 * zone_ref_t structure will represent a reference to the specified zone. Use
2795 * zone_rele_ref() to release the reference.
2796 *
2797 * The referenced zone_t structure will not be freed as long as the zone_t's
2798 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2799 * references.
2800 *
2801 * NOTE: The zone_ref_t structure must be initialized before it is used.
2802 * See zone_init_ref() above.
2803 */
2804 void
2805 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2806 {
2807 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2808
2809 /*
2810 * Prevent consumers from reusing a reference structure before
2811 * releasing it.
2812 */
2813 VERIFY(ref->zref_zone == NULL);
2814
2815 ref->zref_zone = z;
2816 mutex_enter(&z->zone_lock);
2817 zone_hold_locked(z);
2818 z->zone_subsys_ref[subsys]++;
2819 ASSERT(z->zone_subsys_ref[subsys] != 0);
2820 list_insert_head(&z->zone_ref_list, ref);
2821 mutex_exit(&z->zone_lock);
2822 }
2823
2824 /*
2825 * Release the zone reference represented by the specified zone_ref_t.
2826 * The reference is invalid after it's released; however, the zone_ref_t
2827 * structure can be reused without having to invoke zone_init_ref().
2828 * subsys should be the same value that was passed to zone_hold_ref()
2829 * when the reference was acquired.
2830 */
2831 void
2832 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2833 {
2834 zone_rele_common(ref->zref_zone, ref, subsys);
2835
2836 /*
2837 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2838 * when consumers dereference the reference. This helps us catch
2839 * consumers who use released references. Furthermore, this lets
2840 * consumers reuse the zone_ref_t structure without having to
2841 * invoke zone_init_ref().
2842 */
2843 ref->zref_zone = NULL;
2844 }
2845
2846 void
2847 zone_cred_hold(zone_t *z)
2848 {
2849 mutex_enter(&z->zone_lock);
2850 z->zone_cred_ref++;
2851 ASSERT(z->zone_cred_ref != 0);
2852 mutex_exit(&z->zone_lock);
2853 }
2854
2855 void
2856 zone_cred_rele(zone_t *z)
2857 {
2858 boolean_t wakeup;
2859
2860 mutex_enter(&z->zone_lock);
2861 ASSERT(z->zone_cred_ref != 0);
2862 z->zone_cred_ref--;
2863 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2864 /* no more refs, free the structure */
2865 mutex_exit(&z->zone_lock);
2866 zone_free(z);
2867 return;
2868 }
2869 /*
2870 * If zone_destroy is waiting for the cred references to drain
2871 * out, and they have, signal it.
2872 */
2873 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2874 zone_status_get(z) >= ZONE_IS_DEAD);
2875 mutex_exit(&z->zone_lock);
2876
2877 if (wakeup) {
2878 /*
2879 * Grabbing zonehash_lock here effectively synchronizes with
2880 * zone_destroy() to avoid missed signals.
2881 */
2882 mutex_enter(&zonehash_lock);
2883 cv_broadcast(&zone_destroy_cv);
2884 mutex_exit(&zonehash_lock);
2885 }
2886 }
2887
2888 void
2889 zone_task_hold(zone_t *z)
2890 {
2891 mutex_enter(&z->zone_lock);
2892 z->zone_ntasks++;
2893 ASSERT(z->zone_ntasks != 0);
2894 mutex_exit(&z->zone_lock);
2895 }
2896
2897 void
2898 zone_task_rele(zone_t *zone)
2899 {
2900 uint_t refcnt;
2901
2902 mutex_enter(&zone->zone_lock);
2903 ASSERT(zone->zone_ntasks != 0);
2904 refcnt = --zone->zone_ntasks;
2905 if (refcnt > 1) { /* Common case */
2906 mutex_exit(&zone->zone_lock);
2907 return;
2908 }
2909 zone_hold_locked(zone); /* so we can use the zone_t later */
2910 mutex_exit(&zone->zone_lock);
2911 if (refcnt == 1) {
2912 /*
2913 * See if the zone is shutting down.
2914 */
2915 mutex_enter(&zone_status_lock);
2916 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2917 goto out;
2918 }
2919
2920 /*
2921 * Make sure the ntasks didn't change since we
2922 * dropped zone_lock.
2923 */
2924 mutex_enter(&zone->zone_lock);
2925 if (refcnt != zone->zone_ntasks) {
2926 mutex_exit(&zone->zone_lock);
2927 goto out;
2928 }
2929 mutex_exit(&zone->zone_lock);
2930
2931 /*
2932 * No more user processes in the zone. The zone is empty.
2933 */
2934 zone_status_set(zone, ZONE_IS_EMPTY);
2935 goto out;
2936 }
2937
2938 ASSERT(refcnt == 0);
2939 /*
2940 * zsched has exited; the zone is dead.
2941 */
2942 zone->zone_zsched = NULL; /* paranoia */
2943 mutex_enter(&zone_status_lock);
2944 zone_status_set(zone, ZONE_IS_DEAD);
2945 out:
2946 mutex_exit(&zone_status_lock);
2947 zone_rele(zone);
2948 }
2949
2950 zoneid_t
2951 getzoneid(void)
2952 {
2953 return (curproc->p_zone->zone_id);
2954 }
2955
2956 /*
2957 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2958 * check the validity of a zone's state.
2959 */
2960 static zone_t *
2961 zone_find_all_by_id(zoneid_t zoneid)
2962 {
2963 mod_hash_val_t hv;
2964 zone_t *zone = NULL;
2965
2966 ASSERT(MUTEX_HELD(&zonehash_lock));
2967
2968 if (mod_hash_find(zonehashbyid,
2969 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2970 zone = (zone_t *)hv;
2971 return (zone);
2972 }
2973
2974 static zone_t *
2975 zone_find_all_by_label(const ts_label_t *label)
2976 {
2977 mod_hash_val_t hv;
2978 zone_t *zone = NULL;
2979
2980 ASSERT(MUTEX_HELD(&zonehash_lock));
2981
2982 /*
2983 * zonehashbylabel is not maintained for unlabeled systems
2984 */
2985 if (!is_system_labeled())
2986 return (NULL);
2987 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2988 zone = (zone_t *)hv;
2989 return (zone);
2990 }
2991
2992 static zone_t *
2993 zone_find_all_by_name(char *name)
2994 {
2995 mod_hash_val_t hv;
2996 zone_t *zone = NULL;
2997
2998 ASSERT(MUTEX_HELD(&zonehash_lock));
2999
3000 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3001 zone = (zone_t *)hv;
3002 return (zone);
3003 }
3004
3005 /*
3006 * Public interface for looking up a zone by zoneid. Only returns the zone if
3007 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3008 * Caller must call zone_rele() once it is done with the zone.
3009 *
3010 * The zone may begin the zone_destroy() sequence immediately after this
3011 * function returns, but may be safely used until zone_rele() is called.
3012 */
3013 zone_t *
3014 zone_find_by_id(zoneid_t zoneid)
3015 {
3016 zone_t *zone;
3017 zone_status_t status;
3018
3019 mutex_enter(&zonehash_lock);
3020 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3021 mutex_exit(&zonehash_lock);
3022 return (NULL);
3023 }
3024 status = zone_status_get(zone);
3025 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3026 /*
3027 * For all practical purposes the zone doesn't exist.
3028 */
3029 mutex_exit(&zonehash_lock);
3030 return (NULL);
3031 }
3032 zone_hold(zone);
3033 mutex_exit(&zonehash_lock);
3034 return (zone);
3035 }
3036
3037 /*
3038 * Similar to zone_find_by_id, but using zone label as the key.
3039 */
3040 zone_t *
3041 zone_find_by_label(const ts_label_t *label)
3042 {
3043 zone_t *zone;
3044 zone_status_t status;
3045
3046 mutex_enter(&zonehash_lock);
3047 if ((zone = zone_find_all_by_label(label)) == NULL) {
3048 mutex_exit(&zonehash_lock);
3049 return (NULL);
3050 }
3051
3052 status = zone_status_get(zone);
3053 if (status > ZONE_IS_DOWN) {
3054 /*
3055 * For all practical purposes the zone doesn't exist.
3056 */
3057 mutex_exit(&zonehash_lock);
3058 return (NULL);
3059 }
3060 zone_hold(zone);
3061 mutex_exit(&zonehash_lock);
3062 return (zone);
3063 }
3064
3065 /*
3066 * Similar to zone_find_by_id, but using zone name as the key.
3067 */
3068 zone_t *
3069 zone_find_by_name(char *name)
3070 {
3071 zone_t *zone;
3072 zone_status_t status;
3073
3074 mutex_enter(&zonehash_lock);
3075 if ((zone = zone_find_all_by_name(name)) == NULL) {
3076 mutex_exit(&zonehash_lock);
3077 return (NULL);
3078 }
3079 status = zone_status_get(zone);
3080 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3081 /*
3082 * For all practical purposes the zone doesn't exist.
3083 */
3084 mutex_exit(&zonehash_lock);
3085 return (NULL);
3086 }
3087 zone_hold(zone);
3088 mutex_exit(&zonehash_lock);
3089 return (zone);
3090 }
3091
3092 /*
3093 * Similar to zone_find_by_id(), using the path as a key. For instance,
3094 * if there is a zone "foo" rooted at /foo/root, and the path argument
3095 * is "/foo/root/proc", it will return the held zone_t corresponding to
3096 * zone "foo".
3097 *
3098 * zone_find_by_path() always returns a non-NULL value, since at the
3099 * very least every path will be contained in the global zone.
3100 *
3101 * As with the other zone_find_by_*() functions, the caller is
3102 * responsible for zone_rele()ing the return value of this function.
3103 */
3104 zone_t *
3105 zone_find_by_path(const char *path)
3106 {
3107 zone_t *zone;
3108 zone_t *zret = NULL;
3109 zone_status_t status;
3110
3111 if (path == NULL) {
3112 /*
3113 * Call from rootconf().
3114 */
3115 zone_hold(global_zone);
3116 return (global_zone);
3117 }
3118 ASSERT(*path == '/');
3119 mutex_enter(&zonehash_lock);
3120 for (zone = list_head(&zone_active); zone != NULL;
3121 zone = list_next(&zone_active, zone)) {
3122 if (ZONE_PATH_VISIBLE(path, zone))
3123 zret = zone;
3124 }
3125 ASSERT(zret != NULL);
3126 status = zone_status_get(zret);
3127 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3128 /*
3129 * Zone practically doesn't exist.
3130 */
3131 zret = global_zone;
3132 }
3133 zone_hold(zret);
3134 mutex_exit(&zonehash_lock);
3135 return (zret);
3136 }
3137
3138 /*
3139 * Public interface for updating per-zone load averages. Called once per
3140 * second.
3141 *
3142 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3143 */
3144 void
3145 zone_loadavg_update()
3146 {
3147 zone_t *zp;
3148 zone_status_t status;
3149 struct loadavg_s *lavg;
3150 hrtime_t zone_total;
3151 int i;
3152 hrtime_t hr_avg;
3153 int nrun;
3154 static int64_t f[3] = { 135, 27, 9 };
3155 int64_t q, r;
3156
3157 mutex_enter(&zonehash_lock);
3158 for (zp = list_head(&zone_active); zp != NULL;
3159 zp = list_next(&zone_active, zp)) {
3160 mutex_enter(&zp->zone_lock);
3161
3162 /* Skip zones that are on the way down or not yet up */
3163 status = zone_status_get(zp);
3164 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3165 /* For all practical purposes the zone doesn't exist. */
3166 mutex_exit(&zp->zone_lock);
3167 continue;
3168 }
3169
3170 /*
3171 * Update the 10 second moving average data in zone_loadavg.
3172 */
3173 lavg = &zp->zone_loadavg;
3174
3175 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3176 scalehrtime(&zone_total);
3177
3178 /* The zone_total should always be increasing. */
3179 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3180 zone_total - lavg->lg_total : 0;
3181 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3182 /* lg_total holds the prev. 1 sec. total */
3183 lavg->lg_total = zone_total;
3184
3185 /*
3186 * To simplify the calculation, we don't calculate the load avg.
3187 * until the zone has been up for at least 10 seconds and our
3188 * moving average is thus full.
3189 */
3190 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3191 lavg->lg_len++;
3192 mutex_exit(&zp->zone_lock);
3193 continue;
3194 }
3195
3196 /* Now calculate the 1min, 5min, 15 min load avg. */
3197 hr_avg = 0;
3198 for (i = 0; i < S_LOADAVG_SZ; i++)
3199 hr_avg += lavg->lg_loads[i];
3200 hr_avg = hr_avg / S_LOADAVG_SZ;
3201 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3202
3203 /* Compute load avg. See comment in calcloadavg() */
3204 for (i = 0; i < 3; i++) {
3205 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3206 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3207 zp->zone_hp_avenrun[i] +=
3208 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3209
3210 /* avenrun[] can only hold 31 bits of load avg. */
3211 if (zp->zone_hp_avenrun[i] <
3212 ((uint64_t)1<<(31+16-FSHIFT)))
3213 zp->zone_avenrun[i] = (int32_t)
3214 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3215 else
3216 zp->zone_avenrun[i] = 0x7fffffff;
3217 }
3218
3219 mutex_exit(&zp->zone_lock);
3220 }
3221 mutex_exit(&zonehash_lock);
3222 }
3223
3224 /*
3225 * Get the number of cpus visible to this zone. The system-wide global
3226 * 'ncpus' is returned if pools are disabled, the caller is in the
3227 * global zone, or a NULL zone argument is passed in.
3228 */
3229 int
3230 zone_ncpus_get(zone_t *zone)
3231 {
3232 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3233
3234 return (myncpus != 0 ? myncpus : ncpus);
3235 }
3236
3237 /*
3238 * Get the number of online cpus visible to this zone. The system-wide
3239 * global 'ncpus_online' is returned if pools are disabled, the caller
3240 * is in the global zone, or a NULL zone argument is passed in.
3241 */
3242 int
3243 zone_ncpus_online_get(zone_t *zone)
3244 {
3245 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3246
3247 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3248 }
3249
3250 /*
3251 * Return the pool to which the zone is currently bound.
3252 */
3253 pool_t *
3254 zone_pool_get(zone_t *zone)
3255 {
3256 ASSERT(pool_lock_held());
3257
3258 return (zone->zone_pool);
3259 }
3260
3261 /*
3262 * Set the zone's pool pointer and update the zone's visibility to match
3263 * the resources in the new pool.
3264 */
3265 void
3266 zone_pool_set(zone_t *zone, pool_t *pool)
3267 {
3268 ASSERT(pool_lock_held());
3269 ASSERT(MUTEX_HELD(&cpu_lock));
3270
3271 zone->zone_pool = pool;
3272 zone_pset_set(zone, pool->pool_pset->pset_id);
3273 }
3274
3275 /*
3276 * Return the cached value of the id of the processor set to which the
3277 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3278 * facility is disabled.
3279 */
3280 psetid_t
3281 zone_pset_get(zone_t *zone)
3282 {
3283 ASSERT(MUTEX_HELD(&cpu_lock));
3284
3285 return (zone->zone_psetid);
3286 }
3287
3288 /*
3289 * Set the cached value of the id of the processor set to which the zone
3290 * is currently bound. Also update the zone's visibility to match the
3291 * resources in the new processor set.
3292 */
3293 void
3294 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3295 {
3296 psetid_t oldpsetid;
3297
3298 ASSERT(MUTEX_HELD(&cpu_lock));
3299 oldpsetid = zone_pset_get(zone);
3300
3301 if (oldpsetid == newpsetid)
3302 return;
3303 /*
3304 * Global zone sees all.
3305 */
3306 if (zone != global_zone) {
3307 zone->zone_psetid = newpsetid;
3308 if (newpsetid != ZONE_PS_INVAL)
3309 pool_pset_visibility_add(newpsetid, zone);
3310 if (oldpsetid != ZONE_PS_INVAL)
3311 pool_pset_visibility_remove(oldpsetid, zone);
3312 }
3313 /*
3314 * Disabling pools, so we should start using the global values
3315 * for ncpus and ncpus_online.
3316 */
3317 if (newpsetid == ZONE_PS_INVAL) {
3318 zone->zone_ncpus = 0;
3319 zone->zone_ncpus_online = 0;
3320 }
3321 }
3322
3323 /*
3324 * Walk the list of active zones and issue the provided callback for
3325 * each of them.
3326 *
3327 * Caller must not be holding any locks that may be acquired under
3328 * zonehash_lock. See comment at the beginning of the file for a list of
3329 * common locks and their interactions with zones.
3330 */
3331 int
3332 zone_walk(int (*cb)(zone_t *, void *), void *data)
3333 {
3334 zone_t *zone;
3335 int ret = 0;
3336 zone_status_t status;
3337
3338 mutex_enter(&zonehash_lock);
3339 for (zone = list_head(&zone_active); zone != NULL;
3340 zone = list_next(&zone_active, zone)) {
3341 /*
3342 * Skip zones that shouldn't be externally visible.
3343 */
3344 status = zone_status_get(zone);
3345 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3346 continue;
3347 /*
3348 * Bail immediately if any callback invocation returns a
3349 * non-zero value.
3350 */
3351 ret = (*cb)(zone, data);
3352 if (ret != 0)
3353 break;
3354 }
3355 mutex_exit(&zonehash_lock);
3356 return (ret);
3357 }
3358
3359 static int
3360 zone_set_root(zone_t *zone, const char *upath)
3361 {
3362 vnode_t *vp;
3363 int trycount;
3364 int error = 0;
3365 char *path;
3366 struct pathname upn, pn;
3367 size_t pathlen;
3368
3369 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3370 return (error);
3371
3372 pn_alloc(&pn);
3373
3374 /* prevent infinite loop */
3375 trycount = 10;
3376 for (;;) {
3377 if (--trycount <= 0) {
3378 error = ESTALE;
3379 goto out;
3380 }
3381
3382 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3383 /*
3384 * VOP_ACCESS() may cover 'vp' with a new
3385 * filesystem, if 'vp' is an autoFS vnode.
3386 * Get the new 'vp' if so.
3387 */
3388 if ((error =
3389 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3390 (!vn_ismntpt(vp) ||
3391 (error = traverse(&vp)) == 0)) {
3392 pathlen = pn.pn_pathlen + 2;
3393 path = kmem_alloc(pathlen, KM_SLEEP);
3394 (void) strncpy(path, pn.pn_path,
3395 pn.pn_pathlen + 1);
3396 path[pathlen - 2] = '/';
3397 path[pathlen - 1] = '\0';
3398 pn_free(&pn);
3399 pn_free(&upn);
3400
3401 /* Success! */
3402 break;
3403 }
3404 VN_RELE(vp);
3405 }
3406 if (error != ESTALE)
3407 goto out;
3408 }
3409
3410 ASSERT(error == 0);
3411 zone->zone_rootvp = vp; /* we hold a reference to vp */
3412 zone->zone_rootpath = path;
3413 zone->zone_rootpathlen = pathlen;
3414 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3415 zone->zone_flags |= ZF_IS_SCRATCH;
3416 return (0);
3417
3418 out:
3419 pn_free(&pn);
3420 pn_free(&upn);
3421 return (error);
3422 }
3423
3424 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3425 ((c) >= 'a' && (c) <= 'z') || \
3426 ((c) >= 'A' && (c) <= 'Z'))
3427
3428 static int
3429 zone_set_name(zone_t *zone, const char *uname)
3430 {
3431 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3432 size_t len;
3433 int i, err;
3434
3435 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3436 kmem_free(kname, ZONENAME_MAX);
3437 return (err); /* EFAULT or ENAMETOOLONG */
3438 }
3439
3440 /* must be less than ZONENAME_MAX */
3441 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3442 kmem_free(kname, ZONENAME_MAX);
3443 return (EINVAL);
3444 }
3445
3446 /*
3447 * Name must start with an alphanumeric and must contain only
3448 * alphanumerics, '-', '_' and '.'.
3449 */
3450 if (!isalnum(kname[0])) {
3451 kmem_free(kname, ZONENAME_MAX);
3452 return (EINVAL);
3453 }
3454 for (i = 1; i < len - 1; i++) {
3455 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3456 kname[i] != '.') {
3457 kmem_free(kname, ZONENAME_MAX);
3458 return (EINVAL);
3459 }
3460 }
3461
3462 zone->zone_name = kname;
3463 return (0);
3464 }
3465
3466 /*
3467 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3468 * is NULL or it points to a zone with no hostid emulation, then the machine's
3469 * hostid (i.e., the global zone's hostid) is returned. This function returns
3470 * zero if neither the zone nor the host machine (global zone) have hostids. It
3471 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3472 * hostid and the machine's hostid is invalid.
3473 */
3474 uint32_t
3475 zone_get_hostid(zone_t *zonep)
3476 {
3477 unsigned long machine_hostid;
3478
3479 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3480 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3481 return (HW_INVALID_HOSTID);
3482 return ((uint32_t)machine_hostid);
3483 }
3484 return (zonep->zone_hostid);
3485 }
3486
3487 /*
3488 * Similar to thread_create(), but makes sure the thread is in the appropriate
3489 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3490 */
3491 /*ARGSUSED*/
3492 kthread_t *
3493 zthread_create(
3494 caddr_t stk,
3495 size_t stksize,
3496 void (*proc)(),
3497 void *arg,
3498 size_t len,
3499 pri_t pri)
3500 {
3501 kthread_t *t;
3502 zone_t *zone = curproc->p_zone;
3503 proc_t *pp = zone->zone_zsched;
3504
3505 zone_hold(zone); /* Reference to be dropped when thread exits */
3506
3507 /*
3508 * No-one should be trying to create threads if the zone is shutting
3509 * down and there aren't any kernel threads around. See comment
3510 * in zthread_exit().
3511 */
3512 ASSERT(!(zone->zone_kthreads == NULL &&
3513 zone_status_get(zone) >= ZONE_IS_EMPTY));
3514 /*
3515 * Create a thread, but don't let it run until we've finished setting
3516 * things up.
3517 */
3518 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3519 ASSERT(t->t_forw == NULL);
3520 mutex_enter(&zone_status_lock);
3521 if (zone->zone_kthreads == NULL) {
3522 t->t_forw = t->t_back = t;
3523 } else {
3524 kthread_t *tx = zone->zone_kthreads;
3525
3526 t->t_forw = tx;
3527 t->t_back = tx->t_back;
3528 tx->t_back->t_forw = t;
3529 tx->t_back = t;
3530 }
3531 zone->zone_kthreads = t;
3532 mutex_exit(&zone_status_lock);
3533
3534 mutex_enter(&pp->p_lock);
3535 t->t_proc_flag |= TP_ZTHREAD;
3536 project_rele(t->t_proj);
3537 t->t_proj = project_hold(pp->p_task->tk_proj);
3538
3539 /*
3540 * Setup complete, let it run.
3541 */
3542 thread_lock(t);
3543 t->t_schedflag |= TS_ALLSTART;
3544 setrun_locked(t);
3545 thread_unlock(t);
3546
3547 mutex_exit(&pp->p_lock);
3548
3549 return (t);
3550 }
3551
3552 /*
3553 * Similar to thread_exit(). Must be called by threads created via
3554 * zthread_exit().
3555 */
3556 void
3557 zthread_exit(void)
3558 {
3559 kthread_t *t = curthread;
3560 proc_t *pp = curproc;
3561 zone_t *zone = pp->p_zone;
3562
3563 mutex_enter(&zone_status_lock);
3564
3565 /*
3566 * Reparent to p0
3567 */
3568 kpreempt_disable();
3569 mutex_enter(&pp->p_lock);
3570 t->t_proc_flag &= ~TP_ZTHREAD;
3571 t->t_procp = &p0;
3572 hat_thread_exit(t);
3573 mutex_exit(&pp->p_lock);
3574 kpreempt_enable();
3575
3576 if (t->t_back == t) {
3577 ASSERT(t->t_forw == t);
3578 /*
3579 * If the zone is empty, once the thread count
3580 * goes to zero no further kernel threads can be
3581 * created. This is because if the creator is a process
3582 * in the zone, then it must have exited before the zone
3583 * state could be set to ZONE_IS_EMPTY.
3584 * Otherwise, if the creator is a kernel thread in the
3585 * zone, the thread count is non-zero.
3586 *
3587 * This really means that non-zone kernel threads should
3588 * not create zone kernel threads.
3589 */
3590 zone->zone_kthreads = NULL;
3591 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3592 zone_status_set(zone, ZONE_IS_DOWN);
3593 /*
3594 * Remove any CPU caps on this zone.
3595 */
3596 cpucaps_zone_remove(zone);
3597 }
3598 } else {
3599 t->t_forw->t_back = t->t_back;
3600 t->t_back->t_forw = t->t_forw;
3601 if (zone->zone_kthreads == t)
3602 zone->zone_kthreads = t->t_forw;
3603 }
3604 mutex_exit(&zone_status_lock);
3605 zone_rele(zone);
3606 thread_exit();
3607 /* NOTREACHED */
3608 }
3609
3610 static void
3611 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3612 {
3613 vnode_t *oldvp;
3614
3615 /* we're going to hold a reference here to the directory */
3616 VN_HOLD(vp);
3617
3618 /* update abs cwd/root path see c2/audit.c */
3619 if (AU_AUDITING())
3620 audit_chdirec(vp, vpp);
3621
3622 mutex_enter(&pp->p_lock);
3623 oldvp = *vpp;
3624 *vpp = vp;
3625 mutex_exit(&pp->p_lock);
3626 if (oldvp != NULL)
3627 VN_RELE(oldvp);
3628 }
3629
3630 /*
3631 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3632 */
3633 static int
3634 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3635 {
3636 nvpair_t *nvp = NULL;
3637 boolean_t priv_set = B_FALSE;
3638 boolean_t limit_set = B_FALSE;
3639 boolean_t action_set = B_FALSE;
3640
3641 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3642 const char *name;
3643 uint64_t ui64;
3644
3645 name = nvpair_name(nvp);
3646 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3647 return (EINVAL);
3648 (void) nvpair_value_uint64(nvp, &ui64);
3649 if (strcmp(name, "privilege") == 0) {
3650 /*
3651 * Currently only privileged values are allowed, but
3652 * this may change in the future.
3653 */
3654 if (ui64 != RCPRIV_PRIVILEGED)
3655 return (EINVAL);
3656 rv->rcv_privilege = ui64;
3657 priv_set = B_TRUE;
3658 } else if (strcmp(name, "limit") == 0) {
3659 rv->rcv_value = ui64;
3660 limit_set = B_TRUE;
3661 } else if (strcmp(name, "action") == 0) {
3662 if (ui64 != RCTL_LOCAL_NOACTION &&
3663 ui64 != RCTL_LOCAL_DENY)
3664 return (EINVAL);
3665 rv->rcv_flagaction = ui64;
3666 action_set = B_TRUE;
3667 } else {
3668 return (EINVAL);
3669 }
3670 }
3671
3672 if (!(priv_set && limit_set && action_set))
3673 return (EINVAL);
3674 rv->rcv_action_signal = 0;
3675 rv->rcv_action_recipient = NULL;
3676 rv->rcv_action_recip_pid = -1;
3677 rv->rcv_firing_time = 0;
3678
3679 return (0);
3680 }
3681
3682 /*
3683 * Non-global zone version of start_init.
3684 */
3685 void
3686 zone_start_init(void)
3687 {
3688 proc_t *p = ttoproc(curthread);
3689 zone_t *z = p->p_zone;
3690
3691 ASSERT(!INGLOBALZONE(curproc));
3692
3693 /*
3694 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3695 * storing just the pid of init is sufficient.
3696 */
3697 z->zone_proc_initpid = p->p_pid;
3698
3699 /*
3700 * We maintain zone_boot_err so that we can return the cause of the
3701 * failure back to the caller of the zone_boot syscall.
3702 */
3703 p->p_zone->zone_boot_err = start_init_common();
3704
3705 /*
3706 * We will prevent booting zones from becoming running zones if the
3707 * global zone is shutting down.
3708 */
3709 mutex_enter(&zone_status_lock);
3710 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3711 ZONE_IS_SHUTTING_DOWN) {
3712 /*
3713 * Make sure we are still in the booting state-- we could have
3714 * raced and already be shutting down, or even further along.
3715 */
3716 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3717 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3718 }
3719 mutex_exit(&zone_status_lock);
3720 /* It's gone bad, dispose of the process */
3721 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3722 mutex_enter(&p->p_lock);
3723 ASSERT(p->p_flag & SEXITLWPS);
3724 lwp_exit();
3725 }
3726 } else {
3727 if (zone_status_get(z) == ZONE_IS_BOOTING)
3728 zone_status_set(z, ZONE_IS_RUNNING);
3729 mutex_exit(&zone_status_lock);
3730 /* cause the process to return to userland. */
3731 lwp_rtt();
3732 }
3733 }
3734
3735 struct zsched_arg {
3736 zone_t *zone;
3737 nvlist_t *nvlist;
3738 };
3739
3740 /*
3741 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3742 * anything to do with scheduling, but rather with the fact that
3743 * per-zone kernel threads are parented to zsched, just like regular
3744 * kernel threads are parented to sched (p0).
3745 *
3746 * zsched is also responsible for launching init for the zone.
3747 */
3748 static void
3749 zsched(void *arg)
3750 {
3751 struct zsched_arg *za = arg;
3752 proc_t *pp = curproc;
3753 proc_t *initp = proc_init;
3754 zone_t *zone = za->zone;
3755 cred_t *cr, *oldcred;
3756 rctl_set_t *set;
3757 rctl_alloc_gp_t *gp;
3758 contract_t *ct = NULL;
3759 task_t *tk, *oldtk;
3760 rctl_entity_p_t e;
3761 kproject_t *pj;
3762
3763 nvlist_t *nvl = za->nvlist;
3764 nvpair_t *nvp = NULL;
3765
3766 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3767 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3768 PTOU(pp)->u_argc = 0;
3769 PTOU(pp)->u_argv = NULL;
3770 PTOU(pp)->u_envp = NULL;
3771 closeall(P_FINFO(pp));
3772
3773 /*
3774 * We are this zone's "zsched" process. As the zone isn't generally
3775 * visible yet we don't need to grab any locks before initializing its
3776 * zone_proc pointer.
3777 */
3778 zone_hold(zone); /* this hold is released by zone_destroy() */
3779 zone->zone_zsched = pp;
3780 mutex_enter(&pp->p_lock);
3781 pp->p_zone = zone;
3782 mutex_exit(&pp->p_lock);
3783
3784 /*
3785 * Disassociate process from its 'parent'; parent ourselves to init
3786 * (pid 1) and change other values as needed.
3787 */
3788 sess_create();
3789
3790 mutex_enter(&pidlock);
3791 proc_detach(pp);
3792 pp->p_ppid = 1;
3793 pp->p_flag |= SZONETOP;
3794 pp->p_ancpid = 1;
3795 pp->p_parent = initp;
3796 pp->p_psibling = NULL;
3797 if (initp->p_child)
3798 initp->p_child->p_psibling = pp;
3799 pp->p_sibling = initp->p_child;
3800 initp->p_child = pp;
3801
3802 /* Decrement what newproc() incremented. */
3803 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3804 /*
3805 * Our credentials are about to become kcred-like, so we don't care
3806 * about the caller's ruid.
3807 */
3808 upcount_inc(crgetruid(kcred), zone->zone_id);
3809 mutex_exit(&pidlock);
3810
3811 /*
3812 * getting out of global zone, so decrement lwp and process counts
3813 */
3814 pj = pp->p_task->tk_proj;
3815 mutex_enter(&global_zone->zone_nlwps_lock);
3816 pj->kpj_nlwps -= pp->p_lwpcnt;
3817 global_zone->zone_nlwps -= pp->p_lwpcnt;
3818 pj->kpj_nprocs--;
3819 global_zone->zone_nprocs--;
3820 mutex_exit(&global_zone->zone_nlwps_lock);
3821
3822 /*
3823 * Decrement locked memory counts on old zone and project.
3824 */
3825 mutex_enter(&global_zone->zone_mem_lock);
3826 global_zone->zone_locked_mem -= pp->p_locked_mem;
3827 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3828 mutex_exit(&global_zone->zone_mem_lock);
3829
3830 /*
3831 * Create and join a new task in project '0' of this zone.
3832 *
3833 * We don't need to call holdlwps() since we know we're the only lwp in
3834 * this process.
3835 *
3836 * task_join() returns with p_lock held.
3837 */
3838 tk = task_create(0, zone);
3839 mutex_enter(&cpu_lock);
3840 oldtk = task_join(tk, 0);
3841
3842 pj = pp->p_task->tk_proj;
3843
3844 mutex_enter(&zone->zone_mem_lock);
3845 zone->zone_locked_mem += pp->p_locked_mem;
3846 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3847 mutex_exit(&zone->zone_mem_lock);
3848
3849 /*
3850 * add lwp and process counts to zsched's zone, and increment
3851 * project's task and process count due to the task created in
3852 * the above task_create.
3853 */
3854 mutex_enter(&zone->zone_nlwps_lock);
3855 pj->kpj_nlwps += pp->p_lwpcnt;
3856 pj->kpj_ntasks += 1;
3857 zone->zone_nlwps += pp->p_lwpcnt;
3858 pj->kpj_nprocs++;
3859 zone->zone_nprocs++;
3860 mutex_exit(&zone->zone_nlwps_lock);
3861
3862 mutex_exit(&curproc->p_lock);
3863 mutex_exit(&cpu_lock);
3864 task_rele(oldtk);
3865
3866 /*
3867 * The process was created by a process in the global zone, hence the
3868 * credentials are wrong. We might as well have kcred-ish credentials.
3869 */
3870 cr = zone->zone_kcred;
3871 crhold(cr);
3872 mutex_enter(&pp->p_crlock);
3873 oldcred = pp->p_cred;
3874 pp->p_cred = cr;
3875 mutex_exit(&pp->p_crlock);
3876 crfree(oldcred);
3877
3878 /*
3879 * Hold credentials again (for thread)
3880 */
3881 crhold(cr);
3882
3883 /*
3884 * p_lwpcnt can't change since this is a kernel process.
3885 */
3886 crset(pp, cr);
3887
3888 /*
3889 * Chroot
3890 */
3891 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3892 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3893
3894 /*
3895 * Initialize zone's rctl set.
3896 */
3897 set = rctl_set_create();
3898 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3899 mutex_enter(&pp->p_lock);
3900 e.rcep_p.zone = zone;
3901 e.rcep_t = RCENTITY_ZONE;
3902 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3903 mutex_exit(&pp->p_lock);
3904 rctl_prealloc_destroy(gp);
3905
3906 /*
3907 * Apply the rctls passed in to zone_create(). This is basically a list
3908 * assignment: all of the old values are removed and the new ones
3909 * inserted. That is, if an empty list is passed in, all values are
3910 * removed.
3911 */
3912 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3913 rctl_dict_entry_t *rde;
3914 rctl_hndl_t hndl;
3915 char *name;
3916 nvlist_t **nvlarray;
3917 uint_t i, nelem;
3918 int error; /* For ASSERT()s */
3919
3920 name = nvpair_name(nvp);
3921 hndl = rctl_hndl_lookup(name);
3922 ASSERT(hndl != -1);
3923 rde = rctl_dict_lookup_hndl(hndl);
3924 ASSERT(rde != NULL);
3925
3926 for (; /* ever */; ) {
3927 rctl_val_t oval;
3928
3929 mutex_enter(&pp->p_lock);
3930 error = rctl_local_get(hndl, NULL, &oval, pp);
3931 mutex_exit(&pp->p_lock);
3932 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3933 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3934 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3935 break;
3936 mutex_enter(&pp->p_lock);
3937 error = rctl_local_delete(hndl, &oval, pp);
3938 mutex_exit(&pp->p_lock);
3939 ASSERT(error == 0);
3940 }
3941 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3942 ASSERT(error == 0);
3943 for (i = 0; i < nelem; i++) {
3944 rctl_val_t *nvalp;
3945
3946 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3947 error = nvlist2rctlval(nvlarray[i], nvalp);
3948 ASSERT(error == 0);
3949 /*
3950 * rctl_local_insert can fail if the value being
3951 * inserted is a duplicate; this is OK.
3952 */
3953 mutex_enter(&pp->p_lock);
3954 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3955 kmem_cache_free(rctl_val_cache, nvalp);
3956 mutex_exit(&pp->p_lock);
3957 }
3958 }
3959 /*
3960 * Tell the world that we're done setting up.
3961 *
3962 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3963 * and atomically set the zone's processor set visibility. Once
3964 * we drop pool_lock() this zone will automatically get updated
3965 * to reflect any future changes to the pools configuration.
3966 *
3967 * Note that after we drop the locks below (zonehash_lock in
3968 * particular) other operations such as a zone_getattr call can
3969 * now proceed and observe the zone. That is the reason for doing a
3970 * state transition to the INITIALIZED state.
3971 */
3972 pool_lock();
3973 mutex_enter(&cpu_lock);
3974 mutex_enter(&zonehash_lock);
3975 zone_uniqid(zone);
3976 zone_zsd_configure(zone);
3977 if (pool_state == POOL_ENABLED)
3978 zone_pset_set(zone, pool_default->pool_pset->pset_id);
3979 mutex_enter(&zone_status_lock);
3980 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3981 zone_status_set(zone, ZONE_IS_INITIALIZED);
3982 mutex_exit(&zone_status_lock);
3983 mutex_exit(&zonehash_lock);
3984 mutex_exit(&cpu_lock);
3985 pool_unlock();
3986
3987 /* Now call the create callback for this key */
3988 zsd_apply_all_keys(zsd_apply_create, zone);
3989
3990 /* The callbacks are complete. Mark ZONE_IS_READY */
3991 mutex_enter(&zone_status_lock);
3992 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3993 zone_status_set(zone, ZONE_IS_READY);
3994 mutex_exit(&zone_status_lock);
3995
3996 /*
3997 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3998 * we launch init, and set the state to running.
3999 */
4000 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4001
4002 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4003 id_t cid;
4004
4005 /*
4006 * Ok, this is a little complicated. We need to grab the
4007 * zone's pool's scheduling class ID; note that by now, we
4008 * are already bound to a pool if we need to be (zoneadmd
4009 * will have done that to us while we're in the READY
4010 * state). *But* the scheduling class for the zone's 'init'
4011 * must be explicitly passed to newproc, which doesn't
4012 * respect pool bindings.
4013 *
4014 * We hold the pool_lock across the call to newproc() to
4015 * close the obvious race: the pool's scheduling class
4016 * could change before we manage to create the LWP with
4017 * classid 'cid'.
4018 */
4019 pool_lock();
4020 if (zone->zone_defaultcid > 0)
4021 cid = zone->zone_defaultcid;
4022 else
4023 cid = pool_get_class(zone->zone_pool);
4024 if (cid == -1)
4025 cid = defaultcid;
4026
4027 /*
4028 * If this fails, zone_boot will ultimately fail. The
4029 * state of the zone will be set to SHUTTING_DOWN-- userland
4030 * will have to tear down the zone, and fail, or try again.
4031 */
4032 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4033 minclsyspri - 1, &ct, 0)) != 0) {
4034 mutex_enter(&zone_status_lock);
4035 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4036 mutex_exit(&zone_status_lock);
4037 } else {
4038 zone->zone_boot_time = gethrestime_sec();
4039 }
4040
4041 pool_unlock();
4042 }
4043
4044 /*
4045 * Wait for zone_destroy() to be called. This is what we spend
4046 * most of our life doing.
4047 */
4048 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4049
4050 if (ct)
4051 /*
4052 * At this point the process contract should be empty.
4053 * (Though if it isn't, it's not the end of the world.)
4054 */
4055 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4056
4057 /*
4058 * Allow kcred to be freed when all referring processes
4059 * (including this one) go away. We can't just do this in
4060 * zone_free because we need to wait for the zone_cred_ref to
4061 * drop to 0 before calling zone_free, and the existence of
4062 * zone_kcred will prevent that. Thus, we call crfree here to
4063 * balance the crdup in zone_create. The crhold calls earlier
4064 * in zsched will be dropped when the thread and process exit.
4065 */
4066 crfree(zone->zone_kcred);
4067 zone->zone_kcred = NULL;
4068
4069 exit(CLD_EXITED, 0);
4070 }
4071
4072 /*
4073 * Helper function to determine if there are any submounts of the
4074 * provided path. Used to make sure the zone doesn't "inherit" any
4075 * mounts from before it is created.
4076 */
4077 static uint_t
4078 zone_mount_count(const char *rootpath)
4079 {
4080 vfs_t *vfsp;
4081 uint_t count = 0;
4082 size_t rootpathlen = strlen(rootpath);
4083
4084 /*
4085 * Holding zonehash_lock prevents race conditions with
4086 * vfs_list_add()/vfs_list_remove() since we serialize with
4087 * zone_find_by_path().
4088 */
4089 ASSERT(MUTEX_HELD(&zonehash_lock));
4090 /*
4091 * The rootpath must end with a '/'
4092 */
4093 ASSERT(rootpath[rootpathlen - 1] == '/');
4094
4095 /*
4096 * This intentionally does not count the rootpath itself if that
4097 * happens to be a mount point.
4098 */
4099 vfs_list_read_lock();
4100 vfsp = rootvfs;
4101 do {
4102 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4103 rootpathlen) == 0)
4104 count++;
4105 vfsp = vfsp->vfs_next;
4106 } while (vfsp != rootvfs);
4107 vfs_list_unlock();
4108 return (count);
4109 }
4110
4111 /*
4112 * Helper function to make sure that a zone created on 'rootpath'
4113 * wouldn't end up containing other zones' rootpaths.
4114 */
4115 static boolean_t
4116 zone_is_nested(const char *rootpath)
4117 {
4118 zone_t *zone;
4119 size_t rootpathlen = strlen(rootpath);
4120 size_t len;
4121
4122 ASSERT(MUTEX_HELD(&zonehash_lock));
4123
4124 /*
4125 * zone_set_root() appended '/' and '\0' at the end of rootpath
4126 */
4127 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4128 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4129 return (B_TRUE);
4130
4131 for (zone = list_head(&zone_active); zone != NULL;
4132 zone = list_next(&zone_active, zone)) {
4133 if (zone == global_zone)
4134 continue;
4135 len = strlen(zone->zone_rootpath);
4136 if (strncmp(rootpath, zone->zone_rootpath,
4137 MIN(rootpathlen, len)) == 0)
4138 return (B_TRUE);
4139 }
4140 return (B_FALSE);
4141 }
4142
4143 static int
4144 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4145 size_t zone_privssz)
4146 {
4147 priv_set_t *privs;
4148
4149 if (zone_privssz < sizeof (priv_set_t))
4150 return (ENOMEM);
4151
4152 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4153
4154 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4155 kmem_free(privs, sizeof (priv_set_t));
4156 return (EFAULT);
4157 }
4158
4159 zone->zone_privset = privs;
4160 return (0);
4161 }
4162
4163 /*
4164 * We make creative use of nvlists to pass in rctls from userland. The list is
4165 * a list of the following structures:
4166 *
4167 * (name = rctl_name, value = nvpair_list_array)
4168 *
4169 * Where each element of the nvpair_list_array is of the form:
4170 *
4171 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4172 * (name = "limit", value = uint64_t),
4173 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4174 */
4175 static int
4176 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4177 {
4178 nvpair_t *nvp = NULL;
4179 nvlist_t *nvl = NULL;
4180 char *kbuf;
4181 int error;
4182 rctl_val_t rv;
4183
4184 *nvlp = NULL;
4185
4186 if (buflen == 0)
4187 return (0);
4188
4189 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4190 return (ENOMEM);
4191 if (copyin(ubuf, kbuf, buflen)) {
4192 error = EFAULT;
4193 goto out;
4194 }
4195 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4196 /*
4197 * nvl may have been allocated/free'd, but the value set to
4198 * non-NULL, so we reset it here.
4199 */
4200 nvl = NULL;
4201 error = EINVAL;
4202 goto out;
4203 }
4204 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4205 rctl_dict_entry_t *rde;
4206 rctl_hndl_t hndl;
4207 nvlist_t **nvlarray;
4208 uint_t i, nelem;
4209 char *name;
4210
4211 error = EINVAL;
4212 name = nvpair_name(nvp);
4213 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4214 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4215 goto out;
4216 }
4217 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4218 goto out;
4219 }
4220 rde = rctl_dict_lookup_hndl(hndl);
4221 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4222 ASSERT(error == 0);
4223 for (i = 0; i < nelem; i++) {
4224 if (error = nvlist2rctlval(nvlarray[i], &rv))
4225 goto out;
4226 }
4227 if (rctl_invalid_value(rde, &rv)) {
4228 error = EINVAL;
4229 goto out;
4230 }
4231 }
4232 error = 0;
4233 *nvlp = nvl;
4234 out:
4235 kmem_free(kbuf, buflen);
4236 if (error && nvl != NULL)
4237 nvlist_free(nvl);
4238 return (error);
4239 }
4240
4241 int
4242 zone_create_error(int er_error, int er_ext, int *er_out) {
4243 if (er_out != NULL) {
4244 if (copyout(&er_ext, er_out, sizeof (int))) {
4245 return (set_errno(EFAULT));
4246 }
4247 }
4248 return (set_errno(er_error));
4249 }
4250
4251 static int
4252 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4253 {
4254 ts_label_t *tsl;
4255 bslabel_t blab;
4256
4257 /* Get label from user */
4258 if (copyin(lab, &blab, sizeof (blab)) != 0)
4259 return (EFAULT);
4260 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4261 if (tsl == NULL)
4262 return (ENOMEM);
4263
4264 zone->zone_slabel = tsl;
4265 return (0);
4266 }
4267
4268 /*
4269 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4270 */
4271 static int
4272 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4273 {
4274 char *kbuf;
4275 char *dataset, *next;
4276 zone_dataset_t *zd;
4277 size_t len;
4278
4279 if (ubuf == NULL || buflen == 0)
4280 return (0);
4281
4282 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4283 return (ENOMEM);
4284
4285 if (copyin(ubuf, kbuf, buflen) != 0) {
4286 kmem_free(kbuf, buflen);
4287 return (EFAULT);
4288 }
4289
4290 dataset = next = kbuf;
4291 for (;;) {
4292 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4293
4294 next = strchr(dataset, ',');
4295
4296 if (next == NULL)
4297 len = strlen(dataset);
4298 else
4299 len = next - dataset;
4300
4301 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4302 bcopy(dataset, zd->zd_dataset, len);
4303 zd->zd_dataset[len] = '\0';
4304
4305 list_insert_head(&zone->zone_datasets, zd);
4306
4307 if (next == NULL)
4308 break;
4309
4310 dataset = next + 1;
4311 }
4312
4313 kmem_free(kbuf, buflen);
4314 return (0);
4315 }
4316
4317 /*
4318 * System call to create/initialize a new zone named 'zone_name', rooted
4319 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4320 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4321 * with labeling set by 'match', 'doi', and 'label'.
4322 *
4323 * If extended error is non-null, we may use it to return more detailed
4324 * error information.
4325 */
4326 static zoneid_t
4327 zone_create(const char *zone_name, const char *zone_root,
4328 const priv_set_t *zone_privs, size_t zone_privssz,
4329 caddr_t rctlbuf, size_t rctlbufsz,
4330 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4331 int match, uint32_t doi, const bslabel_t *label,
4332 int flags)
4333 {
4334 struct zsched_arg zarg;
4335 nvlist_t *rctls = NULL;
4336 proc_t *pp = curproc;
4337 zone_t *zone, *ztmp;
4338 zoneid_t zoneid;
4339 int error;
4340 int error2 = 0;
4341 char *str;
4342 cred_t *zkcr;
4343 boolean_t insert_label_hash;
4344
4345 if (secpolicy_zone_config(CRED()) != 0)
4346 return (set_errno(EPERM));
4347
4348 /* can't boot zone from within chroot environment */
4349 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4350 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4351 extended_error));
4352
4353 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4354 zoneid = zone->zone_id = id_alloc(zoneid_space);
4355 zone->zone_status = ZONE_IS_UNINITIALIZED;
4356 zone->zone_pool = pool_default;
4357 zone->zone_pool_mod = gethrtime();
4358 zone->zone_psetid = ZONE_PS_INVAL;
4359 zone->zone_ncpus = 0;
4360 zone->zone_ncpus_online = 0;
4361 zone->zone_restart_init = B_TRUE;
4362 zone->zone_brand = &native_brand;
4363 zone->zone_initname = NULL;
4364 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4365 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4366 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4367 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4368 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4369 offsetof(zone_ref_t, zref_linkage));
4370 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4371 offsetof(struct zsd_entry, zsd_linkage));
4372 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4373 offsetof(zone_dataset_t, zd_linkage));
4374 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4375 offsetof(zone_dl_t, zdl_linkage));
4376 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4377 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4378
4379 if (flags & ZCF_NET_EXCL) {
4380 zone->zone_flags |= ZF_NET_EXCL;
4381 }
4382
4383 if ((error = zone_set_name(zone, zone_name)) != 0) {
4384 zone_free(zone);
4385 return (zone_create_error(error, 0, extended_error));
4386 }
4387
4388 if ((error = zone_set_root(zone, zone_root)) != 0) {
4389 zone_free(zone);
4390 return (zone_create_error(error, 0, extended_error));
4391 }
4392 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4393 zone_free(zone);
4394 return (zone_create_error(error, 0, extended_error));
4395 }
4396
4397 /* initialize node name to be the same as zone name */
4398 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4399 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4400 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4401
4402 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4403 zone->zone_domain[0] = '\0';
4404 zone->zone_hostid = HW_INVALID_HOSTID;
4405 zone->zone_shares = 1;
4406 zone->zone_shmmax = 0;
4407 zone->zone_ipc.ipcq_shmmni = 0;
4408 zone->zone_ipc.ipcq_semmni = 0;
4409 zone->zone_ipc.ipcq_msgmni = 0;
4410 zone->zone_bootargs = NULL;
4411 zone->zone_fs_allowed = NULL;
4412 zone->zone_initname =
4413 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4414 (void) strcpy(zone->zone_initname, zone_default_initname);
4415 zone->zone_nlwps = 0;
4416 zone->zone_nlwps_ctl = INT_MAX;
4417 zone->zone_nprocs = 0;
4418 zone->zone_nprocs_ctl = INT_MAX;
4419 zone->zone_locked_mem = 0;
4420 zone->zone_locked_mem_ctl = UINT64_MAX;
4421 zone->zone_max_swap = 0;
4422 zone->zone_max_swap_ctl = UINT64_MAX;
4423 zone->zone_max_lofi = 0;
4424 zone->zone_max_lofi_ctl = UINT64_MAX;
4425 zone0.zone_lockedmem_kstat = NULL;
4426 zone0.zone_swapresv_kstat = NULL;
4427
4428 /*
4429 * Zsched initializes the rctls.
4430 */
4431 zone->zone_rctls = NULL;
4432
4433 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4434 zone_free(zone);
4435 return (zone_create_error(error, 0, extended_error));
4436 }
4437
4438 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4439 zone_free(zone);
4440 return (set_errno(error));
4441 }
4442
4443 /*
4444 * Read in the trusted system parameters:
4445 * match flag and sensitivity label.
4446 */
4447 zone->zone_match = match;
4448 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4449 /* Fail if requested to set doi to anything but system's doi */
4450 if (doi != 0 && doi != default_doi) {
4451 zone_free(zone);
4452 return (set_errno(EINVAL));
4453 }
4454 /* Always apply system's doi to the zone */
4455 error = zone_set_label(zone, label, default_doi);
4456 if (error != 0) {
4457 zone_free(zone);
4458 return (set_errno(error));
4459 }
4460 insert_label_hash = B_TRUE;
4461 } else {
4462 /* all zones get an admin_low label if system is not labeled */
4463 zone->zone_slabel = l_admin_low;
4464 label_hold(l_admin_low);
4465 insert_label_hash = B_FALSE;
4466 }
4467
4468 /*
4469 * Stop all lwps since that's what normally happens as part of fork().
4470 * This needs to happen before we grab any locks to avoid deadlock
4471 * (another lwp in the process could be waiting for the held lock).
4472 */
4473 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4474 zone_free(zone);
4475 nvlist_free(rctls);
4476 return (zone_create_error(error, 0, extended_error));
4477 }
4478
4479 if (block_mounts(zone) == 0) {
4480 mutex_enter(&pp->p_lock);
4481 if (curthread != pp->p_agenttp)
4482 continuelwps(pp);
4483 mutex_exit(&pp->p_lock);
4484 zone_free(zone);
4485 nvlist_free(rctls);
4486 return (zone_create_error(error, 0, extended_error));
4487 }
4488
4489 /*
4490 * Set up credential for kernel access. After this, any errors
4491 * should go through the dance in errout rather than calling
4492 * zone_free directly.
4493 */
4494 zone->zone_kcred = crdup(kcred);
4495 crsetzone(zone->zone_kcred, zone);
4496 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4497 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4498 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4499 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4500
4501 mutex_enter(&zonehash_lock);
4502 /*
4503 * Make sure zone doesn't already exist.
4504 *
4505 * If the system and zone are labeled,
4506 * make sure no other zone exists that has the same label.
4507 */
4508 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4509 (insert_label_hash &&
4510 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4511 zone_status_t status;
4512
4513 status = zone_status_get(ztmp);
4514 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4515 error = EEXIST;
4516 else
4517 error = EBUSY;
4518
4519 if (insert_label_hash)
4520 error2 = ZE_LABELINUSE;
4521
4522 goto errout;
4523 }
4524
4525 /*
4526 * Don't allow zone creations which would cause one zone's rootpath to
4527 * be accessible from that of another (non-global) zone.
4528 */
4529 if (zone_is_nested(zone->zone_rootpath)) {
4530 error = EBUSY;
4531 goto errout;
4532 }
4533
4534 ASSERT(zonecount != 0); /* check for leaks */
4535 if (zonecount + 1 > maxzones) {
4536 error = ENOMEM;
4537 goto errout;
4538 }
4539
4540 if (zone_mount_count(zone->zone_rootpath) != 0) {
4541 error = EBUSY;
4542 error2 = ZE_AREMOUNTS;
4543 goto errout;
4544 }
4545
4546 /*
4547 * Zone is still incomplete, but we need to drop all locks while
4548 * zsched() initializes this zone's kernel process. We
4549 * optimistically add the zone to the hashtable and associated
4550 * lists so a parallel zone_create() doesn't try to create the
4551 * same zone.
4552 */
4553 zonecount++;
4554 (void) mod_hash_insert(zonehashbyid,
4555 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4556 (mod_hash_val_t)(uintptr_t)zone);
4557 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4558 (void) strcpy(str, zone->zone_name);
4559 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4560 (mod_hash_val_t)(uintptr_t)zone);
4561 if (insert_label_hash) {
4562 (void) mod_hash_insert(zonehashbylabel,
4563 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4564 zone->zone_flags |= ZF_HASHED_LABEL;
4565 }
4566
4567 /*
4568 * Insert into active list. At this point there are no 'hold's
4569 * on the zone, but everyone else knows not to use it, so we can
4570 * continue to use it. zsched() will do a zone_hold() if the
4571 * newproc() is successful.
4572 */
4573 list_insert_tail(&zone_active, zone);
4574 mutex_exit(&zonehash_lock);
4575
4576 zarg.zone = zone;
4577 zarg.nvlist = rctls;
4578 /*
4579 * The process, task, and project rctls are probably wrong;
4580 * we need an interface to get the default values of all rctls,
4581 * and initialize zsched appropriately. I'm not sure that that
4582 * makes much of a difference, though.
4583 */
4584 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4585 if (error != 0) {
4586 /*
4587 * We need to undo all globally visible state.
4588 */
4589 mutex_enter(&zonehash_lock);
4590 list_remove(&zone_active, zone);
4591 if (zone->zone_flags & ZF_HASHED_LABEL) {
4592 ASSERT(zone->zone_slabel != NULL);
4593 (void) mod_hash_destroy(zonehashbylabel,
4594 (mod_hash_key_t)zone->zone_slabel);
4595 }
4596 (void) mod_hash_destroy(zonehashbyname,
4597 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4598 (void) mod_hash_destroy(zonehashbyid,
4599 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4600 ASSERT(zonecount > 1);
4601 zonecount--;
4602 goto errout;
4603 }
4604
4605 /*
4606 * Zone creation can't fail from now on.
4607 */
4608
4609 /*
4610 * Create zone kstats
4611 */
4612 zone_kstat_create(zone);
4613
4614 /*
4615 * Let the other lwps continue.
4616 */
4617 mutex_enter(&pp->p_lock);
4618 if (curthread != pp->p_agenttp)
4619 continuelwps(pp);
4620 mutex_exit(&pp->p_lock);
4621
4622 /*
4623 * Wait for zsched to finish initializing the zone.
4624 */
4625 zone_status_wait(zone, ZONE_IS_READY);
4626 /*
4627 * The zone is fully visible, so we can let mounts progress.
4628 */
4629 resume_mounts(zone);
4630 nvlist_free(rctls);
4631
4632 return (zoneid);
4633
4634 errout:
4635 mutex_exit(&zonehash_lock);
4636 /*
4637 * Let the other lwps continue.
4638 */
4639 mutex_enter(&pp->p_lock);
4640 if (curthread != pp->p_agenttp)
4641 continuelwps(pp);
4642 mutex_exit(&pp->p_lock);
4643
4644 resume_mounts(zone);
4645 nvlist_free(rctls);
4646 /*
4647 * There is currently one reference to the zone, a cred_ref from
4648 * zone_kcred. To free the zone, we call crfree, which will call
4649 * zone_cred_rele, which will call zone_free.
4650 */
4651 ASSERT(zone->zone_cred_ref == 1);
4652 ASSERT(zone->zone_kcred->cr_ref == 1);
4653 ASSERT(zone->zone_ref == 0);
4654 zkcr = zone->zone_kcred;
4655 zone->zone_kcred = NULL;
4656 crfree(zkcr); /* triggers call to zone_free */
4657 return (zone_create_error(error, error2, extended_error));
4658 }
4659
4660 /*
4661 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4662 * the heavy lifting. initname is the path to the program to launch
4663 * at the "top" of the zone; if this is NULL, we use the system default,
4664 * which is stored at zone_default_initname.
4665 */
4666 static int
4667 zone_boot(zoneid_t zoneid)
4668 {
4669 int err;
4670 zone_t *zone;
4671
4672 if (secpolicy_zone_config(CRED()) != 0)
4673 return (set_errno(EPERM));
4674 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4675 return (set_errno(EINVAL));
4676
4677 mutex_enter(&zonehash_lock);
4678 /*
4679 * Look for zone under hash lock to prevent races with calls to
4680 * zone_shutdown, zone_destroy, etc.
4681 */
4682 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4683 mutex_exit(&zonehash_lock);
4684 return (set_errno(EINVAL));
4685 }
4686
4687 mutex_enter(&zone_status_lock);
4688 if (zone_status_get(zone) != ZONE_IS_READY) {
4689 mutex_exit(&zone_status_lock);
4690 mutex_exit(&zonehash_lock);
4691 return (set_errno(EINVAL));
4692 }
4693 zone_status_set(zone, ZONE_IS_BOOTING);
4694 mutex_exit(&zone_status_lock);
4695
4696 zone_hold(zone); /* so we can use the zone_t later */
4697 mutex_exit(&zonehash_lock);
4698
4699 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4700 zone_rele(zone);
4701 return (set_errno(EINTR));
4702 }
4703
4704 /*
4705 * Boot (starting init) might have failed, in which case the zone
4706 * will go to the SHUTTING_DOWN state; an appropriate errno will
4707 * be placed in zone->zone_boot_err, and so we return that.
4708 */
4709 err = zone->zone_boot_err;
4710 zone_rele(zone);
4711 return (err ? set_errno(err) : 0);
4712 }
4713
4714 /*
4715 * Kills all user processes in the zone, waiting for them all to exit
4716 * before returning.
4717 */
4718 static int
4719 zone_empty(zone_t *zone)
4720 {
4721 int waitstatus;
4722
4723 /*
4724 * We need to drop zonehash_lock before killing all
4725 * processes, otherwise we'll deadlock with zone_find_*
4726 * which can be called from the exit path.
4727 */
4728 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4729 while ((waitstatus = zone_status_timedwait_sig(zone,
4730 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4731 killall(zone->zone_id);
4732 }
4733 /*
4734 * return EINTR if we were signaled
4735 */
4736 if (waitstatus == 0)
4737 return (EINTR);
4738 return (0);
4739 }
4740
4741 /*
4742 * This function implements the policy for zone visibility.
4743 *
4744 * In standard Solaris, a non-global zone can only see itself.
4745 *
4746 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4747 * it dominates. For this test, the label of the global zone is treated as
4748 * admin_high so it is special-cased instead of being checked for dominance.
4749 *
4750 * Returns true if zone attributes are viewable, false otherwise.
4751 */
4752 static boolean_t
4753 zone_list_access(zone_t *zone)
4754 {
4755
4756 if (curproc->p_zone == global_zone ||
4757 curproc->p_zone == zone) {
4758 return (B_TRUE);
4759 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4760 bslabel_t *curproc_label;
4761 bslabel_t *zone_label;
4762
4763 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4764 zone_label = label2bslabel(zone->zone_slabel);
4765
4766 if (zone->zone_id != GLOBAL_ZONEID &&
4767 bldominates(curproc_label, zone_label)) {
4768 return (B_TRUE);
4769 } else {
4770 return (B_FALSE);
4771 }
4772 } else {
4773 return (B_FALSE);
4774 }
4775 }
4776
4777 /*
4778 * Systemcall to start the zone's halt sequence. By the time this
4779 * function successfully returns, all user processes and kernel threads
4780 * executing in it will have exited, ZSD shutdown callbacks executed,
4781 * and the zone status set to ZONE_IS_DOWN.
4782 *
4783 * It is possible that the call will interrupt itself if the caller is the
4784 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4785 */
4786 static int
4787 zone_shutdown(zoneid_t zoneid)
4788 {
4789 int error;
4790 zone_t *zone;
4791 zone_status_t status;
4792
4793 if (secpolicy_zone_config(CRED()) != 0)
4794 return (set_errno(EPERM));
4795 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4796 return (set_errno(EINVAL));
4797
4798 mutex_enter(&zonehash_lock);
4799 /*
4800 * Look for zone under hash lock to prevent races with other
4801 * calls to zone_shutdown and zone_destroy.
4802 */
4803 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4804 mutex_exit(&zonehash_lock);
4805 return (set_errno(EINVAL));
4806 }
4807
4808 /*
4809 * We have to drop zonehash_lock before calling block_mounts.
4810 * Hold the zone so we can continue to use the zone_t.
4811 */
4812 zone_hold(zone);
4813 mutex_exit(&zonehash_lock);
4814
4815 /*
4816 * Block mounts so that VFS_MOUNT() can get an accurate view of
4817 * the zone's status with regards to ZONE_IS_SHUTTING down.
4818 *
4819 * e.g. NFS can fail the mount if it determines that the zone
4820 * has already begun the shutdown sequence.
4821 *
4822 */
4823 if (block_mounts(zone) == 0) {
4824 zone_rele(zone);
4825 return (set_errno(EINTR));
4826 }
4827
4828 mutex_enter(&zonehash_lock);
4829 mutex_enter(&zone_status_lock);
4830 status = zone_status_get(zone);
4831 /*
4832 * Fail if the zone isn't fully initialized yet.
4833 */
4834 if (status < ZONE_IS_READY) {
4835 mutex_exit(&zone_status_lock);
4836 mutex_exit(&zonehash_lock);
4837 resume_mounts(zone);
4838 zone_rele(zone);
4839 return (set_errno(EINVAL));
4840 }
4841 /*
4842 * If conditions required for zone_shutdown() to return have been met,
4843 * return success.
4844 */
4845 if (status >= ZONE_IS_DOWN) {
4846 mutex_exit(&zone_status_lock);
4847 mutex_exit(&zonehash_lock);
4848 resume_mounts(zone);
4849 zone_rele(zone);
4850 return (0);
4851 }
4852 /*
4853 * If zone_shutdown() hasn't been called before, go through the motions.
4854 * If it has, there's nothing to do but wait for the kernel threads to
4855 * drain.
4856 */
4857 if (status < ZONE_IS_EMPTY) {
4858 uint_t ntasks;
4859
4860 mutex_enter(&zone->zone_lock);
4861 if ((ntasks = zone->zone_ntasks) != 1) {
4862 /*
4863 * There's still stuff running.
4864 */
4865 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4866 }
4867 mutex_exit(&zone->zone_lock);
4868 if (ntasks == 1) {
4869 /*
4870 * The only way to create another task is through
4871 * zone_enter(), which will block until we drop
4872 * zonehash_lock. The zone is empty.
4873 */
4874 if (zone->zone_kthreads == NULL) {
4875 /*
4876 * Skip ahead to ZONE_IS_DOWN
4877 */
4878 zone_status_set(zone, ZONE_IS_DOWN);
4879 } else {
4880 zone_status_set(zone, ZONE_IS_EMPTY);
4881 }
4882 }
4883 }
4884 mutex_exit(&zone_status_lock);
4885 mutex_exit(&zonehash_lock);
4886 resume_mounts(zone);
4887
4888 if (error = zone_empty(zone)) {
4889 zone_rele(zone);
4890 return (set_errno(error));
4891 }
4892 /*
4893 * After the zone status goes to ZONE_IS_DOWN this zone will no
4894 * longer be notified of changes to the pools configuration, so
4895 * in order to not end up with a stale pool pointer, we point
4896 * ourselves at the default pool and remove all resource
4897 * visibility. This is especially important as the zone_t may
4898 * languish on the deathrow for a very long time waiting for
4899 * cred's to drain out.
4900 *
4901 * This rebinding of the zone can happen multiple times
4902 * (presumably due to interrupted or parallel systemcalls)
4903 * without any adverse effects.
4904 */
4905 if (pool_lock_intr() != 0) {
4906 zone_rele(zone);
4907 return (set_errno(EINTR));
4908 }
4909 if (pool_state == POOL_ENABLED) {
4910 mutex_enter(&cpu_lock);
4911 zone_pool_set(zone, pool_default);
4912 /*
4913 * The zone no longer needs to be able to see any cpus.
4914 */
4915 zone_pset_set(zone, ZONE_PS_INVAL);
4916 mutex_exit(&cpu_lock);
4917 }
4918 pool_unlock();
4919
4920 /*
4921 * ZSD shutdown callbacks can be executed multiple times, hence
4922 * it is safe to not be holding any locks across this call.
4923 */
4924 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4925
4926 mutex_enter(&zone_status_lock);
4927 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4928 zone_status_set(zone, ZONE_IS_DOWN);
4929 mutex_exit(&zone_status_lock);
4930
4931 /*
4932 * Wait for kernel threads to drain.
4933 */
4934 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4935 zone_rele(zone);
4936 return (set_errno(EINTR));
4937 }
4938
4939 /*
4940 * Zone can be become down/destroyable even if the above wait
4941 * returns EINTR, so any code added here may never execute.
4942 * (i.e. don't add code here)
4943 */
4944
4945 zone_rele(zone);
4946 return (0);
4947 }
4948
4949 /*
4950 * Log the specified zone's reference counts. The caller should not be
4951 * holding the zone's zone_lock.
4952 */
4953 static void
4954 zone_log_refcounts(zone_t *zone)
4955 {
4956 char *buffer;
4957 char *buffer_position;
4958 uint32_t buffer_size;
4959 uint32_t index;
4960 uint_t ref;
4961 uint_t cred_ref;
4962
4963 /*
4964 * Construct a string representing the subsystem-specific reference
4965 * counts. The counts are printed in ascending order by index into the
4966 * zone_t::zone_subsys_ref array. The list will be surrounded by
4967 * square brackets [] and will only contain nonzero reference counts.
4968 *
4969 * The buffer will hold two square bracket characters plus ten digits,
4970 * one colon, one space, one comma, and some characters for a
4971 * subsystem name per subsystem-specific reference count. (Unsigned 32-
4972 * bit integers have at most ten decimal digits.) The last
4973 * reference count's comma is replaced by the closing square
4974 * bracket and a NULL character to terminate the string.
4975 *
4976 * NOTE: We have to grab the zone's zone_lock to create a consistent
4977 * snapshot of the zone's reference counters.
4978 *
4979 * First, figure out how much space the string buffer will need.
4980 * The buffer's size is stored in buffer_size.
4981 */
4982 buffer_size = 2; /* for the square brackets */
4983 mutex_enter(&zone->zone_lock);
4984 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4985 ref = zone->zone_ref;
4986 cred_ref = zone->zone_cred_ref;
4987 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4988 if (zone->zone_subsys_ref[index] != 0)
4989 buffer_size += strlen(zone_ref_subsys_names[index]) +
4990 13;
4991 if (buffer_size == 2) {
4992 /*
4993 * No subsystems had nonzero reference counts. Don't bother
4994 * with allocating a buffer; just log the general-purpose and
4995 * credential reference counts.
4996 */
4997 mutex_exit(&zone->zone_lock);
4998 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4999 "Zone '%s' (ID: %d) is shutting down, but %u zone "
5000 "references and %u credential references are still extant",
5001 zone->zone_name, zone->zone_id, ref, cred_ref);
5002 return;
5003 }
5004
5005 /*
5006 * buffer_size contains the exact number of characters that the
5007 * buffer will need. Allocate the buffer and fill it with nonzero
5008 * subsystem-specific reference counts. Surround the results with
5009 * square brackets afterwards.
5010 */
5011 buffer = kmem_alloc(buffer_size, KM_SLEEP);
5012 buffer_position = &buffer[1];
5013 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5014 /*
5015 * NOTE: The DDI's version of sprintf() returns a pointer to
5016 * the modified buffer rather than the number of bytes written
5017 * (as in snprintf(3C)). This is unfortunate and annoying.
5018 * Therefore, we'll use snprintf() with INT_MAX to get the
5019 * number of bytes written. Using INT_MAX is safe because
5020 * the buffer is perfectly sized for the data: we'll never
5021 * overrun the buffer.
5022 */
5023 if (zone->zone_subsys_ref[index] != 0)
5024 buffer_position += snprintf(buffer_position, INT_MAX,
5025 "%s: %u,", zone_ref_subsys_names[index],
5026 zone->zone_subsys_ref[index]);
5027 }
5028 mutex_exit(&zone->zone_lock);
5029 buffer[0] = '[';
5030 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5031 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5032 buffer_position[-1] = ']';
5033
5034 /*
5035 * Log the reference counts and free the message buffer.
5036 */
5037 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5038 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5039 "%u credential references are still extant %s", zone->zone_name,
5040 zone->zone_id, ref, cred_ref, buffer);
5041 kmem_free(buffer, buffer_size);
5042 }
5043
5044 /*
5045 * Systemcall entry point to finalize the zone halt process. The caller
5046 * must have already successfully called zone_shutdown().
5047 *
5048 * Upon successful completion, the zone will have been fully destroyed:
5049 * zsched will have exited, destructor callbacks executed, and the zone
5050 * removed from the list of active zones.
5051 */
5052 static int
5053 zone_destroy(zoneid_t zoneid)
5054 {
5055 uint64_t uniqid;
5056 zone_t *zone;
5057 zone_status_t status;
5058 clock_t wait_time;
5059 boolean_t log_refcounts;
5060
5061 if (secpolicy_zone_config(CRED()) != 0)
5062 return (set_errno(EPERM));
5063 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5064 return (set_errno(EINVAL));
5065
5066 mutex_enter(&zonehash_lock);
5067 /*
5068 * Look for zone under hash lock to prevent races with other
5069 * calls to zone_destroy.
5070 */
5071 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5072 mutex_exit(&zonehash_lock);
5073 return (set_errno(EINVAL));
5074 }
5075
5076 if (zone_mount_count(zone->zone_rootpath) != 0) {
5077 mutex_exit(&zonehash_lock);
5078 return (set_errno(EBUSY));
5079 }
5080 mutex_enter(&zone_status_lock);
5081 status = zone_status_get(zone);
5082 if (status < ZONE_IS_DOWN) {
5083 mutex_exit(&zone_status_lock);
5084 mutex_exit(&zonehash_lock);
5085 return (set_errno(EBUSY));
5086 } else if (status == ZONE_IS_DOWN) {
5087 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5088 }
5089 mutex_exit(&zone_status_lock);
5090 zone_hold(zone);
5091 mutex_exit(&zonehash_lock);
5092
5093 /*
5094 * wait for zsched to exit
5095 */
5096 zone_status_wait(zone, ZONE_IS_DEAD);
5097 zone_zsd_callbacks(zone, ZSD_DESTROY);
5098 zone->zone_netstack = NULL;
5099 uniqid = zone->zone_uniqid;
5100 zone_rele(zone);
5101 zone = NULL; /* potentially free'd */
5102
5103 log_refcounts = B_FALSE;
5104 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5105 mutex_enter(&zonehash_lock);
5106 for (; /* ever */; ) {
5107 boolean_t unref;
5108 boolean_t refs_have_been_logged;
5109
5110 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5111 zone->zone_uniqid != uniqid) {
5112 /*
5113 * The zone has gone away. Necessary conditions
5114 * are met, so we return success.
5115 */
5116 mutex_exit(&zonehash_lock);
5117 return (0);
5118 }
5119 mutex_enter(&zone->zone_lock);
5120 unref = ZONE_IS_UNREF(zone);
5121 refs_have_been_logged = (zone->zone_flags &
5122 ZF_REFCOUNTS_LOGGED);
5123 mutex_exit(&zone->zone_lock);
5124 if (unref) {
5125 /*
5126 * There is only one reference to the zone -- that
5127 * added when the zone was added to the hashtables --
5128 * and things will remain this way until we drop
5129 * zonehash_lock... we can go ahead and cleanup the
5130 * zone.
5131 */
5132 break;
5133 }
5134
5135 /*
5136 * Wait for zone_rele_common() or zone_cred_rele() to signal
5137 * zone_destroy_cv. zone_destroy_cv is signaled only when
5138 * some zone's general-purpose reference count reaches one.
5139 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5140 * on zone_destroy_cv, then log the zone's reference counts and
5141 * continue to wait for zone_rele() and zone_cred_rele().
5142 */
5143 if (!refs_have_been_logged) {
5144 if (!log_refcounts) {
5145 /*
5146 * This thread hasn't timed out waiting on
5147 * zone_destroy_cv yet. Wait wait_time clock
5148 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5149 * seconds) for the zone's references to clear.
5150 */
5151 ASSERT(wait_time > 0);
5152 wait_time = cv_reltimedwait_sig(
5153 &zone_destroy_cv, &zonehash_lock, wait_time,
5154 TR_SEC);
5155 if (wait_time > 0) {
5156 /*
5157 * A thread in zone_rele() or
5158 * zone_cred_rele() signaled
5159 * zone_destroy_cv before this thread's
5160 * wait timed out. The zone might have
5161 * only one reference left; find out!
5162 */
5163 continue;
5164 } else if (wait_time == 0) {
5165 /* The thread's process was signaled. */
5166 mutex_exit(&zonehash_lock);
5167 return (set_errno(EINTR));
5168 }
5169
5170 /*
5171 * The thread timed out while waiting on
5172 * zone_destroy_cv. Even though the thread
5173 * timed out, it has to check whether another
5174 * thread woke up from zone_destroy_cv and
5175 * destroyed the zone.
5176 *
5177 * If the zone still exists and has more than
5178 * one unreleased general-purpose reference,
5179 * then log the zone's reference counts.
5180 */
5181 log_refcounts = B_TRUE;
5182 continue;
5183 }
5184
5185 /*
5186 * The thread already timed out on zone_destroy_cv while
5187 * waiting for subsystems to release the zone's last
5188 * general-purpose references. Log the zone's reference
5189 * counts and wait indefinitely on zone_destroy_cv.
5190 */
5191 zone_log_refcounts(zone);
5192 }
5193 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5194 /* The thread's process was signaled. */
5195 mutex_exit(&zonehash_lock);
5196 return (set_errno(EINTR));
5197 }
5198 }
5199
5200 /*
5201 * Remove CPU cap for this zone now since we're not going to
5202 * fail below this point.
5203 */
5204 cpucaps_zone_remove(zone);
5205
5206 /* Get rid of the zone's kstats */
5207 zone_kstat_delete(zone);
5208
5209 /* remove the pfexecd doors */
5210 if (zone->zone_pfexecd != NULL) {
5211 klpd_freelist(&zone->zone_pfexecd);
5212 zone->zone_pfexecd = NULL;
5213 }
5214
5215 /* free brand specific data */
5216 if (ZONE_IS_BRANDED(zone))
5217 ZBROP(zone)->b_free_brand_data(zone);
5218
5219 /* Say goodbye to brand framework. */
5220 brand_unregister_zone(zone->zone_brand);
5221
5222 /*
5223 * It is now safe to let the zone be recreated; remove it from the
5224 * lists. The memory will not be freed until the last cred
5225 * reference goes away.
5226 */
5227 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5228 zonecount--;
5229 /* remove from active list and hash tables */
5230 list_remove(&zone_active, zone);
5231 (void) mod_hash_destroy(zonehashbyname,
5232 (mod_hash_key_t)zone->zone_name);
5233 (void) mod_hash_destroy(zonehashbyid,
5234 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5235 if (zone->zone_flags & ZF_HASHED_LABEL)
5236 (void) mod_hash_destroy(zonehashbylabel,
5237 (mod_hash_key_t)zone->zone_slabel);
5238 mutex_exit(&zonehash_lock);
5239
5240 /*
5241 * Release the root vnode; we're not using it anymore. Nor should any
5242 * other thread that might access it exist.
5243 */
5244 if (zone->zone_rootvp != NULL) {
5245 VN_RELE(zone->zone_rootvp);
5246 zone->zone_rootvp = NULL;
5247 }
5248
5249 /* add to deathrow list */
5250 mutex_enter(&zone_deathrow_lock);
5251 list_insert_tail(&zone_deathrow, zone);
5252 mutex_exit(&zone_deathrow_lock);
5253
5254 /*
5255 * Drop last reference (which was added by zsched()), this will
5256 * free the zone unless there are outstanding cred references.
5257 */
5258 zone_rele(zone);
5259 return (0);
5260 }
5261
5262 /*
5263 * Systemcall entry point for zone_getattr(2).
5264 */
5265 static ssize_t
5266 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5267 {
5268 size_t size;
5269 int error = 0, err;
5270 zone_t *zone;
5271 char *zonepath;
5272 char *outstr;
5273 zone_status_t zone_status;
5274 pid_t initpid;
5275 boolean_t global = (curzone == global_zone);
5276 boolean_t inzone = (curzone->zone_id == zoneid);
5277 ushort_t flags;
5278 zone_net_data_t *zbuf;
5279
5280 mutex_enter(&zonehash_lock);
5281 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5282 mutex_exit(&zonehash_lock);
5283 return (set_errno(EINVAL));
5284 }
5285 zone_status = zone_status_get(zone);
5286 if (zone_status < ZONE_IS_INITIALIZED) {
5287 mutex_exit(&zonehash_lock);
5288 return (set_errno(EINVAL));
5289 }
5290 zone_hold(zone);
5291 mutex_exit(&zonehash_lock);
5292
5293 /*
5294 * If not in the global zone, don't show information about other zones,
5295 * unless the system is labeled and the local zone's label dominates
5296 * the other zone.
5297 */
5298 if (!zone_list_access(zone)) {
5299 zone_rele(zone);
5300 return (set_errno(EINVAL));
5301 }
5302
5303 switch (attr) {
5304 case ZONE_ATTR_ROOT:
5305 if (global) {
5306 /*
5307 * Copy the path to trim the trailing "/" (except for
5308 * the global zone).
5309 */
5310 if (zone != global_zone)
5311 size = zone->zone_rootpathlen - 1;
5312 else
5313 size = zone->zone_rootpathlen;
5314 zonepath = kmem_alloc(size, KM_SLEEP);
5315 bcopy(zone->zone_rootpath, zonepath, size);
5316 zonepath[size - 1] = '\0';
5317 } else {
5318 if (inzone || !is_system_labeled()) {
5319 /*
5320 * Caller is not in the global zone.
5321 * if the query is on the current zone
5322 * or the system is not labeled,
5323 * just return faked-up path for current zone.
5324 */
5325 zonepath = "/";
5326 size = 2;
5327 } else {
5328 /*
5329 * Return related path for current zone.
5330 */
5331 int prefix_len = strlen(zone_prefix);
5332 int zname_len = strlen(zone->zone_name);
5333
5334 size = prefix_len + zname_len + 1;
5335 zonepath = kmem_alloc(size, KM_SLEEP);
5336 bcopy(zone_prefix, zonepath, prefix_len);
5337 bcopy(zone->zone_name, zonepath +
5338 prefix_len, zname_len);
5339 zonepath[size - 1] = '\0';
5340 }
5341 }
5342 if (bufsize > size)
5343 bufsize = size;
5344 if (buf != NULL) {
5345 err = copyoutstr(zonepath, buf, bufsize, NULL);
5346 if (err != 0 && err != ENAMETOOLONG)
5347 error = EFAULT;
5348 }
5349 if (global || (is_system_labeled() && !inzone))
5350 kmem_free(zonepath, size);
5351 break;
5352
5353 case ZONE_ATTR_NAME:
5354 size = strlen(zone->zone_name) + 1;
5355 if (bufsize > size)
5356 bufsize = size;
5357 if (buf != NULL) {
5358 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5359 if (err != 0 && err != ENAMETOOLONG)
5360 error = EFAULT;
5361 }
5362 break;
5363
5364 case ZONE_ATTR_STATUS:
5365 /*
5366 * Since we're not holding zonehash_lock, the zone status
5367 * may be anything; leave it up to userland to sort it out.
5368 */
5369 size = sizeof (zone_status);
5370 if (bufsize > size)
5371 bufsize = size;
5372 zone_status = zone_status_get(zone);
5373 if (buf != NULL &&
5374 copyout(&zone_status, buf, bufsize) != 0)
5375 error = EFAULT;
5376 break;
5377 case ZONE_ATTR_FLAGS:
5378 size = sizeof (zone->zone_flags);
5379 if (bufsize > size)
5380 bufsize = size;
5381 flags = zone->zone_flags;
5382 if (buf != NULL &&
5383 copyout(&flags, buf, bufsize) != 0)
5384 error = EFAULT;
5385 break;
5386 case ZONE_ATTR_PRIVSET:
5387 size = sizeof (priv_set_t);
5388 if (bufsize > size)
5389 bufsize = size;
5390 if (buf != NULL &&
5391 copyout(zone->zone_privset, buf, bufsize) != 0)
5392 error = EFAULT;
5393 break;
5394 case ZONE_ATTR_UNIQID:
5395 size = sizeof (zone->zone_uniqid);
5396 if (bufsize > size)
5397 bufsize = size;
5398 if (buf != NULL &&
5399 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5400 error = EFAULT;
5401 break;
5402 case ZONE_ATTR_POOLID:
5403 {
5404 pool_t *pool;
5405 poolid_t poolid;
5406
5407 if (pool_lock_intr() != 0) {
5408 error = EINTR;
5409 break;
5410 }
5411 pool = zone_pool_get(zone);
5412 poolid = pool->pool_id;
5413 pool_unlock();
5414 size = sizeof (poolid);
5415 if (bufsize > size)
5416 bufsize = size;
5417 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5418 error = EFAULT;
5419 }
5420 break;
5421 case ZONE_ATTR_SLBL:
5422 size = sizeof (bslabel_t);
5423 if (bufsize > size)
5424 bufsize = size;
5425 if (zone->zone_slabel == NULL)
5426 error = EINVAL;
5427 else if (buf != NULL &&
5428 copyout(label2bslabel(zone->zone_slabel), buf,
5429 bufsize) != 0)
5430 error = EFAULT;
5431 break;
5432 case ZONE_ATTR_INITPID:
5433 size = sizeof (initpid);
5434 if (bufsize > size)
5435 bufsize = size;
5436 initpid = zone->zone_proc_initpid;
5437 if (initpid == -1) {
5438 error = ESRCH;
5439 break;
5440 }
5441 if (buf != NULL &&
5442 copyout(&initpid, buf, bufsize) != 0)
5443 error = EFAULT;
5444 break;
5445 case ZONE_ATTR_BRAND:
5446 size = strlen(zone->zone_brand->b_name) + 1;
5447
5448 if (bufsize > size)
5449 bufsize = size;
5450 if (buf != NULL) {
5451 err = copyoutstr(zone->zone_brand->b_name, buf,
5452 bufsize, NULL);
5453 if (err != 0 && err != ENAMETOOLONG)
5454 error = EFAULT;
5455 }
5456 break;
5457 case ZONE_ATTR_INITNAME:
5458 size = strlen(zone->zone_initname) + 1;
5459 if (bufsize > size)
5460 bufsize = size;
5461 if (buf != NULL) {
5462 err = copyoutstr(zone->zone_initname, buf, bufsize,
5463 NULL);
5464 if (err != 0 && err != ENAMETOOLONG)
5465 error = EFAULT;
5466 }
5467 break;
5468 case ZONE_ATTR_BOOTARGS:
5469 if (zone->zone_bootargs == NULL)
5470 outstr = "";
5471 else
5472 outstr = zone->zone_bootargs;
5473 size = strlen(outstr) + 1;
5474 if (bufsize > size)
5475 bufsize = size;
5476 if (buf != NULL) {
5477 err = copyoutstr(outstr, buf, bufsize, NULL);
5478 if (err != 0 && err != ENAMETOOLONG)
5479 error = EFAULT;
5480 }
5481 break;
5482 case ZONE_ATTR_PHYS_MCAP:
5483 size = sizeof (zone->zone_phys_mcap);
5484 if (bufsize > size)
5485 bufsize = size;
5486 if (buf != NULL &&
5487 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5488 error = EFAULT;
5489 break;
5490 case ZONE_ATTR_SCHED_CLASS:
5491 mutex_enter(&class_lock);
5492
5493 if (zone->zone_defaultcid >= loaded_classes)
5494 outstr = "";
5495 else
5496 outstr = sclass[zone->zone_defaultcid].cl_name;
5497 size = strlen(outstr) + 1;
5498 if (bufsize > size)
5499 bufsize = size;
5500 if (buf != NULL) {
5501 err = copyoutstr(outstr, buf, bufsize, NULL);
5502 if (err != 0 && err != ENAMETOOLONG)
5503 error = EFAULT;
5504 }
5505
5506 mutex_exit(&class_lock);
5507 break;
5508 case ZONE_ATTR_HOSTID:
5509 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5510 bufsize == sizeof (zone->zone_hostid)) {
5511 size = sizeof (zone->zone_hostid);
5512 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5513 bufsize) != 0)
5514 error = EFAULT;
5515 } else {
5516 error = EINVAL;
5517 }
5518 break;
5519 case ZONE_ATTR_FS_ALLOWED:
5520 if (zone->zone_fs_allowed == NULL)
5521 outstr = "";
5522 else
5523 outstr = zone->zone_fs_allowed;
5524 size = strlen(outstr) + 1;
5525 if (bufsize > size)
5526 bufsize = size;
5527 if (buf != NULL) {
5528 err = copyoutstr(outstr, buf, bufsize, NULL);
5529 if (err != 0 && err != ENAMETOOLONG)
5530 error = EFAULT;
5531 }
5532 break;
5533 case ZONE_ATTR_NETWORK:
5534 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5535 if (copyin(buf, zbuf, bufsize) != 0) {
5536 error = EFAULT;
5537 } else {
5538 error = zone_get_network(zoneid, zbuf);
5539 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5540 error = EFAULT;
5541 }
5542 kmem_free(zbuf, bufsize);
5543 break;
5544 default:
5545 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5546 size = bufsize;
5547 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5548 } else {
5549 error = EINVAL;
5550 }
5551 }
5552 zone_rele(zone);
5553
5554 if (error)
5555 return (set_errno(error));
5556 return ((ssize_t)size);
5557 }
5558
5559 /*
5560 * Systemcall entry point for zone_setattr(2).
5561 */
5562 /*ARGSUSED*/
5563 static int
5564 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5565 {
5566 zone_t *zone;
5567 zone_status_t zone_status;
5568 int err = -1;
5569 zone_net_data_t *zbuf;
5570
5571 if (secpolicy_zone_config(CRED()) != 0)
5572 return (set_errno(EPERM));
5573
5574 /*
5575 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5576 * global zone.
5577 */
5578 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5579 return (set_errno(EINVAL));
5580 }
5581
5582 mutex_enter(&zonehash_lock);
5583 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5584 mutex_exit(&zonehash_lock);
5585 return (set_errno(EINVAL));
5586 }
5587 zone_hold(zone);
5588 mutex_exit(&zonehash_lock);
5589
5590 /*
5591 * At present most attributes can only be set on non-running,
5592 * non-global zones.
5593 */
5594 zone_status = zone_status_get(zone);
5595 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5596 err = EINVAL;
5597 goto done;
5598 }
5599
5600 switch (attr) {
5601 case ZONE_ATTR_INITNAME:
5602 err = zone_set_initname(zone, (const char *)buf);
5603 break;
5604 case ZONE_ATTR_INITNORESTART:
5605 zone->zone_restart_init = B_FALSE;
5606 err = 0;
5607 break;
5608 case ZONE_ATTR_BOOTARGS:
5609 err = zone_set_bootargs(zone, (const char *)buf);
5610 break;
5611 case ZONE_ATTR_BRAND:
5612 err = zone_set_brand(zone, (const char *)buf);
5613 break;
5614 case ZONE_ATTR_FS_ALLOWED:
5615 err = zone_set_fs_allowed(zone, (const char *)buf);
5616 break;
5617 case ZONE_ATTR_PHYS_MCAP:
5618 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5619 break;
5620 case ZONE_ATTR_SCHED_CLASS:
5621 err = zone_set_sched_class(zone, (const char *)buf);
5622 break;
5623 case ZONE_ATTR_HOSTID:
5624 if (bufsize == sizeof (zone->zone_hostid)) {
5625 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5626 err = 0;
5627 else
5628 err = EFAULT;
5629 } else {
5630 err = EINVAL;
5631 }
5632 break;
5633 case ZONE_ATTR_NETWORK:
5634 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5635 err = EINVAL;
5636 break;
5637 }
5638 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5639 if (copyin(buf, zbuf, bufsize) != 0) {
5640 kmem_free(zbuf, bufsize);
5641 err = EFAULT;
5642 break;
5643 }
5644 err = zone_set_network(zoneid, zbuf);
5645 kmem_free(zbuf, bufsize);
5646 break;
5647 default:
5648 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5649 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5650 else
5651 err = EINVAL;
5652 }
5653
5654 done:
5655 zone_rele(zone);
5656 ASSERT(err != -1);
5657 return (err != 0 ? set_errno(err) : 0);
5658 }
5659
5660 /*
5661 * Return zero if the process has at least one vnode mapped in to its
5662 * address space which shouldn't be allowed to change zones.
5663 *
5664 * Also return zero if the process has any shared mappings which reserve
5665 * swap. This is because the counting for zone.max-swap does not allow swap
5666 * reservation to be shared between zones. zone swap reservation is counted
5667 * on zone->zone_max_swap.
5668 */
5669 static int
5670 as_can_change_zones(void)
5671 {
5672 proc_t *pp = curproc;
5673 struct seg *seg;
5674 struct as *as = pp->p_as;
5675 vnode_t *vp;
5676 int allow = 1;
5677
5678 ASSERT(pp->p_as != &kas);
5679 AS_LOCK_ENTER(as, RW_READER);
5680 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5681
5682 /*
5683 * Cannot enter zone with shared anon memory which
5684 * reserves swap. See comment above.
5685 */
5686 if (seg_can_change_zones(seg) == B_FALSE) {
5687 allow = 0;
5688 break;
5689 }
5690 /*
5691 * if we can't get a backing vnode for this segment then skip
5692 * it.
5693 */
5694 vp = NULL;
5695 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5696 continue;
5697 if (!vn_can_change_zones(vp)) { /* bail on first match */
5698 allow = 0;
5699 break;
5700 }
5701 }
5702 AS_LOCK_EXIT(as);
5703 return (allow);
5704 }
5705
5706 /*
5707 * Count swap reserved by curproc's address space
5708 */
5709 static size_t
5710 as_swresv(void)
5711 {
5712 proc_t *pp = curproc;
5713 struct seg *seg;
5714 struct as *as = pp->p_as;
5715 size_t swap = 0;
5716
5717 ASSERT(pp->p_as != &kas);
5718 ASSERT(AS_WRITE_HELD(as));
5719 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5720 swap += seg_swresv(seg);
5721
5722 return (swap);
5723 }
5724
5725 /*
5726 * Systemcall entry point for zone_enter().
5727 *
5728 * The current process is injected into said zone. In the process
5729 * it will change its project membership, privileges, rootdir/cwd,
5730 * zone-wide rctls, and pool association to match those of the zone.
5731 *
5732 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5733 * state will transition it to ZONE_IS_RUNNING. Processes may only
5734 * enter a zone that is "ready" or "running".
5735 */
5736 static int
5737 zone_enter(zoneid_t zoneid)
5738 {
5739 zone_t *zone;
5740 vnode_t *vp;
5741 proc_t *pp = curproc;
5742 contract_t *ct;
5743 cont_process_t *ctp;
5744 task_t *tk, *oldtk;
5745 kproject_t *zone_proj0;
5746 cred_t *cr, *newcr;
5747 pool_t *oldpool, *newpool;
5748 sess_t *sp;
5749 uid_t uid;
5750 zone_status_t status;
5751 int err = 0;
5752 rctl_entity_p_t e;
5753 size_t swap;
5754 kthread_id_t t;
5755
5756 if (secpolicy_zone_config(CRED()) != 0)
5757 return (set_errno(EPERM));
5758 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5759 return (set_errno(EINVAL));
5760
5761 /*
5762 * Stop all lwps so we don't need to hold a lock to look at
5763 * curproc->p_zone. This needs to happen before we grab any
5764 * locks to avoid deadlock (another lwp in the process could
5765 * be waiting for the held lock).
5766 */
5767 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5768 return (set_errno(EINTR));
5769
5770 /*
5771 * Make sure we're not changing zones with files open or mapped in
5772 * to our address space which shouldn't be changing zones.
5773 */
5774 if (!files_can_change_zones()) {
5775 err = EBADF;
5776 goto out;
5777 }
5778 if (!as_can_change_zones()) {
5779 err = EFAULT;
5780 goto out;
5781 }
5782
5783 mutex_enter(&zonehash_lock);
5784 if (pp->p_zone != global_zone) {
5785 mutex_exit(&zonehash_lock);
5786 err = EINVAL;
5787 goto out;
5788 }
5789
5790 zone = zone_find_all_by_id(zoneid);
5791 if (zone == NULL) {
5792 mutex_exit(&zonehash_lock);
5793 err = EINVAL;
5794 goto out;
5795 }
5796
5797 /*
5798 * To prevent processes in a zone from holding contracts on
5799 * extrazonal resources, and to avoid process contract
5800 * memberships which span zones, contract holders and processes
5801 * which aren't the sole members of their encapsulating process
5802 * contracts are not allowed to zone_enter.
5803 */
5804 ctp = pp->p_ct_process;
5805 ct = &ctp->conp_contract;
5806 mutex_enter(&ct->ct_lock);
5807 mutex_enter(&pp->p_lock);
5808 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5809 mutex_exit(&pp->p_lock);
5810 mutex_exit(&ct->ct_lock);
5811 mutex_exit(&zonehash_lock);
5812 err = EINVAL;
5813 goto out;
5814 }
5815
5816 /*
5817 * Moreover, we don't allow processes whose encapsulating
5818 * process contracts have inherited extrazonal contracts.
5819 * While it would be easier to eliminate all process contracts
5820 * with inherited contracts, we need to be able to give a
5821 * restarted init (or other zone-penetrating process) its
5822 * predecessor's contracts.
5823 */
5824 if (ctp->conp_ninherited != 0) {
5825 contract_t *next;
5826 for (next = list_head(&ctp->conp_inherited); next;
5827 next = list_next(&ctp->conp_inherited, next)) {
5828 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5829 mutex_exit(&pp->p_lock);
5830 mutex_exit(&ct->ct_lock);
5831 mutex_exit(&zonehash_lock);
5832 err = EINVAL;
5833 goto out;
5834 }
5835 }
5836 }
5837
5838 mutex_exit(&pp->p_lock);
5839 mutex_exit(&ct->ct_lock);
5840
5841 status = zone_status_get(zone);
5842 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5843 /*
5844 * Can't join
5845 */
5846 mutex_exit(&zonehash_lock);
5847 err = EINVAL;
5848 goto out;
5849 }
5850
5851 /*
5852 * Make sure new priv set is within the permitted set for caller
5853 */
5854 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5855 mutex_exit(&zonehash_lock);
5856 err = EPERM;
5857 goto out;
5858 }
5859 /*
5860 * We want to momentarily drop zonehash_lock while we optimistically
5861 * bind curproc to the pool it should be running in. This is safe
5862 * since the zone can't disappear (we have a hold on it).
5863 */
5864 zone_hold(zone);
5865 mutex_exit(&zonehash_lock);
5866
5867 /*
5868 * Grab pool_lock to keep the pools configuration from changing
5869 * and to stop ourselves from getting rebound to another pool
5870 * until we join the zone.
5871 */
5872 if (pool_lock_intr() != 0) {
5873 zone_rele(zone);
5874 err = EINTR;
5875 goto out;
5876 }
5877 ASSERT(secpolicy_pool(CRED()) == 0);
5878 /*
5879 * Bind ourselves to the pool currently associated with the zone.
5880 */
5881 oldpool = curproc->p_pool;
5882 newpool = zone_pool_get(zone);
5883 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5884 (err = pool_do_bind(newpool, P_PID, P_MYID,
5885 POOL_BIND_ALL)) != 0) {
5886 pool_unlock();
5887 zone_rele(zone);
5888 goto out;
5889 }
5890
5891 /*
5892 * Grab cpu_lock now; we'll need it later when we call
5893 * task_join().
5894 */
5895 mutex_enter(&cpu_lock);
5896 mutex_enter(&zonehash_lock);
5897 /*
5898 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5899 */
5900 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5901 /*
5902 * Can't join anymore.
5903 */
5904 mutex_exit(&zonehash_lock);
5905 mutex_exit(&cpu_lock);
5906 if (pool_state == POOL_ENABLED &&
5907 newpool != oldpool)
5908 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5909 POOL_BIND_ALL);
5910 pool_unlock();
5911 zone_rele(zone);
5912 err = EINVAL;
5913 goto out;
5914 }
5915
5916 /*
5917 * a_lock must be held while transfering locked memory and swap
5918 * reservation from the global zone to the non global zone because
5919 * asynchronous faults on the processes' address space can lock
5920 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5921 * segments respectively.
5922 */
5923 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5924 swap = as_swresv();
5925 mutex_enter(&pp->p_lock);
5926 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5927 /* verify that we do not exceed and task or lwp limits */
5928 mutex_enter(&zone->zone_nlwps_lock);
5929 /* add new lwps to zone and zone's proj0 */
5930 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5931 zone->zone_nlwps += pp->p_lwpcnt;
5932 /* add 1 task to zone's proj0 */
5933 zone_proj0->kpj_ntasks += 1;
5934
5935 zone_proj0->kpj_nprocs++;
5936 zone->zone_nprocs++;
5937 mutex_exit(&zone->zone_nlwps_lock);
5938
5939 mutex_enter(&zone->zone_mem_lock);
5940 zone->zone_locked_mem += pp->p_locked_mem;
5941 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5942 zone->zone_max_swap += swap;
5943 mutex_exit(&zone->zone_mem_lock);
5944
5945 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5946 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5947 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5948
5949 /* remove lwps and process from proc's old zone and old project */
5950 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5951 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5952 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5953 pp->p_task->tk_proj->kpj_nprocs--;
5954 pp->p_zone->zone_nprocs--;
5955 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5956
5957 mutex_enter(&pp->p_zone->zone_mem_lock);
5958 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5959 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5960 pp->p_zone->zone_max_swap -= swap;
5961 mutex_exit(&pp->p_zone->zone_mem_lock);
5962
5963 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5964 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5965 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5966
5967 pp->p_flag |= SZONETOP;
5968 pp->p_zone = zone;
5969 mutex_exit(&pp->p_lock);
5970 AS_LOCK_EXIT(pp->p_as);
5971
5972 /*
5973 * Joining the zone cannot fail from now on.
5974 *
5975 * This means that a lot of the following code can be commonized and
5976 * shared with zsched().
5977 */
5978
5979 /*
5980 * If the process contract fmri was inherited, we need to
5981 * flag this so that any contract status will not leak
5982 * extra zone information, svc_fmri in this case
5983 */
5984 if (ctp->conp_svc_ctid != ct->ct_id) {
5985 mutex_enter(&ct->ct_lock);
5986 ctp->conp_svc_zone_enter = ct->ct_id;
5987 mutex_exit(&ct->ct_lock);
5988 }
5989
5990 /*
5991 * Reset the encapsulating process contract's zone.
5992 */
5993 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5994 contract_setzuniqid(ct, zone->zone_uniqid);
5995
5996 /*
5997 * Create a new task and associate the process with the project keyed
5998 * by (projid,zoneid).
5999 *
6000 * We might as well be in project 0; the global zone's projid doesn't
6001 * make much sense in a zone anyhow.
6002 *
6003 * This also increments zone_ntasks, and returns with p_lock held.
6004 */
6005 tk = task_create(0, zone);
6006 oldtk = task_join(tk, 0);
6007 mutex_exit(&cpu_lock);
6008
6009 /*
6010 * call RCTLOP_SET functions on this proc
6011 */
6012 e.rcep_p.zone = zone;
6013 e.rcep_t = RCENTITY_ZONE;
6014 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6015 RCD_CALLBACK);
6016 mutex_exit(&pp->p_lock);
6017
6018 /*
6019 * We don't need to hold any of zsched's locks here; not only do we know
6020 * the process and zone aren't going away, we know its session isn't
6021 * changing either.
6022 *
6023 * By joining zsched's session here, we mimic the behavior in the
6024 * global zone of init's sid being the pid of sched. We extend this
6025 * to all zlogin-like zone_enter()'ing processes as well.
6026 */
6027 mutex_enter(&pidlock);
6028 sp = zone->zone_zsched->p_sessp;
6029 sess_hold(zone->zone_zsched);
6030 mutex_enter(&pp->p_lock);
6031 pgexit(pp);
6032 sess_rele(pp->p_sessp, B_TRUE);
6033 pp->p_sessp = sp;
6034 pgjoin(pp, zone->zone_zsched->p_pidp);
6035
6036 /*
6037 * If any threads are scheduled to be placed on zone wait queue they
6038 * should abandon the idea since the wait queue is changing.
6039 * We need to be holding pidlock & p_lock to do this.
6040 */
6041 if ((t = pp->p_tlist) != NULL) {
6042 do {
6043 thread_lock(t);
6044 /*
6045 * Kick this thread so that he doesn't sit
6046 * on a wrong wait queue.
6047 */
6048 if (ISWAITING(t))
6049 setrun_locked(t);
6050
6051 if (t->t_schedflag & TS_ANYWAITQ)
6052 t->t_schedflag &= ~ TS_ANYWAITQ;
6053
6054 thread_unlock(t);
6055 } while ((t = t->t_forw) != pp->p_tlist);
6056 }
6057
6058 /*
6059 * If there is a default scheduling class for the zone and it is not
6060 * the class we are currently in, change all of the threads in the
6061 * process to the new class. We need to be holding pidlock & p_lock
6062 * when we call parmsset so this is a good place to do it.
6063 */
6064 if (zone->zone_defaultcid > 0 &&
6065 zone->zone_defaultcid != curthread->t_cid) {
6066 pcparms_t pcparms;
6067
6068 pcparms.pc_cid = zone->zone_defaultcid;
6069 pcparms.pc_clparms[0] = 0;
6070
6071 /*
6072 * If setting the class fails, we still want to enter the zone.
6073 */
6074 if ((t = pp->p_tlist) != NULL) {
6075 do {
6076 (void) parmsset(&pcparms, t);
6077 } while ((t = t->t_forw) != pp->p_tlist);
6078 }
6079 }
6080
6081 mutex_exit(&pp->p_lock);
6082 mutex_exit(&pidlock);
6083
6084 mutex_exit(&zonehash_lock);
6085 /*
6086 * We're firmly in the zone; let pools progress.
6087 */
6088 pool_unlock();
6089 task_rele(oldtk);
6090 /*
6091 * We don't need to retain a hold on the zone since we already
6092 * incremented zone_ntasks, so the zone isn't going anywhere.
6093 */
6094 zone_rele(zone);
6095
6096 /*
6097 * Chroot
6098 */
6099 vp = zone->zone_rootvp;
6100 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6101 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6102
6103 /*
6104 * Change process credentials
6105 */
6106 newcr = cralloc();
6107 mutex_enter(&pp->p_crlock);
6108 cr = pp->p_cred;
6109 crcopy_to(cr, newcr);
6110 crsetzone(newcr, zone);
6111 pp->p_cred = newcr;
6112
6113 /*
6114 * Restrict all process privilege sets to zone limit
6115 */
6116 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6117 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6118 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6119 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6120 mutex_exit(&pp->p_crlock);
6121 crset(pp, newcr);
6122
6123 /*
6124 * Adjust upcount to reflect zone entry.
6125 */
6126 uid = crgetruid(newcr);
6127 mutex_enter(&pidlock);
6128 upcount_dec(uid, GLOBAL_ZONEID);
6129 upcount_inc(uid, zoneid);
6130 mutex_exit(&pidlock);
6131
6132 /*
6133 * Set up core file path and content.
6134 */
6135 set_core_defaults();
6136
6137 out:
6138 /*
6139 * Let the other lwps continue.
6140 */
6141 mutex_enter(&pp->p_lock);
6142 if (curthread != pp->p_agenttp)
6143 continuelwps(pp);
6144 mutex_exit(&pp->p_lock);
6145
6146 return (err != 0 ? set_errno(err) : 0);
6147 }
6148
6149 /*
6150 * Systemcall entry point for zone_list(2).
6151 *
6152 * Processes running in a (non-global) zone only see themselves.
6153 * On labeled systems, they see all zones whose label they dominate.
6154 */
6155 static int
6156 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6157 {
6158 zoneid_t *zoneids;
6159 zone_t *zone, *myzone;
6160 uint_t user_nzones, real_nzones;
6161 uint_t domi_nzones;
6162 int error;
6163
6164 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6165 return (set_errno(EFAULT));
6166
6167 myzone = curproc->p_zone;
6168 if (myzone != global_zone) {
6169 bslabel_t *mybslab;
6170
6171 if (!is_system_labeled()) {
6172 /* just return current zone */
6173 real_nzones = domi_nzones = 1;
6174 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6175 zoneids[0] = myzone->zone_id;
6176 } else {
6177 /* return all zones that are dominated */
6178 mutex_enter(&zonehash_lock);
6179 real_nzones = zonecount;
6180 domi_nzones = 0;
6181 if (real_nzones > 0) {
6182 zoneids = kmem_alloc(real_nzones *
6183 sizeof (zoneid_t), KM_SLEEP);
6184 mybslab = label2bslabel(myzone->zone_slabel);
6185 for (zone = list_head(&zone_active);
6186 zone != NULL;
6187 zone = list_next(&zone_active, zone)) {
6188 if (zone->zone_id == GLOBAL_ZONEID)
6189 continue;
6190 if (zone != myzone &&
6191 (zone->zone_flags & ZF_IS_SCRATCH))
6192 continue;
6193 /*
6194 * Note that a label always dominates
6195 * itself, so myzone is always included
6196 * in the list.
6197 */
6198 if (bldominates(mybslab,
6199 label2bslabel(zone->zone_slabel))) {
6200 zoneids[domi_nzones++] =
6201 zone->zone_id;
6202 }
6203 }
6204 }
6205 mutex_exit(&zonehash_lock);
6206 }
6207 } else {
6208 mutex_enter(&zonehash_lock);
6209 real_nzones = zonecount;
6210 domi_nzones = 0;
6211 if (real_nzones > 0) {
6212 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6213 KM_SLEEP);
6214 for (zone = list_head(&zone_active); zone != NULL;
6215 zone = list_next(&zone_active, zone))
6216 zoneids[domi_nzones++] = zone->zone_id;
6217 ASSERT(domi_nzones == real_nzones);
6218 }
6219 mutex_exit(&zonehash_lock);
6220 }
6221
6222 /*
6223 * If user has allocated space for fewer entries than we found, then
6224 * return only up to his limit. Either way, tell him exactly how many
6225 * we found.
6226 */
6227 if (domi_nzones < user_nzones)
6228 user_nzones = domi_nzones;
6229 error = 0;
6230 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6231 error = EFAULT;
6232 } else if (zoneidlist != NULL && user_nzones != 0) {
6233 if (copyout(zoneids, zoneidlist,
6234 user_nzones * sizeof (zoneid_t)) != 0)
6235 error = EFAULT;
6236 }
6237
6238 if (real_nzones > 0)
6239 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6240
6241 if (error != 0)
6242 return (set_errno(error));
6243 else
6244 return (0);
6245 }
6246
6247 /*
6248 * Systemcall entry point for zone_lookup(2).
6249 *
6250 * Non-global zones are only able to see themselves and (on labeled systems)
6251 * the zones they dominate.
6252 */
6253 static zoneid_t
6254 zone_lookup(const char *zone_name)
6255 {
6256 char *kname;
6257 zone_t *zone;
6258 zoneid_t zoneid;
6259 int err;
6260
6261 if (zone_name == NULL) {
6262 /* return caller's zone id */
6263 return (getzoneid());
6264 }
6265
6266 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6267 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6268 kmem_free(kname, ZONENAME_MAX);
6269 return (set_errno(err));
6270 }
6271
6272 mutex_enter(&zonehash_lock);
6273 zone = zone_find_all_by_name(kname);
6274 kmem_free(kname, ZONENAME_MAX);
6275 /*
6276 * In a non-global zone, can only lookup global and own name.
6277 * In Trusted Extensions zone label dominance rules apply.
6278 */
6279 if (zone == NULL ||
6280 zone_status_get(zone) < ZONE_IS_READY ||
6281 !zone_list_access(zone)) {
6282 mutex_exit(&zonehash_lock);
6283 return (set_errno(EINVAL));
6284 } else {
6285 zoneid = zone->zone_id;
6286 mutex_exit(&zonehash_lock);
6287 return (zoneid);
6288 }
6289 }
6290
6291 static int
6292 zone_version(int *version_arg)
6293 {
6294 int version = ZONE_SYSCALL_API_VERSION;
6295
6296 if (copyout(&version, version_arg, sizeof (int)) != 0)
6297 return (set_errno(EFAULT));
6298 return (0);
6299 }
6300
6301 /* ARGSUSED */
6302 long
6303 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6304 {
6305 zone_def zs;
6306 int err;
6307
6308 switch (cmd) {
6309 case ZONE_CREATE:
6310 if (get_udatamodel() == DATAMODEL_NATIVE) {
6311 if (copyin(arg1, &zs, sizeof (zone_def))) {
6312 return (set_errno(EFAULT));
6313 }
6314 } else {
6315 #ifdef _SYSCALL32_IMPL
6316 zone_def32 zs32;
6317
6318 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6319 return (set_errno(EFAULT));
6320 }
6321 zs.zone_name =
6322 (const char *)(unsigned long)zs32.zone_name;
6323 zs.zone_root =
6324 (const char *)(unsigned long)zs32.zone_root;
6325 zs.zone_privs =
6326 (const struct priv_set *)
6327 (unsigned long)zs32.zone_privs;
6328 zs.zone_privssz = zs32.zone_privssz;
6329 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6330 zs.rctlbufsz = zs32.rctlbufsz;
6331 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6332 zs.zfsbufsz = zs32.zfsbufsz;
6333 zs.extended_error =
6334 (int *)(unsigned long)zs32.extended_error;
6335 zs.match = zs32.match;
6336 zs.doi = zs32.doi;
6337 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6338 zs.flags = zs32.flags;
6339 #else
6340 panic("get_udatamodel() returned bogus result\n");
6341 #endif
6342 }
6343
6344 return (zone_create(zs.zone_name, zs.zone_root,
6345 zs.zone_privs, zs.zone_privssz,
6346 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6347 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6348 zs.extended_error, zs.match, zs.doi,
6349 zs.label, zs.flags));
6350 case ZONE_BOOT:
6351 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6352 case ZONE_DESTROY:
6353 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6354 case ZONE_GETATTR:
6355 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6356 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6357 case ZONE_SETATTR:
6358 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6359 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6360 case ZONE_ENTER:
6361 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6362 case ZONE_LIST:
6363 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6364 case ZONE_SHUTDOWN:
6365 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6366 case ZONE_LOOKUP:
6367 return (zone_lookup((const char *)arg1));
6368 case ZONE_VERSION:
6369 return (zone_version((int *)arg1));
6370 case ZONE_ADD_DATALINK:
6371 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6372 (datalink_id_t)(uintptr_t)arg2));
6373 case ZONE_DEL_DATALINK:
6374 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6375 (datalink_id_t)(uintptr_t)arg2));
6376 case ZONE_CHECK_DATALINK: {
6377 zoneid_t zoneid;
6378 boolean_t need_copyout;
6379
6380 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6381 return (EFAULT);
6382 need_copyout = (zoneid == ALL_ZONES);
6383 err = zone_check_datalink(&zoneid,
6384 (datalink_id_t)(uintptr_t)arg2);
6385 if (err == 0 && need_copyout) {
6386 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6387 err = EFAULT;
6388 }
6389 return (err == 0 ? 0 : set_errno(err));
6390 }
6391 case ZONE_LIST_DATALINK:
6392 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6393 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6394 default:
6395 return (set_errno(EINVAL));
6396 }
6397 }
6398
6399 struct zarg {
6400 zone_t *zone;
6401 zone_cmd_arg_t arg;
6402 };
6403
6404 static int
6405 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6406 {
6407 char *buf;
6408 size_t buflen;
6409 int error;
6410
6411 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6412 buf = kmem_alloc(buflen, KM_SLEEP);
6413 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6414 error = door_ki_open(buf, doorp);
6415 kmem_free(buf, buflen);
6416 return (error);
6417 }
6418
6419 static void
6420 zone_release_door(door_handle_t *doorp)
6421 {
6422 door_ki_rele(*doorp);
6423 *doorp = NULL;
6424 }
6425
6426 static void
6427 zone_ki_call_zoneadmd(struct zarg *zargp)
6428 {
6429 door_handle_t door = NULL;
6430 door_arg_t darg, save_arg;
6431 char *zone_name;
6432 size_t zone_namelen;
6433 zoneid_t zoneid;
6434 zone_t *zone;
6435 zone_cmd_arg_t arg;
6436 uint64_t uniqid;
6437 size_t size;
6438 int error;
6439 int retry;
6440
6441 zone = zargp->zone;
6442 arg = zargp->arg;
6443 kmem_free(zargp, sizeof (*zargp));
6444
6445 zone_namelen = strlen(zone->zone_name) + 1;
6446 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6447 bcopy(zone->zone_name, zone_name, zone_namelen);
6448 zoneid = zone->zone_id;
6449 uniqid = zone->zone_uniqid;
6450 /*
6451 * zoneadmd may be down, but at least we can empty out the zone.
6452 * We can ignore the return value of zone_empty() since we're called
6453 * from a kernel thread and know we won't be delivered any signals.
6454 */
6455 ASSERT(curproc == &p0);
6456 (void) zone_empty(zone);
6457 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6458 zone_rele(zone);
6459
6460 size = sizeof (arg);
6461 darg.rbuf = (char *)&arg;
6462 darg.data_ptr = (char *)&arg;
6463 darg.rsize = size;
6464 darg.data_size = size;
6465 darg.desc_ptr = NULL;
6466 darg.desc_num = 0;
6467
6468 save_arg = darg;
6469 /*
6470 * Since we're not holding a reference to the zone, any number of
6471 * things can go wrong, including the zone disappearing before we get a
6472 * chance to talk to zoneadmd.
6473 */
6474 for (retry = 0; /* forever */; retry++) {
6475 if (door == NULL &&
6476 (error = zone_lookup_door(zone_name, &door)) != 0) {
6477 goto next;
6478 }
6479 ASSERT(door != NULL);
6480
6481 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6482 SIZE_MAX, 0)) == 0) {
6483 break;
6484 }
6485 switch (error) {
6486 case EINTR:
6487 /* FALLTHROUGH */
6488 case EAGAIN: /* process may be forking */
6489 /*
6490 * Back off for a bit
6491 */
6492 break;
6493 case EBADF:
6494 zone_release_door(&door);
6495 if (zone_lookup_door(zone_name, &door) != 0) {
6496 /*
6497 * zoneadmd may be dead, but it may come back to
6498 * life later.
6499 */
6500 break;
6501 }
6502 break;
6503 default:
6504 cmn_err(CE_WARN,
6505 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6506 error);
6507 goto out;
6508 }
6509 next:
6510 /*
6511 * If this isn't the same zone_t that we originally had in mind,
6512 * then this is the same as if two kadmin requests come in at
6513 * the same time: the first one wins. This means we lose, so we
6514 * bail.
6515 */
6516 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6517 /*
6518 * Problem is solved.
6519 */
6520 break;
6521 }
6522 if (zone->zone_uniqid != uniqid) {
6523 /*
6524 * zoneid recycled
6525 */
6526 zone_rele(zone);
6527 break;
6528 }
6529 /*
6530 * We could zone_status_timedwait(), but there doesn't seem to
6531 * be much point in doing that (plus, it would mean that
6532 * zone_free() isn't called until this thread exits).
6533 */
6534 zone_rele(zone);
6535 delay(hz);
6536 darg = save_arg;
6537 }
6538 out:
6539 if (door != NULL) {
6540 zone_release_door(&door);
6541 }
6542 kmem_free(zone_name, zone_namelen);
6543 thread_exit();
6544 }
6545
6546 /*
6547 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6548 * kadmin(). The caller is a process in the zone.
6549 *
6550 * In order to shutdown the zone, we will hand off control to zoneadmd
6551 * (running in the global zone) via a door. We do a half-hearted job at
6552 * killing all processes in the zone, create a kernel thread to contact
6553 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6554 * a form of generation number used to let zoneadmd (as well as
6555 * zone_destroy()) know exactly which zone they're re talking about.
6556 */
6557 int
6558 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6559 {
6560 struct zarg *zargp;
6561 zone_cmd_t zcmd;
6562 zone_t *zone;
6563
6564 zone = curproc->p_zone;
6565 ASSERT(getzoneid() != GLOBAL_ZONEID);
6566
6567 switch (cmd) {
6568 case A_SHUTDOWN:
6569 switch (fcn) {
6570 case AD_HALT:
6571 case AD_POWEROFF:
6572 zcmd = Z_HALT;
6573 break;
6574 case AD_BOOT:
6575 zcmd = Z_REBOOT;
6576 break;
6577 case AD_IBOOT:
6578 case AD_SBOOT:
6579 case AD_SIBOOT:
6580 case AD_NOSYNC:
6581 return (ENOTSUP);
6582 default:
6583 return (EINVAL);
6584 }
6585 break;
6586 case A_REBOOT:
6587 zcmd = Z_REBOOT;
6588 break;
6589 case A_FTRACE:
6590 case A_REMOUNT:
6591 case A_FREEZE:
6592 case A_DUMP:
6593 case A_CONFIG:
6594 return (ENOTSUP);
6595 default:
6596 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6597 return (EINVAL);
6598 }
6599
6600 if (secpolicy_zone_admin(credp, B_FALSE))
6601 return (EPERM);
6602 mutex_enter(&zone_status_lock);
6603
6604 /*
6605 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6606 * is in the zone.
6607 */
6608 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6609 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6610 /*
6611 * This zone is already on its way down.
6612 */
6613 mutex_exit(&zone_status_lock);
6614 return (0);
6615 }
6616 /*
6617 * Prevent future zone_enter()s
6618 */
6619 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6620 mutex_exit(&zone_status_lock);
6621
6622 /*
6623 * Kill everyone now and call zoneadmd later.
6624 * zone_ki_call_zoneadmd() will do a more thorough job of this
6625 * later.
6626 */
6627 killall(zone->zone_id);
6628 /*
6629 * Now, create the thread to contact zoneadmd and do the rest of the
6630 * work. This thread can't be created in our zone otherwise
6631 * zone_destroy() would deadlock.
6632 */
6633 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6634 zargp->arg.cmd = zcmd;
6635 zargp->arg.uniqid = zone->zone_uniqid;
6636 zargp->zone = zone;
6637 (void) strcpy(zargp->arg.locale, "C");
6638 /* mdep was already copied in for us by uadmin */
6639 if (mdep != NULL)
6640 (void) strlcpy(zargp->arg.bootbuf, mdep,
6641 sizeof (zargp->arg.bootbuf));
6642 zone_hold(zone);
6643
6644 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6645 TS_RUN, minclsyspri);
6646 exit(CLD_EXITED, 0);
6647
6648 return (EINVAL);
6649 }
6650
6651 /*
6652 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6653 * status to ZONE_IS_SHUTTING_DOWN.
6654 *
6655 * This function also shuts down all running zones to ensure that they won't
6656 * fork new processes.
6657 */
6658 void
6659 zone_shutdown_global(void)
6660 {
6661 zone_t *current_zonep;
6662
6663 ASSERT(INGLOBALZONE(curproc));
6664 mutex_enter(&zonehash_lock);
6665 mutex_enter(&zone_status_lock);
6666
6667 /* Modify the global zone's status first. */
6668 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6669 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6670
6671 /*
6672 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6673 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6674 * could cause assertions to fail (e.g., assertions about a zone's
6675 * state during initialization, readying, or booting) or produce races.
6676 * We'll let threads continue to initialize and ready new zones: they'll
6677 * fail to boot the new zones when they see that the global zone is
6678 * shutting down.
6679 */
6680 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6681 current_zonep = list_next(&zone_active, current_zonep)) {
6682 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6683 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6684 }
6685 mutex_exit(&zone_status_lock);
6686 mutex_exit(&zonehash_lock);
6687 }
6688
6689 /*
6690 * Returns true if the named dataset is visible in the current zone.
6691 * The 'write' parameter is set to 1 if the dataset is also writable.
6692 */
6693 int
6694 zone_dataset_visible(const char *dataset, int *write)
6695 {
6696 static int zfstype = -1;
6697 zone_dataset_t *zd;
6698 size_t len;
6699 zone_t *zone = curproc->p_zone;
6700 const char *name = NULL;
6701 vfs_t *vfsp = NULL;
6702
6703 if (dataset[0] == '\0')
6704 return (0);
6705
6706 /*
6707 * Walk the list once, looking for datasets which match exactly, or
6708 * specify a dataset underneath an exported dataset. If found, return
6709 * true and note that it is writable.
6710 */
6711 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6712 zd = list_next(&zone->zone_datasets, zd)) {
6713
6714 len = strlen(zd->zd_dataset);
6715 if (strlen(dataset) >= len &&
6716 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6717 (dataset[len] == '\0' || dataset[len] == '/' ||
6718 dataset[len] == '@')) {
6719 if (write)
6720 *write = 1;
6721 return (1);
6722 }
6723 }
6724
6725 /*
6726 * Walk the list a second time, searching for datasets which are parents
6727 * of exported datasets. These should be visible, but read-only.
6728 *
6729 * Note that we also have to support forms such as 'pool/dataset/', with
6730 * a trailing slash.
6731 */
6732 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6733 zd = list_next(&zone->zone_datasets, zd)) {
6734
6735 len = strlen(dataset);
6736 if (dataset[len - 1] == '/')
6737 len--; /* Ignore trailing slash */
6738 if (len < strlen(zd->zd_dataset) &&
6739 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6740 zd->zd_dataset[len] == '/') {
6741 if (write)
6742 *write = 0;
6743 return (1);
6744 }
6745 }
6746
6747 /*
6748 * We reach here if the given dataset is not found in the zone_dataset
6749 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6750 * instead of delegation. For this we search for the dataset in the
6751 * zone_vfslist of this zone. If found, return true and note that it is
6752 * not writable.
6753 */
6754
6755 /*
6756 * Initialize zfstype if it is not initialized yet.
6757 */
6758 if (zfstype == -1) {
6759 struct vfssw *vswp = vfs_getvfssw("zfs");
6760 zfstype = vswp - vfssw;
6761 vfs_unrefvfssw(vswp);
6762 }
6763
6764 vfs_list_read_lock();
6765 vfsp = zone->zone_vfslist;
6766 do {
6767 ASSERT(vfsp);
6768 if (vfsp->vfs_fstype == zfstype) {
6769 name = refstr_value(vfsp->vfs_resource);
6770
6771 /*
6772 * Check if we have an exact match.
6773 */
6774 if (strcmp(dataset, name) == 0) {
6775 vfs_list_unlock();
6776 if (write)
6777 *write = 0;
6778 return (1);
6779 }
6780 /*
6781 * We need to check if we are looking for parents of
6782 * a dataset. These should be visible, but read-only.
6783 */
6784 len = strlen(dataset);
6785 if (dataset[len - 1] == '/')
6786 len--;
6787
6788 if (len < strlen(name) &&
6789 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6790 vfs_list_unlock();
6791 if (write)
6792 *write = 0;
6793 return (1);
6794 }
6795 }
6796 vfsp = vfsp->vfs_zone_next;
6797 } while (vfsp != zone->zone_vfslist);
6798
6799 vfs_list_unlock();
6800 return (0);
6801 }
6802
6803 /*
6804 * zone_find_by_any_path() -
6805 *
6806 * kernel-private routine similar to zone_find_by_path(), but which
6807 * effectively compares against zone paths rather than zonerootpath
6808 * (i.e., the last component of zonerootpaths, which should be "root/",
6809 * are not compared.) This is done in order to accurately identify all
6810 * paths, whether zone-visible or not, including those which are parallel
6811 * to /root/, such as /dev/, /home/, etc...
6812 *
6813 * If the specified path does not fall under any zone path then global
6814 * zone is returned.
6815 *
6816 * The treat_abs parameter indicates whether the path should be treated as
6817 * an absolute path although it does not begin with "/". (This supports
6818 * nfs mount syntax such as host:any/path.)
6819 *
6820 * The caller is responsible for zone_rele of the returned zone.
6821 */
6822 zone_t *
6823 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6824 {
6825 zone_t *zone;
6826 int path_offset = 0;
6827
6828 if (path == NULL) {
6829 zone_hold(global_zone);
6830 return (global_zone);
6831 }
6832
6833 if (*path != '/') {
6834 ASSERT(treat_abs);
6835 path_offset = 1;
6836 }
6837
6838 mutex_enter(&zonehash_lock);
6839 for (zone = list_head(&zone_active); zone != NULL;
6840 zone = list_next(&zone_active, zone)) {
6841 char *c;
6842 size_t pathlen;
6843 char *rootpath_start;
6844
6845 if (zone == global_zone) /* skip global zone */
6846 continue;
6847
6848 /* scan backwards to find start of last component */
6849 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6850 do {
6851 c--;
6852 } while (*c != '/');
6853
6854 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6855 rootpath_start = (zone->zone_rootpath + path_offset);
6856 if (strncmp(path, rootpath_start, pathlen) == 0)
6857 break;
6858 }
6859 if (zone == NULL)
6860 zone = global_zone;
6861 zone_hold(zone);
6862 mutex_exit(&zonehash_lock);
6863 return (zone);
6864 }
6865
6866 /*
6867 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6868 * zone_dl_t pointer if found, and NULL otherwise.
6869 */
6870 static zone_dl_t *
6871 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6872 {
6873 zone_dl_t *zdl;
6874
6875 ASSERT(mutex_owned(&zone->zone_lock));
6876 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6877 zdl = list_next(&zone->zone_dl_list, zdl)) {
6878 if (zdl->zdl_id == linkid)
6879 break;
6880 }
6881 return (zdl);
6882 }
6883
6884 static boolean_t
6885 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6886 {
6887 boolean_t exists;
6888
6889 mutex_enter(&zone->zone_lock);
6890 exists = (zone_find_dl(zone, linkid) != NULL);
6891 mutex_exit(&zone->zone_lock);
6892 return (exists);
6893 }
6894
6895 /*
6896 * Add an data link name for the zone.
6897 */
6898 static int
6899 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6900 {
6901 zone_dl_t *zdl;
6902 zone_t *zone;
6903 zone_t *thiszone;
6904
6905 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6906 return (set_errno(ENXIO));
6907
6908 /* Verify that the datalink ID doesn't already belong to a zone. */
6909 mutex_enter(&zonehash_lock);
6910 for (zone = list_head(&zone_active); zone != NULL;
6911 zone = list_next(&zone_active, zone)) {
6912 if (zone_dl_exists(zone, linkid)) {
6913 mutex_exit(&zonehash_lock);
6914 zone_rele(thiszone);
6915 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6916 }
6917 }
6918
6919 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6920 zdl->zdl_id = linkid;
6921 zdl->zdl_net = NULL;
6922 mutex_enter(&thiszone->zone_lock);
6923 list_insert_head(&thiszone->zone_dl_list, zdl);
6924 mutex_exit(&thiszone->zone_lock);
6925 mutex_exit(&zonehash_lock);
6926 zone_rele(thiszone);
6927 return (0);
6928 }
6929
6930 static int
6931 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6932 {
6933 zone_dl_t *zdl;
6934 zone_t *zone;
6935 int err = 0;
6936
6937 if ((zone = zone_find_by_id(zoneid)) == NULL)
6938 return (set_errno(EINVAL));
6939
6940 mutex_enter(&zone->zone_lock);
6941 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6942 err = ENXIO;
6943 } else {
6944 list_remove(&zone->zone_dl_list, zdl);
6945 nvlist_free(zdl->zdl_net);
6946 kmem_free(zdl, sizeof (zone_dl_t));
6947 }
6948 mutex_exit(&zone->zone_lock);
6949 zone_rele(zone);
6950 return (err == 0 ? 0 : set_errno(err));
6951 }
6952
6953 /*
6954 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6955 * the linkid. Otherwise we just check if the specified zoneidp has been
6956 * assigned the supplied linkid.
6957 */
6958 int
6959 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6960 {
6961 zone_t *zone;
6962 int err = ENXIO;
6963
6964 if (*zoneidp != ALL_ZONES) {
6965 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6966 if (zone_dl_exists(zone, linkid))
6967 err = 0;
6968 zone_rele(zone);
6969 }
6970 return (err);
6971 }
6972
6973 mutex_enter(&zonehash_lock);
6974 for (zone = list_head(&zone_active); zone != NULL;
6975 zone = list_next(&zone_active, zone)) {
6976 if (zone_dl_exists(zone, linkid)) {
6977 *zoneidp = zone->zone_id;
6978 err = 0;
6979 break;
6980 }
6981 }
6982 mutex_exit(&zonehash_lock);
6983 return (err);
6984 }
6985
6986 /*
6987 * Get the list of datalink IDs assigned to a zone.
6988 *
6989 * On input, *nump is the number of datalink IDs that can fit in the supplied
6990 * idarray. Upon return, *nump is either set to the number of datalink IDs
6991 * that were placed in the array if the array was large enough, or to the
6992 * number of datalink IDs that the function needs to place in the array if the
6993 * array is too small.
6994 */
6995 static int
6996 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6997 {
6998 uint_t num, dlcount;
6999 zone_t *zone;
7000 zone_dl_t *zdl;
7001 datalink_id_t *idptr = idarray;
7002
7003 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7004 return (set_errno(EFAULT));
7005 if ((zone = zone_find_by_id(zoneid)) == NULL)
7006 return (set_errno(ENXIO));
7007
7008 num = 0;
7009 mutex_enter(&zone->zone_lock);
7010 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7011 zdl = list_next(&zone->zone_dl_list, zdl)) {
7012 /*
7013 * If the list is bigger than what the caller supplied, just
7014 * count, don't do copyout.
7015 */
7016 if (++num > dlcount)
7017 continue;
7018 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7019 mutex_exit(&zone->zone_lock);
7020 zone_rele(zone);
7021 return (set_errno(EFAULT));
7022 }
7023 idptr++;
7024 }
7025 mutex_exit(&zone->zone_lock);
7026 zone_rele(zone);
7027
7028 /* Increased or decreased, caller should be notified. */
7029 if (num != dlcount) {
7030 if (copyout(&num, nump, sizeof (num)) != 0)
7031 return (set_errno(EFAULT));
7032 }
7033 return (0);
7034 }
7035
7036 /*
7037 * Public interface for looking up a zone by zoneid. It's a customized version
7038 * for netstack_zone_create(). It can only be called from the zsd create
7039 * callbacks, since it doesn't have reference on the zone structure hence if
7040 * it is called elsewhere the zone could disappear after the zonehash_lock
7041 * is dropped.
7042 *
7043 * Furthermore it
7044 * 1. Doesn't check the status of the zone.
7045 * 2. It will be called even before zone_init is called, in that case the
7046 * address of zone0 is returned directly, and netstack_zone_create()
7047 * will only assign a value to zone0.zone_netstack, won't break anything.
7048 * 3. Returns without the zone being held.
7049 */
7050 zone_t *
7051 zone_find_by_id_nolock(zoneid_t zoneid)
7052 {
7053 zone_t *zone;
7054
7055 mutex_enter(&zonehash_lock);
7056 if (zonehashbyid == NULL)
7057 zone = &zone0;
7058 else
7059 zone = zone_find_all_by_id(zoneid);
7060 mutex_exit(&zonehash_lock);
7061 return (zone);
7062 }
7063
7064 /*
7065 * Walk the datalinks for a given zone
7066 */
7067 int
7068 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7069 void *data)
7070 {
7071 zone_t *zone;
7072 zone_dl_t *zdl;
7073 datalink_id_t *idarray;
7074 uint_t idcount = 0;
7075 int i, ret = 0;
7076
7077 if ((zone = zone_find_by_id(zoneid)) == NULL)
7078 return (ENOENT);
7079
7080 /*
7081 * We first build an array of linkid's so that we can walk these and
7082 * execute the callback with the zone_lock dropped.
7083 */
7084 mutex_enter(&zone->zone_lock);
7085 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7086 zdl = list_next(&zone->zone_dl_list, zdl)) {
7087 idcount++;
7088 }
7089
7090 if (idcount == 0) {
7091 mutex_exit(&zone->zone_lock);
7092 zone_rele(zone);
7093 return (0);
7094 }
7095
7096 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7097 if (idarray == NULL) {
7098 mutex_exit(&zone->zone_lock);
7099 zone_rele(zone);
7100 return (ENOMEM);
7101 }
7102
7103 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7104 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7105 idarray[i] = zdl->zdl_id;
7106 }
7107
7108 mutex_exit(&zone->zone_lock);
7109
7110 for (i = 0; i < idcount && ret == 0; i++) {
7111 if ((ret = (*cb)(idarray[i], data)) != 0)
7112 break;
7113 }
7114
7115 zone_rele(zone);
7116 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7117 return (ret);
7118 }
7119
7120 static char *
7121 zone_net_type2name(int type)
7122 {
7123 switch (type) {
7124 case ZONE_NETWORK_ADDRESS:
7125 return (ZONE_NET_ADDRNAME);
7126 case ZONE_NETWORK_DEFROUTER:
7127 return (ZONE_NET_RTRNAME);
7128 default:
7129 return (NULL);
7130 }
7131 }
7132
7133 static int
7134 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7135 {
7136 zone_t *zone;
7137 zone_dl_t *zdl;
7138 nvlist_t *nvl;
7139 int err = 0;
7140 uint8_t *new = NULL;
7141 char *nvname;
7142 int bufsize;
7143 datalink_id_t linkid = znbuf->zn_linkid;
7144
7145 if (secpolicy_zone_config(CRED()) != 0)
7146 return (set_errno(EPERM));
7147
7148 if (zoneid == GLOBAL_ZONEID)
7149 return (set_errno(EINVAL));
7150
7151 nvname = zone_net_type2name(znbuf->zn_type);
7152 bufsize = znbuf->zn_len;
7153 new = znbuf->zn_val;
7154 if (nvname == NULL)
7155 return (set_errno(EINVAL));
7156
7157 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7158 return (set_errno(EINVAL));
7159 }
7160
7161 mutex_enter(&zone->zone_lock);
7162 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7163 err = ENXIO;
7164 goto done;
7165 }
7166 if ((nvl = zdl->zdl_net) == NULL) {
7167 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7168 err = ENOMEM;
7169 goto done;
7170 } else {
7171 zdl->zdl_net = nvl;
7172 }
7173 }
7174 if (nvlist_exists(nvl, nvname)) {
7175 err = EINVAL;
7176 goto done;
7177 }
7178 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7179 ASSERT(err == 0);
7180 done:
7181 mutex_exit(&zone->zone_lock);
7182 zone_rele(zone);
7183 if (err != 0)
7184 return (set_errno(err));
7185 else
7186 return (0);
7187 }
7188
7189 static int
7190 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7191 {
7192 zone_t *zone;
7193 zone_dl_t *zdl;
7194 nvlist_t *nvl;
7195 uint8_t *ptr;
7196 uint_t psize;
7197 int err = 0;
7198 char *nvname;
7199 int bufsize;
7200 void *buf;
7201 datalink_id_t linkid = znbuf->zn_linkid;
7202
7203 if (zoneid == GLOBAL_ZONEID)
7204 return (set_errno(EINVAL));
7205
7206 nvname = zone_net_type2name(znbuf->zn_type);
7207 bufsize = znbuf->zn_len;
7208 buf = znbuf->zn_val;
7209
7210 if (nvname == NULL)
7211 return (set_errno(EINVAL));
7212 if ((zone = zone_find_by_id(zoneid)) == NULL)
7213 return (set_errno(EINVAL));
7214
7215 mutex_enter(&zone->zone_lock);
7216 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7217 err = ENXIO;
7218 goto done;
7219 }
7220 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7221 err = ENOENT;
7222 goto done;
7223 }
7224 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7225 ASSERT(err == 0);
7226
7227 if (psize > bufsize) {
7228 err = ENOBUFS;
7229 goto done;
7230 }
7231 znbuf->zn_len = psize;
7232 bcopy(ptr, buf, psize);
7233 done:
7234 mutex_exit(&zone->zone_lock);
7235 zone_rele(zone);
7236 if (err != 0)
7237 return (set_errno(err));
7238 else
7239 return (0);
7240 }