1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 27 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 28 * Copyright (c) 2013 by Delphix. All rights reserved. 29 * Copyright 2015 Gary Mills 30 */ 31 32 #include <sys/types.h> 33 #include <sys/utsname.h> 34 #include <sys/sysmacros.h> 35 #include <sys/proc.h> 36 37 #include <alloca.h> 38 #include <rtld_db.h> 39 #include <libgen.h> 40 #include <limits.h> 41 #include <string.h> 42 #include <stdlib.h> 43 #include <unistd.h> 44 #include <errno.h> 45 #include <gelf.h> 46 #include <stddef.h> 47 #include <signal.h> 48 49 #include "libproc.h" 50 #include "Pcontrol.h" 51 #include "P32ton.h" 52 #include "Putil.h" 53 #ifdef __x86 54 #include "Pcore_linux.h" 55 #endif 56 57 /* 58 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 59 * allocate an additional structure to hold information from the core 60 * file, and attach this to the standard ps_prochandle in place of the 61 * ability to examine /proc/<pid>/ files. 62 */ 63 64 /* 65 * Basic i/o function for reading and writing from the process address space 66 * stored in the core file and associated shared libraries. We compute the 67 * appropriate fd and offsets, and let the provided prw function do the rest. 68 */ 69 static ssize_t 70 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 71 ssize_t (*prw)(int, void *, size_t, off64_t)) 72 { 73 ssize_t resid = n; 74 75 while (resid != 0) { 76 map_info_t *mp = Paddr2mptr(P, addr); 77 78 uintptr_t mapoff; 79 ssize_t len; 80 off64_t off; 81 int fd; 82 83 if (mp == NULL) 84 break; /* No mapping for this address */ 85 86 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 87 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 88 break; /* No file or file not open */ 89 90 fd = mp->map_file->file_fd; 91 } else 92 fd = P->asfd; 93 94 mapoff = addr - mp->map_pmap.pr_vaddr; 95 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 96 off = mp->map_offset + mapoff; 97 98 if ((len = prw(fd, buf, len, off)) <= 0) 99 break; 100 101 resid -= len; 102 addr += len; 103 buf = (char *)buf + len; 104 } 105 106 /* 107 * Important: Be consistent with the behavior of i/o on the as file: 108 * writing to an invalid address yields EIO; reading from an invalid 109 * address falls through to returning success and zero bytes. 110 */ 111 if (resid == n && n != 0 && prw != pread64) { 112 errno = EIO; 113 return (-1); 114 } 115 116 return (n - resid); 117 } 118 119 /*ARGSUSED*/ 120 static ssize_t 121 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 122 void *data) 123 { 124 return (core_rw(P, buf, n, addr, pread64)); 125 } 126 127 /*ARGSUSED*/ 128 static ssize_t 129 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr, 130 void *data) 131 { 132 return (core_rw(P, (void *)buf, n, addr, 133 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 134 } 135 136 /*ARGSUSED*/ 137 static int 138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data) 139 { 140 core_info_t *core = data; 141 142 if (core->core_cred != NULL) { 143 /* 144 * Avoid returning more supplementary group data than the 145 * caller has allocated in their buffer. We expect them to 146 * check pr_ngroups afterward and potentially call us again. 147 */ 148 ngroups = MIN(ngroups, core->core_cred->pr_ngroups); 149 150 (void) memcpy(pcrp, core->core_cred, 151 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t)); 152 153 return (0); 154 } 155 156 errno = ENODATA; 157 return (-1); 158 } 159 160 /*ARGSUSED*/ 161 static int 162 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data) 163 { 164 core_info_t *core = data; 165 166 if (core->core_secflags == NULL) { 167 errno = ENODATA; 168 return (-1); 169 } 170 171 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL) 172 return (-1); 173 174 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t)); 175 176 return (0); 177 } 178 179 /*ARGSUSED*/ 180 static int 181 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data) 182 { 183 core_info_t *core = data; 184 185 if (core->core_priv == NULL) { 186 errno = ENODATA; 187 return (-1); 188 } 189 190 *pprv = malloc(core->core_priv_size); 191 if (*pprv == NULL) { 192 return (-1); 193 } 194 195 (void) memcpy(*pprv, core->core_priv, core->core_priv_size); 196 return (0); 197 } 198 199 /*ARGSUSED*/ 200 static const psinfo_t * 201 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data) 202 { 203 return (&P->psinfo); 204 } 205 206 /*ARGSUSED*/ 207 static void 208 Pfini_core(struct ps_prochandle *P, void *data) 209 { 210 core_info_t *core = data; 211 212 if (core != NULL) { 213 extern void __priv_free_info(void *); 214 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head); 215 int i; 216 217 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) { 218 nlwp = list_next(lwp); 219 #ifdef __sparc 220 if (lwp->lwp_gwins != NULL) 221 free(lwp->lwp_gwins); 222 if (lwp->lwp_xregs != NULL) 223 free(lwp->lwp_xregs); 224 if (lwp->lwp_asrs != NULL) 225 free(lwp->lwp_asrs); 226 #endif 227 free(lwp); 228 } 229 230 if (core->core_platform != NULL) 231 free(core->core_platform); 232 if (core->core_uts != NULL) 233 free(core->core_uts); 234 if (core->core_cred != NULL) 235 free(core->core_cred); 236 if (core->core_priv != NULL) 237 free(core->core_priv); 238 if (core->core_privinfo != NULL) 239 __priv_free_info(core->core_privinfo); 240 if (core->core_ppii != NULL) 241 free(core->core_ppii); 242 if (core->core_zonename != NULL) 243 free(core->core_zonename); 244 if (core->core_secflags != NULL) 245 free(core->core_secflags); 246 #ifdef __x86 247 if (core->core_ldt != NULL) 248 free(core->core_ldt); 249 #endif 250 251 free(core); 252 } 253 } 254 255 /*ARGSUSED*/ 256 static char * 257 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data) 258 { 259 core_info_t *core = data; 260 261 if (core->core_platform == NULL) { 262 errno = ENODATA; 263 return (NULL); 264 } 265 (void) strncpy(s, core->core_platform, n - 1); 266 s[n - 1] = '\0'; 267 return (s); 268 } 269 270 /*ARGSUSED*/ 271 static int 272 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data) 273 { 274 core_info_t *core = data; 275 276 if (core->core_uts == NULL) { 277 errno = ENODATA; 278 return (-1); 279 } 280 (void) memcpy(u, core->core_uts, sizeof (struct utsname)); 281 return (0); 282 } 283 284 /*ARGSUSED*/ 285 static char * 286 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data) 287 { 288 core_info_t *core = data; 289 290 if (core->core_zonename == NULL) { 291 errno = ENODATA; 292 return (NULL); 293 } 294 (void) strlcpy(s, core->core_zonename, n); 295 return (s); 296 } 297 298 #ifdef __x86 299 /*ARGSUSED*/ 300 static int 301 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data) 302 { 303 core_info_t *core = data; 304 305 if (pldt == NULL || nldt == 0) 306 return (core->core_nldt); 307 308 if (core->core_ldt != NULL) { 309 nldt = MIN(nldt, core->core_nldt); 310 311 (void) memcpy(pldt, core->core_ldt, 312 nldt * sizeof (struct ssd)); 313 314 return (nldt); 315 } 316 317 errno = ENODATA; 318 return (-1); 319 } 320 #endif 321 322 static const ps_ops_t P_core_ops = { 323 .pop_pread = Pread_core, 324 .pop_pwrite = Pwrite_core, 325 .pop_cred = Pcred_core, 326 .pop_priv = Ppriv_core, 327 .pop_psinfo = Ppsinfo_core, 328 .pop_fini = Pfini_core, 329 .pop_platform = Pplatform_core, 330 .pop_uname = Puname_core, 331 .pop_zonename = Pzonename_core, 332 .pop_secflags = Psecflags_core, 333 #ifdef __x86 334 .pop_ldt = Pldt_core 335 #endif 336 }; 337 338 /* 339 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 340 * encountered yet, allocate a new structure and return a pointer to it. 341 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 342 */ 343 static lwp_info_t * 344 lwpid2info(struct ps_prochandle *P, lwpid_t id) 345 { 346 core_info_t *core = P->data; 347 lwp_info_t *lwp = list_next(&core->core_lwp_head); 348 lwp_info_t *next; 349 uint_t i; 350 351 for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) { 352 if (lwp->lwp_id == id) { 353 core->core_lwp = lwp; 354 return (lwp); 355 } 356 if (lwp->lwp_id < id) { 357 break; 358 } 359 } 360 361 next = lwp; 362 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 363 return (NULL); 364 365 list_link(lwp, next); 366 lwp->lwp_id = id; 367 368 core->core_lwp = lwp; 369 core->core_nlwp++; 370 371 return (lwp); 372 } 373 374 /* 375 * The core file itself contains a series of NOTE segments containing saved 376 * structures from /proc at the time the process died. For each note we 377 * comprehend, we define a function to read it in from the core file, 378 * convert it to our native data model if necessary, and store it inside 379 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 380 * seek pointer on P->asfd positioned appropriately. We populate a table 381 * of pointers to these note functions below. 382 */ 383 384 static int 385 note_pstatus(struct ps_prochandle *P, size_t nbytes) 386 { 387 #ifdef _LP64 388 core_info_t *core = P->data; 389 390 if (core->core_dmodel == PR_MODEL_ILP32) { 391 pstatus32_t ps32; 392 393 if (nbytes < sizeof (pstatus32_t) || 394 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 395 goto err; 396 397 pstatus_32_to_n(&ps32, &P->status); 398 399 } else 400 #endif 401 if (nbytes < sizeof (pstatus_t) || 402 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 403 goto err; 404 405 P->orig_status = P->status; 406 P->pid = P->status.pr_pid; 407 408 return (0); 409 410 err: 411 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 412 return (-1); 413 } 414 415 static int 416 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 417 { 418 lwp_info_t *lwp; 419 lwpstatus_t lps; 420 421 #ifdef _LP64 422 core_info_t *core = P->data; 423 424 if (core->core_dmodel == PR_MODEL_ILP32) { 425 lwpstatus32_t l32; 426 427 if (nbytes < sizeof (lwpstatus32_t) || 428 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 429 goto err; 430 431 lwpstatus_32_to_n(&l32, &lps); 432 } else 433 #endif 434 if (nbytes < sizeof (lwpstatus_t) || 435 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 436 goto err; 437 438 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 439 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 440 return (-1); 441 } 442 443 /* 444 * Erase a useless and confusing artifact of the kernel implementation: 445 * the lwps which did *not* create the core will show SIGKILL. We can 446 * be assured this is bogus because SIGKILL can't produce core files. 447 */ 448 if (lps.pr_cursig == SIGKILL) 449 lps.pr_cursig = 0; 450 451 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 452 return (0); 453 454 err: 455 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 456 return (-1); 457 } 458 459 #ifdef __x86 460 461 static void 462 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo) 463 { 464 psinfo->pr_flag = p32->pr_flag; 465 psinfo->pr_pid = p32->pr_pid; 466 psinfo->pr_ppid = p32->pr_ppid; 467 psinfo->pr_uid = p32->pr_uid; 468 psinfo->pr_gid = p32->pr_gid; 469 psinfo->pr_sid = p32->pr_sid; 470 psinfo->pr_pgid = p32->pr_pgrp; 471 472 (void) memcpy(psinfo->pr_fname, p32->pr_fname, 473 sizeof (psinfo->pr_fname)); 474 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs, 475 sizeof (psinfo->pr_psargs)); 476 } 477 478 static void 479 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo) 480 { 481 psinfo->pr_flag = p64->pr_flag; 482 psinfo->pr_pid = p64->pr_pid; 483 psinfo->pr_ppid = p64->pr_ppid; 484 psinfo->pr_uid = p64->pr_uid; 485 psinfo->pr_gid = p64->pr_gid; 486 psinfo->pr_sid = p64->pr_sid; 487 psinfo->pr_pgid = p64->pr_pgrp; 488 psinfo->pr_pgid = p64->pr_pgrp; 489 490 (void) memcpy(psinfo->pr_fname, p64->pr_fname, 491 sizeof (psinfo->pr_fname)); 492 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs, 493 sizeof (psinfo->pr_psargs)); 494 } 495 496 static int 497 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes) 498 { 499 core_info_t *core = P->data; 500 lx_prpsinfo32_t p32; 501 lx_prpsinfo64_t p64; 502 503 if (core->core_dmodel == PR_MODEL_ILP32) { 504 if (nbytes < sizeof (p32) || 505 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32)) 506 goto err; 507 508 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo); 509 } else { 510 if (nbytes < sizeof (p64) || 511 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64)) 512 goto err; 513 514 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo); 515 } 516 517 518 P->status.pr_pid = P->psinfo.pr_pid; 519 P->status.pr_ppid = P->psinfo.pr_ppid; 520 P->status.pr_pgid = P->psinfo.pr_pgid; 521 P->status.pr_sid = P->psinfo.pr_sid; 522 523 P->psinfo.pr_nlwp = 0; 524 P->status.pr_nlwp = 0; 525 526 return (0); 527 err: 528 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 529 return (-1); 530 } 531 532 static void 533 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp) 534 { 535 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime); 536 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime); 537 538 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15; 539 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14; 540 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13; 541 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12; 542 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11; 543 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10; 544 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9; 545 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8; 546 547 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi; 548 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi; 549 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp; 550 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx; 551 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx; 552 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx; 553 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax; 554 555 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip; 556 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs; 557 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp; 558 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs; 559 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss; 560 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs; 561 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es; 562 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds; 563 564 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base; 565 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base; 566 } 567 568 static void 569 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp) 570 { 571 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime); 572 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime); 573 574 #ifdef __amd64 575 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs; 576 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs; 577 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds; 578 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es; 579 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di; 580 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si; 581 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp; 582 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx; 583 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx; 584 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx; 585 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax; 586 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip; 587 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs; 588 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags; 589 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp; 590 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss; 591 #else /* __amd64 */ 592 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx; 593 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx; 594 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx; 595 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si; 596 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di; 597 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp; 598 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax; 599 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip; 600 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp; 601 602 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds; 603 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es; 604 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs; 605 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs; 606 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs; 607 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss; 608 609 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags; 610 #endif /* !__amd64 */ 611 } 612 613 static int 614 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes) 615 { 616 core_info_t *core = P->data; 617 618 lx_prstatus64_t prs64; 619 lx_prstatus32_t prs32; 620 lwp_info_t *lwp; 621 lwpid_t tid; 622 623 dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel, 624 (ulong_t)nbytes, (ulong_t)sizeof (prs32)); 625 if (core->core_dmodel == PR_MODEL_ILP32) { 626 if (nbytes < sizeof (prs32) || 627 read(P->asfd, &prs32, sizeof (prs32)) != nbytes) 628 goto err; 629 tid = prs32.pr_pid; 630 } else { 631 if (nbytes < sizeof (prs64) || 632 read(P->asfd, &prs64, sizeof (prs64)) != nbytes) 633 goto err; 634 tid = prs64.pr_pid; 635 } 636 637 if ((lwp = lwpid2info(P, tid)) == NULL) { 638 dprintf("Pgrab_core: failed to add lwpid2info " 639 "linux_prstatus\n"); 640 return (-1); 641 } 642 643 P->psinfo.pr_nlwp++; 644 P->status.pr_nlwp++; 645 646 lwp->lwp_status.pr_lwpid = tid; 647 648 if (core->core_dmodel == PR_MODEL_ILP32) 649 lx_prstatus32_to_lwp(&prs32, lwp); 650 else 651 lx_prstatus64_to_lwp(&prs64, lwp); 652 653 return (0); 654 err: 655 dprintf("Pgrab_core: failed to read NT_PRSTATUS\n"); 656 return (-1); 657 } 658 659 #endif /* __x86 */ 660 661 static int 662 note_psinfo(struct ps_prochandle *P, size_t nbytes) 663 { 664 #ifdef _LP64 665 core_info_t *core = P->data; 666 667 if (core->core_dmodel == PR_MODEL_ILP32) { 668 psinfo32_t ps32; 669 670 if (nbytes < sizeof (psinfo32_t) || 671 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 672 goto err; 673 674 psinfo_32_to_n(&ps32, &P->psinfo); 675 } else 676 #endif 677 if (nbytes < sizeof (psinfo_t) || 678 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 679 goto err; 680 681 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 682 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 683 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 684 685 return (0); 686 687 err: 688 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 689 return (-1); 690 } 691 692 static int 693 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 694 { 695 lwp_info_t *lwp; 696 lwpsinfo_t lps; 697 698 #ifdef _LP64 699 core_info_t *core = P->data; 700 701 if (core->core_dmodel == PR_MODEL_ILP32) { 702 lwpsinfo32_t l32; 703 704 if (nbytes < sizeof (lwpsinfo32_t) || 705 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 706 goto err; 707 708 lwpsinfo_32_to_n(&l32, &lps); 709 } else 710 #endif 711 if (nbytes < sizeof (lwpsinfo_t) || 712 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 713 goto err; 714 715 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 716 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 717 return (-1); 718 } 719 720 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 721 return (0); 722 723 err: 724 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 725 return (-1); 726 } 727 728 static int 729 note_fdinfo(struct ps_prochandle *P, size_t nbytes) 730 { 731 prfdinfo_t prfd; 732 fd_info_t *fip; 733 734 if ((nbytes < sizeof (prfd)) || 735 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) { 736 dprintf("Pgrab_core: failed to read NT_FDINFO\n"); 737 return (-1); 738 } 739 740 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) { 741 dprintf("Pgrab_core: failed to add NT_FDINFO\n"); 742 return (-1); 743 } 744 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd)); 745 return (0); 746 } 747 748 static int 749 note_platform(struct ps_prochandle *P, size_t nbytes) 750 { 751 core_info_t *core = P->data; 752 char *plat; 753 754 if (core->core_platform != NULL) 755 return (0); /* Already seen */ 756 757 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 758 if (read(P->asfd, plat, nbytes) != nbytes) { 759 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 760 free(plat); 761 return (-1); 762 } 763 plat[nbytes - 1] = '\0'; 764 core->core_platform = plat; 765 } 766 767 return (0); 768 } 769 770 static int 771 note_secflags(struct ps_prochandle *P, size_t nbytes) 772 { 773 core_info_t *core = P->data; 774 prsecflags_t *psf; 775 776 if (core->core_secflags != NULL) 777 return (0); /* Already seen */ 778 779 if (sizeof (*psf) != nbytes) { 780 dprintf("Pgrab_core: NT_SECFLAGS changed size." 781 " Need to handle a version change?\n"); 782 return (-1); 783 } 784 785 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) { 786 if (read(P->asfd, psf, nbytes) != nbytes) { 787 dprintf("Pgrab_core: failed to read NT_SECFLAGS\n"); 788 free(psf); 789 return (-1); 790 } 791 792 core->core_secflags = psf; 793 } 794 795 return (0); 796 } 797 798 static int 799 note_utsname(struct ps_prochandle *P, size_t nbytes) 800 { 801 core_info_t *core = P->data; 802 size_t ubytes = sizeof (struct utsname); 803 struct utsname *utsp; 804 805 if (core->core_uts != NULL || nbytes < ubytes) 806 return (0); /* Already seen or bad size */ 807 808 if ((utsp = malloc(ubytes)) == NULL) 809 return (-1); 810 811 if (read(P->asfd, utsp, ubytes) != ubytes) { 812 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 813 free(utsp); 814 return (-1); 815 } 816 817 if (_libproc_debug) { 818 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 819 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 820 dprintf("uts.release = \"%s\"\n", utsp->release); 821 dprintf("uts.version = \"%s\"\n", utsp->version); 822 dprintf("uts.machine = \"%s\"\n", utsp->machine); 823 } 824 825 core->core_uts = utsp; 826 return (0); 827 } 828 829 static int 830 note_content(struct ps_prochandle *P, size_t nbytes) 831 { 832 core_info_t *core = P->data; 833 core_content_t content; 834 835 if (sizeof (core->core_content) != nbytes) 836 return (-1); 837 838 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 839 return (-1); 840 841 core->core_content = content; 842 843 dprintf("core content = %llx\n", content); 844 845 return (0); 846 } 847 848 static int 849 note_cred(struct ps_prochandle *P, size_t nbytes) 850 { 851 core_info_t *core = P->data; 852 prcred_t *pcrp; 853 int ngroups; 854 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 855 856 /* 857 * We allow for prcred_t notes that are actually smaller than a 858 * prcred_t since the last member isn't essential if there are 859 * no group memberships. This allows for more flexibility when it 860 * comes to slightly malformed -- but still valid -- notes. 861 */ 862 if (core->core_cred != NULL || nbytes < min_size) 863 return (0); /* Already seen or bad size */ 864 865 ngroups = (nbytes - min_size) / sizeof (gid_t); 866 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 867 868 if ((pcrp = malloc(nbytes)) == NULL) 869 return (-1); 870 871 if (read(P->asfd, pcrp, nbytes) != nbytes) { 872 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 873 free(pcrp); 874 return (-1); 875 } 876 877 if (pcrp->pr_ngroups > ngroups) { 878 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 879 pcrp->pr_ngroups, ngroups); 880 pcrp->pr_ngroups = ngroups; 881 } 882 883 core->core_cred = pcrp; 884 return (0); 885 } 886 887 #ifdef __x86 888 static int 889 note_ldt(struct ps_prochandle *P, size_t nbytes) 890 { 891 core_info_t *core = P->data; 892 struct ssd *pldt; 893 uint_t nldt; 894 895 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 896 return (0); /* Already seen or bad size */ 897 898 nldt = nbytes / sizeof (struct ssd); 899 nbytes = nldt * sizeof (struct ssd); 900 901 if ((pldt = malloc(nbytes)) == NULL) 902 return (-1); 903 904 if (read(P->asfd, pldt, nbytes) != nbytes) { 905 dprintf("Pgrab_core: failed to read NT_LDT\n"); 906 free(pldt); 907 return (-1); 908 } 909 910 core->core_ldt = pldt; 911 core->core_nldt = nldt; 912 return (0); 913 } 914 #endif /* __i386 */ 915 916 static int 917 note_priv(struct ps_prochandle *P, size_t nbytes) 918 { 919 core_info_t *core = P->data; 920 prpriv_t *pprvp; 921 922 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 923 return (0); /* Already seen or bad size */ 924 925 if ((pprvp = malloc(nbytes)) == NULL) 926 return (-1); 927 928 if (read(P->asfd, pprvp, nbytes) != nbytes) { 929 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 930 free(pprvp); 931 return (-1); 932 } 933 934 core->core_priv = pprvp; 935 core->core_priv_size = nbytes; 936 return (0); 937 } 938 939 static int 940 note_priv_info(struct ps_prochandle *P, size_t nbytes) 941 { 942 core_info_t *core = P->data; 943 extern void *__priv_parse_info(); 944 priv_impl_info_t *ppii; 945 946 if (core->core_privinfo != NULL || 947 nbytes < sizeof (priv_impl_info_t)) 948 return (0); /* Already seen or bad size */ 949 950 if ((ppii = malloc(nbytes)) == NULL) 951 return (-1); 952 953 if (read(P->asfd, ppii, nbytes) != nbytes || 954 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 955 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 956 free(ppii); 957 return (-1); 958 } 959 960 core->core_privinfo = __priv_parse_info(ppii); 961 core->core_ppii = ppii; 962 return (0); 963 } 964 965 static int 966 note_zonename(struct ps_prochandle *P, size_t nbytes) 967 { 968 core_info_t *core = P->data; 969 char *zonename; 970 971 if (core->core_zonename != NULL) 972 return (0); /* Already seen */ 973 974 if (nbytes != 0) { 975 if ((zonename = malloc(nbytes)) == NULL) 976 return (-1); 977 if (read(P->asfd, zonename, nbytes) != nbytes) { 978 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 979 free(zonename); 980 return (-1); 981 } 982 zonename[nbytes - 1] = '\0'; 983 core->core_zonename = zonename; 984 } 985 986 return (0); 987 } 988 989 static int 990 note_auxv(struct ps_prochandle *P, size_t nbytes) 991 { 992 size_t n, i; 993 994 #ifdef _LP64 995 core_info_t *core = P->data; 996 997 if (core->core_dmodel == PR_MODEL_ILP32) { 998 auxv32_t *a32; 999 1000 n = nbytes / sizeof (auxv32_t); 1001 nbytes = n * sizeof (auxv32_t); 1002 a32 = alloca(nbytes); 1003 1004 if (read(P->asfd, a32, nbytes) != nbytes) { 1005 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 1006 return (-1); 1007 } 1008 1009 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 1010 return (-1); 1011 1012 for (i = 0; i < n; i++) 1013 auxv_32_to_n(&a32[i], &P->auxv[i]); 1014 1015 } else { 1016 #endif 1017 n = nbytes / sizeof (auxv_t); 1018 nbytes = n * sizeof (auxv_t); 1019 1020 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 1021 return (-1); 1022 1023 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 1024 free(P->auxv); 1025 P->auxv = NULL; 1026 return (-1); 1027 } 1028 #ifdef _LP64 1029 } 1030 #endif 1031 1032 if (_libproc_debug) { 1033 for (i = 0; i < n; i++) { 1034 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 1035 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 1036 } 1037 } 1038 1039 /* 1040 * Defensive coding for loops which depend upon the auxv array being 1041 * terminated by an AT_NULL element; in each case, we've allocated 1042 * P->auxv to have an additional element which we force to be AT_NULL. 1043 */ 1044 P->auxv[n].a_type = AT_NULL; 1045 P->auxv[n].a_un.a_val = 0L; 1046 P->nauxv = (int)n; 1047 1048 return (0); 1049 } 1050 1051 #ifdef __sparc 1052 static int 1053 note_xreg(struct ps_prochandle *P, size_t nbytes) 1054 { 1055 core_info_t *core = P->data; 1056 lwp_info_t *lwp = core->core_lwp; 1057 size_t xbytes = sizeof (prxregset_t); 1058 prxregset_t *xregs; 1059 1060 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 1061 return (0); /* No lwp yet, already seen, or bad size */ 1062 1063 if ((xregs = malloc(xbytes)) == NULL) 1064 return (-1); 1065 1066 if (read(P->asfd, xregs, xbytes) != xbytes) { 1067 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 1068 free(xregs); 1069 return (-1); 1070 } 1071 1072 lwp->lwp_xregs = xregs; 1073 return (0); 1074 } 1075 1076 static int 1077 note_gwindows(struct ps_prochandle *P, size_t nbytes) 1078 { 1079 core_info_t *core = P->data; 1080 lwp_info_t *lwp = core->core_lwp; 1081 1082 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 1083 return (0); /* No lwp yet or already seen or no data */ 1084 1085 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 1086 return (-1); 1087 1088 /* 1089 * Since the amount of gwindows data varies with how many windows were 1090 * actually saved, we just read up to the minimum of the note size 1091 * and the size of the gwindows_t type. It doesn't matter if the read 1092 * fails since we have to zero out gwindows first anyway. 1093 */ 1094 #ifdef _LP64 1095 if (core->core_dmodel == PR_MODEL_ILP32) { 1096 gwindows32_t g32; 1097 1098 (void) memset(&g32, 0, sizeof (g32)); 1099 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 1100 gwindows_32_to_n(&g32, lwp->lwp_gwins); 1101 1102 } else { 1103 #endif 1104 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 1105 (void) read(P->asfd, lwp->lwp_gwins, 1106 MIN(nbytes, sizeof (gwindows_t))); 1107 #ifdef _LP64 1108 } 1109 #endif 1110 return (0); 1111 } 1112 1113 #ifdef __sparcv9 1114 static int 1115 note_asrs(struct ps_prochandle *P, size_t nbytes) 1116 { 1117 core_info_t *core = P->data; 1118 lwp_info_t *lwp = core->core_lwp; 1119 int64_t *asrs; 1120 1121 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 1122 return (0); /* No lwp yet, already seen, or bad size */ 1123 1124 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 1125 return (-1); 1126 1127 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 1128 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 1129 free(asrs); 1130 return (-1); 1131 } 1132 1133 lwp->lwp_asrs = asrs; 1134 return (0); 1135 } 1136 #endif /* __sparcv9 */ 1137 #endif /* __sparc */ 1138 1139 static int 1140 note_spymaster(struct ps_prochandle *P, size_t nbytes) 1141 { 1142 #ifdef _LP64 1143 core_info_t *core = P->data; 1144 1145 if (core->core_dmodel == PR_MODEL_ILP32) { 1146 psinfo32_t ps32; 1147 1148 if (nbytes < sizeof (psinfo32_t) || 1149 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 1150 goto err; 1151 1152 psinfo_32_to_n(&ps32, &P->spymaster); 1153 } else 1154 #endif 1155 if (nbytes < sizeof (psinfo_t) || read(P->asfd, 1156 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t)) 1157 goto err; 1158 1159 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname); 1160 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs); 1161 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 1162 1163 return (0); 1164 1165 err: 1166 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n"); 1167 return (-1); 1168 } 1169 1170 /*ARGSUSED*/ 1171 static int 1172 note_notsup(struct ps_prochandle *P, size_t nbytes) 1173 { 1174 dprintf("skipping unsupported note type of size %ld bytes\n", 1175 (ulong_t)nbytes); 1176 return (0); 1177 } 1178 1179 /* 1180 * Populate a table of function pointers indexed by Note type with our 1181 * functions to process each type of core file note: 1182 */ 1183 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 1184 note_notsup, /* 0 unassigned */ 1185 #ifdef __x86 1186 note_linux_prstatus, /* 1 NT_PRSTATUS (old) */ 1187 #else 1188 note_notsup, /* 1 NT_PRSTATUS (old) */ 1189 #endif 1190 note_notsup, /* 2 NT_PRFPREG (old) */ 1191 #ifdef __x86 1192 note_linux_psinfo, /* 3 NT_PRPSINFO (old) */ 1193 #else 1194 note_notsup, /* 3 NT_PRPSINFO (old) */ 1195 #endif 1196 #ifdef __sparc 1197 note_xreg, /* 4 NT_PRXREG */ 1198 #else 1199 note_notsup, /* 4 NT_PRXREG */ 1200 #endif 1201 note_platform, /* 5 NT_PLATFORM */ 1202 note_auxv, /* 6 NT_AUXV */ 1203 #ifdef __sparc 1204 note_gwindows, /* 7 NT_GWINDOWS */ 1205 #ifdef __sparcv9 1206 note_asrs, /* 8 NT_ASRS */ 1207 #else 1208 note_notsup, /* 8 NT_ASRS */ 1209 #endif 1210 #else 1211 note_notsup, /* 7 NT_GWINDOWS */ 1212 note_notsup, /* 8 NT_ASRS */ 1213 #endif 1214 #ifdef __x86 1215 note_ldt, /* 9 NT_LDT */ 1216 #else 1217 note_notsup, /* 9 NT_LDT */ 1218 #endif 1219 note_pstatus, /* 10 NT_PSTATUS */ 1220 note_notsup, /* 11 unassigned */ 1221 note_notsup, /* 12 unassigned */ 1222 note_psinfo, /* 13 NT_PSINFO */ 1223 note_cred, /* 14 NT_PRCRED */ 1224 note_utsname, /* 15 NT_UTSNAME */ 1225 note_lwpstatus, /* 16 NT_LWPSTATUS */ 1226 note_lwpsinfo, /* 17 NT_LWPSINFO */ 1227 note_priv, /* 18 NT_PRPRIV */ 1228 note_priv_info, /* 19 NT_PRPRIVINFO */ 1229 note_content, /* 20 NT_CONTENT */ 1230 note_zonename, /* 21 NT_ZONENAME */ 1231 note_fdinfo, /* 22 NT_FDINFO */ 1232 note_spymaster, /* 23 NT_SPYMASTER */ 1233 note_secflags, /* 24 NT_SECFLAGS */ 1234 }; 1235 1236 static void 1237 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php) 1238 { 1239 prkillinfo_t killinfo; 1240 siginfo_t *si = &killinfo.prk_info; 1241 char signame[SIG2STR_MAX], sig[64], info[64]; 1242 void *addr = (void *)(uintptr_t)php->p_vaddr; 1243 1244 const char *errfmt = "core file data for mapping at %p not saved: %s\n"; 1245 const char *incfmt = "core file incomplete due to %s%s\n"; 1246 const char *msgfmt = "mappings at and above %p are missing\n"; 1247 1248 if (!(php->p_flags & PF_SUNW_KILLED)) { 1249 int err = 0; 1250 1251 (void) pread64(P->asfd, &err, 1252 sizeof (err), (off64_t)php->p_offset); 1253 1254 Perror_printf(P, errfmt, addr, strerror(err)); 1255 dprintf(errfmt, addr, strerror(err)); 1256 return; 1257 } 1258 1259 if (!(php->p_flags & PF_SUNW_SIGINFO)) 1260 return; 1261 1262 (void) memset(&killinfo, 0, sizeof (killinfo)); 1263 1264 (void) pread64(P->asfd, &killinfo, 1265 sizeof (killinfo), (off64_t)php->p_offset); 1266 1267 /* 1268 * While there is (or at least should be) only one segment that has 1269 * PF_SUNW_SIGINFO set, the signal information there is globally 1270 * useful (even if only to those debugging libproc consumers); we hang 1271 * the signal information gleaned here off of the ps_prochandle. 1272 */ 1273 P->map_missing = php->p_vaddr; 1274 P->killinfo = killinfo.prk_info; 1275 1276 if (sig2str(si->si_signo, signame) == -1) { 1277 (void) snprintf(sig, sizeof (sig), 1278 "<Unknown signal: 0x%x>, ", si->si_signo); 1279 } else { 1280 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame); 1281 } 1282 1283 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) { 1284 (void) snprintf(info, sizeof (info), 1285 "pid=%d uid=%d zone=%d ctid=%d", 1286 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid); 1287 } else { 1288 (void) snprintf(info, sizeof (info), 1289 "code=%d", si->si_code); 1290 } 1291 1292 Perror_printf(P, incfmt, sig, info); 1293 Perror_printf(P, msgfmt, addr); 1294 1295 dprintf(incfmt, sig, info); 1296 dprintf(msgfmt, addr); 1297 } 1298 1299 /* 1300 * Add information on the address space mapping described by the given 1301 * PT_LOAD program header. We fill in more information on the mapping later. 1302 */ 1303 static int 1304 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 1305 { 1306 core_info_t *core = P->data; 1307 prmap_t pmap; 1308 1309 dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n", 1310 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 1311 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 1312 1313 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 1314 pmap.pr_size = php->p_memsz; 1315 1316 /* 1317 * If Pgcore() or elfcore() fail to write a mapping, they will set 1318 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 1319 */ 1320 if (php->p_flags & PF_SUNW_FAILURE) { 1321 core_report_mapping(P, php); 1322 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) { 1323 Perror_printf(P, "core file may be corrupt -- data for mapping " 1324 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 1325 dprintf("core file may be corrupt -- data for mapping " 1326 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 1327 } 1328 1329 /* 1330 * The mapping name and offset will hopefully be filled in 1331 * by the librtld_db agent. Unfortunately, if it isn't a 1332 * shared library mapping, this information is gone forever. 1333 */ 1334 pmap.pr_mapname[0] = '\0'; 1335 pmap.pr_offset = 0; 1336 1337 pmap.pr_mflags = 0; 1338 if (php->p_flags & PF_R) 1339 pmap.pr_mflags |= MA_READ; 1340 if (php->p_flags & PF_W) 1341 pmap.pr_mflags |= MA_WRITE; 1342 if (php->p_flags & PF_X) 1343 pmap.pr_mflags |= MA_EXEC; 1344 1345 if (php->p_filesz == 0) 1346 pmap.pr_mflags |= MA_RESERVED1; 1347 1348 /* 1349 * At the time of adding this mapping, we just zero the pagesize. 1350 * Once we've processed more of the core file, we'll have the 1351 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 1352 */ 1353 pmap.pr_pagesize = 0; 1354 1355 /* 1356 * Unfortunately whether or not the mapping was a System V 1357 * shared memory segment is lost. We use -1 to mark it as not shm. 1358 */ 1359 pmap.pr_shmid = -1; 1360 1361 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 1362 } 1363 1364 /* 1365 * Given a virtual address, name the mapping at that address using the 1366 * specified name, and return the map_info_t pointer. 1367 */ 1368 static map_info_t * 1369 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 1370 { 1371 map_info_t *mp = Paddr2mptr(P, addr); 1372 1373 if (mp != NULL) { 1374 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 1375 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1376 } 1377 1378 return (mp); 1379 } 1380 1381 /* 1382 * libproc uses libelf for all of its symbol table manipulation. This function 1383 * takes a symbol table and string table from a core file and places them 1384 * in a memory backed elf file. 1385 */ 1386 static void 1387 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 1388 GElf_Shdr *symtab, GElf_Shdr *strtab) 1389 { 1390 size_t size; 1391 off64_t off, base; 1392 map_info_t *mp; 1393 file_info_t *fp; 1394 Elf_Scn *scn; 1395 Elf_Data *data; 1396 1397 if (symtab->sh_addr == 0 || 1398 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 1399 (fp = mp->map_file) == NULL) { 1400 dprintf("fake_up_symtab: invalid section\n"); 1401 return; 1402 } 1403 1404 if (fp->file_symtab.sym_data_pri != NULL) { 1405 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n", 1406 (long)symtab->sh_addr); 1407 return; 1408 } 1409 1410 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1411 struct { 1412 Elf32_Ehdr ehdr; 1413 Elf32_Shdr shdr[3]; 1414 char data[1]; 1415 } *b; 1416 1417 base = sizeof (b->ehdr) + sizeof (b->shdr); 1418 size = base + symtab->sh_size + strtab->sh_size; 1419 1420 if ((b = calloc(1, size)) == NULL) 1421 return; 1422 1423 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 1424 sizeof (ehdr->e_ident)); 1425 b->ehdr.e_type = ehdr->e_type; 1426 b->ehdr.e_machine = ehdr->e_machine; 1427 b->ehdr.e_version = ehdr->e_version; 1428 b->ehdr.e_flags = ehdr->e_flags; 1429 b->ehdr.e_ehsize = sizeof (b->ehdr); 1430 b->ehdr.e_shoff = sizeof (b->ehdr); 1431 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 1432 b->ehdr.e_shnum = 3; 1433 off = 0; 1434 1435 b->shdr[1].sh_size = symtab->sh_size; 1436 b->shdr[1].sh_type = SHT_SYMTAB; 1437 b->shdr[1].sh_offset = off + base; 1438 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 1439 b->shdr[1].sh_link = 2; 1440 b->shdr[1].sh_info = symtab->sh_info; 1441 b->shdr[1].sh_addralign = symtab->sh_addralign; 1442 1443 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 1444 symtab->sh_offset) != b->shdr[1].sh_size) { 1445 dprintf("fake_up_symtab: pread of symtab[1] failed\n"); 1446 free(b); 1447 return; 1448 } 1449 1450 off += b->shdr[1].sh_size; 1451 1452 b->shdr[2].sh_flags = SHF_STRINGS; 1453 b->shdr[2].sh_size = strtab->sh_size; 1454 b->shdr[2].sh_type = SHT_STRTAB; 1455 b->shdr[2].sh_offset = off + base; 1456 b->shdr[2].sh_info = strtab->sh_info; 1457 b->shdr[2].sh_addralign = 1; 1458 1459 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 1460 strtab->sh_offset) != b->shdr[2].sh_size) { 1461 dprintf("fake_up_symtab: pread of symtab[2] failed\n"); 1462 free(b); 1463 return; 1464 } 1465 1466 off += b->shdr[2].sh_size; 1467 1468 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 1469 if (fp->file_symtab.sym_elf == NULL) { 1470 free(b); 1471 return; 1472 } 1473 1474 fp->file_symtab.sym_elfmem = b; 1475 #ifdef _LP64 1476 } else { 1477 struct { 1478 Elf64_Ehdr ehdr; 1479 Elf64_Shdr shdr[3]; 1480 char data[1]; 1481 } *b; 1482 1483 base = sizeof (b->ehdr) + sizeof (b->shdr); 1484 size = base + symtab->sh_size + strtab->sh_size; 1485 1486 if ((b = calloc(1, size)) == NULL) 1487 return; 1488 1489 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 1490 sizeof (ehdr->e_ident)); 1491 b->ehdr.e_type = ehdr->e_type; 1492 b->ehdr.e_machine = ehdr->e_machine; 1493 b->ehdr.e_version = ehdr->e_version; 1494 b->ehdr.e_flags = ehdr->e_flags; 1495 b->ehdr.e_ehsize = sizeof (b->ehdr); 1496 b->ehdr.e_shoff = sizeof (b->ehdr); 1497 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 1498 b->ehdr.e_shnum = 3; 1499 off = 0; 1500 1501 b->shdr[1].sh_size = symtab->sh_size; 1502 b->shdr[1].sh_type = SHT_SYMTAB; 1503 b->shdr[1].sh_offset = off + base; 1504 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 1505 b->shdr[1].sh_link = 2; 1506 b->shdr[1].sh_info = symtab->sh_info; 1507 b->shdr[1].sh_addralign = symtab->sh_addralign; 1508 1509 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 1510 symtab->sh_offset) != b->shdr[1].sh_size) { 1511 free(b); 1512 return; 1513 } 1514 1515 off += b->shdr[1].sh_size; 1516 1517 b->shdr[2].sh_flags = SHF_STRINGS; 1518 b->shdr[2].sh_size = strtab->sh_size; 1519 b->shdr[2].sh_type = SHT_STRTAB; 1520 b->shdr[2].sh_offset = off + base; 1521 b->shdr[2].sh_info = strtab->sh_info; 1522 b->shdr[2].sh_addralign = 1; 1523 1524 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 1525 strtab->sh_offset) != b->shdr[2].sh_size) { 1526 free(b); 1527 return; 1528 } 1529 1530 off += b->shdr[2].sh_size; 1531 1532 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 1533 if (fp->file_symtab.sym_elf == NULL) { 1534 free(b); 1535 return; 1536 } 1537 1538 fp->file_symtab.sym_elfmem = b; 1539 #endif 1540 } 1541 1542 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 1543 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL || 1544 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 1545 (data = elf_getdata(scn, NULL)) == NULL) { 1546 dprintf("fake_up_symtab: failed to get section data at %p\n", 1547 (void *)scn); 1548 goto err; 1549 } 1550 1551 fp->file_symtab.sym_strs = data->d_buf; 1552 fp->file_symtab.sym_strsz = data->d_size; 1553 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 1554 fp->file_symtab.sym_hdr_pri = *symtab; 1555 fp->file_symtab.sym_strhdr = *strtab; 1556 1557 optimize_symtab(&fp->file_symtab); 1558 1559 return; 1560 err: 1561 (void) elf_end(fp->file_symtab.sym_elf); 1562 free(fp->file_symtab.sym_elfmem); 1563 fp->file_symtab.sym_elf = NULL; 1564 fp->file_symtab.sym_elfmem = NULL; 1565 } 1566 1567 static void 1568 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 1569 { 1570 dst->p_type = src->p_type; 1571 dst->p_flags = src->p_flags; 1572 dst->p_offset = (Elf64_Off)src->p_offset; 1573 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 1574 dst->p_paddr = (Elf64_Addr)src->p_paddr; 1575 dst->p_filesz = (Elf64_Xword)src->p_filesz; 1576 dst->p_memsz = (Elf64_Xword)src->p_memsz; 1577 dst->p_align = (Elf64_Xword)src->p_align; 1578 } 1579 1580 static void 1581 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 1582 { 1583 dst->sh_name = src->sh_name; 1584 dst->sh_type = src->sh_type; 1585 dst->sh_flags = (Elf64_Xword)src->sh_flags; 1586 dst->sh_addr = (Elf64_Addr)src->sh_addr; 1587 dst->sh_offset = (Elf64_Off)src->sh_offset; 1588 dst->sh_size = (Elf64_Xword)src->sh_size; 1589 dst->sh_link = src->sh_link; 1590 dst->sh_info = src->sh_info; 1591 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1592 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1593 } 1594 1595 /* 1596 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1597 */ 1598 static int 1599 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1600 { 1601 #ifdef _BIG_ENDIAN 1602 uchar_t order = ELFDATA2MSB; 1603 #else 1604 uchar_t order = ELFDATA2LSB; 1605 #endif 1606 Elf32_Ehdr e32; 1607 int is_noelf = -1; 1608 int isa_err = 0; 1609 1610 /* 1611 * Because 32-bit libelf cannot deal with large files, we need to read, 1612 * check, and convert the file header manually in case type == ET_CORE. 1613 */ 1614 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1615 if (perr != NULL) 1616 *perr = G_FORMAT; 1617 goto err; 1618 } 1619 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1620 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1621 e32.e_version != EV_CURRENT) { 1622 if (perr != NULL) { 1623 if (is_noelf == 0 && isa_err) { 1624 *perr = G_ISAINVAL; 1625 } else { 1626 *perr = G_FORMAT; 1627 } 1628 } 1629 goto err; 1630 } 1631 1632 /* 1633 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1634 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1635 * and convert it to a elf_file_header_t. Otherwise, the file is 1636 * 32-bit, so convert e32 to a elf_file_header_t. 1637 */ 1638 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1639 #ifdef _LP64 1640 Elf64_Ehdr e64; 1641 1642 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1643 if (perr != NULL) 1644 *perr = G_FORMAT; 1645 goto err; 1646 } 1647 1648 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1649 efp->e_hdr.e_type = e64.e_type; 1650 efp->e_hdr.e_machine = e64.e_machine; 1651 efp->e_hdr.e_version = e64.e_version; 1652 efp->e_hdr.e_entry = e64.e_entry; 1653 efp->e_hdr.e_phoff = e64.e_phoff; 1654 efp->e_hdr.e_shoff = e64.e_shoff; 1655 efp->e_hdr.e_flags = e64.e_flags; 1656 efp->e_hdr.e_ehsize = e64.e_ehsize; 1657 efp->e_hdr.e_phentsize = e64.e_phentsize; 1658 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1659 efp->e_hdr.e_shentsize = e64.e_shentsize; 1660 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1661 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1662 #else /* _LP64 */ 1663 if (perr != NULL) 1664 *perr = G_LP64; 1665 goto err; 1666 #endif /* _LP64 */ 1667 } else { 1668 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1669 efp->e_hdr.e_type = e32.e_type; 1670 efp->e_hdr.e_machine = e32.e_machine; 1671 efp->e_hdr.e_version = e32.e_version; 1672 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1673 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1674 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1675 efp->e_hdr.e_flags = e32.e_flags; 1676 efp->e_hdr.e_ehsize = e32.e_ehsize; 1677 efp->e_hdr.e_phentsize = e32.e_phentsize; 1678 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1679 efp->e_hdr.e_shentsize = e32.e_shentsize; 1680 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1681 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1682 } 1683 1684 /* 1685 * If the number of section headers or program headers or the section 1686 * header string table index would overflow their respective fields 1687 * in the ELF header, they're stored in the section header at index 1688 * zero. To simplify use elsewhere, we look for those sentinel values 1689 * here. 1690 */ 1691 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1692 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1693 efp->e_hdr.e_phnum == PN_XNUM) { 1694 GElf_Shdr shdr; 1695 1696 dprintf("extended ELF header\n"); 1697 1698 if (efp->e_hdr.e_shoff == 0) { 1699 if (perr != NULL) 1700 *perr = G_FORMAT; 1701 goto err; 1702 } 1703 1704 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1705 Elf32_Shdr shdr32; 1706 1707 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1708 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1709 if (perr != NULL) 1710 *perr = G_FORMAT; 1711 goto err; 1712 } 1713 1714 core_shdr_to_gelf(&shdr32, &shdr); 1715 } else { 1716 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1717 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1718 if (perr != NULL) 1719 *perr = G_FORMAT; 1720 goto err; 1721 } 1722 } 1723 1724 if (efp->e_hdr.e_shnum == 0) { 1725 efp->e_hdr.e_shnum = shdr.sh_size; 1726 dprintf("section header count %lu\n", 1727 (ulong_t)shdr.sh_size); 1728 } 1729 1730 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1731 efp->e_hdr.e_shstrndx = shdr.sh_link; 1732 dprintf("section string index %u\n", shdr.sh_link); 1733 } 1734 1735 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1736 efp->e_hdr.e_phnum = shdr.sh_info; 1737 dprintf("program header count %u\n", shdr.sh_info); 1738 } 1739 1740 } else if (efp->e_hdr.e_phoff != 0) { 1741 GElf_Phdr phdr; 1742 uint64_t phnum; 1743 1744 /* 1745 * It's possible this core file came from a system that 1746 * accidentally truncated the e_phnum field without correctly 1747 * using the extended format in the section header at index 1748 * zero. We try to detect and correct that specific type of 1749 * corruption by using the knowledge that the core dump 1750 * routines usually place the data referenced by the first 1751 * program header immediately after the last header element. 1752 */ 1753 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1754 Elf32_Phdr phdr32; 1755 1756 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1757 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1758 if (perr != NULL) 1759 *perr = G_FORMAT; 1760 goto err; 1761 } 1762 1763 core_phdr_to_gelf(&phdr32, &phdr); 1764 } else { 1765 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1766 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1767 if (perr != NULL) 1768 *perr = G_FORMAT; 1769 goto err; 1770 } 1771 } 1772 1773 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1774 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1775 phnum /= efp->e_hdr.e_phentsize; 1776 1777 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1778 dprintf("suspicious program header count %u %u\n", 1779 (uint_t)phnum, efp->e_hdr.e_phnum); 1780 1781 /* 1782 * If the new program header count we computed doesn't 1783 * jive with count in the ELF header, we'll use the 1784 * data that's there and hope for the best. 1785 * 1786 * If it does, it's also possible that the section 1787 * header offset is incorrect; we'll check that and 1788 * possibly try to fix it. 1789 */ 1790 if (phnum <= INT_MAX && 1791 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1792 1793 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1794 efp->e_hdr.e_phentsize * 1795 (uint_t)efp->e_hdr.e_phnum) { 1796 efp->e_hdr.e_shoff = 1797 efp->e_hdr.e_phoff + 1798 efp->e_hdr.e_phentsize * phnum; 1799 } 1800 1801 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1802 dprintf("using new program header count\n"); 1803 } else { 1804 dprintf("inconsistent program header count\n"); 1805 } 1806 } 1807 } 1808 1809 /* 1810 * The libelf implementation was never ported to be large-file aware. 1811 * This is typically not a problem for your average executable or 1812 * shared library, but a large 32-bit core file can exceed 2GB in size. 1813 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1814 * in Pfgrab_core() below will do its own i/o and struct conversion. 1815 */ 1816 1817 if (type == ET_CORE) { 1818 efp->e_elf = NULL; 1819 return (0); 1820 } 1821 1822 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1823 if (perr != NULL) 1824 *perr = G_ELF; 1825 goto err; 1826 } 1827 1828 return (0); 1829 1830 err: 1831 efp->e_elf = NULL; 1832 return (-1); 1833 } 1834 1835 /* 1836 * Open the specified file and then do a core_elf_fdopen on it. 1837 */ 1838 static int 1839 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1840 { 1841 (void) memset(efp, 0, sizeof (elf_file_t)); 1842 1843 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1844 if (core_elf_fdopen(efp, type, perr) == 0) 1845 return (0); 1846 1847 (void) close(efp->e_fd); 1848 efp->e_fd = -1; 1849 } 1850 1851 return (-1); 1852 } 1853 1854 /* 1855 * Close the ELF handle and file descriptor. 1856 */ 1857 static void 1858 core_elf_close(elf_file_t *efp) 1859 { 1860 if (efp->e_elf != NULL) { 1861 (void) elf_end(efp->e_elf); 1862 efp->e_elf = NULL; 1863 } 1864 1865 if (efp->e_fd != -1) { 1866 (void) close(efp->e_fd); 1867 efp->e_fd = -1; 1868 } 1869 } 1870 1871 /* 1872 * Given an ELF file for a statically linked executable, locate the likely 1873 * primary text section and fill in rl_base with its virtual address. 1874 */ 1875 static map_info_t * 1876 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1877 { 1878 GElf_Phdr phdr; 1879 uint_t i; 1880 size_t nphdrs; 1881 1882 if (elf_getphdrnum(elf, &nphdrs) == -1) 1883 return (NULL); 1884 1885 for (i = 0; i < nphdrs; i++) { 1886 if (gelf_getphdr(elf, i, &phdr) != NULL && 1887 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1888 rlp->rl_base = phdr.p_vaddr; 1889 return (Paddr2mptr(P, rlp->rl_base)); 1890 } 1891 } 1892 1893 return (NULL); 1894 } 1895 1896 /* 1897 * Given an ELF file and the librtld_db structure corresponding to its primary 1898 * text mapping, deduce where its data segment was loaded and fill in 1899 * rl_data_base and prmap_t.pr_offset accordingly. 1900 */ 1901 static map_info_t * 1902 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1903 { 1904 GElf_Ehdr ehdr; 1905 GElf_Phdr phdr; 1906 map_info_t *mp; 1907 uint_t i, pagemask; 1908 size_t nphdrs; 1909 1910 rlp->rl_data_base = NULL; 1911 1912 /* 1913 * Find the first loadable, writeable Phdr and compute rl_data_base 1914 * as the virtual address at which is was loaded. 1915 */ 1916 if (gelf_getehdr(elf, &ehdr) == NULL || 1917 elf_getphdrnum(elf, &nphdrs) == -1) 1918 return (NULL); 1919 1920 for (i = 0; i < nphdrs; i++) { 1921 if (gelf_getphdr(elf, i, &phdr) != NULL && 1922 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1923 rlp->rl_data_base = phdr.p_vaddr; 1924 if (ehdr.e_type == ET_DYN) 1925 rlp->rl_data_base += rlp->rl_base; 1926 break; 1927 } 1928 } 1929 1930 /* 1931 * If we didn't find an appropriate phdr or if the address we 1932 * computed has no mapping, return NULL. 1933 */ 1934 if (rlp->rl_data_base == NULL || 1935 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1936 return (NULL); 1937 1938 /* 1939 * It wouldn't be procfs-related code if we didn't make use of 1940 * unclean knowledge of segvn, even in userland ... the prmap_t's 1941 * pr_offset field will be the segvn offset from mmap(2)ing the 1942 * data section, which will be the file offset & PAGEMASK. 1943 */ 1944 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1945 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1946 1947 return (mp); 1948 } 1949 1950 /* 1951 * Librtld_db agent callback for iterating over load object mappings. 1952 * For each load object, we allocate a new file_info_t, perform naming, 1953 * and attempt to construct a symbol table for the load object. 1954 */ 1955 static int 1956 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1957 { 1958 core_info_t *core = P->data; 1959 char lname[PATH_MAX], buf[PATH_MAX]; 1960 file_info_t *fp; 1961 map_info_t *mp; 1962 1963 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1964 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1965 return (1); /* Keep going; forget this if we can't get a name */ 1966 } 1967 1968 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1969 lname, (void *)rlp->rl_base); 1970 1971 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1972 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1973 return (1); /* No mapping; advance to next mapping */ 1974 } 1975 1976 /* 1977 * Create a new file_info_t for this mapping, and therefore for 1978 * this load object. 1979 * 1980 * If there's an ELF header at the beginning of this mapping, 1981 * file_info_new() will try to use its section headers to 1982 * identify any other mappings that belong to this load object. 1983 */ 1984 if ((fp = mp->map_file) == NULL && 1985 (fp = file_info_new(P, mp)) == NULL) { 1986 core->core_errno = errno; 1987 dprintf("failed to malloc mapping data\n"); 1988 return (0); /* Abort */ 1989 } 1990 fp->file_map = mp; 1991 1992 /* Create a local copy of the load object representation */ 1993 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) { 1994 core->core_errno = errno; 1995 dprintf("failed to malloc mapping data\n"); 1996 return (0); /* Abort */ 1997 } 1998 *fp->file_lo = *rlp; 1999 2000 if (lname[0] != '\0') { 2001 /* 2002 * Naming dance part 1: if we got a name from librtld_db, then 2003 * copy this name to the prmap_t if it is unnamed. If the 2004 * file_info_t is unnamed, name it after the lname. 2005 */ 2006 if (mp->map_pmap.pr_mapname[0] == '\0') { 2007 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 2008 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2009 } 2010 2011 if (fp->file_lname == NULL) 2012 fp->file_lname = strdup(lname); 2013 2014 } else if (fp->file_lname == NULL && 2015 mp->map_pmap.pr_mapname[0] != '\0') { 2016 /* 2017 * Naming dance part 2: if the mapping is named and the 2018 * file_info_t is not, name the file after the mapping. 2019 */ 2020 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 2021 } 2022 2023 if ((fp->file_rname == NULL) && 2024 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL)) 2025 fp->file_rname = strdup(buf); 2026 2027 if (fp->file_lname != NULL) 2028 fp->file_lbase = basename(fp->file_lname); 2029 if (fp->file_rname != NULL) 2030 fp->file_rbase = basename(fp->file_rname); 2031 2032 /* Associate the file and the mapping. */ 2033 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ); 2034 fp->file_pname[PRMAPSZ - 1] = '\0'; 2035 2036 /* 2037 * If no section headers were available then we'll have to 2038 * identify this load object's other mappings with what we've 2039 * got: the start and end of the object's corresponding 2040 * address space. 2041 */ 2042 if (fp->file_saddrs == NULL) { 2043 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count && 2044 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) { 2045 2046 if (mp->map_file == NULL) { 2047 dprintf("core_iter_mapping %s: associating " 2048 "segment at %p\n", 2049 fp->file_pname, 2050 (void *)mp->map_pmap.pr_vaddr); 2051 mp->map_file = fp; 2052 fp->file_ref++; 2053 } else { 2054 dprintf("core_iter_mapping %s: segment at " 2055 "%p already associated with %s\n", 2056 fp->file_pname, 2057 (void *)mp->map_pmap.pr_vaddr, 2058 (mp == fp->file_map ? "this file" : 2059 mp->map_file->file_pname)); 2060 } 2061 } 2062 } 2063 2064 /* Ensure that all this file's mappings are named. */ 2065 for (mp = fp->file_map; mp < P->mappings + P->map_count && 2066 mp->map_file == fp; mp++) { 2067 if (mp->map_pmap.pr_mapname[0] == '\0' && 2068 !(mp->map_pmap.pr_mflags & MA_BREAK)) { 2069 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname, 2070 PRMAPSZ); 2071 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2072 } 2073 } 2074 2075 /* Attempt to build a symbol table for this file. */ 2076 Pbuild_file_symtab(P, fp); 2077 if (fp->file_elf == NULL) 2078 dprintf("core_iter_mapping: no symtab for %s\n", 2079 fp->file_pname); 2080 2081 /* Locate the start of a data segment associated with this file. */ 2082 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 2083 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 2084 fp->file_pname, (void *)fp->file_lo->rl_data_base, 2085 mp->map_pmap.pr_offset); 2086 } else { 2087 dprintf("core_iter_mapping: no data found for %s\n", 2088 fp->file_pname); 2089 } 2090 2091 return (1); /* Advance to next mapping */ 2092 } 2093 2094 /* 2095 * Callback function for Pfindexec(). In order to confirm a given pathname, 2096 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN. 2097 */ 2098 static int 2099 core_exec_open(const char *path, void *efp) 2100 { 2101 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0) 2102 return (1); 2103 if (core_elf_open(efp, path, ET_DYN, NULL) == 0) 2104 return (1); 2105 return (0); 2106 } 2107 2108 /* 2109 * Attempt to load any section headers found in the core file. If present, 2110 * this will refer to non-loadable data added to the core file by the kernel 2111 * based on coreadm(1M) settings, including CTF data and the symbol table. 2112 */ 2113 static void 2114 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 2115 { 2116 GElf_Shdr *shp, *shdrs = NULL; 2117 char *shstrtab = NULL; 2118 ulong_t shstrtabsz; 2119 const char *name; 2120 map_info_t *mp; 2121 2122 size_t nbytes; 2123 void *buf; 2124 int i; 2125 2126 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 2127 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 2128 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 2129 return; 2130 } 2131 2132 /* 2133 * Read the section header table from the core file and then iterate 2134 * over the section headers, converting each to a GElf_Shdr. 2135 */ 2136 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) { 2137 dprintf("failed to malloc %u section headers: %s\n", 2138 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 2139 return; 2140 } 2141 2142 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 2143 if ((buf = malloc(nbytes)) == NULL) { 2144 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes, 2145 strerror(errno)); 2146 free(shdrs); 2147 goto out; 2148 } 2149 2150 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 2151 dprintf("failed to read section headers at off %lld: %s\n", 2152 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 2153 free(buf); 2154 goto out; 2155 } 2156 2157 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 2158 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 2159 2160 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 2161 core_shdr_to_gelf(p, &shdrs[i]); 2162 else 2163 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 2164 } 2165 2166 free(buf); 2167 buf = NULL; 2168 2169 /* 2170 * Read the .shstrtab section from the core file, terminating it with 2171 * an extra \0 so that a corrupt section will not cause us to die. 2172 */ 2173 shp = &shdrs[efp->e_hdr.e_shstrndx]; 2174 shstrtabsz = shp->sh_size; 2175 2176 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 2177 dprintf("failed to allocate %lu bytes for shstrtab\n", 2178 (ulong_t)shstrtabsz); 2179 goto out; 2180 } 2181 2182 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 2183 shp->sh_offset) != shstrtabsz) { 2184 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 2185 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 2186 goto out; 2187 } 2188 2189 shstrtab[shstrtabsz] = '\0'; 2190 2191 /* 2192 * Now iterate over each section in the section header table, locating 2193 * sections of interest and initializing more of the ps_prochandle. 2194 */ 2195 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 2196 shp = &shdrs[i]; 2197 name = shstrtab + shp->sh_name; 2198 2199 if (shp->sh_name >= shstrtabsz) { 2200 dprintf("skipping section [%d]: corrupt sh_name\n", i); 2201 continue; 2202 } 2203 2204 if (shp->sh_link >= efp->e_hdr.e_shnum) { 2205 dprintf("skipping section [%d]: corrupt sh_link\n", i); 2206 continue; 2207 } 2208 2209 dprintf("found section header %s (sh_addr 0x%llx)\n", 2210 name, (u_longlong_t)shp->sh_addr); 2211 2212 if (strcmp(name, ".SUNW_ctf") == 0) { 2213 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 2214 dprintf("no map at addr 0x%llx for %s [%d]\n", 2215 (u_longlong_t)shp->sh_addr, name, i); 2216 continue; 2217 } 2218 2219 if (mp->map_file == NULL || 2220 mp->map_file->file_ctf_buf != NULL) { 2221 dprintf("no mapping file or duplicate buffer " 2222 "for %s [%d]\n", name, i); 2223 continue; 2224 } 2225 2226 if ((buf = malloc(shp->sh_size)) == NULL || 2227 pread64(efp->e_fd, buf, shp->sh_size, 2228 shp->sh_offset) != shp->sh_size) { 2229 dprintf("skipping section %s [%d]: %s\n", 2230 name, i, strerror(errno)); 2231 free(buf); 2232 continue; 2233 } 2234 2235 mp->map_file->file_ctf_size = shp->sh_size; 2236 mp->map_file->file_ctf_buf = buf; 2237 2238 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 2239 mp->map_file->file_ctf_dyn = 1; 2240 2241 } else if (strcmp(name, ".symtab") == 0) { 2242 fake_up_symtab(P, &efp->e_hdr, 2243 shp, &shdrs[shp->sh_link]); 2244 } 2245 } 2246 out: 2247 free(shstrtab); 2248 free(shdrs); 2249 } 2250 2251 /* 2252 * Main engine for core file initialization: given an fd for the core file 2253 * and an optional pathname, construct the ps_prochandle. The aout_path can 2254 * either be a suggested executable pathname, or a suggested directory to 2255 * use as a possible current working directory. 2256 */ 2257 struct ps_prochandle * 2258 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 2259 { 2260 struct ps_prochandle *P; 2261 core_info_t *core_info; 2262 map_info_t *stk_mp, *brk_mp; 2263 const char *execname; 2264 char *interp; 2265 int i, notes, pagesize; 2266 uintptr_t addr, base_addr; 2267 struct stat64 stbuf; 2268 void *phbuf, *php; 2269 size_t nbytes; 2270 #ifdef __x86 2271 boolean_t from_linux = B_FALSE; 2272 #endif 2273 2274 elf_file_t aout; 2275 elf_file_t core; 2276 2277 Elf_Scn *scn, *intp_scn = NULL; 2278 Elf_Data *dp; 2279 2280 GElf_Phdr phdr, note_phdr; 2281 GElf_Shdr shdr; 2282 GElf_Xword nleft; 2283 2284 if (elf_version(EV_CURRENT) == EV_NONE) { 2285 dprintf("libproc ELF version is more recent than libelf\n"); 2286 *perr = G_ELF; 2287 return (NULL); 2288 } 2289 2290 aout.e_elf = NULL; 2291 aout.e_fd = -1; 2292 2293 core.e_elf = NULL; 2294 core.e_fd = core_fd; 2295 2296 /* 2297 * Allocate and initialize a ps_prochandle structure for the core. 2298 * There are several key pieces of initialization here: 2299 * 2300 * 1. The PS_DEAD state flag marks this prochandle as a core file. 2301 * PS_DEAD also thus prevents all operations which require state 2302 * to be PS_STOP from operating on this handle. 2303 * 2304 * 2. We keep the core file fd in P->asfd since the core file contains 2305 * the remnants of the process address space. 2306 * 2307 * 3. We set the P->info_valid bit because all information about the 2308 * core is determined by the end of this function; there is no need 2309 * for proc_update_maps() to reload mappings at any later point. 2310 * 2311 * 4. The read/write ops vector uses our core_rw() function defined 2312 * above to handle i/o requests. 2313 */ 2314 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 2315 *perr = G_STRANGE; 2316 return (NULL); 2317 } 2318 2319 (void) memset(P, 0, sizeof (struct ps_prochandle)); 2320 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 2321 P->state = PS_DEAD; 2322 P->pid = (pid_t)-1; 2323 P->asfd = core.e_fd; 2324 P->ctlfd = -1; 2325 P->statfd = -1; 2326 P->agentctlfd = -1; 2327 P->agentstatfd = -1; 2328 P->zoneroot = NULL; 2329 P->info_valid = 1; 2330 Pinit_ops(&P->ops, &P_core_ops); 2331 2332 Pinitsym(P); 2333 2334 /* 2335 * Fstat and open the core file and make sure it is a valid ELF core. 2336 */ 2337 if (fstat64(P->asfd, &stbuf) == -1) { 2338 *perr = G_STRANGE; 2339 goto err; 2340 } 2341 2342 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 2343 goto err; 2344 2345 /* 2346 * Allocate and initialize a core_info_t to hang off the ps_prochandle 2347 * structure. We keep all core-specific information in this structure. 2348 */ 2349 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) { 2350 *perr = G_STRANGE; 2351 goto err; 2352 } 2353 2354 P->data = core_info; 2355 list_link(&core_info->core_lwp_head, NULL); 2356 core_info->core_size = stbuf.st_size; 2357 /* 2358 * In the days before adjustable core file content, this was the 2359 * default core file content. For new core files, this value will 2360 * be overwritten by the NT_CONTENT note section. 2361 */ 2362 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 2363 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 2364 CC_CONTENT_SHANON; 2365 2366 switch (core.e_hdr.e_ident[EI_CLASS]) { 2367 case ELFCLASS32: 2368 core_info->core_dmodel = PR_MODEL_ILP32; 2369 break; 2370 case ELFCLASS64: 2371 core_info->core_dmodel = PR_MODEL_LP64; 2372 break; 2373 default: 2374 *perr = G_FORMAT; 2375 goto err; 2376 } 2377 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI]; 2378 2379 /* 2380 * Because the core file may be a large file, we can't use libelf to 2381 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 2382 */ 2383 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 2384 2385 if ((phbuf = malloc(nbytes)) == NULL) { 2386 *perr = G_STRANGE; 2387 goto err; 2388 } 2389 2390 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 2391 *perr = G_STRANGE; 2392 free(phbuf); 2393 goto err; 2394 } 2395 2396 /* 2397 * Iterate through the program headers in the core file. 2398 * We're interested in two types of Phdrs: PT_NOTE (which 2399 * contains a set of saved /proc structures), and PT_LOAD (which 2400 * represents a memory mapping from the process's address space). 2401 * In the case of PT_NOTE, we're interested in the last PT_NOTE 2402 * in the core file; currently the first PT_NOTE (if present) 2403 * contains /proc structs in the pre-2.6 unstructured /proc format. 2404 */ 2405 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 2406 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 2407 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 2408 else 2409 core_phdr_to_gelf(php, &phdr); 2410 2411 switch (phdr.p_type) { 2412 case PT_NOTE: 2413 note_phdr = phdr; 2414 notes++; 2415 break; 2416 2417 case PT_LOAD: 2418 if (core_add_mapping(P, &phdr) == -1) { 2419 *perr = G_STRANGE; 2420 free(phbuf); 2421 goto err; 2422 } 2423 break; 2424 default: 2425 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type); 2426 break; 2427 } 2428 2429 php = (char *)php + core.e_hdr.e_phentsize; 2430 } 2431 2432 free(phbuf); 2433 2434 Psort_mappings(P); 2435 2436 /* 2437 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 2438 * was present, abort. The core file is either corrupt or too old. 2439 */ 2440 if (notes == 0 || (notes == 1 && core_info->core_osabi == 2441 ELFOSABI_SOLARIS)) { 2442 *perr = G_NOTE; 2443 goto err; 2444 } 2445 2446 /* 2447 * Advance the seek pointer to the start of the PT_NOTE data 2448 */ 2449 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 2450 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 2451 *perr = G_STRANGE; 2452 goto err; 2453 } 2454 2455 /* 2456 * Now process the PT_NOTE structures. Each one is preceded by 2457 * an Elf{32/64}_Nhdr structure describing its type and size. 2458 * 2459 * +--------+ 2460 * | header | 2461 * +--------+ 2462 * | name | 2463 * | ... | 2464 * +--------+ 2465 * | desc | 2466 * | ... | 2467 * +--------+ 2468 */ 2469 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 2470 Elf64_Nhdr nhdr; 2471 off64_t off, namesz, descsz; 2472 2473 /* 2474 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 2475 * as different types, they are both of the same content and 2476 * size, so we don't need to worry about 32/64 conversion here. 2477 */ 2478 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 2479 dprintf("Pgrab_core: failed to read ELF note header\n"); 2480 *perr = G_NOTE; 2481 goto err; 2482 } 2483 2484 /* 2485 * According to the System V ABI, the amount of padding 2486 * following the name field should align the description 2487 * field on a 4 byte boundary for 32-bit binaries or on an 8 2488 * byte boundary for 64-bit binaries. However, this change 2489 * was not made correctly during the 64-bit port so all 2490 * descriptions can assume only 4-byte alignment. We ignore 2491 * the name field and the padding to 4-byte alignment. 2492 */ 2493 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 2494 2495 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 2496 dprintf("failed to seek past name and padding\n"); 2497 *perr = G_STRANGE; 2498 goto err; 2499 } 2500 2501 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 2502 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 2503 2504 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 2505 2506 /* 2507 * Invoke the note handler function from our table 2508 */ 2509 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 2510 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 2511 dprintf("handler for type %d returned < 0", 2512 nhdr.n_type); 2513 *perr = G_NOTE; 2514 goto err; 2515 } 2516 /* 2517 * The presence of either of these notes indicates that 2518 * the dump was generated on Linux. 2519 */ 2520 #ifdef __x86 2521 if (nhdr.n_type == NT_PRSTATUS || 2522 nhdr.n_type == NT_PRPSINFO) 2523 from_linux = B_TRUE; 2524 #endif 2525 } else { 2526 (void) note_notsup(P, nhdr.n_descsz); 2527 } 2528 2529 /* 2530 * Seek past the current note data to the next Elf_Nhdr 2531 */ 2532 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4); 2533 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) { 2534 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 2535 *perr = G_STRANGE; 2536 goto err; 2537 } 2538 2539 /* 2540 * Subtract the size of the header and its data from what 2541 * we have left to process. 2542 */ 2543 nleft -= sizeof (nhdr) + namesz + descsz; 2544 } 2545 2546 #ifdef __x86 2547 if (from_linux) { 2548 size_t tcount, pid; 2549 lwp_info_t *lwp; 2550 2551 P->status.pr_dmodel = core_info->core_dmodel; 2552 2553 lwp = list_next(&core_info->core_lwp_head); 2554 2555 pid = P->status.pr_pid; 2556 2557 for (tcount = 0; tcount < core_info->core_nlwp; 2558 tcount++, lwp = list_next(lwp)) { 2559 dprintf("Linux thread with id %d\n", lwp->lwp_id); 2560 2561 /* 2562 * In the case we don't have a valid psinfo (i.e. pid is 2563 * 0, probably because of gdb creating the core) assume 2564 * lowest pid count is the first thread (what if the 2565 * next thread wraps the pid around?) 2566 */ 2567 if (P->status.pr_pid == 0 && 2568 ((pid == 0 && lwp->lwp_id > 0) || 2569 (lwp->lwp_id < pid))) { 2570 pid = lwp->lwp_id; 2571 } 2572 } 2573 2574 if (P->status.pr_pid != pid) { 2575 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid); 2576 P->status.pr_pid = pid; 2577 P->psinfo.pr_pid = pid; 2578 } 2579 2580 /* 2581 * Consumers like mdb expect the first thread to actually have 2582 * an id of 1, on linux that is actually the pid. Find the the 2583 * thread with our process id, and set the id to 1 2584 */ 2585 if ((lwp = lwpid2info(P, pid)) == NULL) { 2586 dprintf("Couldn't find first thread\n"); 2587 *perr = G_STRANGE; 2588 goto err; 2589 } 2590 2591 dprintf("setting representative thread: %d\n", lwp->lwp_id); 2592 2593 lwp->lwp_id = 1; 2594 lwp->lwp_status.pr_lwpid = 1; 2595 2596 /* set representative thread */ 2597 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status, 2598 sizeof (P->status.pr_lwp)); 2599 } 2600 #endif /* __x86 */ 2601 2602 if (nleft != 0) { 2603 dprintf("Pgrab_core: note section malformed\n"); 2604 *perr = G_STRANGE; 2605 goto err; 2606 } 2607 2608 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 2609 pagesize = getpagesize(); 2610 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 2611 } 2612 2613 /* 2614 * Locate and label the mappings corresponding to the end of the 2615 * heap (MA_BREAK) and the base of the stack (MA_STACK). 2616 */ 2617 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 2618 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 2619 P->status.pr_brksize - 1)) != NULL) 2620 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 2621 else 2622 brk_mp = NULL; 2623 2624 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 2625 stk_mp->map_pmap.pr_mflags |= MA_STACK; 2626 2627 /* 2628 * At this point, we have enough information to look for the 2629 * executable and open it: we have access to the auxv, a psinfo_t, 2630 * and the ability to read from mappings provided by the core file. 2631 */ 2632 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 2633 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 2634 execname = P->execname ? P->execname : "a.out"; 2635 2636 /* 2637 * Iterate through the sections, looking for the .dynamic and .interp 2638 * sections. If we encounter them, remember their section pointers. 2639 */ 2640 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 2641 char *sname; 2642 2643 if ((gelf_getshdr(scn, &shdr) == NULL) || 2644 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 2645 (size_t)shdr.sh_name)) == NULL) 2646 continue; 2647 2648 if (strcmp(sname, ".interp") == 0) 2649 intp_scn = scn; 2650 } 2651 2652 /* 2653 * Get the AT_BASE auxv element. If this is missing (-1), then 2654 * we assume this is a statically-linked executable. 2655 */ 2656 base_addr = Pgetauxval(P, AT_BASE); 2657 2658 /* 2659 * In order to get librtld_db initialized, we'll need to identify 2660 * and name the mapping corresponding to the run-time linker. The 2661 * AT_BASE auxv element tells us the address where it was mapped, 2662 * and the .interp section of the executable tells us its path. 2663 * If for some reason that doesn't pan out, just use ld.so.1. 2664 */ 2665 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 2666 dp->d_size != 0) { 2667 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 2668 interp = dp->d_buf; 2669 2670 } else if (base_addr != (uintptr_t)-1L) { 2671 if (core_info->core_dmodel == PR_MODEL_LP64) 2672 interp = "/usr/lib/64/ld.so.1"; 2673 else 2674 interp = "/usr/lib/ld.so.1"; 2675 2676 dprintf(".interp section is missing or could not be read; " 2677 "defaulting to %s\n", interp); 2678 } else 2679 dprintf("detected statically linked executable\n"); 2680 2681 /* 2682 * If we have an AT_BASE element, name the mapping at that address 2683 * using the interpreter pathname. Name the corresponding data 2684 * mapping after the interpreter as well. 2685 */ 2686 if (base_addr != (uintptr_t)-1L) { 2687 elf_file_t intf; 2688 2689 P->map_ldso = core_name_mapping(P, base_addr, interp); 2690 2691 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2692 rd_loadobj_t rl; 2693 map_info_t *dmp; 2694 2695 rl.rl_base = base_addr; 2696 dmp = core_find_data(P, intf.e_elf, &rl); 2697 2698 if (dmp != NULL) { 2699 dprintf("renamed data at %p to %s\n", 2700 (void *)rl.rl_data_base, interp); 2701 (void) strncpy(dmp->map_pmap.pr_mapname, 2702 interp, PRMAPSZ); 2703 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2704 } 2705 } 2706 2707 core_elf_close(&intf); 2708 } 2709 2710 /* 2711 * If we have an AT_ENTRY element, name the mapping at that address 2712 * using the special name "a.out" just like /proc does. 2713 */ 2714 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2715 P->map_exec = core_name_mapping(P, addr, "a.out"); 2716 2717 /* 2718 * If we're a statically linked executable (or we're on x86 and looking 2719 * at a Linux core dump), then just locate the executable's text and 2720 * data and name them after the executable. 2721 */ 2722 #ifndef __x86 2723 if (base_addr == (uintptr_t)-1L) { 2724 #else 2725 if (base_addr == (uintptr_t)-1L || from_linux) { 2726 #endif 2727 dprintf("looking for text and data: %s\n", execname); 2728 map_info_t *tmp, *dmp; 2729 file_info_t *fp; 2730 rd_loadobj_t rl; 2731 2732 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2733 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2734 (void) strncpy(tmp->map_pmap.pr_mapname, 2735 execname, PRMAPSZ); 2736 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2737 (void) strncpy(dmp->map_pmap.pr_mapname, 2738 execname, PRMAPSZ); 2739 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2740 } 2741 2742 if ((P->map_exec = tmp) != NULL && 2743 (fp = malloc(sizeof (file_info_t))) != NULL) { 2744 2745 (void) memset(fp, 0, sizeof (file_info_t)); 2746 2747 list_link(fp, &P->file_head); 2748 tmp->map_file = fp; 2749 P->num_files++; 2750 2751 fp->file_ref = 1; 2752 fp->file_fd = -1; 2753 2754 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2755 fp->file_lname = strdup(execname); 2756 2757 if (fp->file_lo) 2758 *fp->file_lo = rl; 2759 if (fp->file_lname) 2760 fp->file_lbase = basename(fp->file_lname); 2761 if (fp->file_rname) 2762 fp->file_rbase = basename(fp->file_rname); 2763 2764 (void) strcpy(fp->file_pname, 2765 P->mappings[0].map_pmap.pr_mapname); 2766 fp->file_map = tmp; 2767 2768 Pbuild_file_symtab(P, fp); 2769 2770 if (dmp != NULL) { 2771 dmp->map_file = fp; 2772 fp->file_ref++; 2773 } 2774 } 2775 } 2776 2777 core_elf_close(&aout); 2778 2779 /* 2780 * We now have enough information to initialize librtld_db. 2781 * After it warms up, we can iterate through the load object chain 2782 * in the core, which will allow us to construct the file info 2783 * we need to provide symbol information for the other shared 2784 * libraries, and also to fill in the missing mapping names. 2785 */ 2786 rd_log(_libproc_debug); 2787 2788 if ((P->rap = rd_new(P)) != NULL) { 2789 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2790 core_iter_mapping, P); 2791 2792 if (core_info->core_errno != 0) { 2793 errno = core_info->core_errno; 2794 *perr = G_STRANGE; 2795 goto err; 2796 } 2797 } else 2798 dprintf("failed to initialize rtld_db agent\n"); 2799 2800 /* 2801 * If there are sections, load them and process the data from any 2802 * sections that we can use to annotate the file_info_t's. 2803 */ 2804 core_load_shdrs(P, &core); 2805 2806 /* 2807 * If we previously located a stack or break mapping, and they are 2808 * still anonymous, we now assume that they were MAP_ANON mappings. 2809 * If brk_mp turns out to now have a name, then the heap is still 2810 * sitting at the end of the executable's data+bss mapping: remove 2811 * the previous MA_BREAK setting to be consistent with /proc. 2812 */ 2813 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2814 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2815 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2816 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2817 else if (brk_mp != NULL) 2818 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2819 2820 *perr = 0; 2821 return (P); 2822 2823 err: 2824 Pfree(P); 2825 core_elf_close(&aout); 2826 return (NULL); 2827 } 2828 2829 /* 2830 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2831 */ 2832 struct ps_prochandle * 2833 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2834 { 2835 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2836 2837 if ((fd = open64(core, oflag)) >= 0) 2838 return (Pfgrab_core(fd, aout, perr)); 2839 2840 if (errno != ENOENT) 2841 *perr = G_STRANGE; 2842 else 2843 *perr = G_NOCORE; 2844 2845 return (NULL); 2846 }