1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <stdio.h> 28 #include <dwarf.h> 29 #include <sys/types.h> 30 #include <sys/elf.h> 31 32 /* 33 * Little Endian Base 128 (LEB128) numbers. 34 * ---------------------------------------- 35 * 36 * LEB128 is a scheme for encoding integers densely that exploits the 37 * assumption that most integers are small in magnitude. (This encoding 38 * is equally suitable whether the target machine architecture represents 39 * data in big-endian or little- endian 40 * 41 * Unsigned LEB128 numbers are encoded as follows: start at the low order 42 * end of an unsigned integer and chop it into 7-bit chunks. Place each 43 * chunk into the low order 7 bits of a byte. Typically, several of the 44 * high order bytes will be zero; discard them. Emit the remaining bytes in 45 * a stream, starting with the low order byte; set the high order bit on 46 * each byte except the last emitted byte. The high bit of zero on the last 47 * byte indicates to the decoder that it has encountered the last byte. 48 * The integer zero is a special case, consisting of a single zero byte. 49 * 50 * Signed, 2s complement LEB128 numbers are encoded in a similar except 51 * that the criterion for discarding high order bytes is not whether they 52 * are zero, but whether they consist entirely of sign extension bits. 53 * Consider the 32-bit integer -2. The three high level bytes of the number 54 * are sign extension, thus LEB128 would represent it as a single byte 55 * containing the low order 7 bits, with the high order bit cleared to 56 * indicate the end of the byte stream. 57 * 58 * Note that there is nothing within the LEB128 representation that 59 * indicates whether an encoded number is signed or unsigned. The decoder 60 * must know what type of number to expect. 61 * 62 * DWARF Exception Header Encoding 63 * ------------------------------- 64 * 65 * The DWARF Exception Header Encoding is used to describe the type of data 66 * used in the .eh_frame_hdr section. The upper 4 bits indicate how the 67 * value is to be applied. The lower 4 bits indicate the format of the data. 68 * 69 * DWARF Exception Header value format 70 * 71 * Name Value Meaning 72 * DW_EH_PE_omit 0xff No value is present. 73 * DW_EH_PE_absptr 0x00 Value is a void* 74 * DW_EH_PE_uleb128 0x01 Unsigned value is encoded using the 75 * Little Endian Base 128 (LEB128) 76 * DW_EH_PE_udata2 0x02 A 2 bytes unsigned value. 77 * DW_EH_PE_udata4 0x03 A 4 bytes unsigned value. 78 * DW_EH_PE_udata8 0x04 An 8 bytes unsigned value. 79 * DW_EH_PE_signed 0x08 bit on for all signed encodings 80 * DW_EH_PE_sleb128 0x09 Signed value is encoded using the 81 * Little Endian Base 128 (LEB128) 82 * DW_EH_PE_sdata2 0x0A A 2 bytes signed value. 83 * DW_EH_PE_sdata4 0x0B A 4 bytes signed value. 84 * DW_EH_PE_sdata8 0x0C An 8 bytes signed value. 85 * 86 * DWARF Exception Header application 87 * 88 * Name Value Meaning 89 * DW_EH_PE_absptr 0x00 Value is used with no modification. 90 * DW_EH_PE_pcrel 0x10 Value is reletive to the location of itself 91 * DW_EH_PE_textrel 0x20 92 * DW_EH_PE_datarel 0x30 Value is reletive to the beginning of the 93 * eh_frame_hdr segment ( segment type 94 * PT_GNU_EH_FRAME ) 95 * DW_EH_PE_funcrel 0x40 96 * DW_EH_PE_aligned 0x50 value is an aligned void* 97 * DW_EH_PE_indirect 0x80 bit to signal indirection after relocation 98 * DW_EH_PE_omit 0xff No value is present. 99 * 100 */ 101 102 dwarf_error_t 103 uleb_extract(unsigned char *data, uint64_t *dotp, size_t len, uint64_t *ret) 104 { 105 uint64_t dot = *dotp; 106 uint64_t res = 0; 107 int more = 1; 108 int shift = 0; 109 int val; 110 111 data += dot; 112 113 while (more) { 114 if (dot > len) 115 return (DW_OVERFLOW); 116 117 /* 118 * Pull off lower 7 bits 119 */ 120 val = (*data) & 0x7f; 121 122 /* 123 * Add prepend value to head of number. 124 */ 125 res = res | (val << shift); 126 127 /* 128 * Increment shift & dot pointer 129 */ 130 shift += 7; 131 dot++; 132 133 /* 134 * Check to see if hi bit is set - if not, this 135 * is the last byte. 136 */ 137 more = ((*data++) & 0x80) >> 7; 138 } 139 *dotp = dot; 140 *ret = res; 141 return (DW_SUCCESS); 142 } 143 144 dwarf_error_t 145 sleb_extract(unsigned char *data, uint64_t *dotp, size_t len, int64_t *ret) 146 { 147 uint64_t dot = *dotp; 148 int64_t res = 0; 149 int more = 1; 150 int shift = 0; 151 int val; 152 153 data += dot; 154 155 while (more) { 156 if (dot > len) 157 return (DW_OVERFLOW); 158 159 /* 160 * Pull off lower 7 bits 161 */ 162 val = (*data) & 0x7f; 163 164 /* 165 * Add prepend value to head of number. 166 */ 167 res = res | (val << shift); 168 169 /* 170 * Increment shift & dot pointer 171 */ 172 shift += 7; 173 dot++; 174 175 /* 176 * Check to see if hi bit is set - if not, this 177 * is the last byte. 178 */ 179 more = ((*data++) & 0x80) >> 7; 180 } 181 *dotp = dot; 182 183 /* 184 * Make sure value is properly sign extended. 185 */ 186 res = (res << (64 - shift)) >> (64 - shift); 187 *ret = res; 188 return (DW_SUCCESS); 189 } 190 191 /* 192 * Extract a DWARF encoded datum 193 * 194 * entry: 195 * data - Base of data buffer containing encoded bytes 196 * dotp - Address of variable containing index within data 197 * at which the desired datum starts. 198 * ehe_flags - DWARF encoding 199 * eident - ELF header e_ident[] array for object being processed 200 * frame_hdr - Boolean, true if we're extracting from .eh_frame_hdr 201 * sh_base - Base address of ELF section containing desired datum 202 * sh_offset - Offset relative to sh_base of desired datum. 203 * dbase - The base address to which DW_EH_PE_datarel is relative 204 * (if frame_hdr is false) 205 */ 206 dwarf_error_t 207 dwarf_ehe_extract(unsigned char *data, size_t len, uint64_t *dotp, 208 uint64_t *ret, uint_t ehe_flags, unsigned char *eident, 209 boolean_t frame_hdr, uint64_t sh_base, uint64_t sh_offset, 210 uint64_t dbase) 211 { 212 uint64_t dot = *dotp; 213 uint_t lsb; 214 uint_t wordsize; 215 uint_t fsize; 216 uint64_t result; 217 218 if (eident[EI_DATA] == ELFDATA2LSB) 219 lsb = 1; 220 else 221 lsb = 0; 222 223 if (eident[EI_CLASS] == ELFCLASS64) 224 wordsize = 8; 225 else 226 wordsize = 4; 227 228 switch (ehe_flags & 0x0f) { 229 case DW_EH_PE_omit: 230 *ret = 0; 231 return (DW_SUCCESS); 232 case DW_EH_PE_absptr: 233 fsize = wordsize; 234 break; 235 case DW_EH_PE_udata8: 236 case DW_EH_PE_sdata8: 237 fsize = 8; 238 break; 239 case DW_EH_PE_udata4: 240 case DW_EH_PE_sdata4: 241 fsize = 4; 242 break; 243 case DW_EH_PE_udata2: 244 case DW_EH_PE_sdata2: 245 fsize = 2; 246 break; 247 case DW_EH_PE_uleb128: 248 return (uleb_extract(data, dotp, len, ret)); 249 case DW_EH_PE_sleb128: 250 return (sleb_extract(data, dotp, len, (int64_t *)ret)); 251 default: 252 *ret = 0; 253 return (DW_BAD_ENCODING); 254 } 255 256 if (lsb) { 257 /* 258 * Extract unaligned LSB formated data 259 */ 260 uint_t cnt; 261 262 result = 0; 263 for (cnt = 0; cnt < fsize; 264 cnt++, dot++) { 265 uint64_t val; 266 267 if (dot > len) 268 return (DW_OVERFLOW); 269 val = data[dot]; 270 result |= val << (cnt * 8); 271 } 272 } else { 273 /* 274 * Extract unaligned MSB formated data 275 */ 276 uint_t cnt; 277 result = 0; 278 for (cnt = 0; cnt < fsize; 279 cnt++, dot++) { 280 uint64_t val; 281 282 if (dot > len) 283 return (DW_OVERFLOW); 284 val = data[dot]; 285 result |= val << ((fsize - cnt - 1) * 8); 286 } 287 } 288 /* 289 * perform sign extension 290 */ 291 if ((ehe_flags & DW_EH_PE_signed) && 292 (fsize < sizeof (uint64_t))) { 293 int64_t sresult; 294 uint_t bitshift; 295 sresult = result; 296 bitshift = (sizeof (uint64_t) - fsize) * 8; 297 sresult = (sresult << bitshift) >> bitshift; 298 result = sresult; 299 } 300 301 /* 302 * If value is relative to a base address, adjust it 303 */ 304 switch (ehe_flags & 0xf0) { 305 case DW_EH_PE_pcrel: 306 result += sh_base + sh_offset; 307 break; 308 309 /* 310 * datarel is relative to .eh_frame_hdr if within .eh_frame, 311 * but GOT if not. 312 */ 313 case DW_EH_PE_datarel: 314 if (frame_hdr) 315 result += sh_base; 316 else 317 result += dbase; 318 break; 319 } 320 321 /* Truncate the result to its specified size */ 322 result = (result << ((sizeof (uint64_t) - fsize) * 8)) >> 323 ((sizeof (uint64_t) - fsize) * 8); 324 325 *dotp = dot; 326 *ret = result; 327 return (DW_SUCCESS); 328 }