1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Dump an elf file. 29 */ 30 #include <stddef.h> 31 #include <sys/elf_386.h> 32 #include <sys/elf_amd64.h> 33 #include <sys/elf_SPARC.h> 34 #include <_libelf.h> 35 #include <dwarf.h> 36 #include <stdio.h> 37 #include <unistd.h> 38 #include <errno.h> 39 #include <strings.h> 40 #include <debug.h> 41 #include <conv.h> 42 #include <msg.h> 43 #include <_elfdump.h> 44 45 46 /* 47 * VERSYM_STATE is used to maintain information about the VERSYM section 48 * in the object being analyzed. It is filled in by versions(), and used 49 * by init_symtbl_state() when displaying symbol information. 50 * 51 * There are three forms of symbol versioning known to us: 52 * 53 * 1) The original form, introduced with Solaris 2.5, in which 54 * the Versym contains indexes to Verdef records, and the 55 * Versym values for UNDEF symbols resolved by other objects 56 * are all set to 0. 57 * 2) The GNU form, which is backward compatible with the original 58 * Solaris form, but which adds several extensions: 59 * - The Versym also contains indexes to Verneed records, recording 60 * which object/version contributed the external symbol at 61 * link time. These indexes start with the next value following 62 * the final Verdef index. The index is written to the previously 63 * reserved vna_other field of the ELF Vernaux structure. 64 * - The top bit of the Versym value is no longer part of the index, 65 * but is used as a "hidden bit" to prevent binding to the symbol. 66 * - Multiple implementations of a given symbol, contained in varying 67 * versions are allowed, using special assembler pseudo ops, 68 * and encoded in the symbol name using '@' characters. 69 * 3) Modified Solaris form, in which we adopt the first GNU extension 70 * (Versym indexes to Verneed records), but not the others. 71 * 72 * elfdump can handle any of these cases. The presence of a DT_VERSYM 73 * dynamic element indicates a full GNU object. An object that lacks 74 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux 75 * structures is a modified Solaris object. An object that has neither of 76 * these uses the original form. 77 * 78 * max_verndx contains the largest version index that can appear 79 * in a Versym entry. This can never be less than 1: In the case where 80 * there is no verdef/verneed sections, the [0] index is reserved 81 * for local symbols, and the [1] index for globals. If the original 82 * Solaris versioning rules are in effect and there is a verdef section, 83 * then max_verndex is the number of defined versions. If one of the 84 * other versioning forms is in effect, then: 85 * 1) If there is no verneed section, it is the same as for 86 * original Solaris versioning. 87 * 2) If there is a verneed section, the vna_other field of the 88 * Vernaux structs contain versions, and max_verndx is the 89 * largest such index. 90 * 91 * If gnu_full is True, the object uses the full GNU form of versioning. 92 * The value of the gnu_full field is based on the presence of 93 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and 94 * Solaris ld does not. 95 * 96 * The gnu_needed field is True if the Versym contains indexes to 97 * Verneed records, as indicated by non-zero vna_other fields in the Verneed 98 * section. If gnu_full is True, then gnu_needed will always be true. 99 * However, gnu_needed can be true without gnu_full. This is the modified 100 * Solaris form. 101 */ 102 typedef struct { 103 Cache *cache; /* Pointer to cache entry for VERSYM */ 104 Versym *data; /* Pointer to versym array */ 105 int gnu_full; /* True if object uses GNU versioning rules */ 106 int gnu_needed; /* True if object uses VERSYM indexes for */ 107 /* VERNEED (subset of gnu_full) */ 108 int max_verndx; /* largest versym index value */ 109 } VERSYM_STATE; 110 111 /* 112 * SYMTBL_STATE is used to maintain information about a single symbol 113 * table section, for use by the routines that display symbol information. 114 */ 115 typedef struct { 116 const char *file; /* Name of file */ 117 Ehdr *ehdr; /* ELF header for file */ 118 Cache *cache; /* Cache of all section headers */ 119 uchar_t osabi; /* OSABI to use */ 120 Word shnum; /* # of sections in cache */ 121 Cache *seccache; /* Cache of symbol table section hdr */ 122 Word secndx; /* Index of symbol table section hdr */ 123 const char *secname; /* Name of section */ 124 uint_t flags; /* Command line option flags */ 125 struct { /* Extended section index data */ 126 int checked; /* TRUE if already checked for shxndx */ 127 Word *data; /* NULL, or extended section index */ 128 /* used for symbol table entries */ 129 uint_t n; /* # items in shxndx.data */ 130 } shxndx; 131 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */ 132 Sym *sym; /* Array of symbols */ 133 Word symn; /* # of symbols */ 134 } SYMTBL_STATE; 135 136 /* 137 * A variable of this type is used to track information related to 138 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame(). 139 */ 140 typedef struct { 141 Word frame_cnt; /* # .eh_frame sections seen */ 142 Word frame_ndx; /* Section index of 1st .eh_frame */ 143 Word hdr_cnt; /* # .eh_frame_hdr sections seen */ 144 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */ 145 uint64_t frame_ptr; /* Value of FramePtr field from first */ 146 /* .eh_frame_hdr section */ 147 uint64_t frame_base; /* Data addr of 1st .eh_frame */ 148 } gnu_eh_state_t; 149 150 /* 151 * C++ .exception_ranges entries make use of the signed ptrdiff_t 152 * type to record self-relative pointer values. We need a type 153 * for this that is matched to the ELFCLASS being processed. 154 */ 155 #if defined(_ELF64) 156 typedef int64_t PTRDIFF_T; 157 #else 158 typedef int32_t PTRDIFF_T; 159 #endif 160 161 /* 162 * The Sun C++ ABI uses this struct to define each .exception_ranges 163 * entry. From the ABI: 164 * 165 * The field ret_addr is a self relative pointer to the start of the address 166 * range. The name was chosen because in the current implementation the range 167 * typically starts at the return address for a call site. 168 * 169 * The field length is the difference, in bytes, between the pc of the last 170 * instruction covered by the exception range and the first. When only a 171 * single call site is represented without optimization, this will equal zero. 172 * 173 * The field handler_addr is a relative pointer which stores the difference 174 * between the start of the exception range and the address of all code to 175 * catch exceptions and perform the cleanup for stack unwinding. 176 * 177 * The field type_block is a relative pointer which stores the difference 178 * between the start of the exception range and the address of an array used 179 * for storing a list of the types of exceptions which can be caught within 180 * the exception range. 181 */ 182 typedef struct { 183 PTRDIFF_T ret_addr; 184 Xword length; 185 PTRDIFF_T handler_addr; 186 PTRDIFF_T type_block; 187 Xword reserved; 188 } exception_range_entry; 189 190 /* 191 * Focal point for verifying symbol names. 192 */ 193 static const char * 194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name) 195 { 196 /* 197 * If an error in this routine is due to a property of the string 198 * section, as opposed to a bad offset into the section (a property of 199 * the referencing section), then we will detect the same error on 200 * every call involving those sections. We use these static variables 201 * to retain the information needed to only issue each such error once. 202 */ 203 static Cache *last_refsec; /* Last referencing section seen */ 204 static int strsec_err; /* True if error issued */ 205 206 const char *strs; 207 Word strn; 208 209 if (strsec->c_data == NULL) 210 return (NULL); 211 212 strs = (char *)strsec->c_data->d_buf; 213 strn = strsec->c_data->d_size; 214 215 /* 216 * We only print a diagnostic regarding a bad string table once per 217 * input section being processed. If the refsec has changed, reset 218 * our retained error state. 219 */ 220 if (last_refsec != refsec) { 221 last_refsec = refsec; 222 strsec_err = 0; 223 } 224 225 /* Verify that strsec really is a string table */ 226 if (strsec->c_shdr->sh_type != SHT_STRTAB) { 227 if (!strsec_err) { 228 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB), 229 file, strsec->c_ndx, refsec->c_ndx); 230 strsec_err = 1; 231 } 232 return (MSG_INTL(MSG_STR_UNKNOWN)); 233 } 234 235 /* 236 * Is the string table offset within range of the available strings? 237 */ 238 if (name >= strn) { 239 /* 240 * Do we have a empty string table? 241 */ 242 if (strs == NULL) { 243 if (!strsec_err) { 244 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 245 file, strsec->c_name); 246 strsec_err = 1; 247 } 248 } else { 249 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF), 250 file, refsec->c_name, EC_WORD(ndx), strsec->c_name, 251 EC_WORD(name), EC_WORD(strn - 1)); 252 } 253 254 /* 255 * Return the empty string so that the calling function can 256 * continue it's output diagnostics. 257 */ 258 return (MSG_INTL(MSG_STR_UNKNOWN)); 259 } 260 return (strs + name); 261 } 262 263 /* 264 * Relocations can reference section symbols and standard symbols. If the 265 * former, establish the section name. 266 */ 267 static const char * 268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum, 269 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file) 270 { 271 Sym *sym; 272 const char *name; 273 274 if (symndx >= symnum) { 275 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX), 276 file, EC_WORD(symndx), EC_WORD(relndx)); 277 return (MSG_INTL(MSG_STR_UNKNOWN)); 278 } 279 280 sym = (Sym *)(syms + symndx); 281 name = string(csec, symndx, strsec, file, sym->st_name); 282 283 /* 284 * If the symbol represents a section offset construct an appropriate 285 * string. Note, although section symbol table entries typically have 286 * a NULL name pointer, entries do exist that point into the string 287 * table to their own NULL strings. 288 */ 289 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && 290 ((sym->st_name == 0) || (*name == '\0'))) { 291 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION), 292 cache[sym->st_shndx].c_name); 293 return ((const char *)secstr); 294 } 295 296 return (name); 297 } 298 299 /* 300 * Focal point for establishing a string table section. Data such as the 301 * dynamic information simply points to a string table. Data such as 302 * relocations, reference a symbol table, which in turn is associated with a 303 * string table. 304 */ 305 static int 306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file, 307 Word *symnum, Cache **symsec, Cache **strsec) 308 { 309 Shdr *shdr = cache[ndx].c_shdr; 310 311 if (symtab) { 312 /* 313 * Validate the symbol table section. 314 */ 315 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 316 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 317 file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); 318 return (0); 319 } 320 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 321 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 322 file, cache[ndx].c_name); 323 return (0); 324 } 325 326 /* 327 * Obtain, and verify the symbol table data. 328 */ 329 if ((cache[ndx].c_data == NULL) || 330 (cache[ndx].c_data->d_buf == NULL)) { 331 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 332 file, cache[ndx].c_name); 333 return (0); 334 } 335 336 /* 337 * Establish the string table index. 338 */ 339 ndx = shdr->sh_link; 340 shdr = cache[ndx].c_shdr; 341 342 /* 343 * Return symbol table information. 344 */ 345 if (symnum) 346 *symnum = (shdr->sh_size / shdr->sh_entsize); 347 if (symsec) 348 *symsec = &cache[ndx]; 349 } 350 351 /* 352 * Validate the associated string table section. 353 */ 354 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 355 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 356 file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); 357 return (0); 358 } 359 360 if (strsec) 361 *strsec = &cache[shdr->sh_link]; 362 363 return (1); 364 } 365 366 /* 367 * Lookup a symbol and set Sym accordingly. 368 * 369 * entry: 370 * name - Name of symbol to lookup 371 * cache - Cache of all section headers 372 * shnum - # of sections in cache 373 * sym - Address of pointer to receive symbol 374 * target - NULL, or section to which the symbol must be associated. 375 * symtab - Symbol table to search for symbol 376 * file - Name of file 377 * 378 * exit: 379 * If the symbol is found, *sym is set to reference it, and True is 380 * returned. If target is non-NULL, the symbol must reference the given 381 * section --- otherwise the section is not checked. 382 * 383 * If no symbol is found, False is returned. 384 */ 385 static int 386 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym, 387 Cache *target, Cache *symtab, const char *file) 388 { 389 Shdr *shdr; 390 Word symn, cnt; 391 Sym *syms; 392 393 if (symtab == 0) 394 return (0); 395 396 shdr = symtab->c_shdr; 397 398 /* 399 * Determine the symbol data and number. 400 */ 401 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 402 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 403 file, symtab->c_name); 404 return (0); 405 } 406 if (symtab->c_data == NULL) 407 return (0); 408 409 /* LINTED */ 410 symn = (Word)(shdr->sh_size / shdr->sh_entsize); 411 syms = (Sym *)symtab->c_data->d_buf; 412 413 /* 414 * Get the associated string table section. 415 */ 416 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 417 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 418 file, symtab->c_name, EC_WORD(shdr->sh_link)); 419 return (0); 420 } 421 422 /* 423 * Loop through the symbol table to find a match. 424 */ 425 *sym = NULL; 426 for (cnt = 0; cnt < symn; syms++, cnt++) { 427 const char *symname; 428 429 symname = string(symtab, cnt, &cache[shdr->sh_link], file, 430 syms->st_name); 431 432 if (symname && (strcmp(name, symname) == 0) && 433 ((target == NULL) || (target->c_ndx == syms->st_shndx))) { 434 /* 435 * It is possible, though rare, for a local and 436 * global symbol of the same name to exist, each 437 * contributed by a different input object. If the 438 * symbol just found is local, remember it, but 439 * continue looking. 440 */ 441 *sym = syms; 442 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL) 443 break; 444 } 445 } 446 447 return (*sym != NULL); 448 } 449 450 /* 451 * Print section headers. 452 */ 453 static void 454 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi) 455 { 456 size_t seccnt; 457 458 for (seccnt = 1; seccnt < shnum; seccnt++) { 459 Cache *_cache = &cache[seccnt]; 460 Shdr *shdr = _cache->c_shdr; 461 const char *secname = _cache->c_name; 462 463 /* 464 * Although numerous section header entries can be zero, it's 465 * usually a sign of trouble if the type is zero. 466 */ 467 if (shdr->sh_type == 0) { 468 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE), 469 file, secname, EC_WORD(shdr->sh_type)); 470 } 471 472 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type)) 473 continue; 474 475 /* 476 * Identify any sections that are suspicious. A .got section 477 * shouldn't exist in a relocatable object. 478 */ 479 if (ehdr->e_type == ET_REL) { 480 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT), 481 MSG_ELF_GOT_SIZE) == 0) { 482 (void) fprintf(stderr, 483 MSG_INTL(MSG_GOT_UNEXPECTED), file, 484 secname); 485 } 486 } 487 488 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 489 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname); 490 Elf_shdr(0, osabi, ehdr->e_machine, shdr); 491 } 492 } 493 494 /* 495 * Obtain a specified Phdr entry. 496 */ 497 static Phdr * 498 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf) 499 { 500 Word cnt, tcnt; 501 Phdr *phdr; 502 503 if ((phdr = elf_getphdr(elf)) == NULL) { 504 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 505 return (NULL); 506 } 507 508 for (cnt = 0; cnt < phnum; phdr++, cnt++) { 509 for (tcnt = 0; tcnt < type_cnt; tcnt++) { 510 if (phdr->p_type == type_arr[tcnt]) 511 return (phdr); 512 } 513 } 514 return (NULL); 515 } 516 517 /* 518 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr 519 * sections. 520 * 521 * entry: 522 * cache - Cache of all section headers 523 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed 524 * shnum - Total number of sections which exist 525 * uphdr - NULL, or unwind program header associated with 526 * the .eh_frame_hdr section. 527 * ehdr - ELF header for file 528 * eh_state - Data used across calls to this routine. The 529 * caller should zero it before the first call, and 530 * pass it on every call. 531 * osabi - OSABI to use in displaying information 532 * file - Name of file 533 * flags - Command line option flags 534 */ 535 static void 536 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr, 537 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags) 538 { 539 #if defined(_ELF64) 540 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64 541 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64 542 #else 543 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32 544 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32 545 #endif 546 547 Cache *_cache = &cache[shndx]; 548 Shdr *shdr = _cache->c_shdr; 549 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf); 550 size_t datasize = _cache->c_data->d_size; 551 Conv_dwarf_ehe_buf_t dwarf_ehe_buf; 552 uint64_t ndx, frame_ptr, fde_cnt, tabndx; 553 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc; 554 uint64_t initloc, initloc0 = 0; 555 uint64_t gotaddr = 0; 556 int cnt; 557 558 for (cnt = 1; cnt < shnum; cnt++) { 559 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), 560 MSG_ELF_GOT_SIZE) == 0) { 561 gotaddr = cache[cnt].c_shdr->sh_addr; 562 break; 563 } 564 } 565 566 if ((data == NULL) || (datasize == 0)) { 567 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 568 file, _cache ->c_name); 569 return; 570 } 571 572 /* 573 * Is this a .eh_frame_hdr? 574 */ 575 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) || 576 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR), 577 MSG_SCN_FRMHDR_SIZE) == 0)) { 578 /* 579 * There can only be a single .eh_frame_hdr. 580 * Flag duplicates. 581 */ 582 if (++eh_state->hdr_cnt > 1) 583 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR), 584 file, EC_WORD(shndx), _cache->c_name); 585 586 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR)); 587 ndx = 0; 588 589 vers = data[ndx++]; 590 frame_ptr_enc = data[ndx++]; 591 fde_cnt_enc = data[ndx++]; 592 table_enc = data[ndx++]; 593 594 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers); 595 596 switch (dwarf_ehe_extract(data, datasize, &ndx, 597 &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE, 598 shdr->sh_addr, ndx, gotaddr)) { 599 case DW_OVERFLOW: 600 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), 601 file, _cache->c_name); 602 return; 603 case DW_BAD_ENCODING: 604 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), 605 file, _cache->c_name, frame_ptr_enc); 606 return; 607 case DW_SUCCESS: 608 break; 609 } 610 if (eh_state->hdr_cnt == 1) { 611 eh_state->hdr_ndx = shndx; 612 eh_state->frame_ptr = frame_ptr; 613 } 614 615 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC), 616 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf), 617 EC_XWORD(frame_ptr)); 618 619 switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt, 620 fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, 621 gotaddr)) { 622 case DW_OVERFLOW: 623 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), 624 file, _cache->c_name); 625 return; 626 case DW_BAD_ENCODING: 627 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), 628 file, _cache->c_name, fde_cnt_enc); 629 return; 630 case DW_SUCCESS: 631 break; 632 } 633 634 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC), 635 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf), 636 EC_XWORD(fde_cnt)); 637 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC), 638 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf)); 639 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1)); 640 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2)); 641 642 for (tabndx = 0; tabndx < fde_cnt; tabndx++) { 643 uint64_t table; 644 645 switch (dwarf_ehe_extract(data, datasize, &ndx, 646 &initloc, table_enc, ehdr->e_ident, B_TRUE, 647 shdr->sh_addr, ndx, gotaddr)) { 648 case DW_OVERFLOW: 649 (void) fprintf(stderr, 650 MSG_INTL(MSG_ERR_DWOVRFLW), file, 651 _cache->c_name); 652 return; 653 case DW_BAD_ENCODING: 654 (void) fprintf(stderr, 655 MSG_INTL(MSG_ERR_DWBADENC), file, 656 _cache->c_name, table_enc); 657 return; 658 case DW_SUCCESS: 659 break; 660 } 661 if ((tabndx != 0) && (initloc0 > initloc)) 662 (void) fprintf(stderr, 663 MSG_INTL(MSG_ERR_BADSORT), file, 664 _cache->c_name, EC_WORD(tabndx)); 665 switch (dwarf_ehe_extract(data, datasize, &ndx, &table, 666 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, 667 ndx, gotaddr)) { 668 case DW_OVERFLOW: 669 (void) fprintf(stderr, 670 MSG_INTL(MSG_ERR_DWOVRFLW), file, 671 _cache->c_name); 672 return; 673 case DW_BAD_ENCODING: 674 (void) fprintf(stderr, 675 MSG_INTL(MSG_ERR_DWBADENC), file, 676 _cache->c_name, table_enc); 677 return; 678 case DW_SUCCESS: 679 break; 680 } 681 682 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT), 683 EC_XWORD(initloc), 684 EC_XWORD(table)); 685 initloc0 = initloc; 686 } 687 } else { /* Display the .eh_frame section */ 688 eh_state->frame_cnt++; 689 if (eh_state->frame_cnt == 1) { 690 eh_state->frame_ndx = shndx; 691 eh_state->frame_base = shdr->sh_addr; 692 } else if ((eh_state->frame_cnt > 1) && 693 (ehdr->e_type != ET_REL)) { 694 Conv_inv_buf_t inv_buf; 695 696 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM), 697 file, EC_WORD(shndx), _cache->c_name, 698 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf)); 699 } 700 dump_eh_frame(file, _cache->c_name, data, datasize, 701 shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr); 702 } 703 704 /* 705 * If we've seen the .eh_frame_hdr and the first .eh_frame section, 706 * compare the header frame_ptr to the address of the actual frame 707 * section to ensure the link-editor got this right. Note, this 708 * diagnostic is only produced when unwind information is explicitly 709 * asked for, as shared objects built with an older ld(1) may reveal 710 * this inconsistency. Although an inconsistency, it doesn't seem to 711 * have any adverse effect on existing tools. 712 */ 713 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) && 714 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) && 715 (eh_state->frame_ptr != eh_state->frame_base)) 716 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR), 717 file, EC_WORD(eh_state->hdr_ndx), 718 cache[eh_state->hdr_ndx].c_name, 719 EC_XWORD(eh_state->frame_ptr), 720 EC_WORD(eh_state->frame_ndx), 721 cache[eh_state->frame_ndx].c_name, 722 EC_XWORD(eh_state->frame_base)); 723 #undef MSG_UNW_BINSRTAB2 724 #undef MSG_UNW_BINSRTABENT 725 } 726 727 /* 728 * Convert a self relative pointer into an address. A self relative 729 * pointer adds the address where the pointer resides to the offset 730 * contained in the pointer. The benefit is that the value of the 731 * pointer does not require relocation. 732 * 733 * entry: 734 * base_addr - Address of the pointer. 735 * delta - Offset relative to base_addr giving desired address 736 * 737 * exit: 738 * The computed address is returned. 739 * 740 * note: 741 * base_addr is an unsigned value, while ret_addr is signed. This routine 742 * used explicit testing and casting to explicitly control type 743 * conversion, and ensure that we handle the maximum possible range. 744 */ 745 static Addr 746 srelptr(Addr base_addr, PTRDIFF_T delta) 747 { 748 if (delta < 0) 749 return (base_addr - (Addr) (-delta)); 750 751 return (base_addr + (Addr) delta); 752 } 753 754 /* 755 * Byte swap a PTRDIFF_T value. 756 */ 757 static PTRDIFF_T 758 swap_ptrdiff(PTRDIFF_T value) 759 { 760 PTRDIFF_T r; 761 uchar_t *dst = (uchar_t *)&r; 762 uchar_t *src = (uchar_t *)&value; 763 764 UL_ASSIGN_BSWAP_XWORD(dst, src); 765 return (r); 766 } 767 768 /* 769 * Display exception_range_entry items from the .exception_ranges section 770 * of a Sun C++ object. 771 */ 772 static void 773 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap) 774 { 775 /* 776 * Translate a PTRDIFF_T self-relative address field of 777 * an exception_range_entry struct into an address. 778 * 779 * entry: 780 * exc_addr - Address of base of exception_range_entry struct 781 * cur_ent - Pointer to data in the struct to be translated 782 * 783 * _f - Field of struct to be translated 784 */ 785 #define SRELPTR(_f) \ 786 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f) 787 788 #if defined(_ELF64) 789 #define MSG_EXR_TITLE MSG_EXR_TITLE_64 790 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64 791 #else 792 #define MSG_EXR_TITLE MSG_EXR_TITLE_32 793 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32 794 #endif 795 796 exception_range_entry scratch, *ent, *cur_ent = &scratch; 797 char index[MAXNDXSIZE]; 798 Word i, nelts; 799 Addr addr, addr0 = 0, offset = 0; 800 Addr exc_addr = _cache->c_shdr->sh_addr; 801 802 dbg_print(0, MSG_INTL(MSG_EXR_TITLE)); 803 ent = (exception_range_entry *)(_cache->c_data->d_buf); 804 nelts = _cache->c_data->d_size / sizeof (exception_range_entry); 805 806 for (i = 0; i < nelts; i++, ent++) { 807 if (do_swap) { 808 /* 809 * Copy byte swapped values into the scratch buffer. 810 * The reserved field is not used, so we skip it. 811 */ 812 scratch.ret_addr = swap_ptrdiff(ent->ret_addr); 813 scratch.length = BSWAP_XWORD(ent->length); 814 scratch.handler_addr = swap_ptrdiff(ent->handler_addr); 815 scratch.type_block = swap_ptrdiff(ent->type_block); 816 } else { 817 cur_ent = ent; 818 } 819 820 /* 821 * The table is required to be sorted by the address 822 * derived from ret_addr, to allow binary searching. Ensure 823 * that addresses grow monotonically. 824 */ 825 addr = SRELPTR(ret_addr); 826 if ((i != 0) && (addr0 > addr)) 827 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT), 828 file, _cache->c_name, EC_WORD(i)); 829 830 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), 831 EC_XWORD(i)); 832 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset), 833 EC_ADDR(addr), EC_ADDR(cur_ent->length), 834 EC_ADDR(SRELPTR(handler_addr)), 835 EC_ADDR(SRELPTR(type_block))); 836 837 addr0 = addr; 838 exc_addr += sizeof (exception_range_entry); 839 offset += sizeof (exception_range_entry); 840 } 841 842 #undef SRELPTR 843 #undef MSG_EXR_TITLE 844 #undef MSG_EXR_ENTRY 845 } 846 847 /* 848 * Display information from unwind/exception sections: 849 * 850 * - GNU/amd64 .eh_frame and .eh_frame_hdr 851 * - Sun C++ .exception_ranges 852 * 853 */ 854 static void 855 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi, 856 const char *file, Elf *elf, uint_t flags) 857 { 858 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME }; 859 860 Word cnt; 861 Phdr *uphdr = NULL; 862 gnu_eh_state_t eh_state; 863 864 /* 865 * Historical background: .eh_frame and .eh_frame_hdr sections 866 * come from the GNU compilers (particularly C++), and are used 867 * under all architectures. Their format is based on DWARF. When 868 * the amd64 ABI was defined, these sections were adopted wholesale 869 * from the existing practice. 870 * 871 * When amd64 support was added to Solaris, support for these 872 * sections was added, using the SHT_AMD64_UNWIND section type 873 * to identify them. At first, we ignored them in objects for 874 * non-amd64 targets, but later broadened our support to include 875 * other architectures in order to better support gcc-generated 876 * objects. 877 * 878 * .exception_ranges implement the same basic concepts, but 879 * were invented at Sun for the Sun C++ compiler. 880 * 881 * We match these sections by name, rather than section type, 882 * because they can come in as either SHT_AMD64_UNWIND, or as 883 * SHT_PROGBITS, and because the type isn't enough to determine 884 * how they should be interpreted. 885 */ 886 /* Find the program header for .eh_frame_hdr if present */ 887 if (phnum) 888 uphdr = getphdr(phnum, phdr_types, 889 sizeof (phdr_types) / sizeof (*phdr_types), file, elf); 890 891 /* 892 * eh_state is used to retain data used by unwind_eh_frame() 893 * across calls. 894 */ 895 bzero(&eh_state, sizeof (eh_state)); 896 897 for (cnt = 1; cnt < shnum; cnt++) { 898 Cache *_cache = &cache[cnt]; 899 Shdr *shdr = _cache->c_shdr; 900 int is_exrange; 901 902 /* 903 * Skip sections of the wrong type. On amd64, they 904 * can be SHT_AMD64_UNWIND. On all platforms, they 905 * can be SHT_PROGBITS (including amd64, if using 906 * the GNU compilers). 907 * 908 * Skip anything other than these two types. The name 909 * test below will thin out the SHT_PROGBITS that don't apply. 910 */ 911 if ((shdr->sh_type != SHT_PROGBITS) && 912 (shdr->sh_type != SHT_AMD64_UNWIND)) 913 continue; 914 915 /* 916 * Only sections with certain well known names are of interest. 917 * These are: 918 * 919 * .eh_frame - amd64/GNU-compiler unwind sections 920 * .eh_frame_hdr - Sorted table referencing .eh_frame 921 * .exception_ranges - Sun C++ unwind sections 922 * 923 * We do a prefix comparison, allowing for naming conventions 924 * like .eh_frame.foo, hence the use of strncmp() rather than 925 * strcmp(). This means that we only really need to test for 926 * .eh_frame, as it's a prefix of .eh_frame_hdr. 927 */ 928 is_exrange = strncmp(_cache->c_name, 929 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0; 930 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM), 931 MSG_SCN_FRM_SIZE) != 0) && !is_exrange) 932 continue; 933 934 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 935 continue; 936 937 if (_cache->c_data == NULL) 938 continue; 939 940 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 941 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name); 942 943 if (is_exrange) 944 unwind_exception_ranges(_cache, file, 945 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]); 946 else 947 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr, 948 &eh_state, osabi, file, flags); 949 } 950 } 951 952 /* 953 * Initialize a symbol table state structure 954 * 955 * entry: 956 * state - State structure to be initialized 957 * cache - Cache of all section headers 958 * shnum - # of sections in cache 959 * secndx - Index of symbol table section 960 * ehdr - ELF header for file 961 * versym - Information about versym section 962 * file - Name of file 963 * flags - Command line option flags 964 */ 965 static int 966 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx, 967 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file, 968 uint_t flags) 969 { 970 Shdr *shdr; 971 972 state->file = file; 973 state->ehdr = ehdr; 974 state->cache = cache; 975 state->osabi = osabi; 976 state->shnum = shnum; 977 state->seccache = &cache[secndx]; 978 state->secndx = secndx; 979 state->secname = state->seccache->c_name; 980 state->flags = flags; 981 state->shxndx.checked = 0; 982 state->shxndx.data = NULL; 983 state->shxndx.n = 0; 984 985 shdr = state->seccache->c_shdr; 986 987 /* 988 * Check the symbol data and per-item size. 989 */ 990 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 991 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 992 file, state->secname); 993 return (0); 994 } 995 if (state->seccache->c_data == NULL) 996 return (0); 997 998 /* LINTED */ 999 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize); 1000 state->sym = (Sym *)state->seccache->c_data->d_buf; 1001 1002 /* 1003 * Check associated string table section. 1004 */ 1005 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 1006 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1007 file, state->secname, EC_WORD(shdr->sh_link)); 1008 return (0); 1009 } 1010 1011 /* 1012 * Determine if there is a associated Versym section 1013 * with this Symbol Table. 1014 */ 1015 if (versym && versym->cache && 1016 (versym->cache->c_shdr->sh_link == state->secndx)) 1017 state->versym = versym; 1018 else 1019 state->versym = NULL; 1020 1021 1022 return (1); 1023 } 1024 1025 /* 1026 * Determine the extended section index used for symbol tables entries. 1027 */ 1028 static void 1029 symbols_getxindex(SYMTBL_STATE *state) 1030 { 1031 uint_t symn; 1032 Word symcnt; 1033 1034 state->shxndx.checked = 1; /* Note that we've been called */ 1035 for (symcnt = 1; symcnt < state->shnum; symcnt++) { 1036 Cache *_cache = &state->cache[symcnt]; 1037 Shdr *shdr = _cache->c_shdr; 1038 1039 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) || 1040 (shdr->sh_link != state->secndx)) 1041 continue; 1042 1043 if ((shdr->sh_entsize) && 1044 /* LINTED */ 1045 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0)) 1046 continue; 1047 1048 if (_cache->c_data == NULL) 1049 continue; 1050 1051 state->shxndx.data = _cache->c_data->d_buf; 1052 state->shxndx.n = symn; 1053 return; 1054 } 1055 } 1056 1057 /* 1058 * Produce a line of output for the given symbol 1059 * 1060 * entry: 1061 * state - Symbol table state 1062 * symndx - Index of symbol within the table 1063 * info - Value of st_info (indicates local/global range) 1064 * symndx_disp - Index to display. This may not be the same 1065 * as symndx if the display is relative to the logical 1066 * combination of the SUNW_ldynsym/dynsym tables. 1067 * sym - Symbol to display 1068 */ 1069 static void 1070 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx, 1071 Sym *sym) 1072 { 1073 /* 1074 * Symbol types for which we check that the specified 1075 * address/size land inside the target section. 1076 */ 1077 static const int addr_symtype[] = { 1078 0, /* STT_NOTYPE */ 1079 1, /* STT_OBJECT */ 1080 1, /* STT_FUNC */ 1081 0, /* STT_SECTION */ 1082 0, /* STT_FILE */ 1083 1, /* STT_COMMON */ 1084 0, /* STT_TLS */ 1085 0, /* 7 */ 1086 0, /* 8 */ 1087 0, /* 9 */ 1088 0, /* 10 */ 1089 0, /* 11 */ 1090 0, /* 12 */ 1091 0, /* STT_SPARC_REGISTER */ 1092 0, /* 14 */ 1093 0, /* 15 */ 1094 }; 1095 #if STT_NUM != (STT_TLS + 1) 1096 #error "STT_NUM has grown. Update addr_symtype[]" 1097 #endif 1098 1099 char index[MAXNDXSIZE]; 1100 const char *symname, *sec; 1101 Versym verndx; 1102 int gnuver; 1103 uchar_t type; 1104 Shdr *tshdr; 1105 Word shndx; 1106 Conv_inv_buf_t inv_buf; 1107 1108 /* Ensure symbol index is in range */ 1109 if (symndx >= state->symn) { 1110 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX), 1111 state->file, state->secname, EC_WORD(symndx)); 1112 return; 1113 } 1114 1115 /* 1116 * If we are using extended symbol indexes, find the 1117 * corresponding SHN_SYMTAB_SHNDX table. 1118 */ 1119 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0)) 1120 symbols_getxindex(state); 1121 1122 /* LINTED */ 1123 symname = string(state->seccache, symndx, 1124 &state->cache[state->seccache->c_shdr->sh_link], state->file, 1125 sym->st_name); 1126 1127 tshdr = NULL; 1128 sec = NULL; 1129 1130 if (state->ehdr->e_type == ET_CORE) { 1131 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN); 1132 } else if (state->flags & FLG_CTL_FAKESHDR) { 1133 /* 1134 * If we are using fake section headers derived from 1135 * the program headers, then the section indexes 1136 * in the symbols do not correspond to these headers. 1137 * The section names are not available, so all we can 1138 * do is to display them in numeric form. 1139 */ 1140 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine, 1141 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf); 1142 } else if ((sym->st_shndx < SHN_LORESERVE) && 1143 (sym->st_shndx < state->shnum)) { 1144 shndx = sym->st_shndx; 1145 tshdr = state->cache[shndx].c_shdr; 1146 sec = state->cache[shndx].c_name; 1147 } else if (sym->st_shndx == SHN_XINDEX) { 1148 if (state->shxndx.data) { 1149 Word _shxndx; 1150 1151 if (symndx > state->shxndx.n) { 1152 (void) fprintf(stderr, 1153 MSG_INTL(MSG_ERR_BADSYMXINDEX1), 1154 state->file, state->secname, 1155 EC_WORD(symndx)); 1156 } else if ((_shxndx = 1157 state->shxndx.data[symndx]) > state->shnum) { 1158 (void) fprintf(stderr, 1159 MSG_INTL(MSG_ERR_BADSYMXINDEX2), 1160 state->file, state->secname, 1161 EC_WORD(symndx), EC_WORD(_shxndx)); 1162 } else { 1163 shndx = _shxndx; 1164 tshdr = state->cache[shndx].c_shdr; 1165 sec = state->cache[shndx].c_name; 1166 } 1167 } else { 1168 (void) fprintf(stderr, 1169 MSG_INTL(MSG_ERR_BADSYMXINDEX3), 1170 state->file, state->secname, EC_WORD(symndx)); 1171 } 1172 } else if ((sym->st_shndx < SHN_LORESERVE) && 1173 (sym->st_shndx >= state->shnum)) { 1174 (void) fprintf(stderr, 1175 MSG_INTL(MSG_ERR_BADSYM5), state->file, 1176 state->secname, EC_WORD(symndx), 1177 demangle(symname, state->flags), sym->st_shndx); 1178 } 1179 1180 /* 1181 * If versioning is available display the 1182 * version index. If not, then use 0. 1183 */ 1184 if (state->versym) { 1185 Versym test_verndx; 1186 1187 verndx = test_verndx = state->versym->data[symndx]; 1188 gnuver = state->versym->gnu_full; 1189 1190 /* 1191 * Check to see if this is a defined symbol with a 1192 * version index that is outside the valid range for 1193 * the file. The interpretation of this depends on 1194 * the style of versioning used by the object. 1195 * 1196 * Versions >= VER_NDX_LORESERVE have special meanings, 1197 * and are exempt from this checking. 1198 * 1199 * GNU style version indexes use the top bit of the 1200 * 16-bit index value (0x8000) as the "hidden bit". 1201 * We must mask off this bit in order to compare 1202 * the version against the maximum value. 1203 */ 1204 if (gnuver) 1205 test_verndx &= ~0x8000; 1206 1207 if ((test_verndx > state->versym->max_verndx) && 1208 (verndx < VER_NDX_LORESERVE)) 1209 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER), 1210 state->file, state->secname, EC_WORD(symndx), 1211 EC_HALF(test_verndx), state->versym->max_verndx); 1212 } else { 1213 verndx = 0; 1214 gnuver = 0; 1215 } 1216 1217 /* 1218 * Error checking for TLS. 1219 */ 1220 type = ELF_ST_TYPE(sym->st_info); 1221 if (type == STT_TLS) { 1222 if (tshdr && 1223 (sym->st_shndx != SHN_UNDEF) && 1224 ((tshdr->sh_flags & SHF_TLS) == 0)) { 1225 (void) fprintf(stderr, 1226 MSG_INTL(MSG_ERR_BADSYM3), state->file, 1227 state->secname, EC_WORD(symndx), 1228 demangle(symname, state->flags)); 1229 } 1230 } else if ((type != STT_SECTION) && sym->st_size && 1231 tshdr && (tshdr->sh_flags & SHF_TLS)) { 1232 (void) fprintf(stderr, 1233 MSG_INTL(MSG_ERR_BADSYM4), state->file, 1234 state->secname, EC_WORD(symndx), 1235 demangle(symname, state->flags)); 1236 } 1237 1238 /* 1239 * If a symbol with non-zero size has a type that 1240 * specifies an address, then make sure the location 1241 * it references is actually contained within the 1242 * section. UNDEF symbols don't count in this case, 1243 * so we ignore them. 1244 * 1245 * The meaning of the st_value field in a symbol 1246 * depends on the type of object. For a relocatable 1247 * object, it is the offset within the section. 1248 * For sharable objects, it is the offset relative to 1249 * the base of the object, and for other types, it is 1250 * the virtual address. To get an offset within the 1251 * section for non-ET_REL files, we subtract the 1252 * base address of the section. 1253 */ 1254 if (addr_symtype[type] && (sym->st_size > 0) && 1255 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) || 1256 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) { 1257 Word v = sym->st_value; 1258 if (state->ehdr->e_type != ET_REL) 1259 v -= tshdr->sh_addr; 1260 if (((v + sym->st_size) > tshdr->sh_size)) { 1261 (void) fprintf(stderr, 1262 MSG_INTL(MSG_ERR_BADSYM6), state->file, 1263 state->secname, EC_WORD(symndx), 1264 demangle(symname, state->flags), 1265 EC_WORD(shndx), EC_XWORD(tshdr->sh_size), 1266 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size)); 1267 } 1268 } 1269 1270 /* 1271 * A typical symbol table uses the sh_info field to indicate one greater 1272 * than the symbol table index of the last local symbol, STB_LOCAL. 1273 * Therefore, symbol indexes less than sh_info should have local 1274 * binding. Symbol indexes greater than, or equal to sh_info, should 1275 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero 1276 * value and size, as these symbols may be the result of an mcs(1) 1277 * section deletion. 1278 */ 1279 if (info) { 1280 uchar_t bind = ELF_ST_BIND(sym->st_info); 1281 1282 if ((symndx < info) && (bind != STB_LOCAL)) { 1283 (void) fprintf(stderr, 1284 MSG_INTL(MSG_ERR_BADSYM7), state->file, 1285 state->secname, EC_WORD(symndx), 1286 demangle(symname, state->flags), EC_XWORD(info)); 1287 1288 } else if ((symndx >= info) && (bind == STB_LOCAL) && 1289 ((sym->st_shndx != SHN_UNDEF) || 1290 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) || 1291 (sym->st_size != 0) || (sym->st_value != 0))) { 1292 (void) fprintf(stderr, 1293 MSG_INTL(MSG_ERR_BADSYM8), state->file, 1294 state->secname, EC_WORD(symndx), 1295 demangle(symname, state->flags), EC_XWORD(info)); 1296 } 1297 } 1298 1299 (void) snprintf(index, MAXNDXSIZE, 1300 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx)); 1301 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi, 1302 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname); 1303 } 1304 1305 /* 1306 * Process a SHT_SUNW_cap capabilities section. 1307 */ 1308 static int 1309 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache, 1310 uchar_t osabi, Ehdr *ehdr, uint_t flags) 1311 { 1312 SYMTBL_STATE state; 1313 Word cnum, capnum, nulls, symcaps; 1314 int descapndx, objcap, title; 1315 Cap *cap = (Cap *)ccache->c_data->d_buf; 1316 Shdr *cishdr, *cshdr = ccache->c_shdr; 1317 Cache *cicache, *strcache; 1318 Capinfo *capinfo = NULL; 1319 Word capinfonum; 1320 const char *strs = NULL; 1321 size_t strs_size; 1322 1323 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) { 1324 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1325 file, ccache->c_name); 1326 return (0); 1327 } 1328 1329 /* 1330 * If this capabilities section is associated with symbols, then the 1331 * sh_link field points to the associated capabilities information 1332 * section. The sh_link field of the capabilities information section 1333 * points to the associated symbol table. 1334 */ 1335 if (cshdr->sh_link) { 1336 Cache *scache; 1337 Shdr *sshdr; 1338 1339 /* 1340 * Validate that the sh_link field points to a capabilities 1341 * information section. 1342 */ 1343 if (cshdr->sh_link >= shnum) { 1344 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1345 file, ccache->c_name, EC_WORD(cshdr->sh_link)); 1346 return (0); 1347 } 1348 1349 cicache = &cache[cshdr->sh_link]; 1350 cishdr = cicache->c_shdr; 1351 1352 if (cishdr->sh_type != SHT_SUNW_capinfo) { 1353 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), 1354 file, ccache->c_name, EC_WORD(cshdr->sh_link)); 1355 return (0); 1356 } 1357 1358 capinfo = cicache->c_data->d_buf; 1359 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize); 1360 1361 /* 1362 * Validate that the sh_link field of the capabilities 1363 * information section points to a valid symbol table. 1364 */ 1365 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) { 1366 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1367 file, cicache->c_name, EC_WORD(cishdr->sh_link)); 1368 return (0); 1369 } 1370 scache = &cache[cishdr->sh_link]; 1371 sshdr = scache->c_shdr; 1372 1373 if ((sshdr->sh_type != SHT_SYMTAB) && 1374 (sshdr->sh_type != SHT_DYNSYM)) { 1375 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1), 1376 file, cicache->c_name, EC_WORD(cishdr->sh_link)); 1377 return (0); 1378 } 1379 1380 if (!init_symtbl_state(&state, cache, shnum, 1381 cishdr->sh_link, ehdr, osabi, NULL, file, flags)) 1382 return (0); 1383 } 1384 1385 /* 1386 * If this capabilities section contains capability string entries, 1387 * then determine the associated string table. Capabilities entries 1388 * that define names require that the capability section indicate 1389 * which string table to use via sh_info. 1390 */ 1391 if (cshdr->sh_info) { 1392 Shdr *strshdr; 1393 1394 /* 1395 * Validate that the sh_info field points to a string table. 1396 */ 1397 if (cshdr->sh_info >= shnum) { 1398 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1399 file, ccache->c_name, EC_WORD(cshdr->sh_info)); 1400 return (0); 1401 } 1402 1403 strcache = &cache[cshdr->sh_info]; 1404 strshdr = strcache->c_shdr; 1405 1406 if (strshdr->sh_type != SHT_STRTAB) { 1407 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), 1408 file, ccache->c_name, EC_WORD(cshdr->sh_info)); 1409 return (0); 1410 } 1411 strs = (const char *)strcache->c_data->d_buf; 1412 strs_size = strcache->c_data->d_size; 1413 } 1414 1415 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1416 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name); 1417 1418 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize); 1419 1420 nulls = symcaps = 0; 1421 objcap = title = 1; 1422 descapndx = -1; 1423 1424 /* 1425 * Traverse the capabilities section printing each capability group. 1426 * The first capabilities group defines any object capabilities. Any 1427 * following groups define symbol capabilities. In the case where no 1428 * object capabilities exist, but symbol capabilities do, a single 1429 * CA_SUNW_NULL terminator for the object capabilities exists. 1430 */ 1431 for (cnum = 0; cnum < capnum; cap++, cnum++) { 1432 if (cap->c_tag == CA_SUNW_NULL) { 1433 /* 1434 * A CA_SUNW_NULL tag terminates a capabilities group. 1435 * If the first capabilities tag is CA_SUNW_NULL, then 1436 * no object capabilities exist. 1437 */ 1438 if ((nulls++ == 0) && (cnum == 0)) 1439 objcap = 0; 1440 title = 1; 1441 } else { 1442 if (title) { 1443 if (nulls == 0) { 1444 /* 1445 * If this capabilities group represents 1446 * the object capabilities (i.e., no 1447 * CA_SUNW_NULL tag has been processed 1448 * yet), then display an object 1449 * capabilities title. 1450 */ 1451 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1452 dbg_print(0, 1453 MSG_INTL(MSG_OBJ_CAP_TITLE)); 1454 } else { 1455 /* 1456 * If this is a symbols capabilities 1457 * group (i.e., a CA_SUNW_NULL tag has 1458 * already be found that terminates 1459 * the object capabilities group), then 1460 * display a symbol capabilities title, 1461 * and retain this capabilities index 1462 * for later processing. 1463 */ 1464 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1465 dbg_print(0, 1466 MSG_INTL(MSG_SYM_CAP_TITLE)); 1467 descapndx = cnum; 1468 } 1469 Elf_cap_title(0); 1470 title = 0; 1471 } 1472 1473 /* 1474 * Print the capabilities data. 1475 * 1476 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID 1477 * entries require a string table, which should have 1478 * already been established. 1479 */ 1480 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) || 1481 (cap->c_tag == CA_SUNW_MACH) || 1482 (cap->c_tag == CA_SUNW_ID))) { 1483 (void) fprintf(stderr, 1484 MSG_INTL(MSG_WARN_INVCAP4), file, 1485 EC_WORD(elf_ndxscn(ccache->c_scn)), 1486 ccache->c_name, EC_WORD(cshdr->sh_info)); 1487 } 1488 Elf_cap_entry(0, cap, cnum, strs, strs_size, 1489 ehdr->e_machine); 1490 } 1491 1492 /* 1493 * If this CA_SUNW_NULL tag terminates a symbol capabilities 1494 * group, determine the associated symbols. 1495 */ 1496 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) && 1497 (descapndx != -1)) { 1498 Capinfo *cip; 1499 Word inum; 1500 1501 symcaps++; 1502 1503 /* 1504 * Make sure we've discovered a SHT_SUNW_capinfo table. 1505 */ 1506 if ((cip = capinfo) == NULL) { 1507 (void) fprintf(stderr, 1508 MSG_INTL(MSG_ERR_INVCAP), file, 1509 ccache->c_name, EC_WORD(cshdr->sh_link)); 1510 return (0); 1511 } 1512 1513 /* 1514 * Determine what symbols reference this capabilities 1515 * group. 1516 */ 1517 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1518 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES)); 1519 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 1520 1521 for (inum = 1, cip++; inum < capinfonum; 1522 inum++, cip++) { 1523 Word gndx = (Word)ELF_C_GROUP(*cip); 1524 1525 if (gndx && (gndx == descapndx)) { 1526 output_symbol(&state, inum, 0, 1527 inum, state.sym + inum); 1528 } 1529 } 1530 descapndx = -1; 1531 continue; 1532 } 1533 1534 /* 1535 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit 1536 * object is suspicious as it has no effect. 1537 */ 1538 if ((cap->c_tag == CA_SUNW_SF_1) && 1539 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) && 1540 (cap->c_un.c_val & SF1_SUNW_ADDR32)) { 1541 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1), 1542 file, ccache->c_name); 1543 } 1544 } 1545 1546 /* 1547 * If this is a dynamic object, with symbol capabilities, then a 1548 * .SUNW_capchain section should exist. This section contains a chain 1549 * of symbol indexes for each capabilities family. This is the list 1550 * that is searched by ld.so.1 to determine the best capabilities 1551 * candidate. 1552 * 1553 * Note, more than one capabilities lead symbol can point to the same 1554 * family chain. For example, a weak/global pair of symbols can both 1555 * represent the same family of capabilities symbols. Therefore, to 1556 * display all possible families we traverse the capabilities 1557 * information section looking for CAPINFO_SUNW_GLOB lead symbols. 1558 * From these we determine the associated capabilities chain to inspect. 1559 */ 1560 if (symcaps && 1561 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { 1562 Capinfo *cip; 1563 Capchain *chain; 1564 Cache *chcache; 1565 Shdr *chshdr; 1566 Word chainnum, inum; 1567 1568 /* 1569 * Validate that the sh_info field of the capabilities 1570 * information section points to a capabilities chain section. 1571 */ 1572 if (cishdr->sh_info >= shnum) { 1573 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1574 file, cicache->c_name, EC_WORD(cishdr->sh_info)); 1575 return (0); 1576 } 1577 1578 chcache = &cache[cishdr->sh_info]; 1579 chshdr = chcache->c_shdr; 1580 1581 if (chshdr->sh_type != SHT_SUNW_capchain) { 1582 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2), 1583 file, cicache->c_name, EC_WORD(cishdr->sh_info)); 1584 return (0); 1585 } 1586 1587 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize); 1588 chain = (Capchain *)chcache->c_data->d_buf; 1589 1590 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1591 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name); 1592 1593 /* 1594 * Traverse the capabilities information section looking for 1595 * CAPINFO_SUNW_GLOB lead capabilities symbols. 1596 */ 1597 cip = capinfo; 1598 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) { 1599 const char *name; 1600 Sym *sym; 1601 Word sndx, cndx; 1602 Word gndx = (Word)ELF_C_GROUP(*cip); 1603 1604 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB)) 1605 continue; 1606 1607 /* 1608 * Determine the symbol that is associated with this 1609 * capability information entry, and use this to 1610 * identify this capability family. 1611 */ 1612 sym = (Sym *)(state.sym + inum); 1613 name = string(cicache, inum, strcache, file, 1614 sym->st_name); 1615 1616 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1617 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name); 1618 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY)); 1619 1620 cndx = (Word)ELF_C_SYM(*cip); 1621 1622 /* 1623 * Traverse this families chain and identify each 1624 * family member. 1625 */ 1626 for (;;) { 1627 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE]; 1628 1629 if (cndx >= chainnum) { 1630 (void) fprintf(stderr, 1631 MSG_INTL(MSG_ERR_INVCAPINFO3), file, 1632 cicache->c_name, EC_WORD(inum), 1633 EC_WORD(cndx)); 1634 break; 1635 } 1636 if ((sndx = chain[cndx]) == 0) 1637 break; 1638 1639 /* 1640 * Determine this entries symbol reference. 1641 */ 1642 if (sndx > state.symn) { 1643 (void) fprintf(stderr, 1644 MSG_INTL(MSG_ERR_CHBADSYMNDX), file, 1645 EC_WORD(sndx), chcache->c_name, 1646 EC_WORD(cndx)); 1647 name = MSG_INTL(MSG_STR_UNKNOWN); 1648 } else { 1649 sym = (Sym *)(state.sym + sndx); 1650 name = string(chcache, sndx, 1651 strcache, file, sym->st_name); 1652 } 1653 1654 /* 1655 * Display the family member. 1656 */ 1657 (void) snprintf(_chain, MAXNDXSIZE, 1658 MSG_ORIG(MSG_FMT_INTEGER), cndx); 1659 (void) snprintf(_symndx, MAXNDXSIZE, 1660 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx)); 1661 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO), 1662 _chain, _symndx, demangle(name, flags)); 1663 1664 cndx++; 1665 } 1666 } 1667 } 1668 return (objcap); 1669 } 1670 1671 /* 1672 * Print the capabilities. 1673 * 1674 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated, 1675 * capabilities groups. The first group defines the object capabilities. 1676 * This group defines the minimum capability requirements of the entire 1677 * object file. If this is a dynamic object, this group should be associated 1678 * with a PT_SUNWCAP program header. 1679 * 1680 * Additional capabilities groups define the association of individual symbols 1681 * to specific capabilities. 1682 */ 1683 static void 1684 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, 1685 uchar_t osabi, Elf *elf, uint_t flags) 1686 { 1687 Word cnt; 1688 Shdr *cshdr = NULL; 1689 Cache *ccache; 1690 Off cphdr_off = 0; 1691 Xword cphdr_sz; 1692 1693 /* 1694 * Determine if a global capabilities header exists. 1695 */ 1696 if (phnum) { 1697 Phdr *phdr; 1698 1699 if ((phdr = elf_getphdr(elf)) == NULL) { 1700 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 1701 return; 1702 } 1703 1704 for (cnt = 0; cnt < phnum; phdr++, cnt++) { 1705 if (phdr->p_type == PT_SUNWCAP) { 1706 cphdr_off = phdr->p_offset; 1707 cphdr_sz = phdr->p_filesz; 1708 break; 1709 } 1710 } 1711 } 1712 1713 /* 1714 * Determine if a capabilities section exists. 1715 */ 1716 for (cnt = 1; cnt < shnum; cnt++) { 1717 Cache *_cache = &cache[cnt]; 1718 Shdr *shdr = _cache->c_shdr; 1719 1720 /* 1721 * Process any capabilities information. 1722 */ 1723 if (shdr->sh_type == SHT_SUNW_cap) { 1724 if (cap_section(file, cache, shnum, _cache, osabi, 1725 ehdr, flags)) { 1726 /* 1727 * If this section defined an object capability 1728 * group, retain the section information for 1729 * program header validation. 1730 */ 1731 ccache = _cache; 1732 cshdr = shdr; 1733 } 1734 continue; 1735 } 1736 } 1737 1738 if ((cshdr == NULL) && (cphdr_off == 0)) 1739 return; 1740 1741 if (cphdr_off && (cshdr == NULL)) 1742 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file); 1743 1744 /* 1745 * If this object is an executable or shared object, and it provided 1746 * an object capabilities group, then the group should have an 1747 * accompanying PT_SUNWCAP program header. 1748 */ 1749 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { 1750 if (cphdr_off == 0) { 1751 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2), 1752 file, EC_WORD(elf_ndxscn(ccache->c_scn)), 1753 ccache->c_name); 1754 } else if ((cphdr_off != cshdr->sh_offset) || 1755 (cphdr_sz != cshdr->sh_size)) { 1756 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3), 1757 file, EC_WORD(elf_ndxscn(ccache->c_scn)), 1758 ccache->c_name); 1759 } 1760 } 1761 } 1762 1763 /* 1764 * Print the interpretor. 1765 */ 1766 static void 1767 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf) 1768 { 1769 static Word phdr_types[] = { PT_INTERP }; 1770 1771 1772 Word cnt; 1773 Shdr *ishdr = NULL; 1774 Cache *icache; 1775 Off iphdr_off = 0; 1776 Xword iphdr_fsz; 1777 1778 /* 1779 * Determine if an interp header exists. 1780 */ 1781 if (phnum) { 1782 Phdr *phdr; 1783 1784 phdr = getphdr(phnum, phdr_types, 1785 sizeof (phdr_types) / sizeof (*phdr_types), file, elf); 1786 if (phdr != NULL) { 1787 iphdr_off = phdr->p_offset; 1788 iphdr_fsz = phdr->p_filesz; 1789 } 1790 } 1791 1792 if (iphdr_off == 0) 1793 return; 1794 1795 /* 1796 * Determine if an interp section exists. 1797 */ 1798 for (cnt = 1; cnt < shnum; cnt++) { 1799 Cache *_cache = &cache[cnt]; 1800 Shdr *shdr = _cache->c_shdr; 1801 1802 /* 1803 * Scan sections to find a section which contains the PT_INTERP 1804 * string. The target section can't be in a NOBITS section. 1805 */ 1806 if ((shdr->sh_type == SHT_NOBITS) || 1807 (iphdr_off < shdr->sh_offset) || 1808 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size)) 1809 continue; 1810 1811 icache = _cache; 1812 ishdr = shdr; 1813 break; 1814 } 1815 1816 /* 1817 * Print the interpreter string based on the offset defined in the 1818 * program header, as this is the offset used by the kernel. 1819 */ 1820 if (ishdr && icache->c_data) { 1821 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1822 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name); 1823 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT), 1824 (char *)icache->c_data->d_buf + 1825 (iphdr_off - ishdr->sh_offset)); 1826 } else 1827 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file); 1828 1829 /* 1830 * If there are any inconsistences between the program header and 1831 * section information, flag them. 1832 */ 1833 if (ishdr && ((iphdr_off != ishdr->sh_offset) || 1834 (iphdr_fsz != ishdr->sh_size))) { 1835 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file, 1836 icache->c_name); 1837 } 1838 } 1839 1840 /* 1841 * Print the syminfo section. 1842 */ 1843 static void 1844 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 1845 { 1846 Shdr *infoshdr; 1847 Syminfo *info; 1848 Sym *syms; 1849 Dyn *dyns; 1850 Word infonum, cnt, ndx, symnum, dynnum; 1851 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec; 1852 Boolean *dynerr; 1853 1854 for (cnt = 1; cnt < shnum; cnt++) { 1855 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) { 1856 infocache = &cache[cnt]; 1857 break; 1858 } 1859 } 1860 if (infocache == NULL) 1861 return; 1862 1863 infoshdr = infocache->c_shdr; 1864 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) { 1865 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1866 file, infocache->c_name); 1867 return; 1868 } 1869 if (infocache->c_data == NULL) 1870 return; 1871 1872 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize); 1873 info = (Syminfo *)infocache->c_data->d_buf; 1874 1875 /* 1876 * If there is no associated dynamic section, determine if one 1877 * is needed, and if so issue a warning. If there is an 1878 * associated dynamic section, validate it and get the data buffer 1879 * for it. 1880 */ 1881 dyns = NULL; 1882 dynnum = 0; 1883 if (infoshdr->sh_info == 0) { 1884 Syminfo *_info = info + 1; 1885 1886 for (ndx = 1; ndx < infonum; ndx++, _info++) { 1887 if ((_info->si_flags == 0) && (_info->si_boundto == 0)) 1888 continue; 1889 1890 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE) 1891 (void) fprintf(stderr, 1892 MSG_INTL(MSG_ERR_BADSHINFO), file, 1893 infocache->c_name, 1894 EC_WORD(infoshdr->sh_info)); 1895 } 1896 } else if ((infoshdr->sh_info >= shnum) || 1897 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) { 1898 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), 1899 file, infocache->c_name, EC_WORD(infoshdr->sh_info)); 1900 } else { 1901 dyncache = &cache[infoshdr->sh_info]; 1902 if ((dyncache->c_data == NULL) || 1903 ((dyns = dyncache->c_data->d_buf) == NULL)) { 1904 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1905 file, dyncache->c_name); 1906 } 1907 if (dyns != NULL) { 1908 dynnum = dyncache->c_shdr->sh_size / 1909 dyncache->c_shdr->sh_entsize; 1910 1911 /* 1912 * We validate the type of dynamic elements referenced 1913 * from the syminfo. This array is used report any 1914 * bad dynamic entries. 1915 */ 1916 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) == 1917 NULL) { 1918 int err = errno; 1919 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 1920 file, strerror(err)); 1921 return; 1922 } 1923 } 1924 } 1925 1926 /* 1927 * Get the data buffer for the associated symbol table and string table. 1928 */ 1929 if (stringtbl(cache, 1, cnt, shnum, file, 1930 &symnum, &symsec, &strsec) == 0) 1931 return; 1932 1933 syms = symsec->c_data->d_buf; 1934 1935 /* 1936 * Loop through the syminfo entries. 1937 */ 1938 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1939 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name); 1940 Elf_syminfo_title(0); 1941 1942 for (ndx = 1, info++; ndx < infonum; ndx++, info++) { 1943 Sym *sym; 1944 const char *needed, *name; 1945 Word expect_dt; 1946 Word boundto = info->si_boundto; 1947 1948 if ((info->si_flags == 0) && (boundto == 0)) 1949 continue; 1950 1951 sym = &syms[ndx]; 1952 name = string(infocache, ndx, strsec, file, sym->st_name); 1953 1954 /* Is si_boundto set to one of the reserved values? */ 1955 if (boundto >= SYMINFO_BT_LOWRESERVE) { 1956 Elf_syminfo_entry(0, ndx, info, name, NULL); 1957 continue; 1958 } 1959 1960 /* 1961 * si_boundto is referencing a dynamic section. If we don't 1962 * have one, an error was already issued above, so it suffices 1963 * to display an empty string. If we are out of bounds, then 1964 * report that and then display an empty string. 1965 */ 1966 if ((dyns == NULL) || (boundto >= dynnum)) { 1967 if (dyns != NULL) 1968 (void) fprintf(stderr, 1969 MSG_INTL(MSG_ERR_BADSIDYNNDX), file, 1970 infocache->c_ndx, infocache->c_name, 1971 EC_WORD(ndx), EC_WORD(dynnum - 1), 1972 EC_WORD(boundto)); 1973 Elf_syminfo_entry(0, ndx, info, name, 1974 MSG_ORIG(MSG_STR_EMPTY)); 1975 continue; 1976 } 1977 1978 /* 1979 * The si_boundto reference expects a specific dynamic element 1980 * type at the given index. The dynamic element is always a 1981 * string that gives an object name. The specific type depends 1982 * on the si_flags present. Ensure that we've got the right 1983 * type. 1984 */ 1985 if (info->si_flags & SYMINFO_FLG_FILTER) 1986 expect_dt = DT_SUNW_FILTER; 1987 else if (info->si_flags & SYMINFO_FLG_AUXILIARY) 1988 expect_dt = DT_SUNW_AUXILIARY; 1989 else if (info->si_flags & (SYMINFO_FLG_DIRECT | 1990 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND)) 1991 expect_dt = DT_NEEDED; 1992 else 1993 expect_dt = DT_NULL; /* means we ignore the type */ 1994 1995 if ((dyns[boundto].d_tag != expect_dt) && 1996 (expect_dt != DT_NULL)) { 1997 Conv_inv_buf_t buf1, buf2; 1998 1999 /* Only complain about each dynamic element once */ 2000 if (!dynerr[boundto]) { 2001 (void) fprintf(stderr, 2002 MSG_INTL(MSG_ERR_BADSIDYNTAG), 2003 file, infocache->c_ndx, infocache->c_name, 2004 EC_WORD(ndx), dyncache->c_ndx, 2005 dyncache->c_name, EC_WORD(boundto), 2006 conv_dyn_tag(expect_dt, osabi, 2007 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), 2008 conv_dyn_tag(dyns[boundto].d_tag, osabi, 2009 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2)); 2010 dynerr[boundto] = TRUE; 2011 } 2012 } 2013 2014 /* 2015 * Whether or not the DT item we're pointing at is 2016 * of the right type, if it's a type we recognize as 2017 * providing a string, go ahead and show it. Otherwise 2018 * an empty string. 2019 */ 2020 switch (dyns[boundto].d_tag) { 2021 case DT_NEEDED: 2022 case DT_SONAME: 2023 case DT_RPATH: 2024 case DT_RUNPATH: 2025 case DT_CONFIG: 2026 case DT_DEPAUDIT: 2027 case DT_USED: 2028 case DT_AUDIT: 2029 case DT_SUNW_AUXILIARY: 2030 case DT_SUNW_FILTER: 2031 case DT_FILTER: 2032 case DT_AUXILIARY: 2033 needed = string(infocache, boundto, 2034 strsec, file, dyns[boundto].d_un.d_val); 2035 break; 2036 default: 2037 needed = MSG_ORIG(MSG_STR_EMPTY); 2038 } 2039 Elf_syminfo_entry(0, ndx, info, name, needed); 2040 } 2041 if (dyns != NULL) 2042 free(dynerr); 2043 } 2044 2045 /* 2046 * Print version definition section entries. 2047 */ 2048 static void 2049 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache, 2050 const char *file) 2051 { 2052 Word cnt; 2053 char index[MAXNDXSIZE]; 2054 2055 Elf_ver_def_title(0); 2056 2057 for (cnt = 1; cnt <= vdf_num; cnt++, 2058 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) { 2059 Conv_ver_flags_buf_t ver_flags_buf; 2060 const char *name, *dep; 2061 Half vcnt = vdf->vd_cnt - 1; 2062 Half ndx = vdf->vd_ndx; 2063 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux); 2064 2065 /* 2066 * Obtain the name and first dependency (if any). 2067 */ 2068 name = string(vcache, cnt, scache, file, vdap->vda_name); 2069 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); 2070 if (vcnt) 2071 dep = string(vcache, cnt, scache, file, vdap->vda_name); 2072 else 2073 dep = MSG_ORIG(MSG_STR_EMPTY); 2074 2075 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), 2076 EC_XWORD(ndx)); 2077 Elf_ver_line_1(0, index, name, dep, 2078 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf)); 2079 2080 /* 2081 * Print any additional dependencies. 2082 */ 2083 if (vcnt) { 2084 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); 2085 for (vcnt--; vcnt; vcnt--, 2086 vdap = (Verdaux *)((uintptr_t)vdap + 2087 vdap->vda_next)) { 2088 dep = string(vcache, cnt, scache, file, 2089 vdap->vda_name); 2090 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep); 2091 } 2092 } 2093 } 2094 } 2095 2096 /* 2097 * Print version needed section entries. 2098 * 2099 * entry: 2100 * vnd - Address of verneed data 2101 * vnd_num - # of Verneed entries 2102 * vcache - Cache of verneed section being processed 2103 * scache - Cache of associated string table section 2104 * file - Name of object being processed. 2105 * versym - Information about versym section 2106 * 2107 * exit: 2108 * The versions have been printed. If GNU style versioning 2109 * is in effect, versym->max_verndx has been updated to 2110 * contain the largest version index seen. 2111 * 2112 * note: 2113 * The versym section of an object that follows the original 2114 * Solaris versioning rules only contains indexes into the verdef 2115 * section. Symbols defined in other objects (UNDEF) are given 2116 * a version of 0, indicating that they are not defined by 2117 * this file, and the Verneed entries do not have associated version 2118 * indexes. For these reasons, we do not display a version index 2119 * for original-style Verneed sections. 2120 * 2121 * The GNU versioning extensions alter this: Symbols defined in other 2122 * objects receive a version index in the range above those defined 2123 * by the Verdef section, and the vna_other field of the Vernaux 2124 * structs inside the Verneed section contain the version index for 2125 * that item. We therefore display the index when showing the 2126 * contents of a GNU style Verneed section. You should not 2127 * necessarily expect these indexes to appear in sorted 2128 * order --- it seems that the GNU ld assigns the versions as 2129 * symbols are encountered during linking, and then the results 2130 * are assembled into the Verneed section afterwards. 2131 */ 2132 static void 2133 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache, 2134 const char *file, VERSYM_STATE *versym) 2135 { 2136 Word cnt; 2137 char index[MAXNDXSIZE]; 2138 const char *index_str; 2139 2140 Elf_ver_need_title(0, versym->gnu_needed); 2141 2142 for (cnt = 1; cnt <= vnd_num; cnt++, 2143 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { 2144 Conv_ver_flags_buf_t ver_flags_buf; 2145 const char *name, *dep; 2146 Half vcnt = vnd->vn_cnt; 2147 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); 2148 2149 /* 2150 * Obtain the name of the needed file and the version name 2151 * within it that we're dependent on. Note that the count 2152 * should be at least one, otherwise this is a pretty bogus 2153 * entry. 2154 */ 2155 name = string(vcache, cnt, scache, file, vnd->vn_file); 2156 if (vcnt) 2157 dep = string(vcache, cnt, scache, file, vnap->vna_name); 2158 else 2159 dep = MSG_INTL(MSG_STR_NULL); 2160 2161 if (vnap->vna_other == 0) { /* Traditional form */ 2162 index_str = MSG_ORIG(MSG_STR_EMPTY); 2163 } else { /* GNU form */ 2164 index_str = index; 2165 /* Format the version index value */ 2166 (void) snprintf(index, MAXNDXSIZE, 2167 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other)); 2168 if (vnap->vna_other > versym->max_verndx) 2169 versym->max_verndx = vnap->vna_other; 2170 } 2171 Elf_ver_line_1(0, index_str, name, dep, 2172 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf)); 2173 2174 /* 2175 * Print any additional version dependencies. 2176 */ 2177 if (vcnt) { 2178 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); 2179 for (vcnt--; vcnt; vcnt--, 2180 vnap = (Vernaux *)((uintptr_t)vnap + 2181 vnap->vna_next)) { 2182 dep = string(vcache, cnt, scache, file, 2183 vnap->vna_name); 2184 if (vnap->vna_other > 0) { 2185 /* Format the next index value */ 2186 (void) snprintf(index, MAXNDXSIZE, 2187 MSG_ORIG(MSG_FMT_INDEX), 2188 EC_XWORD(vnap->vna_other)); 2189 Elf_ver_line_1(0, index, 2190 MSG_ORIG(MSG_STR_EMPTY), dep, 2191 conv_ver_flags(vnap->vna_flags, 2192 0, &ver_flags_buf)); 2193 if (vnap->vna_other > 2194 versym->max_verndx) 2195 versym->max_verndx = 2196 vnap->vna_other; 2197 } else { 2198 Elf_ver_line_3(0, 2199 MSG_ORIG(MSG_STR_EMPTY), dep, 2200 conv_ver_flags(vnap->vna_flags, 2201 0, &ver_flags_buf)); 2202 } 2203 } 2204 } 2205 } 2206 } 2207 2208 /* 2209 * Examine the Verneed section for information related to GNU 2210 * style Versym indexing: 2211 * - A non-zero vna_other field indicates that Versym indexes can 2212 * reference Verneed records. 2213 * - If the object uses GNU style Versym indexing, the 2214 * maximum index value is needed to detect bad Versym entries. 2215 * 2216 * entry: 2217 * vnd - Address of verneed data 2218 * vnd_num - # of Verneed entries 2219 * versym - Information about versym section 2220 * 2221 * exit: 2222 * If a non-zero vna_other field is seen, versym->gnu_needed is set. 2223 * 2224 * versym->max_verndx has been updated to contain the largest 2225 * version index seen. 2226 */ 2227 static void 2228 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym) 2229 { 2230 Word cnt; 2231 2232 for (cnt = 1; cnt <= vnd_num; cnt++, 2233 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { 2234 Half vcnt = vnd->vn_cnt; 2235 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); 2236 2237 /* 2238 * A non-zero value of vna_other indicates that this 2239 * object references VERNEED items from the VERSYM 2240 * array. 2241 */ 2242 if (vnap->vna_other != 0) { 2243 versym->gnu_needed = 1; 2244 if (vnap->vna_other > versym->max_verndx) 2245 versym->max_verndx = vnap->vna_other; 2246 } 2247 2248 /* 2249 * Check any additional version dependencies. 2250 */ 2251 if (vcnt) { 2252 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); 2253 for (vcnt--; vcnt; vcnt--, 2254 vnap = (Vernaux *)((uintptr_t)vnap + 2255 vnap->vna_next)) { 2256 if (vnap->vna_other == 0) 2257 continue; 2258 2259 versym->gnu_needed = 1; 2260 if (vnap->vna_other > versym->max_verndx) 2261 versym->max_verndx = vnap->vna_other; 2262 } 2263 } 2264 } 2265 } 2266 2267 /* 2268 * Display version section information if the flags require it. 2269 * Return version information needed by other output. 2270 * 2271 * entry: 2272 * cache - Cache of all section headers 2273 * shnum - # of sections in cache 2274 * file - Name of file 2275 * flags - Command line option flags 2276 * versym - VERSYM_STATE block to be filled in. 2277 */ 2278 static void 2279 versions(Cache *cache, Word shnum, const char *file, uint_t flags, 2280 VERSYM_STATE *versym) 2281 { 2282 GElf_Word cnt; 2283 Cache *verdef_cache = NULL, *verneed_cache = NULL; 2284 2285 2286 /* Gather information about the version sections */ 2287 versym->max_verndx = 1; 2288 for (cnt = 1; cnt < shnum; cnt++) { 2289 Cache *_cache = &cache[cnt]; 2290 Shdr *shdr = _cache->c_shdr; 2291 Dyn *dyn; 2292 ulong_t numdyn; 2293 2294 switch (shdr->sh_type) { 2295 case SHT_DYNAMIC: 2296 /* 2297 * The GNU ld puts a DT_VERSYM entry in the dynamic 2298 * section so that the runtime linker can use it to 2299 * implement their versioning rules. They allow multiple 2300 * incompatible functions with the same name to exist 2301 * in different versions. The Solaris ld does not 2302 * support this mechanism, and as such, does not 2303 * produce DT_VERSYM. We use this fact to determine 2304 * which ld produced this object, and how to interpret 2305 * the version values. 2306 */ 2307 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) || 2308 (_cache->c_data == NULL)) 2309 continue; 2310 numdyn = shdr->sh_size / shdr->sh_entsize; 2311 dyn = (Dyn *)_cache->c_data->d_buf; 2312 for (; numdyn-- > 0; dyn++) 2313 if (dyn->d_tag == DT_VERSYM) { 2314 versym->gnu_full = 2315 versym->gnu_needed = 1; 2316 break; 2317 } 2318 break; 2319 2320 case SHT_SUNW_versym: 2321 /* Record data address for later symbol processing */ 2322 if (_cache->c_data != NULL) { 2323 versym->cache = _cache; 2324 versym->data = _cache->c_data->d_buf; 2325 continue; 2326 } 2327 break; 2328 2329 case SHT_SUNW_verdef: 2330 case SHT_SUNW_verneed: 2331 /* 2332 * Ensure the data is non-NULL and the number 2333 * of items is non-zero. Otherwise, we don't 2334 * understand the section, and will not use it. 2335 */ 2336 if ((_cache->c_data == NULL) || 2337 (_cache->c_data->d_buf == NULL)) { 2338 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 2339 file, _cache->c_name); 2340 continue; 2341 } 2342 if (shdr->sh_info == 0) { 2343 (void) fprintf(stderr, 2344 MSG_INTL(MSG_ERR_BADSHINFO), 2345 file, _cache->c_name, 2346 EC_WORD(shdr->sh_info)); 2347 continue; 2348 } 2349 2350 /* Make sure the string table index is in range */ 2351 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 2352 (void) fprintf(stderr, 2353 MSG_INTL(MSG_ERR_BADSHLINK), file, 2354 _cache->c_name, EC_WORD(shdr->sh_link)); 2355 continue; 2356 } 2357 2358 /* 2359 * The section is usable. Save the cache entry. 2360 */ 2361 if (shdr->sh_type == SHT_SUNW_verdef) { 2362 verdef_cache = _cache; 2363 /* 2364 * Under Solaris rules, if there is a verdef 2365 * section, the max versym index is number 2366 * of version definitions it supplies. 2367 */ 2368 versym->max_verndx = shdr->sh_info; 2369 } else { 2370 verneed_cache = _cache; 2371 } 2372 break; 2373 } 2374 } 2375 2376 /* 2377 * If there is a Verneed section, examine it for information 2378 * related to GNU style versioning. 2379 */ 2380 if (verneed_cache != NULL) 2381 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf, 2382 verneed_cache->c_shdr->sh_info, versym); 2383 2384 /* 2385 * Now that all the information is available, display the 2386 * Verdef and Verneed section contents, if requested. 2387 */ 2388 if ((flags & FLG_SHOW_VERSIONS) == 0) 2389 return; 2390 if (verdef_cache != NULL) { 2391 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2392 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF), 2393 verdef_cache->c_name); 2394 version_def((Verdef *)verdef_cache->c_data->d_buf, 2395 verdef_cache->c_shdr->sh_info, verdef_cache, 2396 &cache[verdef_cache->c_shdr->sh_link], file); 2397 } 2398 if (verneed_cache != NULL) { 2399 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2400 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED), 2401 verneed_cache->c_name); 2402 /* 2403 * If GNU versioning applies to this object, version_need() 2404 * will update versym->max_verndx, and it is not 2405 * necessary to call update_gnu_verndx(). 2406 */ 2407 version_need((Verneed *)verneed_cache->c_data->d_buf, 2408 verneed_cache->c_shdr->sh_info, verneed_cache, 2409 &cache[verneed_cache->c_shdr->sh_link], file, versym); 2410 } 2411 } 2412 2413 /* 2414 * Search for and process any symbol tables. 2415 */ 2416 void 2417 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, 2418 VERSYM_STATE *versym, const char *file, uint_t flags) 2419 { 2420 SYMTBL_STATE state; 2421 Cache *_cache; 2422 Word secndx; 2423 2424 for (secndx = 1; secndx < shnum; secndx++) { 2425 Word symcnt; 2426 Shdr *shdr; 2427 2428 _cache = &cache[secndx]; 2429 shdr = _cache->c_shdr; 2430 2431 if ((shdr->sh_type != SHT_SYMTAB) && 2432 (shdr->sh_type != SHT_DYNSYM) && 2433 ((shdr->sh_type != SHT_SUNW_LDYNSYM) || 2434 (osabi != ELFOSABI_SOLARIS))) 2435 continue; 2436 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type)) 2437 continue; 2438 2439 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr, 2440 osabi, versym, file, flags)) 2441 continue; 2442 /* 2443 * Loop through the symbol tables entries. 2444 */ 2445 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2446 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname); 2447 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 2448 2449 for (symcnt = 0; symcnt < state.symn; symcnt++) 2450 output_symbol(&state, symcnt, shdr->sh_info, symcnt, 2451 state.sym + symcnt); 2452 } 2453 } 2454 2455 /* 2456 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections. 2457 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair. 2458 */ 2459 static void 2460 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, 2461 VERSYM_STATE *versym, const char *file, uint_t flags) 2462 { 2463 SYMTBL_STATE ldynsym_state, dynsym_state; 2464 Cache *sortcache, *symcache; 2465 Shdr *sortshdr, *symshdr; 2466 Word sortsecndx, symsecndx; 2467 Word ldynsym_cnt; 2468 Word *ndx; 2469 Word ndxn; 2470 int output_cnt = 0; 2471 Conv_inv_buf_t inv_buf; 2472 2473 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) { 2474 2475 sortcache = &cache[sortsecndx]; 2476 sortshdr = sortcache->c_shdr; 2477 2478 if ((sortshdr->sh_type != SHT_SUNW_symsort) && 2479 (sortshdr->sh_type != SHT_SUNW_tlssort)) 2480 continue; 2481 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx, 2482 sortshdr->sh_type)) 2483 continue; 2484 2485 /* 2486 * If the section references a SUNW_ldynsym, then we 2487 * expect to see the associated .dynsym immediately 2488 * following. If it references a .dynsym, there is no 2489 * SUNW_ldynsym. If it is any other type, then we don't 2490 * know what to do with it. 2491 */ 2492 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) { 2493 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 2494 file, sortcache->c_name, 2495 EC_WORD(sortshdr->sh_link)); 2496 continue; 2497 } 2498 symcache = &cache[sortshdr->sh_link]; 2499 symshdr = symcache->c_shdr; 2500 symsecndx = sortshdr->sh_link; 2501 ldynsym_cnt = 0; 2502 switch (symshdr->sh_type) { 2503 case SHT_SUNW_LDYNSYM: 2504 if (!init_symtbl_state(&ldynsym_state, cache, shnum, 2505 symsecndx, ehdr, osabi, versym, file, flags)) 2506 continue; 2507 ldynsym_cnt = ldynsym_state.symn; 2508 /* 2509 * We know that the dynsym follows immediately 2510 * after the SUNW_ldynsym, and so, should be at 2511 * (sortshdr->sh_link + 1). However, elfdump is a 2512 * diagnostic tool, so we do the full paranoid 2513 * search instead. 2514 */ 2515 for (symsecndx = 1; symsecndx < shnum; symsecndx++) { 2516 symcache = &cache[symsecndx]; 2517 symshdr = symcache->c_shdr; 2518 if (symshdr->sh_type == SHT_DYNSYM) 2519 break; 2520 } 2521 if (symsecndx >= shnum) { /* Dynsym not found! */ 2522 (void) fprintf(stderr, 2523 MSG_INTL(MSG_ERR_NODYNSYM), 2524 file, sortcache->c_name); 2525 continue; 2526 } 2527 /* Fallthrough to process associated dynsym */ 2528 /* FALLTHROUGH */ 2529 case SHT_DYNSYM: 2530 if (!init_symtbl_state(&dynsym_state, cache, shnum, 2531 symsecndx, ehdr, osabi, versym, file, flags)) 2532 continue; 2533 break; 2534 default: 2535 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC), 2536 file, sortcache->c_name, 2537 conv_sec_type(osabi, ehdr->e_machine, 2538 symshdr->sh_type, 0, &inv_buf)); 2539 continue; 2540 } 2541 2542 /* 2543 * Output header 2544 */ 2545 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2546 if (ldynsym_cnt > 0) { 2547 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2), 2548 sortcache->c_name, ldynsym_state.secname, 2549 dynsym_state.secname); 2550 /* 2551 * The data for .SUNW_ldynsym and dynsym sections 2552 * is supposed to be adjacent with SUNW_ldynsym coming 2553 * first. Check, and issue a warning if it isn't so. 2554 */ 2555 if (((ldynsym_state.sym + ldynsym_state.symn) 2556 != dynsym_state.sym) && 2557 ((flags & FLG_CTL_FAKESHDR) == 0)) 2558 (void) fprintf(stderr, 2559 MSG_INTL(MSG_ERR_LDYNNOTADJ), file, 2560 ldynsym_state.secname, 2561 dynsym_state.secname); 2562 } else { 2563 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1), 2564 sortcache->c_name, dynsym_state.secname); 2565 } 2566 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 2567 2568 /* If not first one, insert a line of white space */ 2569 if (output_cnt++ > 0) 2570 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2571 2572 /* 2573 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of 2574 * symbol indices. Iterate over the array entries, 2575 * dispaying the referenced symbols. 2576 */ 2577 ndxn = sortshdr->sh_size / sortshdr->sh_entsize; 2578 ndx = (Word *)sortcache->c_data->d_buf; 2579 for (; ndxn-- > 0; ndx++) { 2580 if (*ndx >= ldynsym_cnt) { 2581 Word sec_ndx = *ndx - ldynsym_cnt; 2582 2583 output_symbol(&dynsym_state, sec_ndx, 0, 2584 *ndx, dynsym_state.sym + sec_ndx); 2585 } else { 2586 output_symbol(&ldynsym_state, *ndx, 0, 2587 *ndx, ldynsym_state.sym + *ndx); 2588 } 2589 } 2590 } 2591 } 2592 2593 /* 2594 * Search for and process any relocation sections. 2595 */ 2596 static void 2597 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 2598 { 2599 Word cnt; 2600 2601 for (cnt = 1; cnt < shnum; cnt++) { 2602 Word type, symnum; 2603 Xword relndx, relnum, relsize; 2604 void *rels; 2605 Sym *syms; 2606 Cache *symsec, *strsec; 2607 Cache *_cache = &cache[cnt]; 2608 Shdr *shdr = _cache->c_shdr; 2609 char *relname = _cache->c_name; 2610 Conv_inv_buf_t inv_buf; 2611 2612 if (((type = shdr->sh_type) != SHT_RELA) && 2613 (type != SHT_REL)) 2614 continue; 2615 if (!match(MATCH_F_ALL, relname, cnt, type)) 2616 continue; 2617 2618 /* 2619 * Decide entry size. 2620 */ 2621 if (((relsize = shdr->sh_entsize) == 0) || 2622 (relsize > shdr->sh_size)) { 2623 if (type == SHT_RELA) 2624 relsize = sizeof (Rela); 2625 else 2626 relsize = sizeof (Rel); 2627 } 2628 2629 /* 2630 * Determine the number of relocations available. 2631 */ 2632 if (shdr->sh_size == 0) { 2633 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 2634 file, relname); 2635 continue; 2636 } 2637 if (_cache->c_data == NULL) 2638 continue; 2639 2640 rels = _cache->c_data->d_buf; 2641 relnum = shdr->sh_size / relsize; 2642 2643 /* 2644 * Get the data buffer for the associated symbol table and 2645 * string table. 2646 */ 2647 if (stringtbl(cache, 1, cnt, shnum, file, 2648 &symnum, &symsec, &strsec) == 0) 2649 continue; 2650 2651 syms = symsec->c_data->d_buf; 2652 2653 /* 2654 * Loop through the relocation entries. 2655 */ 2656 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2657 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name); 2658 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type); 2659 2660 for (relndx = 0; relndx < relnum; relndx++, 2661 rels = (void *)((char *)rels + relsize)) { 2662 Half mach = ehdr->e_machine; 2663 char section[BUFSIZ]; 2664 const char *symname; 2665 Word symndx, reltype; 2666 Rela *rela; 2667 Rel *rel; 2668 2669 /* 2670 * Unravel the relocation and determine the symbol with 2671 * which this relocation is associated. 2672 */ 2673 if (type == SHT_RELA) { 2674 rela = (Rela *)rels; 2675 symndx = ELF_R_SYM(rela->r_info); 2676 reltype = ELF_R_TYPE(rela->r_info, mach); 2677 } else { 2678 rel = (Rel *)rels; 2679 symndx = ELF_R_SYM(rel->r_info); 2680 reltype = ELF_R_TYPE(rel->r_info, mach); 2681 } 2682 2683 symname = relsymname(cache, _cache, strsec, symndx, 2684 symnum, relndx, syms, section, BUFSIZ, file); 2685 2686 /* 2687 * A zero symbol index is only valid for a few 2688 * relocations. 2689 */ 2690 if (symndx == 0) { 2691 int badrel = 0; 2692 2693 if ((mach == EM_SPARC) || 2694 (mach == EM_SPARC32PLUS) || 2695 (mach == EM_SPARCV9)) { 2696 if ((reltype != R_SPARC_NONE) && 2697 (reltype != R_SPARC_REGISTER) && 2698 (reltype != R_SPARC_RELATIVE)) 2699 badrel++; 2700 } else if (mach == EM_386) { 2701 if ((reltype != R_386_NONE) && 2702 (reltype != R_386_RELATIVE)) 2703 badrel++; 2704 } else if (mach == EM_AMD64) { 2705 if ((reltype != R_AMD64_NONE) && 2706 (reltype != R_AMD64_RELATIVE)) 2707 badrel++; 2708 } 2709 2710 if (badrel) { 2711 (void) fprintf(stderr, 2712 MSG_INTL(MSG_ERR_BADREL1), file, 2713 conv_reloc_type(mach, reltype, 2714 0, &inv_buf)); 2715 } 2716 } 2717 2718 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP, 2719 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type, 2720 rels, relname, symname, 0); 2721 } 2722 } 2723 } 2724 2725 2726 /* 2727 * This value controls which test dyn_test() performs. 2728 */ 2729 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t; 2730 2731 /* 2732 * Used by dynamic() to compare the value of a dynamic element against 2733 * the starting address of the section it references. 2734 * 2735 * entry: 2736 * test_type - Specify which dyn item is being tested. 2737 * sh_type - SHT_* type value for required section. 2738 * sec_cache - Cache entry for section, or NULL if the object lacks 2739 * a section of this type. 2740 * dyn - Dyn entry to be tested 2741 * dynsec_cnt - # of dynamic section being examined. The first 2742 * dynamic section is 1, the next is 2, and so on... 2743 * ehdr - ELF header for file 2744 * file - Name of file 2745 */ 2746 static void 2747 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn, 2748 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file) 2749 { 2750 Conv_inv_buf_t buf1, buf2; 2751 2752 /* 2753 * These tests are based around the implicit assumption that 2754 * there is only one dynamic section in an object, and also only 2755 * one of the sections it references. We have therefore gathered 2756 * all of the necessary information to test this in a single pass 2757 * over the section headers, which is very efficient. We are not 2758 * aware of any case where more than one dynamic section would 2759 * be meaningful in an ELF object, so this is a reasonable solution. 2760 * 2761 * To test multiple dynamic sections correctly would be more 2762 * expensive in code and time. We would have to build a data structure 2763 * containing all the dynamic elements. Then, we would use the address 2764 * to locate the section it references and ensure the section is of 2765 * the right type and that the address in the dynamic element is 2766 * to the start of the section. Then, we could check the size and 2767 * entsize values against those same sections. This is O(n^2), and 2768 * also complicated. 2769 * 2770 * In the highly unlikely case that there is more than one dynamic 2771 * section, we only test the first one, and simply allow the values 2772 * of the subsequent one to be displayed unchallenged. 2773 */ 2774 if (dynsec_cnt != 1) 2775 return; 2776 2777 /* 2778 * A DT_ item that references a section address should always find 2779 * the section in the file. 2780 */ 2781 if (sec_cache == NULL) { 2782 const char *name; 2783 2784 /* 2785 * Supply section names instead of section types for 2786 * things that reference progbits so that the error 2787 * message will make more sense. 2788 */ 2789 switch (dyn->d_tag) { 2790 case DT_INIT: 2791 name = MSG_ORIG(MSG_ELF_INIT); 2792 break; 2793 case DT_FINI: 2794 name = MSG_ORIG(MSG_ELF_FINI); 2795 break; 2796 default: 2797 name = conv_sec_type(osabi, ehdr->e_machine, 2798 sh_type, 0, &buf1); 2799 break; 2800 } 2801 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file, 2802 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2803 CONV_FMT_ALT_CF, &buf2)); 2804 return; 2805 } 2806 2807 2808 switch (test_type) { 2809 case DYN_TEST_ADDR: 2810 /* The section address should match the DT_ item value */ 2811 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr) 2812 (void) fprintf(stderr, 2813 MSG_INTL(MSG_ERR_DYNBADADDR), file, 2814 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2815 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val), 2816 sec_cache->c_ndx, sec_cache->c_name, 2817 EC_ADDR(sec_cache->c_shdr->sh_addr)); 2818 break; 2819 2820 case DYN_TEST_SIZE: 2821 /* The section size should match the DT_ item value */ 2822 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size) 2823 (void) fprintf(stderr, 2824 MSG_INTL(MSG_ERR_DYNBADSIZE), file, 2825 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2826 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), 2827 sec_cache->c_ndx, sec_cache->c_name, 2828 EC_XWORD(sec_cache->c_shdr->sh_size)); 2829 break; 2830 2831 case DYN_TEST_ENTSIZE: 2832 /* The sh_entsize value should match the DT_ item value */ 2833 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize) 2834 (void) fprintf(stderr, 2835 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file, 2836 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2837 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), 2838 sec_cache->c_ndx, sec_cache->c_name, 2839 EC_XWORD(sec_cache->c_shdr->sh_entsize)); 2840 break; 2841 } 2842 } 2843 2844 /* 2845 * There are some DT_ entries that have corresponding symbols 2846 * (e.g. DT_INIT and _init). It is expected that these items will 2847 * both have the same value if both are present. This routine 2848 * examines the well known symbol tables for such symbols and 2849 * issues warnings for any that don't match. 2850 * 2851 * entry: 2852 * dyn - Dyn entry to be tested 2853 * symname - Name of symbol that corresponds to dyn 2854 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check 2855 * target_cache - Section the symname section is expected to be 2856 * associated with. 2857 * cache - Cache of all section headers 2858 * shnum - # of sections in cache 2859 * ehdr - ELF header for file 2860 * osabi - OSABI to apply when interpreting object 2861 * file - Name of file 2862 */ 2863 static void 2864 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache, 2865 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache, 2866 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 2867 { 2868 Conv_inv_buf_t buf; 2869 int i; 2870 Sym *sym; 2871 Cache *_cache; 2872 2873 for (i = 0; i < 3; i++) { 2874 switch (i) { 2875 case 0: 2876 _cache = symtab_cache; 2877 break; 2878 case 1: 2879 _cache = dynsym_cache; 2880 break; 2881 case 2: 2882 _cache = ldynsym_cache; 2883 break; 2884 } 2885 2886 if ((_cache != NULL) && 2887 symlookup(symname, cache, shnum, &sym, target_cache, 2888 _cache, file) && (sym->st_value != dyn->d_un.d_val)) 2889 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL), 2890 file, _cache->c_name, conv_dyn_tag(dyn->d_tag, 2891 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf), 2892 symname, EC_ADDR(sym->st_value)); 2893 } 2894 } 2895 2896 /* 2897 * Search for and process a .dynamic section. 2898 */ 2899 static void 2900 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 2901 { 2902 struct { 2903 Cache *symtab; 2904 Cache *dynstr; 2905 Cache *dynsym; 2906 Cache *hash; 2907 Cache *fini; 2908 Cache *fini_array; 2909 Cache *init; 2910 Cache *init_array; 2911 Cache *preinit_array; 2912 Cache *rel; 2913 Cache *rela; 2914 Cache *sunw_cap; 2915 Cache *sunw_capinfo; 2916 Cache *sunw_capchain; 2917 Cache *sunw_ldynsym; 2918 Cache *sunw_move; 2919 Cache *sunw_syminfo; 2920 Cache *sunw_symsort; 2921 Cache *sunw_tlssort; 2922 Cache *sunw_verdef; 2923 Cache *sunw_verneed; 2924 Cache *sunw_versym; 2925 } sec; 2926 Word dynsec_ndx; 2927 Word dynsec_num; 2928 int dynsec_cnt; 2929 Word cnt; 2930 int osabi_solaris = osabi == ELFOSABI_SOLARIS; 2931 2932 /* 2933 * Make a pass over all the sections, gathering section information 2934 * we'll need below. 2935 */ 2936 dynsec_num = 0; 2937 bzero(&sec, sizeof (sec)); 2938 for (cnt = 1; cnt < shnum; cnt++) { 2939 Cache *_cache = &cache[cnt]; 2940 2941 switch (_cache->c_shdr->sh_type) { 2942 case SHT_DYNAMIC: 2943 if (dynsec_num == 0) { 2944 dynsec_ndx = cnt; 2945 2946 /* Does it have a valid string table? */ 2947 (void) stringtbl(cache, 0, cnt, shnum, file, 2948 0, 0, &sec.dynstr); 2949 } 2950 dynsec_num++; 2951 break; 2952 2953 2954 case SHT_PROGBITS: 2955 /* 2956 * We want to detect the .init and .fini sections, 2957 * if present. These are SHT_PROGBITS, so all we 2958 * have to go on is the section name. Normally comparing 2959 * names is a bad idea, but there are some special 2960 * names (i.e. .init/.fini/.interp) that are very 2961 * difficult to use in any other context, and for 2962 * these symbols, we do the heuristic match. 2963 */ 2964 if (strcmp(_cache->c_name, 2965 MSG_ORIG(MSG_ELF_INIT)) == 0) { 2966 if (sec.init == NULL) 2967 sec.init = _cache; 2968 } else if (strcmp(_cache->c_name, 2969 MSG_ORIG(MSG_ELF_FINI)) == 0) { 2970 if (sec.fini == NULL) 2971 sec.fini = _cache; 2972 } 2973 break; 2974 2975 case SHT_REL: 2976 /* 2977 * We want the SHT_REL section with the lowest 2978 * offset. The linker gathers them together, 2979 * and puts the address of the first one 2980 * into the DT_REL dynamic element. 2981 */ 2982 if ((sec.rel == NULL) || 2983 (_cache->c_shdr->sh_offset < 2984 sec.rel->c_shdr->sh_offset)) 2985 sec.rel = _cache; 2986 break; 2987 2988 case SHT_RELA: 2989 /* RELA is handled just like RELA above */ 2990 if ((sec.rela == NULL) || 2991 (_cache->c_shdr->sh_offset < 2992 sec.rela->c_shdr->sh_offset)) 2993 sec.rela = _cache; 2994 break; 2995 2996 /* 2997 * The GRAB macro is used for the simple case in which 2998 * we simply grab the first section of the desired type. 2999 */ 3000 #define GRAB(_sec_type, _sec_field) \ 3001 case _sec_type: \ 3002 if (sec._sec_field == NULL) \ 3003 sec._sec_field = _cache; \ 3004 break 3005 GRAB(SHT_SYMTAB, symtab); 3006 GRAB(SHT_DYNSYM, dynsym); 3007 GRAB(SHT_FINI_ARRAY, fini_array); 3008 GRAB(SHT_HASH, hash); 3009 GRAB(SHT_INIT_ARRAY, init_array); 3010 GRAB(SHT_SUNW_move, sunw_move); 3011 GRAB(SHT_PREINIT_ARRAY, preinit_array); 3012 GRAB(SHT_SUNW_cap, sunw_cap); 3013 GRAB(SHT_SUNW_capinfo, sunw_capinfo); 3014 GRAB(SHT_SUNW_capchain, sunw_capchain); 3015 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym); 3016 GRAB(SHT_SUNW_syminfo, sunw_syminfo); 3017 GRAB(SHT_SUNW_symsort, sunw_symsort); 3018 GRAB(SHT_SUNW_tlssort, sunw_tlssort); 3019 GRAB(SHT_SUNW_verdef, sunw_verdef); 3020 GRAB(SHT_SUNW_verneed, sunw_verneed); 3021 GRAB(SHT_SUNW_versym, sunw_versym); 3022 #undef GRAB 3023 } 3024 } 3025 3026 /* 3027 * If no dynamic section, return immediately. If more than one 3028 * dynamic section, then something odd is going on and an error 3029 * is in order, but then continue on and display them all. 3030 */ 3031 if (dynsec_num == 0) 3032 return; 3033 if (dynsec_num > 1) 3034 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN), 3035 file, EC_WORD(dynsec_num)); 3036 3037 3038 dynsec_cnt = 0; 3039 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num); 3040 cnt++) { 3041 Dyn *dyn; 3042 ulong_t numdyn; 3043 int ndx, end_ndx; 3044 Cache *_cache = &cache[cnt], *strsec; 3045 Shdr *shdr = _cache->c_shdr; 3046 int dumped = 0; 3047 3048 if (shdr->sh_type != SHT_DYNAMIC) 3049 continue; 3050 dynsec_cnt++; 3051 3052 /* 3053 * Verify the associated string table section. 3054 */ 3055 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0) 3056 continue; 3057 3058 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 3059 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3060 file, _cache->c_name); 3061 continue; 3062 } 3063 if (_cache->c_data == NULL) 3064 continue; 3065 3066 numdyn = shdr->sh_size / shdr->sh_entsize; 3067 dyn = (Dyn *)_cache->c_data->d_buf; 3068 3069 /* 3070 * We expect the REL/RELA entries to reference the reloc 3071 * section with the lowest address. However, this is 3072 * not true for dumped objects. Detect if this object has 3073 * been dumped so that we can skip the reloc address test 3074 * in that case. 3075 */ 3076 for (ndx = 0; ndx < numdyn; dyn++, ndx++) { 3077 if (dyn->d_tag == DT_FLAGS_1) { 3078 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0; 3079 break; 3080 } 3081 } 3082 dyn = (Dyn *)_cache->c_data->d_buf; 3083 3084 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3085 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name); 3086 3087 Elf_dyn_title(0); 3088 3089 for (ndx = 0; ndx < numdyn; dyn++, ndx++) { 3090 union { 3091 Conv_inv_buf_t inv; 3092 Conv_dyn_flag_buf_t flag; 3093 Conv_dyn_flag1_buf_t flag1; 3094 Conv_dyn_posflag1_buf_t posflag1; 3095 Conv_dyn_feature1_buf_t feature1; 3096 } c_buf; 3097 const char *name = NULL; 3098 3099 /* 3100 * Print the information numerically, and if possible 3101 * as a string. If a string is available, name is 3102 * set to reference it. 3103 * 3104 * Also, take this opportunity to sanity check 3105 * the values of DT elements. In the code above, 3106 * we gathered information on sections that are 3107 * referenced by the dynamic section. Here, we 3108 * compare the attributes of those sections to 3109 * the DT_ items that reference them and report 3110 * on inconsistencies. 3111 * 3112 * Things not currently tested that could be improved 3113 * in later revisions include: 3114 * - We don't check PLT or GOT related items 3115 * - We don't handle computing the lengths of 3116 * relocation arrays. To handle this 3117 * requires examining data that spans 3118 * across sections, in a contiguous span 3119 * within a single segment. 3120 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be 3121 * verified without parsing the sections. 3122 * - We don't handle DT_SUNW_SYMSZ, which would 3123 * be the sum of the lengths of .dynsym and 3124 * .SUNW_ldynsym 3125 * - DT_SUNW_STRPAD can't be verified other than 3126 * to check that it's not larger than 3127 * the string table. 3128 * - Some items come in "all or none" clusters 3129 * that give an address, element size, 3130 * and data length in bytes. We don't 3131 * verify that there are no missing items 3132 * in such groups. 3133 */ 3134 switch (dyn->d_tag) { 3135 case DT_NULL: 3136 /* 3137 * Special case: DT_NULLs can come in groups 3138 * that we prefer to reduce to a single line. 3139 */ 3140 end_ndx = ndx; 3141 while ((end_ndx < (numdyn - 1)) && 3142 ((dyn + 1)->d_tag == DT_NULL)) { 3143 dyn++; 3144 end_ndx++; 3145 } 3146 Elf_dyn_null_entry(0, dyn, ndx, end_ndx); 3147 ndx = end_ndx; 3148 continue; 3149 3150 /* 3151 * String items all reference the dynstr. The string() 3152 * function does the necessary sanity checking. 3153 */ 3154 case DT_NEEDED: 3155 case DT_SONAME: 3156 case DT_FILTER: 3157 case DT_AUXILIARY: 3158 case DT_CONFIG: 3159 case DT_RPATH: 3160 case DT_RUNPATH: 3161 case DT_USED: 3162 case DT_DEPAUDIT: 3163 case DT_AUDIT: 3164 name = string(_cache, ndx, strsec, 3165 file, dyn->d_un.d_ptr); 3166 break; 3167 3168 case DT_SUNW_AUXILIARY: 3169 case DT_SUNW_FILTER: 3170 if (osabi_solaris) 3171 name = string(_cache, ndx, strsec, 3172 file, dyn->d_un.d_ptr); 3173 break; 3174 3175 case DT_FLAGS: 3176 name = conv_dyn_flag(dyn->d_un.d_val, 3177 0, &c_buf.flag); 3178 break; 3179 case DT_FLAGS_1: 3180 name = conv_dyn_flag1(dyn->d_un.d_val, 0, 3181 &c_buf.flag1); 3182 break; 3183 case DT_POSFLAG_1: 3184 name = conv_dyn_posflag1(dyn->d_un.d_val, 0, 3185 &c_buf.posflag1); 3186 break; 3187 case DT_FEATURE_1: 3188 name = conv_dyn_feature1(dyn->d_un.d_val, 0, 3189 &c_buf.feature1); 3190 break; 3191 case DT_DEPRECATED_SPARC_REGISTER: 3192 name = MSG_INTL(MSG_STR_DEPRECATED); 3193 break; 3194 3195 case DT_SUNW_LDMACH: 3196 if (!osabi_solaris) 3197 break; 3198 name = conv_ehdr_mach((Half)dyn->d_un.d_val, 3199 0, &c_buf.inv); 3200 break; 3201 3202 /* 3203 * Cases below this point are strictly sanity checking, 3204 * and do not generate a name string. The TEST_ macros 3205 * are used to hide the boiler plate arguments neeeded 3206 * by dyn_test(). 3207 */ 3208 #define TEST_ADDR(_sh_type, _sec_field) \ 3209 dyn_test(DYN_TEST_ADDR, _sh_type, \ 3210 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3211 osabi, file) 3212 #define TEST_SIZE(_sh_type, _sec_field) \ 3213 dyn_test(DYN_TEST_SIZE, _sh_type, \ 3214 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3215 osabi, file) 3216 #define TEST_ENTSIZE(_sh_type, _sec_field) \ 3217 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \ 3218 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3219 osabi, file) 3220 3221 case DT_FINI: 3222 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI), 3223 sec.symtab, sec.dynsym, sec.sunw_ldynsym, 3224 sec.fini, cache, shnum, ehdr, osabi, file); 3225 TEST_ADDR(SHT_PROGBITS, fini); 3226 break; 3227 3228 case DT_FINI_ARRAY: 3229 TEST_ADDR(SHT_FINI_ARRAY, fini_array); 3230 break; 3231 3232 case DT_FINI_ARRAYSZ: 3233 TEST_SIZE(SHT_FINI_ARRAY, fini_array); 3234 break; 3235 3236 case DT_HASH: 3237 TEST_ADDR(SHT_HASH, hash); 3238 break; 3239 3240 case DT_INIT: 3241 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT), 3242 sec.symtab, sec.dynsym, sec.sunw_ldynsym, 3243 sec.init, cache, shnum, ehdr, osabi, file); 3244 TEST_ADDR(SHT_PROGBITS, init); 3245 break; 3246 3247 case DT_INIT_ARRAY: 3248 TEST_ADDR(SHT_INIT_ARRAY, init_array); 3249 break; 3250 3251 case DT_INIT_ARRAYSZ: 3252 TEST_SIZE(SHT_INIT_ARRAY, init_array); 3253 break; 3254 3255 case DT_MOVEENT: 3256 TEST_ENTSIZE(SHT_SUNW_move, sunw_move); 3257 break; 3258 3259 case DT_MOVESZ: 3260 TEST_SIZE(SHT_SUNW_move, sunw_move); 3261 break; 3262 3263 case DT_MOVETAB: 3264 TEST_ADDR(SHT_SUNW_move, sunw_move); 3265 break; 3266 3267 case DT_PREINIT_ARRAY: 3268 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array); 3269 break; 3270 3271 case DT_PREINIT_ARRAYSZ: 3272 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array); 3273 break; 3274 3275 case DT_REL: 3276 if (!dumped) 3277 TEST_ADDR(SHT_REL, rel); 3278 break; 3279 3280 case DT_RELENT: 3281 TEST_ENTSIZE(SHT_REL, rel); 3282 break; 3283 3284 case DT_RELA: 3285 if (!dumped) 3286 TEST_ADDR(SHT_RELA, rela); 3287 break; 3288 3289 case DT_RELAENT: 3290 TEST_ENTSIZE(SHT_RELA, rela); 3291 break; 3292 3293 case DT_STRTAB: 3294 TEST_ADDR(SHT_STRTAB, dynstr); 3295 break; 3296 3297 case DT_STRSZ: 3298 TEST_SIZE(SHT_STRTAB, dynstr); 3299 break; 3300 3301 case DT_SUNW_CAP: 3302 if (osabi_solaris) 3303 TEST_ADDR(SHT_SUNW_cap, sunw_cap); 3304 break; 3305 3306 case DT_SUNW_CAPINFO: 3307 if (osabi_solaris) 3308 TEST_ADDR(SHT_SUNW_capinfo, 3309 sunw_capinfo); 3310 break; 3311 3312 case DT_SUNW_CAPCHAIN: 3313 if (osabi_solaris) 3314 TEST_ADDR(SHT_SUNW_capchain, 3315 sunw_capchain); 3316 break; 3317 3318 case DT_SUNW_SYMTAB: 3319 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym); 3320 break; 3321 3322 case DT_SYMENT: 3323 TEST_ENTSIZE(SHT_DYNSYM, dynsym); 3324 break; 3325 3326 case DT_SYMINENT: 3327 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo); 3328 break; 3329 3330 case DT_SYMINFO: 3331 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo); 3332 break; 3333 3334 case DT_SYMINSZ: 3335 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo); 3336 break; 3337 3338 case DT_SYMTAB: 3339 TEST_ADDR(SHT_DYNSYM, dynsym); 3340 break; 3341 3342 case DT_SUNW_SORTENT: 3343 /* 3344 * This entry is related to both the symsort and 3345 * tlssort sections. 3346 */ 3347 if (osabi_solaris) { 3348 int test_tls = 3349 (sec.sunw_tlssort != NULL); 3350 int test_sym = 3351 (sec.sunw_symsort != NULL) || 3352 !test_tls; 3353 if (test_sym) 3354 TEST_ENTSIZE(SHT_SUNW_symsort, 3355 sunw_symsort); 3356 if (test_tls) 3357 TEST_ENTSIZE(SHT_SUNW_tlssort, 3358 sunw_tlssort); 3359 } 3360 break; 3361 3362 3363 case DT_SUNW_SYMSORT: 3364 if (osabi_solaris) 3365 TEST_ADDR(SHT_SUNW_symsort, 3366 sunw_symsort); 3367 break; 3368 3369 case DT_SUNW_SYMSORTSZ: 3370 if (osabi_solaris) 3371 TEST_SIZE(SHT_SUNW_symsort, 3372 sunw_symsort); 3373 break; 3374 3375 case DT_SUNW_TLSSORT: 3376 if (osabi_solaris) 3377 TEST_ADDR(SHT_SUNW_tlssort, 3378 sunw_tlssort); 3379 break; 3380 3381 case DT_SUNW_TLSSORTSZ: 3382 if (osabi_solaris) 3383 TEST_SIZE(SHT_SUNW_tlssort, 3384 sunw_tlssort); 3385 break; 3386 3387 case DT_VERDEF: 3388 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef); 3389 break; 3390 3391 case DT_VERNEED: 3392 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed); 3393 break; 3394 3395 case DT_VERSYM: 3396 TEST_ADDR(SHT_SUNW_versym, sunw_versym); 3397 break; 3398 #undef TEST_ADDR 3399 #undef TEST_SIZE 3400 #undef TEST_ENTSIZE 3401 } 3402 3403 if (name == NULL) 3404 name = MSG_ORIG(MSG_STR_EMPTY); 3405 Elf_dyn_entry(0, dyn, ndx, name, 3406 osabi, ehdr->e_machine); 3407 } 3408 } 3409 } 3410 3411 /* 3412 * Search for and process a MOVE section. 3413 */ 3414 static void 3415 move(Cache *cache, Word shnum, const char *file, uint_t flags) 3416 { 3417 Word cnt; 3418 const char *fmt = NULL; 3419 3420 for (cnt = 1; cnt < shnum; cnt++) { 3421 Word movenum, symnum, ndx; 3422 Sym *syms; 3423 Cache *_cache = &cache[cnt]; 3424 Shdr *shdr = _cache->c_shdr; 3425 Cache *symsec, *strsec; 3426 Move *move; 3427 3428 if (shdr->sh_type != SHT_SUNW_move) 3429 continue; 3430 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 3431 continue; 3432 3433 /* 3434 * Determine the move data and number. 3435 */ 3436 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 3437 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3438 file, _cache->c_name); 3439 continue; 3440 } 3441 if (_cache->c_data == NULL) 3442 continue; 3443 3444 move = (Move *)_cache->c_data->d_buf; 3445 movenum = shdr->sh_size / shdr->sh_entsize; 3446 3447 /* 3448 * Get the data buffer for the associated symbol table and 3449 * string table. 3450 */ 3451 if (stringtbl(cache, 1, cnt, shnum, file, 3452 &symnum, &symsec, &strsec) == 0) 3453 return; 3454 3455 syms = (Sym *)symsec->c_data->d_buf; 3456 3457 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3458 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name); 3459 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE)); 3460 3461 if (fmt == NULL) 3462 fmt = MSG_INTL(MSG_MOVE_ENTRY); 3463 3464 for (ndx = 0; ndx < movenum; move++, ndx++) { 3465 const char *symname; 3466 char index[MAXNDXSIZE], section[BUFSIZ]; 3467 Word symndx, shndx; 3468 Sym *sym; 3469 3470 /* 3471 * Check for null entries 3472 */ 3473 if ((move->m_info == 0) && (move->m_value == 0) && 3474 (move->m_poffset == 0) && (move->m_repeat == 0) && 3475 (move->m_stride == 0)) { 3476 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY), 3477 EC_XWORD(move->m_poffset), 0, 0, 0, 3478 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY)); 3479 continue; 3480 } 3481 if (((symndx = ELF_M_SYM(move->m_info)) == 0) || 3482 (symndx >= symnum)) { 3483 (void) fprintf(stderr, 3484 MSG_INTL(MSG_ERR_BADMINFO), file, 3485 _cache->c_name, EC_XWORD(move->m_info)); 3486 3487 (void) snprintf(index, MAXNDXSIZE, 3488 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); 3489 dbg_print(0, fmt, index, 3490 EC_XWORD(move->m_poffset), 3491 ELF_M_SIZE(move->m_info), move->m_repeat, 3492 move->m_stride, move->m_value, 3493 MSG_INTL(MSG_STR_UNKNOWN)); 3494 continue; 3495 } 3496 3497 symname = relsymname(cache, _cache, strsec, 3498 symndx, symnum, ndx, syms, section, BUFSIZ, file); 3499 sym = (Sym *)(syms + symndx); 3500 3501 /* 3502 * Additional sanity check. 3503 */ 3504 shndx = sym->st_shndx; 3505 if (!((shndx == SHN_COMMON) || 3506 (((shndx >= 1) && (shndx <= shnum)) && 3507 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) { 3508 (void) fprintf(stderr, 3509 MSG_INTL(MSG_ERR_BADSYM2), file, 3510 _cache->c_name, EC_WORD(symndx), 3511 demangle(symname, flags)); 3512 } 3513 3514 (void) snprintf(index, MAXNDXSIZE, 3515 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); 3516 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset), 3517 ELF_M_SIZE(move->m_info), move->m_repeat, 3518 move->m_stride, move->m_value, 3519 demangle(symname, flags)); 3520 } 3521 } 3522 } 3523 3524 /* 3525 * parse_note_t is used to track the state used by parse_note_entry() 3526 * between calls, and also to return the results of each call. 3527 */ 3528 typedef struct { 3529 /* pns_ fields track progress through the data */ 3530 const char *pns_file; /* File name */ 3531 Cache *pns_cache; /* Note section cache entry */ 3532 size_t pns_size; /* # unprocessed data bytes */ 3533 Word *pns_data; /* # to next unused data byte */ 3534 3535 /* pn_ fields return the results for a single call */ 3536 Word pn_namesz; /* Value of note namesz field */ 3537 Word pn_descsz; /* Value of note descsz field */ 3538 Word pn_type; /* Value of note type field */ 3539 const char *pn_name; /* if (namesz > 0) ptr to name bytes */ 3540 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */ 3541 } parse_note_t; 3542 3543 /* 3544 * Extract the various sub-parts of a note entry, and advance the 3545 * data pointer past it. 3546 * 3547 * entry: 3548 * The state pns_ fields contain current values for the Note section 3549 * 3550 * exit: 3551 * On success, True (1) is returned, the state pns_ fields have been 3552 * advanced to point at the start of the next entry, and the information 3553 * for the recovered note entry is found in the state pn_ fields. 3554 * 3555 * On failure, False (0) is returned. The values contained in state 3556 * are undefined. 3557 */ 3558 static int 3559 parse_note_entry(parse_note_t *state) 3560 { 3561 size_t pad, noteoff; 3562 3563 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size; 3564 /* 3565 * Make sure we can at least reference the 3 initial entries 3566 * (4-byte words) of the note information block. 3567 */ 3568 if (state->pns_size >= (sizeof (Word) * 3)) { 3569 state->pns_size -= (sizeof (Word) * 3); 3570 } else { 3571 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ), 3572 state->pns_file, state->pns_cache->c_name, 3573 EC_WORD(noteoff)); 3574 return (0); 3575 } 3576 3577 /* 3578 * Make sure any specified name string can be referenced. 3579 */ 3580 if ((state->pn_namesz = *state->pns_data++) != 0) { 3581 if (state->pns_size >= state->pn_namesz) { 3582 state->pns_size -= state->pn_namesz; 3583 } else { 3584 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ), 3585 state->pns_file, state->pns_cache->c_name, 3586 EC_WORD(noteoff), EC_WORD(state->pn_namesz)); 3587 return (0); 3588 } 3589 } 3590 3591 /* 3592 * Make sure any specified descriptor can be referenced. 3593 */ 3594 if ((state->pn_descsz = *state->pns_data++) != 0) { 3595 /* 3596 * If namesz isn't a 4-byte multiple, account for any 3597 * padding that must exist before the descriptor. 3598 */ 3599 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) { 3600 pad = sizeof (Word) - pad; 3601 state->pns_size -= pad; 3602 } 3603 if (state->pns_size >= state->pn_descsz) { 3604 state->pns_size -= state->pn_descsz; 3605 } else { 3606 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ), 3607 state->pns_file, state->pns_cache->c_name, 3608 EC_WORD(noteoff), EC_WORD(state->pn_namesz)); 3609 return (0); 3610 } 3611 } 3612 3613 state->pn_type = *state->pns_data++; 3614 3615 /* Name */ 3616 if (state->pn_namesz) { 3617 state->pn_name = (char *)state->pns_data; 3618 pad = (state->pn_namesz + 3619 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1); 3620 /* LINTED */ 3621 state->pns_data = (Word *)(state->pn_name + pad); 3622 } 3623 3624 /* 3625 * If multiple information blocks exist within a .note section 3626 * account for any padding that must exist before the next 3627 * information block. 3628 */ 3629 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) { 3630 pad = sizeof (Word) - pad; 3631 if (state->pns_size > pad) 3632 state->pns_size -= pad; 3633 } 3634 3635 /* Data */ 3636 if (state->pn_descsz) { 3637 state->pn_desc = (const char *)state->pns_data; 3638 /* LINTED */ 3639 state->pns_data = (Word *)(state->pn_desc + 3640 state->pn_descsz + pad); 3641 } 3642 3643 return (1); 3644 } 3645 3646 /* 3647 * Callback function for use with conv_str_to_c_literal() below. 3648 */ 3649 /*ARGSUSED2*/ 3650 static void 3651 c_literal_cb(const void *ptr, size_t size, void *uvalue) 3652 { 3653 (void) fwrite(ptr, size, 1, stdout); 3654 } 3655 3656 /* 3657 * Traverse a note section analyzing each note information block. 3658 * The data buffers size is used to validate references before they are made, 3659 * and is decremented as each element is processed. 3660 */ 3661 void 3662 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file) 3663 { 3664 int cnt = 0; 3665 int is_corenote; 3666 int do_swap; 3667 Conv_inv_buf_t inv_buf; 3668 parse_note_t pnstate; 3669 3670 pnstate.pns_file = file; 3671 pnstate.pns_cache = cache; 3672 pnstate.pns_size = size; 3673 pnstate.pns_data = data; 3674 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA]; 3675 3676 /* 3677 * Print out a single `note' information block. 3678 */ 3679 while (pnstate.pns_size > 0) { 3680 3681 if (parse_note_entry(&pnstate) == 0) 3682 return; 3683 3684 /* 3685 * Is this a Solaris core note? Such notes all have 3686 * the name "CORE". 3687 */ 3688 is_corenote = (ehdr->e_type == ET_CORE) && 3689 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) && 3690 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name, 3691 MSG_STR_CORE_SIZE + 1) == 0); 3692 3693 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3694 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt)); 3695 cnt++; 3696 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), 3697 EC_WORD(pnstate.pn_namesz)); 3698 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), 3699 EC_WORD(pnstate.pn_descsz)); 3700 3701 if (is_corenote) 3702 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR), 3703 conv_cnote_type(pnstate.pn_type, 0, &inv_buf)); 3704 else 3705 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), 3706 EC_WORD(pnstate.pn_type)); 3707 if (pnstate.pn_namesz) { 3708 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME)); 3709 /* 3710 * The name string can contain embedded 'null' 3711 * bytes and/or unprintable characters. Also, 3712 * the final NULL is documented in the ELF ABI 3713 * as being included in the namesz. So, display 3714 * the name using C literal string notation, and 3715 * include the terminating NULL in the output. 3716 * We don't show surrounding double quotes, as 3717 * that implies the termination that we are showing 3718 * explicitly. 3719 */ 3720 (void) fwrite(MSG_ORIG(MSG_STR_8SP), 3721 MSG_STR_8SP_SIZE, 1, stdout); 3722 conv_str_to_c_literal(pnstate.pn_name, 3723 pnstate.pn_namesz, c_literal_cb, NULL); 3724 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3725 } 3726 3727 if (pnstate.pn_descsz) { 3728 int hexdump = 1; 3729 3730 /* 3731 * If this is a core note, let the corenote() 3732 * function handle it. 3733 */ 3734 if (is_corenote) { 3735 /* We only issue the bad arch error once */ 3736 static int badnote_done = 0; 3737 corenote_ret_t corenote_ret; 3738 3739 corenote_ret = corenote(ehdr->e_machine, 3740 do_swap, pnstate.pn_type, pnstate.pn_desc, 3741 pnstate.pn_descsz); 3742 switch (corenote_ret) { 3743 case CORENOTE_R_OK_DUMP: 3744 hexdump = 1; 3745 break; 3746 case CORENOTE_R_OK: 3747 hexdump = 0; 3748 break; 3749 case CORENOTE_R_BADDATA: 3750 (void) fprintf(stderr, 3751 MSG_INTL(MSG_NOTE_BADCOREDATA), 3752 file); 3753 break; 3754 case CORENOTE_R_BADARCH: 3755 if (badnote_done) 3756 break; 3757 (void) fprintf(stderr, 3758 MSG_INTL(MSG_NOTE_BADCOREARCH), 3759 file, 3760 conv_ehdr_mach(ehdr->e_machine, 3761 0, &inv_buf)); 3762 break; 3763 case CORENOTE_R_BADTYPE: 3764 (void) fprintf(stderr, 3765 MSG_INTL(MSG_NOTE_BADCORETYPE), 3766 file, 3767 EC_WORD(pnstate.pn_type)); 3768 break; 3769 3770 } 3771 } 3772 3773 /* 3774 * The default thing when we don't understand 3775 * the note data is to display it as hex bytes. 3776 */ 3777 if (hexdump) { 3778 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC)); 3779 dump_hex_bytes(pnstate.pn_desc, 3780 pnstate.pn_descsz, 8, 4, 4); 3781 } 3782 } 3783 } 3784 } 3785 3786 /* 3787 * Search for and process .note sections. 3788 * 3789 * Returns the number of note sections seen. 3790 */ 3791 static Word 3792 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 3793 { 3794 Word cnt, note_cnt = 0; 3795 3796 /* 3797 * Otherwise look for any .note sections. 3798 */ 3799 for (cnt = 1; cnt < shnum; cnt++) { 3800 Cache *_cache = &cache[cnt]; 3801 Shdr *shdr = _cache->c_shdr; 3802 3803 if (shdr->sh_type != SHT_NOTE) 3804 continue; 3805 note_cnt++; 3806 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 3807 continue; 3808 3809 /* 3810 * As these sections are often hand rolled, make sure they're 3811 * properly aligned before proceeding, and issue an error 3812 * as necessary. 3813 * 3814 * Note that we will continue on to display the note even 3815 * if it has bad alignment. We can do this safely, because 3816 * libelf knows the alignment required for SHT_NOTE, and 3817 * takes steps to deliver a properly aligned buffer to us 3818 * even if the actual file is misaligned. 3819 */ 3820 if (shdr->sh_offset & (sizeof (Word) - 1)) 3821 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN), 3822 file, _cache->c_name); 3823 3824 if (_cache->c_data == NULL) 3825 continue; 3826 3827 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3828 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name); 3829 note_entry(_cache, (Word *)_cache->c_data->d_buf, 3830 /* LINTED */ 3831 (Word)_cache->c_data->d_size, ehdr, file); 3832 } 3833 3834 return (note_cnt); 3835 } 3836 3837 /* 3838 * The Linux Standard Base defines a special note named .note.ABI-tag 3839 * that is used to maintain Linux ABI information. Presence of this section 3840 * is a strong indication that the object should be considered to be 3841 * ELFOSABI_LINUX. 3842 * 3843 * This function returns True (1) if such a note is seen, and False (0) 3844 * otherwise. 3845 */ 3846 static int 3847 has_linux_abi_note(Cache *cache, Word shnum, const char *file) 3848 { 3849 Word cnt; 3850 3851 for (cnt = 1; cnt < shnum; cnt++) { 3852 parse_note_t pnstate; 3853 Cache *_cache = &cache[cnt]; 3854 Shdr *shdr = _cache->c_shdr; 3855 3856 /* 3857 * Section must be SHT_NOTE, must have the name 3858 * .note.ABI-tag, and must have data. 3859 */ 3860 if ((shdr->sh_type != SHT_NOTE) || 3861 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG), 3862 _cache->c_name) != 0) || (_cache->c_data == NULL)) 3863 continue; 3864 3865 pnstate.pns_file = file; 3866 pnstate.pns_cache = _cache; 3867 pnstate.pns_size = _cache->c_data->d_size; 3868 pnstate.pns_data = (Word *)_cache->c_data->d_buf; 3869 3870 while (pnstate.pns_size > 0) { 3871 Word *w; 3872 3873 if (parse_note_entry(&pnstate) == 0) 3874 break; 3875 3876 /* 3877 * The type must be 1, and the name must be "GNU". 3878 * The descsz must be at least 16 bytes. 3879 */ 3880 if ((pnstate.pn_type != 1) || 3881 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) || 3882 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name, 3883 MSG_STR_CORE_SIZE + 1) != 0) || 3884 (pnstate.pn_descsz < 16)) 3885 continue; 3886 3887 /* 3888 * desc contains 4 32-bit fields. Field 0 must be 0, 3889 * indicating Linux. The second, third, and fourth 3890 * fields represent the earliest Linux kernel 3891 * version compatible with this object. 3892 */ 3893 /*LINTED*/ 3894 w = (Word *) pnstate.pn_desc; 3895 if (*w == 0) 3896 return (1); 3897 } 3898 } 3899 3900 return (0); 3901 } 3902 3903 /* 3904 * Determine an individual hash entry. This may be the initial hash entry, 3905 * or an associated chain entry. 3906 */ 3907 static void 3908 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx, 3909 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts, 3910 uint_t flags, int chain) 3911 { 3912 Sym *sym; 3913 const char *symname, *str; 3914 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE]; 3915 ulong_t nbkt, nhash; 3916 3917 if (symndx > symn) { 3918 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file, 3919 EC_WORD(symndx), EC_WORD(hashndx)); 3920 symname = MSG_INTL(MSG_STR_UNKNOWN); 3921 } else { 3922 sym = (Sym *)(syms + symndx); 3923 symname = string(refsec, symndx, strsec, file, sym->st_name); 3924 } 3925 3926 if (chain == 0) { 3927 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), 3928 hashndx); 3929 str = (const char *)_bucket; 3930 } else 3931 str = MSG_ORIG(MSG_STR_EMPTY); 3932 3933 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2), 3934 EC_WORD(symndx)); 3935 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx, 3936 demangle(symname, flags)); 3937 3938 /* 3939 * Determine if this string is in the correct bucket. 3940 */ 3941 nhash = elf_hash(symname); 3942 nbkt = nhash % bkts; 3943 3944 if (nbkt != hashndx) { 3945 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file, 3946 hsecname, symname, EC_WORD(hashndx), nbkt); 3947 } 3948 } 3949 3950 #define MAXCOUNT 500 3951 3952 static void 3953 hash(Cache *cache, Word shnum, const char *file, uint_t flags) 3954 { 3955 static int count[MAXCOUNT]; 3956 Word cnt; 3957 ulong_t ndx, bkts; 3958 char number[MAXNDXSIZE]; 3959 3960 for (cnt = 1; cnt < shnum; cnt++) { 3961 uint_t *hash, *chain; 3962 Cache *_cache = &cache[cnt]; 3963 Shdr *sshdr, *hshdr = _cache->c_shdr; 3964 char *ssecname, *hsecname = _cache->c_name; 3965 Sym *syms; 3966 Word symn; 3967 3968 if (hshdr->sh_type != SHT_HASH) 3969 continue; 3970 3971 /* 3972 * Determine the hash table data and size. 3973 */ 3974 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) { 3975 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3976 file, hsecname); 3977 continue; 3978 } 3979 if (_cache->c_data == NULL) 3980 continue; 3981 3982 hash = (uint_t *)_cache->c_data->d_buf; 3983 bkts = *hash; 3984 chain = hash + 2 + bkts; 3985 hash += 2; 3986 3987 /* 3988 * Get the data buffer for the associated symbol table. 3989 */ 3990 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) { 3991 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 3992 file, hsecname, EC_WORD(hshdr->sh_link)); 3993 continue; 3994 } 3995 3996 _cache = &cache[hshdr->sh_link]; 3997 ssecname = _cache->c_name; 3998 3999 if (_cache->c_data == NULL) 4000 continue; 4001 4002 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) { 4003 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4004 file, ssecname); 4005 continue; 4006 } 4007 4008 sshdr = _cache->c_shdr; 4009 /* LINTED */ 4010 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize); 4011 4012 /* 4013 * Get the associated string table section. 4014 */ 4015 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) { 4016 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 4017 file, ssecname, EC_WORD(sshdr->sh_link)); 4018 continue; 4019 } 4020 4021 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4022 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname); 4023 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO)); 4024 4025 /* 4026 * Loop through the hash buckets, printing the appropriate 4027 * symbols. 4028 */ 4029 for (ndx = 0; ndx < bkts; ndx++, hash++) { 4030 Word _ndx, _cnt; 4031 4032 if (*hash == 0) { 4033 count[0]++; 4034 continue; 4035 } 4036 4037 hash_entry(_cache, &cache[sshdr->sh_link], hsecname, 4038 ndx, *hash, symn, syms, file, bkts, flags, 0); 4039 4040 /* 4041 * Determine if any other symbols are chained to this 4042 * bucket. 4043 */ 4044 _ndx = chain[*hash]; 4045 _cnt = 1; 4046 while (_ndx) { 4047 hash_entry(_cache, &cache[sshdr->sh_link], 4048 hsecname, ndx, _ndx, symn, syms, file, 4049 bkts, flags, 1); 4050 _ndx = chain[_ndx]; 4051 _cnt++; 4052 } 4053 4054 if (_cnt >= MAXCOUNT) { 4055 (void) fprintf(stderr, 4056 MSG_INTL(MSG_HASH_OVERFLW), file, 4057 _cache->c_name, EC_WORD(ndx), 4058 EC_WORD(_cnt)); 4059 } else 4060 count[_cnt]++; 4061 } 4062 break; 4063 } 4064 4065 /* 4066 * Print out the count information. 4067 */ 4068 bkts = cnt = 0; 4069 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4070 4071 for (ndx = 0; ndx < MAXCOUNT; ndx++) { 4072 Word _cnt; 4073 4074 if ((_cnt = count[ndx]) == 0) 4075 continue; 4076 4077 (void) snprintf(number, MAXNDXSIZE, 4078 MSG_ORIG(MSG_FMT_INTEGER), _cnt); 4079 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number, 4080 EC_WORD(ndx)); 4081 bkts += _cnt; 4082 cnt += (Word)(ndx * _cnt); 4083 } 4084 if (cnt) { 4085 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), 4086 bkts); 4087 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number, 4088 EC_WORD(cnt)); 4089 } 4090 } 4091 4092 static void 4093 group(Cache *cache, Word shnum, const char *file, uint_t flags) 4094 { 4095 Word scnt; 4096 4097 for (scnt = 1; scnt < shnum; scnt++) { 4098 Cache *_cache = &cache[scnt]; 4099 Shdr *shdr = _cache->c_shdr; 4100 Word *grpdata, gcnt, grpcnt, symnum, unknown; 4101 Cache *symsec, *strsec; 4102 Sym *syms, *sym; 4103 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10]; 4104 const char *grpnam; 4105 4106 if (shdr->sh_type != SHT_GROUP) 4107 continue; 4108 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type)) 4109 continue; 4110 if ((_cache->c_data == NULL) || 4111 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL)) 4112 continue; 4113 grpcnt = shdr->sh_size / sizeof (Word); 4114 4115 /* 4116 * Get the data buffer for the associated symbol table and 4117 * string table. 4118 */ 4119 if (stringtbl(cache, 1, scnt, shnum, file, 4120 &symnum, &symsec, &strsec) == 0) 4121 return; 4122 4123 syms = symsec->c_data->d_buf; 4124 4125 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4126 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name); 4127 dbg_print(0, MSG_INTL(MSG_GRP_TITLE)); 4128 4129 /* 4130 * The first element of the group defines the group. The 4131 * associated symbol is defined by the sh_link field. 4132 */ 4133 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) { 4134 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), 4135 file, _cache->c_name, EC_WORD(shdr->sh_info)); 4136 return; 4137 } 4138 4139 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT)); 4140 if (grpdata[0] & GRP_COMDAT) { 4141 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT)); 4142 } 4143 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) { 4144 size_t len = strlen(flgstrbuf); 4145 4146 (void) snprintf(&flgstrbuf[len], 4147 (MSG_GRP_COMDAT_SIZE + 10 - len), 4148 MSG_ORIG(MSG_GRP_UNKNOWN), unknown); 4149 } 4150 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT)); 4151 sym = (Sym *)(syms + shdr->sh_info); 4152 4153 /* 4154 * The GNU assembler can use section symbols as the signature 4155 * symbol as described by this comment in the gold linker 4156 * (found via google): 4157 * 4158 * It seems that some versions of gas will create a 4159 * section group associated with a section symbol, and 4160 * then fail to give a name to the section symbol. In 4161 * such a case, use the name of the section. 4162 * 4163 * In order to support such objects, we do the same. 4164 */ 4165 grpnam = string(_cache, 0, strsec, file, sym->st_name); 4166 if (((sym->st_name == 0) || (*grpnam == '\0')) && 4167 (ELF_ST_TYPE(sym->st_info) == STT_SECTION)) 4168 grpnam = cache[sym->st_shndx].c_name; 4169 4170 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf, 4171 demangle(grpnam, flags)); 4172 4173 for (gcnt = 1; gcnt < grpcnt; gcnt++) { 4174 char index[MAXNDXSIZE]; 4175 const char *name; 4176 4177 (void) snprintf(index, MAXNDXSIZE, 4178 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt)); 4179 4180 if (grpdata[gcnt] >= shnum) 4181 name = MSG_INTL(MSG_GRP_INVALSCN); 4182 else 4183 name = cache[grpdata[gcnt]].c_name; 4184 4185 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name, 4186 EC_XWORD(grpdata[gcnt])); 4187 } 4188 } 4189 } 4190 4191 static void 4192 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 4193 { 4194 Cache *gotcache = NULL, *symtab = NULL; 4195 Addr gotbgn, gotend; 4196 Shdr *gotshdr; 4197 Word cnt, gotents, gotndx; 4198 size_t gentsize; 4199 Got_info *gottable; 4200 char *gotdata; 4201 Sym *gotsym; 4202 Xword gotsymaddr; 4203 uint_t sys_encoding; 4204 4205 /* 4206 * First, find the got. 4207 */ 4208 for (cnt = 1; cnt < shnum; cnt++) { 4209 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), 4210 MSG_ELF_GOT_SIZE) == 0) { 4211 gotcache = &cache[cnt]; 4212 break; 4213 } 4214 } 4215 if (gotcache == NULL) 4216 return; 4217 4218 /* 4219 * A got section within a relocatable object is suspicious. 4220 */ 4221 if (ehdr->e_type == ET_REL) { 4222 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file, 4223 gotcache->c_name); 4224 } 4225 4226 gotshdr = gotcache->c_shdr; 4227 if (gotshdr->sh_size == 0) { 4228 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4229 file, gotcache->c_name); 4230 return; 4231 } 4232 4233 gotbgn = gotshdr->sh_addr; 4234 gotend = gotbgn + gotshdr->sh_size; 4235 4236 /* 4237 * Some architectures don't properly set the sh_entsize for the GOT 4238 * table. If it's not set, default to a size of a pointer. 4239 */ 4240 if ((gentsize = gotshdr->sh_entsize) == 0) 4241 gentsize = sizeof (Xword); 4242 4243 if (gotcache->c_data == NULL) 4244 return; 4245 4246 /* LINTED */ 4247 gotents = (Word)(gotshdr->sh_size / gentsize); 4248 gotdata = gotcache->c_data->d_buf; 4249 4250 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) { 4251 int err = errno; 4252 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, 4253 strerror(err)); 4254 return; 4255 } 4256 4257 /* 4258 * Now we scan through all the sections looking for any relocations 4259 * that may be against the GOT. Since these may not be isolated to a 4260 * .rel[a].got section we check them all. 4261 * While scanning sections save the symbol table entry (a symtab 4262 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_. 4263 */ 4264 for (cnt = 1; cnt < shnum; cnt++) { 4265 Word type, symnum; 4266 Xword relndx, relnum, relsize; 4267 void *rels; 4268 Sym *syms; 4269 Cache *symsec, *strsec; 4270 Cache *_cache = &cache[cnt]; 4271 Shdr *shdr; 4272 4273 shdr = _cache->c_shdr; 4274 type = shdr->sh_type; 4275 4276 if ((symtab == 0) && (type == SHT_DYNSYM)) { 4277 symtab = _cache; 4278 continue; 4279 } 4280 if (type == SHT_SYMTAB) { 4281 symtab = _cache; 4282 continue; 4283 } 4284 if ((type != SHT_RELA) && (type != SHT_REL)) 4285 continue; 4286 4287 /* 4288 * Decide entry size. 4289 */ 4290 if (((relsize = shdr->sh_entsize) == 0) || 4291 (relsize > shdr->sh_size)) { 4292 if (type == SHT_RELA) 4293 relsize = sizeof (Rela); 4294 else 4295 relsize = sizeof (Rel); 4296 } 4297 4298 /* 4299 * Determine the number of relocations available. 4300 */ 4301 if (shdr->sh_size == 0) { 4302 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4303 file, _cache->c_name); 4304 continue; 4305 } 4306 if (_cache->c_data == NULL) 4307 continue; 4308 4309 rels = _cache->c_data->d_buf; 4310 relnum = shdr->sh_size / relsize; 4311 4312 /* 4313 * Get the data buffer for the associated symbol table and 4314 * string table. 4315 */ 4316 if (stringtbl(cache, 1, cnt, shnum, file, 4317 &symnum, &symsec, &strsec) == 0) 4318 continue; 4319 4320 syms = symsec->c_data->d_buf; 4321 4322 /* 4323 * Loop through the relocation entries. 4324 */ 4325 for (relndx = 0; relndx < relnum; relndx++, 4326 rels = (void *)((char *)rels + relsize)) { 4327 char section[BUFSIZ]; 4328 Addr offset; 4329 Got_info *gip; 4330 Word symndx, reltype; 4331 Rela *rela; 4332 Rel *rel; 4333 4334 /* 4335 * Unravel the relocation. 4336 */ 4337 if (type == SHT_RELA) { 4338 rela = (Rela *)rels; 4339 symndx = ELF_R_SYM(rela->r_info); 4340 reltype = ELF_R_TYPE(rela->r_info, 4341 ehdr->e_machine); 4342 offset = rela->r_offset; 4343 } else { 4344 rel = (Rel *)rels; 4345 symndx = ELF_R_SYM(rel->r_info); 4346 reltype = ELF_R_TYPE(rel->r_info, 4347 ehdr->e_machine); 4348 offset = rel->r_offset; 4349 } 4350 4351 /* 4352 * Only pay attention to relocations against the GOT. 4353 */ 4354 if ((offset < gotbgn) || (offset >= gotend)) 4355 continue; 4356 4357 /* LINTED */ 4358 gotndx = (Word)((offset - gotbgn) / 4359 gotshdr->sh_entsize); 4360 gip = &gottable[gotndx]; 4361 4362 if (gip->g_reltype != 0) { 4363 (void) fprintf(stderr, 4364 MSG_INTL(MSG_GOT_MULTIPLE), file, 4365 EC_WORD(gotndx), EC_ADDR(offset)); 4366 continue; 4367 } 4368 4369 if (symndx) 4370 gip->g_symname = relsymname(cache, _cache, 4371 strsec, symndx, symnum, relndx, syms, 4372 section, BUFSIZ, file); 4373 gip->g_reltype = reltype; 4374 gip->g_rel = rels; 4375 } 4376 } 4377 4378 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL, 4379 symtab, file)) 4380 gotsymaddr = gotsym->st_value; 4381 else 4382 gotsymaddr = gotbgn; 4383 4384 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4385 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name); 4386 Elf_got_title(0); 4387 4388 sys_encoding = _elf_sys_encoding(); 4389 for (gotndx = 0; gotndx < gotents; gotndx++) { 4390 Got_info *gip; 4391 Sword gindex; 4392 Addr gaddr; 4393 Xword gotentry; 4394 4395 gip = &gottable[gotndx]; 4396 4397 gaddr = gotbgn + (gotndx * gentsize); 4398 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize; 4399 4400 if (gentsize == sizeof (Word)) 4401 /* LINTED */ 4402 gotentry = (Xword)(*((Word *)(gotdata) + gotndx)); 4403 else 4404 /* LINTED */ 4405 gotentry = *((Xword *)(gotdata) + gotndx); 4406 4407 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine, 4408 ehdr->e_ident[EI_DATA], sys_encoding, 4409 gip->g_reltype, gip->g_rel, gip->g_symname); 4410 } 4411 free(gottable); 4412 } 4413 4414 void 4415 checksum(Elf *elf) 4416 { 4417 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4418 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf)); 4419 } 4420 4421 /* 4422 * This variable is used by regular() to communicate the address of 4423 * the section header cache to sort_shdr_ndx_arr(). Unfortunately, 4424 * the qsort() interface does not include a userdata argument by which 4425 * such arbitrary data can be passed, so we are stuck using global data. 4426 */ 4427 static Cache *sort_shdr_ndx_arr_cache; 4428 4429 4430 /* 4431 * Used with qsort() to sort the section indices so that they can be 4432 * used to access the section headers in order of increasing data offset. 4433 * 4434 * entry: 4435 * sort_shdr_ndx_arr_cache - Contains address of 4436 * section header cache. 4437 * v1, v2 - Point at elements of sort_shdr_bits array to be compared. 4438 * 4439 * exit: 4440 * Returns -1 (less than), 0 (equal) or 1 (greater than). 4441 */ 4442 static int 4443 sort_shdr_ndx_arr(const void *v1, const void *v2) 4444 { 4445 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1); 4446 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2); 4447 4448 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset) 4449 return (-1); 4450 4451 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset) 4452 return (1); 4453 4454 return (0); 4455 } 4456 4457 4458 static int 4459 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx, 4460 size_t shnum, Cache **cache_ret, Word flags) 4461 { 4462 Elf_Scn *scn; 4463 Elf_Data *data; 4464 size_t ndx; 4465 Shdr *nameshdr; 4466 char *names = NULL; 4467 Cache *cache, *_cache; 4468 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt; 4469 4470 4471 /* 4472 * Obtain the .shstrtab data buffer to provide the required section 4473 * name strings. 4474 */ 4475 if (shstrndx == SHN_UNDEF) { 4476 /* 4477 * It is rare, but legal, for an object to lack a 4478 * header string table section. 4479 */ 4480 names = NULL; 4481 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file); 4482 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) { 4483 failure(file, MSG_ORIG(MSG_ELF_GETSCN)); 4484 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR), 4485 EC_XWORD(shstrndx)); 4486 4487 } else if ((data = elf_getdata(scn, NULL)) == NULL) { 4488 failure(file, MSG_ORIG(MSG_ELF_GETDATA)); 4489 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA), 4490 EC_XWORD(shstrndx)); 4491 4492 } else if ((nameshdr = elf_getshdr(scn)) == NULL) { 4493 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4494 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 4495 EC_WORD(elf_ndxscn(scn))); 4496 4497 } else if ((names = data->d_buf) == NULL) 4498 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file); 4499 4500 /* 4501 * Allocate a cache to maintain a descriptor for each section. 4502 */ 4503 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) { 4504 int err = errno; 4505 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4506 file, strerror(err)); 4507 return (0); 4508 } 4509 4510 *cache = cache_init; 4511 _cache = cache; 4512 _cache++; 4513 4514 /* 4515 * Allocate an array that will hold the section index for 4516 * each section that has data in the ELF file: 4517 * 4518 * - Is not a NOBITS section 4519 * - Data has non-zero length 4520 * 4521 * Note that shnum is an upper bound on the size required. It 4522 * is likely that we won't use a few of these array elements. 4523 * Allocating a modest amount of extra memory in this case means 4524 * that we can avoid an extra loop to count the number of needed 4525 * items, and can fill this array immediately in the first loop 4526 * below. 4527 */ 4528 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) { 4529 int err = errno; 4530 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4531 file, strerror(err)); 4532 return (0); 4533 } 4534 shdr_ndx_arr_cnt = 0; 4535 4536 /* 4537 * Traverse the sections of the file. This gathering of data is 4538 * carried out in two passes. First, the section headers are captured 4539 * and the section header names are evaluated. A verification pass is 4540 * then carried out over the section information. Files have been 4541 * known to exhibit overlapping (and hence erroneous) section header 4542 * information. 4543 * 4544 * Finally, the data for each section is obtained. This processing is 4545 * carried out after section verification because should any section 4546 * header overlap occur, and a file needs translating (ie. xlate'ing 4547 * information from a non-native architecture file), then the process 4548 * of translation can corrupt the section header information. Of 4549 * course, if there is any section overlap, the data related to the 4550 * sections is going to be compromised. However, it is the translation 4551 * of this data that has caused problems with elfdump()'s ability to 4552 * extract the data. 4553 */ 4554 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn); 4555 ndx++, _cache++) { 4556 char scnndxnm[100]; 4557 4558 _cache->c_ndx = ndx; 4559 _cache->c_scn = scn; 4560 4561 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) { 4562 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4563 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 4564 EC_WORD(elf_ndxscn(scn))); 4565 } 4566 4567 /* 4568 * If this section has data in the file, include it in 4569 * the array of sections to check for address overlap. 4570 */ 4571 if ((_cache->c_shdr->sh_size != 0) && 4572 (_cache->c_shdr->sh_type != SHT_NOBITS)) 4573 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx; 4574 4575 /* 4576 * If a shstrtab exists, assign the section name. 4577 */ 4578 if (names && _cache->c_shdr) { 4579 if (_cache->c_shdr->sh_name && 4580 /* LINTED */ 4581 (nameshdr->sh_size > _cache->c_shdr->sh_name)) { 4582 const char *symname; 4583 char *secname; 4584 4585 secname = names + _cache->c_shdr->sh_name; 4586 4587 /* 4588 * A SUN naming convention employs a "%" within 4589 * a section name to indicate a section/symbol 4590 * name. This originated from the compilers 4591 * -xF option, that places functions into their 4592 * own sections. This convention (which has no 4593 * formal standard) has also been followed for 4594 * COMDAT sections. To demangle the symbol 4595 * name, the name must be separated from the 4596 * section name. 4597 */ 4598 if (((flags & FLG_CTL_DEMANGLE) == 0) || 4599 ((symname = strchr(secname, '%')) == NULL)) 4600 _cache->c_name = secname; 4601 else { 4602 size_t secsz = ++symname - secname; 4603 size_t strsz; 4604 4605 symname = demangle(symname, flags); 4606 strsz = secsz + strlen(symname) + 1; 4607 4608 if ((_cache->c_name = 4609 malloc(strsz)) == NULL) { 4610 int err = errno; 4611 (void) fprintf(stderr, 4612 MSG_INTL(MSG_ERR_MALLOC), 4613 file, strerror(err)); 4614 return (0); 4615 } 4616 (void) snprintf(_cache->c_name, strsz, 4617 MSG_ORIG(MSG_FMT_SECSYM), 4618 EC_WORD(secsz), secname, symname); 4619 } 4620 4621 continue; 4622 } 4623 4624 /* 4625 * Generate an error if the section name index is zero 4626 * or exceeds the shstrtab data. Fall through to 4627 * fabricate a section name. 4628 */ 4629 if ((_cache->c_shdr->sh_name == 0) || 4630 /* LINTED */ 4631 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) { 4632 (void) fprintf(stderr, 4633 MSG_INTL(MSG_ERR_BADSHNAME), file, 4634 EC_WORD(ndx), 4635 EC_XWORD(_cache->c_shdr->sh_name)); 4636 } 4637 } 4638 4639 /* 4640 * If there exists no shstrtab data, or a section header has no 4641 * name (an invalid index of 0), then compose a name for the 4642 * section. 4643 */ 4644 (void) snprintf(scnndxnm, sizeof (scnndxnm), 4645 MSG_INTL(MSG_FMT_SCNNDX), ndx); 4646 4647 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) { 4648 int err = errno; 4649 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4650 file, strerror(err)); 4651 return (0); 4652 } 4653 (void) strcpy(_cache->c_name, scnndxnm); 4654 } 4655 4656 /* 4657 * Having collected all the sections, validate their address range. 4658 * Cases have existed where the section information has been invalid. 4659 * This can lead to all sorts of other, hard to diagnose errors, as 4660 * each section is processed individually (ie. with elf_getdata()). 4661 * Here, we carry out some address comparisons to catch a family of 4662 * overlapping memory issues we have observed (likely, there are others 4663 * that we have yet to discover). 4664 * 4665 * Note, should any memory overlap occur, obtaining any additional 4666 * data from the file is questionable. However, it might still be 4667 * possible to inspect the ELF header, Programs headers, or individual 4668 * sections, so rather than bailing on an error condition, continue 4669 * processing to see if any data can be salvaged. 4670 */ 4671 if (shdr_ndx_arr_cnt > 1) { 4672 sort_shdr_ndx_arr_cache = cache; 4673 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt, 4674 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr); 4675 } 4676 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) { 4677 Cache *_cache = cache + shdr_ndx_arr[ndx]; 4678 Shdr *shdr = _cache->c_shdr; 4679 Off bgn1, bgn = shdr->sh_offset; 4680 Off end1, end = shdr->sh_offset + shdr->sh_size; 4681 size_t ndx1; 4682 4683 /* 4684 * Check the section against all following ones, reporting 4685 * any overlaps. Since we've sorted the sections by offset, 4686 * we can stop after the first comparison that fails. There 4687 * are no overlaps in a properly formed ELF file, in which 4688 * case this algorithm runs in O(n) time. This will degenerate 4689 * to O(n^2) for a completely broken file. Such a file is 4690 * (1) highly unlikely, and (2) unusable, so it is reasonable 4691 * for the analysis to take longer. 4692 */ 4693 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) { 4694 Cache *_cache1 = cache + shdr_ndx_arr[ndx1]; 4695 Shdr *shdr1 = _cache1->c_shdr; 4696 4697 bgn1 = shdr1->sh_offset; 4698 end1 = shdr1->sh_offset + shdr1->sh_size; 4699 4700 if (((bgn1 <= bgn) && (end1 > bgn)) || 4701 ((bgn1 < end) && (end1 >= end))) { 4702 (void) fprintf(stderr, 4703 MSG_INTL(MSG_ERR_SECMEMOVER), file, 4704 EC_WORD(elf_ndxscn(_cache->c_scn)), 4705 _cache->c_name, EC_OFF(bgn), EC_OFF(end), 4706 EC_WORD(elf_ndxscn(_cache1->c_scn)), 4707 _cache1->c_name, EC_OFF(bgn1), 4708 EC_OFF(end1)); 4709 } else { /* No overlap, so can stop */ 4710 break; 4711 } 4712 } 4713 4714 /* 4715 * In addition to checking for sections overlapping 4716 * each other (done above), we should also make sure 4717 * the section doesn't overlap the section header array. 4718 */ 4719 bgn1 = ehdr->e_shoff; 4720 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum); 4721 4722 if (((bgn1 <= bgn) && (end1 > bgn)) || 4723 ((bgn1 < end) && (end1 >= end))) { 4724 (void) fprintf(stderr, 4725 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1), 4726 EC_OFF(end1), 4727 EC_WORD(elf_ndxscn(_cache->c_scn)), 4728 _cache->c_name, EC_OFF(bgn), EC_OFF(end)); 4729 } 4730 } 4731 4732 /* 4733 * Obtain the data for each section. 4734 */ 4735 for (ndx = 1; ndx < shnum; ndx++) { 4736 Cache *_cache = &cache[ndx]; 4737 Elf_Scn *scn = _cache->c_scn; 4738 4739 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) { 4740 failure(file, MSG_ORIG(MSG_ELF_GETDATA)); 4741 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA), 4742 EC_WORD(elf_ndxscn(scn))); 4743 } 4744 4745 /* 4746 * If a string table, verify that it has NULL first and 4747 * final bytes. 4748 */ 4749 if ((_cache->c_shdr->sh_type == SHT_STRTAB) && 4750 (_cache->c_data->d_buf != NULL) && 4751 (_cache->c_data->d_size > 0)) { 4752 const char *s = _cache->c_data->d_buf; 4753 4754 if ((*s != '\0') || 4755 (*(s + _cache->c_data->d_size - 1) != '\0')) 4756 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR), 4757 file, _cache->c_name); 4758 } 4759 } 4760 4761 return (1); 4762 } 4763 4764 4765 4766 /* 4767 * Generate a cache of section headers and related information 4768 * for use by the rest of elfdump. If requested (or the file 4769 * contains no section headers), we generate a fake set of 4770 * headers from the information accessible from the program headers. 4771 * Otherwise, we use the real section headers contained in the file. 4772 */ 4773 static int 4774 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache, 4775 size_t shstrndx, size_t *shnum, uint_t *flags) 4776 { 4777 /* 4778 * If there are no section headers, then resort to synthesizing 4779 * section headers from the program headers. This is normally 4780 * only done by explicit request, but in this case there's no 4781 * reason not to go ahead, since the alternative is simply to quit. 4782 */ 4783 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) { 4784 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file); 4785 *flags |= FLG_CTL_FAKESHDR; 4786 } 4787 4788 if (*flags & FLG_CTL_FAKESHDR) { 4789 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0) 4790 return (0); 4791 } else { 4792 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum, 4793 cache, *flags) == 0) 4794 return (0); 4795 } 4796 4797 return (1); 4798 } 4799 4800 int 4801 regular(const char *file, int fd, Elf *elf, uint_t flags, 4802 const char *wname, int wfd, uchar_t osabi) 4803 { 4804 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED; 4805 Elf_Scn *scn; 4806 Ehdr *ehdr; 4807 size_t ndx, shstrndx, shnum, phnum; 4808 Shdr *shdr; 4809 Cache *cache; 4810 VERSYM_STATE versym = { 0 }; 4811 int ret = 0; 4812 int addr_align; 4813 4814 if ((ehdr = elf_getehdr(elf)) == NULL) { 4815 failure(file, MSG_ORIG(MSG_ELF_GETEHDR)); 4816 return (ret); 4817 } 4818 4819 if (elf_getshdrnum(elf, &shnum) == -1) { 4820 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM)); 4821 return (ret); 4822 } 4823 4824 if (elf_getshdrstrndx(elf, &shstrndx) == -1) { 4825 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX)); 4826 return (ret); 4827 } 4828 4829 if (elf_getphdrnum(elf, &phnum) == -1) { 4830 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM)); 4831 return (ret); 4832 } 4833 /* 4834 * If the user requested section headers derived from the 4835 * program headers (-P option) and this file doesn't have 4836 * any program headers (i.e. ET_REL), then we can't do it. 4837 */ 4838 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) { 4839 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file); 4840 return (ret); 4841 } 4842 4843 4844 if ((scn = elf_getscn(elf, 0)) != NULL) { 4845 if ((shdr = elf_getshdr(scn)) == NULL) { 4846 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4847 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0); 4848 return (ret); 4849 } 4850 } else 4851 shdr = NULL; 4852 4853 /* 4854 * Print the elf header. 4855 */ 4856 if (flags & FLG_SHOW_EHDR) 4857 Elf_ehdr(0, ehdr, shdr); 4858 4859 /* 4860 * If the section headers or program headers have inadequate 4861 * alignment for the class of object, print a warning. libelf 4862 * can handle such files, but programs that use them can crash 4863 * when they dereference unaligned items. 4864 * 4865 * Note that the AMD64 ABI, although it is a 64-bit architecture, 4866 * allows access to data types smaller than 128-bits to be on 4867 * word alignment. 4868 */ 4869 if (ehdr->e_machine == EM_AMD64) 4870 addr_align = sizeof (Word); 4871 else 4872 addr_align = sizeof (Addr); 4873 4874 if (ehdr->e_phoff & (addr_align - 1)) 4875 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file); 4876 if (ehdr->e_shoff & (addr_align - 1)) 4877 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file); 4878 4879 4880 /* 4881 * Determine the Operating System ABI (osabi) we will use to 4882 * interpret the object. 4883 */ 4884 if (flags & FLG_CTL_OSABI) { 4885 /* 4886 * If the user explicitly specifies '-O none', we need 4887 * to display a completely generic view of the file. 4888 * However, libconv is written to assume that ELFOSABI_NONE 4889 * is equivalent to ELFOSABI_SOLARIS. To get the desired 4890 * effect, we use an osabi that libconv has no knowledge of. 4891 */ 4892 if (osabi == ELFOSABI_NONE) 4893 osabi = ELFOSABI_UNKNOWN4; 4894 } else { 4895 /* Determine osabi from file */ 4896 osabi = ehdr->e_ident[EI_OSABI]; 4897 if (osabi == ELFOSABI_NONE) { 4898 /* 4899 * Chicken/Egg scenario: 4900 * 4901 * Ideally, we wait to create the section header cache 4902 * until after the program headers are printed. If we 4903 * only output program headers, we can skip building 4904 * the cache entirely. 4905 * 4906 * Proper interpretation of program headers requires 4907 * the osabi, which is supposed to be in the ELF header. 4908 * However, many systems (Solaris and Linux included) 4909 * have a history of setting the osabi to the generic 4910 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS 4911 * in such cases, but would like to check the object 4912 * to see if it has a Linux .note.ABI-tag section, 4913 * which implies ELFOSABI_LINUX. This requires a 4914 * section header cache. 4915 * 4916 * To break the cycle, we create section headers now 4917 * if osabi is ELFOSABI_NONE, and later otherwise. 4918 * If it succeeds, we use them, if not, we defer 4919 * exiting until after the program headers are out. 4920 */ 4921 if (create_cache(file, fd, elf, ehdr, &cache, 4922 shstrndx, &shnum, &flags) == 0) { 4923 cache_state = CACHE_FAIL; 4924 } else { 4925 cache_state = CACHE_OK; 4926 if (has_linux_abi_note(cache, shnum, file)) { 4927 Conv_inv_buf_t ibuf1, ibuf2; 4928 4929 (void) fprintf(stderr, 4930 MSG_INTL(MSG_INFO_LINUXOSABI), file, 4931 conv_ehdr_osabi(osabi, 0, &ibuf1), 4932 conv_ehdr_osabi(ELFOSABI_LINUX, 4933 0, &ibuf2)); 4934 osabi = ELFOSABI_LINUX; 4935 } 4936 } 4937 } 4938 /* 4939 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS. 4940 * Mapping NONE to SOLARIS simplifies the required test. 4941 */ 4942 if (osabi == ELFOSABI_NONE) 4943 osabi = ELFOSABI_SOLARIS; 4944 } 4945 4946 /* 4947 * Print the program headers. 4948 */ 4949 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) { 4950 Phdr *phdr; 4951 4952 if ((phdr = elf_getphdr(elf)) == NULL) { 4953 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 4954 return (ret); 4955 } 4956 4957 for (ndx = 0; ndx < phnum; phdr++, ndx++) { 4958 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE, 4959 NULL, ndx, phdr->p_type)) 4960 continue; 4961 4962 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4963 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx)); 4964 Elf_phdr(0, osabi, ehdr->e_machine, phdr); 4965 } 4966 } 4967 4968 /* 4969 * If we have flag bits set that explicitly require a show or calc 4970 * operation, but none of them require the section headers, then 4971 * we are done and can return now. 4972 */ 4973 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) && 4974 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0)) 4975 return (ret); 4976 4977 /* 4978 * Everything from this point on requires section headers. 4979 * If we have no section headers, there is no reason to continue. 4980 * 4981 * If we tried above to create the section header cache and failed, 4982 * it is time to exit. Otherwise, create it if needed. 4983 */ 4984 switch (cache_state) { 4985 case CACHE_NEEDED: 4986 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx, 4987 &shnum, &flags) == 0) 4988 return (ret); 4989 break; 4990 case CACHE_OK: 4991 break; 4992 case CACHE_FAIL: 4993 return (ret); 4994 } 4995 if (shnum <= 1) 4996 goto done; 4997 4998 /* 4999 * If -w was specified, find and write out the section(s) data. 5000 */ 5001 if (wfd) { 5002 for (ndx = 1; ndx < shnum; ndx++) { 5003 Cache *_cache = &cache[ndx]; 5004 5005 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, 5006 ndx, _cache->c_shdr->sh_type) && 5007 _cache->c_data && _cache->c_data->d_buf) { 5008 if (write(wfd, _cache->c_data->d_buf, 5009 _cache->c_data->d_size) != 5010 _cache->c_data->d_size) { 5011 int err = errno; 5012 (void) fprintf(stderr, 5013 MSG_INTL(MSG_ERR_WRITE), wname, 5014 strerror(err)); 5015 /* 5016 * Return an exit status of 1, because 5017 * the failure is not related to the 5018 * ELF file, but by system resources. 5019 */ 5020 ret = 1; 5021 goto done; 5022 } 5023 } 5024 } 5025 } 5026 5027 /* 5028 * If we have no flag bits set that explicitly require a show or calc 5029 * operation, but match options (-I, -N, -T) were used, then run 5030 * through the section headers and see if we can't deduce show flags 5031 * from the match options given. 5032 * 5033 * We don't do this if -w was specified, because (-I, -N, -T) used 5034 * with -w in lieu of some other option is supposed to be quiet. 5035 */ 5036 if ((wfd == 0) && (flags & FLG_CTL_MATCH) && 5037 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) { 5038 for (ndx = 1; ndx < shnum; ndx++) { 5039 Cache *_cache = &cache[ndx]; 5040 5041 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, 5042 ndx, _cache->c_shdr->sh_type)) 5043 continue; 5044 5045 switch (_cache->c_shdr->sh_type) { 5046 case SHT_PROGBITS: 5047 /* 5048 * Heuristic time: It is usually bad form 5049 * to assume the meaning/format of a PROGBITS 5050 * section based on its name. However, there 5051 * are ABI mandated exceptions. Check for 5052 * these special names. 5053 */ 5054 5055 /* The ELF ABI specifies .interp and .got */ 5056 if (strcmp(_cache->c_name, 5057 MSG_ORIG(MSG_ELF_INTERP)) == 0) { 5058 flags |= FLG_SHOW_INTERP; 5059 break; 5060 } 5061 if (strcmp(_cache->c_name, 5062 MSG_ORIG(MSG_ELF_GOT)) == 0) { 5063 flags |= FLG_SHOW_GOT; 5064 break; 5065 } 5066 /* 5067 * The GNU compilers, and amd64 ABI, define 5068 * .eh_frame and .eh_frame_hdr. The Sun 5069 * C++ ABI defines .exception_ranges. 5070 */ 5071 if ((strncmp(_cache->c_name, 5072 MSG_ORIG(MSG_SCN_FRM), 5073 MSG_SCN_FRM_SIZE) == 0) || 5074 (strncmp(_cache->c_name, 5075 MSG_ORIG(MSG_SCN_EXRANGE), 5076 MSG_SCN_EXRANGE_SIZE) == 0)) { 5077 flags |= FLG_SHOW_UNWIND; 5078 break; 5079 } 5080 break; 5081 5082 case SHT_SYMTAB: 5083 case SHT_DYNSYM: 5084 case SHT_SUNW_LDYNSYM: 5085 case SHT_SUNW_versym: 5086 case SHT_SYMTAB_SHNDX: 5087 flags |= FLG_SHOW_SYMBOLS; 5088 break; 5089 5090 case SHT_RELA: 5091 case SHT_REL: 5092 flags |= FLG_SHOW_RELOC; 5093 break; 5094 5095 case SHT_HASH: 5096 flags |= FLG_SHOW_HASH; 5097 break; 5098 5099 case SHT_DYNAMIC: 5100 flags |= FLG_SHOW_DYNAMIC; 5101 break; 5102 5103 case SHT_NOTE: 5104 flags |= FLG_SHOW_NOTE; 5105 break; 5106 5107 case SHT_GROUP: 5108 flags |= FLG_SHOW_GROUP; 5109 break; 5110 5111 case SHT_SUNW_symsort: 5112 case SHT_SUNW_tlssort: 5113 flags |= FLG_SHOW_SORT; 5114 break; 5115 5116 case SHT_SUNW_cap: 5117 flags |= FLG_SHOW_CAP; 5118 break; 5119 5120 case SHT_SUNW_move: 5121 flags |= FLG_SHOW_MOVE; 5122 break; 5123 5124 case SHT_SUNW_syminfo: 5125 flags |= FLG_SHOW_SYMINFO; 5126 break; 5127 5128 case SHT_SUNW_verdef: 5129 case SHT_SUNW_verneed: 5130 flags |= FLG_SHOW_VERSIONS; 5131 break; 5132 5133 case SHT_AMD64_UNWIND: 5134 flags |= FLG_SHOW_UNWIND; 5135 break; 5136 } 5137 } 5138 } 5139 5140 5141 if (flags & FLG_SHOW_SHDR) 5142 sections(file, cache, shnum, ehdr, osabi); 5143 5144 if (flags & FLG_SHOW_INTERP) 5145 interp(file, cache, shnum, phnum, elf); 5146 5147 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)) 5148 versions(cache, shnum, file, flags, &versym); 5149 5150 if (flags & FLG_SHOW_SYMBOLS) 5151 symbols(cache, shnum, ehdr, osabi, &versym, file, flags); 5152 5153 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS)) 5154 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags); 5155 5156 if (flags & FLG_SHOW_HASH) 5157 hash(cache, shnum, file, flags); 5158 5159 if (flags & FLG_SHOW_GOT) 5160 got(cache, shnum, ehdr, file); 5161 5162 if (flags & FLG_SHOW_GROUP) 5163 group(cache, shnum, file, flags); 5164 5165 if (flags & FLG_SHOW_SYMINFO) 5166 syminfo(cache, shnum, ehdr, osabi, file); 5167 5168 if (flags & FLG_SHOW_RELOC) 5169 reloc(cache, shnum, ehdr, file); 5170 5171 if (flags & FLG_SHOW_DYNAMIC) 5172 dynamic(cache, shnum, ehdr, osabi, file); 5173 5174 if (flags & FLG_SHOW_NOTE) { 5175 Word note_cnt; 5176 size_t note_shnum; 5177 Cache *note_cache; 5178 5179 note_cnt = note(cache, shnum, ehdr, file); 5180 5181 /* 5182 * Solaris core files have section headers, but these 5183 * headers do not include SHT_NOTE sections that reference 5184 * the core note sections. This means that note() won't 5185 * find the core notes. Fake section headers (-P option) 5186 * recover these sections, but it is inconvenient to require 5187 * users to specify -P in this situation. If the following 5188 * are all true: 5189 * 5190 * - No note sections were found 5191 * - This is a core file 5192 * - We are not already using fake section headers 5193 * 5194 * then we will automatically generate fake section headers 5195 * and then process them in a second call to note(). 5196 */ 5197 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) && 5198 !(flags & FLG_CTL_FAKESHDR) && 5199 (fake_shdr_cache(file, fd, elf, ehdr, 5200 ¬e_cache, ¬e_shnum) != 0)) { 5201 (void) note(note_cache, note_shnum, ehdr, file); 5202 fake_shdr_cache_free(note_cache, note_shnum); 5203 } 5204 } 5205 5206 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS)) 5207 move(cache, shnum, file, flags); 5208 5209 if (flags & FLG_CALC_CHECKSUM) 5210 checksum(elf); 5211 5212 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS)) 5213 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags); 5214 5215 if ((flags & FLG_SHOW_UNWIND) && 5216 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))) 5217 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags); 5218 5219 5220 /* Release the memory used to cache section headers */ 5221 done: 5222 if (flags & FLG_CTL_FAKESHDR) 5223 fake_shdr_cache_free(cache, shnum); 5224 else 5225 free(cache); 5226 5227 return (ret); 5228 }