1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Given several files containing CTF data, merge and uniquify that data into 30 * a single CTF section in an output file. 31 * 32 * Merges can proceed independently. As such, we perform the merges in parallel 33 * using a worker thread model. A given glob of CTF data (either all of the CTF 34 * data from a single input file, or the result of one or more merges) can only 35 * be involved in a single merge at any given time, so the process decreases in 36 * parallelism, especially towards the end, as more and more files are 37 * consolidated, finally resulting in a single merge of two large CTF graphs. 38 * Unfortunately, the last merge is also the slowest, as the two graphs being 39 * merged are each the product of merges of half of the input files. 40 * 41 * The algorithm consists of two phases, described in detail below. The first 42 * phase entails the merging of CTF data in groups of eight. The second phase 43 * takes the results of Phase I, and merges them two at a time. This disparity 44 * is due to an observation that the merge time increases at least quadratically 45 * with the size of the CTF data being merged. As such, merges of CTF graphs 46 * newly read from input files are much faster than merges of CTF graphs that 47 * are themselves the results of prior merges. 48 * 49 * A further complication is the need to ensure the repeatability of CTF merges. 50 * That is, a merge should produce the same output every time, given the same 51 * input. In both phases, this consistency requirement is met by imposing an 52 * ordering on the merge process, thus ensuring that a given set of input files 53 * are merged in the same order every time. 54 * 55 * Phase I 56 * 57 * The main thread reads the input files one by one, transforming the CTF 58 * data they contain into tdata structures. When a given file has been read 59 * and parsed, it is placed on the work queue for retrieval by worker threads. 60 * 61 * Central to Phase I is the Work In Progress (wip) array, which is used to 62 * merge batches of files in a predictable order. Files are read by the main 63 * thread, and are merged into wip array elements in round-robin order. When 64 * the number of files merged into a given array slot equals the batch size, 65 * the merged CTF graph in that array is added to the done slot in order by 66 * array slot. 67 * 68 * For example, consider a case where we have five input files, a batch size 69 * of two, a wip array size of two, and two worker threads (T1 and T2). 70 * 71 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 72 * 2. T1 reads an input file from the input queue (wq_queue). This is the 73 * first input file, so it is placed into wip[0]. The second file is 74 * similarly read and placed into wip[1]. The wip array slots now contain 75 * one file each (wip_nmerged == 1). 76 * 3. T1 reads the third input file, which it merges into wip[0]. The 77 * number of files in wip[0] is equal to the batch size. 78 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 79 * is now full too. 80 * 5. T2 attempts to place the contents of wip[1] on the done queue 81 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 82 * Batch 0 needs to be on the done queue before batch 1 can be added, so 83 * T2 blocks on wip[1]'s cv. 84 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 85 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 86 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 87 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 88 * batch 1 can now be added. It adds wip[1] to the done queue, clears 89 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 90 * restarts. 91 * 92 * The above process continues until all input files have been consumed. At 93 * this point, a pair of barriers are used to allow a single thread to move 94 * any partial batches from the wip array to the done array in batch ID order. 95 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 96 * begins. 97 * 98 * Locking Semantics (Phase I) 99 * 100 * The input queue (wq_queue) and the done queue (wq_done_queue) are 101 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 102 * array slots are protected by their own mutexes, which must be grabbed 103 * before releasing the input queue lock. The wip array lock is dropped 104 * when the thread restarts the loop. If the array slot was full, the 105 * array lock will be held while the slot contents are added to the done 106 * queue. The done queue lock is used to protect the wip slot cv's. 107 * 108 * The pow number is protected by the queue lock. The master batch ID 109 * and last completed batch (wq_lastdonebatch) counters are protected *in 110 * Phase I* by the done queue lock. 111 * 112 * Phase II 113 * 114 * When Phase II begins, the queue consists of the merged batches from the 115 * first phase. Assume we have five batches: 116 * 117 * Q: a b c d e 118 * 119 * Using the same batch ID mechanism we used in Phase I, but without the wip 120 * array, worker threads remove two entries at a time from the beginning of 121 * the queue. These two entries are merged, and are added back to the tail 122 * of the queue, as follows: 123 * 124 * Q: a b c d e # start 125 * Q: c d e ab # a, b removed, merged, added to end 126 * Q: e ab cd # c, d removed, merged, added to end 127 * Q: cd eab # e, ab removed, merged, added to end 128 * Q: cdeab # cd, eab removed, merged, added to end 129 * 130 * When one entry remains on the queue, with no merges outstanding, Phase II 131 * finishes. We pre-determine the stopping point by pre-calculating the 132 * number of nodes that will appear on the list. In the example above, the 133 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 134 * signaling the main thread via wq_done_cv. 135 * 136 * Locking Semantics (Phase II) 137 * 138 * The queue (wq_queue), ninqueue, and the master batch ID and last 139 * completed batch counters are protected by wq_queue_lock. The done 140 * queue and corresponding lock are unused in Phase II as is the wip array. 141 * 142 * Uniquification 143 * 144 * We want the CTF data that goes into a given module to be as small as 145 * possible. For example, we don't want it to contain any type data that may 146 * be present in another common module. As such, after creating the master 147 * tdata_t for a given module, we can, if requested by the user, uniquify it 148 * against the tdata_t from another module (genunix in the case of the SunOS 149 * kernel). We perform a merge between the tdata_t for this module and the 150 * tdata_t from genunix. Nodes found in this module that are not present in 151 * genunix are added to a third tdata_t - the uniquified tdata_t. 152 * 153 * Additive Merges 154 * 155 * In some cases, for example if we are issuing a new version of a common 156 * module in a patch, we need to make sure that the CTF data already present 157 * in that module does not change. Changes to this data would void the CTF 158 * data in any module that uniquified against the common module. To preserve 159 * the existing data, we can perform what is known as an additive merge. In 160 * this case, a final uniquification is performed against the CTF data in the 161 * previous version of the module. The result will be the placement of new 162 * and changed data after the existing data, thus preserving the existing type 163 * ID space. 164 * 165 * Saving the result 166 * 167 * When the merges are complete, the resulting tdata_t is placed into the 168 * output file, replacing the .SUNW_ctf section (if any) already in that file. 169 * 170 * The person who changes the merging thread code in this file without updating 171 * this comment will not live to see the stock hit five. 172 */ 173 174 #include <stdio.h> 175 #include <stdlib.h> 176 #include <unistd.h> 177 #include <pthread.h> 178 #include <assert.h> 179 #include <synch.h> 180 #include <signal.h> 181 #include <libgen.h> 182 #include <string.h> 183 #include <errno.h> 184 #include <alloca.h> 185 #include <sys/param.h> 186 #include <sys/types.h> 187 #include <sys/mman.h> 188 #include <sys/sysconf.h> 189 190 #include "ctf_headers.h" 191 #include "ctftools.h" 192 #include "ctfmerge.h" 193 #include "traverse.h" 194 #include "memory.h" 195 #include "fifo.h" 196 #include "barrier.h" 197 198 #pragma init(bigheap) 199 200 #define MERGE_PHASE1_BATCH_SIZE 8 201 #define MERGE_PHASE1_MAX_SLOTS 5 202 #define MERGE_INPUT_THROTTLE_LEN 10 203 204 const char *progname; 205 static char *outfile = NULL; 206 static char *tmpname = NULL; 207 static int dynsym; 208 int debug_level = DEBUG_LEVEL; 209 static size_t maxpgsize = 0x400000; 210 211 212 void 213 usage(void) 214 { 215 (void) fprintf(stderr, 216 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 217 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 218 " %*s [-g] [-D uniqlabel] file ...\n" 219 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 220 "file ...\n" 221 " %s [-g] -c srcfile destfile\n" 222 "\n" 223 " Note: if -L labelenv is specified and labelenv is not set in\n" 224 " the environment, a default value is used.\n", 225 progname, progname, strlen(progname), " ", 226 progname, progname); 227 } 228 229 static void 230 bigheap(void) 231 { 232 size_t big, *size; 233 int sizes; 234 struct memcntl_mha mha; 235 236 /* 237 * First, get the available pagesizes. 238 */ 239 if ((sizes = getpagesizes(NULL, 0)) == -1) 240 return; 241 242 if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL) 243 return; 244 245 if (getpagesizes(size, sizes) == -1) 246 return; 247 248 while (size[sizes - 1] > maxpgsize) 249 sizes--; 250 251 /* set big to the largest allowed page size */ 252 big = size[sizes - 1]; 253 if (big & (big - 1)) { 254 /* 255 * The largest page size is not a power of two for some 256 * inexplicable reason; return. 257 */ 258 return; 259 } 260 261 /* 262 * Now, align our break to the largest page size. 263 */ 264 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 265 return; 266 267 /* 268 * set the preferred page size for the heap 269 */ 270 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 271 mha.mha_flags = 0; 272 mha.mha_pagesize = big; 273 274 (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0); 275 } 276 277 static void 278 finalize_phase_one(workqueue_t *wq) 279 { 280 int startslot, i; 281 282 /* 283 * wip slots are cleared out only when maxbatchsz td's have been merged 284 * into them. We're not guaranteed that the number of files we're 285 * merging is a multiple of maxbatchsz, so there will be some partial 286 * groups in the wip array. Move them to the done queue in batch ID 287 * order, starting with the slot containing the next batch that would 288 * have been placed on the done queue, followed by the others. 289 * One thread will be doing this while the others wait at the barrier 290 * back in worker_thread(), so we don't need to worry about pesky things 291 * like locks. 292 */ 293 294 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 295 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 296 startslot = i; 297 break; 298 } 299 } 300 301 assert(startslot != -1); 302 303 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 304 int slotnum = i % wq->wq_nwipslots; 305 wip_t *wipslot = &wq->wq_wip[slotnum]; 306 307 if (wipslot->wip_td != NULL) { 308 debug(2, "clearing slot %d (%d) (saving %d)\n", 309 slotnum, i, wipslot->wip_nmerged); 310 } else 311 debug(2, "clearing slot %d (%d)\n", slotnum, i); 312 313 if (wipslot->wip_td != NULL) { 314 fifo_add(wq->wq_donequeue, wipslot->wip_td); 315 wq->wq_wip[slotnum].wip_td = NULL; 316 } 317 } 318 319 wq->wq_lastdonebatch = wq->wq_next_batchid++; 320 321 debug(2, "phase one done: donequeue has %d items\n", 322 fifo_len(wq->wq_donequeue)); 323 } 324 325 static void 326 init_phase_two(workqueue_t *wq) 327 { 328 int num; 329 330 /* 331 * We're going to continually merge the first two entries on the queue, 332 * placing the result on the end, until there's nothing left to merge. 333 * At that point, everything will have been merged into one. The 334 * initial value of ninqueue needs to be equal to the total number of 335 * entries that will show up on the queue, both at the start of the 336 * phase and as generated by merges during the phase. 337 */ 338 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 339 while (num != 1) { 340 wq->wq_ninqueue += num / 2; 341 num = num / 2 + num % 2; 342 } 343 344 /* 345 * Move the done queue to the work queue. We won't be using the done 346 * queue in phase 2. 347 */ 348 assert(fifo_len(wq->wq_queue) == 0); 349 fifo_free(wq->wq_queue, NULL); 350 wq->wq_queue = wq->wq_donequeue; 351 } 352 353 static void 354 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 355 { 356 pthread_mutex_lock(&wq->wq_donequeue_lock); 357 358 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 359 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 360 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 361 362 fifo_add(wq->wq_donequeue, slot->wip_td); 363 wq->wq_lastdonebatch++; 364 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 365 wq->wq_nwipslots].wip_cv); 366 367 /* reset the slot for next use */ 368 slot->wip_td = NULL; 369 slot->wip_batchid = wq->wq_next_batchid++; 370 371 pthread_mutex_unlock(&wq->wq_donequeue_lock); 372 } 373 374 static void 375 wip_add_work(wip_t *slot, tdata_t *pow) 376 { 377 if (slot->wip_td == NULL) { 378 slot->wip_td = pow; 379 slot->wip_nmerged = 1; 380 } else { 381 debug(2, "%d: merging %p into %p\n", pthread_self(), 382 (void *)pow, (void *)slot->wip_td); 383 384 merge_into_master(pow, slot->wip_td, NULL, 0); 385 tdata_free(pow); 386 387 slot->wip_nmerged++; 388 } 389 } 390 391 static void 392 worker_runphase1(workqueue_t *wq) 393 { 394 wip_t *wipslot; 395 tdata_t *pow; 396 int wipslotnum, pownum; 397 398 for (;;) { 399 pthread_mutex_lock(&wq->wq_queue_lock); 400 401 while (fifo_empty(wq->wq_queue)) { 402 if (wq->wq_nomorefiles == 1) { 403 pthread_cond_broadcast(&wq->wq_work_avail); 404 pthread_mutex_unlock(&wq->wq_queue_lock); 405 406 /* on to phase 2 ... */ 407 return; 408 } 409 410 pthread_cond_wait(&wq->wq_work_avail, 411 &wq->wq_queue_lock); 412 } 413 414 /* there's work to be done! */ 415 pow = fifo_remove(wq->wq_queue); 416 pownum = wq->wq_nextpownum++; 417 pthread_cond_broadcast(&wq->wq_work_removed); 418 419 assert(pow != NULL); 420 421 /* merge it into the right slot */ 422 wipslotnum = pownum % wq->wq_nwipslots; 423 wipslot = &wq->wq_wip[wipslotnum]; 424 425 pthread_mutex_lock(&wipslot->wip_lock); 426 427 pthread_mutex_unlock(&wq->wq_queue_lock); 428 429 wip_add_work(wipslot, pow); 430 431 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 432 wip_save_work(wq, wipslot, wipslotnum); 433 434 pthread_mutex_unlock(&wipslot->wip_lock); 435 } 436 } 437 438 static void 439 worker_runphase2(workqueue_t *wq) 440 { 441 tdata_t *pow1, *pow2; 442 int batchid; 443 444 for (;;) { 445 pthread_mutex_lock(&wq->wq_queue_lock); 446 447 if (wq->wq_ninqueue == 1) { 448 pthread_cond_broadcast(&wq->wq_work_avail); 449 pthread_mutex_unlock(&wq->wq_queue_lock); 450 451 debug(2, "%d: entering p2 completion barrier\n", 452 pthread_self()); 453 if (barrier_wait(&wq->wq_bar1)) { 454 pthread_mutex_lock(&wq->wq_queue_lock); 455 wq->wq_alldone = 1; 456 pthread_cond_signal(&wq->wq_alldone_cv); 457 pthread_mutex_unlock(&wq->wq_queue_lock); 458 } 459 460 return; 461 } 462 463 if (fifo_len(wq->wq_queue) < 2) { 464 pthread_cond_wait(&wq->wq_work_avail, 465 &wq->wq_queue_lock); 466 pthread_mutex_unlock(&wq->wq_queue_lock); 467 continue; 468 } 469 470 /* there's work to be done! */ 471 pow1 = fifo_remove(wq->wq_queue); 472 pow2 = fifo_remove(wq->wq_queue); 473 wq->wq_ninqueue -= 2; 474 475 batchid = wq->wq_next_batchid++; 476 477 pthread_mutex_unlock(&wq->wq_queue_lock); 478 479 debug(2, "%d: merging %p into %p\n", pthread_self(), 480 (void *)pow1, (void *)pow2); 481 merge_into_master(pow1, pow2, NULL, 0); 482 tdata_free(pow1); 483 484 /* 485 * merging is complete. place at the tail of the queue in 486 * proper order. 487 */ 488 pthread_mutex_lock(&wq->wq_queue_lock); 489 while (wq->wq_lastdonebatch + 1 != batchid) { 490 pthread_cond_wait(&wq->wq_done_cv, 491 &wq->wq_queue_lock); 492 } 493 494 wq->wq_lastdonebatch = batchid; 495 496 fifo_add(wq->wq_queue, pow2); 497 debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n", 498 pthread_self(), (void *)pow2, fifo_len(wq->wq_queue), 499 wq->wq_ninqueue); 500 pthread_cond_broadcast(&wq->wq_done_cv); 501 pthread_cond_signal(&wq->wq_work_avail); 502 pthread_mutex_unlock(&wq->wq_queue_lock); 503 } 504 } 505 506 /* 507 * Main loop for worker threads. 508 */ 509 static void 510 worker_thread(workqueue_t *wq) 511 { 512 worker_runphase1(wq); 513 514 debug(2, "%d: entering first barrier\n", pthread_self()); 515 516 if (barrier_wait(&wq->wq_bar1)) { 517 518 debug(2, "%d: doing work in first barrier\n", pthread_self()); 519 520 finalize_phase_one(wq); 521 522 init_phase_two(wq); 523 524 debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(), 525 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 526 } 527 528 debug(2, "%d: entering second barrier\n", pthread_self()); 529 530 (void) barrier_wait(&wq->wq_bar2); 531 532 debug(2, "%d: phase 1 complete\n", pthread_self()); 533 534 worker_runphase2(wq); 535 } 536 537 /* 538 * Pass a tdata_t tree, built from an input file, off to the work queue for 539 * consumption by worker threads. 540 */ 541 static int 542 merge_ctf_cb(tdata_t *td, char *name, void *arg) 543 { 544 workqueue_t *wq = arg; 545 546 debug(3, "Adding tdata %p for processing\n", (void *)td); 547 548 pthread_mutex_lock(&wq->wq_queue_lock); 549 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 550 debug(2, "Throttling input (len = %d, throttle = %d)\n", 551 fifo_len(wq->wq_queue), wq->wq_ithrottle); 552 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 553 } 554 555 fifo_add(wq->wq_queue, td); 556 debug(1, "Thread %d announcing %s\n", pthread_self(), name); 557 pthread_cond_broadcast(&wq->wq_work_avail); 558 pthread_mutex_unlock(&wq->wq_queue_lock); 559 560 return (1); 561 } 562 563 /* 564 * This program is intended to be invoked from a Makefile, as part of the build. 565 * As such, in the event of a failure or user-initiated interrupt (^C), we need 566 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 567 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 568 * of the same Makefile rule as) a link, and will operate on the linked file 569 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 570 * will notice that the *linked* file is newer than the object files, and thus 571 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 572 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 573 * data (confusingly named the output file). This means that the link will need 574 * to happen again, but links are generally fast, and we can't allow the merge 575 * to be skipped. 576 * 577 * Another possibility would be to block SIGINT entirely - to always run to 578 * completion. The run time of ctfmerge can, however, be measured in minutes 579 * in some cases, so this is not a valid option. 580 */ 581 static void 582 handle_sig(int sig) 583 { 584 terminate("Caught signal %d - exiting\n", sig); 585 } 586 587 static void 588 terminate_cleanup(void) 589 { 590 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 591 592 if (tmpname != NULL && dounlink) 593 unlink(tmpname); 594 595 if (outfile == NULL) 596 return; 597 598 if (dounlink) { 599 fprintf(stderr, "Removing %s\n", outfile); 600 unlink(outfile); 601 } 602 } 603 604 static void 605 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 606 { 607 tdata_t *srctd; 608 609 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 610 terminate("No CTF data found in source file %s\n", srcfile); 611 612 tmpname = mktmpname(destfile, ".ctf"); 613 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | keep_stabs); 614 if (rename(tmpname, destfile) != 0) { 615 terminate("Couldn't rename temp file %s to %s", tmpname, 616 destfile); 617 } 618 free(tmpname); 619 tdata_free(srctd); 620 } 621 622 static void 623 wq_init(workqueue_t *wq, int nfiles) 624 { 625 int throttle, nslots, i; 626 627 if (getenv("CTFMERGE_MAX_SLOTS")) 628 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 629 else 630 nslots = MERGE_PHASE1_MAX_SLOTS; 631 632 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 633 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 634 else 635 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 636 637 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 638 wq->wq_maxbatchsz); 639 640 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 641 wq->wq_nwipslots = nslots; 642 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 643 wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads); 644 645 if (getenv("CTFMERGE_INPUT_THROTTLE")) 646 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 647 else 648 throttle = MERGE_INPUT_THROTTLE_LEN; 649 wq->wq_ithrottle = throttle * wq->wq_nthreads; 650 651 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 652 wq->wq_nthreads); 653 654 wq->wq_next_batchid = 0; 655 656 for (i = 0; i < nslots; i++) { 657 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 658 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 659 } 660 661 pthread_mutex_init(&wq->wq_queue_lock, NULL); 662 wq->wq_queue = fifo_new(); 663 pthread_cond_init(&wq->wq_work_avail, NULL); 664 pthread_cond_init(&wq->wq_work_removed, NULL); 665 wq->wq_ninqueue = nfiles; 666 wq->wq_nextpownum = 0; 667 668 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 669 wq->wq_donequeue = fifo_new(); 670 wq->wq_lastdonebatch = -1; 671 672 pthread_cond_init(&wq->wq_done_cv, NULL); 673 674 pthread_cond_init(&wq->wq_alldone_cv, NULL); 675 wq->wq_alldone = 0; 676 677 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 678 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 679 680 wq->wq_nomorefiles = 0; 681 } 682 683 static void 684 start_threads(workqueue_t *wq) 685 { 686 sigset_t sets; 687 int i; 688 689 sigemptyset(&sets); 690 sigaddset(&sets, SIGINT); 691 sigaddset(&sets, SIGQUIT); 692 sigaddset(&sets, SIGTERM); 693 pthread_sigmask(SIG_BLOCK, &sets, NULL); 694 695 for (i = 0; i < wq->wq_nthreads; i++) { 696 pthread_create(&wq->wq_thread[i], NULL, 697 (void *(*)(void *))worker_thread, wq); 698 } 699 700 sigset(SIGINT, handle_sig); 701 sigset(SIGQUIT, handle_sig); 702 sigset(SIGTERM, handle_sig); 703 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 704 } 705 706 static void 707 join_threads(workqueue_t *wq) 708 { 709 int i; 710 711 for (i = 0; i < wq->wq_nthreads; i++) { 712 pthread_join(wq->wq_thread[i], NULL); 713 } 714 } 715 716 static int 717 strcompare(const void *p1, const void *p2) 718 { 719 char *s1 = *((char **)p1); 720 char *s2 = *((char **)p2); 721 722 return (strcmp(s1, s2)); 723 } 724 725 /* 726 * Core work queue structure; passed to worker threads on thread creation 727 * as the main point of coordination. Allocate as a static structure; we 728 * could have put this into a local variable in main, but passing a pointer 729 * into your stack to another thread is fragile at best and leads to some 730 * hard-to-debug failure modes. 731 */ 732 static workqueue_t wq; 733 734 int 735 main(int argc, char **argv) 736 { 737 tdata_t *mstrtd, *savetd; 738 char *uniqfile = NULL, *uniqlabel = NULL; 739 char *withfile = NULL; 740 char *label = NULL; 741 char **ifiles, **tifiles; 742 int verbose = 0, docopy = 0; 743 int write_fuzzy_match = 0; 744 int keep_stabs = 0; 745 int require_ctf = 0; 746 int nifiles, nielems; 747 int c, i, idx, tidx, err; 748 749 progname = basename(argv[0]); 750 751 if (getenv("CTFMERGE_DEBUG_LEVEL")) 752 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 753 754 err = 0; 755 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) { 756 switch (c) { 757 case 'c': 758 docopy = 1; 759 break; 760 case 'd': 761 /* Uniquify against `uniqfile' */ 762 uniqfile = optarg; 763 break; 764 case 'D': 765 /* Uniquify against label `uniqlabel' in `uniqfile' */ 766 uniqlabel = optarg; 767 break; 768 case 'f': 769 write_fuzzy_match = CTF_FUZZY_MATCH; 770 break; 771 case 'g': 772 keep_stabs = CTF_KEEP_STABS; 773 break; 774 case 'l': 775 /* Label merged types with `label' */ 776 label = optarg; 777 break; 778 case 'L': 779 /* Label merged types with getenv(`label`) */ 780 if ((label = getenv(optarg)) == NULL) 781 label = CTF_DEFAULT_LABEL; 782 break; 783 case 'o': 784 /* Place merged types in CTF section in `outfile' */ 785 outfile = optarg; 786 break; 787 case 't': 788 /* Insist *all* object files built from C have CTF */ 789 require_ctf = 1; 790 break; 791 case 'v': 792 /* More debugging information */ 793 verbose = 1; 794 break; 795 case 'w': 796 /* Additive merge with data from `withfile' */ 797 withfile = optarg; 798 break; 799 case 's': 800 /* use the dynsym rather than the symtab */ 801 dynsym = CTF_USE_DYNSYM; 802 break; 803 default: 804 usage(); 805 exit(2); 806 } 807 } 808 809 /* Validate arguments */ 810 if (docopy) { 811 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 812 outfile != NULL || withfile != NULL || dynsym != 0) 813 err++; 814 815 if (argc - optind != 2) 816 err++; 817 } else { 818 if (uniqfile != NULL && withfile != NULL) 819 err++; 820 821 if (uniqlabel != NULL && uniqfile == NULL) 822 err++; 823 824 if (outfile == NULL || label == NULL) 825 err++; 826 827 if (argc - optind == 0) 828 err++; 829 } 830 831 if (err) { 832 usage(); 833 exit(2); 834 } 835 836 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 837 keep_stabs = CTF_KEEP_STABS; 838 839 if (uniqfile && access(uniqfile, R_OK) != 0) { 840 warning("Uniquification file %s couldn't be opened and " 841 "will be ignored.\n", uniqfile); 842 uniqfile = NULL; 843 } 844 if (withfile && access(withfile, R_OK) != 0) { 845 warning("With file %s couldn't be opened and will be " 846 "ignored.\n", withfile); 847 withfile = NULL; 848 } 849 if (outfile && access(outfile, R_OK|W_OK) != 0) 850 terminate("Cannot open output file %s for r/w", outfile); 851 852 /* 853 * This is ugly, but we don't want to have to have a separate tool 854 * (yet) just for copying an ELF section with our specific requirements, 855 * so we shoe-horn a copier into ctfmerge. 856 */ 857 if (docopy) { 858 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 859 860 exit(0); 861 } 862 863 set_terminate_cleanup(terminate_cleanup); 864 865 /* Sort the input files and strip out duplicates */ 866 nifiles = argc - optind; 867 ifiles = xmalloc(sizeof (char *) * nifiles); 868 tifiles = xmalloc(sizeof (char *) * nifiles); 869 870 for (i = 0; i < nifiles; i++) 871 tifiles[i] = argv[optind + i]; 872 qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare); 873 874 ifiles[0] = tifiles[0]; 875 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 876 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 877 ifiles[++idx] = tifiles[tidx]; 878 } 879 nifiles = idx + 1; 880 881 /* Make sure they all exist */ 882 if ((nielems = count_files(ifiles, nifiles)) < 0) 883 terminate("Some input files were inaccessible\n"); 884 885 /* Prepare for the merge */ 886 wq_init(&wq, nielems); 887 888 start_threads(&wq); 889 890 /* 891 * Start the merge 892 * 893 * We're reading everything from each of the object files, so we 894 * don't need to specify labels. 895 */ 896 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 897 &wq, require_ctf) == 0) { 898 /* 899 * If we're verifying that C files have CTF, it's safe to 900 * assume that in this case, we're building only from assembly 901 * inputs. 902 */ 903 if (require_ctf) 904 exit(0); 905 terminate("No ctf sections found to merge\n"); 906 } 907 908 pthread_mutex_lock(&wq.wq_queue_lock); 909 wq.wq_nomorefiles = 1; 910 pthread_cond_broadcast(&wq.wq_work_avail); 911 pthread_mutex_unlock(&wq.wq_queue_lock); 912 913 pthread_mutex_lock(&wq.wq_queue_lock); 914 while (wq.wq_alldone == 0) 915 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 916 pthread_mutex_unlock(&wq.wq_queue_lock); 917 918 join_threads(&wq); 919 920 /* 921 * All requested files have been merged, with the resulting tree in 922 * mstrtd. savetd is the tree that will be placed into the output file. 923 * 924 * Regardless of whether we're doing a normal uniquification or an 925 * additive merge, we need a type tree that has been uniquified 926 * against uniqfile or withfile, as appropriate. 927 * 928 * If we're doing a uniquification, we stuff the resulting tree into 929 * outfile. Otherwise, we add the tree to the tree already in withfile. 930 */ 931 assert(fifo_len(wq.wq_queue) == 1); 932 mstrtd = fifo_remove(wq.wq_queue); 933 934 if (verbose || debug_level) { 935 debug(2, "Statistics for td %p\n", (void *)mstrtd); 936 937 iidesc_stats(mstrtd->td_iihash); 938 } 939 940 if (uniqfile != NULL || withfile != NULL) { 941 char *reffile, *reflabel = NULL; 942 tdata_t *reftd; 943 944 if (uniqfile != NULL) { 945 reffile = uniqfile; 946 reflabel = uniqlabel; 947 } else 948 reffile = withfile; 949 950 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 951 &reftd, require_ctf) == 0) { 952 terminate("No CTF data found in reference file %s\n", 953 reffile); 954 } 955 956 savetd = tdata_new(); 957 958 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 959 terminate("No room for additional types in master\n"); 960 961 savetd->td_nextid = withfile ? reftd->td_nextid : 962 CTF_INDEX_TO_TYPE(1, TRUE); 963 merge_into_master(mstrtd, reftd, savetd, 0); 964 965 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 966 967 if (withfile) { 968 /* 969 * savetd holds the new data to be added to the withfile 970 */ 971 tdata_t *withtd = reftd; 972 973 tdata_merge(withtd, savetd); 974 975 savetd = withtd; 976 } else { 977 char uniqname[MAXPATHLEN]; 978 labelent_t *parle; 979 980 parle = tdata_label_top(reftd); 981 982 savetd->td_parlabel = xstrdup(parle->le_name); 983 984 strncpy(uniqname, reffile, sizeof (uniqname)); 985 uniqname[MAXPATHLEN - 1] = '\0'; 986 savetd->td_parname = xstrdup(basename(uniqname)); 987 } 988 989 } else { 990 /* 991 * No post processing. Write the merged tree as-is into the 992 * output file. 993 */ 994 tdata_label_free(mstrtd); 995 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 996 997 savetd = mstrtd; 998 } 999 1000 tmpname = mktmpname(outfile, ".ctf"); 1001 write_ctf(savetd, outfile, tmpname, 1002 CTF_COMPRESS | write_fuzzy_match | dynsym | keep_stabs); 1003 if (rename(tmpname, outfile) != 0) 1004 terminate("Couldn't rename output temp file %s", tmpname); 1005 free(tmpname); 1006 1007 return (0); 1008 }