1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 #pragma ident   "%Z%%M% %I%     %E% SMI"
  27 
  28 /*
  29  * Given several files containing CTF data, merge and uniquify that data into
  30  * a single CTF section in an output file.
  31  *
  32  * Merges can proceed independently.  As such, we perform the merges in parallel
  33  * using a worker thread model.  A given glob of CTF data (either all of the CTF
  34  * data from a single input file, or the result of one or more merges) can only
  35  * be involved in a single merge at any given time, so the process decreases in
  36  * parallelism, especially towards the end, as more and more files are
  37  * consolidated, finally resulting in a single merge of two large CTF graphs.
  38  * Unfortunately, the last merge is also the slowest, as the two graphs being
  39  * merged are each the product of merges of half of the input files.
  40  *
  41  * The algorithm consists of two phases, described in detail below.  The first
  42  * phase entails the merging of CTF data in groups of eight.  The second phase
  43  * takes the results of Phase I, and merges them two at a time.  This disparity
  44  * is due to an observation that the merge time increases at least quadratically
  45  * with the size of the CTF data being merged.  As such, merges of CTF graphs
  46  * newly read from input files are much faster than merges of CTF graphs that
  47  * are themselves the results of prior merges.
  48  *
  49  * A further complication is the need to ensure the repeatability of CTF merges.
  50  * That is, a merge should produce the same output every time, given the same
  51  * input.  In both phases, this consistency requirement is met by imposing an
  52  * ordering on the merge process, thus ensuring that a given set of input files
  53  * are merged in the same order every time.
  54  *
  55  *   Phase I
  56  *
  57  *   The main thread reads the input files one by one, transforming the CTF
  58  *   data they contain into tdata structures.  When a given file has been read
  59  *   and parsed, it is placed on the work queue for retrieval by worker threads.
  60  *
  61  *   Central to Phase I is the Work In Progress (wip) array, which is used to
  62  *   merge batches of files in a predictable order.  Files are read by the main
  63  *   thread, and are merged into wip array elements in round-robin order.  When
  64  *   the number of files merged into a given array slot equals the batch size,
  65  *   the merged CTF graph in that array is added to the done slot in order by
  66  *   array slot.
  67  *
  68  *   For example, consider a case where we have five input files, a batch size
  69  *   of two, a wip array size of two, and two worker threads (T1 and T2).
  70  *
  71  *    1. The wip array elements are assigned initial batch numbers 0 and 1.
  72  *    2. T1 reads an input file from the input queue (wq_queue).  This is the
  73  *       first input file, so it is placed into wip[0].  The second file is
  74  *       similarly read and placed into wip[1].  The wip array slots now contain
  75  *       one file each (wip_nmerged == 1).
  76  *    3. T1 reads the third input file, which it merges into wip[0].  The
  77  *       number of files in wip[0] is equal to the batch size.
  78  *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
  79  *       is now full too.
  80  *    5. T2 attempts to place the contents of wip[1] on the done queue
  81  *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
  82  *       Batch 0 needs to be on the done queue before batch 1 can be added, so
  83  *       T2 blocks on wip[1]'s cv.
  84  *    6. T1 attempts to place the contents of wip[0] on the done queue, and
  85  *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
  86  *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
  87  *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
  88  *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
  89  *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
  90  *       restarts.
  91  *
  92  *   The above process continues until all input files have been consumed.  At
  93  *   this point, a pair of barriers are used to allow a single thread to move
  94  *   any partial batches from the wip array to the done array in batch ID order.
  95  *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
  96  *   begins.
  97  *
  98  *      Locking Semantics (Phase I)
  99  *
 100  *      The input queue (wq_queue) and the done queue (wq_done_queue) are
 101  *      protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
 102  *      array slots are protected by their own mutexes, which must be grabbed
 103  *      before releasing the input queue lock.  The wip array lock is dropped
 104  *      when the thread restarts the loop.  If the array slot was full, the
 105  *      array lock will be held while the slot contents are added to the done
 106  *      queue.  The done queue lock is used to protect the wip slot cv's.
 107  *
 108  *      The pow number is protected by the queue lock.  The master batch ID
 109  *      and last completed batch (wq_lastdonebatch) counters are protected *in
 110  *      Phase I* by the done queue lock.
 111  *
 112  *   Phase II
 113  *
 114  *   When Phase II begins, the queue consists of the merged batches from the
 115  *   first phase.  Assume we have five batches:
 116  *
 117  *      Q:      a b c d e
 118  *
 119  *   Using the same batch ID mechanism we used in Phase I, but without the wip
 120  *   array, worker threads remove two entries at a time from the beginning of
 121  *   the queue.  These two entries are merged, and are added back to the tail
 122  *   of the queue, as follows:
 123  *
 124  *      Q:      a b c d e       # start
 125  *      Q:      c d e ab        # a, b removed, merged, added to end
 126  *      Q:      e ab cd         # c, d removed, merged, added to end
 127  *      Q:      cd eab          # e, ab removed, merged, added to end
 128  *      Q:      cdeab           # cd, eab removed, merged, added to end
 129  *
 130  *   When one entry remains on the queue, with no merges outstanding, Phase II
 131  *   finishes.  We pre-determine the stopping point by pre-calculating the
 132  *   number of nodes that will appear on the list.  In the example above, the
 133  *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
 134  *   signaling the main thread via wq_done_cv.
 135  *
 136  *      Locking Semantics (Phase II)
 137  *
 138  *      The queue (wq_queue), ninqueue, and the master batch ID and last
 139  *      completed batch counters are protected by wq_queue_lock.  The done
 140  *      queue and corresponding lock are unused in Phase II as is the wip array.
 141  *
 142  *   Uniquification
 143  *
 144  *   We want the CTF data that goes into a given module to be as small as
 145  *   possible.  For example, we don't want it to contain any type data that may
 146  *   be present in another common module.  As such, after creating the master
 147  *   tdata_t for a given module, we can, if requested by the user, uniquify it
 148  *   against the tdata_t from another module (genunix in the case of the SunOS
 149  *   kernel).  We perform a merge between the tdata_t for this module and the
 150  *   tdata_t from genunix.  Nodes found in this module that are not present in
 151  *   genunix are added to a third tdata_t - the uniquified tdata_t.
 152  *
 153  *   Additive Merges
 154  *
 155  *   In some cases, for example if we are issuing a new version of a common
 156  *   module in a patch, we need to make sure that the CTF data already present
 157  *   in that module does not change.  Changes to this data would void the CTF
 158  *   data in any module that uniquified against the common module.  To preserve
 159  *   the existing data, we can perform what is known as an additive merge.  In
 160  *   this case, a final uniquification is performed against the CTF data in the
 161  *   previous version of the module.  The result will be the placement of new
 162  *   and changed data after the existing data, thus preserving the existing type
 163  *   ID space.
 164  *
 165  *   Saving the result
 166  *
 167  *   When the merges are complete, the resulting tdata_t is placed into the
 168  *   output file, replacing the .SUNW_ctf section (if any) already in that file.
 169  *
 170  * The person who changes the merging thread code in this file without updating
 171  * this comment will not live to see the stock hit five.
 172  */
 173 
 174 #include <stdio.h>
 175 #include <stdlib.h>
 176 #include <unistd.h>
 177 #include <pthread.h>
 178 #include <assert.h>
 179 #include <synch.h>
 180 #include <signal.h>
 181 #include <libgen.h>
 182 #include <string.h>
 183 #include <errno.h>
 184 #include <alloca.h>
 185 #include <sys/param.h>
 186 #include <sys/types.h>
 187 #include <sys/mman.h>
 188 #include <sys/sysconf.h>
 189 
 190 #include "ctf_headers.h"
 191 #include "ctftools.h"
 192 #include "ctfmerge.h"
 193 #include "traverse.h"
 194 #include "memory.h"
 195 #include "fifo.h"
 196 #include "barrier.h"
 197 
 198 #pragma init(bigheap)
 199 
 200 #define MERGE_PHASE1_BATCH_SIZE         8
 201 #define MERGE_PHASE1_MAX_SLOTS          5
 202 #define MERGE_INPUT_THROTTLE_LEN        10
 203 
 204 const char *progname;
 205 static char *outfile = NULL;
 206 static char *tmpname = NULL;
 207 static int dynsym;
 208 int debug_level = DEBUG_LEVEL;
 209 static size_t maxpgsize = 0x400000;
 210 
 211 
 212 void
 213 usage(void)
 214 {
 215         (void) fprintf(stderr,
 216             "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
 217             "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
 218             "       %*s [-g] [-D uniqlabel] file ...\n"
 219             "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
 220             "file ...\n"
 221             "       %s [-g] -c srcfile destfile\n"
 222             "\n"
 223             "  Note: if -L labelenv is specified and labelenv is not set in\n"
 224             "  the environment, a default value is used.\n",
 225             progname, progname, strlen(progname), " ",
 226             progname, progname);
 227 }
 228 
 229 static void
 230 bigheap(void)
 231 {
 232         size_t big, *size;
 233         int sizes;
 234         struct memcntl_mha mha;
 235 
 236         /*
 237          * First, get the available pagesizes.
 238          */
 239         if ((sizes = getpagesizes(NULL, 0)) == -1)
 240                 return;
 241 
 242         if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
 243                 return;
 244 
 245         if (getpagesizes(size, sizes) == -1)
 246                 return;
 247 
 248         while (size[sizes - 1] > maxpgsize)
 249                 sizes--;
 250 
 251         /* set big to the largest allowed page size */
 252         big = size[sizes - 1];
 253         if (big & (big - 1)) {
 254                 /*
 255                  * The largest page size is not a power of two for some
 256                  * inexplicable reason; return.
 257                  */
 258                 return;
 259         }
 260 
 261         /*
 262          * Now, align our break to the largest page size.
 263          */
 264         if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
 265                 return;
 266 
 267         /*
 268          * set the preferred page size for the heap
 269          */
 270         mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
 271         mha.mha_flags = 0;
 272         mha.mha_pagesize = big;
 273 
 274         (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
 275 }
 276 
 277 static void
 278 finalize_phase_one(workqueue_t *wq)
 279 {
 280         int startslot, i;
 281 
 282         /*
 283          * wip slots are cleared out only when maxbatchsz td's have been merged
 284          * into them.  We're not guaranteed that the number of files we're
 285          * merging is a multiple of maxbatchsz, so there will be some partial
 286          * groups in the wip array.  Move them to the done queue in batch ID
 287          * order, starting with the slot containing the next batch that would
 288          * have been placed on the done queue, followed by the others.
 289          * One thread will be doing this while the others wait at the barrier
 290          * back in worker_thread(), so we don't need to worry about pesky things
 291          * like locks.
 292          */
 293 
 294         for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
 295                 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
 296                         startslot = i;
 297                         break;
 298                 }
 299         }
 300 
 301         assert(startslot != -1);
 302 
 303         for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
 304                 int slotnum = i % wq->wq_nwipslots;
 305                 wip_t *wipslot = &wq->wq_wip[slotnum];
 306 
 307                 if (wipslot->wip_td != NULL) {
 308                         debug(2, "clearing slot %d (%d) (saving %d)\n",
 309                             slotnum, i, wipslot->wip_nmerged);
 310                 } else
 311                         debug(2, "clearing slot %d (%d)\n", slotnum, i);
 312 
 313                 if (wipslot->wip_td != NULL) {
 314                         fifo_add(wq->wq_donequeue, wipslot->wip_td);
 315                         wq->wq_wip[slotnum].wip_td = NULL;
 316                 }
 317         }
 318 
 319         wq->wq_lastdonebatch = wq->wq_next_batchid++;
 320 
 321         debug(2, "phase one done: donequeue has %d items\n",
 322             fifo_len(wq->wq_donequeue));
 323 }
 324 
 325 static void
 326 init_phase_two(workqueue_t *wq)
 327 {
 328         int num;
 329 
 330         /*
 331          * We're going to continually merge the first two entries on the queue,
 332          * placing the result on the end, until there's nothing left to merge.
 333          * At that point, everything will have been merged into one.  The
 334          * initial value of ninqueue needs to be equal to the total number of
 335          * entries that will show up on the queue, both at the start of the
 336          * phase and as generated by merges during the phase.
 337          */
 338         wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
 339         while (num != 1) {
 340                 wq->wq_ninqueue += num / 2;
 341                 num = num / 2 + num % 2;
 342         }
 343 
 344         /*
 345          * Move the done queue to the work queue.  We won't be using the done
 346          * queue in phase 2.
 347          */
 348         assert(fifo_len(wq->wq_queue) == 0);
 349         fifo_free(wq->wq_queue, NULL);
 350         wq->wq_queue = wq->wq_donequeue;
 351 }
 352 
 353 static void
 354 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
 355 {
 356         pthread_mutex_lock(&wq->wq_donequeue_lock);
 357 
 358         while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
 359                 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
 360         assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
 361 
 362         fifo_add(wq->wq_donequeue, slot->wip_td);
 363         wq->wq_lastdonebatch++;
 364         pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
 365             wq->wq_nwipslots].wip_cv);
 366 
 367         /* reset the slot for next use */
 368         slot->wip_td = NULL;
 369         slot->wip_batchid = wq->wq_next_batchid++;
 370 
 371         pthread_mutex_unlock(&wq->wq_donequeue_lock);
 372 }
 373 
 374 static void
 375 wip_add_work(wip_t *slot, tdata_t *pow)
 376 {
 377         if (slot->wip_td == NULL) {
 378                 slot->wip_td = pow;
 379                 slot->wip_nmerged = 1;
 380         } else {
 381                 debug(2, "%d: merging %p into %p\n", pthread_self(),
 382                     (void *)pow, (void *)slot->wip_td);
 383 
 384                 merge_into_master(pow, slot->wip_td, NULL, 0);
 385                 tdata_free(pow);
 386 
 387                 slot->wip_nmerged++;
 388         }
 389 }
 390 
 391 static void
 392 worker_runphase1(workqueue_t *wq)
 393 {
 394         wip_t *wipslot;
 395         tdata_t *pow;
 396         int wipslotnum, pownum;
 397 
 398         for (;;) {
 399                 pthread_mutex_lock(&wq->wq_queue_lock);
 400 
 401                 while (fifo_empty(wq->wq_queue)) {
 402                         if (wq->wq_nomorefiles == 1) {
 403                                 pthread_cond_broadcast(&wq->wq_work_avail);
 404                                 pthread_mutex_unlock(&wq->wq_queue_lock);
 405 
 406                                 /* on to phase 2 ... */
 407                                 return;
 408                         }
 409 
 410                         pthread_cond_wait(&wq->wq_work_avail,
 411                             &wq->wq_queue_lock);
 412                 }
 413 
 414                 /* there's work to be done! */
 415                 pow = fifo_remove(wq->wq_queue);
 416                 pownum = wq->wq_nextpownum++;
 417                 pthread_cond_broadcast(&wq->wq_work_removed);
 418 
 419                 assert(pow != NULL);
 420 
 421                 /* merge it into the right slot */
 422                 wipslotnum = pownum % wq->wq_nwipslots;
 423                 wipslot = &wq->wq_wip[wipslotnum];
 424 
 425                 pthread_mutex_lock(&wipslot->wip_lock);
 426 
 427                 pthread_mutex_unlock(&wq->wq_queue_lock);
 428 
 429                 wip_add_work(wipslot, pow);
 430 
 431                 if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
 432                         wip_save_work(wq, wipslot, wipslotnum);
 433 
 434                 pthread_mutex_unlock(&wipslot->wip_lock);
 435         }
 436 }
 437 
 438 static void
 439 worker_runphase2(workqueue_t *wq)
 440 {
 441         tdata_t *pow1, *pow2;
 442         int batchid;
 443 
 444         for (;;) {
 445                 pthread_mutex_lock(&wq->wq_queue_lock);
 446 
 447                 if (wq->wq_ninqueue == 1) {
 448                         pthread_cond_broadcast(&wq->wq_work_avail);
 449                         pthread_mutex_unlock(&wq->wq_queue_lock);
 450 
 451                         debug(2, "%d: entering p2 completion barrier\n",
 452                             pthread_self());
 453                         if (barrier_wait(&wq->wq_bar1)) {
 454                                 pthread_mutex_lock(&wq->wq_queue_lock);
 455                                 wq->wq_alldone = 1;
 456                                 pthread_cond_signal(&wq->wq_alldone_cv);
 457                                 pthread_mutex_unlock(&wq->wq_queue_lock);
 458                         }
 459 
 460                         return;
 461                 }
 462 
 463                 if (fifo_len(wq->wq_queue) < 2) {
 464                         pthread_cond_wait(&wq->wq_work_avail,
 465                             &wq->wq_queue_lock);
 466                         pthread_mutex_unlock(&wq->wq_queue_lock);
 467                         continue;
 468                 }
 469 
 470                 /* there's work to be done! */
 471                 pow1 = fifo_remove(wq->wq_queue);
 472                 pow2 = fifo_remove(wq->wq_queue);
 473                 wq->wq_ninqueue -= 2;
 474 
 475                 batchid = wq->wq_next_batchid++;
 476 
 477                 pthread_mutex_unlock(&wq->wq_queue_lock);
 478 
 479                 debug(2, "%d: merging %p into %p\n", pthread_self(),
 480                     (void *)pow1, (void *)pow2);
 481                 merge_into_master(pow1, pow2, NULL, 0);
 482                 tdata_free(pow1);
 483 
 484                 /*
 485                  * merging is complete.  place at the tail of the queue in
 486                  * proper order.
 487                  */
 488                 pthread_mutex_lock(&wq->wq_queue_lock);
 489                 while (wq->wq_lastdonebatch + 1 != batchid) {
 490                         pthread_cond_wait(&wq->wq_done_cv,
 491                             &wq->wq_queue_lock);
 492                 }
 493 
 494                 wq->wq_lastdonebatch = batchid;
 495 
 496                 fifo_add(wq->wq_queue, pow2);
 497                 debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
 498                     pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
 499                     wq->wq_ninqueue);
 500                 pthread_cond_broadcast(&wq->wq_done_cv);
 501                 pthread_cond_signal(&wq->wq_work_avail);
 502                 pthread_mutex_unlock(&wq->wq_queue_lock);
 503         }
 504 }
 505 
 506 /*
 507  * Main loop for worker threads.
 508  */
 509 static void
 510 worker_thread(workqueue_t *wq)
 511 {
 512         worker_runphase1(wq);
 513 
 514         debug(2, "%d: entering first barrier\n", pthread_self());
 515 
 516         if (barrier_wait(&wq->wq_bar1)) {
 517 
 518                 debug(2, "%d: doing work in first barrier\n", pthread_self());
 519 
 520                 finalize_phase_one(wq);
 521 
 522                 init_phase_two(wq);
 523 
 524                 debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
 525                     wq->wq_ninqueue, fifo_len(wq->wq_queue));
 526         }
 527 
 528         debug(2, "%d: entering second barrier\n", pthread_self());
 529 
 530         (void) barrier_wait(&wq->wq_bar2);
 531 
 532         debug(2, "%d: phase 1 complete\n", pthread_self());
 533 
 534         worker_runphase2(wq);
 535 }
 536 
 537 /*
 538  * Pass a tdata_t tree, built from an input file, off to the work queue for
 539  * consumption by worker threads.
 540  */
 541 static int
 542 merge_ctf_cb(tdata_t *td, char *name, void *arg)
 543 {
 544         workqueue_t *wq = arg;
 545 
 546         debug(3, "Adding tdata %p for processing\n", (void *)td);
 547 
 548         pthread_mutex_lock(&wq->wq_queue_lock);
 549         while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
 550                 debug(2, "Throttling input (len = %d, throttle = %d)\n",
 551                     fifo_len(wq->wq_queue), wq->wq_ithrottle);
 552                 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
 553         }
 554 
 555         fifo_add(wq->wq_queue, td);
 556         debug(1, "Thread %d announcing %s\n", pthread_self(), name);
 557         pthread_cond_broadcast(&wq->wq_work_avail);
 558         pthread_mutex_unlock(&wq->wq_queue_lock);
 559 
 560         return (1);
 561 }
 562 
 563 /*
 564  * This program is intended to be invoked from a Makefile, as part of the build.
 565  * As such, in the event of a failure or user-initiated interrupt (^C), we need
 566  * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
 567  * Unfortunately, ctfmerge will usually be invoked directly after (and as part
 568  * of the same Makefile rule as) a link, and will operate on the linked file
 569  * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
 570  * will notice that the *linked* file is newer than the object files, and thus
 571  * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
 572  * reinvokes ctfmerge, is to remove the file to which we are adding CTF
 573  * data (confusingly named the output file).  This means that the link will need
 574  * to happen again, but links are generally fast, and we can't allow the merge
 575  * to be skipped.
 576  *
 577  * Another possibility would be to block SIGINT entirely - to always run to
 578  * completion.  The run time of ctfmerge can, however, be measured in minutes
 579  * in some cases, so this is not a valid option.
 580  */
 581 static void
 582 handle_sig(int sig)
 583 {
 584         terminate("Caught signal %d - exiting\n", sig);
 585 }
 586 
 587 static void
 588 terminate_cleanup(void)
 589 {
 590         int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
 591 
 592         if (tmpname != NULL && dounlink)
 593                 unlink(tmpname);
 594 
 595         if (outfile == NULL)
 596                 return;
 597 
 598         if (dounlink) {
 599                 fprintf(stderr, "Removing %s\n", outfile);
 600                 unlink(outfile);
 601         }
 602 }
 603 
 604 static void
 605 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
 606 {
 607         tdata_t *srctd;
 608 
 609         if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
 610                 terminate("No CTF data found in source file %s\n", srcfile);
 611 
 612         tmpname = mktmpname(destfile, ".ctf");
 613         write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | keep_stabs);
 614         if (rename(tmpname, destfile) != 0) {
 615                 terminate("Couldn't rename temp file %s to %s", tmpname,
 616                     destfile);
 617         }
 618         free(tmpname);
 619         tdata_free(srctd);
 620 }
 621 
 622 static void
 623 wq_init(workqueue_t *wq, int nfiles)
 624 {
 625         int throttle, nslots, i;
 626 
 627         if (getenv("CTFMERGE_MAX_SLOTS"))
 628                 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
 629         else
 630                 nslots = MERGE_PHASE1_MAX_SLOTS;
 631 
 632         if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
 633                 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
 634         else
 635                 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
 636 
 637         nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
 638             wq->wq_maxbatchsz);
 639 
 640         wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
 641         wq->wq_nwipslots = nslots;
 642         wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
 643         wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);
 644 
 645         if (getenv("CTFMERGE_INPUT_THROTTLE"))
 646                 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
 647         else
 648                 throttle = MERGE_INPUT_THROTTLE_LEN;
 649         wq->wq_ithrottle = throttle * wq->wq_nthreads;
 650 
 651         debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
 652             wq->wq_nthreads);
 653 
 654         wq->wq_next_batchid = 0;
 655 
 656         for (i = 0; i < nslots; i++) {
 657                 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
 658                 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
 659         }
 660 
 661         pthread_mutex_init(&wq->wq_queue_lock, NULL);
 662         wq->wq_queue = fifo_new();
 663         pthread_cond_init(&wq->wq_work_avail, NULL);
 664         pthread_cond_init(&wq->wq_work_removed, NULL);
 665         wq->wq_ninqueue = nfiles;
 666         wq->wq_nextpownum = 0;
 667 
 668         pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
 669         wq->wq_donequeue = fifo_new();
 670         wq->wq_lastdonebatch = -1;
 671 
 672         pthread_cond_init(&wq->wq_done_cv, NULL);
 673 
 674         pthread_cond_init(&wq->wq_alldone_cv, NULL);
 675         wq->wq_alldone = 0;
 676 
 677         barrier_init(&wq->wq_bar1, wq->wq_nthreads);
 678         barrier_init(&wq->wq_bar2, wq->wq_nthreads);
 679 
 680         wq->wq_nomorefiles = 0;
 681 }
 682 
 683 static void
 684 start_threads(workqueue_t *wq)
 685 {
 686         sigset_t sets;
 687         int i;
 688 
 689         sigemptyset(&sets);
 690         sigaddset(&sets, SIGINT);
 691         sigaddset(&sets, SIGQUIT);
 692         sigaddset(&sets, SIGTERM);
 693         pthread_sigmask(SIG_BLOCK, &sets, NULL);
 694 
 695         for (i = 0; i < wq->wq_nthreads; i++) {
 696                 pthread_create(&wq->wq_thread[i], NULL,
 697                     (void *(*)(void *))worker_thread, wq);
 698         }
 699 
 700         sigset(SIGINT, handle_sig);
 701         sigset(SIGQUIT, handle_sig);
 702         sigset(SIGTERM, handle_sig);
 703         pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
 704 }
 705 
 706 static void
 707 join_threads(workqueue_t *wq)
 708 {
 709         int i;
 710 
 711         for (i = 0; i < wq->wq_nthreads; i++) {
 712                 pthread_join(wq->wq_thread[i], NULL);
 713         }
 714 }
 715 
 716 static int
 717 strcompare(const void *p1, const void *p2)
 718 {
 719         char *s1 = *((char **)p1);
 720         char *s2 = *((char **)p2);
 721 
 722         return (strcmp(s1, s2));
 723 }
 724 
 725 /*
 726  * Core work queue structure; passed to worker threads on thread creation
 727  * as the main point of coordination.  Allocate as a static structure; we
 728  * could have put this into a local variable in main, but passing a pointer
 729  * into your stack to another thread is fragile at best and leads to some
 730  * hard-to-debug failure modes.
 731  */
 732 static workqueue_t wq;
 733 
 734 int
 735 main(int argc, char **argv)
 736 {
 737         tdata_t *mstrtd, *savetd;
 738         char *uniqfile = NULL, *uniqlabel = NULL;
 739         char *withfile = NULL;
 740         char *label = NULL;
 741         char **ifiles, **tifiles;
 742         int verbose = 0, docopy = 0;
 743         int write_fuzzy_match = 0;
 744         int keep_stabs = 0;
 745         int require_ctf = 0;
 746         int nifiles, nielems;
 747         int c, i, idx, tidx, err;
 748 
 749         progname = basename(argv[0]);
 750 
 751         if (getenv("CTFMERGE_DEBUG_LEVEL"))
 752                 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
 753 
 754         err = 0;
 755         while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
 756                 switch (c) {
 757                 case 'c':
 758                         docopy = 1;
 759                         break;
 760                 case 'd':
 761                         /* Uniquify against `uniqfile' */
 762                         uniqfile = optarg;
 763                         break;
 764                 case 'D':
 765                         /* Uniquify against label `uniqlabel' in `uniqfile' */
 766                         uniqlabel = optarg;
 767                         break;
 768                 case 'f':
 769                         write_fuzzy_match = CTF_FUZZY_MATCH;
 770                         break;
 771                 case 'g':
 772                         keep_stabs = CTF_KEEP_STABS;
 773                         break;
 774                 case 'l':
 775                         /* Label merged types with `label' */
 776                         label = optarg;
 777                         break;
 778                 case 'L':
 779                         /* Label merged types with getenv(`label`) */
 780                         if ((label = getenv(optarg)) == NULL)
 781                                 label = CTF_DEFAULT_LABEL;
 782                         break;
 783                 case 'o':
 784                         /* Place merged types in CTF section in `outfile' */
 785                         outfile = optarg;
 786                         break;
 787                 case 't':
 788                         /* Insist *all* object files built from C have CTF */
 789                         require_ctf = 1;
 790                         break;
 791                 case 'v':
 792                         /* More debugging information */
 793                         verbose = 1;
 794                         break;
 795                 case 'w':
 796                         /* Additive merge with data from `withfile' */
 797                         withfile = optarg;
 798                         break;
 799                 case 's':
 800                         /* use the dynsym rather than the symtab */
 801                         dynsym = CTF_USE_DYNSYM;
 802                         break;
 803                 default:
 804                         usage();
 805                         exit(2);
 806                 }
 807         }
 808 
 809         /* Validate arguments */
 810         if (docopy) {
 811                 if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
 812                     outfile != NULL || withfile != NULL || dynsym != 0)
 813                         err++;
 814 
 815                 if (argc - optind != 2)
 816                         err++;
 817         } else {
 818                 if (uniqfile != NULL && withfile != NULL)
 819                         err++;
 820 
 821                 if (uniqlabel != NULL && uniqfile == NULL)
 822                         err++;
 823 
 824                 if (outfile == NULL || label == NULL)
 825                         err++;
 826 
 827                 if (argc - optind == 0)
 828                         err++;
 829         }
 830 
 831         if (err) {
 832                 usage();
 833                 exit(2);
 834         }
 835 
 836         if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
 837                 keep_stabs = CTF_KEEP_STABS;
 838 
 839         if (uniqfile && access(uniqfile, R_OK) != 0) {
 840                 warning("Uniquification file %s couldn't be opened and "
 841                     "will be ignored.\n", uniqfile);
 842                 uniqfile = NULL;
 843         }
 844         if (withfile && access(withfile, R_OK) != 0) {
 845                 warning("With file %s couldn't be opened and will be "
 846                     "ignored.\n", withfile);
 847                 withfile = NULL;
 848         }
 849         if (outfile && access(outfile, R_OK|W_OK) != 0)
 850                 terminate("Cannot open output file %s for r/w", outfile);
 851 
 852         /*
 853          * This is ugly, but we don't want to have to have a separate tool
 854          * (yet) just for copying an ELF section with our specific requirements,
 855          * so we shoe-horn a copier into ctfmerge.
 856          */
 857         if (docopy) {
 858                 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
 859 
 860                 exit(0);
 861         }
 862 
 863         set_terminate_cleanup(terminate_cleanup);
 864 
 865         /* Sort the input files and strip out duplicates */
 866         nifiles = argc - optind;
 867         ifiles = xmalloc(sizeof (char *) * nifiles);
 868         tifiles = xmalloc(sizeof (char *) * nifiles);
 869 
 870         for (i = 0; i < nifiles; i++)
 871                 tifiles[i] = argv[optind + i];
 872         qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare);
 873 
 874         ifiles[0] = tifiles[0];
 875         for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
 876                 if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
 877                         ifiles[++idx] = tifiles[tidx];
 878         }
 879         nifiles = idx + 1;
 880 
 881         /* Make sure they all exist */
 882         if ((nielems = count_files(ifiles, nifiles)) < 0)
 883                 terminate("Some input files were inaccessible\n");
 884 
 885         /* Prepare for the merge */
 886         wq_init(&wq, nielems);
 887 
 888         start_threads(&wq);
 889 
 890         /*
 891          * Start the merge
 892          *
 893          * We're reading everything from each of the object files, so we
 894          * don't need to specify labels.
 895          */
 896         if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
 897             &wq, require_ctf) == 0) {
 898                 /*
 899                  * If we're verifying that C files have CTF, it's safe to
 900                  * assume that in this case, we're building only from assembly
 901                  * inputs.
 902                  */
 903                 if (require_ctf)
 904                         exit(0);
 905                 terminate("No ctf sections found to merge\n");
 906         }
 907 
 908         pthread_mutex_lock(&wq.wq_queue_lock);
 909         wq.wq_nomorefiles = 1;
 910         pthread_cond_broadcast(&wq.wq_work_avail);
 911         pthread_mutex_unlock(&wq.wq_queue_lock);
 912 
 913         pthread_mutex_lock(&wq.wq_queue_lock);
 914         while (wq.wq_alldone == 0)
 915                 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
 916         pthread_mutex_unlock(&wq.wq_queue_lock);
 917 
 918         join_threads(&wq);
 919 
 920         /*
 921          * All requested files have been merged, with the resulting tree in
 922          * mstrtd.  savetd is the tree that will be placed into the output file.
 923          *
 924          * Regardless of whether we're doing a normal uniquification or an
 925          * additive merge, we need a type tree that has been uniquified
 926          * against uniqfile or withfile, as appropriate.
 927          *
 928          * If we're doing a uniquification, we stuff the resulting tree into
 929          * outfile.  Otherwise, we add the tree to the tree already in withfile.
 930          */
 931         assert(fifo_len(wq.wq_queue) == 1);
 932         mstrtd = fifo_remove(wq.wq_queue);
 933 
 934         if (verbose || debug_level) {
 935                 debug(2, "Statistics for td %p\n", (void *)mstrtd);
 936 
 937                 iidesc_stats(mstrtd->td_iihash);
 938         }
 939 
 940         if (uniqfile != NULL || withfile != NULL) {
 941                 char *reffile, *reflabel = NULL;
 942                 tdata_t *reftd;
 943 
 944                 if (uniqfile != NULL) {
 945                         reffile = uniqfile;
 946                         reflabel = uniqlabel;
 947                 } else
 948                         reffile = withfile;
 949 
 950                 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
 951                     &reftd, require_ctf) == 0) {
 952                         terminate("No CTF data found in reference file %s\n",
 953                             reffile);
 954                 }
 955 
 956                 savetd = tdata_new();
 957 
 958                 if (CTF_TYPE_ISCHILD(reftd->td_nextid))
 959                         terminate("No room for additional types in master\n");
 960 
 961                 savetd->td_nextid = withfile ? reftd->td_nextid :
 962                     CTF_INDEX_TO_TYPE(1, TRUE);
 963                 merge_into_master(mstrtd, reftd, savetd, 0);
 964 
 965                 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
 966 
 967                 if (withfile) {
 968                         /*
 969                          * savetd holds the new data to be added to the withfile
 970                          */
 971                         tdata_t *withtd = reftd;
 972 
 973                         tdata_merge(withtd, savetd);
 974 
 975                         savetd = withtd;
 976                 } else {
 977                         char uniqname[MAXPATHLEN];
 978                         labelent_t *parle;
 979 
 980                         parle = tdata_label_top(reftd);
 981 
 982                         savetd->td_parlabel = xstrdup(parle->le_name);
 983 
 984                         strncpy(uniqname, reffile, sizeof (uniqname));
 985                         uniqname[MAXPATHLEN - 1] = '\0';
 986                         savetd->td_parname = xstrdup(basename(uniqname));
 987                 }
 988 
 989         } else {
 990                 /*
 991                  * No post processing.  Write the merged tree as-is into the
 992                  * output file.
 993                  */
 994                 tdata_label_free(mstrtd);
 995                 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
 996 
 997                 savetd = mstrtd;
 998         }
 999 
1000         tmpname = mktmpname(outfile, ".ctf");
1001         write_ctf(savetd, outfile, tmpname,
1002             CTF_COMPRESS | write_fuzzy_match | dynsym | keep_stabs);
1003         if (rename(tmpname, outfile) != 0)
1004                 terminate("Couldn't rename output temp file %s", tmpname);
1005         free(tmpname);
1006 
1007         return (0);
1008 }