1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
  27  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  28  */
  29 
  30 #include <sys/types.h>
  31 #include <sys/reg.h>
  32 #include <sys/privregs.h>
  33 #include <sys/stack.h>
  34 #include <sys/frame.h>
  35 
  36 #include <mdb/mdb_ia32util.h>
  37 #include <mdb/mdb_target_impl.h>
  38 #include <mdb/mdb_kreg_impl.h>
  39 #include <mdb/mdb_debug.h>
  40 #include <mdb/mdb_modapi.h>
  41 #include <mdb/mdb_err.h>
  42 #include <mdb/mdb.h>
  43 
  44 /*
  45  * We also define an array of register names and their corresponding
  46  * array indices.  This is used by the getareg and putareg entry points,
  47  * and also by our register variable discipline.
  48  */
  49 const mdb_tgt_regdesc_t mdb_ia32_kregs[] = {
  50         { "savfp", KREG_SAVFP, MDB_TGT_R_EXPORT },
  51         { "savpc", KREG_SAVPC, MDB_TGT_R_EXPORT },
  52         { "eax", KREG_EAX, MDB_TGT_R_EXPORT },
  53         { "ax", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  54         { "ah", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
  55         { "al", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
  56         { "ebx", KREG_EBX, MDB_TGT_R_EXPORT },
  57         { "bx", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  58         { "bh", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
  59         { "bl", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
  60         { "ecx", KREG_ECX, MDB_TGT_R_EXPORT },
  61         { "cx", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  62         { "ch", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
  63         { "cl", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
  64         { "edx", KREG_EDX, MDB_TGT_R_EXPORT },
  65         { "dx", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  66         { "dh", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
  67         { "dl", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
  68         { "esi", KREG_ESI, MDB_TGT_R_EXPORT },
  69         { "si", KREG_ESI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  70         { "edi", KREG_EDI, MDB_TGT_R_EXPORT },
  71         { "di", EDI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  72         { "ebp", KREG_EBP, MDB_TGT_R_EXPORT },
  73         { "bp", KREG_EBP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  74         { "esp", KREG_ESP, MDB_TGT_R_EXPORT },
  75         { "sp", KREG_ESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  76         { "cs", KREG_CS, MDB_TGT_R_EXPORT },
  77         { "ds", KREG_DS, MDB_TGT_R_EXPORT },
  78         { "ss", KREG_SS, MDB_TGT_R_EXPORT },
  79         { "es", KREG_ES, MDB_TGT_R_EXPORT },
  80         { "fs", KREG_FS, MDB_TGT_R_EXPORT },
  81         { "gs", KREG_GS, MDB_TGT_R_EXPORT },
  82         { "eflags", KREG_EFLAGS, MDB_TGT_R_EXPORT },
  83         { "eip", KREG_EIP, MDB_TGT_R_EXPORT },
  84         { "uesp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
  85         { "usp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
  86         { "trapno", KREG_TRAPNO, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
  87         { "err", KREG_ERR, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
  88         { NULL, 0, 0 }
  89 };
  90 
  91 void
  92 mdb_ia32_printregs(const mdb_tgt_gregset_t *gregs)
  93 {
  94         const kreg_t *kregs = &gregs->kregs[0];
  95         kreg_t eflags = kregs[KREG_EFLAGS];
  96 
  97         mdb_printf("%%cs = 0x%04x\t\t%%eax = 0x%0?p %A\n",
  98             kregs[KREG_CS], kregs[KREG_EAX], kregs[KREG_EAX]);
  99 
 100         mdb_printf("%%ds = 0x%04x\t\t%%ebx = 0x%0?p %A\n",
 101             kregs[KREG_DS], kregs[KREG_EBX], kregs[KREG_EBX]);
 102 
 103         mdb_printf("%%ss = 0x%04x\t\t%%ecx = 0x%0?p %A\n",
 104             kregs[KREG_SS], kregs[KREG_ECX], kregs[KREG_ECX]);
 105 
 106         mdb_printf("%%es = 0x%04x\t\t%%edx = 0x%0?p %A\n",
 107             kregs[KREG_ES], kregs[KREG_EDX], kregs[KREG_EDX]);
 108 
 109         mdb_printf("%%fs = 0x%04x\t\t%%esi = 0x%0?p %A\n",
 110             kregs[KREG_FS], kregs[KREG_ESI], kregs[KREG_ESI]);
 111 
 112         mdb_printf("%%gs = 0x%04x\t\t%%edi = 0x%0?p %A\n\n",
 113             kregs[KREG_GS], kregs[KREG_EDI], kregs[KREG_EDI]);
 114 
 115         mdb_printf("%%eip = 0x%0?p %A\n", kregs[KREG_EIP], kregs[KREG_EIP]);
 116         mdb_printf("%%ebp = 0x%0?p\n", kregs[KREG_EBP]);
 117         mdb_printf("%%esp = 0x%0?p\n\n", kregs[KREG_ESP]);
 118         mdb_printf("%%eflags = 0x%08x\n", eflags);
 119 
 120         mdb_printf("  id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
 121             (eflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
 122             (eflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
 123             (eflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
 124             (eflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
 125             (eflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
 126             (eflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
 127             (eflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
 128             (eflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);
 129 
 130         mdb_printf("  status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n\n",
 131             (eflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
 132             (eflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
 133             (eflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
 134             (eflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
 135             (eflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
 136             (eflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
 137             (eflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
 138             (eflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
 139             (eflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");
 140 
 141 #ifndef _KMDB
 142         mdb_printf("  %%uesp = 0x%0?x\n", kregs[KREG_UESP]);
 143 #endif
 144         mdb_printf("%%trapno = 0x%x\n", kregs[KREG_TRAPNO]);
 145         mdb_printf("   %%err = 0x%x\n", kregs[KREG_ERR]);
 146 }
 147 
 148 /*
 149  * Given a return address (%eip), determine the likely number of arguments
 150  * that were pushed on the stack prior to its execution.  We do this by
 151  * expecting that a typical call sequence consists of pushing arguments on
 152  * the stack, executing a call instruction, and then performing an add
 153  * on %esp to restore it to the value prior to pushing the arguments for
 154  * the call.  We attempt to detect such an add, and divide the addend
 155  * by the size of a word to determine the number of pushed arguments.
 156  */
 157 static uint_t
 158 kvm_argcount(mdb_tgt_t *t, uintptr_t eip, ssize_t size)
 159 {
 160         uint8_t ins[6];
 161         ulong_t n;
 162 
 163         enum {
 164                 M_MODRM_ESP = 0xc4,     /* Mod/RM byte indicates %esp */
 165                 M_ADD_IMM32 = 0x81,     /* ADD imm32 to r/m32 */
 166                 M_ADD_IMM8  = 0x83      /* ADD imm8 to r/m32 */
 167         };
 168 
 169         if (mdb_tgt_vread(t, ins, sizeof (ins), eip) != sizeof (ins))
 170                 return (0);
 171 
 172         if (ins[1] != M_MODRM_ESP)
 173                 return (0);
 174 
 175         switch (ins[0]) {
 176         case M_ADD_IMM32:
 177                 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
 178                 break;
 179 
 180         case M_ADD_IMM8:
 181                 n = ins[2];
 182                 break;
 183 
 184         default:
 185                 n = 0;
 186         }
 187 
 188         return (MIN((ssize_t)n, size) / sizeof (long));
 189 }
 190 
 191 int
 192 mdb_ia32_kvm_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
 193     mdb_tgt_stack_f *func, void *arg)
 194 {
 195         mdb_tgt_gregset_t gregs;
 196         kreg_t *kregs = &gregs.kregs[0];
 197         int got_pc = (gsp->kregs[KREG_EIP] != 0);
 198         int err;
 199 
 200         struct {
 201                 uintptr_t fr_savfp;
 202                 uintptr_t fr_savpc;
 203                 long fr_argv[32];
 204         } fr;
 205 
 206         uintptr_t fp = gsp->kregs[KREG_EBP];
 207         uintptr_t pc = gsp->kregs[KREG_EIP];
 208         uintptr_t lastfp = 0;
 209 
 210         ssize_t size;
 211         uint_t argc;
 212         int detect_exception_frames = 0;
 213 #ifndef _KMDB
 214         int xp;
 215 
 216         if ((mdb_readsym(&xp, sizeof (xp), "xpv_panicking") != -1) && (xp > 0))
 217                 detect_exception_frames = 1;
 218 #endif
 219 
 220         bcopy(gsp, &gregs, sizeof (gregs));
 221 
 222         while (fp != 0) {
 223 
 224                 /*
 225                  * Ensure progress (increasing fp), and prevent
 226                  * endless loop with the same FP.
 227                  */
 228                 if (fp <= lastfp) {
 229                         err = EMDB_STKFRAME;
 230                         goto badfp;
 231                 }
 232                 if (fp & (STACK_ALIGN - 1)) {
 233                         err = EMDB_STKALIGN;
 234                         goto badfp;
 235                 }
 236                 if ((size = mdb_tgt_vread(t, &fr, sizeof (fr), fp)) >=
 237                     (ssize_t)(2 * sizeof (uintptr_t))) {
 238                         size -= (ssize_t)(2 * sizeof (uintptr_t));
 239                         argc = kvm_argcount(t, fr.fr_savpc, size);
 240                 } else {
 241                         err = EMDB_NOMAP;
 242                         goto badfp;
 243                 }
 244 
 245                 if (got_pc && func(arg, pc, argc, fr.fr_argv, &gregs) != 0)
 246                         break;
 247 
 248                 kregs[KREG_ESP] = kregs[KREG_EBP];
 249 
 250                 lastfp = fp;
 251                 fp = fr.fr_savfp;
 252                 /*
 253                  * The Xen hypervisor marks a stack frame as belonging to
 254                  * an exception by inverting the bits of the pointer to
 255                  * that frame.  We attempt to identify these frames by
 256                  * inverting the pointer and seeing if it is within 0xfff
 257                  * bytes of the last frame.
 258                  */
 259                 if (detect_exception_frames)
 260                         if ((fp != 0) && (fp < lastfp) &&
 261                             ((lastfp ^ ~fp) < 0xfff))
 262                                 fp = ~fp;
 263 
 264                 kregs[KREG_EBP] = fp;
 265                 kregs[KREG_EIP] = pc = fr.fr_savpc;
 266 
 267                 got_pc = (pc != 0);
 268         }
 269 
 270         return (0);
 271 
 272 badfp:
 273         mdb_printf("%p [%s]", fp, mdb_strerror(err));
 274         return (set_errno(err));
 275 }
 276 
 277 /*
 278  * Determine the return address for the current frame.  Typically this is the
 279  * fr_savpc value from the current frame, but we also perform some special
 280  * handling to see if we are stopped on one of the first two instructions of a
 281  * typical function prologue, in which case %ebp will not be set up yet.
 282  */
 283 int
 284 mdb_ia32_step_out(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
 285     mdb_instr_t curinstr)
 286 {
 287         struct frame fr;
 288         GElf_Sym s;
 289         char buf[1];
 290 
 291         enum {
 292                 M_PUSHL_EBP     = 0x55, /* pushl %ebp */
 293                 M_MOVL_EBP      = 0x8b  /* movl %esp, %ebp */
 294         };
 295 
 296         if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
 297             buf, 0, &s, NULL) == 0) {
 298                 if (pc == s.st_value && curinstr == M_PUSHL_EBP)
 299                         fp = sp - 4;
 300                 else if (pc == s.st_value + 1 && curinstr == M_MOVL_EBP)
 301                         fp = sp;
 302         }
 303 
 304         if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) == sizeof (fr)) {
 305                 *p = fr.fr_savpc;
 306                 return (0);
 307         }
 308 
 309         return (-1); /* errno is set for us */
 310 }
 311 
 312 /*
 313  * Return the address of the next instruction following a call, or return -1
 314  * and set errno to EAGAIN if the target should just single-step.  We perform
 315  * a bit of disassembly on the current instruction in order to determine if it
 316  * is a call and how many bytes should be skipped, depending on the exact form
 317  * of the call instruction that is being used.
 318  */
 319 int
 320 mdb_ia32_next(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, mdb_instr_t curinstr)
 321 {
 322         uint8_t m;
 323 
 324         enum {
 325                 M_CALL_REL = 0xe8, /* call near with relative displacement */
 326                 M_CALL_REG = 0xff, /* call near indirect or call far register */
 327 
 328                 M_MODRM_MD = 0xc0, /* mask for Mod/RM byte Mod field */
 329                 M_MODRM_OP = 0x38, /* mask for Mod/RM byte opcode field */
 330                 M_MODRM_RM = 0x07, /* mask for Mod/RM byte R/M field */
 331 
 332                 M_MD_IND   = 0x00, /* Mod code for [REG] */
 333                 M_MD_DSP8  = 0x40, /* Mod code for disp8[REG] */
 334                 M_MD_DSP32 = 0x80, /* Mod code for disp32[REG] */
 335                 M_MD_REG   = 0xc0, /* Mod code for REG */
 336 
 337                 M_OP_IND   = 0x10, /* Opcode for call near indirect */
 338                 M_RM_DSP32 = 0x05  /* R/M code for disp32 */
 339         };
 340 
 341         /*
 342          * If the opcode is a near call with relative displacement, assume the
 343          * displacement is a rel32 from the next instruction.
 344          */
 345         if (curinstr == M_CALL_REL) {
 346                 *p = pc + sizeof (mdb_instr_t) + sizeof (uint32_t);
 347                 return (0);
 348         }
 349 
 350         /*
 351          * If the opcode is a call near indirect or call far register opcode,
 352          * read the subsequent Mod/RM byte to perform additional decoding.
 353          */
 354         if (curinstr == M_CALL_REG) {
 355                 if (mdb_tgt_vread(t, &m, sizeof (m), pc + 1) != sizeof (m))
 356                         return (-1); /* errno is set for us */
 357 
 358                 /*
 359                  * If the Mod/RM opcode extension indicates a near indirect
 360                  * call, then skip the appropriate number of additional
 361                  * bytes depending on the addressing form that is used.
 362                  */
 363                 if ((m & M_MODRM_OP) == M_OP_IND) {
 364                         switch (m & M_MODRM_MD) {
 365                         case M_MD_DSP8:
 366                                 *p = pc + 3; /* skip pr_instr, m, disp8 */
 367                                 break;
 368                         case M_MD_DSP32:
 369                                 *p = pc + 6; /* skip pr_instr, m, disp32 */
 370                                 break;
 371                         case M_MD_IND:
 372                                 if ((m & M_MODRM_RM) == M_RM_DSP32) {
 373                                         *p = pc + 6;
 374                                         break; /* skip pr_instr, m, disp32 */
 375                                 }
 376                                 /* FALLTHRU */
 377                         case M_MD_REG:
 378                                 *p = pc + 2; /* skip pr_instr, m */
 379                                 break;
 380                         }
 381                         return (0);
 382                 }
 383         }
 384 
 385         return (set_errno(EAGAIN));
 386 }
 387 
 388 /*ARGSUSED*/
 389 int
 390 mdb_ia32_kvm_frame(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
 391     const mdb_tgt_gregset_t *gregs)
 392 {
 393         argc = MIN(argc, (uint_t)arglim);
 394         mdb_printf("%a(", pc);
 395 
 396         if (argc != 0) {
 397                 mdb_printf("%lr", *argv++);
 398                 for (argc--; argc != 0; argc--)
 399                         mdb_printf(", %lr", *argv++);
 400         }
 401 
 402         mdb_printf(")\n");
 403         return (0);
 404 }
 405 
 406 int
 407 mdb_ia32_kvm_framev(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
 408     const mdb_tgt_gregset_t *gregs)
 409 {
 410         argc = MIN(argc, (uint_t)arglim);
 411         mdb_printf("%0?lr %a(", gregs->kregs[KREG_EBP], pc);
 412 
 413         if (argc != 0) {
 414                 mdb_printf("%lr", *argv++);
 415                 for (argc--; argc != 0; argc--)
 416                         mdb_printf(", %lr", *argv++);
 417         }
 418 
 419         mdb_printf(")\n");
 420         return (0);
 421 }