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198 int

199 nmdb_amd64_kvm stack_iter(nmdb_tgt_t *t, const ndb_tgt_gregset _t
200 mdb_t gt _stack_f *func, void *arg)

201 {

202 ndb_t gt _gregset _t gregs;

203 kreg_t *kregs = &gregs. kregs[O0];

204 int got_pc = (gsp->kregs[KREG RIP] = 0);
205 uint_t argc, reg_argc;

206 long fr_argv[32];

207 int start_index; /* index to save_instr where to start
208 int err;

209 int i;

211 struct fr {

211 struct {

212 uintptr_t fr_savfp;

213 uintptr_t fr_savpc;

214 } fr;

216 uintptr_t fp = gsp->kregs[ KREG RBP];

217 uintptr_t pc = gsp- >kregs[KREG RIP];

218 uintptr_t lastfp =

220 ssize_t size;

221 ssi ze_t insnsize;

222 uint8_t ins[ SAVEARGS_| NSN_SEQ LEN];

224 GEl f_Syms;

225 ndb_symi nfo_t sip;

226 ndb_ctf_funcinfo_t nfp;

227 int xpv_panic = 0;

228 int advance_tortoise = 1;

229 uintptr_t tortoise_fp = 0;

230 #endif /* ! codereview */
231 #ifndef _KVDB

*gsp,

conparison */

232 int xp;

234 if ((mdb_readsyn(&xp, sizeof (xp), "xpv_panicking") !=-1) & (xp > 0))
235 Xpv_panic = 1;

236 #endi f

238 bcopy(gsp, &gregs, sizeof (gregs));

240 while (fp !=0) {

241 int args_style = 0;

243 if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) != sizeof (fr)) {
244 err = EMDB NOVAP;

228 /*

229 * Ensure progress (increasing fp), and prevent

230 * endl ess loop with the same FP.

231 */

232 if (fp <= lastfp) {

233 err = EMDB_STKFRAME;

245 got o badf p;

246 }

248 if (tortoise_fp == 0) {
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tortoise_fp = fp;
} else {
if (advance_tortoise != 0) {
struct fr tfr;

if (mdb_tgt_vread(t, &fr, sizeof (tfr),
tortoise_fp) = sizeof (tfr)) {
if (ndb_tgt_vread(t, & r, sizeof (fr), fp) != sizeof (fr)) {
err = ENDB_NOVAP;
got o badf p;
}

tortoise_fp = tfr.fr_savfp;

}

if (fp == tortoise_fp) {
err = EMDB_STKFRAME;
got o badf p;

}

advance_tortoi se = ! advance_tortoi se;

coderevi ew */
if ((mdb_tgt_l ookup_by_ addr(t pc MDB_TGT_SYM FUZZY,
NULL, 0, &s, &sip) == 0) &&
(rrdb_ctf func |nfo(&5 &sip, &nfp) == 0)) {
int return_type = mdb_ctf_type_| klnd(nfp nmf_return);
mdb_ctf_id_t args_types[5];

argc = nfp.mf_argc;

/
If the function returns a structure or union
greater than 16 bytes in size %di contains the
address in which to store the return val ue rather
than for an argunent.

* Ok Gk Ok k%
-~

if ((return_type == CTF_K_STRUCT ||
return_type == CTF_K UNION) &&
mdb_ctf_type_: 5|ze(r'rfp nf_return) > 16)
start_index = 1;
el se
start_i ndex = O;

*

* |f any of the first 5 argunments are a structure
* |ess than 16 bytes in size, it will be passed

* spread across two argunent registers, and we wll
*/not cope.

*

if (mdb_ctf_func_args(&rfp, 5, args_types) == CTF_ERR)
argc = 0;

(i =0; i <MN5, argc); i++) {
int t = mdb_ctf_type_kind(args_types[i]);

if (((t == CTF_K_STRUCT) ||
(t == CTF_.K_ UNION)) ~ &&
mdb_ctf_type_size(args_types[i]) <= 16) {
argc = 0;
br eak;

} else {
argc = 0;
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The nunber of instructions to search for argument saving is
limted such that only instructions prior to %c are

consi dered such that we never read argunents from a
function where the saving code has not in fact yet

execut ed.

* ok kb kb
-

insnsize = MN(M N(s.st_size, SAVEARGS_ | NSN_SEQ LEN),
pc - s.st_value);

if (ndb_tgt vread(t ins, insnsize, s.st_value) != insnsize)
argc = 0;

if ((argc !'=0) &&
((args_style = saveargs_has_args(ins, insnsize, argc,
start_index)) != SAVEARGS_NO ARGS)) {
/* Up to 6 argumants are passed via registers */
reg_argc = MN((6 - start_index), nfp.ntf_argc);
size = reg_argc * sizeof (long);

/*
* |f Studio pushed a structure return address as an
* argurment, we need to read one nore argunent than
* actually exists (the addr) to make everything |ine
*
*/up.
if (args_style == SAVEARGS_STRUCT_ARGS)
size += sizeof (long);

if (mdb_tgt_vread(t, fr_argv, size, (fp - size))
I= size)
return (-1); /* errno has been set for us */
/*
* Arrange the argunents in the right order for
* printing.
*
/

for (i =0; i < (reg argc / 2); i++) {
long t = fr_argv[i];

fr_argv[i] = fr_argv[reg_ argc -0 - 1]
fr argv[reg argc - i - 1] t;

}

if (argc > reg_argc) {
size = MN((argc - reg_argc) * sizeof (long),
sizeof (fr_argv) -
(reg_argc * sizeof (long)));

if (mdb_tgt_vread(t, &fr argv[reg argc], size,
fp + sizeof (fr)) 1= size)
return (-1); /* errno has been set */

} else {
argc = 0;

}

if (got_pc && func(arg, pc, argc, fr_argv, &gregs) != 0)
break;

kregs[ KREG_RSP] = kregs[ KREG RBP] ;

stfp = fp;
= fr.fr_savfp;
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380 /*

381 * The Xen hypervisor narks a stack frane as belonging to
382 * an exception by inverting the bits of the pointer to
383 * that frane. W attenpt to identify these frames by
384 * inverting the pointer and seeing if it is within Oxfff
385 * bytes of the last frane.

386 *

387 if (xpv_| p ni c)

388 f ((fp !:0) && (fp < lastfp) &&

389 ((lastfp ~ ~fp) < Oxfff))

390 fp = ~fp;

392 kregs[ KREG RBP] = ;

393 kregs[ KREG RIP] = pc = fr.fr_savpc;

395 got_pc = (pc !'=0);

396 }

398 return (0);

400 badf p:

401 mdb_printf("% [%]", fp, mdb_strerror(err));

402 return (set_errno(err));

403 }

405 /*

406 * Determine the return address for the current frame. Typically this is the
407 * fr_savpc value fromthe current frame, but we al so perform sone speci al
408 * handling to see if we are stopped on one of the first two instructions of
409 * a typical function prologue, In which case %bp will not be set up yet.
410 */

411 int

412 ndb_and64_step_out (ndb_tgt _t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
413 “mdb_instr_t curinstr)

414 {

415 struct frame fr;

416 CEl f _Sym s;

417 char buf[l]

419 enum {

420 M _PUSHQ RBP = 0x55, /* pushq % bp */

421 M REX_ W = 0x48, /* REX prefix with only Wset */
422 M_MOVL_RBP = 0x8b /* novq %sp, %bp with prefix */
423 };

425 if (mdb_tgt_l ookup_by_addr(t, pc, MDB_TGT_SYM FUZZY,

426 buf, 0, &, NULL) == 0) {

427 if (pc == s.st_value && curinstr == M PUSHQ RBP)

428 fp = sp - 8;

429 else if (pc == s. st_val ue + 1 & curinstr == MREX W {
430 if (mdb_tgt_vread(t, &curinstr, sizeof (curinstr),
431 pc + 1) == sizeof (curinstr) && curinstr ==
432 M_MOVL_RBP)

433 fp = sp;

434 }

435 }

437 if (ndb_tgt_vread(t, & r, sizeof (fr), fp) == sizeof (fr)) {

438 *p = fr.fr_savpc;

439 return (0);

440 1

442 return (-1); /* errno is set for us */

443 }

445 | * ARGSUSED*/
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446 int
447 ndb_and64_next (ndb_tgt_t *t, uintptr_t *p, kreg_t pc, ndb_instr_t curinstr)
448 {

449 ndb_t gt _addr_t npc;

450 ndb_t gt _addr_t cal | pc;

452 enum {

453 M CALL_REL = Oxe8, /* call near with relative displacenment */
454 M CALL_REG = Oxff, /* call near indirect or call far register */
456 M REX_LO = 0x40,

457 M REX_H = Ox4f

458 s

460 I*

461 * |f the opcode is a near call with relative displacenment, assune the
462 * di splacenent is a rel32 fromthe next instruction.

463 */

464 if (curinstr == M CALL_REL) {

465 *p = pc + sizeof (ndb_instr_t) + sizeof (uint32_t);

466 return (0);

467 }

469 /* Skip the rex prefix, if any */

470 call pc = pc;

471 while (curinstr > M REX LO & curinstr <= M REX_H) {

472 if (mdb_tgt_vread(t, &curinstr, sizeof (curinstr), ++callpc) !=
473 si zeof (curinstr))

474 return (-1); /* errno is set for us */

475 }

477 if (curinstr '= MCALL_REG {

478 /* 1t’s not a call */

479 return (set_errno(EAGAIN));

480 }

482 if ((npc = ndb_dis_nextins(mdb. mdisasm t, MDB_TGT_AS VIRT, pc)) == pc)
483 return (-1); /* errno is set for us */

485 *p = npc;

486 return (0);

487 }

489 /* ARGSUSED*/

490 int

491 ndb_anmd64_kvm frame(void *arglim uintptr_t pc, uint_t argc, const long *argv,
492 const ndb_tgt_gregset_t *gregs)

493 {

494 argc = M N(argc, (uintptr_t)arglim;
495 mdb_printf("%(", pc);

497 if (argc !'=0) {

498 mdb_printf("%r", *argv+t);
499 for (argc--; argc != 0; argc--)
500 mdb_printf(", %r", *argv++);
501 }

503 ndb_printf(")\n");

504 return (0);

505 }

507 int

508 ndb_and64_kvm franev(void *arglim uintptr_t pc, uint_t argc, const |long *argv,
509 const ndb_tgt_gregset _t *gregs)

510 {

511 /*
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530 }

* Historically adb limted stack trace argunent display to a fixed-

* size nunber of argunents since no synbolic debuggi ng info existed.
* On and64 we can detect the true nunber of saved arguments so only
* respect an arglimof zero; otherw se display the entire argv[].

*

if (arglim== 0)
argc = 0;

nmdb_printf("%®?r % (", gregs->kregs[ KREG RBP], pc);

if (argc '=0) {
mdb_printf("%r", *argv++);
for (argc--; argc != 0; argc--)
mdb_printf (", %r", *argv++);
}

mdb_printf(")\n");
return (0);
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191 int

192 nmdb_i a32_kvm stack_iter(nmdb_tgt_t *t, const ndb_tgt_gregset_t *gsp,
193 mdb_t gt _stack_f *func, void *arg)

194 {

195 ndb_t gt _gregset _t gregs;

196 kreg_t *kregs = &gregs. kregs[O0];

197 int got_pc = (gsp->kregs[KREG EIP] != 0);
198 int err;

200 struct fr {

200 struct {

201 uintptr_t fr_savfp;

202 uintptr_t fr_savpc;

203 long fr_argv[32];

204 } fr;

206 uintptr_t fp = gsp->kregs[ KREG EBP];
207 uintptr_t pc = gsp->kregs[ KREG El P];
208 uintptr_t lastfp = 0;

210 ssize_t size;

211 uint_t argc;

212 int detect_exception_franmes = O;

213 int advance_tortoise = 1;

214 uintptr_t tortoise_fp = 0;

215 #endif /* ! codereview */
216 #ifndef _KVDB

217 int xp;

219 if ((mdb_readsyn(&xp, sizeof (xp), "xpv_panicking") !=-1) & (xp > 0))
220 det ect _exception_franmes = 1;

221 #endif

223 bcopy(gsp, &gregs, sizeof (gregs));

225 while (fp !=0) {

214 /*

215 * Ensure progress (increasing fp) and prevent
216 * endless loop with the sane FP.

217

218 |f (fp <= lastfp) {

219 err = EMDB_STKFRAME;

220 got o badf p;

221

226 if (fp & (STACK_ALIGN - 1)) {

227 err = EMDB_STKALI G\;

228 got o badf p;

229

230 1f ((size = mdb_tgt_vread(t, &r, sizeof (fr), fp)) >=
231 (ssize_t)(2 * sizeof (uintptr_t)))

232 S|ze—=(SS|zet)(2* si zeof (uintptr_t));
233 argc = kvm argcount(t, fr.fr_savpc, size);
234 } else {

235 err = EVDB_NOVAP;

236 got o badf p;

237 }
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239 if (tortoise_fp == 0) {

240 tortoise_fp = fp;

241 } else {

242 if (advance_tortoise != 0) {

243 struct fr tfr;

245 if (mdb_tgt_vread(t, &fr, sizeof (tfr),
246 tort0|sefp) I =" sizeof (tfr)) {

247 err = EVDB_NOVAP;

248 got o badf p;

249 }

251 tortoise_fp = tfr.fr_savfp;

252 }

254 if (fp == tortoise_fp) {

255 err = EMDB_STKFRAME;

256 got o badf p;

257 }

258 }

260 advance_tortoi se = ! advance_tortoi se;

262 #endif /* | codereview */

263 if (got_pc & func(arg, pc, argc, fr.fr_argv, &gregs) != 0)
264 br eak;

266 kregs[ KREG_ESP] = kregs[ KREG EBP] ;

268 lastfp = fp;

269 fp = fr.fr_savfp;

270 /*

271 * The Xen hypervisor marks a stack frame as bel onging to
272 * an exception by inverting the bits of the pointer to
273 * that frane. We attenpt to identify these frames by
274 * inverting the pointer and seeing if it is within Oxfff
275 * bytes of the last frane.

276 */

277 if (detect_exception_franes)

278 if ((fp!=0) & (fp < lastfp) &&

279 ((lastfp ~ ~fp) < Oxfff))

280 fp = ~fp;

282 kregs[ KREG EBP] = fp;

283 kregs[ KREG EI P] = pc = fr.fr_savpc;

285 got_pc = (pc !'= 0);

286 }

288 return (0);

290 badf p:

291 mdb_printf ("% [%]", fp, nmdb_strerror(err));

292 return (set_errno(err));

293 }

295 /*

296 * Determine the return address for the current frane. Typically this is the
297 * fr_savpc value fromthe current frame, but we al so perform sone special
298 * handling to see if we are stopped on one of the first two instructions of a
299 * typical function prologue, in which case %bp will not be set up yet.
300 */

301 int

302 ndb ia32_step_out(ndb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
303 “mdb_instr_t curinstr)

304 {
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305 struct frame fr;

306 CEl f _Sym s;

307 char buf[1];

309 enum {

310 M _PUSHL_EBP = 0x55, /* pushl %bp */

311 M _MOVL_EBP = 0x8b /* novl %esp, %bp */

312 };

314 if (mdb_tgt_l| ookup_by_addr(t, pc, MDB_TGI_SYM FUZZY,

315 buf; 0, &, NULL) == 0) {

316 if (pc == s.st_value && curinstr == M PUSHL_EBP)

317 fp =sp - 4

318 else if (pc == s.st_value + 1 & curinstr == M MOVL_EBP)

319 fp = sp;

320 }

322 if (mdb_tgt_vread(t, & r, sizeof (fr), fp) == sizeof (fr)) {

323 *p = fr.fr_savpc;

324 return (0);

325 }

327 return (-1); /* errno is set for us */

328 }

330 /*

331 * Return the address of the next instruction following a call, or return -1
332 * and set errno to EAGAIN if the target should just single-step. W perform
333 * a bit of disassenbly on the current instruction in order to determne if it
334 * is a call and how many bytes shoul d be skipped, depending on the exact form
335 * of the call instruction that is being used.

336 */

337 int

338 ndb_i a32_next (nmdb_tgt _t *t, uintptr_t *p, kreg_t pc, ndb_instr_t curinstr)
339 {

340 uint8.t m

342 enum {

343 M CALL_REL = 0Oxe8, /* call near with relative displacenent */
344 M CALL_REG = Oxff, /* call near indirect or call far register */
346 M MODRM MD = 0xcO, /* mask for Mod/RM byte Md field */

347 M _MODRM OP = 0x38, /* mask for Mdd/ RM byte opcode field */
348 M_MODRM RM = 0x07, /* mask for Mbd/ RMbyte R'RMfield */

350 MM_IND = 0x00, /* Mdd code for [REG */

351 M MD DSP8 = 0x40, /* Mod code for disp8[ REG */

352 M MD DSP32 = 0x80, /* Mod code for disp32[ REG */

353 M MD REG = 0xcO, /* Mdd code for REG */

355 MOP_IND = 0x10, /* QOpcode for call near indirect */

356 M RM DSP32 = 0x05 /* R/ M code for disp32 */

357 }i

359 /*

360 * |f the opcode is a near call with relative displacenment, assune the
361 * displacenent is a rel 32 fromthe next instruction.

362 */

363 if (curinstr == M CALL_REL) {

364 *p = pc + sizeof (ndb_instr_t) + sizeof (uint32_t);

365 return (0);

366 }

368 /*

369 * |If the opcode is a call near indirect or call far register opcode,

370 * read the subsequent Mbd/ RM byte to perform additional decoding.
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371 */

372 if (curinstr == M CALL_REGQ {

373 if (mdb_tgt_vread(t, &m sizeof (m, pc + 1) != sizeof (M)
374 return (-1); /* errno is set for us */

376 /*

377 * |f the Mbd/ RM opcode extension indicates a near indirect
378 * call, then skip the appropriate nunber of additional

379 * bytes depending on the addressing formthat is used.

380 */

381 if ((mM& M MODRM OP) == M OP_IND) {

382 switch (m & M MODRM WD) {

383 case M _MD_DSP8:

384 *p =pc + 3; /* skip pr_instr, m disp8 */
385 break;

386 case M _MD_DSP32:

387 *p = pc + 6; /* skip pr_instr, m disp32 */
388 br eak;

389 case M MD I ND:

390 i ((m& MMODRM RV == M RM DSP32) {

391 *p = pc + 6

392 break; /* skip pr_instr, m disp32 */
393 }

394 /* FALLTHRU */

395 case M _MD_REG

396 *p = pc + 2; /* skip pr_instr, m*/

397 br eak;

398 }

399 return (0);

400 }

401 }

403 return (set_errno(EAGAIN));

404 }

406 /* ARGSUSED*/

407 int

408 ndb_i a32_kvm frame(void *arglim uintptr_t pc, uint_t argc, const |long *argv,
409 const nmdb_tgt_gregset _t *gregs)

410 {

411 argc = M N(argc, (uint_t)arglim;

412 mdb_printf("%(", pc);

414 if (argc !'=0) {

415 mdb_printf("%r", *argv++);

416 for (argc--; argc != 0; argc--)

417 mdb_printf(", %r", *argv++);

418 }

420 mdb_printf(")\n");

421 return (0);

422 }

424 int

425 ndb_i a32_kvm framev(void *arglim uintptr_t pc, uint_t argc, const long *argv,
426 const ndb_tgt_gregset _t *gregs)

427 {

428 argc = MN(argc, (uint_t)arglim;

429 mdb_printf("%®?r % (", gregs->kregs[ KREG EBP], pc);

431 if (argc '=0) {

432 mdb_printf("%r", *argv++);

433 for (argc--; argc != 0; argc--)

434 mdb_printf (", %r", *argv++);

435 1
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437 mdb_printf(")\n");
438 return (0);
439 }




