
new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c 1

**
 16334 Tue Jan 27 15:02:14 2015
new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c
5554 kmdb can’t trace stacks that begin within itself
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**
______unchanged_portion_omitted_

198 int
199 mdb_amd64_kvm_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
200 mdb_tgt_stack_f *func, void *arg)
201 {
202 mdb_tgt_gregset_t gregs;
203 kreg_t *kregs = &gregs.kregs[0];
204 int got_pc = (gsp->kregs[KREG_RIP] != 0);
205 uint_t argc, reg_argc;
206 long fr_argv[32];
207 int start_index; /* index to save_instr where to start comparison */
208 int err;
209 int i;

211 struct fr {
211 struct {
212 uintptr_t fr_savfp;
213 uintptr_t fr_savpc;
214 } fr;

216 uintptr_t fp = gsp->kregs[KREG_RBP];
217 uintptr_t pc = gsp->kregs[KREG_RIP];
218 uintptr_t lastfp = 0;

220 ssize_t size;
221 ssize_t insnsize;
222 uint8_t ins[SAVEARGS_INSN_SEQ_LEN];

224 GElf_Sym s;
225 mdb_syminfo_t sip;
226 mdb_ctf_funcinfo_t mfp;
227 int xpv_panic = 0;
228 int advance_tortoise = 1;
229 uintptr_t tortoise_fp = 0;
230 #endif /* ! codereview */
231 #ifndef _KMDB
232 int xp;

234 if ((mdb_readsym(&xp, sizeof (xp), "xpv_panicking") != -1) && (xp > 0))
235 xpv_panic = 1;
236 #endif

238 bcopy(gsp, &gregs, sizeof (gregs));

240 while (fp != 0) {
241 int args_style = 0;

243 if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) != sizeof (fr)) {
244 err = EMDB_NOMAP;
228 /*
229 * Ensure progress (increasing fp), and prevent
230 * endless loop with the same FP.
231 */
232 if (fp <= lastfp) {
233 err = EMDB_STKFRAME;
245 goto badfp;
246 }

248 if (tortoise_fp == 0) {

new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c 2

249 tortoise_fp = fp;
250 } else {
251 if (advance_tortoise != 0) {
252 struct fr tfr;

254 if (mdb_tgt_vread(t, &tfr, sizeof (tfr),
255 tortoise_fp) != sizeof (tfr)) {
236 if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) != sizeof (fr)) {
256 err = EMDB_NOMAP;
257 goto badfp;
258 }

260 tortoise_fp = tfr.fr_savfp;
261 }

263 if (fp == tortoise_fp) {
264 err = EMDB_STKFRAME;
265 goto badfp;
266 }
267 }

269 advance_tortoise = !advance_tortoise;

271 #endif /* ! codereview */
272 if ((mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
273 NULL, 0, &s, &sip) == 0) &&
274 (mdb_ctf_func_info(&s, &sip, &mfp) == 0)) {
275 int return_type = mdb_ctf_type_kind(mfp.mtf_return);
276 mdb_ctf_id_t args_types[5];

278 argc = mfp.mtf_argc;

280 /*
281 * If the function returns a structure or union
282 * greater than 16 bytes in size %rdi contains the
283 * address in which to store the return value rather
284 * than for an argument.
285 */
286 if ((return_type == CTF_K_STRUCT ||
287 return_type == CTF_K_UNION) &&
288 mdb_ctf_type_size(mfp.mtf_return) > 16)
289 start_index = 1;
290 else
291 start_index = 0;

293 /*
294 * If any of the first 5 arguments are a structure
295 * less than 16 bytes in size, it will be passed
296 * spread across two argument registers, and we will
297 * not cope.
298 */
299 if (mdb_ctf_func_args(&mfp, 5, args_types) == CTF_ERR)
300 argc = 0;

302 for (i = 0; i < MIN(5, argc); i++) {
303 int t = mdb_ctf_type_kind(args_types[i]);

305 if (((t == CTF_K_STRUCT) ||
306 (t == CTF_K_UNION)) &&
307 mdb_ctf_type_size(args_types[i]) <= 16) {
308 argc = 0;
309 break;
310 }
311 }
312 } else {
313 argc = 0;

new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c 3

314 }

316 /*
317 * The number of instructions to search for argument saving is
318 * limited such that only instructions prior to %pc are
319 * considered such that we never read arguments from a
320 * function where the saving code has not in fact yet
321 * executed.
322 */
323 insnsize = MIN(MIN(s.st_size, SAVEARGS_INSN_SEQ_LEN),
324 pc - s.st_value);

326 if (mdb_tgt_vread(t, ins, insnsize, s.st_value) != insnsize)
327 argc = 0;

329 if ((argc != 0) &&
330 ((args_style = saveargs_has_args(ins, insnsize, argc,
331 start_index)) != SAVEARGS_NO_ARGS)) {
332 /* Up to 6 arguments are passed via registers */
333 reg_argc = MIN((6 - start_index), mfp.mtf_argc);
334 size = reg_argc * sizeof (long);

336 /*
337 * If Studio pushed a structure return address as an
338 * argument, we need to read one more argument than
339 * actually exists (the addr) to make everything line
340 * up.
341 */
342 if (args_style == SAVEARGS_STRUCT_ARGS)
343 size += sizeof (long);

345 if (mdb_tgt_vread(t, fr_argv, size, (fp - size))
346 != size)
347 return (-1); /* errno has been set for us */

349 /*
350 * Arrange the arguments in the right order for
351 * printing.
352 */
353 for (i = 0; i < (reg_argc / 2); i++) {
354 long t = fr_argv[i];

356 fr_argv[i] = fr_argv[reg_argc - i - 1];
357 fr_argv[reg_argc - i - 1] = t;
358 }

360 if (argc > reg_argc) {
361 size = MIN((argc - reg_argc) * sizeof (long),
362 sizeof (fr_argv) -
363 (reg_argc * sizeof (long)));

365 if (mdb_tgt_vread(t, &fr_argv[reg_argc], size,
366 fp + sizeof (fr)) != size)
367 return (-1); /* errno has been set */
368 }
369 } else {
370 argc = 0;
371 }

373 if (got_pc && func(arg, pc, argc, fr_argv, &gregs) != 0)
374 break;

376 kregs[KREG_RSP] = kregs[KREG_RBP];

378 lastfp = fp;
379 fp = fr.fr_savfp;

new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c 4

380 /*
381 * The Xen hypervisor marks a stack frame as belonging to
382 * an exception by inverting the bits of the pointer to
383 * that frame. We attempt to identify these frames by
384 * inverting the pointer and seeing if it is within 0xfff
385 * bytes of the last frame.
386 */
387 if (xpv_panic)
388 if ((fp != 0) && (fp < lastfp) &&
389 ((lastfp ^ ~fp) < 0xfff))
390 fp = ~fp;

392 kregs[KREG_RBP] = fp;
393 kregs[KREG_RIP] = pc = fr.fr_savpc;

395 got_pc = (pc != 0);
396 }

398 return (0);

400 badfp:
401 mdb_printf("%p [%s]", fp, mdb_strerror(err));
402 return (set_errno(err));
403 }

405 /*
406 * Determine the return address for the current frame. Typically this is the
407 * fr_savpc value from the current frame, but we also perform some special
408 * handling to see if we are stopped on one of the first two instructions of
409 * a typical function prologue, in which case %rbp will not be set up yet.
410 */
411 int
412 mdb_amd64_step_out(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
413 mdb_instr_t curinstr)
414 {
415 struct frame fr;
416 GElf_Sym s;
417 char buf[1];

419 enum {
420 M_PUSHQ_RBP = 0x55, /* pushq %rbp */
421 M_REX_W = 0x48, /* REX prefix with only W set */
422 M_MOVL_RBP = 0x8b /* movq %rsp, %rbp with prefix */
423 };

425 if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
426 buf, 0, &s, NULL) == 0) {
427 if (pc == s.st_value && curinstr == M_PUSHQ_RBP)
428 fp = sp - 8;
429 else if (pc == s.st_value + 1 && curinstr == M_REX_W) {
430 if (mdb_tgt_vread(t, &curinstr, sizeof (curinstr),
431 pc + 1) == sizeof (curinstr) && curinstr ==
432 M_MOVL_RBP)
433 fp = sp;
434 }
435 }

437 if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) == sizeof (fr)) {
438 *p = fr.fr_savpc;
439 return (0);
440 }

442 return (-1); /* errno is set for us */
443 }

445 /*ARGSUSED*/

new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c 5

446 int
447 mdb_amd64_next(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, mdb_instr_t curinstr)
448 {
449 mdb_tgt_addr_t npc;
450 mdb_tgt_addr_t callpc;

452 enum {
453 M_CALL_REL = 0xe8, /* call near with relative displacement */
454 M_CALL_REG = 0xff, /* call near indirect or call far register */

456 M_REX_LO = 0x40,
457 M_REX_HI = 0x4f
458 };

460 /*
461 * If the opcode is a near call with relative displacement, assume the
462 * displacement is a rel32 from the next instruction.
463 */
464 if (curinstr == M_CALL_REL) {
465 *p = pc + sizeof (mdb_instr_t) + sizeof (uint32_t);
466 return (0);
467 }

469 /* Skip the rex prefix, if any */
470 callpc = pc;
471 while (curinstr >= M_REX_LO && curinstr <= M_REX_HI) {
472 if (mdb_tgt_vread(t, &curinstr, sizeof (curinstr), ++callpc) !=
473 sizeof (curinstr))
474 return (-1); /* errno is set for us */
475 }

477 if (curinstr != M_CALL_REG) {
478 /* It’s not a call */
479 return (set_errno(EAGAIN));
480 }

482 if ((npc = mdb_dis_nextins(mdb.m_disasm, t, MDB_TGT_AS_VIRT, pc)) == pc)
483 return (-1); /* errno is set for us */

485 *p = npc;
486 return (0);
487 }

489 /*ARGSUSED*/
490 int
491 mdb_amd64_kvm_frame(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
492 const mdb_tgt_gregset_t *gregs)
493 {
494 argc = MIN(argc, (uintptr_t)arglim);
495 mdb_printf("%a(", pc);

497 if (argc != 0) {
498 mdb_printf("%lr", *argv++);
499 for (argc--; argc != 0; argc--)
500 mdb_printf(", %lr", *argv++);
501 }

503 mdb_printf(")\n");
504 return (0);
505 }

507 int
508 mdb_amd64_kvm_framev(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
509 const mdb_tgt_gregset_t *gregs)
510 {
511 /*

new/usr/src/cmd/mdb/intel/mdb/mdb_amd64util.c 6

512 * Historically adb limited stack trace argument display to a fixed-
513 * size number of arguments since no symbolic debugging info existed.
514 * On amd64 we can detect the true number of saved arguments so only
515 * respect an arglim of zero; otherwise display the entire argv[].
516 */
517 if (arglim == 0)
518 argc = 0;

520 mdb_printf("%0?lr %a(", gregs->kregs[KREG_RBP], pc);

522 if (argc != 0) {
523 mdb_printf("%lr", *argv++);
524 for (argc--; argc != 0; argc--)
525 mdb_printf(", %lr", *argv++);
526 }

528 mdb_printf(")\n");
529 return (0);
530 }

new/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c 1

**
 12957 Tue Jan 27 15:02:14 2015
new/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c
5554 kmdb can’t trace stacks that begin within itself
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**
______unchanged_portion_omitted_

191 int
192 mdb_ia32_kvm_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
193 mdb_tgt_stack_f *func, void *arg)
194 {
195 mdb_tgt_gregset_t gregs;
196 kreg_t *kregs = &gregs.kregs[0];
197 int got_pc = (gsp->kregs[KREG_EIP] != 0);
198 int err;

200 struct fr {
200 struct {
201 uintptr_t fr_savfp;
202 uintptr_t fr_savpc;
203 long fr_argv[32];
204 } fr;

206 uintptr_t fp = gsp->kregs[KREG_EBP];
207 uintptr_t pc = gsp->kregs[KREG_EIP];
208 uintptr_t lastfp = 0;

210 ssize_t size;
211 uint_t argc;
212 int detect_exception_frames = 0;
213 int advance_tortoise = 1;
214 uintptr_t tortoise_fp = 0;
215 #endif /* ! codereview */
216 #ifndef _KMDB
217 int xp;

219 if ((mdb_readsym(&xp, sizeof (xp), "xpv_panicking") != -1) && (xp > 0))
220 detect_exception_frames = 1;
221 #endif

223 bcopy(gsp, &gregs, sizeof (gregs));

225 while (fp != 0) {

214 /*
215 * Ensure progress (increasing fp), and prevent
216 * endless loop with the same FP.
217 */
218 if (fp <= lastfp) {
219 err = EMDB_STKFRAME;
220 goto badfp;
221 }
226 if (fp & (STACK_ALIGN - 1)) {
227 err = EMDB_STKALIGN;
228 goto badfp;
229 }
230 if ((size = mdb_tgt_vread(t, &fr, sizeof (fr), fp)) >=
231 (ssize_t)(2 * sizeof (uintptr_t))) {
232 size -= (ssize_t)(2 * sizeof (uintptr_t));
233 argc = kvm_argcount(t, fr.fr_savpc, size);
234 } else {
235 err = EMDB_NOMAP;
236 goto badfp;
237 }

new/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c 2

239 if (tortoise_fp == 0) {
240 tortoise_fp = fp;
241 } else {
242 if (advance_tortoise != 0) {
243 struct fr tfr;

245 if (mdb_tgt_vread(t, &tfr, sizeof (tfr),
246 tortoise_fp) != sizeof (tfr)) {
247 err = EMDB_NOMAP;
248 goto badfp;
249 }

251 tortoise_fp = tfr.fr_savfp;
252 }

254 if (fp == tortoise_fp) {
255 err = EMDB_STKFRAME;
256 goto badfp;
257 }
258 }

260 advance_tortoise = !advance_tortoise;

262 #endif /* ! codereview */
263 if (got_pc && func(arg, pc, argc, fr.fr_argv, &gregs) != 0)
264 break;

266 kregs[KREG_ESP] = kregs[KREG_EBP];

268 lastfp = fp;
269 fp = fr.fr_savfp;
270 /*
271 * The Xen hypervisor marks a stack frame as belonging to
272 * an exception by inverting the bits of the pointer to
273 * that frame. We attempt to identify these frames by
274 * inverting the pointer and seeing if it is within 0xfff
275 * bytes of the last frame.
276 */
277 if (detect_exception_frames)
278 if ((fp != 0) && (fp < lastfp) &&
279 ((lastfp ^ ~fp) < 0xfff))
280 fp = ~fp;

282 kregs[KREG_EBP] = fp;
283 kregs[KREG_EIP] = pc = fr.fr_savpc;

285 got_pc = (pc != 0);
286 }

288 return (0);

290 badfp:
291 mdb_printf("%p [%s]", fp, mdb_strerror(err));
292 return (set_errno(err));
293 }

295 /*
296 * Determine the return address for the current frame. Typically this is the
297 * fr_savpc value from the current frame, but we also perform some special
298 * handling to see if we are stopped on one of the first two instructions of a
299 * typical function prologue, in which case %ebp will not be set up yet.
300 */
301 int
302 mdb_ia32_step_out(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
303 mdb_instr_t curinstr)
304 {

new/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c 3

305 struct frame fr;
306 GElf_Sym s;
307 char buf[1];

309 enum {
310 M_PUSHL_EBP = 0x55, /* pushl %ebp */
311 M_MOVL_EBP = 0x8b /* movl %esp, %ebp */
312 };

314 if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
315 buf, 0, &s, NULL) == 0) {
316 if (pc == s.st_value && curinstr == M_PUSHL_EBP)
317 fp = sp - 4;
318 else if (pc == s.st_value + 1 && curinstr == M_MOVL_EBP)
319 fp = sp;
320 }

322 if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) == sizeof (fr)) {
323 *p = fr.fr_savpc;
324 return (0);
325 }

327 return (-1); /* errno is set for us */
328 }

330 /*
331 * Return the address of the next instruction following a call, or return -1
332 * and set errno to EAGAIN if the target should just single-step. We perform
333 * a bit of disassembly on the current instruction in order to determine if it
334 * is a call and how many bytes should be skipped, depending on the exact form
335 * of the call instruction that is being used.
336 */
337 int
338 mdb_ia32_next(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, mdb_instr_t curinstr)
339 {
340 uint8_t m;

342 enum {
343 M_CALL_REL = 0xe8, /* call near with relative displacement */
344 M_CALL_REG = 0xff, /* call near indirect or call far register */

346 M_MODRM_MD = 0xc0, /* mask for Mod/RM byte Mod field */
347 M_MODRM_OP = 0x38, /* mask for Mod/RM byte opcode field */
348 M_MODRM_RM = 0x07, /* mask for Mod/RM byte R/M field */

350 M_MD_IND = 0x00, /* Mod code for [REG] */
351 M_MD_DSP8 = 0x40, /* Mod code for disp8[REG] */
352 M_MD_DSP32 = 0x80, /* Mod code for disp32[REG] */
353 M_MD_REG = 0xc0, /* Mod code for REG */

355 M_OP_IND = 0x10, /* Opcode for call near indirect */
356 M_RM_DSP32 = 0x05 /* R/M code for disp32 */
357 };

359 /*
360 * If the opcode is a near call with relative displacement, assume the
361 * displacement is a rel32 from the next instruction.
362 */
363 if (curinstr == M_CALL_REL) {
364 *p = pc + sizeof (mdb_instr_t) + sizeof (uint32_t);
365 return (0);
366 }

368 /*
369 * If the opcode is a call near indirect or call far register opcode,
370 * read the subsequent Mod/RM byte to perform additional decoding.

new/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c 4

371 */
372 if (curinstr == M_CALL_REG) {
373 if (mdb_tgt_vread(t, &m, sizeof (m), pc + 1) != sizeof (m))
374 return (-1); /* errno is set for us */

376 /*
377 * If the Mod/RM opcode extension indicates a near indirect
378 * call, then skip the appropriate number of additional
379 * bytes depending on the addressing form that is used.
380 */
381 if ((m & M_MODRM_OP) == M_OP_IND) {
382 switch (m & M_MODRM_MD) {
383 case M_MD_DSP8:
384 *p = pc + 3; /* skip pr_instr, m, disp8 */
385 break;
386 case M_MD_DSP32:
387 *p = pc + 6; /* skip pr_instr, m, disp32 */
388 break;
389 case M_MD_IND:
390 if ((m & M_MODRM_RM) == M_RM_DSP32) {
391 *p = pc + 6;
392 break; /* skip pr_instr, m, disp32 */
393 }
394 /* FALLTHRU */
395 case M_MD_REG:
396 *p = pc + 2; /* skip pr_instr, m */
397 break;
398 }
399 return (0);
400 }
401 }

403 return (set_errno(EAGAIN));
404 }

406 /*ARGSUSED*/
407 int
408 mdb_ia32_kvm_frame(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
409 const mdb_tgt_gregset_t *gregs)
410 {
411 argc = MIN(argc, (uint_t)arglim);
412 mdb_printf("%a(", pc);

414 if (argc != 0) {
415 mdb_printf("%lr", *argv++);
416 for (argc--; argc != 0; argc--)
417 mdb_printf(", %lr", *argv++);
418 }

420 mdb_printf(")\n");
421 return (0);
422 }

424 int
425 mdb_ia32_kvm_framev(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
426 const mdb_tgt_gregset_t *gregs)
427 {
428 argc = MIN(argc, (uint_t)arglim);
429 mdb_printf("%0?lr %a(", gregs->kregs[KREG_EBP], pc);

431 if (argc != 0) {
432 mdb_printf("%lr", *argv++);
433 for (argc--; argc != 0; argc--)
434 mdb_printf(", %lr", *argv++);
435 }

new/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c 5

437 mdb_printf(")\n");
438 return (0);
439 }

