new usr/src/cnd/ mdb/ i nt el / mdb/ mdb_and64util . c

R R R R

16334 Tue Jan 27 15:02:14 2015
new usr/src/cnd/ mdb/ i nt el / mdb/ mdb_and64util . c
5554 kndb can’t trace stacks that begin within itself
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

LR R

__unchanged_portion_omtted_

198 int

199 nmdb_amd64_kvm stack_iter(nmdb_tgt_t *t, const ndb_tgt_gregset _t
200 mdb_t gt _stack_f *func, void *arg)

201 {

202 ndb_t gt _gregset _t gregs;

203 kreg_t *kregs = &gregs. kregs[O0];

204 int got_pc = (gsp->kregs[KREG RIP] = 0);
205 uint_t argc, reg_argc;

206 long fr_argv[32];

207 int start_index; /* index to save_instr where to start
208 int err;

209 int i;

211 struct fr {

211 struct {

212 uintptr_t fr_savfp;

213 uintptr_t fr_savpc;

214 } fr;

216 uintptr_t fp = gsp->kregs[KREG RBP];

217 uintptr_t pc = gsp- >kregs[KREG RIP];

218 uintptr_t lastfp =

220 ssize_t size;

221 ssi ze_t insnsize;

222 uint8_t ins[SAVEARGS_| NSN_SEQ LEN];

224 GEl f_Syms;

225 ndb_symi nfo_t sip;

226 ndb_ctf_funcinfo_t nfp;

227 int xpv_panic = 0;

228 int advance_tortoise = 1;

229 uintptr_t tortoise_fp = 0;

230 #endif /* ! codereview */
231 #ifndef _KVDB

*gsp,

conparison */

232 int xp;

234 if ((mdb_readsyn(&xp, sizeof (xp), "xpv_panicking") !=-1) & (xp > 0))
235 Xpv_panic = 1;

236 #endi f

238 bcopy(gsp, &gregs, sizeof (gregs));

240 while (fp !=0) {

241 int args_style = 0;

243 if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) != sizeof (fr)) {
244 err = EMDB NOVAP;

228 /*

229 * Ensure progress (increasing fp), and prevent

230 * endl ess loop with the same FP.

231 */

232 if (fp <= lastfp) {

233 err = EMDB_STKFRAME;

245 got o badf p;

246 }

248 if (tortoise_fp == 0) {

new usr/src/cnd/ mdb/ i nt el / ndb/ mdb_and64util . c

249
250
251
252

254
255
236
256
257
258

260
261

263
264
265
266
267

269

271
272
273
274
275
276

278

280
281
282
283
284
285
286
287
288
289
290
291

293
294
295
296
297
298
299
300

302
303

305
306
307
308
309
310
311
312
313

tortoise_fp = fp;
} else {
if (advance_tortoise != 0) {
struct fr tfr;

if (mdb_tgt_vread(t, &fr, sizeof (tfr),
tortoise_fp) = sizeof (tfr)) {
if (ndb_tgt_vread(t, & r, sizeof (fr), fp) != sizeof (fr)) {
err = ENDB_NOVAP;
got o badf p;
}

tortoise_fp = tfr.fr_savfp;

}

if (fp == tortoise_fp) {
err = EMDB_STKFRAME;
got o badf p;

}

advance_tortoi se = ! advance_tortoi se;

coderevi ew */
if ((mdb_tgt_l ookup_by_ addr(t pc MDB_TGT_SYM FUZZY,
NULL, 0, &s, &sip) == 0) &&
(rrdb_ctf func |nfo(&5 &sip, &nfp) == 0)) {
int return_type = mdb_ctf_type_| klnd(nfp nmf_return);
mdb_ctf_id_t args_types[5];

argc = nfp.mf_argc;

/
If the function returns a structure or union
greater than 16 bytes in size %di contains the
address in which to store the return val ue rather
than for an argunent.

* Ok Gk Ok k%
-~

if ((return_type == CTF_K_STRUCT ||
return_type == CTF_K UNION) &&
mdb_ctf_type_: 5|ze(r'rfp nf_return) > 16)
start_index = 1;
el se
start_i ndex = O;

*

* |f any of the first 5 argunments are a structure
* |ess than 16 bytes in size, it will be passed

* spread across two argunent registers, and we wll
*/not cope.

*

if (mdb_ctf_func_args(&rfp, 5, args_types) == CTF_ERR)
argc = 0;

(i =0; i <MN5, argc); i++) {
int t = mdb_ctf_type_kind(args_types[i]);

if (((t == CTF_K_STRUCT) ||
(t == CTF_.K_ UNION)) ~ &&
mdb_ctf_type_size(args_types[i]) <= 16) {
argc = 0;
br eak;

} else {
argc = 0;

new usr/src/cnd/ mdb/ i nt el / mdb/ mdb_and64util . c

314

316
317
318
319
320
321
322
323
324

326
327

329
330
331
332
333
334

336
337
338
339
340
341
342
343

345
346
347

349
350
351
352
353
354

356
357
358

360
361
362
363

365
366
367
368
369
370
371

373
374

376

378
379

The nunber of instructions to search for argument saving is
limted such that only instructions prior to %c are

consi dered such that we never read argunents from a
function where the saving code has not in fact yet

execut ed.

* ok kb kb
-

insnsize = MN(M N(s.st_size, SAVEARGS_ | NSN_SEQ LEN),
pc - s.st_value);

if (ndb_tgt vread(t ins, insnsize, s.st_value) != insnsize)
argc = 0;

if ((argc !'=0) &&
((args_style = saveargs_has_args(ins, insnsize, argc,
start_index)) != SAVEARGS_NO ARGS)) {
/* Up to 6 argumants are passed via registers */
reg_argc = MN((6 - start_index), nfp.ntf_argc);
size = reg_argc * sizeof (long);

/*
* |f Studio pushed a structure return address as an
* argurment, we need to read one nore argunent than
* actually exists (the addr) to make everything |ine
*
*/up.
if (args_style == SAVEARGS_STRUCT_ARGS)
size += sizeof (long);

if (mdb_tgt_vread(t, fr_argv, size, (fp - size))
I= size)
return (-1); /* errno has been set for us */
/*
* Arrange the argunents in the right order for
* printing.
*
/

for (i =0; i < (reg argc / 2); i++) {
long t = fr_argv[i];

fr_argv[i] = fr_argv[reg_ argc -0 - 1]
fr argv[reg argc - i - 1] t;

}

if (argc > reg_argc) {
size = MN((argc - reg_argc) * sizeof (long),
sizeof (fr_argv) -
(reg_argc * sizeof (long)));

if (mdb_tgt_vread(t, &fr argv[reg argc], size,
fp + sizeof (fr)) 1= size)
return (-1); /* errno has been set */

} else {
argc = 0;

}

if (got_pc && func(arg, pc, argc, fr_argv, &gregs) != 0)
break;

kregs[KREG_RSP] = kregs[KREG RBP] ;

stfp = fp;
= fr.fr_savfp;

new usr/src/cnd/ mdb/ i nt el / ndb/ mdb_and64util . c

380 /*

381 * The Xen hypervisor narks a stack frane as belonging to
382 * an exception by inverting the bits of the pointer to
383 * that frane. W attenpt to identify these frames by
384 * inverting the pointer and seeing if it is within Oxfff
385 * bytes of the last frane.

386 *

387 if (xpv_| p ni c)

388 f ((fp !:0) && (fp < lastfp) &&

389 ((lastfp ~ ~fp) < Oxfff))

390 fp = ~fp;

392 kregs[KREG RBP] = ;

393 kregs[KREG RIP] = pc = fr.fr_savpc;

395 got_pc = (pc !'=0);

396 }

398 return (0);

400 badf p:

401 mdb_printf("% [%]", fp, mdb_strerror(err));

402 return (set_errno(err));

403 }

405 /*

406 * Determine the return address for the current frame. Typically this is the
407 * fr_savpc value fromthe current frame, but we al so perform sone speci al
408 * handling to see if we are stopped on one of the first two instructions of
409 * a typical function prologue, In which case %bp will not be set up yet.
410 */

411 int

412 ndb_and64_step_out (ndb_tgt _t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
413 “mdb_instr_t curinstr)

414 {

415 struct frame fr;

416 CEl f _Sym s;

417 char buf[l]

419 enum {

420 M _PUSHQ RBP = 0x55, /* pushq % bp */

421 M REX_ W = 0x48, /* REX prefix with only Wset */
422 M_MOVL_RBP = 0x8b /* novq %sp, %bp with prefix */
423 };

425 if (mdb_tgt_l ookup_by_addr(t, pc, MDB_TGT_SYM FUZZY,

426 buf, 0, &, NULL) == 0) {

427 if (pc == s.st_value && curinstr == M PUSHQ RBP)

428 fp = sp - 8;

429 else if (pc == s. st_val ue + 1 & curinstr == MREX W {
430 if (mdb_tgt_vread(t, &curinstr, sizeof (curinstr),
431 pc + 1) == sizeof (curinstr) && curinstr ==
432 M_MOVL_RBP)

433 fp = sp;

434 }

435 }

437 if (ndb_tgt_vread(t, & r, sizeof (fr), fp) == sizeof (fr)) {

438 *p = fr.fr_savpc;

439 return (0);

440 1

442 return (-1); /* errno is set for us */

443 }

445 | * ARGSUSED*/

new usr/src/ cnd/ mdb/ i nt el / ndb/ ndb_and64util . c 5

446 int
447 ndb_and64_next (ndb_tgt_t *t, uintptr_t *p, kreg_t pc, ndb_instr_t curinstr)
448 {

449 ndb_t gt _addr_t npc;

450 ndb_t gt _addr_t cal | pc;

452 enum {

453 M CALL_REL = Oxe8, /* call near with relative displacenment */
454 M CALL_REG = Oxff, /* call near indirect or call far register */
456 M REX_LO = 0x40,

457 M REX_H = Ox4f

458 s

460 I*

461 * |f the opcode is a near call with relative displacenment, assune the
462 * di splacenent is a rel32 fromthe next instruction.

463 */

464 if (curinstr == M CALL_REL) {

465 *p = pc + sizeof (ndb_instr_t) + sizeof (uint32_t);

466 return (0);

467 }

469 /* Skip the rex prefix, if any */

470 call pc = pc;

471 while (curinstr > M REX LO & curinstr <= M REX_H) {

472 if (mdb_tgt_vread(t, &curinstr, sizeof (curinstr), ++callpc) !=
473 si zeof (curinstr))

474 return (-1); /* errno is set for us */

475 }

477 if (curinstr '= MCALL_REG {

478 /* 1t’s not a call */

479 return (set_errno(EAGAIN));

480 }

482 if ((npc = ndb_dis_nextins(mdb. mdisasm t, MDB_TGT_AS VIRT, pc)) == pc)
483 return (-1); /* errno is set for us */

485 *p = npc;

486 return (0);

487 }

489 /* ARGSUSED*/

490 int

491 ndb_anmd64_kvm frame(void *arglim uintptr_t pc, uint_t argc, const long *argv,
492 const ndb_tgt_gregset_t *gregs)

493 {

494 argc = M N(argc, (uintptr_t)arglim;
495 mdb_printf("%(", pc);

497 if (argc !'=0) {

498 mdb_printf("%r", *argv+t);
499 for (argc--; argc != 0; argc--)
500 mdb_printf(", %r", *argv++);
501 }

503 ndb_printf(")\n");

504 return (0);

505 }

507 int

508 ndb_and64_kvm franev(void *arglim uintptr_t pc, uint_t argc, const |long *argv,
509 const ndb_tgt_gregset _t *gregs)

510 {

511 /*

new usr/src/cnd/ mdb/ i nt el / nmdb/ mdb_and64util . c

512
513
514
515
516
517
518

520

522
523
524
525
526

528
529
530 }

* Historically adb limted stack trace argunent display to a fixed-

* size nunber of argunents since no synbolic debuggi ng info existed.
* On and64 we can detect the true nunber of saved arguments so only
* respect an arglimof zero; otherw se display the entire argv[].

*

if (arglim== 0)
argc = 0;

nmdb_printf("%®?r % (", gregs->kregs[KREG RBP], pc);

if (argc '=0) {
mdb_printf("%r", *argv++);
for (argc--; argc != 0; argc--)
mdb_printf (", %r", *argv++);
}

mdb_printf(")\n");
return (0);

new usr/src/cnd/ mdb/ i ntel / mdb/ mdb_i a32util.c

R R R R

12957 Tue Jan 27 15:02: 14 2015
new usr/src/cnd/ mdb/ i ntel / mdb/ mdb_i a32util.c
5554 kndb can’t trace stacks that begin within itself
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

LR R

__unchanged_portion_omtted_

191 int

192 nmdb_i a32_kvm stack_iter(nmdb_tgt_t *t, const ndb_tgt_gregset_t *gsp,
193 mdb_t gt _stack_f *func, void *arg)

194 {

195 ndb_t gt _gregset _t gregs;

196 kreg_t *kregs = &gregs. kregs[O0];

197 int got_pc = (gsp->kregs[KREG EIP] != 0);
198 int err;

200 struct fr {

200 struct {

201 uintptr_t fr_savfp;

202 uintptr_t fr_savpc;

203 long fr_argv[32];

204 } fr;

206 uintptr_t fp = gsp->kregs[KREG EBP];
207 uintptr_t pc = gsp->kregs[KREG El P];
208 uintptr_t lastfp = 0;

210 ssize_t size;

211 uint_t argc;

212 int detect_exception_franmes = O;

213 int advance_tortoise = 1;

214 uintptr_t tortoise_fp = 0;

215 #endif /* ! codereview */
216 #ifndef _KVDB

217 int xp;

219 if ((mdb_readsyn(&xp, sizeof (xp), "xpv_panicking") !=-1) & (xp > 0))
220 det ect _exception_franmes = 1;

221 #endif

223 bcopy(gsp, &gregs, sizeof (gregs));

225 while (fp !=0) {

214 /*

215 * Ensure progress (increasing fp) and prevent
216 * endless loop with the sane FP.

217

218 |f (fp <= lastfp) {

219 err = EMDB_STKFRAME;

220 got o badf p;

221

226 if (fp & (STACK_ALIGN - 1)) {

227 err = EMDB_STKALI G\;

228 got o badf p;

229

230 1f ((size = mdb_tgt_vread(t, &r, sizeof (fr), fp)) >=
231 (ssize_t)(2 * sizeof (uintptr_t)))

232 S|ze—=(SS|zet)(2* si zeof (uintptr_t));
233 argc = kvm argcount(t, fr.fr_savpc, size);
234 } else {

235 err = EVDB_NOVAP;

236 got o badf p;

237 }

new usr/src/cnd/ mdb/ i ntel / mdb/ mdb_i a32util.c

239 if (tortoise_fp == 0) {

240 tortoise_fp = fp;

241 } else {

242 if (advance_tortoise != 0) {

243 struct fr tfr;

245 if (mdb_tgt_vread(t, &fr, sizeof (tfr),
246 tort0|sefp) I =" sizeof (tfr)) {

247 err = EVDB_NOVAP;

248 got o badf p;

249 }

251 tortoise_fp = tfr.fr_savfp;

252 }

254 if (fp == tortoise_fp) {

255 err = EMDB_STKFRAME;

256 got o badf p;

257 }

258 }

260 advance_tortoi se = ! advance_tortoi se;

262 #endif /* | codereview */

263 if (got_pc & func(arg, pc, argc, fr.fr_argv, &gregs) != 0)
264 br eak;

266 kregs[KREG_ESP] = kregs[KREG EBP] ;

268 lastfp = fp;

269 fp = fr.fr_savfp;

270 /*

271 * The Xen hypervisor marks a stack frame as bel onging to
272 * an exception by inverting the bits of the pointer to
273 * that frane. We attenpt to identify these frames by
274 * inverting the pointer and seeing if it is within Oxfff
275 * bytes of the last frane.

276 */

277 if (detect_exception_franes)

278 if ((fp!=0) & (fp < lastfp) &&

279 ((lastfp ~ ~fp) < Oxfff))

280 fp = ~fp;

282 kregs[KREG EBP] = fp;

283 kregs[KREG EI P] = pc = fr.fr_savpc;

285 got_pc = (pc !'= 0);

286 }

288 return (0);

290 badf p:

291 mdb_printf ("% [%]", fp, nmdb_strerror(err));

292 return (set_errno(err));

293 }

295 /*

296 * Determine the return address for the current frane. Typically this is the
297 * fr_savpc value fromthe current frame, but we al so perform sone special
298 * handling to see if we are stopped on one of the first two instructions of a
299 * typical function prologue, in which case %bp will not be set up yet.
300 */

301 int

302 ndb ia32_step_out(ndb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
303 “mdb_instr_t curinstr)

304 {

new usr/src/cnd/ mdb/ i ntel / mdb/ mdb_i a32util.c 3
305 struct frame fr;

306 CEl f _Sym s;

307 char buf[1];

309 enum {

310 M _PUSHL_EBP = 0x55, /* pushl %bp */

311 M _MOVL_EBP = 0x8b /* novl %esp, %bp */

312 };

314 if (mdb_tgt_l| ookup_by_addr(t, pc, MDB_TGI_SYM FUZZY,

315 buf; 0, &, NULL) == 0) {

316 if (pc == s.st_value && curinstr == M PUSHL_EBP)

317 fp =sp - 4

318 else if (pc == s.st_value + 1 & curinstr == M MOVL_EBP)

319 fp = sp;

320 }

322 if (mdb_tgt_vread(t, & r, sizeof (fr), fp) == sizeof (fr)) {

323 *p = fr.fr_savpc;

324 return (0);

325 }

327 return (-1); /* errno is set for us */

328 }

330 /*

331 * Return the address of the next instruction following a call, or return -1
332 * and set errno to EAGAIN if the target should just single-step. W perform
333 * a bit of disassenbly on the current instruction in order to determne if it
334 * is a call and how many bytes shoul d be skipped, depending on the exact form
335 * of the call instruction that is being used.

336 */

337 int

338 ndb_i a32_next (nmdb_tgt _t *t, uintptr_t *p, kreg_t pc, ndb_instr_t curinstr)
339 {

340 uint8.t m

342 enum {

343 M CALL_REL = 0Oxe8, /* call near with relative displacenent */
344 M CALL_REG = Oxff, /* call near indirect or call far register */
346 M MODRM MD = 0xcO, /* mask for Mod/RM byte Md field */

347 M _MODRM OP = 0x38, /* mask for Mdd/ RM byte opcode field */
348 M_MODRM RM = 0x07, /* mask for Mbd/ RMbyte R'RMfield */

350 MM_IND = 0x00, /* Mdd code for [REG */

351 M MD DSP8 = 0x40, /* Mod code for disp8[REG */

352 M MD DSP32 = 0x80, /* Mod code for disp32[REG */

353 M MD REG = 0xcO, /* Mdd code for REG */

355 MOP_IND = 0x10, /* QOpcode for call near indirect */

356 M RM DSP32 = 0x05 /* R/ M code for disp32 */

357 }i

359 /*

360 * |f the opcode is a near call with relative displacenment, assune the
361 * displacenent is a rel 32 fromthe next instruction.

362 */

363 if (curinstr == M CALL_REL) {

364 *p = pc + sizeof (ndb_instr_t) + sizeof (uint32_t);

365 return (0);

366 }

368 /*

369 * |If the opcode is a call near indirect or call far register opcode,

370 * read the subsequent Mbd/ RM byte to perform additional decoding.

new usr/src/cnd/ mdb/ i ntel / mdb/ mdb_i a32util.c

371 */

372 if (curinstr == M CALL_REGQ {

373 if (mdb_tgt_vread(t, &m sizeof (m, pc + 1) != sizeof (M)
374 return (-1); /* errno is set for us */

376 /*

377 * |f the Mbd/ RM opcode extension indicates a near indirect
378 * call, then skip the appropriate nunber of additional

379 * bytes depending on the addressing formthat is used.

380 */

381 if ((mM& M MODRM OP) == M OP_IND) {

382 switch (m & M MODRM WD) {

383 case M _MD_DSP8:

384 *p =pc + 3; /* skip pr_instr, m disp8 */
385 break;

386 case M _MD_DSP32:

387 *p = pc + 6; /* skip pr_instr, m disp32 */
388 br eak;

389 case M MD I ND:

390 i ((m& MMODRM RV == M RM DSP32) {

391 *p = pc + 6

392 break; /* skip pr_instr, m disp32 */
393 }

394 /* FALLTHRU */

395 case M _MD_REG

396 *p = pc + 2; /* skip pr_instr, m*/

397 br eak;

398 }

399 return (0);

400 }

401 }

403 return (set_errno(EAGAIN));

404 }

406 /* ARGSUSED*/

407 int

408 ndb_i a32_kvm frame(void *arglim uintptr_t pc, uint_t argc, const |long *argv,
409 const nmdb_tgt_gregset _t *gregs)

410 {

411 argc = M N(argc, (uint_t)arglim;

412 mdb_printf("%(", pc);

414 if (argc !'=0) {

415 mdb_printf("%r", *argv++);

416 for (argc--; argc != 0; argc--)

417 mdb_printf(", %r", *argv++);

418 }

420 mdb_printf(")\n");

421 return (0);

422 }

424 int

425 ndb_i a32_kvm framev(void *arglim uintptr_t pc, uint_t argc, const long *argv,
426 const ndb_tgt_gregset _t *gregs)

427 {

428 argc = MN(argc, (uint_t)arglim;

429 mdb_printf("%®?r % (", gregs->kregs[KREG EBP], pc);

431 if (argc '=0) {

432 mdb_printf("%r", *argv++);

433 for (argc--; argc != 0; argc--)

434 mdb_printf (", %r", *argv++);

435 1

new usr/src/cnd/ mdb/ i ntel / mdb/ mdb_i a32util.c

437 mdb_printf(")\n");
438 return (0);
439 }

