1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 /*
  26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 #if defined(ELFOBJ)
  31 #pragma weak fmal = __fmal
  32 #endif
  33 
  34 #include "libm.h"
  35 #include "fma.h"
  36 #include "fenv_inlines.h"
  37 
  38 #if defined(__sparc)
  39 
  40 static const union {
  41         unsigned i[2];
  42         double d;
  43 } C[] = {
  44         { 0x3fe00000u, 0 },
  45         { 0x40000000u, 0 },
  46         { 0x3ef00000u, 0 },
  47         { 0x3e700000u, 0 },
  48         { 0x41300000u, 0 },
  49         { 0x3e300000u, 0 },
  50         { 0x3b300000u, 0 },
  51         { 0x38300000u, 0 },
  52         { 0x42300000u, 0 },
  53         { 0x3df00000u, 0 },
  54         { 0x7fe00000u, 0 },
  55         { 0x00100000u, 0 },
  56         { 0x00100001u, 0 },
  57         { 0, 0 },
  58         { 0x7ff00000u, 0 },
  59         { 0x7ff00001u, 0 }
  60 };
  61 
  62 #define half    C[0].d
  63 #define two     C[1].d
  64 #define twom16  C[2].d
  65 #define twom24  C[3].d
  66 #define two20   C[4].d
  67 #define twom28  C[5].d
  68 #define twom76  C[6].d
  69 #define twom124 C[7].d
  70 #define two36   C[8].d
  71 #define twom32  C[9].d
  72 #define huge    C[10].d
  73 #define tiny    C[11].d
  74 #define tiny2   C[12].d
  75 #define zero    C[13].d
  76 #define inf     C[14].d
  77 #define snan    C[15].d
  78 
  79 static const unsigned int fsr_rm = 0xc0000000u;
  80 
  81 /*
  82  * fmal for SPARC: 128-bit quad precision, big-endian
  83  */
  84 long double
  85 __fmal(long double x, long double y, long double z) {
  86         union {
  87                 unsigned int i[4];
  88                 long double q;
  89         } xx, yy, zz;
  90         union {
  91                 unsigned int i[2];
  92                 double d;
  93         } u;
  94         double dx[5], dy[5], dxy[9], c, s;
  95         unsigned int xy0, xy1, xy2, xy3, xy4, xy5, xy6, xy7;
  96         unsigned int z0, z1, z2, z3, z4, z5, z6, z7;
  97         unsigned int rm, sticky;
  98         unsigned int fsr;
  99         int hx, hy, hz, ex, ey, ez, exy, sxy, sz, e, ibit;
 100         int cx, cy, cz;
 101         volatile double dummy;
 102 
 103         /* extract the high order words of the arguments */
 104         xx.q = x;
 105         yy.q = y;
 106         zz.q = z;
 107         hx = xx.i[0] & ~0x80000000;
 108         hy = yy.i[0] & ~0x80000000;
 109         hz = zz.i[0] & ~0x80000000;
 110 
 111         /*
 112          * distinguish zero, finite nonzero, infinite, and quiet nan
 113          * arguments; raise invalid and return for signaling nans
 114          */
 115         if (hx >= 0x7fff0000) {
 116                 if ((hx & 0xffff) | xx.i[1] | xx.i[2] | xx.i[3]) {
 117                         if (!(hx & 0x8000)) {
 118                                 /* signaling nan, raise invalid */
 119                                 dummy = snan;
 120                                 dummy += snan;
 121                                 xx.i[0] |= 0x8000;
 122                                 return (xx.q);
 123                         }
 124                         cx = 3; /* quiet nan */
 125                 } else
 126                         cx = 2; /* inf */
 127         } else if (hx == 0) {
 128                 cx = (xx.i[1] | xx.i[2] | xx.i[3]) ? 1 : 0;
 129                                 /* subnormal or zero */
 130         } else
 131                 cx = 1;         /* finite nonzero */
 132 
 133         if (hy >= 0x7fff0000) {
 134                 if ((hy & 0xffff) | yy.i[1] | yy.i[2] | yy.i[3]) {
 135                         if (!(hy & 0x8000)) {
 136                                 dummy = snan;
 137                                 dummy += snan;
 138                                 yy.i[0] |= 0x8000;
 139                                 return (yy.q);
 140                         }
 141                         cy = 3;
 142                 } else
 143                         cy = 2;
 144         } else if (hy == 0) {
 145                 cy = (yy.i[1] | yy.i[2] | yy.i[3]) ? 1 : 0;
 146         } else
 147                 cy = 1;
 148 
 149         if (hz >= 0x7fff0000) {
 150                 if ((hz & 0xffff) | zz.i[1] | zz.i[2] | zz.i[3]) {
 151                         if (!(hz & 0x8000)) {
 152                                 dummy = snan;
 153                                 dummy += snan;
 154                                 zz.i[0] |= 0x8000;
 155                                 return (zz.q);
 156                         }
 157                         cz = 3;
 158                 } else
 159                         cz = 2;
 160         } else if (hz == 0) {
 161                 cz = (zz.i[1] | zz.i[2] | zz.i[3]) ? 1 : 0;
 162         } else
 163                 cz = 1;
 164 
 165         /* get the fsr and clear current exceptions */
 166         __fenv_getfsr32(&fsr);
 167         fsr &= ~FSR_CEXC;
 168 
 169         /* handle all other zero, inf, and nan cases */
 170         if (cx != 1 || cy != 1 || cz != 1) {
 171                 /* if x or y is a quiet nan, return it */
 172                 if (cx == 3) {
 173                         __fenv_setfsr32(&fsr);
 174                         return (x);
 175                 }
 176                 if (cy == 3) {
 177                         __fenv_setfsr32(&fsr);
 178                         return (y);
 179                 }
 180 
 181                 /* if x*y is 0*inf, raise invalid and return the default nan */
 182                 if ((cx == 0 && cy == 2) || (cx == 2 && cy == 0)) {
 183                         dummy = zero;
 184                         dummy *= inf;
 185                         zz.i[0] = 0x7fffffff;
 186                         zz.i[1] = zz.i[2] = zz.i[3] = 0xffffffff;
 187                         return (zz.q);
 188                 }
 189 
 190                 /* if z is a quiet nan, return it */
 191                 if (cz == 3) {
 192                         __fenv_setfsr32(&fsr);
 193                         return (z);
 194                 }
 195 
 196                 /*
 197                  * now none of x, y, or z is nan; handle cases where x or y
 198                  * is inf
 199                  */
 200                 if (cx == 2 || cy == 2) {
 201                         /*
 202                          * if z is also inf, either we have inf-inf or
 203                          * the result is the same as z depending on signs
 204                          */
 205                         if (cz == 2) {
 206                                 if ((int) ((xx.i[0] ^ yy.i[0]) ^ zz.i[0]) < 0) {
 207                                         dummy = inf;
 208                                         dummy -= inf;
 209                                         zz.i[0] = 0x7fffffff;
 210                                         zz.i[1] = zz.i[2] = zz.i[3] =
 211                                                 0xffffffff;
 212                                         return (zz.q);
 213                                 }
 214                                 __fenv_setfsr32(&fsr);
 215                                 return (z);
 216                         }
 217 
 218                         /* otherwise the result is inf with appropriate sign */
 219                         zz.i[0] = ((xx.i[0] ^ yy.i[0]) & 0x80000000) |
 220                                 0x7fff0000;
 221                         zz.i[1] = zz.i[2] = zz.i[3] = 0;
 222                         __fenv_setfsr32(&fsr);
 223                         return (zz.q);
 224                 }
 225 
 226                 /* if z is inf, return it */
 227                 if (cz == 2) {
 228                         __fenv_setfsr32(&fsr);
 229                         return (z);
 230                 }
 231 
 232                 /*
 233                  * now x, y, and z are all finite; handle cases where x or y
 234                  * is zero
 235                  */
 236                 if (cx == 0 || cy == 0) {
 237                         /* either we have 0-0 or the result is the same as z */
 238                         if (cz == 0 && (int) ((xx.i[0] ^ yy.i[0]) ^ zz.i[0]) <
 239                                 0) {
 240                                 zz.i[0] = (fsr >> 30) == FSR_RM ? 0x80000000 :
 241                                         0;
 242                                 __fenv_setfsr32(&fsr);
 243                                 return (zz.q);
 244                         }
 245                         __fenv_setfsr32(&fsr);
 246                         return (z);
 247                 }
 248 
 249                 /* if we get here, x and y are nonzero finite, z must be zero */
 250                 return (x * y);
 251         }
 252 
 253         /*
 254          * now x, y, and z are all finite and nonzero; set round-to-
 255          * negative-infinity mode
 256          */
 257         __fenv_setfsr32(&fsr_rm);
 258 
 259         /*
 260          * get the signs and exponents and normalize the significands
 261          * of x and y
 262          */
 263         sxy = (xx.i[0] ^ yy.i[0]) & 0x80000000;
 264         ex = hx >> 16;
 265         hx &= 0xffff;
 266         if (!ex) {
 267                 if (hx | (xx.i[1] & 0xfffe0000)) {
 268                         ex = 1;
 269                 } else if (xx.i[1] | (xx.i[2] & 0xfffe0000)) {
 270                         hx = xx.i[1];
 271                         xx.i[1] = xx.i[2];
 272                         xx.i[2] = xx.i[3];
 273                         xx.i[3] = 0;
 274                         ex = -31;
 275                 } else if (xx.i[2] | (xx.i[3] & 0xfffe0000)) {
 276                         hx = xx.i[2];
 277                         xx.i[1] = xx.i[3];
 278                         xx.i[2] = xx.i[3] = 0;
 279                         ex = -63;
 280                 } else {
 281                         hx = xx.i[3];
 282                         xx.i[1] = xx.i[2] = xx.i[3] = 0;
 283                         ex = -95;
 284                 }
 285                 while ((hx & 0x10000) == 0) {
 286                         hx = (hx << 1) | (xx.i[1] >> 31);
 287                         xx.i[1] = (xx.i[1] << 1) | (xx.i[2] >> 31);
 288                         xx.i[2] = (xx.i[2] << 1) | (xx.i[3] >> 31);
 289                         xx.i[3] <<= 1;
 290                         ex--;
 291                 }
 292         } else
 293                 hx |= 0x10000;
 294         ey = hy >> 16;
 295         hy &= 0xffff;
 296         if (!ey) {
 297                 if (hy | (yy.i[1] & 0xfffe0000)) {
 298                         ey = 1;
 299                 } else if (yy.i[1] | (yy.i[2] & 0xfffe0000)) {
 300                         hy = yy.i[1];
 301                         yy.i[1] = yy.i[2];
 302                         yy.i[2] = yy.i[3];
 303                         yy.i[3] = 0;
 304                         ey = -31;
 305                 } else if (yy.i[2] | (yy.i[3] & 0xfffe0000)) {
 306                         hy = yy.i[2];
 307                         yy.i[1] = yy.i[3];
 308                         yy.i[2] = yy.i[3] = 0;
 309                         ey = -63;
 310                 } else {
 311                         hy = yy.i[3];
 312                         yy.i[1] = yy.i[2] = yy.i[3] = 0;
 313                         ey = -95;
 314                 }
 315                 while ((hy & 0x10000) == 0) {
 316                         hy = (hy << 1) | (yy.i[1] >> 31);
 317                         yy.i[1] = (yy.i[1] << 1) | (yy.i[2] >> 31);
 318                         yy.i[2] = (yy.i[2] << 1) | (yy.i[3] >> 31);
 319                         yy.i[3] <<= 1;
 320                         ey--;
 321                 }
 322         } else
 323                 hy |= 0x10000;
 324         exy = ex + ey - 0x3fff;
 325 
 326         /* convert the significands of x and y to doubles */
 327         c = twom16;
 328         dx[0] = (double) ((int) hx) * c;
 329         dy[0] = (double) ((int) hy) * c;
 330 
 331         c *= twom24;
 332         dx[1] = (double) ((int) (xx.i[1] >> 8)) * c;
 333         dy[1] = (double) ((int) (yy.i[1] >> 8)) * c;
 334 
 335         c *= twom24;
 336         dx[2] = (double) ((int) (((xx.i[1] << 16) | (xx.i[2] >> 16)) &
 337             0xffffff)) * c;
 338         dy[2] = (double) ((int) (((yy.i[1] << 16) | (yy.i[2] >> 16)) &
 339             0xffffff)) * c;
 340 
 341         c *= twom24;
 342         dx[3] = (double) ((int) (((xx.i[2] << 8) | (xx.i[3] >> 24)) &
 343             0xffffff)) * c;
 344         dy[3] = (double) ((int) (((yy.i[2] << 8) | (yy.i[3] >> 24)) &
 345             0xffffff)) * c;
 346 
 347         c *= twom24;
 348         dx[4] = (double) ((int) (xx.i[3] & 0xffffff)) * c;
 349         dy[4] = (double) ((int) (yy.i[3] & 0xffffff)) * c;
 350 
 351         /* form the "digits" of the product */
 352         dxy[0] = dx[0] * dy[0];
 353         dxy[1] = dx[0] * dy[1] + dx[1] * dy[0];
 354         dxy[2] = dx[0] * dy[2] + dx[1] * dy[1] + dx[2] * dy[0];
 355         dxy[3] = dx[0] * dy[3] + dx[1] * dy[2] + dx[2] * dy[1] +
 356             dx[3] * dy[0];
 357         dxy[4] = dx[0] * dy[4] + dx[1] * dy[3] + dx[2] * dy[2] +
 358             dx[3] * dy[1] + dx[4] * dy[0];
 359         dxy[5] = dx[1] * dy[4] + dx[2] * dy[3] + dx[3] * dy[2] +
 360             dx[4] * dy[1];
 361         dxy[6] = dx[2] * dy[4] + dx[3] * dy[3] + dx[4] * dy[2];
 362         dxy[7] = dx[3] * dy[4] + dx[4] * dy[3];
 363         dxy[8] = dx[4] * dy[4];
 364 
 365         /* split odd-numbered terms and combine into even-numbered terms */
 366         c = (dxy[1] + two20) - two20;
 367         dxy[0] += c;
 368         dxy[1] -= c;
 369         c = (dxy[3] + twom28) - twom28;
 370         dxy[2] += c + dxy[1];
 371         dxy[3] -= c;
 372         c = (dxy[5] + twom76) - twom76;
 373         dxy[4] += c + dxy[3];
 374         dxy[5] -= c;
 375         c = (dxy[7] + twom124) - twom124;
 376         dxy[6] += c + dxy[5];
 377         dxy[8] += (dxy[7] - c);
 378 
 379         /* propagate carries, adjusting the exponent if need be */
 380         dxy[7] = dxy[6] + dxy[8];
 381         dxy[5] = dxy[4] + dxy[7];
 382         dxy[3] = dxy[2] + dxy[5];
 383         dxy[1] = dxy[0] + dxy[3];
 384         if (dxy[1] >= two) {
 385                 dxy[0] *= half;
 386                 dxy[1] *= half;
 387                 dxy[2] *= half;
 388                 dxy[3] *= half;
 389                 dxy[4] *= half;
 390                 dxy[5] *= half;
 391                 dxy[6] *= half;
 392                 dxy[7] *= half;
 393                 dxy[8] *= half;
 394                 exy++;
 395         }
 396 
 397         /* extract the significand of x*y */
 398         s = two36;
 399         u.d = c = dxy[1] + s;
 400         xy0 = u.i[1];
 401         c -= s;
 402         dxy[1] -= c;
 403         dxy[0] -= c;
 404 
 405         s *= twom32;
 406         u.d = c = dxy[1] + s;
 407         xy1 = u.i[1];
 408         c -= s;
 409         dxy[2] += (dxy[0] - c);
 410         dxy[3] = dxy[2] + dxy[5];
 411 
 412         s *= twom32;
 413         u.d = c = dxy[3] + s;
 414         xy2 = u.i[1];
 415         c -= s;
 416         dxy[4] += (dxy[2] - c);
 417         dxy[5] = dxy[4] + dxy[7];
 418 
 419         s *= twom32;
 420         u.d = c = dxy[5] + s;
 421         xy3 = u.i[1];
 422         c -= s;
 423         dxy[4] -= c;
 424         dxy[5] = dxy[4] + dxy[7];
 425 
 426         s *= twom32;
 427         u.d = c = dxy[5] + s;
 428         xy4 = u.i[1];
 429         c -= s;
 430         dxy[6] += (dxy[4] - c);
 431         dxy[7] = dxy[6] + dxy[8];
 432 
 433         s *= twom32;
 434         u.d = c = dxy[7] + s;
 435         xy5 = u.i[1];
 436         c -= s;
 437         dxy[8] += (dxy[6] - c);
 438 
 439         s *= twom32;
 440         u.d = c = dxy[8] + s;
 441         xy6 = u.i[1];
 442         c -= s;
 443         dxy[8] -= c;
 444 
 445         s *= twom32;
 446         u.d = c = dxy[8] + s;
 447         xy7 = u.i[1];
 448 
 449         /* extract the sign, exponent, and significand of z */
 450         sz = zz.i[0] & 0x80000000;
 451         ez = hz >> 16;
 452         z0 = hz & 0xffff;
 453         if (!ez) {
 454                 if (z0 | (zz.i[1] & 0xfffe0000)) {
 455                         z1 = zz.i[1];
 456                         z2 = zz.i[2];
 457                         z3 = zz.i[3];
 458                         ez = 1;
 459                 } else if (zz.i[1] | (zz.i[2] & 0xfffe0000)) {
 460                         z0 = zz.i[1];
 461                         z1 = zz.i[2];
 462                         z2 = zz.i[3];
 463                         z3 = 0;
 464                         ez = -31;
 465                 } else if (zz.i[2] | (zz.i[3] & 0xfffe0000)) {
 466                         z0 = zz.i[2];
 467                         z1 = zz.i[3];
 468                         z2 = z3 = 0;
 469                         ez = -63;
 470                 } else {
 471                         z0 = zz.i[3];
 472                         z1 = z2 = z3 = 0;
 473                         ez = -95;
 474                 }
 475                 while ((z0 & 0x10000) == 0) {
 476                         z0 = (z0 << 1) | (z1 >> 31);
 477                         z1 = (z1 << 1) | (z2 >> 31);
 478                         z2 = (z2 << 1) | (z3 >> 31);
 479                         z3 <<= 1;
 480                         ez--;
 481                 }
 482         } else {
 483                 z0 |= 0x10000;
 484                 z1 = zz.i[1];
 485                 z2 = zz.i[2];
 486                 z3 = zz.i[3];
 487         }
 488         z4 = z5 = z6 = z7 = 0;
 489 
 490         /*
 491          * now x*y is represented by sxy, exy, and xy[0-7], and z is
 492          * represented likewise; swap if need be so |xy| <= |z|
 493          */
 494         if (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 && (xy1 > z1 ||
 495                 (xy1 == z1 && (xy2 > z2 || (xy2 == z2 && (xy3 > z3 ||
 496                 (xy3 == z3 && (xy4 | xy5 | xy6 | xy7) != 0)))))))))) {
 497                 e = sxy; sxy = sz; sz = e;
 498                 e = exy; exy = ez; ez = e;
 499                 e = xy0; xy0 = z0; z0 = e;
 500                 e = xy1; xy1 = z1; z1 = e;
 501                 e = xy2; xy2 = z2; z2 = e;
 502                 e = xy3; xy3 = z3; z3 = e;
 503                 z4 = xy4; xy4 = 0;
 504                 z5 = xy5; xy5 = 0;
 505                 z6 = xy6; xy6 = 0;
 506                 z7 = xy7; xy7 = 0;
 507         }
 508 
 509         /* shift the significand of xy keeping a sticky bit */
 510         e = ez - exy;
 511         if (e > 236) {
 512                 xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = xy6 = 0;
 513                 xy7 = 1;
 514         } else if (e >= 224) {
 515                 sticky = xy7 | xy6 | xy5 | xy4 | xy3 | xy2 | xy1 |
 516                         ((xy0 << 1) << (255 - e));
 517                 xy7 = xy0 >> (e - 224);
 518                 if (sticky)
 519                         xy7 |= 1;
 520                 xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = xy6 = 0;
 521         } else if (e >= 192) {
 522                 sticky = xy7 | xy6 | xy5 | xy4 | xy3 | xy2 |
 523                         ((xy1 << 1) << (223 - e));
 524                 xy7 = (xy1 >> (e - 192)) | ((xy0 << 1) << (223 - e));
 525                 if (sticky)
 526                         xy7 |= 1;
 527                 xy6 = xy0 >> (e - 192);
 528                 xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = 0;
 529         } else if (e >= 160) {
 530                 sticky = xy7 | xy6 | xy5 | xy4 | xy3 |
 531                         ((xy2 << 1) << (191 - e));
 532                 xy7 = (xy2 >> (e - 160)) | ((xy1 << 1) << (191 - e));
 533                 if (sticky)
 534                         xy7 |= 1;
 535                 xy6 = (xy1 >> (e - 160)) | ((xy0 << 1) << (191 - e));
 536                 xy5 = xy0 >> (e - 160);
 537                 xy0 = xy1 = xy2 = xy3 = xy4 = 0;
 538         } else if (e >= 128) {
 539                 sticky = xy7 | xy6 | xy5 | xy4 | ((xy3 << 1) << (159 - e));
 540                 xy7 = (xy3 >> (e - 128)) | ((xy2 << 1) << (159 - e));
 541                 if (sticky)
 542                         xy7 |= 1;
 543                 xy6 = (xy2 >> (e - 128)) | ((xy1 << 1) << (159 - e));
 544                 xy5 = (xy1 >> (e - 128)) | ((xy0 << 1) << (159 - e));
 545                 xy4 = xy0 >> (e - 128);
 546                 xy0 = xy1 = xy2 = xy3 = 0;
 547         } else if (e >= 96) {
 548                 sticky = xy7 | xy6 | xy5 | ((xy4 << 1) << (127 - e));
 549                 xy7 = (xy4 >> (e - 96)) | ((xy3 << 1) << (127 - e));
 550                 if (sticky)
 551                         xy7 |= 1;
 552                 xy6 = (xy3 >> (e - 96)) | ((xy2 << 1) << (127 - e));
 553                 xy5 = (xy2 >> (e - 96)) | ((xy1 << 1) << (127 - e));
 554                 xy4 = (xy1 >> (e - 96)) | ((xy0 << 1) << (127 - e));
 555                 xy3 = xy0 >> (e - 96);
 556                 xy0 = xy1 = xy2 = 0;
 557         } else if (e >= 64) {
 558                 sticky = xy7 | xy6 | ((xy5 << 1) << (95 - e));
 559                 xy7 = (xy5 >> (e - 64)) | ((xy4 << 1) << (95 - e));
 560                 if (sticky)
 561                         xy7 |= 1;
 562                 xy6 = (xy4 >> (e - 64)) | ((xy3 << 1) << (95 - e));
 563                 xy5 = (xy3 >> (e - 64)) | ((xy2 << 1) << (95 - e));
 564                 xy4 = (xy2 >> (e - 64)) | ((xy1 << 1) << (95 - e));
 565                 xy3 = (xy1 >> (e - 64)) | ((xy0 << 1) << (95 - e));
 566                 xy2 = xy0 >> (e - 64);
 567                 xy0 = xy1 = 0;
 568         } else if (e >= 32) {
 569                 sticky = xy7 | ((xy6 << 1) << (63 - e));
 570                 xy7 = (xy6 >> (e - 32)) | ((xy5 << 1) << (63 - e));
 571                 if (sticky)
 572                         xy7 |= 1;
 573                 xy6 = (xy5 >> (e - 32)) | ((xy4 << 1) << (63 - e));
 574                 xy5 = (xy4 >> (e - 32)) | ((xy3 << 1) << (63 - e));
 575                 xy4 = (xy3 >> (e - 32)) | ((xy2 << 1) << (63 - e));
 576                 xy3 = (xy2 >> (e - 32)) | ((xy1 << 1) << (63 - e));
 577                 xy2 = (xy1 >> (e - 32)) | ((xy0 << 1) << (63 - e));
 578                 xy1 = xy0 >> (e - 32);
 579                 xy0 = 0;
 580         } else if (e) {
 581                 sticky = (xy7 << 1) << (31 - e);
 582                 xy7 = (xy7 >> e) | ((xy6 << 1) << (31 - e));
 583                 if (sticky)
 584                         xy7 |= 1;
 585                 xy6 = (xy6 >> e) | ((xy5 << 1) << (31 - e));
 586                 xy5 = (xy5 >> e) | ((xy4 << 1) << (31 - e));
 587                 xy4 = (xy4 >> e) | ((xy3 << 1) << (31 - e));
 588                 xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - e));
 589                 xy2 = (xy2 >> e) | ((xy1 << 1) << (31 - e));
 590                 xy1 = (xy1 >> e) | ((xy0 << 1) << (31 - e));
 591                 xy0 >>= e;
 592         }
 593 
 594         /* if this is a magnitude subtract, negate the significand of xy */
 595         if (sxy ^ sz) {
 596                 xy0 = ~xy0;
 597                 xy1 = ~xy1;
 598                 xy2 = ~xy2;
 599                 xy3 = ~xy3;
 600                 xy4 = ~xy4;
 601                 xy5 = ~xy5;
 602                 xy6 = ~xy6;
 603                 xy7 = -xy7;
 604                 if (xy7 == 0)
 605                         if (++xy6 == 0)
 606                                 if (++xy5 == 0)
 607                                         if (++xy4 == 0)
 608                                                 if (++xy3 == 0)
 609                                                         if (++xy2 == 0)
 610                                                                 if (++xy1 == 0)
 611                                                                         xy0++;
 612         }
 613 
 614         /* add, propagating carries */
 615         z7 += xy7;
 616         e = (z7 < xy7);
 617         z6 += xy6;
 618         if (e) {
 619                 z6++;
 620                 e = (z6 <= xy6);
 621         } else
 622                 e = (z6 < xy6);
 623         z5 += xy5;
 624         if (e) {
 625                 z5++;
 626                 e = (z5 <= xy5);
 627         } else
 628                 e = (z5 < xy5);
 629         z4 += xy4;
 630         if (e) {
 631                 z4++;
 632                 e = (z4 <= xy4);
 633         } else
 634                 e = (z4 < xy4);
 635         z3 += xy3;
 636         if (e) {
 637                 z3++;
 638                 e = (z3 <= xy3);
 639         } else
 640                 e = (z3 < xy3);
 641         z2 += xy2;
 642         if (e) {
 643                 z2++;
 644                 e = (z2 <= xy2);
 645         } else
 646                 e = (z2 < xy2);
 647         z1 += xy1;
 648         if (e) {
 649                 z1++;
 650                 e = (z1 <= xy1);
 651         } else
 652                 e = (z1 < xy1);
 653         z0 += xy0;
 654         if (e)
 655                 z0++;
 656 
 657         /* postnormalize and collect rounding information into z4 */
 658         if (ez < 1) {
 659                 /* result is tiny; shift right until exponent is within range */
 660                 e = 1 - ez;
 661                 if (e > 116) {
 662                         z4 = 1; /* result can't be exactly zero */
 663                         z0 = z1 = z2 = z3 = 0;
 664                 } else if (e >= 96) {
 665                         sticky = z7 | z6 | z5 | z4 | z3 | z2 |
 666                                 ((z1 << 1) << (127 - e));
 667                         z4 = (z1 >> (e - 96)) | ((z0 << 1) << (127 - e));
 668                         if (sticky)
 669                                 z4 |= 1;
 670                         z3 = z0 >> (e - 96);
 671                         z0 = z1 = z2 = 0;
 672                 } else if (e >= 64) {
 673                         sticky = z7 | z6 | z5 | z4 | z3 |
 674                                 ((z2 << 1) << (95 - e));
 675                         z4 = (z2 >> (e - 64)) | ((z1 << 1) << (95 - e));
 676                         if (sticky)
 677                                 z4 |= 1;
 678                         z3 = (z1 >> (e - 64)) | ((z0 << 1) << (95 - e));
 679                         z2 = z0 >> (e - 64);
 680                         z0 = z1 = 0;
 681                 } else if (e >= 32) {
 682                         sticky = z7 | z6 | z5 | z4 | ((z3 << 1) << (63 - e));
 683                         z4 = (z3 >> (e - 32)) | ((z2 << 1) << (63 - e));
 684                         if (sticky)
 685                                 z4 |= 1;
 686                         z3 = (z2 >> (e - 32)) | ((z1 << 1) << (63 - e));
 687                         z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - e));
 688                         z1 = z0 >> (e - 32);
 689                         z0 = 0;
 690                 } else {
 691                         sticky = z7 | z6 | z5 | (z4 << 1) << (31 - e);
 692                         z4 = (z4 >> e) | ((z3 << 1) << (31 - e));
 693                         if (sticky)
 694                                 z4 |= 1;
 695                         z3 = (z3 >> e) | ((z2 << 1) << (31 - e));
 696                         z2 = (z2 >> e) | ((z1 << 1) << (31 - e));
 697                         z1 = (z1 >> e) | ((z0 << 1) << (31 - e));
 698                         z0 >>= e;
 699                 }
 700                 ez = 1;
 701         } else if (z0 >= 0x20000) {
 702                 /* carry out; shift right by one */
 703                 sticky = (z4 & 1) | z5 | z6 | z7;
 704                 z4 = (z4 >> 1) | (z3 << 31);
 705                 if (sticky)
 706                         z4 |= 1;
 707                 z3 = (z3 >> 1) | (z2 << 31);
 708                 z2 = (z2 >> 1) | (z1 << 31);
 709                 z1 = (z1 >> 1) | (z0 << 31);
 710                 z0 >>= 1;
 711                 ez++;
 712         } else {
 713                 if (z0 < 0x10000 && (z0 | z1 | z2 | z3 | z4 | z5 | z6 | z7)
 714                         != 0) {
 715                         /*
 716                          * borrow/cancellation; shift left as much as
 717                          * exponent allows
 718                          */
 719                         while (!(z0 | (z1 & 0xfffe0000)) && ez >= 33) {
 720                                 z0 = z1;
 721                                 z1 = z2;
 722                                 z2 = z3;
 723                                 z3 = z4;
 724                                 z4 = z5;
 725                                 z5 = z6;
 726                                 z6 = z7;
 727                                 z7 = 0;
 728                                 ez -= 32;
 729                         }
 730                         while (z0 < 0x10000 && ez > 1) {
 731                                 z0 = (z0 << 1) | (z1 >> 31);
 732                                 z1 = (z1 << 1) | (z2 >> 31);
 733                                 z2 = (z2 << 1) | (z3 >> 31);
 734                                 z3 = (z3 << 1) | (z4 >> 31);
 735                                 z4 = (z4 << 1) | (z5 >> 31);
 736                                 z5 = (z5 << 1) | (z6 >> 31);
 737                                 z6 = (z6 << 1) | (z7 >> 31);
 738                                 z7 <<= 1;
 739                                 ez--;
 740                         }
 741                 }
 742                 if (z5 | z6 | z7)
 743                         z4 |= 1;
 744         }
 745 
 746         /* get the rounding mode */
 747         rm = fsr >> 30;
 748 
 749         /* strip off the integer bit, if there is one */
 750         ibit = z0 & 0x10000;
 751         if (ibit)
 752                 z0 -= 0x10000;
 753         else {
 754                 ez = 0;
 755                 if (!(z0 | z1 | z2 | z3 | z4)) { /* exact zero */
 756                         zz.i[0] = rm == FSR_RM ? 0x80000000 : 0;
 757                         zz.i[1] = zz.i[2] = zz.i[3] = 0;
 758                         __fenv_setfsr32(&fsr);
 759                         return (zz.q);
 760                 }
 761         }
 762 
 763         /*
 764          * flip the sense of directed roundings if the result is negative;
 765          * the logic below applies to a positive result
 766          */
 767         if (sz)
 768                 rm ^= rm >> 1;
 769 
 770         /* round and raise exceptions */
 771         if (z4) {
 772                 fsr |= FSR_NXC;
 773 
 774                 /* decide whether to round the fraction up */
 775                 if (rm == FSR_RP || (rm == FSR_RN && (z4 > 0x80000000u ||
 776                         (z4 == 0x80000000u && (z3 & 1))))) {
 777                         /* round up and renormalize if necessary */
 778                         if (++z3 == 0)
 779                                 if (++z2 == 0)
 780                                         if (++z1 == 0)
 781                                                 if (++z0 == 0x10000) {
 782                                                         z0 = 0;
 783                                                         ez++;
 784                                                 }
 785                 }
 786         }
 787 
 788         /* check for under/overflow */
 789         if (ez >= 0x7fff) {
 790                 if (rm == FSR_RN || rm == FSR_RP) {
 791                         zz.i[0] = sz | 0x7fff0000;
 792                         zz.i[1] = zz.i[2] = zz.i[3] = 0;
 793                 } else {
 794                         zz.i[0] = sz | 0x7ffeffff;
 795                         zz.i[1] = zz.i[2] = zz.i[3] = 0xffffffff;
 796                 }
 797                 fsr |= FSR_OFC | FSR_NXC;
 798         } else {
 799                 zz.i[0] = sz | (ez << 16) | z0;
 800                 zz.i[1] = z1;
 801                 zz.i[2] = z2;
 802                 zz.i[3] = z3;
 803 
 804                 /*
 805                  * !ibit => exact result was tiny before rounding,
 806                  * z4 nonzero => result delivered is inexact
 807                  */
 808                 if (!ibit) {
 809                         if (z4)
 810                                 fsr |= FSR_UFC | FSR_NXC;
 811                         else if (fsr & FSR_UFM)
 812                                 fsr |= FSR_UFC;
 813                 }
 814         }
 815 
 816         /* restore the fsr and emulate exceptions as needed */
 817         if ((fsr & FSR_CEXC) & (fsr >> 23)) {
 818                 __fenv_setfsr32(&fsr);
 819                 if (fsr & FSR_OFC) {
 820                         dummy = huge;
 821                         dummy *= huge;
 822                 } else if (fsr & FSR_UFC) {
 823                         dummy = tiny;
 824                         if (fsr & FSR_NXC)
 825                                 dummy *= tiny;
 826                         else
 827                                 dummy -= tiny2;
 828                 } else {
 829                         dummy = huge;
 830                         dummy += tiny;
 831                 }
 832         } else {
 833                 fsr |= (fsr & 0x1f) << 5;
 834                 __fenv_setfsr32(&fsr);
 835         }
 836         return (zz.q);
 837 }
 838 
 839 #elif defined(__x86)
 840 
 841 static const union {
 842         unsigned i[2];
 843         double d;
 844 } C[] = {
 845         { 0, 0x3fe00000u },
 846         { 0, 0x40000000u },
 847         { 0, 0x3df00000u },
 848         { 0, 0x3bf00000u },
 849         { 0, 0x41f00000u },
 850         { 0, 0x43e00000u },
 851         { 0, 0x7fe00000u },
 852         { 0, 0x00100000u },
 853         { 0, 0x00100001u }
 854 };
 855 
 856 #define half    C[0].d
 857 #define two     C[1].d
 858 #define twom32  C[2].d
 859 #define twom64  C[3].d
 860 #define two32   C[4].d
 861 #define two63   C[5].d
 862 #define huge    C[6].d
 863 #define tiny    C[7].d
 864 #define tiny2   C[8].d
 865 
 866 #if defined(__amd64)
 867 #define NI      4
 868 #else
 869 #define NI      3
 870 #endif
 871 
 872 /*
 873  * fmal for x86: 80-bit extended double precision, little-endian
 874  */
 875 long double
 876 __fmal(long double x, long double y, long double z) {
 877         union {
 878                 unsigned i[NI];
 879                 long double e;
 880         } xx, yy, zz;
 881         long double xhi, yhi, xlo, ylo, t;
 882         unsigned xy0, xy1, xy2, xy3, xy4, z0, z1, z2, z3, z4;
 883         unsigned oldcwsw, cwsw, rm, sticky, carry;
 884         int ex, ey, ez, exy, sxy, sz, e, tinyafter;
 885         volatile double dummy;
 886 
 887         /* extract the exponents of the arguments */
 888         xx.e = x;
 889         yy.e = y;
 890         zz.e = z;
 891         ex = xx.i[2] & 0x7fff;
 892         ey = yy.i[2] & 0x7fff;
 893         ez = zz.i[2] & 0x7fff;
 894 
 895         /* dispense with inf, nan, and zero cases */
 896         if (ex == 0x7fff || ey == 0x7fff || (ex | xx.i[1] | xx.i[0]) == 0 ||
 897                 (ey | yy.i[1] | yy.i[0]) == 0)  /* x or y is inf, nan, or 0 */
 898                 return (x * y + z);
 899 
 900         if (ez == 0x7fff)                       /* z is inf or nan */
 901                 return (x + z); /* avoid spurious under/overflow in x * y */
 902 
 903         if ((ez | zz.i[1] | zz.i[0]) == 0)      /* z is zero */
 904                 /*
 905                  * x * y isn't zero but could underflow to zero,
 906                  * so don't add z, lest we perturb the sign
 907                  */
 908                 return (x * y);
 909 
 910         /*
 911          * now x, y, and z are all finite and nonzero; extract signs and
 912          * normalize the significands (this will raise the denormal operand
 913          * exception if need be)
 914          */
 915         sxy = (xx.i[2] ^ yy.i[2]) & 0x8000;
 916         sz = zz.i[2] & 0x8000;
 917         if (!ex) {
 918                 xx.e = x * two63;
 919                 ex = (xx.i[2] & 0x7fff) - 63;
 920         }
 921         if (!ey) {
 922                 yy.e = y * two63;
 923                 ey = (yy.i[2] & 0x7fff) - 63;
 924         }
 925         if (!ez) {
 926                 zz.e = z * two63;
 927                 ez = (zz.i[2] & 0x7fff) - 63;
 928         }
 929 
 930         /*
 931          * save the control and status words, mask all exceptions, and
 932          * set rounding to 64-bit precision and toward-zero
 933          */
 934         __fenv_getcwsw(&oldcwsw);
 935         cwsw = (oldcwsw & 0xf0c0ffff) | 0x0f3f0000;
 936         __fenv_setcwsw(&cwsw);
 937 
 938         /* multiply x*y to 128 bits */
 939         exy = ex + ey - 0x3fff;
 940         xx.i[2] = 0x3fff;
 941         yy.i[2] = 0x3fff;
 942         x = xx.e;
 943         y = yy.e;
 944         xhi = ((x + twom32) + two32) - two32;
 945         yhi = ((y + twom32) + two32) - two32;
 946         xlo = x - xhi;
 947         ylo = y - yhi;
 948         x *= y;
 949         y = ((xhi * yhi - x) + xhi * ylo + xlo * yhi) + xlo * ylo;
 950         if (x >= two) {
 951                 x *= half;
 952                 y *= half;
 953                 exy++;
 954         }
 955 
 956         /* extract the significands */
 957         xx.e = x;
 958         xy0 = xx.i[1];
 959         xy1 = xx.i[0];
 960         yy.e = t = y + twom32;
 961         xy2 = yy.i[0];
 962         yy.e = (y - (t - twom32)) + twom64;
 963         xy3 = yy.i[0];
 964         xy4 = 0;
 965         z0 = zz.i[1];
 966         z1 = zz.i[0];
 967         z2 = z3 = z4 = 0;
 968 
 969         /*
 970          * now x*y is represented by sxy, exy, and xy[0-4], and z is
 971          * represented likewise; swap if need be so |xy| <= |z|
 972          */
 973         if (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 &&
 974                 (xy1 > z1 || (xy1 == z1 && (xy2 | xy3) != 0)))))) {
 975                 e = sxy; sxy = sz; sz = e;
 976                 e = exy; exy = ez; ez = e;
 977                 e = xy0; xy0 = z0; z0 = e;
 978                 e = xy1; xy1 = z1; z1 = e;
 979                 z2 = xy2; xy2 = 0;
 980                 z3 = xy3; xy3 = 0;
 981         }
 982 
 983         /* shift the significand of xy keeping a sticky bit */
 984         e = ez - exy;
 985         if (e > 130) {
 986                 xy0 = xy1 = xy2 = xy3 = 0;
 987                 xy4 = 1;
 988         } else if (e >= 128) {
 989                 sticky = xy3 | xy2 | xy1 | ((xy0 << 1) << (159 - e));
 990                 xy4 = xy0 >> (e - 128);
 991                 if (sticky)
 992                         xy4 |= 1;
 993                 xy0 = xy1 = xy2 = xy3 = 0;
 994         } else if (e >= 96) {
 995                 sticky = xy3 | xy2 | ((xy1 << 1) << (127 - e));
 996                 xy4 = (xy1 >> (e - 96)) | ((xy0 << 1) << (127 - e));
 997                 if (sticky)
 998                         xy4 |= 1;
 999                 xy3 = xy0 >> (e - 96);
1000                 xy0 = xy1 = xy2 = 0;
1001         } else if (e >= 64) {
1002                 sticky = xy3 | ((xy2 << 1) << (95 - e));
1003                 xy4 = (xy2 >> (e - 64)) | ((xy1 << 1) << (95 - e));
1004                 if (sticky)
1005                         xy4 |= 1;
1006                 xy3 = (xy1 >> (e - 64)) | ((xy0 << 1) << (95 - e));
1007                 xy2 = xy0 >> (e - 64);
1008                 xy0 = xy1 = 0;
1009         } else if (e >= 32) {
1010                 sticky = (xy3 << 1) << (63 - e);
1011                 xy4 = (xy3 >> (e - 32)) | ((xy2 << 1) << (63 - e));
1012                 if (sticky)
1013                         xy4 |= 1;
1014                 xy3 = (xy2 >> (e - 32)) | ((xy1 << 1) << (63 - e));
1015                 xy2 = (xy1 >> (e - 32)) | ((xy0 << 1) << (63 - e));
1016                 xy1 = xy0 >> (e - 32);
1017                 xy0 = 0;
1018         } else if (e) {
1019                 xy4 = (xy3 << 1) << (31 - e);
1020                 xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - e));
1021                 xy2 = (xy2 >> e) | ((xy1 << 1) << (31 - e));
1022                 xy1 = (xy1 >> e) | ((xy0 << 1) << (31 - e));
1023                 xy0 >>= e;
1024         }
1025 
1026         /* if this is a magnitude subtract, negate the significand of xy */
1027         if (sxy ^ sz) {
1028                 xy0 = ~xy0;
1029                 xy1 = ~xy1;
1030                 xy2 = ~xy2;
1031                 xy3 = ~xy3;
1032                 xy4 = -xy4;
1033                 if (xy4 == 0)
1034                         if (++xy3 == 0)
1035                                 if (++xy2 == 0)
1036                                         if (++xy1 == 0)
1037                                                 xy0++;
1038         }
1039 
1040         /* add, propagating carries */
1041         z4 += xy4;
1042         carry = (z4 < xy4);
1043         z3 += xy3;
1044         if (carry) {
1045                 z3++;
1046                 carry = (z3 <= xy3);
1047         } else
1048                 carry = (z3 < xy3);
1049         z2 += xy2;
1050         if (carry) {
1051                 z2++;
1052                 carry = (z2 <= xy2);
1053         } else
1054                 carry = (z2 < xy2);
1055         z1 += xy1;
1056         if (carry) {
1057                 z1++;
1058                 carry = (z1 <= xy1);
1059         } else
1060                 carry = (z1 < xy1);
1061         z0 += xy0;
1062         if (carry) {
1063                 z0++;
1064                 carry = (z0 <= xy0);
1065         } else
1066                 carry = (z0 < xy0);
1067 
1068         /* for a magnitude subtract, ignore the last carry out */
1069         if (sxy ^ sz)
1070                 carry = 0;
1071 
1072         /* postnormalize and collect rounding information into z2 */
1073         if (ez < 1) {
1074                 /* result is tiny; shift right until exponent is within range */
1075                 e = 1 - ez;
1076                 if (e > 67) {
1077                         z2 = 1; /* result can't be exactly zero */
1078                         z0 = z1 = 0;
1079                 } else if (e >= 64) {
1080                         sticky = z4 | z3 | z2 | z1 | ((z0 << 1) << (95 - e));
1081                         z2 = (z0 >> (e - 64)) | ((carry << 1) << (95 - e));
1082                         if (sticky)
1083                                 z2 |= 1;
1084                         z1 = carry >> (e - 64);
1085                         z0 = 0;
1086                 } else if (e >= 32) {
1087                         sticky = z4 | z3 | z2 | ((z1 << 1) << (63 - e));
1088                         z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - e));
1089                         if (sticky)
1090                                 z2 |= 1;
1091                         z1 = (z0 >> (e - 32)) | ((carry << 1) << (63 - e));
1092                         z0 = carry >> (e - 32);
1093                 } else {
1094                         sticky = z4 | z3 | (z2 << 1) << (31 - e);
1095                         z2 = (z2 >> e) | ((z1 << 1) << (31 - e));
1096                         if (sticky)
1097                                 z2 |= 1;
1098                         z1 = (z1 >> e) | ((z0 << 1) << (31 - e));
1099                         z0 = (z0 >> e) | ((carry << 1) << (31 - e));
1100                 }
1101                 ez = 1;
1102         } else if (carry) {
1103                 /* carry out; shift right by one */
1104                 sticky = (z2 & 1) | z3 | z4;
1105                 z2 = (z2 >> 1) | (z1 << 31);
1106                 if (sticky)
1107                         z2 |= 1;
1108                 z1 = (z1 >> 1) | (z0 << 31);
1109                 z0 = (z0 >> 1) | 0x80000000;
1110                 ez++;
1111         } else {
1112                 if (z0 < 0x80000000u && (z0 | z1 | z2 | z3 | z4) != 0) {
1113                         /*
1114                          * borrow/cancellation; shift left as much as
1115                          * exponent allows
1116                          */
1117                         while (!z0 && ez >= 33) {
1118                                 z0 = z1;
1119                                 z1 = z2;
1120                                 z2 = z3;
1121                                 z3 = z4;
1122                                 z4 = 0;
1123                                 ez -= 32;
1124                         }
1125                         while (z0 < 0x80000000u && ez > 1) {
1126                                 z0 = (z0 << 1) | (z1 >> 31);
1127                                 z1 = (z1 << 1) | (z2 >> 31);
1128                                 z2 = (z2 << 1) | (z3 >> 31);
1129                                 z3 = (z3 << 1) | (z4 >> 31);
1130                                 z4 <<= 1;
1131                                 ez--;
1132                         }
1133                 }
1134                 if (z3 | z4)
1135                         z2 |= 1;
1136         }
1137 
1138         /* get the rounding mode */
1139         rm = oldcwsw & 0x0c000000;
1140 
1141         /* adjust exponent if result is subnormal */
1142         tinyafter = 0;
1143         if (!(z0 & 0x80000000)) {
1144                 ez = 0;
1145                 tinyafter = 1;
1146                 if (!(z0 | z1 | z2)) { /* exact zero */
1147                         zz.i[2] = rm == FCW_RM ? 0x8000 : 0;
1148                         zz.i[1] = zz.i[0] = 0;
1149                         __fenv_setcwsw(&oldcwsw);
1150                         return (zz.e);
1151                 }
1152         }
1153 
1154         /*
1155          * flip the sense of directed roundings if the result is negative;
1156          * the logic below applies to a positive result
1157          */
1158         if (sz && (rm == FCW_RM || rm == FCW_RP))
1159                 rm = (FCW_RM + FCW_RP) - rm;
1160 
1161         /* round */
1162         if (z2) {
1163                 if (rm == FCW_RP || (rm == FCW_RN && (z2 > 0x80000000u ||
1164                         (z2 == 0x80000000u && (z1 & 1))))) {
1165                         /* round up and renormalize if necessary */
1166                         if (++z1 == 0) {
1167                                 if (++z0 == 0) {
1168                                         z0 = 0x80000000;
1169                                         ez++;
1170                                 } else if (z0 == 0x80000000) {
1171                                         /* rounded up to smallest normal */
1172                                         ez = 1;
1173                                         if ((rm == FCW_RP && z2 >
1174                                                 0x80000000u) || (rm == FCW_RN &&
1175                                                 z2 >= 0xc0000000u))
1176                                                 /*
1177                                                  * would have rounded up to
1178                                                  * smallest normal even with
1179                                                  * unbounded range
1180                                                  */
1181                                                 tinyafter = 0;
1182                                 }
1183                         }
1184                 }
1185         }
1186 
1187         /* restore the control and status words, check for over/underflow */
1188         __fenv_setcwsw(&oldcwsw);
1189         if (ez >= 0x7fff) {
1190                 if (rm == FCW_RN || rm == FCW_RP) {
1191                         zz.i[2] = sz | 0x7fff;
1192                         zz.i[1] = 0x80000000;
1193                         zz.i[0] = 0;
1194                 } else {
1195                         zz.i[2] = sz | 0x7ffe;
1196                         zz.i[1] = 0xffffffff;
1197                         zz.i[0] = 0xffffffff;
1198                 }
1199                 dummy = huge;
1200                 dummy *= huge;
1201         } else {
1202                 zz.i[2] = sz | ez;
1203                 zz.i[1] = z0;
1204                 zz.i[0] = z1;
1205 
1206                 /*
1207                  * tinyafter => result rounded w/ unbounded range would be tiny,
1208                  * z2 nonzero => result delivered is inexact
1209                  */
1210                 if (tinyafter) {
1211                         dummy = tiny;
1212                         if (z2)
1213                                 dummy *= tiny;
1214                         else
1215                                 dummy -= tiny2;
1216                 } else if (z2) {
1217                         dummy = huge;
1218                         dummy += tiny;
1219                 }
1220         }
1221 
1222         return (zz.e);
1223 }
1224 
1225 #else
1226 #error Unknown architecture
1227 #endif