Print this page
5262 libm needs to be carefully unifdef'd
5268 libm doesn't need to hide symbols which are already local
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/expm1l.c
+++ new/usr/src/lib/libm/common/Q/expm1l.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
↓ open down ↓ |
19 lines elided |
↑ open up ↑ |
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 -#if defined(ELFOBJ)
31 30 #pragma weak expm1l = __expm1l
32 -#endif
33 31 #if !defined(__sparc)
34 32 #error Unsupported architecture
35 33 #endif
36 34
37 35 /*
38 36 * expm1l(x)
39 37 *
40 38 * Table driven method
41 39 * Written by K.C. Ng, June 1995.
42 40 * Algorithm :
43 41 * 1. expm1(x) = x if x<2**-114
44 42 * 2. if |x| <= 0.0625 = 1/16, use approximation
45 43 * expm1(x) = x + x*P/(2-P)
46 44 * where
47 45 * P = x - z*(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*P6+z*P7))))), z = x*x;
48 46 * (this formula is derived from
49 47 * 2-P+x = R = x*(exp(x)+1)/(exp(x)-1) ~ 2 + x*x/6 - x^4/360 + ...)
50 48 *
51 49 * P1 = 1.66666666666666666666666666666638500528074603030e-0001
52 50 * P2 = -2.77777777777777777777777759668391122822266551158e-0003
53 51 * P3 = 6.61375661375661375657437408890138814721051293054e-0005
54 52 * P4 = -1.65343915343915303310185228411892601606669528828e-0006
55 53 * P5 = 4.17535139755122945763580609663414647067443411178e-0008
56 54 * P6 = -1.05683795988668526689182102605260986731620026832e-0009
57 55 * P7 = 2.67544168821852702827123344217198187229611470514e-0011
58 56 *
59 57 * Accuracy: |R-x*(exp(x)+1)/(exp(x)-1)|<=2**-119.13
60 58 *
61 59 * 3. For 1/16 < |x| < 1.125, choose x(+-i) ~ +-(i+4.5)/64, i=0,..,67
62 60 * since
63 61 * exp(x) = exp(xi+(x-xi))= exp(xi)*exp((x-xi))
64 62 * we have
65 63 * expm1(x) = expm1(xi)+(exp(xi))*(expm1(x-xi))
66 64 * where
67 65 * |s=x-xi| <= 1/128
68 66 * and
69 67 * expm1(s)=2s/(2-R), R= s-s^2*(T1+s^2*(T2+s^2*(T3+s^2*(T4+s^2*T5))))
70 68 *
71 69 * T1 = 1.666666666666666666666666666660876387437e-1L,
72 70 * T2 = -2.777777777777777777777707812093173478756e-3L,
73 71 * T3 = 6.613756613756613482074280932874221202424e-5L,
74 72 * T4 = -1.653439153392139954169609822742235851120e-6L,
75 73 * T5 = 4.175314851769539751387852116610973796053e-8L;
76 74 *
77 75 * 4. For |x| >= 1.125, return exp(x)-1.
78 76 * (see algorithm for exp)
79 77 *
80 78 * Special cases:
81 79 * expm1l(INF) is INF, expm1l(NaN) is NaN;
82 80 * expm1l(-INF)= -1;
83 81 * for finite argument, only expm1l(0)=0 is exact.
84 82 *
85 83 * Accuracy:
86 84 * according to an error analysis, the error is always less than
87 85 * 2 ulp (unit in the last place).
88 86 *
89 87 * Misc. info.
90 88 * For 113 bit long double
91 89 * if x > 1.135652340629414394949193107797076342845e+4
92 90 * then expm1l(x) overflow;
93 91 *
94 92 * Constants:
95 93 * Only decimal values are given. We assume that the compiler will convert
96 94 * from decimal to binary accurately enough to produce the correct
97 95 * hexadecimal values.
98 96 */
99 97
100 98 #include "libm.h"
101 99
102 100 extern const long double _TBL_expl_hi[], _TBL_expl_lo[];
103 101 extern const long double _TBL_expm1lx[], _TBL_expm1l[];
104 102
105 103 static const long double
106 104 zero = +0.0L,
107 105 one = +1.0L,
108 106 two = +2.0L,
109 107 ln2_64 = +1.083042469624914545964425189778400898568e-2L,
110 108 ovflthreshold = +1.135652340629414394949193107797076342845e+4L,
111 109 invln2_32 = +4.616624130844682903551758979206054839765e+1L,
112 110 ln2_32hi = +2.166084939249829091928849858592451515688e-2L,
113 111 ln2_32lo = +5.209643502595475652782654157501186731779e-27L,
114 112 huge = +1.0e4000L,
115 113 tiny = +1.0e-4000L,
116 114 P1 = +1.66666666666666666666666666666638500528074603030e-0001L,
117 115 P2 = -2.77777777777777777777777759668391122822266551158e-0003L,
118 116 P3 = +6.61375661375661375657437408890138814721051293054e-0005L,
119 117 P4 = -1.65343915343915303310185228411892601606669528828e-0006L,
120 118 P5 = +4.17535139755122945763580609663414647067443411178e-0008L,
121 119 P6 = -1.05683795988668526689182102605260986731620026832e-0009L,
122 120 P7 = +2.67544168821852702827123344217198187229611470514e-0011L,
123 121 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
124 122 T1 = +1.666666666666666666666666666660876387437e-1L,
125 123 T2 = -2.777777777777777777777707812093173478756e-3L,
126 124 T3 = +6.613756613756613482074280932874221202424e-5L,
127 125 T4 = -1.653439153392139954169609822742235851120e-6L,
128 126 T5 = +4.175314851769539751387852116610973796053e-8L;
129 127
130 128 long double
131 129 expm1l(long double x) {
132 130 int hx, ix, j, k, m;
133 131 long double t, r, s, w;
134 132
135 133 hx = ((int *) &x)[HIXWORD];
136 134 ix = hx & ~0x80000000;
137 135 if (ix >= 0x7fff0000) {
138 136 if (x != x)
139 137 return (x + x); /* NaN */
140 138 if (x < zero)
141 139 return (-one); /* -inf */
142 140 return (x); /* +inf */
143 141 }
144 142 if (ix < 0x3fff4000) { /* |x| < 1.25 */
145 143 if (ix < 0x3ffb0000) { /* |x| < 0.0625 */
146 144 if (ix < 0x3f8d0000) {
147 145 if ((int) x == 0)
148 146 return (x); /* |x|<2^-114 */
149 147 }
150 148 t = x * x;
151 149 r = (x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t *
152 150 (P5 + t * (P6 + t * P7)))))));
153 151 return (x + (x * r) / (two - r));
154 152 }
155 153 /* compute i = [64*x] */
156 154 m = 0x4009 - (ix >> 16);
157 155 j = ((ix & 0x0000ffff) | 0x10000) >> m; /* j=4,...,67 */
158 156 if (hx < 0)
159 157 j += 82; /* negative */
160 158 s = x - _TBL_expm1lx[j];
161 159 t = s * s;
162 160 r = s - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))));
163 161 r = (s + s) / (two - r);
164 162 w = _TBL_expm1l[j];
165 163 return (w + (w + one) * r);
166 164 }
167 165 if (hx > 0) {
168 166 if (x > ovflthreshold)
169 167 return (huge * huge);
170 168 k = (int) (invln2_32 * (x + ln2_64));
171 169 } else {
172 170 if (x < -80.0)
173 171 return (tiny - x / x);
174 172 k = (int) (invln2_32 * (x - ln2_64));
175 173 }
176 174 j = k & 0x1f;
177 175 m = k >> 5;
178 176 t = (long double) k;
179 177 x = (x - t * ln2_32hi) - t * ln2_32lo;
180 178 t = x * x;
181 179 r = (x - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))))) - two;
182 180 x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r -
183 181 _TBL_expl_lo[j]);
184 182 return (scalbnl(x, m) - one);
185 183 }
↓ open down ↓ |
143 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX