1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak expm1l = __expm1l 31 #if !defined(__sparc) 32 #error Unsupported architecture 33 #endif 34 35 /* 36 * expm1l(x) 37 * 38 * Table driven method 39 * Written by K.C. Ng, June 1995. 40 * Algorithm : 41 * 1. expm1(x) = x if x<2**-114 42 * 2. if |x| <= 0.0625 = 1/16, use approximation 43 * expm1(x) = x + x*P/(2-P) 44 * where 45 * P = x - z*(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*P6+z*P7))))), z = x*x; 46 * (this formula is derived from 47 * 2-P+x = R = x*(exp(x)+1)/(exp(x)-1) ~ 2 + x*x/6 - x^4/360 + ...) 48 * 49 * P1 = 1.66666666666666666666666666666638500528074603030e-0001 50 * P2 = -2.77777777777777777777777759668391122822266551158e-0003 51 * P3 = 6.61375661375661375657437408890138814721051293054e-0005 52 * P4 = -1.65343915343915303310185228411892601606669528828e-0006 53 * P5 = 4.17535139755122945763580609663414647067443411178e-0008 54 * P6 = -1.05683795988668526689182102605260986731620026832e-0009 55 * P7 = 2.67544168821852702827123344217198187229611470514e-0011 56 * 57 * Accuracy: |R-x*(exp(x)+1)/(exp(x)-1)|<=2**-119.13 58 * 59 * 3. For 1/16 < |x| < 1.125, choose x(+-i) ~ +-(i+4.5)/64, i=0,..,67 60 * since 61 * exp(x) = exp(xi+(x-xi))= exp(xi)*exp((x-xi)) 62 * we have 63 * expm1(x) = expm1(xi)+(exp(xi))*(expm1(x-xi)) 64 * where 65 * |s=x-xi| <= 1/128 66 * and 67 * expm1(s)=2s/(2-R), R= s-s^2*(T1+s^2*(T2+s^2*(T3+s^2*(T4+s^2*T5)))) 68 * 69 * T1 = 1.666666666666666666666666666660876387437e-1L, 70 * T2 = -2.777777777777777777777707812093173478756e-3L, 71 * T3 = 6.613756613756613482074280932874221202424e-5L, 72 * T4 = -1.653439153392139954169609822742235851120e-6L, 73 * T5 = 4.175314851769539751387852116610973796053e-8L; 74 * 75 * 4. For |x| >= 1.125, return exp(x)-1. 76 * (see algorithm for exp) 77 * 78 * Special cases: 79 * expm1l(INF) is INF, expm1l(NaN) is NaN; 80 * expm1l(-INF)= -1; 81 * for finite argument, only expm1l(0)=0 is exact. 82 * 83 * Accuracy: 84 * according to an error analysis, the error is always less than 85 * 2 ulp (unit in the last place). 86 * 87 * Misc. info. 88 * For 113 bit long double 89 * if x > 1.135652340629414394949193107797076342845e+4 90 * then expm1l(x) overflow; 91 * 92 * Constants: 93 * Only decimal values are given. We assume that the compiler will convert 94 * from decimal to binary accurately enough to produce the correct 95 * hexadecimal values. 96 */ 97 98 #include "libm.h" 99 100 extern const long double _TBL_expl_hi[], _TBL_expl_lo[]; 101 extern const long double _TBL_expm1lx[], _TBL_expm1l[]; 102 103 static const long double 104 zero = +0.0L, 105 one = +1.0L, 106 two = +2.0L, 107 ln2_64 = +1.083042469624914545964425189778400898568e-2L, 108 ovflthreshold = +1.135652340629414394949193107797076342845e+4L, 109 invln2_32 = +4.616624130844682903551758979206054839765e+1L, 110 ln2_32hi = +2.166084939249829091928849858592451515688e-2L, 111 ln2_32lo = +5.209643502595475652782654157501186731779e-27L, 112 huge = +1.0e4000L, 113 tiny = +1.0e-4000L, 114 P1 = +1.66666666666666666666666666666638500528074603030e-0001L, 115 P2 = -2.77777777777777777777777759668391122822266551158e-0003L, 116 P3 = +6.61375661375661375657437408890138814721051293054e-0005L, 117 P4 = -1.65343915343915303310185228411892601606669528828e-0006L, 118 P5 = +4.17535139755122945763580609663414647067443411178e-0008L, 119 P6 = -1.05683795988668526689182102605260986731620026832e-0009L, 120 P7 = +2.67544168821852702827123344217198187229611470514e-0011L, 121 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */ 122 T1 = +1.666666666666666666666666666660876387437e-1L, 123 T2 = -2.777777777777777777777707812093173478756e-3L, 124 T3 = +6.613756613756613482074280932874221202424e-5L, 125 T4 = -1.653439153392139954169609822742235851120e-6L, 126 T5 = +4.175314851769539751387852116610973796053e-8L; 127 128 long double 129 expm1l(long double x) { 130 int hx, ix, j, k, m; 131 long double t, r, s, w; 132 133 hx = ((int *) &x)[HIXWORD]; 134 ix = hx & ~0x80000000; 135 if (ix >= 0x7fff0000) { 136 if (x != x) 137 return (x + x); /* NaN */ 138 if (x < zero) 139 return (-one); /* -inf */ 140 return (x); /* +inf */ 141 } 142 if (ix < 0x3fff4000) { /* |x| < 1.25 */ 143 if (ix < 0x3ffb0000) { /* |x| < 0.0625 */ 144 if (ix < 0x3f8d0000) { 145 if ((int) x == 0) 146 return (x); /* |x|<2^-114 */ 147 } 148 t = x * x; 149 r = (x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * 150 (P5 + t * (P6 + t * P7))))))); 151 return (x + (x * r) / (two - r)); 152 } 153 /* compute i = [64*x] */ 154 m = 0x4009 - (ix >> 16); 155 j = ((ix & 0x0000ffff) | 0x10000) >> m; /* j=4,...,67 */ 156 if (hx < 0) 157 j += 82; /* negative */ 158 s = x - _TBL_expm1lx[j]; 159 t = s * s; 160 r = s - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5)))); 161 r = (s + s) / (two - r); 162 w = _TBL_expm1l[j]; 163 return (w + (w + one) * r); 164 } 165 if (hx > 0) { 166 if (x > ovflthreshold) 167 return (huge * huge); 168 k = (int) (invln2_32 * (x + ln2_64)); 169 } else { 170 if (x < -80.0) 171 return (tiny - x / x); 172 k = (int) (invln2_32 * (x - ln2_64)); 173 } 174 j = k & 0x1f; 175 m = k >> 5; 176 t = (long double) k; 177 x = (x - t * ln2_32hi) - t * ln2_32lo; 178 t = x * x; 179 r = (x - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))))) - two; 180 x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r - 181 _TBL_expl_lo[j]); 182 return (scalbnl(x, m) - one); 183 }