1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include "libm_inlines.h" 31 32 #ifdef __RESTRICT 33 #define restrict _Restrict 34 #else 35 #define restrict 36 #endif 37 38 /* float rsqrtf(float x) 39 * 40 * Method : 41 * 1. Special cases: 42 * for x = NaN => QNaN; 43 * for x = +Inf => 0; 44 * for x is negative, -Inf => QNaN + invalid; 45 * for x = +0 => +Inf + divide-by-zero; 46 * for x = -0 => -Inf + divide-by-zero. 47 * 2. Computes reciprocal square root from: 48 * x = m * 2**n 49 * Where: 50 * m = [0.5, 2), 51 * n = ((exponent + 1) & ~1). 52 * Then: 53 * rsqrtf(x) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m)) 54 * 2. Computes 1/sqrt(m) from: 55 * 1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm)) 56 * Where: 57 * m = m0 + dm, 58 * m0 = 0.5 * (1 + k/64) for m = [0.5, 0.5+127/256), k = [0, 63]; 59 * m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127]; 60 * Then: 61 * 1/sqrt(m0), 1/m0 are looked up in a table, 62 * 1/sqrt(1 + (1/m0)*dm) is computed using approximation: 63 * 1/sqrt(1 + z) = ((a3 * z + a2) * z + a1) * z + a0 64 * where z = [-1/64, 1/64]. 65 * 66 * Accuracy: 67 * The maximum relative error for the approximating 68 * polynomial is 2**(-27.87). 69 * Maximum error observed: less than 0.534 ulp for the 70 * whole float type range. 71 */ 72 73 extern float sqrtf(float); 74 75 static const double __TBL_rsqrtf[] = { 76 /* 77 i = [0,63] 78 TBL[2*i ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-24; 79 TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46))); 80 i = [64,127] 81 TBL[2*i ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-23; 82 TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46))); 83 */ 84 1.1920928955078125000e-07, 1.4142135623730951455e+00, 85 1.1737530048076923728e-07, 1.4032928308912466786e+00, 86 1.1559688683712121533e-07, 1.3926212476455828160e+00, 87 1.1387156016791044559e-07, 1.3821894809301762397e+00, 88 1.1219697840073529256e-07, 1.3719886811400707760e+00, 89 1.1057093523550724772e-07, 1.3620104492139977204e+00, 90 1.0899135044642856803e-07, 1.3522468075656264297e+00, 91 1.0745626100352112918e-07, 1.3426901732747025253e+00, 92 1.0596381293402777190e-07, 1.3333333333333332593e+00, 93 1.0451225385273972023e-07, 1.3241694217637887121e+00, 94 1.0309992609797297870e-07, 1.3151918984428583315e+00, 95 1.0172526041666667320e-07, 1.3063945294843617440e+00, 96 1.0038677014802631022e-07, 1.2977713690461003537e+00, 97 9.9083045860389616921e-08, 1.2893167424406084542e+00, 98 9.7812750400641022247e-08, 1.2810252304406970492e+00, 99 9.6574614319620251657e-08, 1.2728916546811681609e+00, 100 9.5367431640625005294e-08, 1.2649110640673517647e+00, 101 9.4190055941358019463e-08, 1.2570787221094177344e+00, 102 9.3041396722560978838e-08, 1.2493900951088485751e+00, 103 9.1920416039156631290e-08, 1.2418408411301324890e+00, 104 9.0826125372023804482e-08, 1.2344267996967352996e+00, 105 8.9757582720588234048e-08, 1.2271439821557927896e+00, 106 8.8713889898255812722e-08, 1.2199885626608373279e+00, 107 8.7694190014367814875e-08, 1.2129568697262453902e+00, 108 8.6697665127840911497e-08, 1.2060453783110545167e+00, 109 8.5723534058988761666e-08, 1.1992507023933782762e+00, 110 8.4771050347222225457e-08, 1.1925695879998878812e+00, 111 8.3839500343406599951e-08, 1.1859989066577618644e+00, 112 8.2928201426630432481e-08, 1.1795356492391770864e+00, 113 8.2036500336021511923e-08, 1.1731769201708264205e+00, 114 8.1163771609042551220e-08, 1.1669199319831564665e+00, 115 8.0309416118421050820e-08, 1.1607620001760186046e+00, 116 7.9472859700520828922e-08, 1.1547005383792514621e+00, 117 7.8653551868556699530e-08, 1.1487330537883810866e+00, 118 7.7850964604591830522e-08, 1.1428571428571427937e+00, 119 7.7064591224747481298e-08, 1.1370704872299222110e+00, 120 7.6293945312500001588e-08, 1.1313708498984760276e+00, 121 7.5538559715346535571e-08, 1.1257560715684669095e+00, 122 7.4797985600490195040e-08, 1.1202240672224077489e+00, 123 7.4071791565533974158e-08, 1.1147728228665882977e+00, 124 7.3359562800480773303e-08, 1.1094003924504582947e+00, 125 7.2660900297619054173e-08, 1.1041048949477667573e+00, 126 7.1975420106132072725e-08, 1.0988845115895122806e+00, 127 7.1302752628504667579e-08, 1.0937374832394612945e+00, 128 7.0642541956018514597e-08, 1.0886621079036347126e+00, 129 6.9994445240825691959e-08, 1.0836567383657542685e+00, 130 6.9358132102272723904e-08, 1.0787197799411873955e+00, 131 6.8733284065315314719e-08, 1.0738496883424388795e+00, 132 6.8119594029017853361e-08, 1.0690449676496975862e+00, 133 6.7516765763274335346e-08, 1.0643041683803828867e+00, 134 6.6924513432017540145e-08, 1.0596258856520350822e+00, 135 6.6342561141304348632e-08, 1.0550087574332591700e+00, 136 6.5770642510775861156e-08, 1.0504514628777803509e+00, 137 6.5208500267094023655e-08, 1.0459527207369814228e+00, 138 6.4655885858050847233e-08, 1.0415112878465908608e+00, 139 6.4112559086134451001e-08, 1.0371259576834630511e+00, 140 6.3578287760416665784e-08, 1.0327955589886446131e+00, 141 6.3052847365702481089e-08, 1.0285189544531601058e+00, 142 6.2536020747950822927e-08, 1.0242950394631678002e+00, 143 6.2027597815040656970e-08, 1.0201227409013413627e+00, 144 6.1527375252016127325e-08, 1.0160010160015240377e+00, 145 6.1035156250000001271e-08, 1.0119288512538813229e+00, 146 6.0550750248015869655e-08, 1.0079052613579393416e+00, 147 6.0073972687007873182e-08, 1.0039292882210537616e+00, 148 1.1920928955078125000e-07, 1.0000000000000000000e+00, 149 1.1737530048076923728e-07, 9.9227787671366762812e-01, 150 1.1559688683712121533e-07, 9.8473192783466190203e-01, 151 1.1387156016791044559e-07, 9.7735555485044178781e-01, 152 1.1219697840073529256e-07, 9.7014250014533187638e-01, 153 1.1057093523550724772e-07, 9.6308682468615358641e-01, 154 1.0899135044642856803e-07, 9.5618288746751489704e-01, 155 1.0745626100352112918e-07, 9.4942532655508271588e-01, 156 1.0596381293402777190e-07, 9.4280904158206335630e-01, 157 1.0451225385273972023e-07, 9.3632917756904454620e-01, 158 1.0309992609797297870e-07, 9.2998110995055427441e-01, 159 1.0172526041666667320e-07, 9.2376043070340119190e-01, 160 1.0038677014802631022e-07, 9.1766293548224708854e-01, 161 9.9083045860389616921e-08, 9.1168461167710357351e-01, 162 9.7812750400641022247e-08, 9.0582162731567661407e-01, 163 9.6574614319620251657e-08, 9.0007032074081916306e-01, 164 9.5367431640625005294e-08, 8.9442719099991585541e-01, 165 9.4190055941358019463e-08, 8.8888888888888883955e-01, 166 9.3041396722560978838e-08, 8.8345220859877238162e-01, 167 9.1920416039156631290e-08, 8.7811407991752277180e-01, 168 9.0826125372023804482e-08, 8.7287156094396955996e-01, 169 8.9757582720588234048e-08, 8.6772183127462465535e-01, 170 8.8713889898255812722e-08, 8.6266218562750729415e-01, 171 8.7694190014367814875e-08, 8.5769002787023584933e-01, 172 8.6697665127840911497e-08, 8.5280286542244176928e-01, 173 8.5723534058988761666e-08, 8.4799830400508802164e-01, 174 8.4771050347222225457e-08, 8.4327404271156780613e-01, 175 8.3839500343406599951e-08, 8.3862786937753464045e-01, 176 8.2928201426630432481e-08, 8.3405765622829908246e-01, 177 8.2036500336021511923e-08, 8.2956135578434020417e-01, 178 8.1163771609042551220e-08, 8.2513699700703468931e-01, 179 8.0309416118421050820e-08, 8.2078268166812329287e-01, 180 7.9472859700520828922e-08, 8.1649658092772603446e-01, 181 7.8653551868556699530e-08, 8.1227693210689522196e-01, 182 7.7850964604591830522e-08, 8.0812203564176865456e-01, 183 7.7064591224747481298e-08, 8.0403025220736967782e-01, 184 7.6293945312500001588e-08, 8.0000000000000004441e-01, 185 7.5538559715346535571e-08, 7.9602975216799132241e-01, 186 7.4797985600490195040e-08, 7.9211803438133943089e-01, 187 7.4071791565533974158e-08, 7.8826342253143455441e-01, 188 7.3359562800480773303e-08, 7.8446454055273617811e-01, 189 7.2660900297619054173e-08, 7.8072005835882651859e-01, 190 7.1975420106132072725e-08, 7.7702868988581130782e-01, 191 7.1302752628504667579e-08, 7.7338919123653082632e-01, 192 7.0642541956018514597e-08, 7.6980035891950104876e-01, 193 6.9994445240825691959e-08, 7.6626102817692109959e-01, 194 6.9358132102272723904e-08, 7.6277007139647390321e-01, 195 6.8733284065315314719e-08, 7.5932639660199918730e-01, 196 6.8119594029017853361e-08, 7.5592894601845450619e-01, 197 6.7516765763274335346e-08, 7.5257669470687782454e-01, 198 6.6924513432017540145e-08, 7.4926864926535519107e-01, 199 6.6342561141304348632e-08, 7.4600384659225105199e-01, 200 6.5770642510775861156e-08, 7.4278135270820744296e-01, 201 6.5208500267094023655e-08, 7.3960026163363878915e-01, 202 6.4655885858050847233e-08, 7.3645969431865865307e-01, 203 6.4112559086134451001e-08, 7.3335879762256905856e-01, 204 6.3578287760416665784e-08, 7.3029674334022143256e-01, 205 6.3052847365702481089e-08, 7.2727272727272729291e-01, 206 6.2536020747950822927e-08, 7.2428596834014824513e-01, 207 6.2027597815040656970e-08, 7.2133570773394584119e-01, 208 6.1527375252016127325e-08, 7.1842120810709964029e-01, 209 6.1035156250000001271e-08, 7.1554175279993270653e-01, 210 6.0550750248015869655e-08, 7.1269664509979835376e-01, 211 6.0073972687007873182e-08, 7.0988520753289097165e-01, 212 }; 213 214 static const unsigned long long LCONST[] = { 215 0x3feffffffee7f18fULL, /* A0 = 9.99999997962321453275e-01 */ 216 0xbfdffffffe07e52fULL, /* A1 =-4.99999998166077580600e-01 */ 217 0x3fd801180ca296d9ULL, /* A2 = 3.75066768969515586277e-01 */ 218 0xbfd400fc0bbb8e78ULL, /* A3 =-3.12560092408808548438e-01 */ 219 }; 220 221 static void 222 __vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey); 223 224 #pragma no_inline(__vrsqrtf_n) 225 226 #define RETURN(ret) \ 227 { \ 228 *py = (ret); \ 229 py += stridey; \ 230 if (n_n == 0) \ 231 { \ 232 spx = px; spy = py; \ 233 ax0 = *(int*)px; \ 234 continue; \ 235 } \ 236 n--; \ 237 break; \ 238 } 239 240 void 241 __vrsqrtf(int n, float * restrict px, int stridex, float * restrict py, int stridey) 242 { 243 float *spx, *spy; 244 int ax0, n_n; 245 float res; 246 float FONE = 1.0f, FTWO = 2.0f; 247 248 while (n > 1) 249 { 250 n_n = 0; 251 spx = px; 252 spy = py; 253 ax0 = *(int*)px; 254 for (; n > 1 ; n--) 255 { 256 px += stridex; 257 if (ax0 >= 0x7f800000) /* X = NaN or Inf */ 258 { 259 res = *(px - stridex); 260 RETURN (FONE / res) 261 } 262 263 py += stridey; 264 265 if (ax0 < 0x00800000) /* X = denormal, zero or negative */ 266 { 267 py -= stridey; 268 res = *(px - stridex); 269 270 if ((ax0 & 0x7fffffff) == 0) /* |X| = zero */ 271 { 272 RETURN (FONE / res) 273 } 274 else if (ax0 >= 0) /* X = denormal */ 275 { 276 double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */ 277 double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */ 278 double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */ 279 double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */ 280 281 double res0, xx0, tbl_div0, tbl_sqrt0; 282 float fres0; 283 int iax0, si0, iexp0; 284 285 res = *(int*)&res; 286 res *= FTWO; 287 ax0 = *(int*)&res; 288 iexp0 = ax0 >> 24; 289 iexp0 = 0x3f + 0x4b - iexp0; 290 iexp0 = iexp0 << 23; 291 292 si0 = (ax0 >> 13) & 0x7f0; 293 294 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0]; 295 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1]; 296 iax0 = ax0 & 0x7ffe0000; 297 iax0 = ax0 - iax0; 298 xx0 = iax0 * tbl_div0; 299 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0); 300 301 fres0 = res0; 302 iexp0 += *(int*)&fres0; 303 RETURN(*(float*)&iexp0) 304 } 305 else /* X = negative */ 306 { 307 RETURN (sqrtf(res)) 308 } 309 } 310 n_n++; 311 ax0 = *(int*)px; 312 } 313 if (n_n > 0) 314 __vrsqrtf_n(n_n, spx, stridex, spy, stridey); 315 } 316 317 if (n > 0) 318 { 319 ax0 = *(int*)px; 320 321 if (ax0 >= 0x7f800000) /* X = NaN or Inf */ 322 { 323 res = *px; 324 *py = FONE / res; 325 } 326 else if (ax0 < 0x00800000) /* X = denormal, zero or negative */ 327 { 328 res = *px; 329 330 if ((ax0 & 0x7fffffff) == 0) /* |X| = zero */ 331 { 332 *py = FONE / res; 333 } 334 else if (ax0 >= 0) /* X = denormal */ 335 { 336 double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */ 337 double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */ 338 double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */ 339 double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */ 340 double res0, xx0, tbl_div0, tbl_sqrt0; 341 float fres0; 342 int iax0, si0, iexp0; 343 344 res = *(int*)&res; 345 res *= FTWO; 346 ax0 = *(int*)&res; 347 iexp0 = ax0 >> 24; 348 iexp0 = 0x3f + 0x4b - iexp0; 349 iexp0 = iexp0 << 23; 350 351 si0 = (ax0 >> 13) & 0x7f0; 352 353 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0]; 354 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1]; 355 iax0 = ax0 & 0x7ffe0000; 356 iax0 = ax0 - iax0; 357 xx0 = iax0 * tbl_div0; 358 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0); 359 360 fres0 = res0; 361 iexp0 += *(int*)&fres0; 362 363 *(int*)py = iexp0; 364 } 365 else /* X = negative */ 366 { 367 *py = sqrtf(res); 368 } 369 } 370 else 371 { 372 double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */ 373 double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */ 374 double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */ 375 double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */ 376 double res0, xx0, tbl_div0, tbl_sqrt0; 377 float fres0; 378 int iax0, si0, iexp0; 379 380 iexp0 = ax0 >> 24; 381 iexp0 = 0x3f - iexp0; 382 iexp0 = iexp0 << 23; 383 384 si0 = (ax0 >> 13) & 0x7f0; 385 386 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0]; 387 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1]; 388 iax0 = ax0 & 0x7ffe0000; 389 iax0 = ax0 - iax0; 390 xx0 = iax0 * tbl_div0; 391 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0); 392 393 fres0 = res0; 394 iexp0 += *(int*)&fres0; 395 396 *(int*)py = iexp0; 397 } 398 } 399 } 400 401 void 402 __vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey) 403 { 404 double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */ 405 double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */ 406 double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */ 407 double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */ 408 double res0, xx0, tbl_div0, tbl_sqrt0; 409 float fres0; 410 int iax0, ax0, si0, iexp0; 411 412 #if defined(ARCH_v7) || defined(ARCH_v8) 413 double res1, xx1, tbl_div1, tbl_sqrt1; 414 double res2, xx2, tbl_div2, tbl_sqrt2; 415 float fres1, fres2; 416 int iax1, ax1, si1, iexp1; 417 int iax2, ax2, si2, iexp2; 418 419 for(; n > 2 ; n -= 3) 420 { 421 ax0 = *(int*)px; 422 px += stridex; 423 424 ax1 = *(int*)px; 425 px += stridex; 426 427 ax2 = *(int*)px; 428 px += stridex; 429 430 iexp0 = ax0 >> 24; 431 iexp1 = ax1 >> 24; 432 iexp2 = ax2 >> 24; 433 iexp0 = 0x3f - iexp0; 434 iexp1 = 0x3f - iexp1; 435 iexp2 = 0x3f - iexp2; 436 437 iexp0 = iexp0 << 23; 438 iexp1 = iexp1 << 23; 439 iexp2 = iexp2 << 23; 440 441 si0 = (ax0 >> 13) & 0x7f0; 442 si1 = (ax1 >> 13) & 0x7f0; 443 si2 = (ax2 >> 13) & 0x7f0; 444 445 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0]; 446 tbl_div1 = ((double*)((char*)__TBL_rsqrtf + si1))[0]; 447 tbl_div2 = ((double*)((char*)__TBL_rsqrtf + si2))[0]; 448 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1]; 449 tbl_sqrt1 = ((double*)((char*)__TBL_rsqrtf + si1))[1]; 450 tbl_sqrt2 = ((double*)((char*)__TBL_rsqrtf + si2))[1]; 451 iax0 = ax0 & 0x7ffe0000; 452 iax1 = ax1 & 0x7ffe0000; 453 iax2 = ax2 & 0x7ffe0000; 454 iax0 = ax0 - iax0; 455 iax1 = ax1 - iax1; 456 iax2 = ax2 - iax2; 457 xx0 = iax0 * tbl_div0; 458 xx1 = iax1 * tbl_div1; 459 xx2 = iax2 * tbl_div2; 460 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0); 461 res1 = tbl_sqrt1 * (((A3 * xx1 + A2) * xx1 + A1) * xx1 + A0); 462 res2 = tbl_sqrt2 * (((A3 * xx2 + A2) * xx2 + A1) * xx2 + A0); 463 464 fres0 = res0; 465 fres1 = res1; 466 fres2 = res2; 467 468 iexp0 += *(int*)&fres0; 469 iexp1 += *(int*)&fres1; 470 iexp2 += *(int*)&fres2; 471 *(int*)py = iexp0; 472 py += stridey; 473 *(int*)py = iexp1; 474 py += stridey; 475 *(int*)py = iexp2; 476 py += stridey; 477 } 478 #endif 479 for(; n > 0 ; n--) 480 { 481 ax0 = *(int*)px; 482 px += stridex; 483 484 iexp0 = ax0 >> 24; 485 iexp0 = 0x3f - iexp0; 486 iexp0 = iexp0 << 23; 487 488 si0 = (ax0 >> 13) & 0x7f0; 489 490 tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0]; 491 tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1]; 492 iax0 = ax0 & 0x7ffe0000; 493 iax0 = ax0 - iax0; 494 xx0 = iax0 * tbl_div0; 495 res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0); 496 497 fres0 = res0; 498 iexp0 += *(int*)&fres0; 499 *(int*)py = iexp0; 500 py += stridey; 501 } 502 }