1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak nearbyint = __nearbyint 31 32 /* 33 * nearbyint(x) returns the nearest fp integer to x in the direction 34 * corresponding to the current rounding direction without raising 35 * the inexact exception. 36 * 37 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN, 38 * nearbyint(x) is also NaN. 39 */ 40 41 #include "libm.h" 42 #include "fenv_synonyms.h" 43 #include <fenv.h> 44 45 double 46 __nearbyint(double x) { 47 union { 48 unsigned i[2]; 49 double d; 50 } xx; 51 unsigned hx, sx, i, frac; 52 int rm, j; 53 54 xx.d = x; 55 sx = xx.i[HIWORD] & 0x80000000; 56 hx = xx.i[HIWORD] & ~0x80000000; 57 58 /* handle trivial cases */ 59 if (hx >= 0x43300000) { /* x is nan, inf, or already integral */ 60 if (hx >= 0x7ff00000) /* x is inf or nan */ 61 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) 62 return (hx >= 0x7ff80000 ? x : x + x); 63 /* assumes sparc-like QNaN */ 64 #else 65 return (x + x); 66 #endif 67 return (x); 68 } else if ((hx | xx.i[LOWORD]) == 0) /* x is zero */ 69 return (x); 70 71 /* get the rounding mode */ 72 rm = fegetround(); 73 74 /* flip the sense of directed roundings if x is negative */ 75 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD)) 76 rm = (FE_UPWARD + FE_DOWNWARD) - rm; 77 78 /* handle |x| < 1 */ 79 if (hx < 0x3ff00000) { 80 if (rm == FE_UPWARD || (rm == FE_TONEAREST && 81 (hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD])))) 82 xx.i[HIWORD] = sx | 0x3ff00000; 83 else 84 xx.i[HIWORD] = sx; 85 xx.i[LOWORD] = 0; 86 return (xx.d); 87 } 88 89 /* round x at the integer bit */ 90 j = 0x433 - (hx >> 20); 91 if (j >= 32) { 92 i = 1 << (j - 32); 93 frac = ((xx.i[HIWORD] << 1) << (63 - j)) | 94 (xx.i[LOWORD] >> (j - 32)); 95 if (xx.i[LOWORD] & (i - 1)) 96 frac |= 1; 97 if (!frac) 98 return (x); 99 xx.i[LOWORD] = 0; 100 xx.i[HIWORD] &= ~(i - 1); 101 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) && 102 ((frac > 0x80000000u) || ((frac == 0x80000000) && 103 (xx.i[HIWORD] & i))))) 104 xx.i[HIWORD] += i; 105 } else { 106 i = 1 << j; 107 frac = (xx.i[LOWORD] << 1) << (31 - j); 108 if (!frac) 109 return (x); 110 xx.i[LOWORD] &= ~(i - 1); 111 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) && 112 (frac > 0x80000000u || ((frac == 0x80000000) && 113 (xx.i[LOWORD] & i))))) { 114 xx.i[LOWORD] += i; 115 if (xx.i[LOWORD] == 0) 116 xx.i[HIWORD]++; 117 } 118 } 119 return (xx.d); 120 }